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Abstract
At the nematic quantum critical point that exists in the -dx y2 2-wave superconducting dome of
cuprates, themassless nodal fermions interact strongly with the quantum critical fluctuation of
nematic order.We study this problembymeans of the renormalization group approach and show
that, the fermion damping rate wSIm R∣ ( )∣vanishesmore rapidly than the energyω and the
quasiparticle residue Z 0f in the limit w  0. The nodal fermions thus constitute an
unconventional non-Fermi liquid that represents an evenweaker violation of Fermi liquid theory than
amarginal Fermi liquid.We also investigate the interplay of quantumnematic criticalfluctuation and
gauge-potential-like disorder, andfind that the effective disorder strength flows to the strong coupling
regime at low energies. Therefore, even an arbitrarily weak disorder can drive the system to become a
disorder controlled diffusive state. Based on these theoretical results, we are able to understand a
number of interesting experimental facts observed in curpate superconductors.

1. Introduction

A large amount of experimental and theoretical studies have been devoted to studying the unusual properties of
high temperature cuprate superconductors in the past thirty years [1–9]. Although some consensuses have been
reached,many fundamental problems are still in debate, including themicroscopic pairingmechanism [1, 2, 7–
9], the origin of pseudogap [2, 6], and the description of non-Fermi liquid behaviors of the normal state [1–3]. In
the past decade, there have been accumulating experimental evidences for the existence of a strong anisotropy in
many of the physical properties of YBa2Cu3O d+6 (YBCO) [10–12] andBi2Sr2CaCu2O d+8 (BSCCO) [13, 14].
Such an anisotropy is widely believed to be driven by the formation of a novel electronic nematic order [15–19],
which spontaneously breaks theC4 symmetry down to aC2 symmetry. In case the nematic transition line goes
across the superconducting transition line and penetrates into the superconducting dome, there exists a zero-
temperature nematic quantum critical point (QCP). The nematic quantumphase transition and the associated
quantum critical behaviors have been investigated extensively in recent years [20–31].

From a theoretical perspective, there are twowidely studied scenarios to induce an electronic nematic order.
First, the nematic order can be generated bymelting a stripe order that spontaneously breaks both translational
and rotational symmetry [15–19]. The other way is related to Pomeranchuk instability which refers to the
deformation of the shape of the Fermi surface of ametal due toCoulomb interaction [15–19, 32–36]. In the
simplest case, Pomeranchuk instability occurs when the circular Fermi surface of a two-dimensionalmetal
becomes ellipse-like via quadrupolar distortion. [15–19]. TheHubbardmodel defined on square lattices [35, 37–
44] provides a pertinent platform to investigate the electronic nematic order.Halboth andMetzner [35] studied
a two-dimensionalHubbardmodel using functional renormalization group (RG)method, and revealed
Pomeranchuk instability and nematic order.More recently, the square latticeHubbardmodel is studied by
variational cluster approximation [45, 46] and found to display a local nematic phase under certain
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circumstances, whichmight be applied to understand the intra-unit-cell electronic nematicity observed in the
scanning tunneling spectroscopy (STS)measurements by Lawler et al [13].

Another context of studying nematic order is provided by the superconducting dome of cuprate
superconductors. For a pure -dx y2 2-wave superconductor, the discreteC4 symmetry is preserved.However,
when superconductivity coexists with a nematic order, the gap nodes are shifted from their original positions
and theC4 symmetry is broken down toC2 [20, 22–24]. Such an anisotropic superconducting state is physically
equivalent to a +-d sx y2 2 -wave superdconducting state [20, 22]. At the nematic QCP, themassless fermions
excited from the -dx y2 2-wave gap nodes couple strongly to the quantum critical fluctuation of nematic order
parameter, which can be effectively described by a (2+1)-dimensional field theory [20–31]. Thismodel was
first analyzed byVojta et al [20–22], whomade an ò-expansion and argued that the nematic phase transition is
turned tofirst order. Kim et al [23] later tackled the samemodel bymeans of N1 -expansion, whereN is a large
fermion flavor, and concluded that the transition remains continuous. Huh and Sachdev [24] performed a
renormalization group analysis, and showed that the fermion velocity ratio Dv v 0F in the lowest energy
limit, where vF is the Fermi velocity of nodal fermions and Dv the gap velocity [20–31].The unusual velocity
renormalization leads to significant changes of a number of quantities, including density of states (DOS) [25],
specific heat [25], low-T thermal conductivity [26], superfluid density [28], and London penetration depth [31].

In this article, we revisit the issue of unusual physical properties caused by the strong interaction between
massless nodal fermions and critical nematic fluctuation.Wewill apply the powerful RG approach to calculate
the fermion damping rate wSIm R∣ ( )∣, where wSIm R ( ) is the imaginary part of retarded fermion self-energy,
and the corresponding quasiparticle residueZf. Kim et al [23] have previously computed the fermion self-energy
and spectral function. Interestingly, it will become clear below that the RG analysis give rise to different results
once the singular renormalization of fermion velocities is taken into account. In particular, wewill show that the
fermion damping rate vanishes upon approaching the Fermi levelmore rapidly than the energyω, namely

w wS wlim Im 0R
0 ∣ ( )∣ . According to the conventional notion of quantummany-particle physics, one

would expect the system to behave as a normal Fermi liquid.However, by analyzing the RG results, wefind that
the quasiparticle residue vanishes, i.e., Z 0f , in the limit w  0. Therefore, the system is actually a non-
Fermi liquid that represents an evenweaker violation of Fermi liquid theory comparing to amarginal Fermi
liquid (MFL). To the best of our knowledge, this type of unconventional non-Fermi liquid behavior has not been
reported previously.

In realisticmaterials, there are always certain amount of disorders, whichmay play an important role. As
demonstrated earlier byNersesyan et al [47, 48], themost important disorder in cuprates behaves like a
randomly distributed gauge potential. Thus, wewillmainly study the influence of randomgauge potential on the
physical properties of nodal fermions and also the stability of nematic QCP. In the absence of nematic order, the
coupling between nodal fermions and random gauge potential has attracted considerable interest [47–49]. Here,
we consider the case inwhich nodal fermions couple to both the nematic order and randomgauge potential, and
then study the interplay of these two interactions bymeans of RGmethod.Wefind that the effective strength of
gauge potential disorders tends to diverge at the lowest energy. This behavior signals the emergence of afinite
zero-energyDOS r 0( ) and the happening of quantumphase transition from anunconventional non-Fermi
liquid to a disorder dominated diffusive state. The nodal fermions acquire afinite scattering rate γ, which in turn
affects the thermodynamic and spectral behaviors of nodal fermions.

The RG results for the self-energy of nodal fermions can be used to understand a number of experimental
facts observed in cuprate superconductors.Wewill show that the RG results are qualitatively consistent with
some recentmeasurements of specific heat, fermion damping rate, and temperature dependence of fermion
velocities.

The rest of the paperwill be organized as follows.Wefirst present the effective low-energy field theory for the
interaction between nematic order and nodal fermions in section 2. The randomgauge potential is also
introduced in this section. In section 3, wemake detailed theoretical analysis for the self-consistent RG equations
of the fermion velocities in the clean case. Based on theRG solutions, we proceed to compute the fermion
damping rate, quasiparticle residue, and other physical quantities.Wewill show that the quantum critical
fluctuation of nematic order leads to unconventional non-Fermi liquid behaviors of nodal fermions.We
consider the influence of randomgauge potential in section 4 andfind that the effective disorder strength flows
to the strong coupling regime at low energies. Therefore, evenweak disorders play a significant role and drive the
system to enter into a disorder controlled diffusive state. In section 5, we discuss the possible application of the
RG results to some experimental findings of cuprates. In section 6, we briefly summarize ourmain results.
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2. Effectivefield theory

We start from an effective action = + +f fY YS S S S . The free action for the nodal fermions is [20–24]
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where t x y z, ,( ) denote the Paulimatrices. The two componentNambu spinors are defined by Y = f f,a a ab b
T

1 1 3
( )†

and Y = f f,a a ab b
T

2 2 4
( )† where  = -ab ba. f f f, ,a a a1 2 3 and f4a represent fermions excited from the nodal points

(K,K ), - - -K K K K, , ,( ) ( ), and -K K,( ) respectively [20–24]. The repeated spin index a is summed from1
toN, whereN is the number of fermion spin components with the physical value being 2. The action fS describes
the nematic order parameter, which is expanded in real space as
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where τ is imaginary time and c velocity offieldf. It is convenient to choose c= 1.Mass parameter r tunes a
quantumphase transition from -dx y2 2-wave superconducting state to a state where the superconducting and
nematic orders coexist, with r= 0 defining theQCP.Moreover, u0 is the quartic self-interaction strength. The
nematic order couples to fermions via a Yukawa-coupling term

òl t f t t= Y Y + Y YfYS xd d , 3a
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where l0 is the coupling constant. In addition to the nematic order, the nodal fermions also couple to gauge-
potential type disorders, which is described by

ò= Y GY + Y GYGS v Ax xd . 4a a a adis
2

1 1 2 2( )( ) ( )† †

with t tG = ,z x( ) and =G G Gv v v,1 2( ). Here, the randomgauge potential A x( ) is assumed to be aGaussian
white noise, defined by

dá ñ = á ¢ ñ = - ¢A A A gx x x x x0, , 52( ) ( ) ( ) ( ) ( )

where g is the impurity concentration and Gv measures the strength of a single impurity.
Wewill followHuh and Sachdev [24] and performRG analysis by employing N1 -expansion. The inverse of

free propagator off behaves as +q r2 . After including the polarization, therewill be an additional linear-in-q
term. The q-termdominates at small q over q2-term, so the q2-term can be neglected. Near the nematicQCP, we
keep only themass term and rescale f f l0⟶ and lr N rf 0

2⟶ , leading to
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The free propagators for fermions Y a1 and Y a2 arewritten as
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respectively. At the nematicQCP, r= 0, the propagator for the nematic order fieldf is
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where the polarization P W q,( ), to the leading order of N1 -expansion, is given by
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After carrying out RG calculations [24, 27], we find that all the physical parameters flowwith a varying length
scale l as follows
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The expressions of C1,2,3 can be found in theA.We emphasize that the impact of disorders is characterized by the
quantityCg, rather than Gv i with i= 1, 2. It will be shown below thatCgflows to strong coupling at large l, leading
to remarkable physical properties.

3.Unconventional non-Fermi liquid behaviors of nodal fermions

It is well established that conventionalmetals can be described by the standard Fermi liquid theory, which states
that the fermionic excitations of a normal Fermi liquidmust have a sufficiently long lifetime and exhibit a sharp
quasiparticle peak in their spectral peak despite the existence of Coulomb interaction [50]. The conventional
notion is that the fermionic quasiparticles constitute a normal Fermi liquid if their zero-T damping rate

wSIm R∣ ( )∣vanishesmore rapidly thanω in the limit w  0. This criterion can bemathematically expressed as
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Another criterion to identify normal Fermi liquid is to define an important quantity: the quasiparticle residue,
also called renormalization factor,Zf. The residueZf is usually calculated through the definition
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where the real part of retarded fermion self-energy wSRe R ( ) is related to wSIm R ( ) via theKramers-Kronig (K.-
K.) relationship. The residueZf isfinite in a normal Fermi liquid, but vanishes in a non-Fermi liquid. Generically,
the fermion damping rate in an interacting fermion system can be formally written as

w wS = CIm , 19R
F
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whereCF is a constant.With the help of K.-K. relation, the corresponding real part of the fermion self-energy, in
the low energy limit, is given by

⎧
⎨
⎪⎪

⎩
⎪⎪

w

w w

w

w

S =

< <

=

>

p
w
w

p
w
-

-

C I x x

C x

C x

Re

sgn , if 0 1,

ln , if 1,

, if 1,

20R

F
x

F

F x

2

2

1

x

0

0
1

( )( )

( )∣ ∣ ( )

( )∣ ∣

∣ ∣

where w0 is a cutoff, and I(x) is a function that depends only on x.
It can be easily checked thatZf=0 for < x0 1and ¹Z 0f for >x 1. Therefore, the above two criteria

are actually equivalent becauseZf automatically takes afinite valuewhenever equation (17) is fulfilled.
However, in the present nodal fermion system, the above two criteria are no longer equivalent.Wewill show

by explicit calculations in this section that the damping rate of nodal fermions vanishesmore rapidly than the
energy, but the residueZf vanishes, i.e., Z 0f .

3.1. Fermion damping rate andquasiparticle residue
Nowwe calculate the fermion damping rate and the residueZf utilizing the solutions of the RG equations (11)–
(15). The unusual renormalization of fermion velocities need to be taken into account in an appropriatemanner.
We only present the results obtained in the clean limit =C 0g in this section, and include the effect of random
gauge potential in the next section.
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After solving RG equations (11)–(13) self-consistently, we show the l-dependence of fermion velocities

Dv v,F and ratio Dv vF obtained at different initial values of ratio Dv vF0 0 infigures 1(a), (b) and (c) respectively.
All the quantities Dv v,F , and Dv vF decrease with growing l andflow eventually to zero as  +¥l , but
apparently vF decreasesmuchmore slowly than Dv . If we use the ratio Dv vF to characterize the velocity
anisotropy, it is clear that the nematic order drives an extreme velocity anisotropy Dv v 0F . For later use, it is
helpful to extract an approximate analytical expressions for the velocities. Considering the leading and sub-
leading terms, the solution for Dv vF is given by
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with »c N0.3809s , which is consistent with the expression in [24]. In the longwavelength limit,
 ¥ l c l, ln ln 0s( ) ( ) , so the sub-leading term can be ignored. Retaining only the leading term, the

asymptotic behavior of velocity ratio can bewell approximated by
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According to equations (24) and (25), both vF and Dv vanish as  +¥l .

Figure 1. (a), (b), and (c) showhow Dv v,F , and Dv vF flowwith a varying length scale l respectively in the clean case. The initial values
of velocity ratio are =Dv v 0.075, 0.2, 1, 2F0 0 .
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To examine the impact of singular fermion velocity renormalization and extreme velocity anisotropy on the
properties of nodal fermions, wewill compute a number of physical quantities. Coming first is the quasiparticle
residueZf. Apart from thewidely used definition given by equation (18), the residueZf can also be calculated
within the RG framework. The interaction induced renormalization of fermion fieldΨ is encoded in the residue
Zf, which exhibits the following l-dependence

ò= - ¢Z e 26f
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l

g
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1 ( )( )
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= -
Z

l
C C Z

d

d
. 27

f
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The l-dependence ofZf can be easily obtained from the above equation, and is presented infigure 2(a).We
find thatZf flows to zero in the limit  +¥l , which indicates the breakdownof normal Fermi liquid and the
absence of well-defined Landau quasiparticles. However,Zf decreases very slowlywith growing l, thus the
deviation of the system from anormal Fermi liquid ought to be quite weak. To see this point, we plot the l-
dependence of Z lf infigure 2(b), and find that

 +¥
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Z llim . 28
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Therefore, the residueZf obtained at nematicQCP vanishes with growing lmore slowly than that of aMFL [51],
where ~Z l1f . According to equation (18), one can speculate that
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since a large length scale l corresponds to a low energyω. This speculation in turn implies that the imaginary part
of the retarded fermion self-energy wSIm R
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Tomake the above discussionsmore quantitative, we are now going tomake a detailed analysis of the
asymptotic behavior ofZf. At large running scale l, the equation ofZf can be approximated by
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Figure 2. l-dependence ofZf in the clean case is presented in (a), and of Z lf in (b). The initial values of velocity ratio are
=Dv v 0.075, 0.2, 1, 2F0 0 .
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where w0 is a cutoff. Then the real part of retarded self-energy is approximated by
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as w  0. Using theK.-K. relation, we obtain the imaginary part of self-energy

⎡⎣ ⎤⎦
w

p w
S ~

w
w

w
w

-Im
2 ln ln ln

. 35R
cnem 1

0 0
5{ }( ) ( )

( ) ∣ ∣ ( )

From equation (35), it is easy to verify that this fermion damping rate is smaller than that in aMFL andmanifests
the asymptotic behavior w wS wlim Im 0R

0 nem ( ) , confirming the above analysis based on numerical results.
According to the conventional notion of quantummany-body physics, onewould expect the system to behave
like a normal Fermi liquid.However, in the low energy limit w  0, the residueZf actually vanishes:
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which clearly implies that the systemunder consideration is actually a non-Fermi liquid and the nodal fermions
do not have awell-defined quasiparticle peak in the spectral function.We see that the above residueZfflows to
zero at a lower speed than that of aMFL, i.e., ~

w w
Zf

1

ln 0( )
. Therefore, the quantum criticalfluctuation of

nematic order gives rise to an evenweaker violation of ordinary Fermi liquid theory than aMFL. To the best of
our knowledge, this sort of unconventional non-Fermi liquid state has not been reported previously.

It is now interesting to compare this unconventional non-Fermi liquid state with graphene. In graphene,
early perturbative calculations revealed thatDirac fermions exhibitMFL behaviorwith damping rate

w wS ~Im R ( ) and vanishingZf [52]. Nevertheless, subsequent careful RG studies [53–56] have found that, the
fermion damping rate actually depends on energy as w w wS µIm lnR 2( ) at zero temperature due to the long-
rangeCoulomb interaction, whereas the correspondingZfflows to a finite value asω 0. Therefore, graphene is
a normal Fermi liquid. In contrast, themassless nodal fermions constitute a non-Fermi liquid at the nematic
QCP, becauseZf vanishes in the lowest energy limit. The crucial difference between these two cases can be
understood as follows. At nematicQCP, the fermion velocities are driven to vanish by the nematic order, so the
effective fermion-nematic interaction is significantly pronounced. In graphene, however, the fermion velocity is
dramatically enhanced at low energies byCoulomb interaction, which thenweakens the effective Coulomb
interaction and guarantees the validity of the Fermi liquid description. These two interactingDirac fermion
systems provide interesting new insight on the effects of strong electron correlations and also on the criterion of
non-Fermi liquid states.

Moreover, an important lesson one can learn from the research experience of graphene is that RGmay lead
to qualitatively different spectral properties of fermions from that obtained by ordinary perturbative expansion
approach. Indeed, this is themainmotivation that has promoted us tomake an extensive RG analysis of the
spectral properties of nodal fermions at the nematic QCP.

3.2.Density of states and specific heat
Wehave showed in the last section that the nodal fermions exhibit unconventional non-Fermi liquid behaviors
at the nematicQCP. In this section, wewill compute two important quantities, namelyDOS and specific heat,
on the basis of the RG solutions with the goal to gain a better understanding of the non-Fermi liquid state.

The fermionDOS can calculated from the retardedGreen functions of nodal fermions via the definition [25]

ò

ò

å

å

r w
p p

w w

p p
w w

= +

=
¢ ¢

¢ ¢ + ¢ ¢

=
D D

D =

k k
G v k v k G v k v k

v v

k k
G k k G k k

d d

2

1
Tr Im , , Im , ,

1 d d

2

1
Tr Im , , Im , , . 37

a

N
x y

a
R

F x y a
R

F x y

F a

N
x y

a
R

x y a
R

x y

1
2 1 2

1
2 1 2

( )
( )

[ ( ) ( )]

( )
[ ( ) ( )] ( )

In the absence of interactions, the fermionDOS is well-known to be linear inω, namely r w wµ( ) . This linear
behaviorwill be changed once the interaction effects are considered. After including the fermion velocity
renormalization, employing themethod presented in [25], theflow equation for r w( ) is given by
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- + + D

+ - - -

- + + D

v v

v v

d ln

d ln

, if ,

, if .
38

C C C C

C C C F

C C C C

C C C F

1

1

1

1

g

g

g

g

1 2 3

1 2

1 2 3

1 3

( )

In cuprates, the initial value of velocity ratio Dv vF0 0 is known to bemuch smaller than 1 [57]. Additionally, due
to the quantum fluctuation of nematic order, Dv vF decreasesmonotonously as the energy scale is lowering.
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Therefore, for a given initial value <Dv v 1F0 0 , we only need to consider the case <Dv vF . In order to show that
the conclusion is independent of the condition <Dv v 1F0 0 , we also plot the curves for the case =Dv v 2F0 0 in
figures 3 and 4. The RG equations ofDOS and specific heat are also givenwith a generalized form. In the clean
limit, we plot the results for r w( ) infigure 3.We see from figure 3(a) that r w( ) is apparently not linear inω, but
displays the asymptotic behavior

r w
w

 +¥
w
lim . 39

0

( ) ( )

On the other hand, figure 3(b) implies that

r w r
w w


w
lim

ln

ln
1. 40

0

0

0

( ( ) )
( )

( )

ThisDOS r w( ) is qualitatively different from the power law function r w w~ a-1( ) , whereα is a smallfinite
value, obtained previously in [25].

In the non-interacting limit, the fermion specific heat depends onT as µC T TV
2( ) . As shown in B,

including the influence of the quantumfluctuation of nematic order and randomgauge potential leads us to

⎧
⎨⎪

⎩⎪
=

+ <

+ >

- - -

- + + D

- - -

- + + D

C

T

v v

v v

d ln

d ln

2 , if ,

2 , if .
41V

C C C C

C C C F

C C C C

C C C F

2 2

1

2 2

1

g

g

g

g

1 2 3

1 2

1 2 3

1 3

( )

At lowT C T, V ( ) behaves as

 +¥


C T

T
lim , 42

T

V

0 2

( ) ( )

Figure 3. FermionDOS r w( ) in the clean limit at different initial values =Dv v 0.075, 0.2, 1, 2.F0 0

Figure 4. Specific heatCV (T ) in the clean limit at different initial values =Dv v 0.075, 0.2, 1, 2.F0 0
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which is visualized infigure 4(a). Apparently, the original quadraticT-dependence ofCV (T ) obtained in the
non-interacting limit is significantly altered. According tofigure 4(b), we can expressCV (T ) at very smallT as




C T C

T T
lim

ln

ln
2, 43

T

V V

0

0

0

( ( ) )
( )

( )

which is also distinct from the power lawT-dependence ~ b-C T TV
2( ) , whereβ is a smallfinite constant,

obtained previously [25].
Simple analysis reveal that the three parameters C C,1 2, andC3 appearing in the RG equations (38)and (41)

allflow to zero in the lowest energy limit [24]. This asymptotic behaviormakes it impossible to express r w( ) and
CV(T) by power law functions. As given in appendix C, the low energy behavior of r w( ) and the low-T behavior
ofCV(T) can be approximately expressed as
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2
0 0 0

2C

( ) ( )

where ra and aC are two negative constants. AtN= 2, » -ra 1.896 and » -a 1.466C .
We notice that our RG equation forCV(T) (41) is not exactly the same as that obtained byXu et al [25]. This

difference does not affect our conclusion thatCV(T) is not a power law function at lowT. Indeed, if we start from
the RG equation ofCV(T) presented in [25], we reach the same conclusion. Amore detailed discussion is
presented in appendix B and appendix C.

4. Impact of randomgauge potential

In this section, we investigate the impact of random gauge potential on the quantum critical behaviors near the
nematicQCP.Wewillfirst show the RG solutions obtained in the presence of randomgauge potential, and then
re-calculate the fermionDOS and specific heat after considering the influence of disorder scattering. To this end,
we need to retain a nonzeroCg in the RG equations (11)–(15), (27), (38), and (41), and then solve these RG
equations numerically.

4.1. Flowof effective disorder strength
In order tomake a direct comparison to the clean case inwhichCg= 0 and to explicitly see the influence of a
nonzeroCg on the running behaviors of various parameters, we plot the l-dependence of D Dv v v v, ,F F , andZf in
figures 5(a)–(d).Moreover, we show theω-dependence of r w( ) infigure 5(e) and theT-dependence ofCV in
figure 5(f), respectively.Wewill discuss under what circumstances these RG results aremodified in the next
section.

Comparing figures 3(a) and (b)withfigures 5(a) and (b), we see that the detailed l-dependence of vF and Dv
are both altered dramatically by the randomgauge potential. As shown infigure 3(c) andfigure 5(c), the velocity
ratio Dv vF exhibits exactly the same l-dependence in the clean and disordered cases, which originates from the
fact thatCg does not enter into the RG equation of velocity ratio Dv vF . According tofigure 2(a) andfigure 5(d),
the renormalization factorZf flows to zero in the disordered casemuchmore rapidly than the clean case.

As shown infigure 5(e), theDOS r w( ) is divergent in the lowest energy limit due to randomgauge potential.
This is completely different from the behaviors of clean case presented infigure 3. Infigure 5(f), we plot the ratio
between C CV V

Dis Cl, where CV
Dis and CV

Cl are the specific heat obtained in disordered and clean cases, respectively.
Since the solutions of the RG equations aboutDOS and specific heat aremodified substantially in the disordered
case, it turns out that randomgauge potential is a relevant perturbation in the present system. To verify the
relevance of randomgauge potential, we should appeal to the RG analysis of the effective disorder strength.

In the action term Sdis given in equation (4), the parameters that characterize the fermion-disorder coupling
seem to be Gv 1 and Gv 2. It can be seen from the RG equations that Gv 1flows in precisely the sameway as vF, and
that Gv 2 as Dv . Thus, both Gv 1 and Gv 2 are strongly renormalized and driven to vanish as  +¥l . However, this
does notmean that the disorders can be simply neglected. Indeed, whether disorders are important is
determined by the ratio between the interaction energy given by Sdis and the fermion energy

µ + DE v k v kk F x y
2 2 2 2 1 2( ) .We can see that this ratio is defined byCg, which enters into theRG equations for the

parameters Dv v,F , Gv 1, and Gv 2. The effective strength of random gauge potential should bemeasured byCg,
rather than Gv 1 and Gv 2. Recall thatCg is a function offive parameters, i.e., D Gv v v, ,F 1, Gv 2, and g. Among these
parameters, g is assumed to be a dimensionless constant, but the other four parameters flow strongly with the
varying l. Detailed RG analysis revealed thatCg goes to infinity, namely
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⎞
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in the limit  +¥l as a consequence of the singular renormalization of the fermion velocities ratio Dv vF .
More quantitatively, the large scale behavior ofCg can be described by

~C c l lln , 47g 3 ( )

where =
p

Gc
g

N

v

v3
4

F
3

10
2

0
2 .

It is necessary to explain herewhy the effective strength of randomgauge potential should be represented by
Cg, rather than solely by the coefficients Gv i with =i 1, 2, andwhy  ¥Cg in the lowest energy limit. In an
interacting fermion system, the effective strength of the interaction is characterized by the ratio between the
interaction energy scale and the kinetic energy of fermions. This ratio is widely used in condensedmatter physics
to judgewhether an interacting fermion system can be defined as a strongly correlated systemor not. For
instance, the normalmetal with a high density of itinerant electrons is believed to be aweakly interacting system
since the energy scale of Coulomb potential ismuch smaller than the Fermi energy. In amassless Dirac fermion

Figure 5. Flows of the quantities Dv v,F , rDv Z C, , ,v f VF are shown in (a), (b), (c), (d), (e), and (f) respectively at the initial value
=Dv v 0.075F0 0 in the presence of randomgauge potential.Wehave chosen =Gv g v 0, 006, 0.008, 0.01F0

2
0

2 and = =G G Gv v v10 20 0

for randomgauge potential.
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system (such as graphene), the effective strength of long-range Coulomb interaction is defined as a ~ e

vF

2

, where

e2 appears in the action of theCoulomb interaction as a coupling coefficient and the fermion velocity vF reflects
the order of the kinetic energy [54, 56]. Another example comes from the effective BCSmodel ofDirac fermion
systems, where the effective strength of pairing interaction is characterized by ~g u

vF
with u being the coupling

coefficient of pairing interaction and vF fermion velocity [58, 59].
This criterion also applies to disordered systems.Whenmassless Dirac fermions couple to random gauge

potential, the effective strength of random gauge potential should be defined by ~ G

D
Cg

v

v v
i

F

2

, rather than the

coefficient of fermion-disorder coupling Gv i [47, 48].When Gv i flows to zero in the lowest energy limit,Cg does
not necessarily vanish since there is a possibility that vF and Dv may vanishmore (or equally) rapidly than Gv i.
When the nodal fermions couple to both the quantum fluctuation of nematic order and randomgauge potential,
the four parameters D Gv v v, ,F 1, and Gv 2 allflow to zero in the lowest energy limit, but the effective strength of
randomgauge potential becomes very large, namely  ¥Cg . This originates from the fact that =G Gv

v

v

vF F

1 10

0
and

=G

D

G

D

v

v

v

v
2 20

0
are constants, while at the same time the velocity ratio Dv v 0F . The behavior  ¥Cg at low

energies indicates that random gauge potential is relevant. To see this point, we neglect the nematic order and
consider only the coupling of nodal fermions to random gauge potential, which results in simplifiedRG
equations:

= - = - = = - = -D
D

D G
G

G
G
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C v

v

l
C v

v v
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Using the two relations =G Gv
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0
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0
, it is easy to show that
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In this case, D Gv v v, ,F 1, and Gv 2 depend on length scale l as

= = = =D
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F
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which all vanish rapidly in the limit  ¥l . SinceCg is a constant, random gauge potential ismarginal. From the
above calculations, we can conclude that the behavior  ¥Cg obtained in the presence of both nematic
fluctuation and randomgauge potential is directly related to the extreme velocity anisotropy Dv v 0F induced
by the quantum fluctuation of nematic order. TheflowofCg towards strong coupling regime is a clear signature
that random gauge potential should have substantial physical effects on the low-energy behaviors of nodal
fermions, whichwill be discussed in the next section.

Wenotice other interesting correlated electronmodels inwhich the coupling coefficient of an interaction
vanishes at low energies, but the interaction is not negligible due to themore (or equally) rapid decrease of the
kinetic energy of electrons. Recently, Sur and Lee studied the influence of quantumfluctuations of an
antiferromagnetic (AF) order at anAF quantum critical point in ametal supporting one-dimensional Fermi
surface [60]. In particular, they showed that the coupling coefficient of the interaction flows to zero at low
energies. However, the fermion velocity also vanishes, thus the interaction cannot be simply neglected. Actually,
Sur and Lee found that the interaction drives the system to become a so-called quasi-local strangemetal that is
apparently qualitatively different from the free fermion system.

4.2. Physical effects of randomgauge potential
How shouldwe understand the divergence ofCg? In order to answer this question, we first consider the non-
interacting system that contains only nodal fermions and randomgauge potential. In this case, the RG equation
of fermionDOSbecomes

r
w

=
-

+

C

C

d ln

d ln

1

1
, 51

g

g

0

0

( )

with

p
=

+G G
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g v v

v v2
. 52g
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If <C 1g0 , we have

r w w a~ =
-

+
a C

C
with

1

1
, 53

g

g

0

0

( ) ( )
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whereα satisfies a< <0 1. In this case, the RG equation for specific heat is given by

= -
+
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d ln

d ln
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. 54V g

g

0

0

( )

The solution of this equation is given by

b~ = -
+

bC T T
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C
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2

1
. 55V

g

g

0

0

( ) ( )

If >C 1g , it is easy to get

r w  ¥ 56( ) ( )
in the limit w  0. The divergence r w( ) indicates the emergence of a disorder dominated diffusive state, in
which afinite disorder scattering rate γ and a finite zero-energyDOS r 0( ) are generated [49, 61, 62]. The value

=C 1g defines aQCP for the quantumphase transition between the ballistic and diffusive states of nodal
fermions. Therefore, a weak randomgauge potential gives rise to power law behavior of r w( ), whereas a
sufficiently strong disorder can trigger the quantumphase transition to a diffusive state.

In the presence of both nematic criticalfluctuation and random gauge potential, the fact that  ¥Cg in the
lowest energy limit signals the development of a disorder dominated diffusive state and the generation of afinite
γ and a finite r 0( ) even in the case of weak randomgauge potential. Although the perturbative RGmethod
provides a powerful tool to judgewhether andwhen a phase transition takes place [63–65], it is not a suitable
method to compute the precise value of γ. To calculate γ, one usually needs to construct a set of self-consistent
equations for the retarded fermion self-energy by properly considering both the fermion-disorder scattering and
the influence of quantum critical fluctuation of nematic order [66]. This is an interesting yet complicated issue,
which is beyond the scope of the present work and subjected to future research.However, it is technically
possible tomake a rough estimation for the energy scale of γ bymeans of the RGmethod. As shown in
figure 5(e), for small given values ofCg0 and Dv vF0 0, the solution of the RG equation ofDOS should have the
following properties: r w( ) decreases as the varying energy scale decreases, but tends to increase when the energy
scale exceeds a critical value DE C v v,c g F0 0 0( ), which is a function ofCg0 and Dv vF0 0. Themagnitude of γ should
be an increasing function of Ec. In the following calculations of r 0( ) andCV(T), wewill regard γ as an
undetermined constant. Fortunately, the qualitative behaviors of r 0( ) andCV(T) in the low energy regime is
independent of the precise value of γ.

The imaginary part of retarded fermion self-energy can be generically written as

w g wS » + SIm Im , 57R R
nem( ) ( ) ( )

where wSIm R
nem ( ) is the contribution induced solely by the nematic order. The disorder-induced scattering rate

γ represents a characteristic energy scale. At energies higher than γ, namely w g> , wSIm R
nem ( ) dominates over

γ and all the RG results for Dv v Z, ,F f , r w( ), andCV(T) shown infigures 5(a)–(f) are still applicable. At w g< ,
the diffusivemotion of nodal fermions and its interplaywith critical nematicfluctuation govern the low-energy
properties of the system.

Once afinite γ is generated, the renormalized velocities vF and Dv nomore vanish at low energies, which is
apparently different from the clean case. Instead, as the energy scale decreases, both vF and Dv are saturated to
certainfinite values, denoted by ¢vF0 and ¢Dv 0, below the energy scale set by γ. Hence, there is no extreme velocity
anisotropy in the diffusive state. The fermionDOS and specific heat also exhibit different behaviors comparing
to the clean case. To demonstrate the difference inDOS, wewrite the retarded propagators of nodal fermions in
the forms:
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Calculations find that the fermionDOSdepends onω as
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In the case g¢ ¢ LD v vF0 0 , we have
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In order to compute the specific heat, it is convenient to invoke the standardMatsubara formalism of fermion
propagators, i.e.,
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where w p= +n T2 1n ( ) with n being integer. The fermion free energy is given by
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Summing over wn leads to
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Now the fermion specific heat in the low energy regime can be approximately given by
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which depends onT linearly.We can see thatDOS and specific heat obtained in the diffusive state exhibit entirely
different behaviors from the unconventional non-Fermi liquid state below the energy scale γ.

Wefinallymake a brief remark on the behavior of the system staying away from the nematic QCP. Suppose
the system stays at a distance r to theQCP, the RG results are still valid and the fermion velocity ratio is still
renormalized at energies higher than the scale corresponding to r. However, the renormalization terminates at
certain low energy scale. Therefore, the effective strength of randomgauge potential ismoderately enhanced
compared its bare value, thoughCg does not diverge.

5. Comparisonwith experiments

In this section, we address the possible connection between the theoretical results obtained in the last sections
and the phenomenology of cuprate superconductors.We are particularly interested in three existing
experimental findings about some of the unusual properties of the superconducting dome.

5.1. Anomalous residual linear-T termof specific heat in cuprates
Wefirst discuss the residual specific heat in cuprates. Due to the line nodes of d-wave gap, the specific heat in the
superconducting phase of cuprates is expected to exhibit aT2 behavior, i.e., µC T TV

2( ) , at lowT. This
expectation is generically consistent with experiments [67]. In the lowestT limit, experiments have observed a
residual linear-T termofCV(T) [67–70], which is usually attributed to the finite fermionDOS generated by
disorder scattering and is alsowell consistent with the result given by equation (63). There is, however, an
unexpected experimental finding [67–70] that the residual specific heat of YBCO is obviously larger in
magnitude than that of La -x2 SrxCuO4 (LSCO), although the formermaterial is known to be cleaner than the
latter. Apparently, disorder scattering alone is not capable of accounting for this experimental fact. Recently,
coexistence of d-wave superconductivity with a loop current order was proposed to give a possible explanation
[71–73] for the large residual linear-T termof specific heat in YBCO. In this scenario, when d-wave
superconductivity coexists with a loop current order, two of four nodal points are converted tofinite Fermi
pockets of Bougoliubov quasiparticles, which then generates a finite r 0( ) and a residual linear-T termof specific
heat [71–74]. The recent ultrasoundmeasurements showed the possible evidence for the existence of loop
current order in YBCO [75, 76].

Here we propose an alternative explanation for the above anomalous experimental results of residual specific
heat. OurRG analysis found that the effective strength of randomgauge potential, being themost relevant
disorder to cuprates [47–49], is strongly enhanced by the critical nematicfluctuation, which in turn increases the
residual value of the specific heat. To understand the role of quantumnematicfluctuation, wefirstly consider
only the coupling of nodal fermions to random gauge potential. In this special case,Cg does notflow and thus
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remains a constant, namely =C Cg g0. IfCg0 is very small, whichmeans the system is only slightly disordered, the
behavior of r w( ) and specific heat would be governed by equations (53) and (55), respectively. In this case, the
systemdoes not develop afinite r 0( ) and there is no residual liner-T termof specific heat. If the system is quite
disordered such that >C 1g0 , it enters a diffusive statewith afinite scattering rate γ, which induces afinite r 0( )
and a residual linear-T termof specific heat. Apparently, the residual specific heat is larger inmore disordered
systems, which is not consistent with the aforementioned experiments of residual specific heat. If we consider
both the quantum fluctuation of nematic order and randomgauge potential,Cg is significantly enhanced and
flows to strong coupling at low energies even ifCg0 takes an arbitrarily small value. This implies that a cleaner
compoundmight acquire a larger amount of γ and naturally larger r 0( ) and residual liner-T termof
specific heat.

Tomake amore careful comparison between theories and experiments, we nowbriefly discuss the doping
dependence of our results.We use δ to denote the doping concentration and dc the nematicQCP. At zero
temperature, themass of nematicfieldf is proportional to the difference between δ and dc, namely d d~ -r c∣ ∣.
When the cuprate is at a distance r away from the nematicQCP, the quantum fluctuation of nematic order is not
critical, but remains important for small r. At the energy scales larger than r, the fermion velocity anisotropy is
still considerably enhanced, which leadsCg toflow to larger values. For a given small value of C C,g g0 can flow to
a sufficiently large value to induce a diffusive state and generate afinite scattering rate γ, provided that r ismade
sufficiently small. In this case, the quantum fluctuation of nematic order can result in afinite r 0( ) and a finite
residual linear-T termof specific heat. If the bare valueCg0 is large enough, randomgauge potential itself suffices
to generate afinite γ. Including the quantum fluctuation of nematic order leads to larger values of bothCg and γ.
In any case, the quantumfluctuation of nematic order tends to amplify γ, which naturally increase r 0( ) and the
residual specific heat.

A number of recent experiments provided strong evidence supporting the existence of nematic order in
YBCO,whereas there is little evidence for nematicity in LSCO.Although YBCO is cleaner than LSCO, the
quantumfluctuation of nematic order in the former superconductor can driveCg toflow tomuch larger values.
As a consequence, the residual linear-in-T term of specific heat of YBCOwould be larger than that of LSCO.We
emphasize that, disorder itself cannot explain the anomalous behaviors of the residual specific heat observed in
YBCOand LSCO, and it is necessary to consider the interplay of quantumnematic fluctuation and random
gauge potential.

From the above elaboration, we know that the roles played by the quantumnematic fluctuation and random
gauge potential depends on doping δ. To simplify discussion, we assume the bare valueCg0 displays only aweak
δ-dependence. Since the quantumfluctuation of nematic order ismost pronounced at the nematicQCP, the
scattering rate γ and consequently the coefficient of the residual liner-T term of specific heat aremaximal at the
QCP, and decrease as the systemmoves away from thisQCP. This doping dependence is observable, and can be
examined by experiments.Within the loop current order scenario, both the zero-energyDOS r 0( ) and the
residual linear-T termof specific heat are proportional to the order parameter of loop current order [71–73],
whichmay increase with lowering doping in the underdoped region.

Early experiments found that the coefficient of linear-T termof specific heat in optimally dopedYBCO is
roughly 2mJ·mol-1·K−2 [67–69]. Recentmeasurements performed in underdoped YBCO revealed that this
coefficient is 1.85±0.06mJ·mol-1·K−2 [70].We feel that the currently available experimental data about the
doping dependence of the coefficient are still quite limited.We expectmore extensivemeasurements would be
performed in the future to extract amore quantitative doping dependence of the coefficient, which could help to
judgewhether the scenario proposed in this paperworks.

5.2. Strong damping rate of nodal fermions in optimally dopedBSCCO
Wenext apply the RG results to understand the observed damping rate of nodal fermions in cuprates. Valla et al
[77] have performed extensive angle resolved photoemission spectroscopymeasurements in optimally doped
BSCCO.Theirmain discovery is that the nodal fermions exhibit aMFL-type damping rate in the normal state
aboveTc, which is in general consistencywith the observed linear resistivity. They further found [77] that the
linear damping rate is not sensitive to the onset of superconductivity and persists well belowTc. This was out of
expectation since previous BCSweak coupling analysis [1, 78] had predicted a quite weak damping rate, i.e.,

w wS µT TIm , max ,R 3 3( ) ( ), in the superconducting phase. Several scenarios [1, 20, 79]were proposed to
account for the nearlyMFL behavior. In particular, Vojta et al [20] andKhveshchenko and Paaske [79]have
argued that the strong fermion dampingmay arise from a secondary phase transition froma -dx y2 2-wave
superconducting state to a +-d six y2 2 or +-d dix y xy2 2 -wave superconducting state.

Experimentally, the existence of a nematic phase was observed in BSCCOby Lawler et al [13].More recent
experimental studies of Fujita et al provided further evidence pointing towards the existence of a nematicQCP in
the vicinity of optimal doping in BSCCO [14, 19]. Therefore, it seems natural to account for the experimental
finding of Valla et al by considering the quantum criticalfluctuation of nematic order.We have showed through
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RGanalysis that the nodal fermion damping rate caused by critical nematicfluctuation, described by
wSIm R

nem ( ), is slightly weaker than that of aMFL. In realistic experiments, it is difficult to distinguish this non-
Fermi liquid state from aMFL state. Therefore, presence of a nematicQCPprovides an alternative scenario for
the nearlyMFL behavior observed in optimally dopedBSCCO.However, the nearlyMFL behavior occurs only
at energies higher than the value wg set by disorder scattering rate γ. Indeed, at w w g< g, dominates over

wSIm R
nem ( ), thus afinite zero-energyDOS r 0( ) is generated. To summarize, our RG results are qualitatively

consistent with the quasiparticle self-energy w g wS = +T TIm , max ,( ) ( ) observed in [77].

5.3. Temperature dependence of fermion velocity in BSCCO
Another experiment is the observation of Plumb et al [80] that the fermion velocity vF along the nodal directions
increases asT grows in BSCCO.We know fromRG results that the critical nematic fluctuations drive the
fermion velocities to vanish in the lowest energy limit. Thismeans the velocitiesmust increase as the energy scale
is growing. Therefore, the nematic quantumfluctuationwill induce increment of fermion velocities when the
thermal energy increases with growingT, which is qualitatively well consistent with the observation of Plumb
et al. Technically, one can translate the l-dependence of fermion velocity to aT-dependence bymaking the
transformation = -T T e l

0 [31, 81].With the help of this transformation, it is easy to show that the fermion
velocity vF is an increasing function ofT. Therefore, the singular renormalization of fermion velocities of nodal
fermions induced by the quantum fluctuation of namatic order, which isfirst discovered byHuh and Sachdev
[24], agrees with theT-dependence of vF observed in [80].

6. Summary anddiscussions

In summary, we have found that the nodal fermions of d-wave superconductors constitute an unconventional
non-Fermi liquid, which exhibits aweaker violation of Fermi liquid description than aMFL, due to the quantum
criticalfluctuation of nematic order. This unusual state represents a novel quantum state ofmatter that cannot
bewell captured by the traditional classification of (non-) Fermi liquids and thus enriches our knowledge of
strong electron correlation effects.We also have calculated the fermionDOS and specific heat after
incorporating the unusual renormalization of fermion velocities.When a gauge-potential-type disorder is added
to the system, we analyzed its interplay with the quantumfluctuation of nematic order, and found that the
effective disorder strength flows to strong coupling, leading to diffusivemotion of nodal fermions. Therefore,
even aweak randomgauge potential can drive a quantumphase transition from anunconventional non-Fermi
liquid state to a disorder dominated diffusive state. However, the unusual fermion damping induced by the
nematic order ismore important than disorder scattering at high temperatures, where the nodal fermions still
display the unconventional non-Fermi liquid behaviors.Wefinally discussed the connection between our
theoretic results and a number of interesting experiments in the context of some cuprate superconductors.

We nowwould like compare ourwork to the existing extensive works on the non-Fermi liquid behaviors in
two-dimensionalmetals produced by the quantum critical fluctuation of nematic order. At theQCPof
Pomeranchuk instability in two-dimensionalmetals, the quantumfluctuation of nematic order can lead to very
strong fermion damping [36, 82–86]. To the leading order, it is found [36, 82–86] that the fermion damping rate
behaves as w wS ~Im 2 3( ) and the quasiparticle residue w~Zf

1 3. SinceZf vanishes in the limit w  0, this
QCP exhibits non-Fermi liquid behavior. In this paper, we have considered the interaction between the
quantumfluctuation of nematic order andmassless nodal fermions in the superconducting dome of cuprate
superconductors. It is apparent that the quantum critical fluctuation of nematic order gives rise to a stronger
fermion damping effect inmetals than in the superconducting dome of cuprates. This difference should be due
to the different forms of the kinetic energies of fermionic excitations. In the context of cuprates, the kinetic

energy of themassless Dirac fermions excited from the superconducting gap nodes is = + DE v k v kF x y
2 2 2 2 . In

contrast, in a two-dimensionalmetal with afinite Fermi surface, the kinetic energy of fermions can bewritten as

= +E v kF x
k

m2

y
2

, where kx is themomentum component perpendicular to the Fermi surface and ky is the

momentum component along the tangential direction [36, 82–86]. In the low-energy regime, the latter kinetic
energy is smaller that the former for the same given values ofmomenta, which indicates that the interaction plays
amore important role in the latter system than the former. To further demonstrate this difference, we consider
the different roles of the long-range Coulomb interaction in a two-dimensional Dirac semimetal and a two-
dimensional semi-Dirac semimetal. In aDirac semimetal, the kinetic energy of Dirac fermions is simply

=E v kF with = +k k kx y
2 2 . RG analysis showed that the residueZf approaches a finite value at low energies,

so the system is a normal Fermi liquid [53–56]. In a semi-Dirac semimetal, the kinetic energy of fermions is

written as = +E v kF x
k

m
2 2

4

y
2

2 [87, 88]. In this case, the long-range Coulomb interaction drivesZf to vanish in the

lowest energy limit, i.e., Z 0f , which apparently implies the breakdownof Fermi liquid behavior [87]. Once
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again, we see that the ratio between the interaction energy scale and the kinetic energy is a crucial quantity to
determine the low-energy behaviors of an interacting fermion system.

The coupling of nodal fermions to the quantum fluctuation of AF order is also an interesting problem
[7, 89]. Uemura [7] considered the coupling of nodal fermions to the p p,( )AFfluctuation, and suggested a
possibility that the p p,( )AF fluctuation can connect twonodal charges in different hole pockets and then
generate a bound state of two nodal charges.More recently, Pelissetto et al studied a number of different
couplings between nodal fermions andAFfluctuations using RGmethod [89]. An interesting result is that,
thoughmost of these couplings are irrelevant, a nearlymarginal coupling between nodal fermions and an
effective AF-order induced nematicfluctuation emerges. This nearlymarginal coupling is found [89] to result in
a fermion damping rate that is nearly linear in energy or temperature.

The electronic nematic state has been observed not only in some cuprate superconductors, but also in a
number of iron-based superconductors: 122 family, such as hole doped Ba -x1 KxFe2As2, electron doped
Ba(Fe -x1 Cox)2As2, and isovalent-doped BaFe2(As -x1 Px)2; 111 family, such asNaFeAs; 1111 family, such as
LaFeAsO; 11 family, such as FeSe [90, 91]. Inmost of these compounds, the nematic order emerges in
accompanywith a spin density wave (SDW) order. However, there are also exceptions. For instance, the nematic
order is observed in FeSewithout any evidence for SDWorder [90–98].Whether the nematic order observed in
iron-based superconductors is generated by the fluctuation of SDWorder or the orbital degrees of freedom is
still infierce debate [90–99]. Recent experimental studies have unambiguously showed that there is aQCP in the
superconducting dome at the optimal doping of BaFe2(As -x1 Px)2. ThisQCPmay correspond to the critical
point for a SDWorder or nematicQCP [100, 101], and is expected to exhibit rich quantum critical phenomena.
Moreover, there are clear evidences that the superconducting gap of BaFe2(As -x1 Px)2 has nodal line points
[100]. Since the quantumfluctuation of nematic order is peaked at zeromomentum [31, 91, 102], the nodal
fermions excited from the nodal line pointsmight couple strongly to the quantumfluctuation of nematic order
at the nematicQCP [31]. This coupling is physically analogous to themodel considered in this work, and it
would be interesting to study this coupling bymeans of RGmethod. The RG analysis performed in this work
could be generalized to study the possible non-Fermi liquid behavior and disorder effects in the context of
BaFe2(As -x1 Px)2 and other iron based superconductors, where themulti-band effects and different gap
symmetry need to be seriously taken into account.
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AppendixA. Expressions of C1,2,3

The expressions of C C,1 2, andC3 that appear in equations (11)–(15) are given by
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Appendix B. RG equation for specific heat

The free energy density  = T Vln is formally given by

 x x x= t
- , B.1x y

1( ) ( )
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where x x x~ =t tv,
T x F
1 , and x x= tDvy .We can rewrite  as

 ~
Dv v

T
1

, B.2
F

3 ( )

which yields the following specific heat:


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¶
¶
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C T
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1
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2

2
2 ( )

It is then easy to get
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At a givenT, the correspondingmomentum scale should be determined by the larger component of the fermion
velocities [25], i.e.,
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The scaling equation forCV is converted to
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Substituting equations (11) and (12) into (B.8) leads us to
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The quantumfluctuation of nematic order drives the velocity ratio Dv vF tomonotonously decrease as one goes
to lower and lower energies. It is known that the bare ratio <Dv v 1F0 0 in cuprate superconductors [1], which
make it possible to simplify the RG equation to

= +
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In the clean limit, =C 0g , so the equation becomes
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This equation is slightly different from the RG equation for specific heat presented in [25], where the equation is

=
+ - -

- +
C

T

C C C
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d ln
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The numerical solutions for equation (B.12) are shown infigure 6.
We notice that the specific heat obtained from equation (B.12) also satisfies  ¥ C T TlimT V0

2( ) and
 C T Tlim ln ln 2T V0 ( ( )) ( ) , which indicates that the specific heat is enhanced comparing to the case of non-

interacting nodal fermion system.However, as will be shown in appendix C, it cannot be expressed as a power
law function. The reason is that the three parameters C C,1 2, andC3 appearing in equation (B.12) all vanish in the
lowest energy limit, rather than approaching certain finite values.
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AppendixC. Approximate analytical expressions ofDOS and specific heat

In order to show that theDOS and specific heat in clean limit do not exhibit power law behaviors, we nowderive
their approximate analytical expressions in the low-energy regime from the RG results. The RG equation ofDOS
is given by

r
w

=
+ - -

- +
C C C

C C

d ln

d ln

1

1
C.11 2 3

1 2

( )

in the absence of disorders. In the lowest energy limit, we know that the velocity ratio Dv v 0F . The
parameters C C,1 2, andC3, being functions of Dv vF , all vanish [25] as Dv v 0F . Thus theRG equation can be
approximately written as
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wherewe have used three constants »a 0.4261 , »a 0.3482 , and »a 0.963 [24]. Substituting the approximate
low-energy expression of Dv vF given in equation (22) into (C.2), we obtain
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2( )( ) . For = » -rN a2, 1.896. Using the relationship w w= -e l
0 , we

can solve equation (C.3) and then obtain the following analytical expression
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which is applicable for smallω.
The RG equation for specific heat is shown in equation (B.11). At low energies, it can be approximated as
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Figure 6.Numerical results forCV (T ) obtained from the RG equation of specific heat given in [25] at different initial values
=Dv v 0.05, 0.1, 0.2, 1F0 0 .
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where = - - +p
p

a a a a2 lnC N1 2 3 8

82

2( )( ) . At = » -N a2, 1.466C . Using the transformation = -T T e l
0 , we

find that the specific heat at low temperature can bewell approximated by the expression
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By applying the same treatment, the RG equation of specific heat presented in [25], shown in equation (B.12),
can be approximately expressed as
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2( )( ) . At = ¢ » -N a2, 1.273C . The above two functions do not

exhibit power law dependence on temperature.
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