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Abstract.
A nonextensive statistical mechanics entropy that depends only on the probability

distribution is proposed in the framework of superstatistics. It is based on a Γ( χ2) distribution
that depends on β and also on pl . The corresponding modified von Neumann entropy is
constructed; it is shown that it can also be obtained from a generalized Replica trick. We address
the question whether the generalized entanglement entropy can play a role in the gauge/gravity
duality. We pay attention to 2dCFT and their gravity duals. The correction terms to the
von Neumann entropy result more relevant than the usual UV (for c = 1) ones and also than
those due to the area dependent AdS3 entropy which result comparable to the UV ones. Then
the correction terms due to the new entropy would modify the Ryu-Takayanagi identification
between the CFT entanglement entropy and the AdS entropy in a different manner than the
UV ones or than the corrections to the AdS3 area dependent entropy.

1. Introduction
Information entropies to quantify predictability in a process have been proposed in the literature
[1–5]. The most notable of them is due to the seminal work of Shannon [3]. By maximizing the
appropriate information measures [1] the associated probability distributions can be calculated.
For some of these generalized information and entropy measures their potential physical
applications have been discussed elsewhere [6].

By considering nonequilibrium systems with a long-term stationary state that possesses
a spatio-temporal fluctuating intensive quantity more general statistics have been formulated
known as superstatistics [7]. Selecting the temperature as the fluctuating quantity among other
available intensive variables, the microscopic system is considered as made up of smaller cells
that are temporarily in local equilibrium. Within each cell β, the inverse temperature, is
approximately constant. Each cell is large enough to obey standard statistical mechanics but
has a different temperature assigned to it, in accordance to a general distribution f (β), from
this distribution one can get an effective Boltzmann factor

B(E) =
∫ ∞

0
dβ f (β)e−βE, (1)

where E is the energy of a microstate associated with each of the considered cells. A distribution
f (β) = δ(β− β0) gives the ordinary Boltzmann factor. Other distributions, the Γ( χ2), log-normal
and F-distribution have been considered leading to their associated Boltzmann factors.

To deduce the entropies corresponding to these Boltzmann factors B(E) a formalism was
introduced [8]. Following this procedure the Boltzmann-Gibbs entropy and the non-extensive
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statistical mechanics entropy were obtained. The entropy is expressed as S = k
∑Ω

k=1 s(pl ) in
terms of a generic s(x) that can be calculated, x is at this stage a parameter. By maximizing the
appropriate information measure this parameter is identified with the probability distribution.
For other distributions, among them, the log-normal and F-distribution it is not possible to get
closed analytical expressions for their associated entropies and the calculations were performed
numerically [8] by means of the corresponding B(E).

In [9] a f (β), Γ( χ2) distribution was proposed depending on a parameter pl , from it the
associated Boltzmann factor B(E) and entropy were calculated. The parameter pl is then
identified with the probability distribution by maximizing the appropriate information measure.
The resulting generalized information entropy depends only on the probability distribution. This
new entropy was further studied in [10]. In this paper, we will review some of our previous
results in [9, 10]. We will also present some new results which correspond to work in progress
with several collaborators and that will be further developed and presented elsewhere. First, in
Section 2 several generalized, pl dependent distributions and their associated Boltzmann factors
are presented. It is shown that they coincide up to the first correction term in their expansions.
The one corresponding to the Γ( χ2) distribution can be obtained in an analytically closed form.
In Section 3 we will obtain the entropy for the Γ( χ2) distribution. We will show several aspects
of this non-extensive generalized entropy that depends only on the probability.

We turn to quantum aspects in Section 4, and construct the corresponding generalization of
the von Neumann entropy and exhibit an extended Replica trick from which this same entropy
also arises. We address then the question whether an alternative entanglement entropy can play
a role in the gauge/gravity duality. In particular, based on our generalized entropy we obtain
correction terms to the usual 2dCFT entanglement entropy. These are exponentially suppressed,
but are larger than the standard ultraviolet terms, that are also exponentially suppressed. We
point out to the possible implications of this entropy in connection to the Ryu-Takayanagi
identification between the CFT entanglement entropy and their proposed AdS3 area dependent
entropy.

2. Generalized distributions and their Boltzmann factors
We begin by assuming a Γ (or χ2) distribution on the inverse temperature β, depending on a
parameter pl to be identified with the probability associated with the microscopic configuration
of the system by means of maximizing the associated entropy. We may write this parameter pl
Γ distribution as

f pl
(β) =

1

β0plΓ
(
1
pl

)
(
β

β0

1

pl

) 1−pl
pl

e−β/β0pl , (2)

where β0 is the average inverse temperature. Integration over β yields the generalized Boltzmann
factor

Bpl
(E) = (1 + pl β0E)−

1
pl , (3)

as shown in [10], this kind of expression can be expanded for small pl β0E, to get

Bpl
(E) = e−β0E

[
1 +

1

2
pl β20E2 − 1

3
p2l β

3
0E3 + ...

]
. (4)

We follow now the same procedure for the log-normal distribution, this can be written in
terms of pl as
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f pl
(β) =

1√
2π β[ln(pl + 1)]1/2

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

[
ln β (pl+1)1/2

β0

]2
2 ln(pl + 1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
. (5)

The generalized Boltzmann factor can be obtained in leading order, for small variance of the
inverse temperature fluctuations,

Bpl
(E) = e−β0E

[
1 +

1

2
pl β20E2 − 1

6
p2l (pl + 3) β30E3 + · · ·

]
. (6)

In general, the F-distribution has two free constant parameters. We consider, the particular
case in which one of these constant parameters is chosen as v = 4. For this value of this constant
parameter we define a F-distribution in function of the inverse of the temperature and pl as

f pl
(β) =

Γ
(
8pl−1
2pl−1

)
Γ

(
( 4pl+1
2p−1

) 1

β20

(
2pl − 1

pl + 1

)2
β

(
1 + β

β0

2pl−1
pl+1

) (
8pl−1
2pl−1

) . (7)

Once more the associated Boltzmann factor can not be evaluated in a closed form, but for a
small variation of the fluctuations we obtain the series expansion

Bpl
(E) = e−β0E

[
1 +

1

2
pl β20E2 +

1

3
pl

(5pl − 1)
pl − 2

β30E3 + ...

]
. (8)

As we will demonstrate and already shown in [9, 10] one can obtain in a closed form the
entropy corresponding to Eqs. (2) and (3) resulting in

S = k
Ω∑
l=1

(1 − ppl

l
), (9)

where k is the conventional constant and
Ω∑
l=1

pl = 1. The expansion of Eq. (9) gives

−S
k
=

Ω∑
l=1

pl ln pl +
(pl ln pl )2

2!
+

(pl ln pl )3

3!
+ · · · . (10)

Given that the Boltzmann factor coincides up to the second term for the Γ ( χ2), log-normal
and F-distributions, for enough small pl β0E the entropy Eq. (10) corresponds to all these
distributions up to the first term that modifies the usual Shannon entropy. We expect at least
this modification to the entropy for several possible f (β) distributions. So, for an stationary
system with some temperature distribution in the mentioned sense we could describe the actual
β -distributions by some of the ones considered here. As up to the first correction term to the
standard Boltzmann factor is the same for several distributions, as shown, also the first correction
term to the various corresponding entropies will be the same, namely the second term in Eq.(10).

3. Entropy from the Boltzmann factor
We begin by assuming the Γ (or χ2) inverse temperature β distribution depending on a parameter
pl Eq. (2), to be identified with the probability associated with the microscopic configuration of
the system. As shown, integration over β yields the generalized Boltzmann factor which can be
expanded as in Eq. (4).

The examples studied in [7] have been nicely addressed in [8] in order to deduce the entropies
from their corresponding Boltzmann factors. Another possible way to reconstruct entropies
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depending on constant parameters has been proposed in [11–13], this approach provides other
expressions. In [12,13] it has been shown that there exists a duality between these two procedures.
We will restrict to the first proposal, by means of which the Boltzmann-Gibbs entropy and the non
extensive statistical mechanics entropy can be obtained in a closed analytic form [8]. However,
the entropies corresponding to the Boltzmann factors associated to the log-normal or the F-
distributions can not be obtained analytically and were calculated numerically. Following [7, 8],
we present the procedure to obtain the entropy corresponding to the f (β) distribution Eq. (2)
and to its associated generalized Boltzmann factor Eq. (3). We begin by defining the entropy
S = k

∑Ω
l=1 s(pl ) in terms of a generic s(pl ), where pl can be considered at this stage an arbitrary

parameter; for f (β) = δ(β − β0) s(x) = −x ln x the Shannon entropy is recovered. As shown
in [8] it is possible to express s(x) and a generic internal energy u(x) in terms of integrals on a
function E(y) that is obtained from the Boltzmann factor B(E) of interest. By these means s(x)
and u(x) can be written as

s(x) =
∫ x

0
dy
δ + E(y)

1 − E(y)/E∗ , (11)

and

u(x) = (1 + δ/E∗)
∫ x

0

dy
1 − E(y)/E∗ , (12)

where E(y) is to be identified with the inverse function of Bpl
(E)/

∫ ∞
0

dE ′ Bpl
(E ′). One selects

first the f (β) of interest, then B(E) is calculated and the integral
∫ ∞
0

B(E ′) dE ′ is performed.
Inverting the axes of the variables, E(y) for several superstatistics can be found [8], and from it
E∗. In our case, the starting points are the distribution Eq. (2) and the Boltzmann factor Eq.
(3). E(y) and E∗ are given by

E(y) =
y−x − 1

x
, (13)

E∗ = −1
x
. (14)

A straightforward calculation gives for u(x) and s(x)

u(x) = xx+1, (15)

s(x) = 1 − xx . (16)

where δ has been determined by means of the condition u(1) = 1.
Expressions Eqs.(15) and (16) fulfill the expected conditions for the entropy and the energy

s(0) = 0, u(0) = 0 and u(1) = 1, s(1) = 0. By these means, the entropy results in Eq.(9) and its
expansion in Eq.(10).

Using these results, the corresponding functional including restrictions is given by

Φ =
S
k
− γ

Ω∑
l=1

pl − β
Ω∑
l=1

ppl+1

l
El, (17)

where the second restriction concerns the average value of the energy and γ and β are Lagrange
parameters, and then by maximizing Φ, pl is obtained as

1 + ln pl + βEl (1 + pl + pl ln pl ) = p−pl

l
. (18)
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The dominant term in this expression corresponds to the Gibbs-Boltzmann prediction, pl =
e−βoEl . In general, however, we cannot analytically express pl as function of βEl . In Fig. 1, pl
is given as a function of the reduced energy βEl . We notice that for relative large values of βEl

the usual values for pl coincide with the ones given by Eq. (18). As expected, they coincide also
for pl ∼ 1.

1 2 3 4 5
ΒEl

0.2

0.4

0.6

0.8

1.0

pl

Figure 1. (Color online) Comparison of the two probabilities. The blue dotted line corresponds
to pl = f (βEl ), Eq. (18), and red dashed line to the standard one pl = e−βEl

As we have shown, by choosing f pl
(β) Eq.(2), then Bpl

(E) Eq. (3) is obtained by integrating
over β; by inverting the axes of the variable the inverse function E(y) Eq. (13) and E� Eq. (14)
can be found. This procedure has allowed us to calculate u(x) Eq. (15) and s(x) Eq. (16) and
consequently the entropy Eqs.(9) and (16). If we assume in f pl

(β) Eq. (2) the equiprobable
condition, pl = 1

Ω
, then the corresponding distribution is given by

fΩ(β) =
Ω

β0Γ (Ω)

(
βΩ

β0

)Ω−1
e−

βΩ
βo , (19)

where the Boltzmann factor and the entropy are now

BΩ(E) = (1 + β0E/Ω)−Ω, (20)

S = kΩ
[
1 − 1

Ω
1
Ω

]
, (21)

or, in terms of Boltzmann’s entropy, SB = k lnΩ,

S
k
=

SB

k
− 1

2!
e−SB/k

(
SB

k

)2
+

1

3!
e−

2SB
k

(
SB

k

)3
· · · . (22)
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1 2 3 4 5 6 7
�

0.5

1.0

1.5

Entropy

Figure 2. (Color online) The entropies as function of Ω (small)the blue dashed and red dotted
lines correspond to S

k , Eq.(21) and,
Sβ

k , respectively (pl = 1/Ω equipartition)

200 400 600 800 1000
�

3

4

5

6

7
Entropy

Figure 3. (Color online) The entropies as function of Ω (large) the blue dashed and red dotted
lines correspond to S

k , Eq. (21) and
Sβ

k , respectively (pl = 1/Ω equipartition)

Figs. 2 and 3 show the Boltzmann entropy SB

k and the entropy S
k given by expression Eq.

(21). As mentioned in the Introduction, it was shown in [9], in relation with the entropy of a
black hole, that if we associate its entropy, depending linearly on its area, with SB

k the standard
entropy, then the entropy S

k will be given as a function of the area by means of Eqs. (21) and
(22). This would imply a modification to Newton’s law and to general relativity according with
the possibility that gravity could be thought as an equation of state [14]; explained as an entropic
force [15–17]. However, for most gravitational systems one expects a large Ω, namely large SB

k

and will not greatly differ with S
k , Eq. (21) and Fig. 3.

We notice that in the range of low values of Ω the entropies Sβ

k and S
k differ. Instead, for

large Ω the two entropies essentially coincide. Since Ω is basically a measure of the phase space
volume, what we are finding is that for systems with reduced number of microstates the entropies
become different, whereas for the opposite case they will be essentially identical. Then, we could
conclude from here that the model could be useful when we have a clear indication of restriction
of available states, like by strong confinement of fluids or low temperatures.

The entropy derived in [9,10] and whose main properties we review and extended here, Eqs.(9)
and (21), has as an important feature to be independent of any arbitrary constant parameter,
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and to depend only on the probability distribution pl Eq.(9), associated with the microscopic
configuration of the system. Its expansion provides as a first term Shannon’s entropy Eq.(10) and
correspondingly Boltzmann’s entropy Eq.(22). This entropy corresponds to the Γ distribution
Eqs.(2) and (3).

4. Holography and the generalized entanglement entropy
A quantum many body system in one dimension and at criticality corresponding to a 2dCFT
has an entanglement entropy [18] given by

SA =
c
3
ln

(
L
πa

sin
πl
L

)
, (23)

where l, is the length of the subsystem, A and L the length of the total system AB, both ends of
AUB are periodically identified, a is a UV cutoff, the lattice spacing, is the central charge c of
the 2dCFT . Away from criticality the previous expression [18] is replaced by

SA =
1

3
ln

l
a
, (24)

where for simplicity we have putted c = 1. The UV correction terms to (24) have been
calculated [19] and can be written as

S =
1

3
ln

l
a
− 2

(
1 + ln

( a
l

)
∂

∂ ln( al )

) ∞∑
k=1

ln

(
1 −

( a
l

)2k )
, (25)

in terms of SA and for a
l � 1,

S ∼ SA − 12SAe−6SA + 2e−6SA + · · · , (26)

the correction terms are exponentially suppressed. The entropy SA corresponds to the most
relevant term, the von Neumann entropy for the 2dCFT under consideration.

The entropy in AdS3 is proportional to a minimal surface [20]. In this case the length of an
static geodesic determines its value. A geodesic going from radius ρ0 and θ = 0 to radius ρ0 and
θ = πl

L has a length given by

Lγ
A
= Rarccosh

[
1 − sin2

(
lπ
L

)
+
1

2
e2ρ0 sin2

(
lπ
L

)
+
1

2
e−2ρ0 sin2

(
lπ
L

)]
. (27)

For enough large ρ0 and identifying

eρ0 ≡ L
πa
,

R
4G

≡ c
6
. (28)

It was shown that the length Eq.(27) provides an area entropy dependent that coincides with
Eq.(24). Further terms can be calculated from the length Eq.(27), these result in the correction
terms to the AdS3 entropy. It can be shown that they are proportional to the same negative
exponentials than the 2dCFT entropy UV correction terms Eq.(26).

We turn now to the generalization of the von Neumann entropy that corresponds to the
proposed generalized Shannon entropy Eq.(9), namely

S+ = Tr (1 − ρρ ), (29)

in which ρ is the density matrix. This same entropy arises also from the following generalized
Replica trick that we propose [21,22]
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S+ = −
∑
k≥1

1

k!
lim
n→k

∂k

∂nk
Tr ρn

A
. (30)

Making n-copies of the system is possible to compute Tr ρn
4
for n a positive integer. The

partition function of the system with this n-sheeted structure reads [18] Zn (A) with

Tr ρn
A
=

Zn (A)
Zn
. (31)

For all the examples of 2dCFT using the transformation property of the two-point functions
when the lattice spacing is very small one has a generic expression

Tr ρnA ∼ b(l/n−n)/6. (32)

We show here the simplest case, for b = l
a and then the standard Replica trick, namely

SA = − ∂
∂n

Tr ρn
A
|n=1 (33)

reproduces the entropy SA Eq.(24).
Further terms in the entropy Eq.(29), are given by the second and third derivatives in Eq.(30)

and the S+ entropy results in

S+ = SA +
1

16
e−

3
4 S0S0

(
1 +

25

8
S0

)
− 1

6
S0e−4S0/3

( 1

27
+

5

181
S0 +

125

729
S3
0

)
+ · · · (34)

We notice that the correction terms to SA due to the proposed generalized entanglement
entropy Eq.(29) are also exponentially suppressed. They are however larger than the
usual ultraviolet corrections to the 2dCFT entanglement entropy Eq.(26) and, as mentioned,
consequently also larger than the correction entropy terms to the AdS3 space. The proposed
entanglement entropy Eq.(29) has its origin in other considerations Eqs.(9) and (30). It seems
of interest to search for an entropy for the AdS3 space that would correspond to the entropy S+
Eq.(29). This is not a straightforward task one would need to find a well justified and appropriate
generalization of the AdS3 space entropy based on a possibly different relation with the geodesical
length Eq.(27) and probably then another theory of gravitation would be needed. These matters
require further study and are beyond the scope of this work.
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