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ABSTRACT 

A brief review of dynamical chiral symmetry breaking of the flavor group in QCD is given. A discussion 
of how this phenomenon may be described within the context of the renormalization group and continuum 
field theory is then presented. The discussion is next extended to finite temperatures, using the real time 
formalism. It is found that the thermal ferrnion propagator has a Lorentz invariant massive pole even as 
{vac\i> ij>\vac}T vanishes for temperatures T > A c e 2 / 3 , where A c is the invariant QCD scale parameter. It 
is shown that indeed chiral symmetry is broken nevertheless, and that there exists a transformation of the 
Dirac field which manifests this breaking in the conventional way. Comparisons with lattice calculations 
are carried out. 

What I have to say today concerns the question 
of chiral symmetry in the standard model, its break
ing (XSB), and its effects at zero and at finite tem
peratures. To a large extent, the dynamics of the 
standard model is controlled by this phenonmenon. 
The specific XSB which I shall be concerned with in 
the standard model is the global SUL{NF) x SUR(NJ) 

of the quarks. Here NF is the number of flavors, 
and the global symmetry is exact in the absence of 
Yukawa and electroweak gauge couplings. There are 
no scalar fields in the standard model which carry 
indices relevant to this group, and the dogma of the 
standard model is tha t the color gauge interactions 
alone are responsible for the spontaneous breaking 
of this symmetry. The associated Nambu-Goldstone 
bosons, which acquire masses as a result of the elec
troweak gauge and Higgs interactions, are identified 
with the observed pseudo-scalar bosons. The inter
actions of these are dictated in effect by the sponta
neous breaking of this global symmetry. 

Wha t is the reason for believing in this dogma? 
The best substantiation is given by a set of mass 
inequalities which follow from positivity of the Eu
clidean action for QCD [1], These inequalities state 
that the set of pseudo-scalar boson masses are 
bounded by a lightest particle, which carries the 
quantum numbers of a pion, and that the baryon 
masses are also bounded by this number. The imme
diate conclusion is tha t the global chiral symmetry 
cannot be realized linearly, wherein the baryons are 
massless, and the pion massive. And then, if one fur
ther assumes confinement, and invokes t h e ' t Hooft 
anomaly matching condition [2], which requires the 
presence of massless poles in certain weak current 
amplitudes, the inequalities predict that the pion 

must be that massless particle. Barring accidental 
cancellations which would have prevented the pion 
from coupling to the axial current, this conclusion is 
tantamount to having XSB. 

Lattice calculations, especially within the 
quenched fermion approximation, generally confirm 
this this actually takes place [10]. More recently, the 
Columbia group has announced that the presence of 
unquenched fermions does not alter this confirma
tory evidence in any way [3]. 

A word about the quenched approximation. One 
can formally express ( # ) , whose non-trivial value 
signifies XSB, as an integral over all configurations of 
the density of states for the eigenfunctions of the 
Dirac operator in an external field. Now the co-
dimension in gauge configuration space of the zero 
modes for this operator can be determined, once 
the gauge group is given [4]. The integral over the 
gauge configurations can then be performed straight
forwardly in the quenched approximation. The result 
is a finite number, signifying that XSB always occurs 
[5]. This result holds even in the continuum limit, to 
which we now turn. 

There are several ways of going to this limit. 
Time permits me only a description of one of these 
[7]. In this approach, one supposes tha t QCD in the 
continuum can be analyzed by using the renormaliza
tion group (KG), over the whole range of momentum 
scales. One now looks at massive QCD, and analyzes 
the chiral flip part of the two point fermion function, 
M(p). This is a renormalization group invariant, pro
portional to the renormalized mass mr. As mr -> 0, 
one would have naively expected M(p) to also vanish. 
However, RG invariance requires 
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M(p) = mr(\ryp)-6C<'\ (1) 

where Xr - ^ / 1 6 7 r 2 , b is the beta function coefficient, 
and Cf the quadratic Casimir invariant of the quarks. 
The parameter y p is an RG invariant. If it vanishes 
in the limit, XSB will take place. It can be shown 
[7] tha t there is a solution to this condition for val
ues of p 2 below a critical value. The effective mass 
of the fermion therefore exhibits a rather peculiar 
momentum dependence, which enables many poten
tially divergent integrals to be carried out [7]. It can 
therefore be used in calculations of matr ix elements 
of rare decays, where chiral symmetry breaking ef
fects are expected to be important . 

A similar analysis can be carried out at finite 
temperatures. In [6], this extension is actually im
plemented in the real t ime formalism. The result 
turns out to be rather surprising. The same RG in
variant mass is now given by 

(2) 

for high temperatures. Here A c is the invariant QCD 
parameter. Notice tha t M is independent of momen
tum, and is unlike a plasmon mass in tha t respect. 
Has XSB taken place? A straightforward computa
tion of the order parameter using only the min
imal renormalization necessary to get rid of ultra
violet divergences, gives zero. And so apparently 
chiral symmetry is preserved, even though there is 
a mass. More explicitly, the effective Lagrangian for 
the quark field at high T is of the form 

(3) 

where A,B,C are non-polynomail functions of V , T 
and m r . For T > A c / 3 , the mass term in the effective 
Lagrangian vanishes in the limit m r -> 0. But, the 
Dirac equation for this particle remains non-local. It 
is therefore unclear how to define properly what is 
meant by chiral transformations. 

The issue is put into better focus by expressing 
chiral transformations in terms of the particle cre
ation and annihilation operators directly. To this 
end, define the following operators, which satisfy an 
SU(2) algebra: 
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The operators a, 6 are the annihilation operators for 
the Dirac fermion and anti-fermion with the appro
priate momentum and spin projection. In this no
tation, the usual chiral rotation for a massless Dirac 
fermion is generated by X3. As a simple example of 
what is going on here, let us now imagine tha t the 
massless fermions pick up a mass via the Nambu-
Jona-Lasinio mechanism. The new BCS-l\ke ground 
state in this model is a transform of the ground state 
for the massless fermions, and is generated by X 2 

through an angle 9 = arctanm/2p, summed over all 
momenta [8]. The resultant fermion field operator, 

however, now satisfies a non-local equation, simi
lar to the one above, and without a mass term. Its 
behavior under chiral transformations is unclear. In 
this instance, though, what is clear is tha t some form 
of XSB has indeed occured, even if the equation does 
not apparently have a mass-like term. And we can 
actually demonstrate tha t this is so by performing a 
Cini-Touschek transformation on this field operator 
[91. 

The operator ? now satisfies an ordinary local Dirac 
equation; its transformation under chiral rotations 
is again generated by X 3 , and the ground state will 
have a non-zero expectation value relative to 

A further transformation is therefore necessary in 
order tha t the effective Lagrangian above be brought 
into local form. This is effected by a transformation 
of the Cini-Touschek form, similar to what has been 
described above. Wi th respect to the field expressed 
in this basis, the order parameter (W) is directly pro
portional to the RG invariant mass [6], and so persists 
to arbitrarily high temperatures. Therefore, chiral 
symmetry is not restored at high temperatures. Lat
tice calculations generally do not perform this final 
transformation, and so give the apparent restoration 
of chiral symmetry at high temperatures [10]. The 
reason is tha t chiral transformations depend upon 
the wave functions used in expanding the fermi field, 
and are therefore sensitive to the choice of the zero 
of energy. For finite temperatures, this choice ac
quires a dependence on this temperature . The Cini-
Touschek transformation is necessary to put in this 
dependence on the wave-functions in the expansion 
of the fermi field. Relative to this basis, where chiral 
transformations are well-defined, XSB is not restored 
[6]. 
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DISCUSSION 

Q. D . Soper (Univ. Oregon) : Your approach used the 
renormalization group evaluated at one loop order. 
Is this a good approximation? 

A. L. N . Chang : In the critical limit, when mr -» 0, 
yp -* 0 our result that there is a bifurcation in Mp is 
unchanged by inclusion of higher loops. This ques
tion has been examined by Chang and Li (Ngee Pong 
Chang, Da-Xi Li, Phys. Rev. D30, 790 (1984). 

Q. M. D . Scadron (Univ. Arizona): Concerning your 
last point on the chiral symmetry restoration tem
perature Tc: there are alternative schemes where the 
dynamical quark mass ra^ also vanishes at T = Tc. 
It gives the same result as when the scalar mass van
ishes at T c , namely Tc — 2 / T . 

A. L. N . Chang: I am not familiar with these alter
native schemes. Certainly, within our context, the 
dynamical mass does not vanish at high tempera
tures. 
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A B S T R A C T 

Under the assumption of the existence of heavy quarks belonging to a sextet representation of the 

color SU (3) of quantum chromodynamks we seek a possibility that the condensation of these quarks 

gives rise to the dynamical breaking of the electroweak SU(2)xU( l ) gauge symmetry. The quantum 

numbers are assigned to the color-sextet quarks starting from some natural requirements. The mass of 

the color-sextet quarks is estimated by using the formula for the weak-boson masses. Phenomenological 

implications of the model are briefly discussed. 

In electroweak theory an elementary scalar field, 

the Higgs field, is introduced to trigger the sponta

neous breaking of the SU(2)xU( l ) gauge symmetry. 

As a result we have proliferation of free parameters 

in the basic Lagrangian. 

To resolve this unsatisfactory situation possible 

dynamical mechanisms of the electroweak symmetry 

breaking have been investigated in which the Higgs 

field is replaced by a bound state of some funda

mental entities. A typical example of such at tempts 

is the technicolor model proposed a decade ago by 

Weinberg 1 1 3 and Susskind. [ 2 } Another attractive 

model of this type is the top-quark condensation 

model proposed recently. 

Here we consider yet another model of the dy

namical electroweak symmetry breaking, i. e. the 

color-sextet-quark condensation model first proposed 

by Marciano.1*1 In this model it is assumed that 

there exist heavy quarks belonging to the higher-

dimensional representation of the color SU (3), The 

lightest of such heavy quarks is assumed to be the one 

in the 6-climensional representation which we call the 

color-sextet quark. Their condensates play the role 

of the Higgs field and are responsible for the elec

troweak symmetry breaking. 

We first determine quantum numbers of the 

color-sextet quarks. To do so we need some basic 

requirements fulfilled by these quarks Q. We require 

that 

1. Q belongs to 6 (or 6*) of the color SU (3), 

2. QQ condenses and behaves like a Higgs field 

in the standard theory, i.e. < QQ > ^ 0 and 

QQ ~SU(3) color-singlet, SU(2) doublet and 

Y = 1 where Y represents the hypercharge as

sociated with U( l ) , 

3. Q is not stable and decays into ordinary quarks 

and leptons. This requirement is necessary for 

our model to conform with present cosmologi-

cal observations, 

4. possible anomalies should be cancelled by 

adding a suitable number of extra fermions. 

Let us denote the quantum numbers of fermions par

ticipating in the electroweak theory by the symbol 

* The talk based on the work in collaboration with K. Fukazawa, M. Inoue, J. S ai to, I. Watanabe and ML Yonezawa to be 
published in Prog. Theor. Plvys. 85 (1991) No.l. The work is supported by Grant-in-Aid for Scientific Research from the 
Ministry of Education, Science and Culture under the contract numbers 63540221, 01302013 and 02044104. 
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(N,n,Y) where N and n represent the dimensions of 

the color SU(3) and weak SU(2) representation re

spectively. The color-sextet quark will be denoted 

by Qh where index h represents the handedness. 

Due to the requirement 1, we have Qh ~(6,n,Y) 

or (6*,n,Y). Here for later convenience we consider 

the case (6*,n,Y). The requirement 2 imposes the 

condition QkQh ~ ( 1,2,1) where k designates the 

handedness opposite to h so that, if h = £ (left-

handed), then k — R (right-handed) and vice versa. 

According to the above condition we find that 

Qk = (6*,n,Y), Q A = ( 6 * , n - l , y ± l ) . 

Although n ( è 2) is arbitrary, we fix the dimen

sion n to be 2, the simplest possible choice. Hence 

Q t = ( 6 * , 2 , n Q t = ( 6 * , l , y ± l ) . 

An information on Y may be obtained through 

the requirement 3. We assume that the decays of 

Q, and Qh take place through one of the following 

effective interactions (1) Q°qqq, (2) qQql0, (3) qQql 

and (4) Q°qG. After some arguments we find that 

the simplest possible choice of the quantum numbers 

for Qh with h = £ reads 

~ (6*, 2 ,1/3) for case (1) and (2), 

QL~ (6*,2,5/3) for case (3), 

QL~ ( 6 * , 2 , - 1 / 3 ) for case (4). 

The requirement 4 puts a condition on the num

ber of extra fermions needed to cancel anomalies. In 

case (1) and (2) we have two extra leptons, in case 

(3) ten leptons, and in case (4) two extra quarks. 

Hence the case (3) is unreal istic with too many ex

t ra leptons and the case (4) is unreasonable since the 

asymptotic freedom is spoiled. We shall consider ei

ther the case (1) or (2) in the following. The decision 

regarding which of these two cases is acceptable will 

be made by experimental observations. We write 

QL = {U,D)L. 

Our basic Lagrangian L is invariant under the 

local color SU(3) and electroweak SU(2) x U( 1) gauge 

transformations. In this Lagrangian terms consisting 

of the color-sextet quarks and extra heavy leptons are 

included in addition to those of the ordinary quarks 

and leptons, and the Higgs field is of course absent 

in the Lagrangian. 

The role of the Higgs field is assumed to .be 

played by a dynamically generated bound state QQ. 

We, however, do not have a precise knowledge of the 

mechanism to form the bound state. Possibly the 

strong color force due to the large quadratic Casimir 

invariant for color-sextet quarks may be responsible 

for this mechanism. 1 4 1 Instead of directly dealing 

with the dynamics in QCD we introduce effective 

four-fermion interaction terms 1 3 1 including the color-

sextet quarks to trigger the dynamical symmetry 

breaking. These four-fermion terms are constructed 

to be invariant under S U ( 3 ) x S U ( 2 ) x U ( l ) transfor

mations. Our basic Lagrangian now reads 

1 = LQCD + LEW + LA 

where ^QCD is the QCD Lagrangian in which the 

terms consisting of color-sextet quarks are included, 

LEW is the electroweak Lagrangian without the 

Higgs field, and £ is the four-fermion interaction 

Lagrangian. 

We assume that the four-fermion term consist

ing of the color-sextet quarks is the dominant term 

among others triggering the condensation of color-

sextet quarks. To see whether the condensation 

of color-sextet quarks takes place we examine the 

Schwinger-Dyson equation for the self-energy part of 

the color-sextet quark. If the Schwinger-Dyson equa

tion allows a nontrivial solution for the self-energy 

part, there occurs the condensation of color-sextet 

quarks that signals the dynamical breaking of the 

electroweak symmetry. 

An explicit solution may be obtained in the 

linearized version of the Schwinger-Dyson equation 

in the quenched planar approximation with the Hi-

gashijima trick 1 5 1 for incorporating the QCD run

ning coupling constant as. The solution for the self-

energy part E is given by 

E a ( * ) = ma{as{x)/as{ml))A/2i a = U , D< 

where x is the Euclidean momentum squared of the 
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color-sextet quark, mu and mD are the mass of 

the color-sextet quark U and D respectively and 

the exponent A is a numerical constant given by 

the quadratic Casimir invariant and the number of 

species of the triplet and sextet quarks. 

Once E is known, the vacuum expectation value 

of the composite operator QQ is calculated. Ac

cordingly all the ferminon masses a.re given by this 

vacuum expectation value through the four-fermion 

terms. At the same time the gauge boson masses 

mw and mz are given by 

mw = (l/2)gfjr+, mz = (1/2) vV + 9'2 /,., 

where / and are charged and neutral "pion" 

decay constants and g and g ' the SU(2) and U(l ) 

coupling constant respectively. Here / ^ + and / 0 

may be calculated in terms of the self-energy part 

of the color-sextet quarks. 1 6 1 Hence the gauge bo

son masses are calculated once the color-sextet quark 

masses are known. Or inverting the above mass 

formulae one may calculate the color- sextet quark 

masses in terms of the gauge boson masses. Thanks 

to the recent precise experimental da ta the color-

sextet quark masses are thus calculable. The pre

dicted masses are 

m [ / = 340 - 4 0 0 GeV, 

mD = 300 - 360 GeV, 

mt= 77 - 150 GeV. 

In the above estimate we assumed that the top quark 

can condense to give a minor contribution to the 

dynamical mass generation. We took into account 

the experimental constraint on the p parameter and 

the one-loop QCD running coupling constant is em

ployed where the scale parameter in the color-sextet 

mass region is obtained by using the Georgi-Politzer 

be ta function. 

Since the large Casimir invariant is assosiated 

with the color-sextet quarks, the e + e ~ cross section 

may show a big rise at the color-sextet production 

threshold-Is ~ 700 GeV. We may observe baryons 

of the type Qqq with mass around 350 GeV which 

is color-singlet where q is the ordinary quark. The 

lightest of the mesons has the configuration of Qqqq. 

The extraordinary hadrons of the configuration QGq 

may also be observed at around 350 GeV where G 

represents the gluon. The phenomenology with the 

color-sextet quarks with mass around 350 GeV seems 

to be an exciting new field. 
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DISCUSSION 

Q. P. O'Donnell (Univ. Toronto): Could you tell us 
about the lepton problem? 

A . T. M u t a : According to the requirement of the 
anomaly cancellation we need two extra lepton fam
ilies. Their masses cannot be very small due to the 
recent experimental analysis in LEP. If their masses 
are large (of order 100 GeV), then they contribute 
to the dynamical mass generation through our four-
fermion terms. Since their self-energy part is con
stant in our approximation, the contribution from 
the high energy region to the mass formula seems to 
be large. We are now in the process of reanalysing 
our estimation of masses. 
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LINEAR SIGMA MODEL IN ONE-LOOP ORDER 
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ABSTRACT 

Exploiting quark and meson loop tadpole graphs, it is shown that the linear 0* model in one-loop order 
naturally recovers the well-known chiral-limiting meson masses mff = 0 and m a = 2m q k . 

Gell-Mann and Levy's SU(2) linear or model 
[1] (LffM) originally treated nucléons, pions, and the 
a meson as elementary particles in the spontaneous 
chiral symmetry-broken lagrangian. In the chiral 
limit (CL) their conclusion was that 0" pions are 
massless mff « 0, while the 0+or mass could take 
on arbitrary values - at least in tree order. This 
LaM lagrangian involving nucléons was taken as 
the phenomenological final step - not to be 
reiterated via field theory into (unphysical) nucléon 
loop diagrams. 

By way of contrast, the competing four-
fermion chiral lagrangian studied a year later by 
Nambu and Jona-Lasinio [2] (NJL) treated fermions 
(now understood as nonstrange quarks) alone as 
elementary. Then qq pions and a mesons were 
realized as dynamical bound states with CL masses 

mff = 0 , mG « 2m q k , (1) 

(where m q k is the CL constituent quark mass) as 
computed in one-loop order in Hartree 
approximation. 

Since quarks are now assumed to be real 
objects (even if confined), it is natural to try to 
reformulate the LaM at the quark level. In this 
talk we follow the recent Ref. [3] and show that 
at the one-loop quark level the NJL meson masses 
(1) are also a consequence of the LcrM. But to 
begin, we start with the usual LaM spontaneous 
symmetry-broken lagrangian with vacuum 
expectation of the (old) scalar field (croId) « -fff. 
Shifting this field to a = aold + fff, the new 
minimum with (a) * 0 means that the interaction 
part of the LcrM lagrangian density 
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now breaks chiral symmetry dynamically. Here 0 
represents a quark field. While the second and 
third terms in (2) preserve chiral symmetry, the 
last # term in (2) breaks chiral symmetry via the 
quark mass occurring in the Goldberger-Treiman 

(GT) relation at the quark level 

We may treat (3a) as scaling the dimensionless 
meson-quark coupling constant in (2) to g ~ 3.5 for 
m q k * M N / 3 ~ 313 MeV and fff » 90 MeV in the 
C L . Also the first term in (2) breaks chiral 
symmetry when tr decays to 2n with amplitude 2g' 
and meson-meson coupling [1] 

in order that mff - 0 in tree order in the CL. 
Here we have used the NJL value ma « 2m q k ~ 
630 MeV to find a numerical estimate of g'. 

Proceeding to compute one-loop order graphs 
based on the LaM lagrangian (2) with coupling 
constants (3), we first study the CL pion decay 
constant obtained from the quark loop of Fig. 1 
when qn •+ 0 and with cr̂ p - (2?r)"4d4p, 

Fig. 1. Quark loop representation of fff. 

which, using (3a) is a log-divergent "gap equation"* 
[3]. Then computing the two quark loops for or -+ 
TT+TT in Fig. 2, we encounter the same log-
divergent integral as in (4) with CL scale 
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Fig. 2. Quark loop representation of g a 7 r j r 

It is not an accident that the two numerical values 
for g' in (3b) and (5) are the same. In fact, 
equating their analytical forms together with (3a) 
we obtain m a - 2m q k . This is the LorM one-loop 
level analog of the NJL result in (1). 

Recovery of the CL value mff = 0 in one-
loop order in the LcrM follows from analyzing the 
pion self-energy graphs of Figs. 3 and 4. The 
quark loop graphs of Fig. 3 proportional to color 
number N c are of the vacuum polarization (VP) 
and quark tadpole (qktad) type. In the CL with 
qn •+ 0 these pion amplitudes as generated by the 
LaM lagrangian (2) are 

Fig. 3. Quark loop contributions to pion self 
energy. 

While both amplitudes in (6) are quadratically 
divergent, their coefficients are of equal but 
opposite sign due to the chiral symmetry conditions 
of Eqs. (3). Thus we learn that the pion self-
energy generated by the quark loops of Fig. 3 
vanishes in the CL: 

M^ P + M» k t a d = 0 . (7) 

Fig. 4. Meson loop contributions to pion self 
energy. 

Likewise the meson loops generated in 
Figs. 4 by the LcrM lagrangian (2) give the CL 
pion self-energy part 

Using (3) and the partial fraction identity 
m^p- 2(p 2-m^)- 2 = (p 2 -m;)- 2 - p~2, the first log-
divergent integral in (8a) precisely cancels the 
difference of the two remaining quadratically-
divergent integrals in (8a). Thus we find in the 
CL 

Mmeson loops = 0 • $ D ) 

The sum of the (vanishing) pion self energies 
(7) and (8b) means that the entire pion mass 
vanishes in the CL to one-loop order in the LorM. 
Of course mff = 0 vanishes through all loop orders 
by virtue of the Goldstone theorem, but Eqs. (6)-(8) 
just give a LaM realization of this theorem in one-
loop order. 

We conclude that the one-loop CL Nambu 
relations m n = 0, m a = 2m q k in (1) not only follow 
in the NJL four-fermion model but also hold for 
the LaM when the elementary fermions are taken 
as quarks. Central to our approach are three one-
loop level tadpole diagrams in Figs. 3 and 4. 
Although these tadpole graphs are quadratically 
divergent, they are also intrinsically negative (for a 



propagator ~m~2 with zero momentum transfer to 
the tadpole). As such, these three tadpole graphs 
act as natural CL counter-term renormalizations. 

In passing we note that the one-loop 
equivalence of the LaM and the NJL model can be 
extended away from the CL mff # 0. In this case 
the VP amplitude of Fig. 3a becomes in the LaM 

Here m = m q k + m c u r is the nonstrange constituent 
quark mass and m c u r is the nonstrange current 
quark mass which is nonvanishing when mff * 0. 
Subtracting the CL M y P amplitude (6a) from the 

chiral-broken M V P amplitude (9) and assuming 
n i c u r « m then leads to the incremental self-energy 
shift [3] 

•5MV P = M V P - M^p « -(5/4)m2 + 4m c u r m q k . (10) 

Furthermore 5M k t a d + 6 M m e s o n l o o p s - 0 must be 
the case if the LaM matches the NJL model (it is 
numerically approximately valid). But because the 
net mass shift must be the entire (pion) chiral-
broken mass, SMyp « mj, Eq. (10) then predicts [3] 

m c u r « (9/16) m2/mq k a 34 MeV . (11) 

This same current mass also follows in the NJL 
model. For our CL quark mass m q k ~ 313 MeV, 
the meaning of (11) is that the total nonstrange 
constituent quark mass is 

m c o n - m q k + m c u r * (313+34) MeV ~ 347 MeV . (12) 

Such a constituent quark mass as (12) has long 
been obtained from magnetic moment [4] and from 
hyperfine splitting [5] quark models. 
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N u c l é o n Mass i n a Skyrmion L a g r a n g i a n 
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A b s t r a c t 
The s o l i t o n d e s c r i p t i o n o f t h e n u c l é o n i n n o n l i n e a r S-model w i t h gauge b o s o n s 

p r e d i c t s t o o l a r g e a mass f o r t h e n u c l é o n . I f t h e model i s s u p p l e m e n t e d by a quark s e c t o r , 
where l e f t and r i g h t quarks i n t e r a c t v i a a s c a l a r f i e l d , a c o n d e n s e d ground s t a t e can form. 
The s y s t e m can t h e n r e d u c e i t s t o t a l e n e r g y o r mass by a p h a s e t r a n s i t i o n . T h i s mechanism 
a l s o i m p l i e s a c o m p o s i t e s t r u c t u r e o f t h e n u c l é o n t h a t i s i n a c c o r d w i t h a n a l y s e s o f h i g h 
e n e r g y e l a s t i c s c a t t e r i n g . 

The n o n l i n e a r 6-model w i t h v e c t o r 
mesons 6) , f , ^ i n t r o d u c e d a s gauge 
b o s o n s d e s c r i b e s t h e n u c l é o n a s ç 
t o p o l o g i c a l s o l i t o n o r s k y r m i o n . 
B a r y o n i c c h a r g e i n t h i s mode l t u r n s o u t 
t o be t o p o l o g i c a l and t h e v e c t o r meson CO 
i s i d e n t i f i e d a s t h e gauge b o s o n c o u p l e d 
t o t h e b a r y o n i c c h a r g e . S t u d i e s by 
s e v e r a l g r o u p s h a v e shown t h a t t h e model 
works v e r y w e l l i n d e s c r i b i n g t h e l o w -
e n e r g y p r o p e r t i e s o f t h e n u c l é o n , but 
c o n s i s t e n t l y l e a d s t o a l a r g e mass o f t h e 
s o l i t o n 1500 MeV) compared w i t h t h e 
n u c l é o n mass o f 939 MeV. T h i s s u g g e s t s 
t h a t s o m e t h i n g b a s i c i s m i s s i n g i n t h e 
n o n l i n e a r 6 - m o d e l . We a d d r e s s t h i s 
q u e s t i o n . We a r e f u r t h e r m o t i v a t e d by 
p h e n o m e n o l o g i c a l a n a l y s e s o f pp^and pp 
h i g h e n e r g y e l a s t i c s c a t t e r i n g a t t h e 
CERN ISR and SPS C o l l i d e r , w h i c h appear 
t o s u p p o r t t h e n o n l i n e a r 6~~model . The 
a n a l y s e s h a v e shown t h a t t h e v e c t o r mesonk) 
b e h a v e s a s a s p i n - 1 e l e m e n t a r y b o s o n and 
p r o b e s a m a t t e r d e n s i t y d i s t r i b u t i o n 
i n s i d e t h e p r o t o n t h a t can be i n t e r p r e t e d 
a s a quark number d i s t r i b u t i o n . 

Our s t r a t e g y i s t o s t a r t w i t h t h e 
more g e n e r a l l i n e a r 6~-model , w h i c h has 
b e s i d e s a p s e u d o s c a l a r meson s e c t o r , a 
f e r m i o n o r quark s e c t o r , a s c a l a r f i e l d 
and an i n t e r a c t i o n b e t w e e n t h e f e r m i o n s 
v i a t h e s c a l a r f i e l d . U s i n g a p a t h 
i n t e g r a l f o r m u l a t i o n , we r e l a t e t h e 
f e r m i o n measure t o an i n v a r i a n t m e a s u r e 
and show t h a t t h e J a c o b i a n b e t w e e n t h e 
two m e a s u r e s can be i d e n t i f i e d a s 
e x p [ i f ^ z ] , where I ^ i s t h e Wess-Zumino 

a c t i o n . When i n t h e p s e u d o s c a l a r meson 
s e c t o r t h e s c a l a r f i e l d i s r e p l a c e d by 
i t s vacuum v a l u e f^, t h e model b r e a k s up 
i n t o two p a r t s . The p s e u d o s c a l a r p a r t o f 
t h e model becomes t h e n o n l i n e a r 6~-model . 
The o t h e r p a r t i n v o l v e s c h i r a l f e r m i o n s , 

t h e s c a l a r f i e l d and t h e i r i n t e r a c t i o n . 
We f i n d t h a t i f t h e s c a l a r f i e l d v a n i s h e s 
a t s m a l l r , b u t r i s e s s h a r p l y t o i t s 
vacuum v a l u e a t some R, t h e ground s t a t e 
e n e r g y o f t h e i n t e r a c t i n g q u a r k - s c a l a r 
f i e l d s y s t e m can be l o w e r than t h e ground 
s t a t e e n e r g y o f t h e n o n - i n t e r a c t i n g 
s y s t e m . The i n t e r a c t i o n b e t w e e n quarks 
and t h e s c a l a r f i e l d c a n , t h e r e f o r e , l e a d 
t o a c o n d e n s e d ground s t a t e o r vacuum, 
and t h e s y s t e m can r e d u c e i t s t o t a l 
e n e r g y o r mass by making a p h a s e 
t r a n s i t i o n s i m i l a r t o s u p e r c o n d u c t i v i t y . 

We c o n c l u d e : 1) C o n v e n t i o n a l 
n o n l i n e a r <T-model n e e d s t o be 
s u p p l e m e n t e d by a quark s e c t o r , where 
l e f t and r i g h t quarks i n t e r a c t v i a a 
s c a l a r f i e l d . 2 ) The s c a l a r f i e l d s h o u l d 
have a c r i t i c a l b e h a v i o r , s o t h a t a 
c o n d e n s e d vacuum can form and t h e s y s t e m 
can r e d u c e i t s e n e r g y by a p h a s e 
t r a n s i t i o n . 3 ) The n u c l é o n h a s a c o r e o f 
t o p o l o g i c a l b a r y o n i c c h a r g e , s u r r o u n d e d 
by a c o n d e n s e d vacuum o f z e r o b a r y o n i c 
c h a r g e . P r e c i s e l y t h e same p i c t u r e 
emerges from h i g h - e n e r g y e l a s t i c 
s c a t t e r i n g . 
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VACUUM QUANTIZATION AND LEPTON GENERATION 
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Abstract 

A theory of lepton generation is suggested. The theory consider the manifold of gauge group as a 

quantized physical field. This and the other principles result in the generation structure of lepton. We 

get the unified formulae for mass and life time of lepton generations. 

The fourth generation are proved to be forbidden by uncertainty principle. 

Semiclassically, the vacuum of gauge group 

has been studied for many years by many peo

ples. It led to the conclusion that vacuum can 

be classified according to the topological number 

n (winding number). As a quantum field theory 

we consider the group element U(x) as the wave 

field of group manifold and quantize it through 

the following equation (for SU2 case) 

where n = a + a , f / ( a + , a, U(x)) is the operator 

form of U(x). Equation (1) sets a correspon

dence between the winding number of homotopy 

theory and the particle number of quantum field 

theory. We get the general form of U 

U = PUÎ (2) 

where I is a c number. U\ is the group element 

of SU(2) with winding number n = 1. 

Now the Higgs field will be represented as 

the Yukawa coupling term between Higgs field 

and fermion in standard model gives a mass term 

estimated by causality principle in plane wave 

representation. We get 

where J = ^ {a = 3 x 10 1 0 ) , T 0 = 1 s e c If we 

assume r 0 = T 0 , then equation (5) gives the mass 

spectrum of lepton generation for which n = 0 

corresponds to (e, .v£), n = 1 corresponds to (/i, 

i/fi) and so on. 

It has been proved that (5) can satisfy the 

uncertainty principle Amn • rn > 1 only when 

n < 2.85. Thus we get the answer that why 

there is no fourth generation in nature^. 

The lepton number conservation is a topolo

gical deduction of our theory. Let us attach the 

winding number n (which is equivalent to lepton 

number) to each massive particle of correspond

ing generation and -n to its antiparticle. For 

the massless lepton v, we give the inverse as

signment. Then the following processes keep the 

total topology number n conservation. 

For a lepton with finite life time r B , the in

tegral domain V in (4) is different from the nor

malization volume (ft) and the former can be 

779 

Thus we give a topological interpretation for 

the lepton number conservation. 
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DISCUSSION 

Q. R. R. Volkasf?7mv. Melbourne): If a 4th genera
tion charged lepton were to exist, can yon predict its 
mass and lifetime? 

A . J. Tang: The mass and lifetime of the 4th genera
tion charged lepton can be predicted as 

m0(n = 3) ~ 100 GeV 

r n = 3 - 10" 2 0 sec 

But for further reason of our theory it actually 
cannot exist in nature. 
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Comments on the Renormalization of a Supersymmetric 
Nonlinear cr-Model in 2+1 Dimensions 
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In d = 2 + 1 the O(N) supersymmetric nonlinear 
(j-model (SSNSM) is defined by the action[l, 2] 

with the sum over the flavor index j running from 1 
to N. The superfield = Aj + O^j + \90Fj and the 
lagrange multiplier superfield S = a + 6( + ^66 a . 
In component form and upon elimination of the non-
propagating Fj, the lagrangian from (1) is 

It is now easy to see tha t a , £, and a are the 
respective lagrange multipliers for the constraints 
AjAj - N/g2, AjXJPj - 0, and AjFj = \^>^>j and a 
accounts for the ordinary nonlinear tf-model (NSM) 
sector, a accounts for the four-fermi sector, and £ 
accounts for the mixed sector[1, 2]. 

Integrating over the fields Aj and we obtain an 
effective action for the fields a , a , and £: 

This model exhibits two supersymmetric phases[2] 
but if we demonstrate 1/N renormalizability in one 
phase, renormalizability in the other phase immedi
ately follows since phase transitions are infra-red ef
fects. We thus discuss renormalization in the O(N)-

ss 
symmetric phase which is obtained by setting 
to zero at (a) — 0, (£) = 0, (a) ^ 0[1] and this yields 
a gap equation. This gap equation comes from the 
variation of Sefj w.r.t. a but the variation w.r.t. a 
is identically zero because of cancellations between 
fermion and boson loops. So there is no fine-tuning 
of the coupling in the four-fermi sector, in contrast 
to the four-fermi model by itself[4]. Also, because 
of SUSY, the fields a , cr, and £, and their induced 
propagators do not need any renormalization and 
the fine-tuning in the gap equation does not shift at 
higher orders [2]. These results are in contrast to the 
nonsupersymmetric NSM[3] and four-fermi model[4]. 
Moreover, the ordinary NSM is not BPHZ renormal-
izable but the SSNSM is[2], and we now briefly dis
cuss why this is so. 

In the symmetric phase, all N bosons (Ai, • • •, AN) 
and fermions (0 i , • • •, 4>N) acquire the same dynami
cal mass I (a) | so that SUSY is preserved. We perform 
the shifts a = a' + |(<r)|, and a ' = a + 2ma' , m = 
|((T)|, with (a') = (a) = 0 and expand 5 C / / in (3) 
about a' — 0 and a' = 0 to obtain the Feynman 
rules. 

It turns out [2] that cancellations between fermion 
and boson loops eliminate the linear and quadratic 
divergences for the next-to-leading order corrections 
to the boson propagator so that no A1- countert-
erms are induced and a wavefunction renormalization 
will eliminate all of the infinities. Likewise, at even 
higher orders, the divergences between the four-point 
functions completely cancel as do the divergences be
tween the six-point functions , and no Aj or A6- coun-
terterms are induced. All other higher order terms 
are either finite or they may be handled by standard 
BPHZ techniques which preserve SUSY [2]; this is 
not the case in the NSM. The reason for this is the 
presence of \^2A?- and (tyjAj in the lagrangian (2) 
lead to miraculous cancellations. In case of NSM, 
the only way to eliminate the A 2 , A 4 , and A 6 coun-
terterms so that they do not spoil the nonlinear con
straint and make the model inconsistent is to leave 
all graphs with external a lines unrenormalized[3]. 
Thus the NSM is not BPHZ renormalizable whereas 
the SSNSM is. This result is especially interesting 
since these models are not renormalizable in weak 
coupling pertubation theory. Details are contained 
in [2]. 
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