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ABSTRACT

Quasi-Normal Modes, or the mathematical description of gravitational waves emit-

ted during the ring-down of a perturbed black hole, provide critical information about

the structure of these compact objects. Since regions around Black Holes have some

of the strongest gravitational fields in the Universe, hence, Quasi-Normal Modes can

be a tool for strong field tests of General Relativity and possible deviations from it. In

the case of General Relativity, it is known for a long time that a relation between two

types of Black Hole perturbations: even parity (Zerilli) and odd parity (Regge-Wheeler),

leads to an equality of reflection coefficients for both parities. With the direct detection

of Gravitational waves, it is now natural to ask: whether the same relation (between

even and odd parity perturbations) holds for modified gravity theories? If not, whether

one can use this as a way to probe deviations from General Relativity. As a first step,

this thesis shows explicitly that the above relation between Regge-Wheeler and Zerilli

potentials break down for modifications to gravity, and hence the two perturbations do

not share equality of reflection coefficients. This thesis also discusses the implication of

this inequality on the gravitational wave observations.
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Synopsis of the thesis

The General theory of Relativity (GR) predicts the motion and dynamics of astronomical

bodies to accuracies detectable by current experimental standards — from the perihe-

lion precession of Mercury, to the detection of gravitational waves, and direct imaging

of black holes. Tests of GR, as well as estimating physically relevant parameters about

the source objects from gravitational waves involve matching of the detected signal to

a template bank of numerically simulated waveforms. However, since the direct de-

tection of gravitational waves, the question of whether nature follows GR or a more

generalized, modified theory of gravity, whose low energy limit is GR, has gained in-

terest. Various methods have been employed in the extraction of information from the

detected signals, which involve searching for dispersion of the waves in vacuum, and

the mass of the graviton. However, many of these methods are not model independent.

Hence, finding model independent methods to constrain deviation from GR is the need

of the hour. In this thesis, a model independent parameter is found, which can act as a

quantifier to distinguish GR from a modified gravity theory.

It has been shown in the thesis that based on what can be obtained through gravita-

tional wave observations, modified theories of gravity can be classified into two types—

parity conserving and parity violating. The above two types of modifications leave

unique signatures to emitted gravitational waves by perturbed black holes. Hence, the

current thesis take two modified gravity theories, f(R) and Chern-Simons modifica-

tions to GR , which are parity conserving and parity violating theories, respectively.

Perturbation studies about spherically symmetric black hole solutions of said theories

9
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are performed and the specific signatures which they impart to emitted gravitational

waves are extracted. A strategy to detect the above mentioned signatures from gravita-

tional wave observation by earth or space based detectors is also outlined.

Certain theoretical problems faced by GR in the form of non-renormalizability and

singularity formation at the heart of black holes have inspired various authors to pro-

pose generalizations to GR. These generalizations are usually motivated from string

theories and loop quantum gravity. Hence, they are low energy modification to high en-

ergy theories which give GR in the weak field limit, or in the limit of currently possible

observational precision. Some generalizations contain all solutions of GR and some ex-

clude certain GR solutions. In Chapter 1, various problems plagued by GR is discussed

and attempts at possible solutions outlined which involve description of two different

types of generalizations to GR, namely f(R) gravity and Chern-Simons modification to

GR.

In general relativity perturbation about a background solution leads to excitation of

the system which relaxes by emitting gravitational waves, whose (complex) frequencies

do not depend on the details of the process which caused the perturbation, but only

on the parameters of the background black hole space-time — mass, charge, and an-

gular momentum. The mathematical description of the gravitational waves, which get

radiated due a perturbed black hole relaxing, are given by Quasi-normal modes, which

has been reviewed in Chapter 2. It is known in the literature that perturbation about a

spherically symmetric black hole in GR consists of two decoupled parts, corresponding

to two opposite parities — even and odd. It was shown by Chandrasekhar that given

the differential equations of the two kinds of perturbations follow the same boundary

conditions, purely ingoing at the horizon and outgoing at infinity, both parities shall

have the same set of quasi-normal frequencies. Both parities also share equality of the

fraction of the initial perturbation energy that gets radiated to asymptotic infinity. This

particular relationship between the two decoupled modes is a fragile balance known as

isospectral equality in literature.
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Chapter 2 also deals with the review of perturbation techniques of charged black

hole space-times in GR. It was shown by Gunter (1980) that a purely gravitational per-

turbation of a charged black hole space-time leads to the emission of both gravitational

and electromagnetic waves. It has also been shown that the equality of the fraction of

the initial perturbation energy that travels to asymptotic infinity through the odd and

even parity is broken in the presence of charge, while the set of quasi-normal frequen-

cies remaining the same for both parities. Based on the published results of the author

of this thesis, a dimensionless parameter was defined which will have a specific value in

the absence of charge (which can be obtained from numerical relativity simulations) and

a different value in the presence of it. Observed value of the dimensionless parameter

can confirm or infirm the presence of charge in astrophysical black holes.

f(R) theories of gravity contain all stable black hole solutions of GR. However, for

the same background solution, the perturbed space-time in GR and f(R) gravity be-

haves differently. Owing to a massive scalar degree of freedom intrinsic to the gravi-

ton, and its preferential coupling to one of the parities, leaving the other untouched,

a distinct signature is imparted on the gravitational waves emitted during ring-down,

breaking isospectrality, as shown in Chapter 3 for a Schwarzschild solution in f(R)

gravity. The breaking of the isospectral equality leads to quasi-normal frequencies of

the two parities to differ, as well as modifying the fraction of the initial perturbation en-

ergy that gets radiated in the form of gravitational waves to asymptotic infinity. These

phenomena leave distinct signatures on the emitted gravitational waves which is pos-

sible to be observed by future generations of gravitational wave detectors with better

sensitivity in the ring-down regime. A dimensionless parameter corresponding to the

relative radiated intensities through the odd and even parity perturbations is defined,

whose observed value will be different, if there exists a modification to gravity, from its

corresponding value in GR (obtained from numerical simulations).

Chapter 4 deals with a perturbed Reissner-Nördstrom (also a solution of f(R) grav-

ity) background space-time. It is shown that the iso-spectral equality is broken and a

further decrease in the fraction of the perturbation energy that is radiated to asymptotic
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infinity takes place, This leads to a change in the observed value of the dimensionless

parameter (if nature follows a modified theory of gravity) from the corresponding GR

value.

Modifying gravity in a parity violating manner by adding a pseudo-scalar field in

the action coupling non-minimally with the background curvature was done by Jackiw

and Pi (2003), known as the canonical Chern-Simons modification to GR. Certain theo-

retical problems are faced by the canonical model with respect to black hole perturba-

tions. However, the problems can be avoided if a generalization of the canonical to the

dynamical Chern-Simons modification to GR is done. A comparison of the two models

with respect to perturbations about a Schwarzschild background was done in Chapter

5, and it was shown that the dynamical theory is more physical than the canonical one.

Based on published results by the author of the current thesis, it is shown that the per-

turbed parity violating scalar field preferentially couples to one of the parities, which

is different from f(R), and modifies its dynamics, leaving the other parity untouched.

Similar to the analysis of previous chapters, a dimensionless parameter, quantifying

the relative radiated gravitational energies through the odd and even channels, was

defined. The dimensionless parameter, in dynamical Chern-Simons modified gravity,

shows a change from its corresponding GR value that is different from the change as

shown by f(R) gravity. A method to calculate the dimensionless parameter in terms of

observables at gravitational wave detectors was outlined.

Chapter 6 summarizes all the results from the preceding chapters and motivates an

argument to treat the dimensionless parameter defined in previous chapters to be a

model independent one. The dimensionless parameter is also shown to classify a modi-

fication to gravity into parity conserving and parity violating, and hence, any deviation

of the observed value of the parameter, from its GR value, will indicate whether any

observed effective modification to GR violates or conserve parity.
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Chapter 1

Introduction

Predicting the motion of heavenly bodies have always been a goal for the human civ-

ilization. The remarkable periodicity that is shown by such bodies have helped us to

keep track of time and seasons. But a mathematical description of the motion of these

bodies was lacking until 1686. Newton’s gravity was the first mathematical framework

to observe and predict the motions of planets around the sun. A tantalizing hint of a

baffling object (that forms the base of this thesis) comes from one of the predictions of

Newton’s gravity itself; a dark star, by a geologist called John Michell in 1783. A star so

dense that not even light cannot escape its gravity. This was centuries before Einstein

came up with his General theory of Relativity (GR) [2] and subsequent works [3–7] for-

mulated the ’black hole’ (BH) solutions that we are familiar with today.

Such dark stars or black holes were indirectly observed while looking at the trajec-

tories of stellar bodies around the center of the milky way galaxy [8]. From the motion

of these objects, an estimate of the central potential was made, and consequently, the

mass of the central object as well as the size of the region in which it is confined could

be estimated. It was found that an enormously dense object sits at the heart of the milky

way galaxy, which according to GR could only be a black hole. This was followed by

a relatively recent direct observation and imaging of a black hole [9]. These BHs can

14
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be used as natural laboratories to test the degree of validity of GR and also constrain

deviations from it.

In this chapter a brief introduction to GR is given and its predictions & their corre-

sponding observational successes are listed. This is followed by some of the theoretical

and observational problems that GR faces, as well as motivations for developing modi-

fied theories of gravity. Classification of various modified theories of gravity are given,

out of which two different theories coming from different motivations are introduced

that are relevant for the rest of the thesis. In this thesis, c = G = 1 (Geometric units) is

set, and the metric signature (−,+,+,+) is used.

1.1 General theory of relativity

1.1.1 Brief introduction to GR

Newton treats gravity as an instantaneous force. General relativity (GR) builds on the

concept of causality from special theory of relativity and treats gravity, like electrody-

namics, as a field with a finite speed of propagation [10, 11]. In GR, the concept of a

three dimensional space is replaced with a four dimensional space-time whose local

geometry quantifies the gravitational ’force’. In the absence of matter, the geometry

of space-time, and consequently the gravitational strength, is characterized by tensor

quantity known as the space-time metric gµν [12]. This tensor quantifies length between

two infinitesimally separated points in space as well as the rates at which time flows in

a region of space. Specifically, one constructs an infinitesimal scalar invariant ’measure’

in 4D space-time known as the infinitesimal line element ds

ds2 = gµνdx
µdxν (1.1)

where dxµ is an infinitesimal space-time interval — a vector whose components are

infinitesimal time and distances respectively. dxµ is defined around a space-time point

(or event) xµ, which is used as the coordinate for the space-time. GR is a coordinate
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independent theory, and hence an infinitesimal change of coordinate

xµ → x′µ = xµ + ξµ (1.2)

keeps the line element (1.1) invariant.

gµν in general is a function of both space and time and follows a set of second order

quasi-linear differential equations known as field equations which can be derived from

the celebrated action principle [13]:

S =
c4

16πG

∫
d4x
√
−gR (1.3)

where R is referred as the Ricci scalar which is a function of gµν and its (second) deriva-

tives. Extremizing the action leads to the following equations of motion for gµν

Rµν −
1

2
gµνR = 0 (1.4)

where Rµν is a tensor which is a function of gµν and its (second) derivatives and R =

gµνRµν . Both the action and the equations of motion remain invariant under coordinate

transformations, although the individual components of the metric tensors change - a

feature that will be utilized in Chapter 2.

The set of differential equations (1.4) can be solved for the components of gµν un-

der certain physically simplifying assumptions like spherical or axial symmetry. Since

BHs are the simplest objects in GR, under the assumptions of spherical symmetry, the

Schwarzschild solution was the first exact solution that was obtained [3]. It is given by

the infinitesimal line element

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dΩ2 (1.5)

where M is the quasi-local mass of the black hole space-time and dΩ is the infinitesimal

solid angle. (1.5) is not the solution for the entire space-time, but only from r = 2M

to ∞. This is because of a special surface at r = 2M = rH (also known as the event

horizon or simply horizon) where the inner causal boundary of the space-time lies, the

outer being at∞. It is a surface of infinite redshift for light and a surface of no return
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for particles. Curiously, the outer vacuum space-time of any star can be approximated

by (1.5). Although the inner solution (r < rH) can technically be solved for, it is plagued

by certain pathologies like space-time singularities, which will be discussed later in this

chapter.

Motion of particles and light rays in different space-times can be obtained by mini-

mizing the action whose lagrangian density is the line element [14]

S =

∫ √
−gµν

dxµ

dλ

dxν

dλ
dλ (1.6)

where λ is an affine parameter which parametrizes the geodesic, λ can also be used as

the proper time as measured by the photon or the particle along the geodesic. Sign of the

line element determines whether one is considering light or particles. For particles, ds <

0 (also known as time-like geodesics); whereas for light ds = 0 (also known as light-like

or null geodesic). The equations of motion of various geodesics, after minimizing (1.6)

becomes

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (1.7)

where Γµαβ is known as the Christoffel symbol. Another surface of interest can be found

by solving (1.7) for photons, and is known as the photon sphere [14]. Orbits on the pho-

ton sphere lie at the maxima of a potential, and hence, are in an unstable equilibrium.

Any geodesic (or a freely falling particle) crossing the photon sphere will inevitably

cross the horizon, and hence there are no stable orbit, light or massive, on or inside the

photon radius rP . For Schwarzschild, rP = 3rH
2

. This particular radial distance from the

black hole will be of consequence in the later chapters of the thesis, even more important

than the horizon itself.

Axisymmetric vacuum solutions like Kerr are the most abundant BHs in the uni-

verse. However, to obtain the difference in effects of modified gravity theories from

GR, this thesis only considers spherically symmetric BHs in this thesis.

In the presence of matter, the space-time geometry around the matter distribution

curves, and test particles around the distribution follow the path of least distance on a
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curved hypersurface, instead of straight line. However, the presence of matter is not

the only condition for space-time to curve. The region outside a static black hole, being

devoid of matter, has a curved geometry. Other instances of a curved vacuum space-

time is a Universe with a non-zero background curvature.

In the presence of matter, the action (1.3) is generalized to [14]

S =

∫
d4x
√
−g
(
R

2κ2
+ Lm

)
(1.8)

Rµν −
1

2
gµνR = κ2Tµν (1.9)

κ2 =
8πG

c4
(1.10)

where Lm and Tµν are the matter Lagrangian density and the matter energy-momentum

tensor respectively. Solutions of (1.9) describes the dynamics of the space-time and the

matter is subject to the constraint

∇µTµν = 0 (1.11)

where∇µ is the covariant derivative. The simplest non-vacuum solution is the charged

BH, known as the Reissner-Nördstrom space-time, where an electromagnetic field exists

in the space-time. The action is given by [4–6, 14]

S =

∫
d4x
√
−g
(
R

2κ2
− 1

4µ0

FµνF
µν

)
(1.12)

where Fµν is the electromagnetic field tensor and µ0 is the magnetic permeability of

vacuum. For a BH with central mass (M ) and charge (Q), the line element is given by

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

dr2

1− 2M
r

+ Q2

r2

+ r2dΩ2. (1.13)

Although the long standing assumption is that charged BHs quickly lose their charge

through accretion of the opposite charge, the assumption or the rate at which the BHs

lose charge can be tested and will be discussed in Chapter 2.
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1.1.2 Predictions and observational successes GR

GR, from the beginning of its conception has been a phenomenal success in its power

of prediction and standing the test of time. It is a theory that is based on certain prin-

ciples and makes certain predictions, and tests have been done since its inception to

probe the validity of both the principles and the predictions. In the following table a

(non-exhaustive) list of the tests of the principles and predictions are mentioned [15]

Principles/Predictions Observational tests

The Weak Equivalence Principle:

All freely falling test particles fall at

the same rate irrespective of their

internal composition.

[16], [17]

Local Lorentz invariance (principle):

Non-gravitational physical laws are

independent of the velocity of the

freely falling frame in which they

are described.

[18], [19], [20]

Local position invariance

(principle): Non-gravitational

physical laws are independent of

the position in space or time of the

freely falling frame in which they

are described.

[21], [22–24], [25]
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Gravitational deflection of light

(prediction): A ray of light passing

by a massive object will bend

towards the object, changing the

apparent position of the source from

which it was emitted.

[26], [27, 28]

Perihelion precession of Mercury

(prediction): Unexplainable by

Newtonian gravity, the solar

contribution to the slow perihelion

shift of mercury at 43 arcseconds

per century was correctly predicted

by GR [29].

Observation preceded prediction

when Le Verrier in 1859 found the

perihelion shift discrepancy even

after factoring in perturbing effects

from other planets. Most recent

observation include Messenger

spacecraft observations [30].

Lense-Thirring effect (prediction): A

rotating massive body will drag

inertial frames around its vicinity

along the direction of rotation,

leading to a precession in a

gyroscope’s spin if it is not parallel

to the angular momentum of the

rotating body.

[31] [32], [33], [34].

Gravitational redshift (prediction):

An observer located at a distance

from a massive luminous body will

see the light from the body to be

redshifted compared to an observer

located closer to the surface of the

body.

[35], [36], [37]
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Gravitational waves (prediction):

Mass distributions with time

varying Quadrupole moments and

higher will shed orbital/rotational

energy by radiating gravitational

waves.

Indirect observation through loss of

orbital energy: [38, 39]. Direct

detection in binary BH and binary

neutron star collisions [40, 41]

Existence of BHs (predicted): A

profound prediction of GR is the

existence of a BH, and consequently,

the presence of a causal boundary -

horizon of a BH, a central dark

region surrounded by a light ring.

Indirect confirmation through the

frequency evolution data of a

detected inspiral-merger process.

The sharp drop in the chirp signal

[40] after a certain frequency is

reached is indicative of the fact that

the final state can be very well

described by a static black hole

solution of GR. Direct imaging

through the Event Horizon

telescope of the central BH of

neighboring galaxy M87 [42–47]

1.2 Problems with GR

In spite of all its successes GR is plagued by some fundamental problems, the most im-

portant of which, in the context of this thesis, is the existence of space-time singularities

at the center of BHs. As mentioned earlier, an isolated BH in GR is characterized by a

metric (like (1.5), consisting of an outer and inner space-time, separated by a one way

surface known as the event horizon. The inner space-time of a black hole is causally

disconnected from the outer space-time. A black hole is formed when the gravitational

effects become larger than the fermionic pressure of a matter distribution, i.e. when the

density of some localized matter distribution is high enough - stars burn out their fuel
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and collapse upon themselves. When the matter density is high enough, a trapped sur-

face forms which causally disconnects the dense matter from the outer space-time - a

surface which in the (infinite) future turns out to be the event horizon. GR predicts that

the dense matter inside the trapped surface will keep on collapsing on itself, eventually

forming a singularity, with infinite matter density. Other quantities like the space-time

curvature, characterizing the ’gravitational pull’, also become infinite. This can be seen

in the behavior of the Kretschmann scalar, constructed out of the self contraction of the

Riemann tensor (Rµνρσ). In a Schwarzschild space-time, for example,

RµνρσR
µνρσ =

48M2

r6
(1.14)

which indicates the rate at which the curvature shoots up to infinity as one approaches

the center of a black hole. However, from the history of theorizing about the natural

world, we know that singularities or infinities in a theory are pathologies which indi-

cates that the theory stops being valid in the regions where such singularities form. This

means that GR cannot be a complete description of space-time in and around large and

dense objects in nature.

The aforementioned problem is one of the predictions that can never be directly ob-

served, given the causal disconnect between the inner and outer regions. But a possible

resolution of the above can have potential observable signatures. From current trends in

observations, it is expected that a deviation from general relativity can occur in regions

of intense gravitational fields - regions of high spatial curvatures.

A closely related problem is the non-renormalizability of gravity, i.e. the GR ac-

tion (1.8) is non-renormalizable [48, 49]. Mathematically it implies that the procedure

of eliminating infinities in field theoretic calculations while trying to calculate physical

quantities break down, which physically imply that the theory shows ultraviolet diver-

gences. In other words, non-renormalizability leads to the theory predicting singular

short ranged behavior, which is not the case that observations tell us. Hence, short

ranged limit of GR does not lead to another well established theory of short ranges -

quantum field theory. This problem of reconciling the theory of large distances with the
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small lead to string theory and loop quantum gravity. Low energy limits of both type of

theories lead to corrections to the Einstein-Hilbert action, which are expected to show

up in regions of strong gravitational fields that have either not been probed, or cur-

rent observational sensitivities are not enough to pick up deviations from the predicted

behavior.

1.3 Modified theories of gravity

1.3.1 Classification

Recent attempts at modifying GR to address its fundamental shortcomings can be broadly

of two types:

• Local theories of gravity

• Non-local theories of gravity

Broadly, non-local theories of gravity [50] tries to unify the non-local nature of quantum

fluctuations with the local-ness of GR using a quantum effective action [51, 52], and

are aimed at curing the bad behavior of ultraviolet (short-distance) limit of GR, as well

as its infrared (long-distance) effects in cosmology like problems of dark energy [53],

flattening of galaxy rotation curves [54, 55], etc. Non-local theories put forth certain

possible resolution of these fundamental problems at the compromise of causality and

the principle of equivalence. However, such theories are beyond the scope of the present

thesis and will be ignored henceforth.

Another possible classification is

• Four dimensional theories

• Higher dimensional theories

Both local and non-local theories have been formulated in both of these regimes. The

simplest higher dimensional modification is the higher dimensional GR (n > 4), where



24 Chapter 1. Introduction

a radial and time-like direction are embedded in an (n− 2)-sphere [56–58]. However,

gravitational waves in such a theory will have a falloff that is faster than r−2 as well as

other signatures that have not been seen in observations [59]. The current thesis will

only deal with space-times of four dimensions.

Four dimensional local modifications to GR can be listed into the following non-

exhaustive list

• Scalar-tensor [60], vector-tensor [61], scalar-vector-tensor [62] theories.

• Higher (> 2) derivative gravity theories: Lovelock [63], [64].

• Relativistic Modified Newtonian Dynamics (MOND) [65].

• Theories with more than one tensor: [66–68].

• Parity violating theories of gravity: Chern-Simons modification to general relativ-

ity [69, 70].

1.3.2 Motivations for modifications

Linearization and gauge fixing of (1.9) reveals that the gravitational radiation contains

only two massless spin-2 degrees of freedom. However, in order that gravity be renor-

malizable, the action must contain terms comprised of higher powers of curvature ob-

jects [71–73], leading to equations of motion that contains more than two derivatives

of the metric tensor. These extended theories have a low frequency GR limit, but at

high frequency can be radically different from GR. The inclusion of such terms lead to

a softening of the divergence of quantities near the singularity, while an infinite series

comprising of higher powers lead to renormalizability. However, since the current con-

text deals with observations, in the low energy limit, the modified action can be written

as [74], after excluding O (R3) terms

Smod =

∫ √
−gd4x

[
1

2κ2

(
R + αR2 + βRµνR

µν + γRµνρσR
µνρσ

)
+ LM

]
(1.15)
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whose field equations are quasi-linear but now has four derivatives of the metric ten-

sor. References [71, 72] find that the linearized radiation corresponding to (1.15) has, in

addition to massless spin-2 degrees of freedom, massive spin-2 and spin-0 degrees of

freedom. A curious feature/pathology of (1.15) is that the linearized energy of the mas-

sive spin-2 field is unbounded from below, implying that the mode is unstable. Such a

feature is referred to as a ghost in literature. As a low energy limit of high energy mod-

ifications, a simplifying assumption can get rid of the ghost, and forms an important

part of this thesis.

1.3.3 f(R) theories

If one restricts the modification to gravity in the low energy limit just to the αR2 term,

one does away with the ghost degree of freedom. Hence

Smod =

∫ √
−gd4x

[
1

2κ2

(
R + αR2

)
+ LM

]
(1.16)

which has, in addition to the two massless spin-2 degrees of freedom, one additional

massive scalar degree of freedom. The presence of the extra massive degree of freedom

can be demonstrated intuitively by performing a particular conformal transformation

on the metric.

g̃µν = (1 + 2αR)2 gµν (1.17)

which leads to the action (1.16), in the absence of matter, becoming

Smod =

∫ √
−gd4x

[
1

2κ2
R̃ +

1

2
(∂φ)2 − V (φ)

]
(1.18)

φ = c ln (1 + 2αR) (1.19)

V (φ) = −
(
ecφ − 1

)2

4α
e−2cφ (1.20)

where c =
√

3c4

16πG
. Eq. (1.18) is the Einstein-Hilbert action in the presence of a scalar field

with a non-trivial potential. Small oscillations of φ about the minima of the potential

gives the mass of the scalar field as meff = 1√
6α

. Eq. (1.16) is a special case of f(R)
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theories of gravity, where the GR Lagrangian R is replaced by an arbitrary function of

the Ricci scalar. f(R) theories have no unstable (ghost) degrees of freedom [75]. The

field equations of f(R) theories are as follows

f ′Rµν −∇µ∇νf
′ + gµν2f ′ −

f

2
gµν = 0 (1.21)

where f ′ = dF
dR

. According to the no-hair theorem [76], a scalar field cannot exist as a

stable configuration around any stable black hole solutions of GR. Since f(R) theories

can be written as GR + scalar, all black hole solutions in vacuum and trace free matter

of GR are also valid solutions in f(R) theories.

Another way of obtaining the extra massive scalar degree of freedom in f(R) the-

ories is to linearize its field equations about flat space-time. This approach helps us

understand exactly what combinations of higher derivative terms in the field equations

can be represented as the massive scalar. Linearizing about a flat background,

gµν = ηµν + hµν (1.22)

gµν = ηµν − hµν (1.23)

Rµν = R̄µν +R(1)
µν (1.24)

leads to (1.21) becoming [77]

R(1)
µν −

1

2
ηµνR

(1) − 2α∂µ∂νR
(1) + 2αηµν2R(1) = 0 (1.25)

whose trace gives the following

2R(1) − 1

6α
R(1) = 0 (1.26)

which is the Klein-Gordon equation with mass 1√
6α

. From Eq. (1.26) it is clear that the

Ricci scalar acts as the massive spin-0 degree of freedom. Hence, one can extract out

the massive scalar from the massless tensor part of the wave by a redefinition of the

perturbation variable and using gauge conditions

ψµν = hµν −
(

2αR(1) +
h

2

)
ηµν (1.27)
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∂µψµν = 0 (1.28)

ψ = 0 (1.29)

Using these in Eq. (1.25), one obtains

2ψµν = 0 (1.30)

These correspond to the wave equation of a massless spin-2 particle with two (+ and×)

polarizations.

GR treats space-time as a geometrical object where presence of mass-energy curves

the fabric of space-time, forcing test particles to follow the geometry of the fabric. How-

ever, for modified gravity theories like f(R), the classical geometric nature of space-time

is not immediately obvious. The inability to grasp the geometric nature of modified the-

ories however does not stop one from trying to observe the effects of such modifications

in observational tests, in gravitational waves for example. In order to circumvent the

mathematical complexity of trying to understand modification to gravity from the ge-

ometric point of view, one can treat modifications to gravity (higher derivatives, extra

fields) as an effective fluid, appearing on the RHS of the Einstein equations as an effec-

tive energy-momentum tensor. For example, (1.21) can be written as follows

Gµν = κ2T effµν (1.31)

T effµν =
1

κ2f ′

[
∇µ∇νf

′ − gµν2f ′ +
1

2
(Rf ′ − f) gµν

]
(1.32)

Any realistic theory of gravity should be able to reproduce r−1 behavior of the gravi-

tational potential in the Newtonian limit (like GR). Modified gravity theories (like f(R))

can have corrections to the r−1 term at high energies, i.e.

ΦNewtonian = −GM
r

(
1 +

e−r meff

3

)
(1.33)

m2
eff =

1

3f ′′ (R)
(1.34)

The modification of ΦNewtonian in f(R) theories can lead to deviations of the perihelion

precession rates of planets. Such solar system tests put bounds on the value of meff ,



28 Chapter 1. Introduction

and correspondingly leads to α ≤ 1012 km2 [78]. However, the strength of gravitational

fields in the solar system is weak, and hence tighter bounds on α can be put from signals

emanating from regions of intense gravitational fields, like gravitational waves (GW)

from perturbed black holes. Since the strength of the gravitational field around a black

hole goes as the inverse of black hole mass squared, smaller black holes would provide

excellent test beds for tests of GR and for putting stringent limits on the value of α.

1.3.4 Chern-Simons modification to GR

Another way of modifying GR is to add scalar fields to the action. For vacuum space-

times, as seen previously, GR + scalar field can be replaced by an f(R) theory. Hence,

one other option is to add a pseudo-scalar field (ϑ) to the theory which couples non-

minimally with the background curvature. A pseudo-scalar is an object that changes

sign under a parity transformation (reflection about the origin), unlike a scalar which

does not change sign. In spherical symmetry,

ϑ (r, π − θ, φ+ π) = −ϑ (r, θ, φ) (1.35)

Such a theory dynamically violates local Lorentz symmetry, as well as parity, and can be

used as a toy model for baryogenesis. Chern-Simons (CS) modifications to GR [69] were

inspired from a modification to electrodynamics of the same name, it adds a parity vi-

olating pseudo-scalar which couples with another parity violating curvature invariant

- contraction of the Riemann tensor with its own dual ∗Rτ
σµν = 1

2
ε αβ
µν Rτ

σαβ . CS mod-

ifications to gravity come as the low energy limit of string theories and loop quantum

gravity [79]. The action is of the form

S =

∫
d4x
√
−g
[
R

2κ2
+
α

4
ϑ∗RR− β

2
(∇ϑ)2 − β

2
V (ϑ)

]
(1.36)

where ϑ is a constant or a dynamical pseudo-scalar field. ϑ is chosen to be dimension-

less, which leads to [α] = L2 and [β] is dimensionless and ∗RR is

∗RR =
1

2
Rµνρσε

µναβRρσ
αβ (1.37)
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referred to as Pontryagin density quantifying the extent to which local Lorentz invari-

ance is violated. CS theories are broadly of two types

• One in which ϑ takes a constant and a special value, with no kinetic and potential

term - canonical CS theory [69].

• One in which ϑ is a fully dynamical field - dynamical CS theories [70].

For spherically symmetric space-times, the Pontryagin density vanishes, and one is left

with GR + scalar field with potential. Owing to the no-hair theorem [65], for a spherically

symmetric background, the only stable solution possible is that of the Schwarzschild.

Hence, Schwarzschild space-time is a solution of both kinds of CS theories [69]. How-

ever, axisymmetric solutions are non-trivial to construct in CS theories owing to the

fact that the Pontryagin density does not vanish for such space-times. However, it is

possible to construct axisymmetric solutions from spherically symmetric solutions per-

turbatively in spin [80]. So far in the literature, no fast spinning Kerr-like solution exists

in either kind of CS theories.

There are no extra intrinsic degrees of freedom of the gravitational field in this mod-

ification, except the two usual massless spin-2 degrees of freedom. In the literature, one

usually assumes V (ϑ) = 0, then, the field equations of (1.36) lead to

Rµν = −2κ2αCµν + κ2βϑ;µϑ;ν (1.38)

2ϑ = − α

4β
∗RR (1.39)

Cµν =
1

2

[
ϑ;σ

(
εσµ

αβRνβ;α + εσν
αβRµβ;α

)
+ ϑ;τσ

(∗Rτ
µ
σ
ν + ∗Rτ

ν
σ
µ

)]
(1.40)

where Cµν is known as the Cotton tensor in literature [69]. Linearizing (1.38) about a

Minkowski background, and choosing the transverse-traceless gauge, one obtains the

radiative part of the perturbed metric as

hab (t, r) =
1

2π

∫
p

 h+ − ipϑ̇h× h× + ipϑ̇h+

h× + ipϑ̇h+ −h+ + ipϑ̇h×

 eip·rdp (1.41)
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Hence, CS modifications lead to the plus and cross carrying different intensities, as well

as imparting a circular polarization to the linearly polarized modes of GR.

Another effect of CS modification is the phenomenon of birefringence of vacuum. Al-

though the circularly polarized gravitational radiation in CS theories travel at the speed

of light, one of the consequences of parity violation is that different frequency compo-

nents travel at different velocities in vacuum [79] - something that can technically be

observed by GW detectors.

1.4 Structure of the thesis

In the rest of the thesis spherically symmetric BH space-times are perturbed and prop-

erties of the perturbations are looked at for f(R) and CS modified gravity, and ways to

distinguish GWs (during ring-down) between GR and the modified theories are shown.

In Chapter 2, the theory of black hole perturbations in GR will be outlined, salient

features of the solutions of the perturbed equations of motion will be outlined for both

Schwarzschild and Reissner-Nördstrom space-times.

In Chapter 3, analysis of a perturbation about a Schwarzschild background in f(R)

gravity will be performed and differences in its dynamics with the perturbation dy-

namics of GR Schwarzschild will be discussed. Effects of the difference in dynamics on

observations and method to detect said difference to constrain deviation from GR will

be shown.

In Chapter 4, a charged BH space-time in f(R) gravity will be perturbed and the

effects of the modified perturbation dynamics on observations will be discussed.

In Chapter 5, comparison between two types of Chern Simons modifications to GR

(canonical and dynamical), and their effects on the perturbation dynamics in Schwarzschild

space-times will be compared. The effects of dynamical CS modification to gravity on

BH ring-down, and on the emitted gravitational waves will be shown and methods to

detect such effects will be discussed.
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Chapter 6 summarizes the results from previous chapter and draws some conclu-

sions about signatures imparted to gravitational waves from modified gravitational the-

ories in general. Possible future directions the analysis of the current thesis can take are

also discussed.

In Appendix A, the form of the parametrized Pöschl-Teller potential which replaces

the odd/even parity potentials in the scattering problem and the form of the complex

Reflection coefficient as a function of angular frequency ω are shown.

In Appendix B, the higher derivative modifications to GR are expressed in terms of

the parameters of an effective fluid. Exact form of an effective source term showing pref-

erential coupling, modifying the dynamics of the perturbations about a Schwarzschild

background in f(R) gravity is derived.

In Appendix C, an energy-momentum pseudo-tensor corresponding to the radiated

gravitational radiation by a perturbed BH in f(R) gravity is constructed.

In Appendix D, the preferentially coupled effective source terms modifying the dy-

namics of a perturbation about a charged BH background in f(R) gravity is calculated.

In Appendix E, an energy-momentum pseudo-tensor corresponding to the radiated

gravitational radiation by a perturbed charged BH in f(R) gravity is constructed.

In Appendix F, the linearly perturbed Pontryagin density is derived in terms of one

of the gravitational parity modes. A preferentially coupling effective source term, mod-

ifying the dynamics of a perturbation about a Schwarzschild BH in dynamical Chern-

Simons modification to GR is calculated.

In Appendix G, an energy-momentum pseudo-tensor corresponding to the radiated

gravitational radiation by a perturbed BH in a dynamical CS modification to GR is con-

structed.

In Appendix H, the constancy of a relative intensity factor between odd and even

parity perturbations in GR, and its time dependence in dynamical CS modified gravity,

as defined in Chapter 5, is shown, enabling one to test for deviations from GR from

gravitational wave observations.
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In Appendix I, a relation between the polarization amplitudes of perturbation in

Minkowski space-times, and the same at spatially asymptotic BH space-times in dy-

namical CS modified gravity was made.



Chapter 2

Theory of black hole perturbations in

General Relativity

Astronomical processes like particle in-fall/orbit around a black hole (BH) and binary

BH collisions make the external space-time of a remnant BH undergo damped ringing

while emitting gravitational waves. A ringing external space-time of a BH will asymp-

tote towards spherical (Schwarzschild) or axial (Kerr) symmetry — which are stable,

static, and unique [81] solutions of GR. A single distorted BH can be represented math-

ematically by a small perturbation about a stable BH external space-time metric that the

perturbed system will eventually evolve to. Studies on the dynamics and properties of

perturbations about the Schwarzschild solution were first done in [82], [83], and then in

[84]. From Sec. (2.1) to Sec. (2.7.2), a review of various aspects of black hole perturba-

tion theory will be done, whereas in Sec. (2.7.3), some new results regarding perturbed

space-times of charged BHs will be shown.

The conventions of Chapter 1 will be followed. Greek alphabets have been used for

indices 0-3, lower Latin for 0-1, and upper Latin for 2-3. The various physical quanti-

ties with the over-line refer to the values evaluated for the spherically symmetric back-

ground, whereas superscript (n) represents the n-th order perturbed quantity. ∇µ and

2 represents covariant derivative and Laplace-Beltrami operator for the full space-time,

33
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D̃a and 2̃ represents covariant derivative and Laplace-Beltrami operator for 0-1 indices,

while D̂a and 2̂ represents covariant derivative and Laplace-Beltrami for 2-3 indices re-

spectively. D̃ar and D̃aD̃br have been represented as ra and rab respectively throughout

the thesis.

2.1 Formalism and definitions

A perturbation about the Schwarzschild solution is represented as

gµν = ḡµν + εhµν (2.1)

gµν = ḡµν − εhµν (2.2)

where ḡµν is the metric tensor corresponding to the line element (1.5) describing lengths

and clock rates in the external vacuum space-time of a spherically symmetric BH space-

time. ε is so chosen that ε|hµν |
|ḡµν | << 1, i.e. the effect of the perturbation on the background

space-time should be sufficiently small. The relaxation of gµν to ḡµν can be described by

solving for hµν up to O (ε) in the field equations satisfied by gµν :

Rµν (gµν) = Rµν (ḡµν + εhµν) (2.3)

' R̄µν + εR(1)
µν (2.4)

⇒ R(1)
µν = 0 (2.5)

where R̄µν = 0 is the background solution corresponding to ḡµν , and R
(1)
µν is the first

order perturbed Riemann tensor describing the dynamics of hµν . Retaining only O (ε)

terms, one finds

R(1)
µν =

1

2

(
−2hµν −∇µ∇νh+∇µ∇σh

σ
ν +∇ν∇σh

σ
µ − 2R̄µσνρh

σρ
)

= 0 (2.6)

The background space-time represented by the line element (1.5), owing to a spher-

ical symmetry in a two dimensional subspace of the four dimensional manifold, can be

split into two 2-D space-times in the following way
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ds2 = gµνdx
µdxν (2.7)

= gabdy
adyb + r2ḡABdz

AdzB (2.8)

where xµ ≡ (ya, zA) is the coordinate 4-vector, while ya ≡ (t, r) and zA ≡ (θ, φ) are

coordinate 2-vectors corresponding to an orbit space with metric gab and a 2-sphere

with metric ḡAB respectively. Hence, the whole space-time is foliated by a concentric

spheres with radii ranging from 2M to∞.

2.2 Coordinate transformations and spherical harmonics

Under a coordinate transformation

xµ → x̃µ = xµ + ξµ , (2.9)

where ξµ is a 4-vector, the perturbed tensor transforms as follows

hµν → h̃µν = hµν −∇µξν −∇νξµ. (2.10)

Since GR is a coordinate independent theory, transformation (2.9) leaves (2.6) invariant.

This is akin to the gauge freedom of electrodynamics where the 4-vector potential Aµ

cannot be uniquely determined. The invariance of (2.6) under transformation (2.10) thus

imply that the solution hµν of (2.6) is uncertain up to a 4-vector ξµ.

A special coordinate transformation in the space-times under study is rotation, which

is a symmetry of the Schwarzschild solution. The form of the 4-vector ξµ that generates

rotation in the space-time is of the form

ξµ ≡

 0

ξA

 (2.11)

Under this restricted transformation, different components of the metric perturbation

hµν transform in different manner [82, 85]

hab → h̃ab = hab (2.12)
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haA → h̃aA = haA − r2D̃a

(
ξA
r2

)
(2.13)

hAB → h̃AB = hAB − D̂AξB − D̂BξA (2.14)

implying that hab transforms as a scalar, haA as a 2-vector, and hAB as a tensor under

the 2-D rotation. Symmetry in the subspace implies that the angular dependence of a

general perturbation can be expressed as an infinite series of spherical harmonic func-

tions. Thus the angular dependence of the scalar components of hµν under rotation can

be expressed as

hab =
∑
`,m

f `,mab (yc) S`,m
(
zA
)

(2.15)

where (`,m) are multipole indices, ya and zA are as defined in Eq. (2.8), and S`,m is the

scalar spherical harmonic function and proportional to the associated Legendre poly-

nomial [86]. It follows the following property

2̂S`,m = −k2 S`,m (2.16)

k =
√
` (`+ 1). (2.17)

Similarly, the vector transforming part of hµν , haA can have an angular dependence of

two types - a curl-less vector S`,mA (parity conserving or even under a parity transforma-

tion θ → π − θ, φ → φ + π) , and a divergence-less vector V `,m
A (parity violating or odd

under parity transformation). Both can be obtained from the scalar spherical harmonic

function in the following manner

S`,mA = D̂AS`,m (2.18)

V`,m
A = εABD̂

BS`,m (2.19)

which are gradient and pseudo-gradient of the scalar spherical harmonic function re-

spectively. Therefore, haA can be expressed as

haA =
∑
`,m

[
fE,`ma

(
yb
)

S`,mA
(
zB
)

+ fO,`ma

(
yb
)

V`,m
A

(
zB
)]

(2.20)
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where the indices E and O stands for even parity and odd parity respectively. Tensor

transforming components of hµν under rotation can similarly be expressed as an infinite

series of three types of tensor spherical harmonics, two of even parity and one of odd

parity. Out of which, the simplest even parity tensor spherical harmonic is ḡABS`,m

where ḡAB is the metric of a 2-sphere. Two other spherical harmonic tensors can be

defined

S`,mAB = D̂AD̂BS`,m +
1

2
k2ḡABS`,m (2.21)

V`,m
AB = −1

2

(
D̂AV`,m

B + D̂BV`,m
A

)
(2.22)

such that SAA = VA
A = 0, where the `,m indices have been omitted. The components hAB

can now be written as

hAB =
∑
`,m

[
r2H`,m

L (ya) ḡABS`,m + r2HE,`m
T (ya) S`,mAB +HO,`m

T (ya) V`,m
AB

]
(2.23)

where the indices L and T stand for longitudinal and transverse respectively. Thus

given these expansions, significant simplification can be done on (2.5), reducing quasi-

linear second order differential equations of four variables into quasilinear second order

differential equations of two variables.

The scalar harmonic functions, being proportional to the associated Legendre poly-

nomials, form an orthogonal set. The vector and tensor harmonic functions also follow

orthogonality properties [86]∫
SA,`mS`

′m′

A dΩ = ` (`+ 1) δ``′δmm′ (2.24)∫
VA,`mV`′m′

A dΩ = ` (`+ 1) δ``′δmm′ (2.25)∫
SA,`mV`′m′

A dΩ = 0 (2.26)∫
SAB,`mS`

′m′

AB dΩ =
1

2
(`− 1) ` (`+ 1) (`+ 2) δ``′δmm′ (2.27)∫

VAB,`mV`′m′

AB dΩ =
1

2
(`− 1) ` (`+ 1) (`+ 2) δ``′δmm′ (2.28)∫

SAB,`mV`′m′

AB dΩ = 0 (2.29)
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Unlike a tensor, components of a 4-vector transform only as a scalar or a vector under

rotation. Specifically, for a 4-vector ξµ, the components ξa transform as scalars, and

ξA transforms as a 2-vector. Therefore, a vector that generates a general coordinate

transformation can be expanded in terms of spherical harmonic scalars and vectors

ξa =
∑
`,m

L`,ma S`,m (2.30)

ξA =
∑
`,m

(
L`,mE S`,mA + L`,mO V`,m

A

)
(2.31)

Like the metric perturbation hµν , the Ricci tensor Rµν can also be similarly split into Rab,

RaA, and RAB, each of which can be split into even and odd parity parts [85], which

form two decoupled sets of equations owing to the orthogonality relations (2.24)-(2.29)

and the spherical symmetry of the background.

The various components of an energy-momentum tensor Tµν in a spherically sym-

metric background transforms in the same way as the components of hµν , and hence

can be written as a sum over spherical harmonic scalars (Tab), vectors (TaA), and tensors

(TAB). The coefficient multiplying a spherical harmonic object (scalar/vector/tensor)

of each `,m in the spherical harmonic expansion of various components of Tµν can be

obtained in the same manner as the coefficient set
(
fab, f

E/O
a , HL, H

E/O
T

)
of hµν .

For even parity, coefficients of expansion can be found using the orthogonal proper-

ties (2.24)-(2.29)

τab`,m = 8π

∫
T abS`,mdΩ (2.32)

τaE,`m =
16πr2

k2

∫
T aAS`,mA (2.33)

P`,m = 8πr2

∫
TABγABS`,m (2.34)

τE,`mT =
32πr4

µ

∫
TABS`,mAB (2.35)

µ = (`− 1) ` (`+ 1) (`+ 2) (2.36)

while for odd parity on obtains

τaO,`m =
16πr2

k2

∫
T aAV`,m

A (2.37)
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τO,`mT =
16πr4

µ

∫
TABV`,m

AB (2.38)

From this point onward, the indices `,m and the summations over them will be implic-

itly assumed.

2.3 The gauge invariant formalism

Early works of BH perturbation involved utilizing of the gauge freedom of the metric

perturbation to set certain components of hµν to zero, yielding a single scalar (or mas-

ter function) for each parity [82, 83]. That one scalar per parity encompassed the entire

dynamics of the perturbed external space-time for that parity. However, it was not im-

mediately obvious why the Regge-Wheeler gauge choice could be termed as the ’phys-

ical gauge’. A gauge invariant study done by Moncrief [87] using Newman-Penrose

formalism [88] showed that the gauge was indeed physical and that the Regge-Wheeler

and Zerilli definition of the master functions were also gauge invariant. Using the met-

ric perturbation approach, Gerlach and Sengupta [89] developed a gauge invariant ap-

proach to the perturbation theory, which was developed later by Martel-Poisson [86]

and extended to higher dimensions by Kodama-Ishibashi [58, 85, 90].

In the gauge invariant approach, one tries to find how the coefficients of the spher-

ical harmonic expansion in (2.15), (2.20), and (2.23) transform under (2.9). Using the

expansions (2.30) and (2.31) in (2.12) and (2.14), one obtains for the even parity compo-

nents

fab → f̃ab = fab − D̃aLb − D̃bLa (2.39)

fEa → f̃Ea = fEa − La − D̃aLE +
2

r
raLE (2.40)

HL → H̃L = HL +
k2

r2
LE −

2

r
raLa (2.41)

HE
T → H̃E

T = HE
T −

2

r2
LE (2.42)
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Similarly, the odd parity components transform as

fOa → f̃Oa = fOa − D̃aLO +
2

r
raLO (2.43)

HO
T → H̃O

T = HO
T − 2LO (2.44)

Given the relations (2.39)-(2.44), one can take linear combinations of the various coeffi-

cients to define other quantities which remain invariant under a coordinate transforma-

tion. If one can obtain such quantities, then they can be used as observables. One finds

the following gauge invariant quantities for the even parity sector [85, 86]

Fab = fab − D̃ajb − D̃bja (2.45)

F = HL +
k2

2
HE
T −

2

r
raja (2.46)

where ja = fEa − r2

2
HE
T . Similarly, for the odd sector one has [85, 86]

Fa = fOa −
1

2
D̃aH

O
T +

1

r
raH

O
T (2.47)

2.4 Master equations for perturbation and boundary con-

ditions

Using the gauge invariant variables to define two master variables (ΨE/O), one for each

parity, (2.5) reduces to two decoupled 2-D equations of the form

2̃ΦE/O −
VE/O
g

ΦE/O = SE/O (2.48)

where g ≡ g(r) = 1− 2M
r

and as found by [86],

ΦE =
2r

(`− 1) (`+ 2) + 2

[
F +

2g

(`− 1) (`+ 2) + 6M
r

(gFrr − r∂rF )

]
(2.49)

ΦO =
2rk2

µ

(
∂rFt − ∂tFr −

2

r
Ft

)
(2.50)

(2.51)

where the quantities Fab, F , and Fa are as defined in (2.45), (2.46), and (2.47) respectively.
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(2.48) have the form of the equation of motion of a wave moving in a background

curvature induced effective potential VE/O and have a simpler 1-D form when the quan-

tities ΦE/O are expanded using plane wave fronts, i.e. giving ΦE/O a eiωt time depen-

dence. Then, for a plane wave ΦE/O of frequency ω incident on the BH space-time, one

finds

d2ΦE/O

dr2
∗

+
(
ω2 − VE/O

)
ΦE/O = 0 (2.52)

where a radial coordinate transformation from r to r∗ was done, which are related to

each other through

r∗ = r + 2M ln
∣∣∣ r
2M
− 1
∣∣∣ (2.53)

The exact forms of VE/O will be given later, however, both the potentials asymptote

to zero at the boundaries and have a single maxima at r = rP , which was defined

in Sec. (1.1.1). Thus, the problem of the relaxation of a spherically symmetric BH on

perturbation can be replaced by a wave scattering problem in 1-D.

Being a 2nd order DE, one needs two initial conditions, which can either be

• Values of the variables ΦE/O at the boundaries: horizon and asymptotic infinity.

• Values and the first derivative values at either of the two boundaries.

A scattering problem like (2.52) in the BH context require a specific type of boundary

conditions. Owing to the fact that the horizon is a one way surface, these classical waves

should be purely ingoing at the horizon, while at∞ there can be both ingoing and out-

going radiation corresponding to incident and reflected parts of the wave respectively.

Hence, the boundary conditions on (2.52) will be of the form

ΦE/O ∼ TE/O (ω) eiω(t+r∗) r∗ → −∞ (2.54)

∼ eiω(t+r∗) +RE/O (ω) eiω(t−r∗) r∗ →∞ (2.55)

where the sign before r∗ is a convention that differs in literature. Fig. 2.1 provides a

pictorial representation of the scattering process and the boundary conditions. In this
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thesis, positive sign before r∗ will imply an ingoing wave, and a negative sign will

imply outgoing wave. Since one of the boundaries in this problem has a purely ingoing

boundary condition, it is a dissipative system - implying the asymptotic solution will

be decaying in time. This is natural because the perturbations have to decay away so

that a stable solution is reached eventually, otherwise, BHs would be very unstable

objects. Because of this, all the values ω’s can take will be complex with a positive

imaginary part such that solutions can have an e−ωI t form (ωI ≡ = (ω)). The TE/O (ω)

stands for complex transmission amplitude, and RE/O (ω) stands for complex reflection

amplitude. Hence,
∣∣TE/O∣∣2 and

∣∣RE/O

∣∣2 are the transmission and reflection coefficients

respectively - quantifying the fraction of the incident gravitational energy (or the initial

energy of perturbation) that gets absorbed by the BH or is radiated away to asymptotic

infinity respectively. They follow the constraint

∣∣TE/O∣∣2 +
∣∣RE/O

∣∣2 = 1 (2.56)

implying conservation of energy. In the case where Tµν = 0, the profile of the potentials

VE/O determine the complex amplitudes RE/O (ω) and TE/O (ω) [91, 92].

2.5 Isospectrality

The exact forms of the potentials VE/O are given by [82–84, 86]

VE =
1

Λ2

(
1− 2M

r

)[
(`− 1)2 (`+ 2)2

(
(`− 1) (`+ 2) + 2

r2
+

6M

r3

)
+

36M2

r4

(
(`− 1) (`+ 2) +

2M

r

)]
(2.57)

VO =

(
1− 2M

r

)(
k2

r2
− 6M

r3

)
(2.58)

where Λ = (`− 1) (`+ 2) + 6M
r

. Although (2.57) and (2.58) look functionally very dif-

ferent, a curious relationship between the potentials VE/O was found by Chandrasekhar

[84], where it was shown that both the potentials can be obtained from the same func-
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Figure- 2.1: Schematic diagram of the scattering process and the boundary conditions

(2.54)

.

tion W (r)

gVE/O = W (r)2 ∓ gW ′ (r)− (k2 − 2)
2
k4

36r2
H

(2.59)

W (r) =
3rH (rH − r)

r2 [3rH + (k2 − 2) r]
− k2 (k2 − 2)

6rH
(2.60)

where g = 1 − 2M
r

, the negative sign in the RHS of (2.59) is for the even parity poten-

tial and the positive sign is for the odd parity potential, and the prime denotes radial

derivative. Using the fact that both even and odd parities follow the same boundary

conditions (2.54), it was shown by [93] that the range of allowed values of ω for both

even and odd parity sectors are the same - or that the two parities are iso-spectral.

Another consequence of isospectrality is the following

|TE|2 = |TO|2 (2.61)

|RE|2 = |RO|2 (2.62)
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implying that the fraction of radiated gravitational energy to the incident gravitational

energy (perturbation energy or initial conditions) is the same for both odd and even

parity perturbations - a feature that has been shown to be unique to GR [94, 95]. Isospec-

trality also breaks in the case of a non-vanishing cosmological constant [94].

2.6 Gravitational radiation at asymptotic infinity

2.6.1 Matching of a perturbed Schwarzschild metric with asymptotic

Minkowski

In Refs. [86, 96, 97] it was shown that only the traceless part of hAB contributes to the

radiation escaping to asymptotic infinity, and a connection was found between polariza-

tions h+/× and the gauge invariant perturbation variables of a Schwarzschild space-time

In Ref. [96] it was shown using the tetrad formalism developed in [88] that at asymp-

totic infinity, hAB can be written in the locally flat coordinate system of an observer as

hÂB̂ = eA
Â

eB
B̂
hAB (2.63)

where eA
Â

= diag [r−1, (r sin θ)−1] is the observer’s local tetrad and Â is the tetrad index.

The traceless part of hAB has the form [85], where an implicit summation over multipole

index ` and projection index m was assumed

hAB = r2
(
HE
T SAB +HO

T VAB

)
(2.64)

Using (2.63) in (2.64) one obtains the traceless part of the perturbation in S2 at a large

distance from the black-hole in a locally flat space-time as

hÂB̂ ≡ HE
T

 Sθθ Sθφ
Sθφ
sin θ

Sφφ
sin θ

+HO
T

 Vθθ Vθφ

Vθφ
sin θ

Vφφ
sin θ


(2.65)

=

 h+ h×

h× −h+

 . (2.66)
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from which polarization amplitudes h+/× can be read off from (2.65) as

h+ =
(
HE
T Sθθ +HO

T Vθθ

)
(2.67)

h× =
1

sin θ

(
HE
T Sθφ +HO

T Vθφ

)
. (2.68)

The asymptotic relationship between the perturbation variables and the scalar/vector

master variables were found from [86, 96], using which (2.67) and (2.68) becomes

h+ ' 1

r
(ΦESθθ + ΦOVθθ) +O

(
1

r2

)
(2.69)

h× =
1

r sin θ
(ΦESθφ + ΦOVθφ) +O

(
1

r2

)
. (2.70)

which can be inverted (after truncating O
(

1
r2

)
onward terms)

ΦE

r
=

∫
h+SθθdΩ +

∫
sin θh×SθφdΩ (2.71)

ΦO

r
=

∫
h+VθθdΩ +

∫
sin θh×VθφdΩ (2.72)

In the observational point of view, the above relations are impractical since it involves

observing the polarization amplitudes at each point of the surface of a sphere and in-

tegrating over it — which is unlikely, unless in future the technological challenge of

encompassing the entirety of a black hole with detectors can be overcome. Earth bound

detectors can only observe gravitational waves on a small patch of the sphere, given

which, it is useful to find the quantity in the LHS of (2.71) and (2.72) per unit solid

angle, for which one obtains

dΨE

dΩ
= h+Sθθ + sin θh×Sθφ (2.73)

dΨO

dΩ
= h+Vθθ + sin θh×Vθφ (2.74)

where ΨE/O =
ΦE/O
r

.

The tensor spherical harmonics are related to the spin weighted spherical harmonics

(−2Y`m) used for the description of gravitational radiation using null tetrads instead of

the metric tensor [86, 96, 98], and hence (2.67) and (2.68) can be rearranged into

h+ − ih× '
1

r

√
(`+ 2)!

(`− 2)!
(ΦE + iΦO) −2Y`m +O

(
1

r2

)
(2.75)
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LHS is the doubly integrated Weyl scalar Ψ4 at asymptotic infinity (also known as the

gravitational strain), and can be expanded in spin-weighted spherical harmonics as [96,

99] (summation over `,m have been implicitly assumed).

h+ − ih× = h`m −2Y`m. (2.76)

Comparing (2.75) and (2.76) one has,

< (h`m) ' 1

r

√
(`+ 2)!

(`− 2)!
ΦE (2.77)

= (h`m) ' 1

r

√
(`+ 2)!

(`− 2)!
ΦO (2.78)

2.6.2 Energy-momentum pseudotensor

Perturbations involve supplying extra energy to a system, which if stable to perturba-

tions have various ways of relaxing to a lower energy stable state. Systems where the

end-state is a vacuum BH (formed from merger of a binary BH or an neutron star-BH

system) relax to a stable state by absorbing and radiating extra energy which slightly

changes the symmetry of the background. This can be seen as a wave scattering prob-

lem (as found in Sec. (2.4)) where the BH absorbs a portion of some incident radiation,

radiating away the rest. Presence of radiation modifies the energy-momentum content

of the background space-time, therefore, for a perturbation (2.1), one can quantify the

associated radiation by expanding the field tensor in powers of ε

R̄µν + εR(1)
µν + ε2R(2)

µν = 0 (2.79)

where the third term in the above expression is the back-reaction due to perturbation.

Since atO (ε) one solves forR(1)
µν = 0, the radiation due to perturbation becomes a second

order effect, and acts as an energy-momentum (EM) pseudo-tensor for the perturbation

[100, 101]

R̄µν = κ2tµν (2.80)
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= −ε2
〈
R(2)
µν

〉
(2.81)

where < ... > is a symbolic representation of averaging over wavelengths that are much

smaller than the length scales over which the background space-time changes appre-

ciably - yielding a gauge invariant measure of the energy-momentum content of per-

turbation [100]. Operationally, the averaging procedure allows one to do the following

algebra in GR

• Total derivative terms of the form∇µAαβ... can be put to zero.

• ∇µA∇νB = −A∇µ∇νB where A and B are tensor objects.

Thus, calculating R(2)
µν due to (2.1), one obtains

R(2)
µν = −1

2

[
1

2
hρτ;β hρτ ;α + hρτ (hρτ ;αβ + hαβ;τρ − hτα;βρ − hτβ;αρ) + hτ ;ρ

β (hτα;ρ − hρα;τ )

−
(
hρτ;ρ −

1

2
h;τ

)
(hτα;β + hτβ;α − hαβ;τ )

]
(2.82)

Using the the transverse-traceless gauge

ψµν = hµν −
h

2
ḡµν (2.83)

∇µψ
µ
ν = 0 (2.84)

ψ = 0 (2.85)

where h and ψ are the trace of hµν and ψµν respectively, one finds tµν to be

tµν =
ε2

4κ2

〈
∇µψ

αβ∇νψαβ
〉

(2.86)

Gravitational Energy radiated per unit time per unit solid angle (dΩ) in the outgoing

radial direction hence will be of the form [102, 103]

d2E

dΩdt
= r2 r̂ ttr (2.87)

where r̂ is a unit vector defining the outward radial null direction. On using the form

of hµν in the transverse-traceless gauge at asymptotic infinity, one obtains

d2E

dΩdt
=

ε2r2

4κ2

〈∣∣∣ḣ+

∣∣∣2 +
∣∣∣ḣ×∣∣∣2〉 (2.88)



48 Chapter 2. Theory of black hole perturbations in General Relativity

which on converting to the odd/even master functions using (2.75) become

d2E

dΩdt
=

ε2µ

4κ2

〈∣∣∣Φ̇E

∣∣∣2 +
∣∣∣Φ̇O

∣∣∣2〉 (2.89)

where the summation over `,m have been implicitly assumed.

2.7 Charged BHs in GR

The line element for a charged BH external space-time is given by (1.13). It corresponds

to the background electromagnetic vector potential

Āµ ≡

(√
2Q

κr
, 0, 0, 0

)
(2.90)

A perturbation of the electromagnetic field about the background (2.90), is represented

by

Aµ = Āµ + A(1)
µ (2.91)

where A(1)
µ is a 4-vector whose components A(1)

a transform as a scalar, and A
(1)
A trans-

forms as a vector under rotation (2.11). Hence, A(1)
µ can be similarly expanded using

scalar and vector harmonics as

A(1)
µ = (AaS,AESA +AOVA) (2.92)

Thus for odd parity,AO is the only variable, and hence can be used as a master function

for perturbation dynamics. For even parity three scalars characterize the perturbation,

which can be combined using the perturbed Maxwell equations [104] to yield a gauge

invariant variable which will be denoted by AE . Combining the perturbed field equa-

tions and the Maxwell equations, one finds the following coupled DEs [104]:

2.7.1 Odd parity perturbations

r2Da

(
1

r2
DaΩ

)
− k2 − 1

r2
Ω =

2
√

2κQ

r2
AO (2.93)
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2̃AO −
1

r2

(
k2 + 1 +

4Q2

r2

)
AO =

√
2Q (k2 − 1)

κr4
Ω

(2.94)

where Φ0
V = Ω

r
. which can be decoupled using the following substitution

ΦO
± = aO±Φ0

O + bO±AO (2.95)(
aO+, b

O
+

)
≡

(
Q(k2 − 1)

3M + ∆
,
κ√
2

)
(2.96)

(
aO−, b

O
−
)
≡

(
1,
−2
√

2κQ

3M + ∆

)
(2.97)

yielding

d2ΦO
±

dx2
+
(
ω̃2 − V O

±
)

ΦO
± = 0 (2.98)

where

V O
± =

g

r2

(
k2 + 1 +

4Q2

r2
+
−3M ±∆

r

)
(2.99)

∆ =
√

9M2 + 4(k2 − 1)Q2 (2.100)

2.7.2 Even parity perturbations

g
d

dr

(
g
dΦ0

E

dr

)
+
(
ω2 − VE

)
Φ0
E = 0 (2.101)

2̃AE −
1

r2

(
k2 +

8Q2g

r2H

)
AE =

√
2Q

κr3

(
2H2 − PZ

4H
Φ0
E

+gr
dΦ0

E

dr

)
(2.102)

whereH = k2−2+ 6M
r
− 4Q2

r2
, and PZ = 8M2

r2
+ 2M

r

(
−4Q2

r2
+ 6 k2 − 6

)
− 8(k2+1)Q2

r2
−4 k2 +8,

and can similarly be decoupled using the following substitution

ΦE
± = aE±Φ0

E + bE±AE (2.103)(
aE+, b

E
+

)
≡

(
Q(k2r + 3M + 3 ν − 2 r)

2r
,
3 (M + ν)κ√

2

)
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(2.104)(
aE−, b

E
−
)
≡

(
3(M + ν)− 4Q2

r
,−4
√

2Q

κ

)
(2.105)

where ν =
√
M2 + 4

9
(k2 − 2)Q2, leading to the decoupled DEs

d2ΦE
±

dx2
+
(
ω̃2 − V E

±
)

ΦE
± = 0 (2.106)

where V E
± are scattering potentials similar to V O

± .

2.7.3 Gravitational energy suppression in charged BH space-times

Similar to the Schwarzschild, isospectral relations between V E
± and V O

± exists, establish-

ing equality of spectrum, as well as transmission and reflection coefficients. However,

the isospectral relationship exists in the decoupled form, which is the dynamics of a

variable that is a combination of gravitational and electro-magnetic perturbations.

At the boundaries x→ ±∞, Φ
E/O
± is given by

Φ
E/O
± ∼ eiω̃x +

√
R
E/O
± e

i
(
δ
E/O
±,(r)−ω̃x

)
x→∞ (2.107)

Φ
E/O
± ∼

√
T
E/O
± e

i
(
δ
E/O
±,(t)+ω̃x

)
x→ −∞ (2.108)

where RE/O
± & T

E/O
± are the reflection and transmission coefficients associated with the

potentials V E/O
± , while δE/O±,(r/t) are the changes in phase of the incoming wave due to

reflection/transmission off of the potential barriers V E/O
± .

A purely gravitational wave incident on the black-hole space-time from x → ∞ is

given by

Φ0
E/O,(i) 6= 0 (2.109)

AE/O,(i) = 0 (2.110)

where the reflected waves [105], compared to the incident wave is given by

∣∣Φ0
E/O,(r)

∣∣ =
∣∣Φ0

E/O,(i)

∣∣ [RE/O
+ sin2 ε+R

E/O
− cos2 ε
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+2

√
R
E/O
+ R

E/O
− cos

(
δ
O/E
+,(r) − δ

E/O
−,(r)

)] 1
2

sin ε cos ε

(2.111)∣∣AE/O,(r)∣∣ =
∣∣Φ0

E/O,(i)

∣∣CE/O (2.112)

CE/O =
[
R
E/O
+ +R

V/S
−

−2

√
R
E/O
+ R

E/O
− cos

(
δ
O/E
+,(r) − δ

E/O
−,(r)

)] 1
2

sin ε cos ε (2.113)

sin 2ε = ∓2

√
−q1q2

(q1 − q2)2 S(−), V (+) (2.114)

qi = 3M + (−1)i−1
√

9M2 + 4 (k2 − 2)Q2 i = 1, 2

(2.115)

indicating that a purely gravitational wave on scattering off of the curvature of a Reissner-

Nördstrom space-time will have a minor electromagnetic component in the net scat-

tered radiation. The factor multiplying
∣∣∣Φ0

E/O,(i)

∣∣∣ in (2.112) is called the conversion factor

(CE/O) and was first calculated in [105], and shown that CE ≥ CO - implying a higher

fraction of converted electromagnetic energy for the even parity compared to the odd

parity [105]. This feature can be used to confirm or infirm the consensus in the scientific

community that astrophysical BHs are charge neutral.

An estimate of relative radiated gravitational energy difference between odd and

even parity modes as a function of the BH charge and initial conditions of the ring-

down regime can be estimated using (2.113)

∆`m
GR (q, IE, IO) ≡ (1− CO) IO − (1− CE) IE

(1− CO) IO + (1− CE) IE
(2.116)

where IE and IO are the initial intensity of the gravitational perturbations, and q = Q
M

is

the BH charge scaled with respect to the mass. Solutions of 2.52 at asymptotic infinity

as a function of time is given by

ΨE/O = AE/Oe
−ωI teiωt (2.117)
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which on using in (2.116) and the definition (2.89) for flux per (even/odd) mode be-

comes

∆`m
GR (q, AE, AO) ≡ (1− CO)A2

O − (1− CE)A2
E

(1− CO)A2
O + (1− CE)A2

E

(2.118)

where AE/O are initial conditions for solving (2.52) and are the initial amplitudes of per-

turbation, which in turn depend on the specifics of the process that caused the pertur-

bation - like mass ratio and spin ratio of a binary BH merger [106]. All such parameters

can be estimated using the properties of the waveform of the gravitational wave sig-

nal just before the system transitions into the ring-down regime. Numerical relativity

simulations can tell us the value of ∆`m
GR for uncharged BHs of the same initial parame-

ters, whereas any presence of charge in BHs found in nature will have a value of ∆`m
GR

that is lesser than the value found from simulations, owing to the fact that even parity

emits less gravitational energy than odd parity. For a particular case where odd and

and even modes are equally excited (AO = AE), (2.118) can be replaced with a defini-

tion that is significantly simpler and can be expressed simply as a function of the mass

scaled charge q [107]

∆`m
GR

∣∣
AE=AO

=
CE − CO
1− CO

, (2.119)

in which case the above quantity simply becomes the relative difference between the

radiated odd and even gravitational fluxes and have been plotted in Fig. 2.2 for various

values of q and different values of the horizon radius rh [107]. In order to obtain the

reflection coefficients R± and the phases δE/O± , the potentials V E/O
± were replaced with a

properly parametrized Pöschl-Teller potential, details of which are given in Appendix

A.

In the next chapter, changes in the isospectral relations due to modified gravity will

be discussed.
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(a)

(b)
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(c)

Figure- 2.2: Relative energy flux difference |∆22
GR| for three different horizon radii. In-

creasing BH size leads to larger characteristic length scales for the space-time leading to

the shift of the profiles towards low frequencies, and leads to a decrease in the quantity

(2.119).



Chapter 3

Signatures of f (R) gravity from

perturbed Schwarzschild black holes

In this chapter, perturbation studies of a Schwarzschild BH, which is also a solution of

f(R) theories of gravity (as seen in Sec. (1.3.3)), will be performed. Using a gauge invari-

ant analysis following [86], it will be shown that signatures of modifications to gravity,

like f(R), will alter the way gravitational energy is radiated through odd and even par-

ities. As a consequence it will be shown that in gravitational wave observations, the

alteration in energy radiation will leave a specific signature, which can be utilized to

detect or constrain deviations from GR. This chapter is based on the published works

[95, 107].

The notations of Chapter 1 and 2 will be continued throughout the current chapter.

3.1 Modification to gravity as GR + effective fluid

As seen in Sec. (1.3.3), higher derivative correction terms to the Einstein field equations

can be represented as an effective fluid which modifies the background or the perturbed

space-time. Since the effective fluid energy-momentum tensor (1.31) explicitly depends

on the Ricci scalar (R), for Ricci flat space-times (i.e. R = 0), the energy-momentum

55
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tensor vanishes, leaving behind GR, satisfying

R̄µν = 0 (3.1)

Consequently, the background remains a solution of GR, and in this chapter a back-

ground Schwarzschild space-time will be perturbed. A perturbed Schwarzschild space-

time in f(R) gravity is quite different from a perturbed Schwarzschild space-time in

GR, owing to the presence of first order perturbed effective fluid of the higher deriva-

tive terms. When f(R), for simplicity, takes a specific form of

f(R) = R + αR2, (3.2)

the perturbed equations of motion corresponding to the metric perturbation (2.1), about

a Schwarzschild background ḡµν , are given by

R(1)
µν +

1

2
ḡµνR

(1) = T effµν (3.3)

T effµν = 2α
(
∇µ∇νR

(1) − ḡµν2R(1)
)

(3.4)

as well as the trace of the field equations (3.3), given by [95, 108]

2R(1) − 1

6α
R(1) = 0 (3.5)

which, similar to Sec. (1.3.3), is the Klein-Gordon equation, describing the propagation

of a massive scalar field (with mass parameter
√

1
6α

) on a curved background space-

time. As was found in Eq. (1.30), Eq. (3.5) also indicates the presence of an extra massive

scalar degree of freedom for the graviton, in addition to the two massless tensor degrees

of freedom. Whereas the two massless tensor degrees of freedom are transverse, the

massive scalar is a combination of longitudinal and breathing modes [77, 109, 110].

3.1.1 Dynamics of extra scalar degree of freedom

The dynamics of the massive scalar field and its properties are the easiest to calculate.

Since the first order Ricci
(
R(1)

)
is a scalar, its angular dependence can be expanded
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in terms of an infinite sum of spherical harmonic functions. Expanding R(1) in terms

of spherical harmonics and performing a substitution on the spherical harmonic coeffi-

cients as follows

R(1) =
∑
`,m

Φ`m

r
S`,m (3.6)

and using the orthogonality properties of the spherical harmonic functions, Eq. (3.5) for

each `,m becomes

2Φ− ṼRW
g

Φ = 0 (3.7)

where the multipolar indices `,m have been suppressed. The above, expanding in plane

wave fronts, and transforming to tortoise coordinates, the above expression for each ω

becomes

d2Φ

dr2
∗

+
(
ω2 − ṼRW

)
Φ = 0. (3.8)

where the effective potential due to background curvature is unlike the potentials VE/O

of (2.52). Its form in a Schwarzschild space-time of central mass M and multipole ` is

given by

ṼRW =

(
1− 2M

r

)(
k2

r2
+

2M

r3
+

1

6α

)
(3.9)

where k has been defined in Eq. (2.17). As found from Sec. (2.5), VE/O asymptotes to zero

as r →∞. However, Eq. (3.9) does not vanish at asymptotic infinity, but asymptotes to

the value 1
6α

. But like the potentials VE/O, ṼRW also vanishes at the horizon. From recent

limits placed on deviations from GR from gravitational wave observations [111, 112], it

is evident that a deviation from GR, if any, will be smaller than the current experimental

accuracy. This implies that the deviation parameter α in (3.2) is a small number, such

that for the strong field space-times from where gravitational waves have been detected

so far, the first term of the action (3.2) dominates over the second term, i.e.

αR << 1. (3.10)
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An immediate consequence of α being small reflects on the asymptotic value of ṼRW ,

which becomes a large number. From earth based fifth force experiments like Eöt-Wash

[77, 113, 114] a conservative constraint of

α ≤ 10−9m2 (3.11)

can be placed. Given (3.11), the profile of ṼRW can be plotted for various values of the

mass M , as has been done in Fig. 3.1 as a function of the horizon radius scaled ra-

dial coordinate. Fig. 3.1 shows that an incident massive scalar mode for astrophysical

Figure- 3.1: Plot of Eq. (3.9) for a range of BH masses. For small M (∼ 10−5M�), the

maxima at the light ring reappears, making it similar to the scattering potentials VE/O.

For such small masses the massive scalar radiation can propagate to∞ for ω2 ≥ (6α)−1,

and can have a larger share of the net emitted gravitational radiation. For comparison,

the green curve shows the potential encountered by Φ for a 10M� BH.

sized BHs face no potential barrier at the light ring. Given the fully ingoing boundary

condition at the horizon holds, all of an incident scalar wave will be absorbed. Hence,

any excitation of the massive field due to perturbation near the light ring will also be

absorbed by the BH, making it a non-propagating degree of freedom, compared to the

two propagating tensor degrees of freedom. A massive scalar excitation will lead to

a transient halo of scalar field existing outside the horizon which decays rapidly with
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increasing radial distance given the large potential barrier it faces with increasing dis-

tance from the BH. Hence, the massive scalar field cannot exist as a stable configuration

around the BH - indicating that the no scalar hair theorem holds for spherically sym-

metric vacuum BH solution of f(R) theories of gravity. However, it is possible that an

ultralight scalar field can exist for a long while (possibly comparable to the age of the

Universe) around a black hole, as shown in [115, 116]. But as seen from Eq. (3.9), the

mass term for the scalar mode of R + αR2 gravity is
√

1
6α

. Since, from observations it

is apparent that nature follows GR to the best of our knowledge, α has to be a small

number, and correspondingly, the mass of the field is large. Massive fields, owing to

their small decay times, cannot exist as a long-term configuration around a black hole.

3.1.2 Effective fluid description of the massive scalar field perturba-

tion

The effective energy-momentum tensors’ (3.3) individual components like T effab , T effaA ,

and T effAB transform like scalars, vectors, and tensors respectively, similar to hµν , and

hence can be expanded in spherical harmonic functions as shown in (2.32)-(2.38). The

coefficients of expansion in as a function of the variable Φ and its derivatives are given

by (after ignoring the multipole indices) [95]

τab = 2α

[
DaDb − gab

(
2̃ +

2

r
DcrDc −

k2

r2

)](
Φ

r

)
(3.12)

τEa = −4αr

k2
Da

(
Φ

r2

)
(3.13)

P = 2α

(
k2

2r2
− 2̃− 2

r
DarDa

)(
Φ

r

)
(3.14)

τET =
4αΦ

r
(3.15)

τOa = 0 (3.16)

τOT = 0 (3.17)
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where P can be seen as pressure of an effective fluid along the radial direction, whereas

τET is the anisotropic stress. Derivation of the above can be found in Appendix B.1

From (3.12)-(3.17) it is clear that the modification to GR in R + αR2 gravity results in

an effective fluid being present only in the even parity sector, leaving the odd parity

untouched (which has a dynamics same as GR).

The effective fluid of modifications to gravity can be expressed as an effective source

term which couples to the odd parity dynamics. After expanding both odd parity vari-

able ΦO and the massive scalar Φ in plane wave fronts

ΦO (t, r) =

∫ ∞
−∞

eiωtΦO (ω, r) dω (3.18)

Φ (t, r) =

∫ ∞
−∞

eiσtΦ (σ, r) dσ, (3.19)

for a specific set of quasinormal frequencies (ω, σ) (corresponding to the odd parity

mode and the massive scalar respectively), the odd and even parity dynamics, respec-

tively become [95]

d2ΦO

dr2
∗

+
(
ω2 − VO

)
ΦO = 0 (3.20)

d2ΦE

dr2
∗

+
(
ω2 − VE

)
ΦE = Seff (3.21)

where (derivation in Appendix B.2)

Seff =

[
C1(σ, ω, r) + C2(σ, ω, r)

d

dr∗

]
4αΦ

k2 + 6M
r
− 2

(3.22)

C1 (σ, ω, r) = σ2
(

1 +
σ

ω

)
− Mg

r3

(
1 +

18M

rH

)
−
(σ
ω

) g

r2

[
54M2

r2H
− 72gM2

r2H2
− 18M

rH

+
1

2

P1

H
− 3M

r
+
ṼRW
g

]
(3.23)

C2 (σ, ω, r) =
3M

r2
−
(σ
ω

)[12Mg

r2H
− M

r2

]
(3.24)

P1 = −48M2

r2
+

8M

r

(
8− k2

)
− 2k2(k2 − 2) (3.25)

Presence of a source term in Eq. (3.21) and the absence of the same in (3.20) implies

breaking of isospectrality, with the even parity quasinormal frequencies and reflection
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coefficient being modified, while the odd parity quasinormal frequencies and reflection

coefficient remains the same as in GR. This feature can leave a signature on the radi-

ated gravitational energy ratio of the two parities that can technically be detected by

detectors at asymptotic infinity.

3.2 Energy-momentum pseudo-tensor of perturbation in

f (R) theories

3.2.1 About Minkowski background

The energy-momentum content of a linear gravitational perturbation, Eq. (2.1), about

some background can be expressed in the form of a pseudo-tensor derived from the

averaged field equations at O (ε2), as was shown in Sec. (2.6.2). It is quite illuminating

to look at the energy-momentum pseudo-tensor of perturbation in Minkowski space-

time. The linearly perturbed field equations about a Minkowski background and its

dynamics was shown in Sec. (1.3.3). Ref. [77] finds the energy momentum pseudo-

tensor of radiation about a Minkowski background at O (ε2) to be

tµν =
ε2

4κ2

〈
−∂µψαβ∂νψαβ + 24α2∂µR

(1)∂νR
(1)
〉
. (3.26)

where ψµν is the transverse-traceless metric perturbation as defined in Eq. (1.27). For

details on the derivation of (3.26), see Appendix C. In contrast to Eq. (2.86), the EM

pseudo-tensor now has a kinetic term corresponding to the extra massive scalar R(1),

which is of the order α2. Eq. (1.26), for small values of α, will have exponentially

decaying solutions for frequencies less than c
2π

√
1

6α
— implying that only very high

frequency gravitational radiation will be able to excite the massive mode. Based on

earth based laboratory tests of short distances [77], the upper bound on α was found to

be

α < 10−9m2 (3.27)
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implying that the minimum frequency required to excite the massive mode in flat space

is

fmin ' 1011 Hz (3.28)

which is a rather conservative estimate. However, earth based tests are not in the high

curvature regime unlike black hole external space-times, where the αR2 term may have

a significant contribution, and the upper bound on α can be significantly higher.

This leads to the conclusion that the direct detection of a massive scalar mode intrin-

sic to gravity, if any, will not be possible for present or future generations of detectors.

3.2.2 About a general (curved) background space-time

Even though (1.26) and (3.26) points toward an apparent impossibility of direct detec-

tion of a massive intrinsic scalar degree of freedom, there are indirect way with which

one can probe the presence of non-tensorial degrees of freedom. This is possible by look-

ing at how non-tensorial degrees of freedom in modified gravity theories interact with

the usual tensor modes. In flat space-times, (as seen from (1.26) and (3.26)) the dynamics

of the massless tensor modes are completely decoupled from the massive scalar mode.

But it is not so in curved space-times, as is seen from the modified odd parity dynamics

(3.20) close to BHs. Hence, it is important to extend the energy-momentum pseudo-

tensor method to perturbations in curved space-times. For general curved space-times,

the perturbed field equations of R + αR2 gravity at O (ε) in terms of the redefined vari-

able ψµν are given by [107]

2ψµν + 2R̄αµβνψ
αβ = 0 (3.29)

where R̄αµβν is the background Riemann tensor. Hence, Eq. (3.29) and Eq. (1.26) de-

termine the dynamics of both the massless and massive modes in curved space-times.

In order to find the energy-momentum pseudotensor, it is necessary to calculate the

perturbed field equations at O (ε2) as well, which is given by [107]

G(2)
µν ≡ R(2)

µν − hµνR(1) + ḡµνh
αβR

(1)
αβ −

1

2
ḡµν ḡ

αβR
(2)
αβ − α

[
4∇(1)

µ ∇νR
(1) − 2hµν2R(1)
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+2ḡµνh
αβ∇α∇βR

(1) − ḡµν ḡαβ∇(1)
α ∇βR

(1) + ḡµν
(
R(1)

)2 − 4R(1)R(1)
µν

]
(3.30)

where Gµν represents the modified field tensor, superscript 2 indicates perturbation at

O (ε2), and∇(1)
µ represents the first order perturbed covariant derivative. Changing vari-

ables from hµν to ψµν and employing the averaging-over-short-wavelengths procedure

from Sec. (2.6.2), one obtains [107]

tµν =
1

κ2

〈
−1

4
∇µψαβ∇νψ

αβ +
α

6

(
R(1)

)2
+ 18α2∇µR

(1)∇νR
(1)

〉
(3.31)

which leads to the appearance of a potential energy like term of O (α) in curved space-

times, in addition to the kinetic terms of the massive scalar of order O (α2). Hence, in

curved space-times, the effect of the massive scalar field is significantly stronger, and

any interactions with the tensorial modes in these regions would leave a signature of

O (α) on the tensorial modes that travel to gravitational wave detectors. The preferential

coupling of the massive scalar with the odd parity perturbation would imply that the

even parity sector exchanges energy with the massive scalar of order α, leaving the odd

sector untouched. Hence, like Eq. (2.89), energy radiated in the outward radial direction

per unit time per unit solid angle can be obtained from Eq. (3.31) as

d2E

dtdΩ
=

ε2

κ2

〈
1

4

(∣∣∣ ˙̃ΦE

∣∣∣2 +
∣∣∣Φ̇O

∣∣∣2)+
α

6
|Φ|2 + 18α2

∣∣∣Φ̇∣∣∣2〉 . (3.32)

Given the same initial energy of perturbation, the following inequality holds∣∣∣ ˙̃ΦE

∣∣∣2 <
∣∣∣Φ̇E

∣∣∣2 (3.33)

from which a dimensionless parameter like (2.116) can be defined in the context of f(R)

theories of gravity

∆`m =

∣∣∣ ˙̃ΦO

∣∣∣2 − ∣∣∣Φ̇E

∣∣∣2∣∣∣ ˙̃ΦO

∣∣∣2 +
∣∣∣Φ̇E

∣∣∣2 (3.34)

whose value will be more in f(R) compared to GR, and will be time varying (compared

to a constant in GR).
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Given the relations (2.77) and (2.78), value of the above quantity, as well as the quasi-

normal frequencies of the two parities, can be obtained from observations. Both of these

observations, taken together, can help in detecting and constraining deviations from

GR.

3.2.3 Generalization to polynomial f(R) theories

In this chapter, a specific model of f(R) gravity was chosen, i.e. R + αR2. However, for

any general f(R) theory which can be expanded in a power series of the Ricci scalar

f(R) =
∞∑
n=1

anR
n, (3.35)

a linear perturbation about a Ricci flat space-time will reduce the linearized equations

of motion identically to that of the linearized equations of R + αR2 gravity. To see this

consider the effective stress tensor for a general f(R) theory, as was given by (1.31),

which when linearized about a Ricci flat background yields

T (1),eff
µν =

1

κ2
[∇µ∇νδf

′ − ḡµν2δf ′] (3.36)

where f ′ = df
dR

and δf ′ is the first order perturbed f ′, which for a Ricci flat background

space-time and a form (3.35) becomes

δf ′ = 2αR(1). (3.37)

Substituting the above in (3.36) gives back (3.3).

In the next chapter the current treatment will be extended to charged BH solutions

of f(R) theories.



Chapter 4

Signatures of f (R) gravity from

perturbed charged black holes

For charged BH solutions in GR, the quantity ∆`m was obtained as a function of BH

charge and initial conditions of the perturbation, as was seen in Section 2.7. Simultane-

ous gravitational and electromagnetic perturbation, corresponding to (2.1) and (2.91)

respectively, about a Reissner-Nördstrom solution in R + αR2 gravity will, like the

Schwarzschild solution, contain an effective fluid corresponding to the higher deriva-

tive modifications to GR, and will leave signatures of modification, in addition to charge,

in gravitational waves being emitted by ringing BHs, and correspondingly in a quan-

tity like ∆`m. The above mentioned effects, alongwith effects of the same in observations

will be discussed in the present chapter.

This chapter is based on the published work [107]

65



66 Chapter 4. Signatures of f(R) gravity from perturbed charged black holes

4.1 Perturbation dynamics in a charged BH in f (R) grav-

ity

4.1.1 The background

Electromagnetic fields can be included in an f(R) theory via the following action

S =

∫
d4x
√
−g
[
f(R)

2κ2
− 1

4µ0

FµνF
µν

]
(4.1)

whose equations of motion are given by

Rµν −
1

2
gµνR = κ2TEMµν + T effµν (4.2)

where T effµν was defined in Eq. (1.31), and

TEMµν = FµαFν
α − 1

4
gµνFαβF

αβ (4.3)

is the energy-momentum tensor corresponding to the electromagnetic field. The back-

ground solution F̄µν can be found by solving for the background electromagnetic 4-

potential Aµ, whose equations of motion are given by

2Aν −RµνA
µ = 0 (4.4)

which can be solved in the Lorentz gauge and the solution was given in Eq. (2.90). The

background EM tensor then has the form

T̄EMµν =


−Pδab 0

−−− −−−

0 PδAB

 (4.5)

P =
Q2

κ2y4
. (4.6)

where the dimensionless radial distance y = r
rH

is scaled with respect to the BH horizon

radius rH , which in turn is given by

rH = M +
√
M2 −Q2. (4.7)



4.1. Perturbation dynamics in a charged BH in f(R) gravity 67

A dimensionless charge q = Q
rH

can also be defined for convenience, due to which, the

mass can be written as a function of the horizon radius and q

M =
rH (1 + q2)

2
. (4.8)

It is to be noted that ḡµνT̄EMµν = 0, hence the background space-time is Ricci flat, and f(R)

can be replaced by R + αR2 for linear perturbations about the background, as found in

Sec. (3.2.3).

4.1.2 Effective fluid of higher derivative modifications in a charged

BH background

On simultaneously perturbing the metric and the 4-potential about a Reissner-Nördstrom

background and the background 4-potential (2.90), respectively, the perturbed electro-

magnetic field tensor F (1)
µν can, in the same manner as any other tensor in a spherically

symmetric space-time, be split into odd and even parity parts, where components of one

parity remains decoupled with the components of the opposite parity in the differential

equations they satisfy, i.e.

F (1)
µν = F (1),E

µν + F (1),O
µν , (4.9)

which follows the following linearized equations

∇µF (1)
µν = 0 (4.10)

∇[λF
(1)
µν] (4.11)

whereas the gravitational field equations are given by

R(1)
µν −

1

2
ḡµνR

(1) = κ2T (1),EM
µν + T (1),eff

µν (4.12)

T
(1),eff
αβ = 2α

(
R(1)
µν − ḡµν2R(1) − 2R(1)R̄µν

)
(4.13)

T
(1),EM
αβ = F (1)

αµ F̄
µ
β + F̄αµF

(1)µ
β − hµνF̄αµF̄βν −

1

4

[
hαβF̄

2

−ḡαβhρµF̄µνF̄ ν
ρ − ḡαβhρνF̄µνF̄ µ

ρ + 2ḡαβF̄ .F
(1)
]
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(4.14)

The set of equations (4.10)-(4.12) can be split into two sectors, corresponding to each

parity. The odd parity dynamics of both the gravitational and the electromagnetic per-

turbations are not modified due to preferential coupling of the massive scalar/effective

fluid with the even parity sector. Hence, the odd parity equations of motion remain the

same as Eq. (2.98). Similarly, the set of quasinormal frequencies that satisfy Eq. (2.98)

and the boundary conditions (2.107)-(2.108), also remain the same as that of GR.

The even parity perturbation dynamics gets modified by the presence of the effec-

tive fluid of higher derivative modifications. The coefficients of spherical harmonic ex-

pansion of the first order effective energy-momentum tensor T (1),eff
µν were given in Eq.

(3.12)-(3.15), using which two source terms
(
Seff±

)
, corresponding to the variables ΦE

±

respectively, can be defined, which appears in the odd parity dynamics as follows

d2ΦE
±

dr2
∗

(
ω2 − V E

±
)

= Seff± (4.15)

with the following form of the source term

Seff± = c±Φ̃ + d±
dΦ̃

dx
(4.16)

where

x = y − ln (y − 1)

q2 − 1
+
q4 ln (y − q2right)

q2 − 1
(4.17)

is the horizon radius scaled, generalized tortoise coordinate for charged space-times,

Φ̃ = 4αΦ
H

, H (r) ≡ H = k2− 2 +
3(1+q2)

y
− 4q2

y2
. The exact forms of (c±, d±) are complicated

and only relevant around the horizon. Hence, (c±, d±) can be expanded about the hori-

zon in powers of g (defined in Chapter 1) as follows, and the leading order contribution

comes from O
(

1
g

)
, as shown in the following

c+ = −

(
3
2 q

2 + k2y − 2 y + 1
2

√
9 + 9 q4 + (−14 + 16 k2) q2 + 3

2

)
q
(
q2y − 16 q2 + y

) (
q2y − 2 q2 + y

)
4gy7H

(4.18)
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d+ =

(
3
2 q

2 + k2y − 2 y + 1
2

√
9 + 9 q4 + (−14 + 16 k2) q2 + 3

2

)
q
(
q2y − 2 q2 + y

)
2y4g

(4.19)

c− = −
3
(
q2y − 8

3 q
2 + 1

3

√
9 + 9 q4 + (−14 + 16 k2) q2y + y

) (
q2y − 2 q2 + y

) (
q2y − 16 q2 + y

)
4gy7H

(4.20)

d− =
3
(
q2y − 8

3 q
2 + 1

3

√
9 + 9 q4 + (−14 + 16 k2) q2y + y

) (
q2y − 2 q2 + y

)
2y4g

(4.21)

see Appendix D for derivation.

4.1.3 Dynamics of the massive scalar field in Reissner-Nördstrom space-

times and breaking of isospectrality

The perturbed Ricci scalar dynamics (3.5), after the substitution (3.6), and the transfor-

mation to generalized tortoise coordinate (4.17), becomes

d2Φ

dx2
+
(
ω2 − ṼRW

)
Φ = 0 (4.22)

where the effective potential ṼRW as experienced by the massive scalar in the charged

space-time is given by

ṼRW =

(
1− 1 + q2

y
+
q2

y2

)(
k2

y2
+

1 + q2

y3
− q2

y4
+

1

6α̃

)
, (4.23)

where α̃ = α
r2H

. At large distances from the black hole (y → ∞) ṼRW → 1
6α̃

, which gives

back the flat space limit of the minimum frequency required to excite the massive field.

However, for very small α, the potential can be approximated as

ṼRW ≈
(

1− 1 + q2

y
+
q2

y2

)
r2
H

6α
. (4.24)

Thus near small black-holes the minimum frequency (and hence energy) required to

excite the massive field is lesser than that of flat space.

Presence of a source term in the RHS of (4.15) and the absence of any in the odd

parity equations implies isospectrality, which was broken between the odd and even

parity in the uncharged space-time, is broken for the charged BH in f(R) theories as
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well. Hence, the quasinormal spectrum will be different for odd and even parities,

as well as a reduction in the fraction of the incident energy that is radiated away to

asymptotic infinity by the even parity mode. A simultaneous measurement of the ra-

tio of radiated odd and even intensities (of the dominant mode) detected at asymptotic

infinity and the (dominant) quasinormal frequencies will thus detect or constrain devi-

ations from GR. An estimate of the change in the intensity ratio can be found from the

energy-momentum pseudo-tensor of perturbation.

4.2 Energy-momentum pseudo-tensor of perturbation

Ringing BHs relax by radiating energy through gravitational waves to asymptotic in-

finity. As seen from Sec. (2.6.2), the (small wavelength averaged) perturbed field equa-

tions at O (ε2) acts as the back-reaction for the perturbation and quantifies the energy-

momentum content of the gravitational waves. Hence, the EM pseudo-tensor of pertur-

bation on a Reissner-Nördstrom space-time, in terms of the redefined metric perturba-

tion ψµν (1.27) is given by [107]

tµν = − 1

4κ2

〈
ψαβ;µ ψαβ;ν

〉
+

α

6κ2
gµν

〈(
R(1)

)2
〉

+
18α2

κ2

〈
R(1)

;µ R
(1)
;ν

〉
+2κ2

〈
A(1)α

;µ A(1)
α;ν

〉
+ κ2〈Pµν〉 (4.25)

where the on-shell conditions (O (ε) field + Maxwell equations) were used to obtain the

above, O (κ4) terms were ignored (see Appendix E), and where

〈Pαβ〉 = −1

2
F̄ ε
βF̄

ρ
ε 〈ψα τψρτ 〉 −

3

2
F̄ ε
αF̄

ρ
ε 〈ψβ τψρτ 〉

−1

8
F̄ ερF̄ερ〈ψβ τψατ 〉+

1

2
F̄ ερF̄ τ

ε 〈ψαρψβτ 〉

+2F̄ ε
αF̄

ρτ 〈ψβρψετ 〉 − F̄ ερF̄ τ
ε 〈ψαβψρτ 〉

+ḡαβ

[
3

2
F̄ερF̄µτ 〈ψεµψρτ 〉 − F̄ ρ

ε F̄
τ
ρ 〈ψεµψµτ 〉

+
1

8

(
F̄
)2 〈ψ2〉

]
(4.26)
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Similar to what was found in Sec. (3.2.2), near the BH, the contribution of the modifi-

cation to gravity towards the EM pseudo-tensor is (O (α)), compared to O (α2) in flat

space-times. Hence, a quantifying measure of the change in relative intensities between

the odd and even parity radiated energy due to modifications to gravity can be defined

from Eq. (4.25) as

∆`m ≡ 2

3

(
1 +

(1− CO)A2
O

(1− CE) Ã2
E

)
α

ω̃r2
H

(4.27)

where ω̃ = ωrH is a dimensionless (horizon radius scaled) frequency. From the above, it

can be seen that the dimensionless parameter ∆q
`m is a function of the charge, horizon ra-

dius, initial amplitudes of the odd and even perturbations, and is directly proportional

to the parameter of deviation α. Hence, for a charged BH space-time, the net relative

radiated intensity ∆net
`m between the odd and even parities is given by

∆net
`m = ∆`m

GR + ∆`m (4.28)

where ∆`m
GR was defined in (2.118). Thus, the extra suppression of radiated even parity

energy can be quantified through the second term of the above. The quantity ∆`m will

be zero for GR and will be greater than the corresponding GR value in f(R) theories.

For a special case where the gravitational odd and even parities are equally excited due

to a perturbation, ∆22 was plotted in Fig. 4.2 as a function of the dimensionless charge

q for three values of the horizon radii. A 3-D plot of ∆22 was plotted in Fig. 4.1 as a

function of the dimensionless charge q and frequency ω̃, which shows that its behavior

is dominated by the 1
ω̃2 dependence on frequency, and has a very weak dependence

on the BH charge — implying that the modification to the EM pseudo-tensor due to

f(R) gravity is independent of the BH charge. Observation wise, the quantity ∆net
`m will

have the form (3.34), with the asymptotic forms of Φ̃E and ΦO given by Eq. (2.77) and

(2.78) respectively. Obtaining the value of the parameter (3.34), and then comparing it

with its GR value from numerical simulations of charged BHs can technically be used

to detect or constrain deviations from GR. Similarly, the dominant mode quasinormal

frequencies of the odd and even parities can also be compared to check if isospectrality
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Figure- 4.1: ∆22 as a function of the scaled charge q and dimensionless frequency ω̃ for

rH = 1.

holds or breaks. Both of these observations taken together can help ascertain if nature

follows GR or a modified theory which limits to GR for weak gravitational fields.

In the next chapter, the effects of Chern Simons modification to gravity on the odd/even

parity modes and their observational implications shall be discussed.

(a)
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(b)

(c)

Figure- 4.2: Relative energy flux difference ∆22 for three different horizon radii (rH =

1, 2, 5). Increasing BH size leads to a reduction in ∆22, as seen from its definition (4.27).



Chapter 5

Observational signatures of Chern

Simons gravity from BH ring-down

In this chapter, Chern Simons (CS) modifications to gravity and its signatures on grav-

itational waves from ringing BHs will be studied, along with their observational con-

sequences. Broadly, as was discussed in Sec. (1.3.4), two types of Chern Simons mod-

ifications to gravity exists, canonical CS and dynamical CS theory. CS theories add a

pseudo-scalar field of either a fixed form (leading to a preferred direction in a 4-D man-

ifold) or a dynamical one. First, canonical CS and perturbation studies of spherically

symmetric BH solutions of canonical CS shall be reviewed, followed by a discussion on

problems with the model regarding certain observational predictions, and how dynam-

ical CS gets rid of the problems of canonical CS. The formalism of Chapter 2 will be

continued.

This chapter is based on the published results of [117]

74



5.1. Canonical Chern Simons modification to GR 75

5.1 Canonical Chern Simons modification to GR

5.1.1 Action and background

The canonical CS modification to GR was first shown in [69] with the action

S =

∫
d4x
√
−g
[
R

2κ2
+
α

4
ϑ∗RR

]
(5.1)

with the specific form of the pseudo-scalar ϑ, such that its derivative is a time-like con-

stant vector, indicating a preferred direction in the space-time

∇µϑ = vµ ≡
(

1

µ
, 0
)
, (5.2)

leading to broken diffeomorphism invariance. The amount to which diffeomorphism

invariance is violated can be quantified by the Pontryagin scalar ∗RR defined in Eq.

(1.37). The equations of motion force Eq. (1.37) to vanish dynamically, which for Ricci

flat space-times are given by

Rµν = −2κ2αCµν (5.3)

where Cµν was defined in Eq. (1.40). For the given form of Eq. (5.2), it was shown by

[69] that the Cotton tensorCµν vanishes identically in spherically symmetric space-times

leading to Eq. (5.3) supporting the Schwarzschild solution [69].

5.1.2 Gravitational perturbation about a Schwarzschild background

It was shown in [118] that perturbing about a Schwarzschild background solution in

canonical CS gravity lead to mixing of two opposite parities of perturbations. Specif-

ically, it was shown that odd (even) parity equations of motion had even (odd) parity

metric components and their derivatives as source terms, leading to a coupled dynamics

between even and odd parities. Furthermore, it was shown that the linearized Pontrya-

gin scalar relates to the odd parity master function as follows

∗RR(1) = −24M

r6

(`+ 2)!

(`− 2)!
ΦOS (5.4)
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where S was defined in Sec. (2.2). Since the quantity ∗RR is dynamically suppressed by

the equations of motion, the above relation indicates that the odd parity master func-

tion is also suppressed dynamically and gravitational energy radiated through the odd

parity mode is severely reduced. However, as found by [118], the even parity is dynam-

ically coupled to the odd parity through the linearized equations of motion, leading to

energy exchange between the two modes, and thereby drastically reducing/freezing the

system to emission of gravitational waves altogether — an effect that should lead to no

gravitational waves being detected at asymptotic infinity. This becomes a pathology for

the canonical CS gravity, and can be solved by modifying the pseudo-scalar of canonical

CS to have full dynamic dependence, namely dynamical CS modification to gravity.

5.2 Dynamical Chern Simons modification to GR

5.2.1 Background

Dynamical CS solves the problem of freezing of ring-down emission in canonical CS by

making the pseudo-scalar into a dynamical variable, i.e. ϑ ≡ ϑ (xµ). This leads to kinetic

terms of the pseudo-scalar appearing on the action, as well as a possible potential term,

as was shown in Eq. (1.36). For spherically symmetric backgrounds, the Cotton tensor

vanishes, leaving only the second term in the RHS of Eq. (1.38). This amounts to adding

a scalar field to a spherically symmetric space-time in GR. But, in [76], it was shown

that a scalar field cannot exist in a stable configuration in a spherically symmetric BH

space-time. Hence, the Schwarzschild solution remains a solution of the dynamical CS

modification to GR as well, given which, perturbations about the background can be

expanded in spherical harmonic tensors.
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5.2.2 Perturbations about a Schwarzschild background

Linearizing Eq. (1.38) and (1.39) about a Schwarzschild background leads to the follow-

ing

R(1)
µν −

1

2
ḡµνR

(1) = −2κ2αC(1)
µν (5.5)

2ϑ = − α

4β
∗RR(1), (5.6)

where ϑ(1) ≡ ϑ was used, implying the CS pseudo-scalar appears only at first order of

perturbation. Expanding the metric perturbation hµν in tensor spherical harmonics, ϑ

in scalar spherical harmonics in the same way as Eq. (3.6), expanding in plane waves,

and transforming to tortoise coordinates one obtains two coupled equations of motion

for the odd parity perturbations and the CS pseudo-scalar [117, 119]

d2ΦO

dr2
∗

+
(
ω2 − VO

)
ΦO = Seff (5.7)

d2ϕ

dr2
∗

+
(
ω2 − Vϕ

)
ϕ =

6αµMf

βr5
ΦO (5.8)

µ = (`− 1) ` (`+ 1) (`+ 2) (5.9)

ϕ is related to ϑ as [119, 120]

ϑ (t, r,Ω) =
ϕ (r)

r
S(Ω)eiωt (5.10)

and S(Ω) is a scalar spherical harmonic function. VO and Vϕ are the odd parity effective

potential and the effective potential for a massless spin-0 field (corresponding to ϑ),

respectively. Seff is given by

Seff =
κ2α

(`− 1) (`+ 2)

[
6M

r
∂2
r∗ϕ−

12M

r2
∂r∗ϕ+

6ω2M

r
ϕ

]
(5.11)

details of which have been given in Appendix F. In stark contrast to the case of f(R)

theories, it is the odd parity that the pseudo-scalar couples with, leaving the even par-

ity perturbations untouched, which follow the same dynamics as in GR. This parity

preferential coupling leads to energy exchange between the odd parity sector and the

pseudo-scalar, with the ringing BH being allowed an extra channel through which to
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radiate gravitational energy and relax. Hence, the amount of gravitational radiation

that is emitted through the odd parity channel is reduced, a feature that can act as a

distinguishing tool between GR and CS modified gravity in the context of observations

[117].

An estimate of the relative intensities of the odd-to-even parity emissions can be

found by calculating the energy-momentum tensor of perturbation, which will be shown

in the following section.

5.3 Relative energetic difference between odd and even

parities

5.3.1 First order perturbation of a general space-time in dynamical CS

gravity

For a general vacuum space-time (external space-times of BHs) in dynamical CS gravity,

the linearized field equations in terms of the transverse-traceless variable ψµν , defined

in Eq. (2.83), is given by [117]

2ψµν + 2R̄µανβψ
αβ = 2κ2αϑ;τσ

(∗R̄τ
µ
σ
ν + ∗R̄τ

ν
σ
µ

)
(5.12)

2ϑ = − α

4β

[
2ψµν;βα

(∗R̄µανβ + ∗R̄µβνα

)
+R̄αβγµ

(∗R̄ ν
α γµψβν + ∗R̄αβσµ

)
ψσγ
]

(5.13)

It is important to note that in the asymptotic limit Eqs. (5.12) and (5.13) decouple, and

both ψµν and ϑ is a light field, which is in contrast to f(R) gravity where the extra (in-

trinsic) degree of freedom was a massive one. The above equations form the on-shell

conditions that will be used to obtain the energy-momentum pseudo-tensor of pertur-

bation.
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5.3.2 Energy-momentum pseudo-tensor of perturbation

The perturbed field equations of dynamical CS atO (ε2) due to a linear metric perturba-

tion and pseudo-scalar perturbation is given by

G(2)
µν = −2ε2κ2αC(2)

µν − ε2G(2)
µν + ε2κ2βϑ;µϑ;ν (5.14)

where Gµν is the modified field tensor for dynamical CS gravity and Gµν = Rµν − 1
2
gµνR

is the Einstein field tensor . It should be noted that the term in the equations of motion

arising out of the kinetic term of the pseudo-scalar in the action appears only at second

order of perturbation. After averaging over small wavelengths, as in Sec. (2.6.2) , trans-

forming from hµν to ψµν , and using the on-shell conditions (5.12) and (5.13), one obtains

the energy-momentum pseudo-tensor of perturbation as [117]

tµν =
1

4

〈
ψρτ;µ ψρτ ;ν

〉
+
κ2α2

2β
〈Pµν〉 − κ2β 〈ϑ;µϑ;ν〉 (5.15)

〈Pµν〉 = −2
〈
ψβγ;δλψνα;σ

;ρ
〉
εµρ

σα
(∗R̄λβδγ + ∗R̄δβλγ

)
− 2

〈
ψβγ;δλψµα;σ

;ρ
〉
ενρ

σα
(∗R̄λβδγ

+∗R̄δβλγ

)
− 2

〈
ψρσ;δψαβ;γ

〉 [∗R̄γαδβ

(∗R̄µσνρ + ∗R̄νσµρ

)
+ ∗R̄δαγβ

(∗R̄µσνρ + ∗R̄νσµρ

)]
+R̄ρσαβ

[
εµγ

δλ
(
〈ψησ ;γψνλ;δ〉 ∗R̄ρηαβ + 〈ψηα;γψνλ;δ〉 ∗R̄ρσηβ

)
+ ενλ

δγ
(
〈ψησ ;γψµλ;δ〉 ∗R̄ρηαβ

+ 〈ψηα;γψµλ;δ〉 ∗R̄ρσηβ

)]
+ R̄ρσαβ

[〈
ψγδψλα

〉 ∗R̄ρσλβ

(∗R̄µδνγ + ∗R̄νδµγ

)
+
〈
ψγδψλσ

〉 ∗R̄ρλαβ

(∗R̄µδνγ + ∗R̄νδµγ

)]
(5.16)

The derivation of the above has been given in Appendix G. A number of things need

to be noted about Eq. (5.15). Firstly, the first term in the RHS contains the energy-

momentum of the gravitational waves, while the second and third appear due to dy-

namical CS modification to GR, similar to as one sees for f(R) in Eq. (3.31). Secondly,

unlike the massive scalar of f(R), only first derivatives of the CS pseudo-scalar appear

in Eq. (5.15). Thirdly, instead of the potential term, second term in the RHS of Eq. (3.31),

a graviton-graviton coupling term appears whose form is given in Eq. (5.16) — a term

whose contributions drops off quickly (due to the presence of the background Riemann

tensor as a product) as one goes away from the BH. While the dominant modified term

at large distances could be the third term of Eq. (5.15), corresponding to the kinetic term
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of the pseudo-scalar; nearer to a BH, the second term can have a stronger impact owing

to the bounds on the constants that were found from [119, 121], i.e., β > α2

β
. The sec-

ond term can have a markedly stronger effect close to small BHs, owing to the fact that

smaller BHs have stronger Riemann curvatures.

In order to get an estimate of the energy density due to the CS modification, one

tries to obtain the approximate form of the various fields as a function of the radial

distance and some background parameter L, which will be discussed below. From the

form of (5.16), it is clear that it does not correspond to the energy-momentum content of

a propagating field, but gets absorbed by the BH. An estimate of its energy density can

be made by considering its 00 component, which at leading order of r has the form

〈P00〉 ∼
κ2α2

β

1

Lr5
, (5.17)

given the metric perturbation, and the background Riemann has the form

ψµν ∼
L

r
(5.18)

R̄µνρσ ∼
L

r3
. (5.19)

while the first term in the RHS of Eq. (5.15) can be represented as

〈
ψρτ;0 ψρτ ;0

〉
∼ 1

r2
. (5.20)

Using the above approximations, RHS of Eq. (5.15) can be written in terms of dimen-

sionless variables as

tµν = − ε2

4L2

〈
(̃∇ψ)2

〉
µν
− ε2κ2α2

4βL6

[
R̃
〈

˜∇2ψ∇2ψ
〉
µν

+ R̃R
〈
∇̃ψ∇ψ

〉
µν

+ R̃RR〈̃ψψ〉µν
]

+
ε2κ2β

L2

〈
∇̃ϑ∇ϑ

〉
µν

(5.21)

where ψµν , ϑ and their derivatives have been scaled with respect to a characteristic

length scale L of the background space-time (which in this case is of the order of the

size of the photon sphere around a black-hole, which was discussed in Sec. (1.1.1))

such that quantities inside the angular brackets are dimensionless. R̃ is the shorthand
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notation for dimensionless Riemann tensor. Hence, a ratio can be defined between the

second and the first term, indicating the relative energy density of the graviton-graviton

coupling term with respect to the emitted gravitational waves, as [117]

∆CS =
κ2α2

β

1

Lr3
(5.22)

Scaling the radial variable with respect to the background characteristic length scale as

r = yL,

∆CS =
κ2α2

βL4

1

y3
(5.23)

the 1
y3

dimensionless factor can be integrated out to give a factor which will not change

the approximate order of ∆CS , hence one obtains,

∆CS =
κ2α2

βL4
. (5.24)

The above indicates the relative energy density content of the second term in the RHS

of (5.15), whose form is given in Eq. (5.16), with respect to the radiated gravitational

wave energy density will be more for smaller BHs.

The energy density of the kinetic term of the pseudo-scalar is a non-trivial problem

since it involves the simultaneous solving of Eq. (5.7) and Eq.(5.8) for the form of ϑ. The

author is not aware of the existence of any such technique in the literature.

5.3.3 Observational signatures

An effect of CS modification to GR is imparting elliptical polarization to the linear po-

larization tensor of GR, as seen from Eq. (I.3). Similar to the calculation of Sec. (2.6.1),

a connection between the elliptical polarization and the master functions can be estab-

lished in the following manner

h̃+ − ih̃× '
1

r

∑
`,m

√
(`+ 2)!

(`− 2)!
(ΦE + iΦO) −2Y`m (5.25)

whose derivation and definitions of h̃+/± have been given in Appendix I.
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The rate at which gravitational radiation escapes to asymptotic infinity in GR, given

in terms of the odd and even master functions, was defined in Eq.(2.89). For dynamical

CS gravity, the rate at which radiation (both gravitational and scalar) escapes to asymp-

totic infinity can be obtained terms of the odd/even parity master functions and CS

pseudo-scalar as [117]〈
Ė
〉∣∣∣

CS
=

1

64π

∑
`m

µ

〈∣∣∣Φ̇E

∣∣∣2 +
∣∣∣ ˙̃ΦO

∣∣∣2 + κ2β |ϕ̇|2
〉

(5.26)

where ϕ was defined in Eq. (5.10). There is also energy loss
〈
Ėcoup,CS

〉
in the form of

the graviton-graviton coupling near the BH region, whose form was given in Eq. (5.16),

does not travel to asymptotic infinity, thereby effectively reducing the odd parity reflec-

tion coefficient, or the fraction of the odd parity initial excitation that gets scattered off

to asymptotic infinity, compared to GR. Considering the same initial perturbation en-

ergy for a Schwarzschild solution in GR and dynamical CS, the latter shall then radiate

lesser gravitational flux, with the difference in energy coming from both the graviton-

graviton coupling (which absorbed by the BH), and the kinetic term of the pseudoscalar

field. Thus, one can write the following〈
Ė
〉∣∣∣

CS
+
〈
Ė
〉∣∣∣

coup,CS
=

〈
Ė
〉∣∣∣

GR
(5.27)

from which one obtains the following inequality∣∣∣Φ̇O

∣∣∣2 > ∣∣∣ ˙̃ΦO

∣∣∣2 (5.28)

at all times. A suitable ansatz for the modified odd parity wavefunction for CS gravity

can be

Φ̃O = ÃOe
−κ̃Oteiω̃Ot (5.29)

where ÃO < AO, the real and imaginary parts of the odd parity QNM frequency are

modified due to the coupling with the CS field in the form of an inhomogeneous term

in the RHS of the differential equation (9) in the main text. This leads to the following∣∣∣ ˙̃ΦO

∣∣∣2∣∣∣Φ̇E

∣∣∣2 =
Ã2
O (κ̃2

O + ω̃2
O)

A2
E (κ2

E + ω2
E)
e−2(κ̃O−κE)t (5.30)
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which is less than the corresponding GR value at all times courtesy inequality (5.28),

with a growth/decay rate proportional to e−2(κ̃O−κE)t (depending on whether the imagi-

nary part of the odd parity dominant mode frequency is enhanced or suppressed due to

CS modification). However, for the same initial energy of perturbation, the odd parity

mode can now relax to a stable Schwarzschild faster, because of the presence of further

channels (pseudo-scalar and graviton-graviton coupling) to take away the initial per-

turbation energy. This leads to a shorter modified decay time for the odd parity mode

compared to the even parity, , i.e. κ̃O > κE — implying that the quantity (5.30), and

correspondingly

∆`m =

∣∣∣Φ̇O

∣∣∣2 − ∣∣∣Φ̇E

∣∣∣2∣∣∣Φ̇O

∣∣∣2 +
∣∣∣Φ̇E

∣∣∣2 , (5.31)

will be a decreasing function of time in CS gravity [117], the derivation of which can

be found in Appendix H. This feature can be directly tested from observations, given

one has the values of the functions ΦE/O, calculated from the dominant multipole com-

plex coefficient of the spherically decomposed gravitational strain, as was shown in Eq.

(2.77) and (2.78). Any non-constant value of the observed ∆`m, thus, may signal devia-

tion from GR.



Chapter 6

Conclusions and future outlook

6.1 Conclusions

In the current thesis, it was shown that various modifications to gravity leave telltale

signatures in the gravitational wave emitted by ringing BH solutions of the theory. De-

pending on parity conservation or violation of the modified theory, a dimensionless

parameter can be defined which behaves in two different manner, making it a quanti-

fier for deviations from GR. The current thesis dealt with two such theories, one which

conserves, like f(R) gravity, and the other violates parity, dynamical Chern Simons

modifications to GR.

Ringing BHs in GR relax by emitting gravitational waves in the form of damped

sinusoids, whose wave description involves complex frequencies. A review of BH per-

turbation literature was done in Chapter 2, where it was shown that a perturbed spher-

ically symmetric BH can relax by emitting gravitational waves through two channels of

opposite parities — odd and even. It is known in the literature that for GR the frequency

and damping times (corresponding to the real and imaginary parts of the complex fre-

quency) of both the parities are equal, as well as the fraction of the initial energy of

perturbation that travel to asymptotic infinity (the reflection coefficient of a wave scat-

tering process). The ”fragile” equality of the frequency and reflection coefficients of the

84
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two opposite parity channels hence serve as a feature that can be used to test GR at

strong gravity regimes.

Based on works of [105], it was also shown in Chapter 2 that perturbation of charged

BHs in GR lead to a suppression of the radiated gravitational energy in general, with

the even parity radiating lesser than the odd parity. This is because the net scattered

energy off of a charged BH from a purely gravitational initial perturbation will contain

electromagnetic waves, with the conversion from gravitational to electromagnetic en-

ergy being higher for the even parity compared to the odd. The difference in relative

suppression depends on the central charge of the BH, a feature using which one can de-

fine a dimensionless parameter quantifying the relative suppression, which in turn can

technically show up in gravitational wave observations. Even though the energy radi-

ation is different, perturbation about a Reissner-Nördtrom space-time in GR guarantee

the same frequency and damping times for both parities, preserving isospectrality.

In Chapter 3, a specific form of f(R) = R+ αR2 was taken and a perturbation about

a Schwarzschild background solution of the theory was performed. f(R) being a theory

with an extra intrinsic massive scalar degree of freedom (other than the massless tensor

modes), it was shown that the perturbed Ricci scalar acts as the extra massive mode in

Chapter 1. While in Chapter 3 it was shown that the massive mode corresponding to

the Ricci scalar has an independent dynamics, unaffected by the massless tensor modes,

seen in Eq. (3.8). The massive mode faces an increasing potential wall, Eq. (3.9), whose

value saturates to 1
6α

at asymptotic infinity, which for small α corresponds to a large

potential barrier, and a non-scattering one (unlike the potentials faced by the two tensor

modes). Similarly, the dynamics of the odd parity mode also remains unaffected by

the introduction of the massive scalar, as seen in Eq. (3.20). However, the even parity

mode gets affected, with the massive scalar acting as a source term to the even parity

dynamics, as seen from Eq. (3.21). This leads to an energy share between the massive

scalar and the even parity perturbation tensor, suppressing the reflection coefficient of

the even parity, as well as modifying its quasinormal frequencies.
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It was also shown in Sec. (3.2) of Chapter 3 that the effect of higher derivative modi-

fications to gravity shows up in the energy-momentum content of the radiated gravita-

tional wave at O (α2) in Minkowski space-times. However, the same shows up at O (α)

close to BHs or in general curved space-times, with the energy-momentum content cor-

responding to the modification depending inversely on the BH size, implying that at the

observation level, smaller BHs can act as better test bed for constraining deviations from

GR. A dimensionless parameter ∆`m was defined in Eq. (3.34) (which remains constant

in GR) which is time dependent for f(R) theories, and is greater than the corresponding

GR value. Observed values of ∆`m can help put strict constraints on the parameter α. It

was also shown that any general f(R) theory that can be written in a polynomial form

has signatures in gravitational waves that are identical to that imparted by R + αR2

theory.

In Chapter 4, charged BH solutions in f(R) gravity were considered and their per-

turbations studied. Preferential coupling of the massive scalar degree of freedom to the

even parity wavefunction (which was shown to be a linear combination of gravitational

and electromagnetic master functions), make sure that the even parity effective reflec-

tion coefficient is reduced. It was shown that this leads to further suppression of energy

through the gravitational even parity channel, modifying the relative radiated intensity

factor ∆`m, defined in (5.31), between the odd and even parities. Ring-down of charged

BH solutions in GR can be numerically simulated for various charges and initial per-

turbation amplitudes (AO/E) and ∆`m can be calculated for various multipole numbers.

Comparing simulated values with the observed values of ∆`m may indicate deviation

from GR. Isospectrality, or the equality of the real and imaginary parts of the quasinor-

mal frequencies of the odd and even parities for all multipoles, is broken in charged BH,

as was shown in Sec. (4.1.2), with the odd parity quasinormal frequencies staying the

same as GR. Simultaneous measurement of the relative amplitude factor ∆`m and the

frequency shift can put strong constraints on the parameter α.

In Chapter 5, perturbation studies of Schwarzschild BHs in canonical and dynamical

Chern Simons modification to GR were compared. Certain pathologies of canonical CS
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was shown to be absent in dynamical CS gravity. It was shown that the parity violating

CS scalar field couples only with the odd parity gravitational degree of freedom leaving

the even parity unaffected. This leads to an exchange of energy between the odd parity

perturbation and the CS pseudo-scalar, reducing the radiated odd parity gravitational

energy, hence modifying the relative intensity factor ∆`m. The difference in energy was

found to be radiated partly through a kinetic term of the CS pseudo-scalar, and part of

it is absorbed by the BH. It was shown that the difference in the relative intensity factor

of GR and dynamical CS gravity is higher for smaller BHs. An effect of CS modification

to GR is to impart elliptical polarization to the linear polarization of GR, as was seen

in Eq. (I.3). An asymptotic connection was established between the even/odd parity

master functions and the elliptical polarization amplitudes, from which observed ∆`m

can put strong constraints on the parameter α2

β
.

The two kinds of modifications to gravity that were discussed in this thesis have cer-

tain similarities as well as differences. While isospectrality breaking is the similar fea-

ture for both types of modifications, the relative intensity factor ∆`m will be more than

the corresponding GR value for f(R) modification to gravity, whereas for dynamical CS

modification to GR, it is less than the corresponding GR value. Based on whether the ob-

served value is more or less than the GR value obtained from simulations, the question

of whether nature follows a parity conserving or violating modification to gravity can

be answered. One scenario is possible where the action has both f(R) and CS terms and

by fine tuning of the coupling parameters, ∆`m can be made to have the corresponding

GR value. But a situation like that is very special and is unlikely to be true in nature.

An obvious generalization of the analysis of the current thesis is to rotating space-

times. Kerr black holes, being Ricci flat, are solutions of f(R) theories. However,

owing to less symmetry in the system, separating angular and radial functions using

spheroidal harmonics is a non-trivial problem even in GR and the author is not aware of

any work that has successfully separated the same in the metric perturbation approach.

However, using the NP formalism [88], Teukolsky [122] managed to obtain two decou-

pled master equations corresponding to the radial and the angular parts in GR. Recently,
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in Ref. [123], using the NP formalism, the authors have obtained two decoupled equa-

tions for a Kerr solution in f(R) gravity. Since, the analysis of the energy-momentum

pseudo-tensor of perturbation is background independent, the master functions of [123]

can be calculated at asymptotic infinity in terms of the polarization amplitudes h+/×,

which can help in putting bounds on the parameter α from the most abundant astro-

physical source for ring-down gravitational waves, a spinning BH.

A fast spinning BH solution in CS modified gravity is yet to be found, since the back-

ground Pontryagin density is non-vanishing, hence putting a constraint on how fast a

spinning BH in CS modified gravity can rotate. However, as was shown in Ref. [124],

slowly rotating BH solutions can be obtained, and in general, faster rotating solutions

can be obtained perturbatively in powers of the spin parameter a as shown in [125].

As was shown by [126], even though odd and even parity dynamics get coupled from

O (a2) onward, the mixing of modes do not take place for the same multipole numbers

of opposite parities. For example, the (2, 2) even parity mode does not couple with the

odd parity mode of the same multipole index, ensuring no exchange of energy takes

place between the two modes and the relative intensity ratio will still indicate possible

deviation from GR.

The detectability of the effects of parity (conserving/violating) hinges on the abil-

ity to detect QNMs. Since the Signal-to-Noise-ratio in the ring-down regime is small

for current generation of detectors, one can, at most, estimate the fundamental mode

(n = 1, ` = 2,m = 2) from the ring-down data. [127] outlines a method to obtain higher

overtones and modes by a coherent stacking of the data of multiple events. One pos-

sible future work can be to extract the odd/even signal from the detected gravitational

strain (preferably using an event with a small final spin) in the ring-down regime, fol-

lowing the concept outlined in Sec. 5.3.3, and then fitting them to a damped sinusoid

to estimate the amplitude, frequency, and damping times of each parity. Estimates on

the three parameters of each parity can help us quantify the detected ∆`,m, which can be

compared to GR numerical relativity studies of systems with the same parameters (like

mass and spin of individual BHs as estimated from the inspiral regime).
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Isospectrality breaks in GR due to environmental contaminants (accretion disks,

dark matter halo) around BHs [128]. [129, 130] show that one can account for contam-

inants by considering their effects as a perturbation on the effective potentials, thereby

shifting the QNM spectra. However, the studies only consider the Regge-Wheeler (odd

parity) potential and possible perturbative modifications to the same due to contami-

nants. It is possible to compute shifts in the quasinormal spectra for a ’dirty BH’ in the

f(R) or Chern-Simons case for both parities as a function of two parameters, each corre-

sponding to the perturbative change in the effective potentials in the respective parities.

But broken isospectrality (due to the combined effect of modification to gravity and

contaminants), in general, will lead to the odd and even parity potentials modifying

differently, thereby resulting in different shifts of the quasinormal spectra (compared to

a clean BH in a modified theory) for the odd and even parities. While it is technically

possible in multi-messenger astronomy to observe accretion disks that are luminous

through electro-magnetic follow ups; thin and sparse accretion disks, and dark mat-

ter halo will not be accounted for from such follow ups or simultaneous observations.

[131] show that certain models of contaminants can significantly affect the possibility of

testing GR. However, environmental contaminants around a BH would vary with each

detection and would show up as different ∆`,m and different shifts in the odd/even

spectra in different cases. However, a possible modification to GR is an universal effect,

and its contribution to the value of ∆`,m must remain constant (even if overshadowed

by factors like environmental contaminants) in all observations.

6.2 Future outlook

With subsequent upgradation of the technology used to detect gravitational waves, like

aLIGO [132], LISA [133], and Cosmic Explorer [134], it will be possible to obtain signal-

to-noise ratio of the ring-down regime up to 50 [135]. Better energy and time resolution

of the ring-down regime will help in calculating the factor ∆`m to more accuracy, and

consequently, constrain deviations from GR.
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Numerical simulations of the ring-down of charged BH in GR can help in expanding

the parameter space for creation of waveforms, which are ultimately matched with the

detected signal. Even though astrophysical BHs are assumed to be charge neutral, it is

possible that the rate at which gravitational energy escapes the ringing system is faster

than the rate at which charge neutralization by the infall of accreting opposite charge

takes place, which may show up in observations as the rate of detection goes up in the

future.

The chances of a direct detection of extra degrees of freedom can be increased by

making detectors more sensitive towards scalar or vector degrees of freedom. Since the

CS pseudo-scalar is a long range light field, it is possible that it can be detected.

Better theoretical understanding of the Kerr perturbation of various modified the-

ories of gravity is required, which can help in connecting the two propagating modes

from perturbed Kerr BHs with the plus and cross amplitudes at asymptotic infinity. If

a preferential coupling phenomenon due to conserving/violating of parity exists in the

perturbed equations, the phenomenon could be used to calculate the NP observables

and their relative ratios.

Since the presence of quasi-stable accreting disk of matter outside a ringing BH mod-

ifies dynamics and breaks isospectrality, with the increase in the number of detectors,

and availability of better imaging techniques like Event Horizon Telescope, it may be

possible to directly image the accreting matter, and compare the electromagnetic ob-

servation obtained properties of the accreting mass with the properties obtained from

gravitational wave observations affected by the degree of isospectrality breaking. Dif-

ferences in the properties obtained from two different kinds of observations can help

in constraining deviation from GR and/or probing the limits of currently available and

future BH imaging techniques.





Appendix A

The Pöschl-Teller method

To calculate CV/S one needs to calculate the absolute (
√
R
V/S
± ) and phase (δV/S±,(r)) parts

of the reflection amplitude of the form
√
R
V/S
± eiδ

V/S
±,(r) - which can be found by utilizing

the method used in [91]. In this scheme the potentials V V/S
± are replaced by a properly

parametrized Pöschl-Teller potential which is of the form

UPT (x) =
U0

cosh2 [β(x− x0)]
(A.1)

where U0 = UPT (x0) is the maximum value of the potential and β = −
√

1
2U0

d2UPT
dx2

∣∣∣
x=x0

is the curvature about the maximum. Reflection amplitude for this potential was found

from [91]

R(ω) =
Γ
(
−iω
β

)
Γ
(

1 + χ+ iω
β

)
Γ
(
−χ+ iω

β

)
Γ
(
iω
β

)
Γ (1 + χ) Γ (−χ)

(A.2)

where Γ(a) is the Gamma function and χ = −1
2

+
√

1
4
− U0

β
. Absolute and phase parts of

(A.2) give the reflection coefficient and the phase change on scattering respectively.
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Appendix B

Effective fluid and source term of f (R)

gravity

B.1 Relating higher derivative terms with the perturbed

Energy Momentum tensor

Christoffel symbols of the background metric written in 2+2 form becomes

Γabc =2 Γabc (B.1)

ΓaBC = −rDarγBC (B.2)

ΓAaB =
Dar

r
δAB (B.3)

ΓABC = Γ̂ABC (B.4)

Where 2Γabc and Γ̂ABC are Christoffel symbols on (t, r) space and the 2-sphere respectively.

Using (B.1)-(B.4), various double covariant derivatives were calculated as follows

2F = 2̃F +
1

r2
2̂F +

2

r
DarDaF (B.5)

∇a∇bF = DaDbF (B.6)

∇a∇BF = rDa

(
1

r
DBF

)
(B.7)

∇A∇BF = DADBF + rDarDaFγAB (B.8)
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for some scalar function F (yµ). The higher derivative terms of the modified field equa-

tion, bundled as an effective Energy Momentum tensor has a perturbation around R̄ = 0

was given by Eq. (3.4), while R(1) was separated using Eq. 3.6. Using (B.5)-(B.8) in (3.4),

one obtains

T effab =
2α

κ2

[
DaDbΩ− gab

(
2̃Ω +

2

r
DcrDcΩ−

k2

r2
Ω

)]
S (B.9)

T effaB = −2α

κ2
krDa

(
Ω

r

)
SB (B.10)

T effAB =
2α

κ2

[
k2ΩSAB − r2γAB

(
2̃Ω +

2

r
DarDaΩ−

k2

2r2
Ω

)
S
]

(B.11)

where Ω = Φ
r

, and τab, τ
(E/O)
a , P , and τ (E/O)

T were found by comparing the above relations

with the definitions (2.32)-(2.38)

τab = 2α

[
DaDb − gab

(
2̃ +

2

r
DcrDc −

k2

r2

)](
Φ

r

)
(B.12)

τEa = −4αr

k2
Da

(
Φ

r2

)
(B.13)

P = 2α

(
k2

2r2
− 2̃− 2

r
DarDa

)(
Φ

r

)
(B.14)

τET =
4αΦ

r
(B.15)

τOa = 0 (B.16)

τOT = 0 (B.17)

where Φ is the extra scalar mode.

B.2 The effective source term

The inhomogeneous source term for a general matter perturbation in a Schwarzschild

background was obtained for m+ n spacetimes with electromagnetic presence in [104].

In this thesis, a restricted version of the above is used by putting the background and
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perturbed electromagnetic sources to zero and m = n = 2. One obtains,

SeffS =
g

rH

[
−HST −

P1

H

St
iω
− 4g

r (St)
′

iω
− 4rgSr +

P2

H

rSrt
iω

+ 2r2 (Srt )
′

iω
+ 2r2Srr

]
, (B.18)

where the prime denotes radial derivative and

Sab = κ2τab ; Sa =
rκ2

k
τ (S)
a ; ST =

2r2κ2

k2
τ

(S)
T , (B.19)

P1 = −48M2

r2
+

8M

r

(
8− k2

)
− 2k2(k2 − 2) (B.20)

P2 =
24M

r
; H = k2 +

6M

r
− 2 (B.21)

(B.19) was calculated using (B.12), (B.13), and (B.15) and substituted to (B.18). Time

dependence of Φ was separated out using

Φ (r, t) ≡ Φ (r) eiσt (B.22)

Double radial derivatives were reduced by using the equation of motion of Φ

d2Φ

dr2
∗

+
(
σ2 − ṼRW

)
Φ = 0 (B.23)

from which the effective source term was obtained as

SeffS =

[
C1(σ, ω, r) + C2(σ, ω, r)

d

dr∗

]
Φ̃S (B.24)

where Φ̃E = 4αΦ
H

, H (r) ≡ H = k2 + 6M
r

+ 2 and the coefficients were obtained as

C1 (σ, ω, r) = σ2
(

1 +
σ

ω

)
− Mg

r3

(
1 +

18M

rH

)
−
(σ
ω

) g

r2

[
54M2

r2H
− 72gM2

r2H2

−18M

rH
+

1

2

P1

H
− 3M

r
+
ṼRW
g

]
(B.25)

C2 (σ, ω, r) =
3M

r2
−
(σ
ω

)[12Mg

r2H
− M

r2

]
(B.26)

P1 = −48M2

r2
+

8M

r

(
8− k2

)
− 2k2(k2 − 2) (B.27)
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Energy momentum pseudo-tensor of

perturbation for a ringing

Schwarzschild space-time in f (R)

gravity

A first order perturbed modified field equations for f(R) gravity for a general back-

ground is given by

R(1)
µν −

1

2
ḡµνR

(1) − 2α
(
∇µ∇νR

(1) − ḡµν2R(1)
)

= 0, (C.1)

which on redefinition hµν → ψµν , defined in Eq. (1.27), and using the transverse-

traceless gauge condition becomes

2ψµν + 2R̄µανβψ
αβ = 0 (C.2)

alongwith the dynamics for the massive scalar mode, R(1), given by (1.26).

Detailed calculations of the terms atO (ε2) follows. Cadabra [1] was used to calculate

the second order quantities.

96
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C.1 Convention

f(R) = R + αR2 (C.3)

gαβ = ḡαβ + εhαβ (C.4)

gαβ = ḡαβ − εhαβ +O
(
ε2
)

(C.5)

Rαβ = R̄αβ + εR
(1)
αβ + ε2R

(2)
αβ (C.6)

R̄αβ = 0 (C.7)

∇αAβ = Aβ;α (C.8)

ḡµν∇µ∇νA = 2A (C.9)

∇(1)
µ ≡ δ∇µ (C.10)

C.2 The Einstein tensor

G
(2)
αβ = R

(2)
αβ −

(
hαβR

(1) +
1

2
ḡαβR

(2)

)
(C.11)

R(2) = −2hµνR(1)
µν + ḡµνR(2)

µν (C.12)

G
(2)
αβ = R

(2)
αβ − hαβR

(1) + ḡαβh
µνR(1)

µν −
1

2
ḡαβ ḡ

µνR(2)
µν (C.13)

C.3 The effective energy momentum tensor of f (R)

T effαβ = α

(
2∇α∇βR− 2gαβ2R+

1

2
gαβR

2 − 2RRαβ

)
(C.14)

δ2 (∇α∇βR) = 2δ∇α (∇βR) +���
��

��:0, of the formSρµν;ρ

2∇α∇βR(2) (C.15)

δ2 (gαβ2R) = hαβ2R(1) − ḡαβhµνR(1)
;µν + ḡαβδ∇µ

(
∇µR(1)

)
+���

���:
0, of the formSρµν;ρ

ḡαβ2R(2)

(C.16)

δ2
(
gαβR

2
)

= 2ḡαβ

(
R(1)

)2
(C.17)

δ2 (RRαβ) = 2R(1)R
(1)
αβ (C.18)



98
Appendix C. Energy momentum pseudo-tensor of perturbation for a ringing

Schwarzschild space-time in f(R) gravity

T
(2),eff
αβ = α

[
4δ∇αR(1)

;β − 2hαβ2R(1) + 2ḡαβh
µνR(1)

;µν − ḡαβδ∇µR(1)
;µ + ḡαβ

(
R(1)

)2

−4R(1)R
(1)
αβ

]
(C.19)

C.4 Individual terms

C.4.1 Covariant derivative variation

δ∇µAν =
1

2

(
−h;σ

µν + hσν;µ + hσµ;ν

)
Aσ (C.20)

C.4.2 Terms in hαβ and R(1) form

T1 : R
(2)
αβ = −1

2

[
1

2
hρτ;β hρτ ;α + hρτ (hρτ ;αβ + hαβ;τρ − hτα;βρ − hτβ;αρ)

+hτ ;ρ
β (hτα;ρ − hρα;τ )−

(
hρτ;ρ −

1

2
h;τ

)
(hτα;β + hτβ;α − hαβ;τ )

]
(C.21)

T2 : −hαβR(1) = −hαβ
(
2h− hµν;µν

)
(C.22)

T3 : ḡαβh
µνR(1)

µν =
1

2
ḡαβh

µν
(
h;µν + 2hµν − hρα;βρ − h

ρ
β;αρ

)
(C.23)

T4 : −1

2
ḡαβ ḡ

µνR(2)
µν = −ḡαβ

(
−3

4
∇µhνρ∇µhνρ −

1

2
hµν∇ρ∇ρhµν −

1

2
hµν∇µ∇νh

+hµν∇ρ∇µhνρ +
1

2
∇µhνρ∇νhµρ +∇µhµ ν∇ρhνρ

−1

2
∇µhµ ν∇νh−

1

2
∇µh∇νhµν +

1

4
∇µh∇µh

)
(C.24)

T5 : −4αδ∇αR(1)
;β = −α

(
−h;σ

αβ + hσβ;α + hσα;β

)
R(1)

;σ (C.25)

T6 : 2αhαβ2R(1) (C.26)

T7 : −2αḡαβh
µνR(1)

;µν (C.27)

T8 : αḡαβδ∇µR(1)
;µ =

α

2
ḡαβ

(
−h;σ + 2hµσ;µ

)
R(1)

;σ (C.28)

T9 : −αḡαβ
(
R(1)

)2
(C.29)
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T10 : 4αR(1)R
(1)
αβ = 2α

(
h;αβ + 2hαβ − hρα;ρβ − h

ρ
β;ρα

)
R(1) (C.30)

C.5 Gauge fixing and averaging

C.5.1 Field redefinition and gauge

ψαβ = hαβ − ḡαβ
(
h

2
+ 2αR(1)

)
(C.31)

ψαβ;β = 0 (C.32)

C.5.2 Averaging procedure guidelines

• Total derivative terms of the form 〈Aα..β;µ〉 = 0.

• 〈A;αB;β〉 = −〈A;αβB〉, where A and B are indexed tensor objects.

C.6 Terms with redefined variables

C.6.1 T1

Cadabra output:

R
(2)
αβ = −1

4
∇αψρτ∇βψρτ −

1

2
ψρτ∇α∇βψρτ −

1

4
ψ∇α∇βψ −

1

2
ψρτ∇ρ∇τψαβ +

1

4
ψρτgαβ∇ρ∇τψ

+
1

2
ψρτ∇β∇ρψατ −

1

4
ψα

ρ∇β∇ρψ +
1

2
ψρτ∇α∇ρψβτ −

1

4
ψβ

ρ∇α∇ρψ +
3

8
∇α∇βψψ

+
1

4
∇ρ∇ρψαβψ −

1

8
∇ρ∇ρψψgαβ −

1

4
∇β∇ρψαρψ +

1

8
∇β∇αψψ −

1

4
∇α∇ρψβρψ

−1

2
∇ρψα τ∇ρψβτ +

1

4
∇ρψαβ∇ρψ +

1

2
∇ρψα τ∇τψβρ −

1

4
∇αψβ ρ∇ρψ +

1

4
∇ρψ∇ρψαβ

−1

8
gαβ∇ρψ∇ρψ +

1

8
∇αψ∇βψ +

1

2
∇ρψρ τ∇βψατ −

1

4
∇ρψαρ∇βψ +

1

2
∇ρψρ τ∇αψβτ

−1

4
∇ρψβρ∇αψ −

1

2
∇ρψρ τ∇τψαβ +

1

4
∇ρψρ τgαβ∇τψ −

1

4
∇ρψ∇βψαρ −

1

8
∇ρψ∇ρψgαβ

+
1

8
∇ρψgαβ∇ρψ + α (−∇βR∇αψ − ψ∇α∇βR+ ψρτgαβ∇ρ∇τR− ψα ρ∇β∇ρR− ψβ ρ∇α∇ρR



100
Appendix C. Energy momentum pseudo-tensor of perturbation for a ringing

Schwarzschild space-time in f(R) gravity

−1

2
∇ρ∇ρRψgαβ +

1

2
∇β∇αRψ +

1

2
∇α∇βRψ +

3

2
∇α∇βψR− 2R∇α∇βψ +∇ρ∇ρψαβR

−1

2
∇ρ∇ρψRgαβ −∇β∇ρψαρR+

1

2
∇β∇αψR−∇α∇ρψβρR+∇ρψαβ∇ρR−∇αψβ ρ∇ρR

−1

2
gαβ∇ρψ∇ρR+

1

2
∇αψ∇βR−

1

2
gαβ∇ρR∇ρψ −∇ρψαρ∇βR−∇ρψβρ∇αR

+∇ρψρ τgαβ∇τR−
1

2
∇αR∇βψ +∇ρR∇αψβρ −

1

2
∇ρψ∇ρRgαβ +∇ρRgαβ∇ρψ

)
+α2 (−6∇αR∇βR− 8R∇α∇βR− 2∇ρ∇ρRRgαβ + 2∇β∇αRR+ 2∇α∇βRR− 2gαβ∇ρR∇ρR

−2∇ρR∇ρRgαβ + 4∇ρRgαβ∇ρR) (C.33)

After following averaging guidelines:

• Coefficient of α0: 〈1
4
ψρτ;αψρτ ;β − 1

8
ψ;αψ;β〉

• Coefficient of α: 〈−ψ;αR
(1)
;β 〉

• Coefficient of α2: 〈−2R
(1)
;α R

(1)
;β − 2ḡαβR

(1)2R(1)〉

〈R(2)
αβ〉 = 〈1

4
ψρτ;αψρτ ;β −

1

8
ψ;αψ;β − αψ;αR

(1)
;β − α

2
(

2R(1)
;α R

(1)
;β + 2ḡαβR

(1)2R(1)
)
〉

(C.34)

C.6.2 T2

Cadabra output

−hαβR(1) = −α (−6ψαβ∇ρ∇ρR + 3gαβψ∇ρ∇ρR)− 12α2gαβR∇ρ∇ρR

(C.35)

After averaging

〈−hαβR(1)〉 = 〈−6α2ψαβR(1) − 12α2ḡαβR
(1)2R(1)〉 (C.36)
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C.6.3 T3

Cadabra output:

ḡαβh
µνR(1)

µν =
1

2
gαβψ

τε∇ρ∇ρψτε − gαβψτε∇ρ∇τψερ +
1

2
gαβψ∇ρ∇τψτρ + α (−2gαβψ

ρτ∇ρ∇τR

+2gαβψ∇ρ∇ρR + gαβR∇ρ∇ρψ + 2gαβR∇ρ∇τψτρ) + 12α2gαβR∇ρ∇ρR (C.37)

After averaging and using equation of motion

〈ḡαβhµνR(1)
µν 〉 = 〈12α2ḡαβR

(1)2R(1)〉 (C.38)

C.6.4 T4

Cadabra output:

−1

2
ḡαβ ḡ

µνR(2)
µν = −ḡαβ

(
−3

8
∇ρψτε∇ρψτε +

1

16
∇ρψ∇ρψ −

1

4
ψτε∇ρ∇ρψτε +

1

2
ψτε∇ρ∇τψερ

+
1

4
∇ρψτε∇τψρε

)
− αḡαβ

(
−1

2
∇ρψ∇ρR−

1

2
∇ρR∇ρψ − ψ∇ρ∇ρR

+ψρτ∇ρ∇τR +∇ρR∇τψρτ )− ḡαβα2(−3∇ρR∇ρR− 6R∇ρ∇ρR) (C.39)

After averaging and using equation of motion

• Coefficient of α0 = 0

• Coefficient of α = 0

• Coefficient of α2 = 3α2ḡαβR
(1)2R(1)

〈1
2
ḡαβ ḡ

µνR(2)
µν 〉 = 〈3α2ḡαβR

(1)2R(1)〉 (C.40)
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C.6.5 T5

Cadabra output:

−4αδ∇αR
(1)
;β = α

[
∇ρψαβ∇ρR−

1

2
gαβ∇ρψ∇ρR−∇αψβ

ρ∇ρR +
1

2
∇αψ∇βR−∇βψα

ρ∇ρR

+
1

2
∇βψ∇αR− α (2gαβ∇ρR∇ρR + 4∇αR∇βR)

]
(C.41)

After averaging and using equations of motion

〈−4αδ∇αR
(1)
;β 〉 = 〈αψ;αR

(1)
;β + 2α2ḡαβR

(1)2R(1) + 4α2R(1)
;α R

(1)
;β 〉 (C.42)

C.6.6 T6

Cadabra output

2αhαβ2R(1) = 2αψαβ∇ρ∇ρR− αgαβψ∇ρ∇ρR− 4α2gαβR∇ρ∇ρR (C.43)

After averaging and using equations of motion

〈2αhαβ2R(1)〉 = 〈2α2ψαβR(1) − 4α2ḡαβR
(1)2R(1)〉 (C.44)

C.6.7 T7

Cadabra output:

−2αḡαβh
µνR(1)

;µν = −αḡαβ (2ψµν∇µ∇νR− ψ∇µ∇µR− 4αR∇µ∇µR) (C.45)

After averaging and using equations of motion

〈−2αḡαβh
µνR(1)

µν 〉 = 〈4α2ḡαβR
(1)2R(1)〉 (C.46)
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C.6.8 T8

Cadabra output:

αḡαβδ∇µR(1)
;µ = 2α2gαβ∇ρR∇ρR (C.47)

After averaging

〈αḡαβδ∇µR(1)
;µ 〉 = 〈−2α2ḡαβR

(1)2R(1)〉 (C.48)

C.6.9 T10

From calculations of T3 and equations of motion:

4αR(1)R
(1)
αβ = 4αR(1)

[
−1

2
2ψαβ +

1

4
ḡαβ2ψ −R(0)

µανβψ
µν + α

(
2R

(1)
;αβ + ḡαβ2R(1)

)]
(C.49)

Using equations of motion and averaging which becomes

〈4αR(1)R
(1)
αβ〉 = 〈−8α2R(1)

;α R
(1)
;β + 4α2ḡαβR

(1)2R(1)〉 (C.50)

C.7 Second order perturbed f (R) equations of motion

〈G(2)
αβ − T

(2),eff
αβ 〉 = 〈

10∑
i=1

Ti〉 (C.51)

= 〈1
4
ψρτ;αψρτ ;β −

1

8
ψ;αψ;β − α

[
42ψαβR(1) + ḡαβ

(
R(1)

)2
]

+α2
(
−6R(1)

;α R
(1)
;β + 5ḡαβR

(1)2R(1)
)
〉 (C.52)

= 〈1
4
ψρτ;αψρτ ;β −

1

8
ψ;αψ;β + α

[
R

(0)
µανβψ

µνR(1) − 1

6
ḡαβ
(
R(1)

)2
]
− 6α2R(1)

;α R
(1)
;β 〉

(C.53)

Two points
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(i). It is possible to, by a gauge transformation, to put ψ = 0 (Gair 2011).

(ii). Redefinition of fields, from hαβ → ψαβ takes away the extra degree of freedom

R(1) and leaves one with ψαβ , which is the pure spin-2 field. The first order Ricci

scalar R(1), in an f(R) theory is a scalar field that is an independent degree of

freedom. Hence, a term like 〈ψµνR(1)〉, which is a correlation between two

independent fields, must be zero.

Hence, one obtains

〈G(2)
αβ − T

(2),eff
αβ 〉 = 〈1

4
ψρτ;αψρτ ;β −

α

6
ḡαβ
(
R(1)

)2 − 6α2R(1)
;α R

(1)
;β 〉 = tµν

I II III (C.54)

where tµν is the energy momentum tensor for gravitational waves. The energy density

in the waves then is given by t00.

It is to be noted that

tII
00 → 0, r → rH (ḡ00 → 0) (C.55)

→ 0, r →∞
(
R(1) → 0

)
(C.56)

Thus tII
00 must have a maximum in rH < r <∞. Since there is no scattering of waves

beyond the maxima of the scattering potentials of the even/odd potentials, that

maxima can thus be taken as a point of maximum energetic difference between the

massless and the massive mode that can be detected at∞.



Appendix D

Details of the effective source term of

charged BHs in f (R) gravity

For a scalar perturbed energy-momentum tensor given by

TEµν ≡


τabS rτEa SB

−−− −−−−−−−−−

rτEa SB r2P ḡABS + r2τET SAB

 , (D.1)

from [104] the source term for the scalar perturbation of a charged black-hole was

found to be

Seff± = aS±SΦ + bS±SA (D.2)

SΦ =
g

rH

[
−HST −

P1

H

St
iω
− 4g

r (St)
′

iω
− 4rgSr

+
P2

H

rSrt
iω

+ 2r2 (Srt )
′

iω
+ 2r2Srr

]
(D.3)

SA =
2
√

2Qg

iωr2H
(2gSt − rSrt ) (D.4)

where the prime denotes radial derivatives and

P1 = −32Q4

r4
+

48Q2

r2

(
2M

r
− 1

)
− 48M2

r2
+

4M

r

(
8− k2

)
−2k2

(
k2 − 2

)
(D.5)
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P2 = −32Q2

r2
+

24M

r
(D.6)

Sab = κ2τab Sa =
rκ2

k
τEa ST =

2r2κ2

k2
τET (D.7)

Equating TEµν = T effµν the components of TEµν were found from [97] in terms of the

massive field Φ, using which components of Sab , Sa, and ST were found for (D.3) and

(D.4). Seff± is only relevant around the horizon of the black hole where the presence of

Φ is at the largest. Hence, the coefficients c± and d± of Eq. (4.16) were calculated

around the horizon in a power series of g(y) ≡ g around the horizon and only

contribution from 1
g

is relevant, which turn out to be

c+ = −

(
3
2 q

2 + k2y − 2 y + 1
2

√
9 + 9 q4 + (−14 + 16 k2) q2 + 3

2

)
q
(
q2y − 16 q2 + y

) (
q2y − 2 q2 + y

)
4gy7H

(D.8)

d+ =

(
3
2 q

2 + k2y − 2 y + 1
2

√
9 + 9 q4 + (−14 + 16 k2) q2 + 3

2

)
q
(
q2y − 2 q2 + y

)
2y4g

(D.9)

c− = −
3
(
q2y − 8

3 q
2 + 1

3

√
9 + 9 q4 + (−14 + 16 k2) q2y + y

) (
q2y − 2 q2 + y

) (
q2y − 16 q2 + y

)
4gy7H

(D.10)

d− =
3
(
q2y − 8

3 q
2 + 1

3

√
9 + 9 q4 + (−14 + 16 k2) q2y + y

) (
q2y − 2 q2 + y

)
2y4g

(D.11)



Appendix E

Energy momentum pseudo-tensor of

perturbation for a ringing

Reissner-Nördstrom space-time in f (R)

gravity

E.1 Convention and background

f(R) = R + αR2 (E.1)

gαβ = ḡαβ + εhαβ (E.2)

gαβ = ḡαβ − εhαβ +O
(
ε2
)

(E.3)

Fαβ = F̄αβ + εF
(1)
αβ (E.4)

Rαβ = R̄αβ + εR
(1)
αβ + ε2R

(2)
αβ (E.5)

R̄αβ = κ2Tαβ (E.6)

R = R̄ + εR(1) (E.7)

R̄ = 0 (E.8)

F̄ ;µ
µν = 0 (E.9)
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Appendix E. Energy momentum pseudo-tensor of perturbation for a ringing

Reissner-Nördstrom space-time in f(R) gravity

∇αAβ = Aβ;α (E.10)

gµν∇µ∇νA = 2A (E.11)

E.2 The Einstein tensor

δ2Gαβ = δ2

(
Rαβ −

1

2
gαβR

)
(E.12)

= R
(2)
αβ −

(
hαβR

(1) +
1

2
ḡαβR

(2)

)
(E.13)

R(2) = δ2 (gµνRµν) = −2hµνR(1)
µν + ḡµνR(2)

µν (E.14)

G
(2)
αβ = R

(2)
αβ − hαβR

(1) + ḡαβh
µνR(1)

µν −
1

2
ḡαβ ḡ

µνR(2)
µν (E.15)

E.3 Energy momentum tensor due to electromagnetic

field

Tαβ = FαµF
µ
β −

1

4
gαβFµνF

µν (E.16)

T
(1)
αβ = F (1)

αµ F̄
µ
β + F̄αµF

(1)µ
β − hµνF̄αµF̄βν −

1

4

[
hαβ(F̄ )2

−ḡαβhρµF̄µνF̄ ν
ρ − ḡαβhρνF̄µνF̄ µ

ρ + 2ḡαβF̄ .F
(1)
]

(E.17)

〈T (2)
αβ 〉 = 〈2F (1)

αµ F
(1)µ
β − 1

4

(
2ḡαβF

(1).F (1) − hαβhρµF̄µνF̄ ν
ρ − hαβhρνF̄µνF̄ µ

ρ

)
〉

(E.18)

E.4 The effective energy momentum tensor of f (R)

T effαβ = α

(
2∇α∇βR− 2gαβ2R+

1

2
gαβR

2 − 2RRαβ

)
(E.19)

δ2 (∇α∇βR) = 2δ∇α (∇βR) +���
��

��:0, of the formSρµν;ρ

2∇α∇βR(2) (E.20)

δ2 (gαβ2R) = hαβ2R(1) − ḡαβhµνR(1)
;µν + ḡαβδ∇µ

(
∇µR(1)

)
+���

���:
0, of the formSρµν;ρ

ḡαβ2R(2) (E.21)
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δ2
(
gαβR

2
)

= 2ḡαβ

(
R(1)

)2
(E.22)

δ2 (RRαβ) = 2R(1)R
(1)
αβ (E.23)

T
(2),eff
αβ = α

[
4δ∇αR(1)

;β − 2hαβ2R(1) + 2ḡαβh
µνR(1)

;µν − ḡαβδ∇µR(1)
;µ + ḡαβ

(
R(1)

)2
− 4R(1)R

(1)
αβ

]
(E.24)

E.5 Field redefinition and gauge

ψαβ = hαβ − ḡαβ
(
h

2
+ 2αR(1)

)
(E.25)

ψαβ;β = 0 (E.26)

ψ = 0 (E.27)

A(1);µ
µ = 0 (E.28)

E.5.1 f(R) equations of motion in curved space

2ψαβ + 2R̄µανβψ
µν = κ2 (Uαβ + Tαβ) : spin 2 (E.29)

2R(1) − 1

6α
R(1) = 0 : spin 0 (E.30)

2A(1)
ν = Vν + 2κ2TµνA

(1)µ : spin 1

(E.31)

where

Uαβ = 2ψµνF̄αµF̄βν − ḡαβψµνF̄νρF̄ ρ
µ − 2F̄ ν

µ F̄
µ
(αψβ)ν

(E.32)

Tαβ = −2F (1)
αµ F̄

µ
β − 2F̄αµF

(1)µ
β + ḡαβF̄ .F

(1) (E.33)

Vν = 2ψαβF̄αν;β + ψβ;α
ν F̄αβ (E.34)
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Reissner-Nördstrom space-time in f(R) gravity

E.6 Individual terms

E.6.1 Covariant derivative variation

δ∇µAν =
1

2

(
h;σ
µν − hσν;µ − hσµ;ν

)
Aσ (E.35)

E.6.2 Terms in hαβ and R(1) form

T1 : R
(2)
αβ = −1

2

[
1

2
hρτ;β hρτ ;α + hρτ (hρτ ;αβ + hαβ;τρ − hτα;βρ − hτβ;αρ)

+hτ ;ρ
β (hτα;ρ − hρα;τ )−

(
hρτ;ρ −

1

2
h;τ

)
(hτα;β + hτβ;α − hαβ;τ )

]
(E.36)

T2 : −hαβR(1) = −hαβ
(
2h− hµν;µν

)
(E.37)

T3 : ḡαβh
µνR(1)

µν =
1

2
ḡαβh

µν
(
h;µν + 2hµν − hρα;βρ − h

ρ
β;αρ

)
(E.38)

T4 : −1

2
ḡαβ ḡ

µνR(2)
µν = −ḡαβ

(
−3

4
∇µhνρ∇µhνρ −

1

2
hµν∇ρ∇ρhµν −

1

2
hµν∇µ∇νh+ hµν∇ρ∇µhνρ

+
1

2
∇µhνρ∇νhµρ +∇µhµ

ν∇ρhνρ −
1

2
∇µhµ

ν∇νh−
1

2
∇µh∇νhµν

+
1

4
∇µh∇µh

)
(E.39)

T5 : −4αδ∇αR
(1)
;β = α

(
−h;σ

αβ + hσβ;α + hσα;β

)
R(1)

;σ (E.40)

T6 : 2αhαβ2R(1) (E.41)

T7 : −2αḡαβh
µνR(1)

;µν (E.42)

T8 : 2αḡαβδ∇µR(1)
;µ = αḡαβ

(
h;σ − 2hµσ;µ

)
R(1)

;σ (E.43)

T9 : −αḡαβ
(
R(1)

)2
(E.44)

T10 : 4αR(1)R
(1)
αβ = 2α

(
h;αβ + 2hαβ − hρα;ρβ − h

ρ
β;ρα

)
R(1) (E.45)

T11 : −2κ2F (1)
αµ F

(1)µ
β (E.46)

T12 :
κ2

2
ḡαβF

(1).F (1) (E.47)

T13 : −κ
2hαβ
4

(
hρµF̄µνF̄

ν
ρ + hρνF̄µνF̄

µ
ρ

)
(E.48)
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E.7 Averaging

E.7.1 Averaging procedure guidelines

• Total derivative terms of the form 〈Aα..β;µ〉 = 0.

• 〈A;αB;β〉 = −〈A;αβB〉, where A and B are indexed tensor objects.

• Averages of a product of independent fields are zero.

E.8 Terms with redefined variables

E.8.1 T1

Cadabra output:

R
(2)
αβ = −1

4
∇βψ

ρτ∇αψρτ −
1

2
ψρτ∇α∇βψρτ −

1

2
ψρτ∇ρ∇τψαβ +

1

2
ψρτ∇β∇ρψατ +

1

2
ψρτ∇α∇ρψβτ

−1

2
∇ρψβ

τ∇ρψατ +
1

2
∇ρψβ

τ∇τψαρ + α (ψρτgαβ∇ρ∇τR− ψρ α∇β∇ρR− ψρ β∇α∇ρR

+∇ρ∇ρψαβR +∇ρψαβ∇ρR−∇αψβ
ρ∇ρR +∇ρR∇ρψβα +∇ρR∇βψαρ −∇ρR∇βψ

ρ
α

−∇ρR∇αψ
ρ
β +∇ρR∇ρψαβ + 2∇ρR∇αψβρ − 2∇ρR∇ρψαβ) + α2 (−6∇βR∇αR

−8R∇α∇βR− 2∇ρ∇ρRRgαβ + 2∇β∇αRR + 2∇α∇βRR− 2gαβ∇ρR∇ρR

−2∇ρR∇ρRgαβ + 4∇ρRgαβ∇ρR) (E.49)

After following averaging guidelines:

• Coefficient of α0:

1

4
〈ψρτ;αψρτ ;β〉+ κ2〈

(
−1

2
F̄β

εF̄ε
ρψα

τψρτ −
1

2
F̄α

εF̄ε
ρψβ

τψρτ −
1

8
F̄ ερF̄ερψβ

τψατ

+
1

2
F̄ ερF̄ε

τψαρψβτ + 2F̄α
εF̄ ρτψβρψετ − F̄ ερF̄ε

τψαβψρτ − F̄α εF̄ε ρψρ τψβτ
)
〉
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• Coefficient of α: 0

• Coefficient of α2: 〈−2R
(1)
;α R

(1)
;β − 2ḡαβR

(1)2R(1)〉

〈R(2)
αβ〉 =

1

4
〈ψρτ;αψρτ ;β〉+ κ2

(
−1

2
F̄β

εF̄ε
ρ〈ψα τψρτ 〉 −

1

2
F̄α

εF̄ε
ρ〈ψβ τψρτ 〉〉

−1

8
F̄ ερF̄ερ〈ψβ τψατ +

1

2
F̄ ερF̄ε

τ 〈ψαρψβτ 〉+ 2F̄α
εF̄ ρτ 〈ψβρψετ 〉 − F̄ ερF̄ε

τ 〈ψαβψρτ 〉

−F̄α εF̄ε ρ〈ψρ τψβτ 〉
)
− α2

(
2〈R(1)

;α R
(1)
;β 〉+ 2ḡαβ〈R(1)2R(1)〉

)
(E.50)

E.8.2 T2

Cadabra output

−hαβR(1) = −α (−6ψαβ∇ρ∇ρR + 3gαβψ∇ρ∇ρR)− 12α2gαβR∇ρ∇ρR

(E.51)

After averaging

〈−hαβR(1)〉 = 〈−6α2ψαβR(1) − 12α2ḡαβR
(1)2R(1)〉 (E.52)

E.8.3 T3

Cadabra output:

ḡαβh
µνR(1)

µν =
1

2
gαβψ

τε∇ρ∇ρψτε − gαβψτε∇ρ∇τψερ +
1

2
gαβψ∇ρ∇τψτρ + α (−2gαβψ

ρτ∇ρ∇τR

+2gαβψ∇ρ∇ρR + gαβR∇ρ∇ρψ + 2gαβR∇ρ∇τψτρ) + 12α2gαβR∇ρ∇ρR (E.53)

After averaging and using equation of motion

• Coefficient of α0 : κ2ḡαβ

[
2F̄ερF̄µτ 〈ψεµψρτ 〉 − F̄ ρ

ε F̄
τ
ρ 〈ψεµψµτ 〉+ 1

4

(
F̄
)2 〈ψ2〉

]
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• Coefficient of α: 0

• Coefficient of α2: 12α2ḡαβR
(1)2R(1)

〈ḡαβhµνR(1)
µν 〉 = κ2ḡαβ

[
2F̄ερF̄µτ 〈ψεµψρτ 〉 − F̄ ρ

ε F̄
τ
ρ 〈ψεµψµτ 〉+

1

4

(
F̄
)2 〈ψ2〉

]
+12α2ḡαβ〈R(1)2R(1)〉 (E.54)

E.8.4 T4

Cadabra output:

−1

2
ḡαβ ḡ

µνR(2)
µν = −ḡαβ

(
−3

8
∇ρψτε∇ρψτε +

1

16
∇ρψ∇ρψ −

1

4
ψτε∇ρ∇ρψτε +

1

2
ψτε∇ρ∇τψερ

+
1

4
∇ρψτε∇τψρε

)
− αḡαβ

(
−1

2
∇ρψ∇ρR−

1

2
∇ρR∇ρψ − ψ∇ρ∇ρR

+ψρτ∇ρ∇τR +∇ρR∇τψρτ )− ḡαβα2(−3∇ρR∇ρR− 6R∇ρ∇ρR) (E.55)

After averaging and using equation of motion

• Coefficient of α0: −κ2ḡαβ
2

[
F̄ερF̄µτ 〈ψεµψρτ 〉+ 1

4

(
F̄
)2 〈ψ2〉

]
• Coefficient of α = 0

• Coefficient of α2 = 3α2ḡαβR
(1)2R(1)

〈1
2
ḡαβ ḡ

µνR(2)
µν 〉 = −κ

2

2
ḡαβ

[
F̄ερF̄µτ 〈ψεµψρτ 〉+

1

4

(
F̄
)2 〈ψ2〉

]
+ 3α2ḡαβ〈R(1)2R(1)〉

(E.56)

E.8.5 T5

Cadabra output:
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−4αδ∇αR
(1)
;β = α (−2∇ρψαβ∇ρR + 2∇αψβ

ρ∇ρR + 2∇βψα
ρ∇ρR) + α2 (4gαβ∇ρR∇ρR

−8∇αR∇βR) (E.57)

After averaging and using equations of motion

〈−4αδ∇αR
(1)
;β 〉 = 〈−4α2ḡαβR

(1)2R(1) − 8α2R(1)
;α R

(1)
;β 〉 (E.58)

E.8.6 T6

Cadabra output

2αhαβ2R(1) = 2αψαβ∇ρ∇ρR− αgαβψ∇ρ∇ρR− 4α2gαβR∇ρ∇ρR (E.59)

After averaging and using equations of motion

〈2αhαβ2R(1)〉 = 〈2α2ψαβR(1) − 4α2ḡαβR
(1)2R(1)〉 (E.60)

E.8.7 T7

Cadabra output:

−2αḡαβh
µνR(1)

;µν = −αḡαβ (2ψµν∇µ∇νR− ψ∇µ∇µR− 4αR∇µ∇µR) (E.61)

After averaging and using equations of motion

〈−2αḡαβh
µνR(1)

µν 〉 = 〈4α2ḡαβR
(1)2R(1)〉 (E.62)
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E.8.8 T8

Cadabra output:

αḡαβδ∇µR(1)
;µ = −4α2gαβ∇ρR∇ρR (E.63)

After averaging

〈αḡαβδ∇µR(1)
;µ 〉 = 〈4α2ḡαβR

(1)2R(1)〉 (E.64)

E.8.9 T10

From calculations of T3 and equations of motion:

4αR(1)R
(1)
αβ = 4αR(1)

[
−1

2
2ψαβ +

1

4
ḡαβ2ψ − R̄µανβψ

µν + α
(

2R
(1)
;αβ + ḡαβ2R(1)

)]
(E.65)

Using equations of motion and averaging which becomes

〈4αR(1)R
(1)
αβ〉 = 〈−8α2R(1)

;α R
(1)
;β + 4α2ḡαβR

(1)2R(1)〉 (E.66)

E.8.10 T11

Using gauge condition and equations of motion

−2κ2〈F (1)
αµ F

(1)µ
β 〉 = −2κ2〈A(1)

µ;αA
(1)µ
;β 〉+ 4κ4T̄αβ〈(A(1))2〉 (E.67)

E.8.11 T12

Using gauge condition and equations of motion

〈κ
2

2
ḡαβF

(1)
µν F

(1)µν〉 = 2κ4ḡαβT̄µν〈A(1)µA(1)ν〉 (E.68)
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E.8.12 T13

Using gauge condition and equations of motion

〈−κ
2hαβ
4

(
hρµF̄µνF̄

ν
ρ + hρνF̄µνF̄

µ
ρ

)
〉 = 0 (E.69)

E.9 Second order perturbed f (R) equations of motion in

RN space-times

Ignoring terms of O (κ4)

〈G(2)
αβ − T

(2),eff
αβ 〉 = 〈

13∑
i=1

Ti〉 (E.70)

=
1

4
〈ψρτ;αψρτ ;β〉 −

1

6
αḡαβ〈

(
R(1)

)2〉 − 18α2〈R(1)
:α R

(1)
;β 〉

−2κ2〈A(1)
µ;αA

(1)µ
;β 〉+ κ2〈Pαβ〉 (E.71)

where

〈Pαβ〉 = −1

2
F̄ ε
βF̄

ρ
ε 〈ψα τψρτ 〉 −

3

2
F̄ ε
αF̄

ρ
ε 〈ψβ τψρτ 〉 −

1

8
F̄ ερF̄ερ〈ψβ τψατ 〉

+
1

2
F̄ ερF̄ τ

ε 〈ψαρψβτ 〉+ 2F̄ ε
αF̄

ρτ 〈ψβρψετ 〉 − F̄ ερF̄ τ
ε 〈ψαβψρτ 〉

+ḡαβ

[
3

2
F̄ερF̄µτ 〈ψεµψρτ 〉 − F̄ ρ

ε F̄
τ
ρ 〈ψεµψµτ 〉+

1

8

(
F̄
)2 〈ψ2〉

]
(E.72)



Appendix F

Linearly perturbed Pontryagin density

and effective source term of odd parity

dynamics

F.1 Perturbed Pontryagin density

The perturbed metric tensor can be 2+2 decomposed following Eq. (2.15), (2.20), and

(2.23). A covariant Levi-Civita on a 2-sphere can be constructed by projecting out of a

Levi-Civita in the full space-time as

εAB =
1√
2r2

εAaBbε
ab (F.1)

where εab is the covariant Levi-Civita on the (t, r) space. (F.1) satisfies all the properties

of the antisymmetric 2-form in the 2-sphere. Using Eq. (2.15), (2.20), (2.23), and (F.1),

the perturbed Pontryagin density for a background Schwarzschild space-time in terms

of the Cunningham-Price-Moncrief variable ΦO (as defined in [86]) becomes

δ (∗RR) =
24 (`− 1) ` (`+ 1) (`+ 2)M

r6
ΦO S (F.2)

where S ≡ S`m is the scalar spherical harmonic as defined in (2.16) and it’s seen that

only the odd parity master function contributes to the perturbed Pontryagin density.
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parity dynamics

F.2 Perturbed Cotton tensor as an effective source.

The perturbed Cotton tensor can be written as an effective energy-momentum tensor

in the following manner

R(1)
µν = κ2Tµν (F.3)

Tµν = −αΘ;τσ

(∗R̄τ
µν
σ + ∗R̄τ

νµ
σ
)

(F.4)

A 2-vector and a scalar can be defined from Tµν in the following manner, following [86]

P a =
κ2r2

k2

∫
T aAVA dΩ (F.5)

P =
κ2r4

(`− 1) ` (`+ 1) (`+ 2)

∫
T ABVAB dΩ (F.6)

Using ϕ as defined in Eq. (5.10), one obtains the following

P t = −6M

r2
∂rϕ (F.7)

P r =
6iωM

r2
ϕ (F.8)

P = 0 (F.9)

The above components satisfy the conservation equation∇µTµν = 0. Following [86],

one finds

∂tP
t + ∂rP

r +
2

r
P r = 0 (F.10)

which serves as a consistency check for the obtained components. Again, following

[86], the effective source term coupling with the odd parity gravitational perturbation

was found to be

Seff =
κ2α

(`− 1) (`+ 2)

[
6M

r
∂2
r∗ϕ−

12M

r2
∂r∗ϕ+

6ω2M

r
ϕ

]
(F.11)



Appendix G

Gravitational radiation in the shortwave

limit of dynamical CS modified gravity

A vanishing background ϑ and transverse-traceless gauge was used. For a

simultaneous metric and CS field perturbation

gµν = ḡµν + ehµν (G.1)

ϑ = eϑ, (G.2)

the modified field tensor Gµν = Rµν2κ
2αCµν − κ2βϑ;µϑ;ν can be expanded in powers of

ε as

Ḡµν + eG(1)
µν + e2G(2)

µν = 0 (G.3)

Solving for G(1)
µν = 0 gives the dynamics of the perturbation. While the radiated energy

and momentum flux due to perturbation can be found from an energy-momentum

pseudotensor due to perturbation. From (G.3) one then obtains

Ḡµν = κ2tµν (G.4)

= −e2
〈
G(2)
µν

〉
(G.5)

tµν = − e
2

κ2

〈
G(2)
µν

〉
(G.6)

G(2)
µν = G(2)

µν − 4κ2α
[
∇(1)
σ ∇τϑ

∗R̄τ
(µ
σ
ν)
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gravity

+∇σ∇τϑ
∗R

(1)τ
(µ
σ
ν)

]
− κ2βϑ;µϑ;ν (G.7)

The operation 〈...〉was defined in [101] and consists of the following effective

operations

• Total derivative terms are put to zero.

• 〈A;µB;ν〉 = −〈A;µνB〉

• Covariant derivatives commute.

• Average of a product of two different fields are put to zero, since for high

frequencies they are Gaussian random variables.

From which
〈
G

(2)
µν

〉
was found to be

−
〈
G(2)
µν

〉
=

1

4

〈
ψρτ;µ ψρτ ;ν

〉
+
κ2α2

2β
〈Pµν〉 − κ2β 〈ϑ;µϑ;ν〉

(G.8)

〈Pµν〉 = −2
〈
ψβγ;δλψνα;σ

;ρ
〉
εµρ

σα
(∗R̄λβδγ + ∗R̄δβλγ

)
−2
〈
ψβγ;δλψµα;σ

;ρ
〉
ενρ

σα
(∗R̄λβδγ + ∗R̄δβλγ

)
−2
〈
ψρσ;δψαβ;γ

〉 [∗R̄γαδβ

(∗R̄µσνρ + ∗R̄νσµρ

)
+∗R̄δαγβ

(∗R̄µσνρ + ∗R̄νσµρ

)]
+R̄ρσαβ

[
εµγ

δλ
(
〈ψησ ;γψνλ;δ〉 ∗R̄ρηαβ

+ 〈ψηα;γψνλ;δ〉 ∗R̄ρσηβ

)
+ενλ

δγ
(
〈ψησ ;γψµλ;δ〉 ∗R̄ρηαβ

+ 〈ψηα;γψµλ;δ〉 ∗R̄ρσηβ

)]
+R̄ρσαβ

[〈
ψγδψλα

〉 ∗R̄ρσλβ

(∗R̄µδνγ + ∗R̄νδµγ

)
+
〈
ψγδψλσ

〉 ∗R̄ρλαβ

(∗R̄µδνγ + ∗R̄νδµγ

)]
(G.9)



Appendix H

Constancy of ∆`m in GR and its time

dependence in CS

H.1 Constancy in GR

The quantity ∆`m in the main text given by

∆`,m =

∣∣∣Ψ̇`,m
O

∣∣∣2 − ∣∣∣Ψ̇`,m
E

∣∣∣2∣∣∣Ψ̇`,m
O

∣∣∣2 +
∣∣∣Ψ̇`,m

E

∣∣∣2 (H.1)

can be written as

∆`,m =

|Ψ̇`,mO |
2

|Ψ̇`,mE |
2 − 1

|Ψ̇`,mO |
2

|Ψ̇`,mE |
2 + 1

(H.2)

In the wave zone, the odd/even modes are of the form

ΨE/O = AE/Oe
−κE/OteiωE/Ot (H.3)

where AE/O is a constant amplitude that depends on the initial conditions of the

perturbation process. Due to isospectrality relation for GR, κE = κO = κ and
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ωE = ωO = ω. Substituting (H.3) in (H.2) one obtains

∆`,m =

∣∣∣AOAE ∣∣∣2 − 1∣∣∣AOAE ∣∣∣2 + 1
(H.4)

which is a constant.

H.2 Time dependent ∆`,m in CS gravity

Radiation rate escaping to asymptotic infinity for general relativity is given by [86]〈
Ė
〉∣∣∣

GR
=

1

64π

∑
`m

µ

〈∣∣∣Ψ̇E

∣∣∣2 +
∣∣∣Ψ̇O

∣∣∣2〉 (H.5)

µ = (`− 1) ` (`+ 1) (`+ 2) (H.6)

Similarly, for dynamical CS gravity the rate at which radiation (both gravitational and

scalar) escapes to asymptotic infinity can be given by〈
Ė
〉∣∣∣

CS
=

1

64π

∑
`m

µ

〈∣∣∣Ψ̇E

∣∣∣2 +
∣∣∣ ˙̃ΨO

∣∣∣2 + κ2β |ϕ̇|2
〉

(H.7)

There is also energy loss
〈
Ėcoup,CS

〉
in the form of the graviton-graviton coupling near

the BH region (G.9) which does not travel to asymptotic infinity, thereby effectively

reducing the odd parity reflection coefficient, or the fraction of the odd parity initial

excitation that gets scattered off to asymptotic infinity, compared to GR. Considering

the same initial perturbation energy for a Schwarzschild solution in GR and dynamical

CS, the latter shall then radiate lesser gravitational flux, with the difference in energy

coming from both the graviton-graviton coupling (which absorbed by the BH), and the

kinetic term of the pseudoscalar field. Thus, one can write the following〈
Ė
〉∣∣∣

CS
+
〈
Ė
〉∣∣∣

coup,CS
=

〈
Ė
〉∣∣∣

GR
(H.8)

from which one obtains the following inequality∣∣∣Ψ̇O

∣∣∣2 > ∣∣∣ ˙̃ΨO

∣∣∣2 (H.9)
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at all times. A suitable ansatz for the modified odd parity wavefunction for CS gravity

can be

Ψ̃O = ÃOe
−κ̃Oteiω̃Ot (H.10)

where ÃO < AO, the real and imaginary parts of the odd parity QNM frequency are

modified due to the coupling with the CS field in the form of an inhomogeneous term

in the RHS of the differential equation (9) in the main text. This leads to the following∣∣∣ ˙̃ΨO

∣∣∣2∣∣∣Ψ̇E

∣∣∣2 =
Ã2
O (κ̃2

O + ω̃2
O)

A2
E (κ2

E + ω2
E)
e−2(κ̃O−κE)t (H.11)

which is less than the corresponding GR value at all times courtesy Eq. (H.9), with a

growth/decay rate proportional to e−2(κ̃O−κE)t (depending on whether the imaginary

part of the odd parity dominant mode frequency is enhanced or suppressed due to CS

modification). However, for the same initial energy of perturbation, the odd parity

mode can now relax to a stable Schwarzschild faster, because of the presence of further

channels (pseudo-scalar and graviton-graviton coupling) to take away the initial

perturbation energy. This leads to a shorter modified decay time for the odd parity

mode compared to the even parity 1, i.e. κ̃O > κE — implying that RHS of Eq. (H.11),

and correspondingly ∆`,m, will be decreasing functions of time in CS gravity.

1A feature that is also seen in charged BHs in GR, with the damping time decreasing with increase in

charge (See Table I of [136]). This is because, for a purely gravitational perturbation, extra energy in the

system can now be radiated away through the electromagnetic waves as well (in addition to gravitational

degrees of freedom), making the relaxation to a stable solution faster. Although the signatures imparted

to gravitational waves due to the presence of charge is quite distinct from the signatures imparted due to

modifications to gravity. Whereas isospectrality holds for perturbed charged GR BHs, the same does not

hold for a perturbed Schwarzschild in CS modified gravity.



Appendix I

Matching elliptical amplitudes observed

in detectors to odd and even parity

master functions

In order to equate the parity polarizations with the plus and cross, the radiative part of

the metric perturbation is projected on a tetrad of freely falling observers in the

radiation zone. The radiative part is simply the perturbation about the background

2-sphere in the 2+2 decomposed metric. One has from [69, 79, 86, 96]

hÂB̂ = eA
Â
eB
B̂
hAB (I.1)

=
ΦE

r

 Sθθ
Sθφ
sin θ

Sθφ
sin θ

Sφφ
sin2 θ

+
ΦO

r

 Vθθ
Vθφ
sin θ

Vθφ
sin θ

Vφφ
sin2 θ


(I.2)

=

 h+ − ipϑ̇h× h× + ipϑ̇h+

h× + ipϑ̇h+ −h+ + ipϑ̇h×

 (I.3)

=

 h̃+ h̃×

h̃× −h̃+

 (I.4)

where an implicit summation of `,m was assumed and p is the wavenumber

corresponding the plus/cross polarizations. Comparing (I.2) and (I.4) and using the
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relation between the tensor spherical harmonics and spin-weighted spherical

harmonics [96] obtains

h̃+ − ih̃× '
1

r

∑
`,m

√
(`+ 2)!

(`− 2)!
(ΦE + iΦO) −2Y`m (I.5)
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