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Chapter 1

Introduction

The Standard Model of particle physics covers three of the four forces driving
the fundamental interactions in nature. While it does not treat gravity, it
describes the dynamics and interplay of the electromagnetic, the weak and
the strong force. The electromagnetic and weak sectors have been unified to
form the electroweak sector, whose crucial ingredient, the Higgs-Boson, has
been announced [1] only recently. Apart from the electroweak there is the
strong sector, which lies in the focus of this thesis.

The strong force acts on scales of the order of fermi (1 fm = 1×10−15m)
and binds its fundamental particles to compounds that form the matter we
are made of. The quantum field theory describing the strongly interacting
sector of the Standard Model of particle physics is Quantum Chromodynam-
ics (QCD)1. Its particle content are quarks and gluons, where each flavor of
the former is a Dirac spinor field in the fundamental representation, while
the latter are vector fields in the adjoint representation of the underlying
non-abelian gauge group SU(NC).

The coupling between quarks and gluons (as well as among the gluons
themselves) is not a constant, but varies with the energy scale – one says it
’runs‘. The running of the coupling is such that the phenomenon of asymp-
totic freedom arises, a statement that accounts for the fact that the coupling
strength becomes arbitrarily small at large energy scales, that is, at short
distances. In this ultraviolet (UV) regime, perturbation theory can be em-
ployed, as the coupling is sufficiently small to serve as a parameter suitable
for an expansion. At low energies however, the coupling grows strong and
a perturbative expansion eventually breaks down. The infrared (IR) regime
is thus only accessible through non-perturbative approaches. From a fun-
damental point of view there is no framework available so far that can be

1See [2] for the famous review article by W. Marciano and H. Pagels.
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2 CHAPTER 1. INTRODUCTION

employed to calculate QCD processes without limitations. Lattice calcula-
tions [3] are a very successful first principle tool to perform non-perturbative
calculations, however, due to the sign problem they are (so far) not capable of
probing the dense regime of QCD2. Complementary to lattice QCD there are
functional methods, which provide an exact3 non-perturbative framework for
QCD formulated in the continuum. In this thesis we employ such techniques.
We use Dyson-Schwinger equations (DSEs) [5, 6] to study a central object of
QCD – the fully dressed quark-gluon vertex. This vertex is a very important
quantity, needed as input for bound-state equations such as Bethe-Salpeter
[7] and Faddeev equations [8, 9, 10]. A former study [11] suggests also that,
by studying the vertex, one can get insights into two striking features of
QCD: the phenomena of confinement, see e.g. [3, 12], and dynamical chiral
symmetry breaking [13, 14, 15]. No objects with fractional charge have been
detected so far (see e.g. [16, 17, 18, 19]) and also gluons have not been ob-
served [20]. Color charge carrying degrees of freedom are confined to color
neutral compounds, which is in agreement with the fact that free quarks
are absent from the physical spectrum of QCD. Dynamical chiral symmetry
breaking on the other hand is a mechanism that provides a dynamical mass
contribution to the quarks. Confinement and dynamical symmetry breaking
might be eventually lost in certain regimes of the QCD phase diagram, which
is spanned by the µ-T plane, see Figure 1.1 for a sketch.

Even though the sketch might suggest that we have profound knowledge
on the actual structure of the phase diagram, we actually know only very
little about the real phase structure of QCD. A lot of experimental and
theoretical effort is put into studies of the phase diagram. Experiments like
the Relativistic Heavy Ion Collider (RHIC), the Large Hadron Collider (LHC)
and the Facility for Anti-protons and Ions Research (FAIR) that is currently
under construction are accompanied by various theoretical approaches to
probe the structure of strongly interacting matter. Relativistic heavy ion
collisions, as performed in these impressive experiments, provide insights
into the hot and dilute regime of the phase diagram. A laboratory for the
intermediately dense and cold regime is the interior of a neutron star. Even
though the interior is not directly observable, one can try to learn about the
inner structure of the star through observable quantities, such as its mass,
radius, temperature and rotation frequency [21, 22].

In this thesis we not only consider aspects of strong quark correlations in
the vacuum (that is, at the origin of the phase diagram depicted in Figure

2For a modern introduction to lattice QCD see the book of [4] .
3However, one has to truncate the system, carefully trying to maintain the parts that

are relevant for the physics that is to be described.
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Figure 1.1: A qualitative sketch of the QCD phase diagram that summarizes
possible scenarios of states of matter.

1.1), but also in the region that has been labeled as being the regime relevant
for neutron star physics. Let me introduce each problem briefly by outlining
the structure of this thesis.

In Chapter 2 we introduce basic aspects of QCD. The calculational tech-
niques employed in this work are introduced.

Chapter 3 is dedicated to the calculation of the fully dressed quark-gluon
vertex DSE in the Landau gauge, the main topic of this thesis. Due to the
considerable complexity of this study, this calculation is also implemented
by a fellow PhD student, which introduces a very high level of reliability of
our results. At the time of writing this thesis we have established a perfect
qualitative agreement of our solutions. We provide a full numerical solution
of the eight transverse dressing functions of the vertex, together with the
numerical solution of the two dressing functions of the quark propagator
DSE we coupled the vertex equation to. The Yang-Mills sector is covered
by employing parametrizations [23], as well as DSE results from a separate
calculation [24] for the ghost and gluon propagators, and a model for the
three-gluon vertex inspired by [25]. Our results are a big improvement of
earlier studies, where much more restrictive truncations have been imposed.
In a recent study [26], a similar analysis to ours is employed in the context of
bound state equations, but without a fully back-coupled vertex4. With the

4The focus of their study is the role of the vertex in bound state equations, so the vertex
solution is needed for complex momenta. A full back-coupling of all tensor structures would
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calculation we present here we lay the foundation for future studies on, or
based on a fully solved quark-gluon vertex in the Landau gauge. We discuss
the importance of the tensor structures of the vertex, which allows for an
improved truncation by taking less than 8 tensor structures into account.
We also provide a very detailed description of the numerical framework to
allow for a relatively easy reproduction of our approach.

Chapter 4 summarizes what we have done to calculate the analytic struc-
ture of Green’s functions. The ultimate goal is to evaluate the analytic
structure of the quark propagator DSE numerically. Even though there are
techniques on the market that are capable of obtaining the analytic proper-
ties within a parabola-shaped region that slightly extends into the time-like
regime [27], we develop and introduce a novel numerical technique that relies
on simple deformations of the integration contours and is – in principle –
not limited to a subset of complex Euclidean momenta. The calculations
are numerically quite demanding, thus a high level of parallelization is re-
quired, which we achieve by using graphics processing units (GPUs) and
hybrid CPU-GPU clusters. The method is developed by studying a (pertur-
bative) example of Yang-Mills theory that can be solved analytically. We
then apply the method to study scalar glueball operators (0++) at the Born
level, where the aim is to investigate the positivity properties for different
gluon propagator parametrizations. Finally, the extension of our method to
non perturbative treatment (such as DSEs) is addressed.

Chapter 5 is the section covering the part of this thesis which is dedicated
to the realm of non-vanishing chemical potential. There, we study inhomo-
geneous color superconducting phases that might be present in the interior
of neutron stars. In this scenario we study the Deformed Fermi Surface
(DFS) phase and discuss a possible instability of the phase. We furthermore
introduce and study the possibility of four-quark condensation in flavor-
asymmetric strongly coupled dense matter by investigating a SU(2)spin ×
SU(2)flavor toy model in the framework of exact renormalization group equa-
tions (ERGEs).

In Chapter 6 we provide a summary and point out future directions mo-
tivated by our findings. This chapter is followed by Acknowledgements, as
well as by various appendices providing further details of the calculations.

thus complicate their calculation tremendously.



Chapter 2

Theoretical background

In each of the following chapters we will give a short introduction to the
particular focus of the respective section. In this Chapter, we summarize
the most basic aspects of QCD and point out the relevance of what is being
discussed for the studies presented in this thesis.

2.1 Formulation of QCD

2.1.1 The QCD Lagrangian

The Lagrangian of QCD1 is given by

LQCD = ψ̄
(
−��D +m

)
ψ +

1

4
FµνF

µν

, (2.1)

where the ψ are the quark fields and Fµν is the Yang-Mills field strength
tensor given by

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν , (2.2)

where fabc are the structure constants of the gauge group and Aaµ are the
gauge fields2. The spin-1

2
fermion fields ψ transform under the fundamental

representation of the gauge group SU(NC), the gauge fields Aaµ transform

1In this thesis we work solely in Euclidean space, see Appendix A for definitions and
conventions.

2In Section 4 we investigate certain properties of a correlator constructed of two squares
of this field-strength tensor. This object is composed of gauge-fields only and corresponds
to a scalar glueball.
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6 CHAPTER 2. THEORETICAL BACKGROUND

under the adjoint representation. Even though in the QCD case the number
of colors NC is three3, we will keep it as a free parameter and introduce a
particular value when necessary. For the NC = 3 case, the quarks come in
three colors, and there are 32 − 1 = 8 gluons. The covariant derivative D is
given by

Dµ = ∂µ + igAµ, (2.3)

with

Aµ = Aaµt
a, (2.4)

and where the generators ta satisfy[
ta, tb

]
= ifabctc. (2.5)

In (2.1) and throughout this thesis we also use the Feynman slash nota-
tion, defined through

��D ≡ γµD
µ, (2.6)

where the Euclidean Gamma matrices γµ are given in Appendix A. The
covariant derivative establishes a link between the fermion fields to the gauge
fields via the coupling g.

2.1.2 The generating functional of QCD

One can define a generating functional by employing the Euclidean path-
integral formulation,

Z [η, η̄, j] = (2.7)ˆ
D
[
ψψ̄A

]
exp

{
−SQCD

[
ψ, ψ̄, A

]
+

ˆ
d4x

(
Aaµj

a
µ + η̄ψ + ψ̄η

)}
,

where the QCD action follows from the integral over the Lagrangian den-
sity (2.1) ,

SQCD
[
ψ, ψ̄, A

]
=

ˆ
d4x {LQCD} , (2.8)

3Evidence for NC = 3 in QCD is discussed in detail in [2].
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and where we have introduced Grassmann valued sources η and η̄ for the
fermion fields ψ̄ and ψ, as well as a source jaµ for the gauge fields Aaµ. By
performing functional derivatives with respect to the sources, one can derive
correlation functions of the theory.

2.1.3 Fixing the gauge

The necessity of gauge fixing arises due to the invariance of the action under
local transformations U (x), S [A] = S

[
AU
]
, where

AUµ (x) = U (x)Aµ (x)U † (x) +
i

g
(∂µU (x))U † (x) , (2.9)

and

U (x) = eigΘata . (2.10)

The integration over all gauge configurations in the path integral over-
counts gauge-equivalent configurations belonging to the same gauge orbit.
Only one representative per gauge orbit should be taken into account, thus
one has to find a way to implement this requirement. On the level of the
generating functional, one can perform the procedure proposed by Faddeev
and Popov [28], which gives rise to a modified generating functional,

Z [η, η̄, j, σ, σ̄] = (2.11)ˆ
D
[
ψψ̄Acc̄

]
exp

{
−SQCD

[
ψ, ψ̄, A

]
+

ˆ
d4x

(
Aaµj

a
µ + η̄ψ + ψ̄η

)}
× exp

{ˆ
d4x (σ̄c+ c̄σ)−

ˆ
d4x

((
∂µAµ

2ζ

)2

− i∂µc̄Dµc

)}
,

where the fields c and c̄ are the Grassmanian ghost fields, Dµ is the
covariant derivative and ζ is a gauge parameter. In this thesis we study
Green’s functions in the Landau gauge, which corresponds to a choice of ζ = 0
and implies ∂µAµ = 0. This gauge is particularly convenient, as it is a fixed
point with respect to renormalization, and it is a preferred gauge for Dyson-
Schwinger studies. Note that the Faddeev-Popov procedure still does not
completely isolate one representative per gauge orbit–there are still gauge-
equivalent configurations left, the Gribov copies [29]. Formally, one can view
the Faddeev-Popov procedure as introducing a hyper-plane in the space of
gauge field configurations. The representatives chosen by the procedure are
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the intersections of the gauge orbits with this hyper-plane. As a gauge orbit
might intersect the plane more than once, an over-counting arises. Further
restrictions have to be imposed in order to minimize the number of copies.
see e.g. [30, 31, 32] for a discussion.

2.1.4 Renormalization and regularization

Renormalization is a very important concept in quantum field theory. Loop
integrals in a quantum field theory can possess ultra violet (UV) divergences
when the cut-off of the loop momentum is taken to infinity. Physically, such
divergent loop integrals correspond to field-fluctuations which grow large on
short scales, eventually giving rise to ill-defined quantities in the correspond-
ing quantum field theoretical description. In order to render such a theory
meaningful one has to employ a renormalization scheme. In a renormalizable
theory this can be achieved by absorbing the divergences into the (unphys-
ical) bare parameters of the theory see e.g. the book of [33]. For a recent
study on how one can use Hopf-algebras to gain insights into the mechanisms
of renormalization see e.g. [34].

With the renormalized Becchi, Rouet, Stora and Tyutin (BRST) algebra
[35, 36] of the gauge fixed theory [37] we can proceed by considering the
renormalization procedure for our Lagrangian. We introduce renormalization
constants as follows,

Lq = (2.12)
Z2ψ̄ (−��∂µ + Zmmb)ψ − i g Z1F

(
ψ̄γµt

aψAaµ
)
,

where we restrict our consideration to the quark sector for simplicity.
Similarly one has to introduce further renormalization constants for the Yang-
Mills sector. As far as the quarks are concerned, we introduced the quark-
wave function renormalization constant Z2, a renormalization constant to
shift the bare mass mb to its physical value, as well as a renormalization
constant Z1F for the quark-gluon vertex. In our study of the quark gluon
vertex we also have to deal with the Yang-Mills sector, so in addition we
have the renormalization constants Z1, Z̃1 and Z̃3 in our truncation. In
Landau gauge one can employ Z̃1 = 1 [38], and we are left with the ghost
renormalization constant and the renormalization constant for the ghost-
gluon vertex. Using Slavnov-Taylor identities [38, 39] one can establish a
relation between the renormalization constants. In our calculation of the
quark-gluon vertex we will make use of that by employing
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Z1F =
Z2

Z̃3

, (2.13)

where the renormalization of the Yang-Mills system has to be such that
the overall procedure of renormalization imposed on the system is consistent.
In the study of the F 2 correlator in Chapter 4 we will also have to deal with
divergent loop integrals. There, however, we will regularize the expressions
using the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) prescription [40,
41, 42].

2.2 Positivity and confinement
In Chapter 4 we study correlators constructed from purely gluonic degrees of
freedom. One important ingredient for this study is the observation that we
use colored objects to form the correlator of squares of the Yang-Mills field
strength tensor. The correlator itself is then a color-neutral object, meaning
that the transition from absence of the ingredients to presence of the result
in the space of asymptotic states has to be manifest in our calculation some-
how. There are different scenarios of how confinement could be realized in
a quantum field theoretical framework4. One possibility to tell whether a
certain degree of freedom is absent from the space of asymptotic states is to
look for positivity violations that might spoil a probabilistic interpretation
through negative norm contributions5. Correlators with negative norm con-
tribution do not possess a Källén-Lehmann spectral representation [48, 49]
and are absent from the space of asymptotic states. In this sense, one can
consider them as being ’confined‘. Positivity violations of the gluons are evi-
dent from lattice studies [50, 51] and from functional studies [52, 53, 54]. For
a two-point function ∆(p2) of a spin-zero operator Φ we may write a spectral
representation,

∆(p2) =

ˆ
ddp

(2π)d
ei p·x〈Φ(x)Φ(0)〉 =

ˆ ∞
τ0

dτ
ρ(τ)

τ + z
, (2.14)

with τ0 the lowest energy that is possible for a state. The spectral density
ρ(p2) is related to the discontinuity of a branch cut,

ρ(p2) =
1

2 π i
lim
ε→0+

[∆(−p2 − i ε)−∆(−p2 + i ε)], (2.15)

4For summaries see e.g. [43, 44].
5In Minkowski space an axiomatic formulation of quantum field theory is provided by

the Wightman axioms [45]. For a Euclidean field theory, an axiomatic system analogous
to the Minkowski formulation has been defined [46, 47].
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with −p2 > τ0. Thus one can look for positivity violations of the spectral
function by extracting the discontinuity of the branch cut.

2.3 Functional methods

2.3.1 Dyson-Schwinger equations (DSEs)

Dyson-Schwinger equations [5, 6, 55] are the equations of motion of the
Green’s functions of a theory, see [56, 57, 58, 59] for reviews. They provide
an infinite tower of coupled equations for the n-point functions of the theory.
They are not limited to the weakly coupled regime, but can be employed to
study non-perturbative phenomena such as confinement and dynamical chi-
ral symmetry breaking. One big advantage as compared to lattice methods
is, that, as DSEs are formulated in the continuum, all scales are in principle
accessible. DSEs do not suffer from a sign problem, and also the chiral limit
can be studied easily. While the equations are exact once they have been
derived, one has to impose careful truncations on the system in order to solve
the equations.

DSEs follow from the observation that, with appropriate boundary con-
ditions, an integral over a derivative vanishes,

0 =

ˆ
D [φ]

δ

δφ
e−S+

´
dxφ(x)J(x) (2.16)

=

(
δS

δφ

[
δ

δJ

]
+ J

)
Z [J ] .

Differentiating this equation repeatedly with respect to the sources J , one
obtains an (infinite) set of recurrence relation between the n-point functions.
These are the Dyson-Schwinger equations, see [60, 61] for text books present-
ing the derivation.6 Let us discuss the necessity of truncating a DSE system
by considering the Yang-Mills system in the Landau gauge. The untruncated
DSEs for the Yang-Mills propagators, together with the DSE for the quark
propagator are depicted in Figure 2.1.

The system has to be truncated, that is, certain contributions are ne-
glected. In Figure 2.2 we show the truncated version of the system, where
we labeled the steps of the truncation with numbers. The quark-loop contri-
bution in the box labeled with ’1‘ corresponds to a quenched approximation.

6The derivation of DSEs can be quite technical, thus there are Mathematica packages
available that can perform DSE derivations [62] and even DSE and ERGE derivations [63]
automatically. Also a framework for solving DSEs is available [64].
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Figure 2.1: The DSEs of the Yang-Mills propagators, together with the DSE
for the quark propagator in Landau gauge. Wiggly lines correspond to gluons,
dotted lines to ghosts and solid lines to quarks.

The matter sector does not couple back onto the Yang-Mills sector, thus we
have also drawn a line between the two realms in Figure 2.2. The contri-
bution in box number 2, the tadpole, can be neglected as it only amounts
for an overall constant that can be removed by normalization. The last box,
labeled as ’3‘, are the two-loop terms, the sunset and the squint diagram.
As far as the infrared physics is concerned, these diagrams are sub-leading
in the Landau gauge and are also neglected. In our study of the quark-gluon
vertex we employ parametrizations of solutions of the Yang-Mills sector that
has been truncated in this fashion, where also an ansatz for the three-gluon
vertex has been employed.

The main subject of this thesis is a study of the coupled equations of the
quark-gluon vertex and the quark propagator Dyson-Schwinger equations.
As a starting point we take the study of [11]. There, the authors also studied
the quark-gluon vertex in quenched QCD in the Landau gauge. For the
quark-gluon vertex, there are two versions of the DSE, see Figures 2.3 and
2.4.

Without truncations, these two equations are equivalent. In our study of
the quark-gluon vertex we proceed in the same way as the authors in [11] by
employing a truncation for the quark-gluon vertex that resembles the second
versions of the DSE depicted in Figure 2.4, where all vertices are dressed
and where the last diagram is omitted. Such a truncation can be derived
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Figure 2.2: A truncation for the gluon propagator DSE, see text.

Figure 2.3: The DSE for the quark-gluon vertex.

Figure 2.4: The vertex DSE can also be written like this, where the external
gluon is coupled to a bare vertex.
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from a 3PI effective action [65]. Note that a similar truncation scheme has
also been employed in a very recent study on the quark-gluon vertex [26].
However, the great improvement of our study is that no fully back-coupled
vertex equation has been considered so far. In this thesis we provide the first
full solution of the vertex with all tensor structures taken into account.

2.3.2 Exact renormalization group equations (ERGEs)

Closely related to the functional integral equations of the DSE framework
are the exact renormalization group equations (ERGEs) [66], for reviews see
e.g. [67, 68]. They are functional differential equations and express the
change of the effective average action under variation of a regulator scale k.
One starts at an ultraviolet scale with the UV action S and can smoothly
run down to the quantum effective action in the infrared. In this sense, the
frameworks acts like a microscope, the scale being the magnification that
is driven from microscopic towards macroscopic scales. Consider the (scale
dependent) functional for connected Green’s functions,

Wk [J ] = (2.17)

ln

ˆ
D [χ] exp

{
−S [χ]−∆Sk [χ] +

ˆ
d4xJχ

}
,

where J are the sources and χ is a field. Hereby we have introduced a
modification as compared to the usual functional. We have implemented an
additional term ∆Sk [χ] that acts as an IR cut-off,

∆Sk [χ] =
1

2

ˆ
d4q

(2π)4 χ (−q)Rk (q)χ (q) . (2.18)

The function Rk (q) has to satisfy certain constraints. For a fixed q,
it has to vanish when k tends to zero, while it should go to infinity as k
goes to infinity (or to the UV cutoff scale). This ensures that the regulator
vanishes as k is taken to zero, giving rise to the full effective action. The
second requirement ensures that we obtain the initial action when the scale
is taken to infinity. As the regulator is quadratic in the fields, Fourier modes
of χ with q < k acquire a mass contribution. Contrary, for q � k, the
suppression of the regulator leaves the theory unchanged. It is thus evident
that it serves indeed as an infrared regulator. There are various choices of
regulator functions available, we will however employ an optimized regulator,
see [69, 70].
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Going back to the functional (2.17) we can perform a Legendre transform
to obtain the average action Γk [Ξ] ,

Γk [Ξ] = −∆Sk [Ξ]−Wk [J ] +

ˆ
d4q JΞ, (2.19)

where Ξ is the expectation value of χ,

Ξ = 〈χ〉 =
δWk [J ]

δJ
. (2.20)

Now we want to derive the flow equation. To this end it is helpful to
define

Γ̃k [Ξ] = Γk [Ξ] + ∆Sk [Ξ] . (2.21)

Plugging this into equation (2.19) we obtain

Γ̃k [Ξ] = −Wk [J ] +

ˆ
d4q JΞ. (2.22)

Performing a derivative with respect to k on the last expression, we find

∂

∂k
Γ̃k [Ξ] = (2.23)

−∂Wk

∂k
[J ]−

ˆ
d4q

(
δWk

δJ

)
︸ ︷︷ ︸

(2.20)
= Ξ

(
∂J

∂k

)
+

ˆ
d4qΞ

∂J

∂k

= −∂Wk

∂k
[J ] .

We can compute the derivative of Wk by looking at its definition in equa-
tion (2.17). As we perform the derivative with respect to the scale k, we
expect only a contribution from the regulator term we introduced above.
Thus we are left with

∂

∂k
Γ̃k [Ξ] = 〈 ∂

∂k
∆Sk [Ξ]〉 (2.24)

(2.18)
= 〈1

2

ˆ
d4p

ˆ
d4q χ (q)

∂

∂k
Rk (q, p)χ (p)〉,
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andRk (p, q) = Rk (q) δ (p− q) . From the functional for connected Green’s
functions we can derive a two-point function by performing two functional
derivatives with respect to the sources,

Gk (q, p) =
δWk

δJ (q) δJ (p)
, (2.25)

which can be decomposed according to

〈Ξ (q) Ξ (p)〉 = G (q, p) + 〈χ (q)〉〈χ (p)〉 (2.26)
(2.20)
= G (q, p) + Ξ (q) Ξ (p) .

This expression can now be used to introduce the two-point function in
equation (2.24),

∂

∂k
Γ̃k [Ξ] = 〈1

2

ˆ
d4p

ˆ
d4q χ (q)

∂

∂k
Rk (q, p)χ (p)〉 (2.27)

=
1

2

ˆ
d4p

ˆ
d4q

[
∂

∂k
Rk (q, p)G (q, p) + Ξ (q)

∂

∂k
Rk (q, p) Ξ (p)

]
=

1

2
Tr
[
G
∂

∂k
Rk

]
+

∂

∂k
∆Sk [Ξ] .

Now we can use the definition (2.21), as well as the fact that the Green’s
function G is the inverse of

[
Γ

(2)
k [Ξ] +Rk

]
, to write down the Wetterich

equation [66],

∂

∂k
Γk [Ξ] =

1

2
Tr
{(

Γ
(2)
k [Ξ] +Rk

)−1 ∂

∂k
Rk

}
. (2.28)

In Chapter 5 we will use this equation to study the possibility of four-
fermion condensation in strongly interacting asymmetric matter.

2.4 Bosonization
In Chapter 5 we have to bosonize a theory that features an eight-fermion
interaction term. To this end we use a Hubbard-Stratonovich transformation
[71, 72]. Here we introduce the procedure by discussing a simple example.
Consider some Lagrangian density L with a four-fermion interaction,
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L = ψ̄ (i��∂ −m0)ψ − g2

(
ψ̄ψ
)2
, (2.29)

such that the path integral reads

Z =

ˆ
D
[
ψ̄
]
D [ψ] exp

{
−
ˆ
d4xL

}
. (2.30)

The idea behind the Hubbard-Stratonovich transformation is to use the
observation that a bilinear appearing in the exponential function can be in-
terpreted as being the result of a Gaussian integral, i.e. for a one-dimensional
non-functional integral the relation

√
2π

m2
exp

{
g2b2

2m2

}
=

ˆ ∞
−∞

dx exp

{
−m

2

2
x2 − gbx

}
(2.31)

holds. Applying this observation to the more general case of functional
integrals we can remove the quartic term from the Lagrangian by introducing
a new scalar field ϕ with mass mϕ, together with a Yukawa coupling gY2 . The
couplings are related by

(
gY2
)2

2m2
ϕ

!
= g2. (2.32)

Applying this to the example above, we find

exp

{ˆ
dx g2

(
ψ̄ψ
)2
}

(2.33)

∝
ˆ

D [ϕ] exp

{
−
ˆ
dx
(
m2
ϕϕ

2 + gY2 ϕψ̄ψ
)}

,

where the proportional-symbol indicates that the constant factor has been
dropped7.

After the Hubbard-Stratonovich transformation we are left with

Z =

ˆ
D
[
ψ̄
]
D [ψ] D [ϕ] exp

{
−
ˆ
d4xLfree

}
(2.34)

× exp

{
−
ˆ
dx

(
m2
ϕ

2
ϕ2 + gY2 ϕψ̄ψ

)}
.

7Due to the normalization of physical correlators, this constant can be neglected.
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In Chapter 5 we have to apply this procedure once to bosonoize the eight-
fermion interaction, and two further times to bosonize the resulting terms
containing four fermions each. Further details on that particular case are
given in Chapter 5 and in Appendix I.
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Chapter 3

The fully dressed quark-gluon
vertex in the Landau gauge

3.1 Introduction

In this Chapter we present our study of the dressed quark-gluon vertex,
an object that has been in the focus of many studies in the past, see e.g.
[73, 74, 11, 75, 76, 26]. One motivation behind this study is to gain deeper
insights into a possible relation between dynamical chiral symmetry breaking
and confinement that might be manifest in the solutions to the vertex [11].
Another reason for this study is to obtain solutions to improve model build-
ing and to provide a minimum of tensor structures that have to be taken
into account to capture the relevant physics1, which is important for stud-
ies that need the quark-gluon vertex as an input. Furthermore, in studies of
QCD with a large number of fundamentally charged quark flavors, the quark-
gluon vertex has been identified to have an impact on the critical number
of fermion flavors above which the coupling forms a plateau [77, 78], which
also requires detailed knowledge of this Green’s function. We work in Lan-
dau gauge, using Dyson-Schwinger equations to perform the calculation in
the strongly coupled regime. The vertex is solved together with the Dyson-
Schwinger equation of the quark propagator, so we seek solutions for two
dressing functions depending on one variable for the propagator and eight
dressing functions depending on three Lorentz invariants for the eight trans-
verse structures of the quark-gluon vertex. The progress of this project has
been reported in conference proceedings [79, 80], a paper with our results is
in preparation. The calculation presented in this thesis is also implemented
by a fellow PhD student [81]. This is necessary, as the computation itself is

1This is related to the question of finding a suitable basis to span the vertex.

19
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quite involved, so a high level of reliability of our results is achieved by com-
paring the results of the two independent implementations. For a discussion
of the first comparison of our results, see Section 3.5.4 below. Further details
of this study will become available in [81], here we present some first qualita-
tive results. This chapter is organized as follows. In Section 3.2 we introduce
our truncation scheme. Different possibilities of basis systems are discussed
in Section 3.3, renormalization and a step-by-step guide of how to solve the
system are presented in Sections 3.4 and 3.5 respectively. Finally we present
our results in Section 3.6 and conclude. An alternative approach of how to
solve the coupled system of the quark-propagator and the quark-gluon vertex
DSE is presented in Appendix C.

3.2 The truncation scheme

3.2.1 The Yang-Mills sector

For the Yang-Mills propagators we used parametrizations [23], as well as a
discrete data set that has been obtained from a separate DSE calculation
provided by [24]. The discrete data set has been extended to an arbitrary
momentum range by matching the data set to an IR and UV solution, for
the intermediate regime we used cubic spline interpolation. The power laws
for the gluon and ghost dressings in the infrared are given by

Z (x) ∼ x2κ, (3.1)
G (x) ∼ x−κ, (3.2)

with κ = 93−
√

1202
98

. In order to get the renormalization procedure for the
whole system consistent, one has to be careful to adjust the renormalization
procedure according to the Yang-Mills input.

Furthermore, we need the three-gluon vertex as an input, see [25, 82, 83,
84, 85, 86, 87] for some recent studies. Here we are interested in obtaining
qualitative information on how important different tensor structures in the
quark-gluon vertex are. The actual model for the three-gluon vertex has
an impact on any quantitative prediction, but it does not alter the overall
picture of important tensor structures. For the results shown in this Chapter
we thus employed a model for the three gluon vertex where the tree-level
structure is multiplied by a function h which is given by2

2See [25] for details .
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Figure 3.1: Gluon and ghost dressing functions are needed as input.

h (x, y, z) =
h1

Z1

Z

(
x+ y + z

2

)−1−3δ

G

(
x+ y + z

2

)−2−6δ

, (3.3)

where we used Z1 = 1.01, δ = − 9
44

and where h1 is a constant that can
be adjusted to increase or reduce the strength provided by the three-gluon
vertex. The Yang-Mills sector also provides the renormalization constant Z̃3

which is needed to determine the renormalization constant Z1F below.

3.2.2 The truncated equations

The system of equations we treat throughout this chapter is shown in Figures
3.2 and 3.3. In our truncation, the quark-gluon vertex equation results from a
3PI effective action [65]. This truncation scheme has already been considered
and studied in [11], where the connection to the DSE for the quark-gluon
vertex is discussed in more detail (see also Chapter 2 for some remarks on
the truncation).

Apart from the tree-level structure there are two diagrams contributing
to the vertex equation, the ’abelian‘ and the ’non-abelian‘ diagram3. Note
that, contrary to a Dyson-Schwinger equation derived from a 1PI functional,
all vertices are dressed in this self-consistent integral equation. As a last

3The latter is called non-abelian because it contains a purely gluonic interaction vertex.
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Figure 3.2: The propagator Dyson-Schwinger equation.

Figure 3.3: The vertex equation in a 3PI formulation.

step in truncating the system we neglect the abelian diagram. On the one
hand, a leading order skeleton expansion shows that the abelian diagram is
suppressed dynamically. On the other hand, the color factors of the diagrams
are such that the abelian diagram is suppressed by a factor ofN2

C as compared
to the non-abelian diagram. This leaves us finally with the truncated system
we are about to solve, see Figure 3.4.

The truncated system is then given by the propagator equation shown in
Figure 3.2, together with the truncated vertex equation in a 3PI formulation
as shown in Figure 3.4.

Algebraically, the truncated propagator equation is given by

S (p)−1 = Z2S
−1
0 (p) (3.4)

−Z1Fg
2CP

ˆ
d4q

(2π)4γ
νS (q) Γµ (p, q; p · q)Dµν (p− q) ,

where CP =
N2
C−1

2NC
. The vertex is expanded in a certain basis, see Section

3.3 below. The vertex equation reads

Figure 3.4: Our truncation for the vertex equation.
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Γµ (p, q; p · q) = Z1Fγ
µ + g2CV

ˆ
d4w

(2π)4 Γρ (w, q;w · q)S (w) (3.5)

×Γν (p, w; p · w)Dνν′ (p− w) Γν
′ρ′µ (p, q, w, )Dρρ′ (w − q) ,

with CV = iNC
2

(see Section B.1.3). The coupling at the renormalization
point is introduced via the relation

α (s) =
g2

4π
. (3.6)

3.3 Choosing a basis
Throughout the calculation we use two different basis sets for the quark-gluon
vertex. One set is constructed such that it is orthonormal. This basis set
will be referred to as being the ’outer basis‘, as we will use it to update the
quark-gluon vertex dressing functions in each iteration. Internally, a second
basis set is employed. This set is not orthonormal and is used for every vertex
on the right hand side of the self-consistency equations. We call this basis
the ’inner basis‘. Both basis sets consist of eight transverse tensor structures.
In principle one could use the same basis for the outer and the inner vertices,
but this affects the number of terms in the integration kernels. The here
employed basis sets turned out to be a good choice for this study.

3.3.1 The outer basis of the vertex

The outer basis set is orthonormal and transverse with respect to the mo-
mentum of the gluon. It is constructed from the following elements,

1√
2
γµTT
sµ

dµ

⊗


1

�s

��d

�s��d

 , (3.7)

where the subscript TT stands for double-transverse (see below for an
explanation). The corresponding basis elements are summarized in Table
3.1.

The momentum dµis the normalized gluon momentum,

dµ =
∆µ

||∆µ||
, (3.8)
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τµ1 = 1√
2
γµTT τµ5 = i√

2�
sγµTT

τµ2 = i sµ1 τµ6 = �ss
µ

τµ3 = i√
2
��dγ

µ
TT τµ7 = 1√

2�
s��dγ

µ
TT

τµ4 = ��dsµ τµ8 = i �s��ds
µ

Table 3.1: The orthonormal basis of the quark gluon vertex, inspired by [88].

with ∆µ = pµ − qµ the gluon momentum. The momentum sµ is then
given by normalizing the ∆−transverse part of the average quark momentum
Ωµ = 1

2
(pµ + qµ),

sµ =
(δµν − dµdν) Ων

|| (δµν − dµdν) Ων ||
(3.9)

=
Ωµ − dµd · Ω
||Ωµ − dµd · Ω||

.

The subscript TT in γµTT is to indicate that this element is transverse to
both, the normalized gluon momentum dµ and the normalized average quark
momentum sµ, that is,

γµT := (δµν − dµdν) γν (3.10)
= γµ − dµ��d,

and

γµTT = (δµν − sµsν) γνT (3.11)
= γµT − s

µ (s.γT )

= γµ − dµ��d− sµ�s.

The relation of orthonormality is then given by

1

4
TrD

{
τ̄µi , τ

µ
j

}
= δij, (3.12)

where the bar indicates hermitean conjugation. The conjugate elements
are thus the same as the elements shown in Table 3.1, except that the ele-
ments number 2 and 7 acquire an additional minus sign.

3.3.2 The inner basis of the vertex

The inner basis is employed for every quark-gluon vertex that appears inter-
nally within another diagram, that is, in the quark self-energy and within the
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non-abelian diagram in our truncation. There is no reason to demand that
the inner basis fulfills an orthonormality relation. However, as we are inter-
ested in the transverse structure we take the same basis elements as before
but do not normalize them, nor do we make them transverse to the average
quark momentum. The elements of the internal basis are combinations of

γµT
sµ

dµ

⊗


1

�s

��d

�s��d

 . (3.13)

The elements of this basis are summarized in Table 3.2.

ρµ1 = γµT ρµ5 = i�sγ
µ
T

ρµ2 = i sµ1 ρµ6 = �ss
µ

ρµ3 = i��dγ
µ
T ρµ7 = �s��dγ

µ
T

ρµ4 = ��dsµ ρµ8 = i �s��ds
µ

Table 3.2: The inner basis of the quark gluon vertex.

As before, γµT is given by equation (3.10).

3.3.3 Change of basis

The basis systems are

Γµ (p, q; p · q) =
8∑
i=1

fi (p, q; p · q) τµi , (3.14)

and

Γµ (p, q; p · q) =
8∑
i=1

gi (p, q; p · q) ρµi , (3.15)

where the normalized momenta have to be expressed in the corresponding
Lorentz invariants. The change of basis is now readily computed. The rela-
tion between the dressing functions of the outer basis, fi, and the dressing
functions of the inner basis, gi, follows from evaluating

1

4
TrD

{
τ̄µi ,

8∑
j=1

fj (p, q; p · q) τµj

}
(3.16)

=
1

4
TrD

{
τ̄µi ,

8∑
j=1

gj (p, q; p · q) ρµj

}
.
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The left hand side of this equation yields fi (p, q; p · q) per construction,
while the right hand side can be evaluated either by hand or by using e.g.
FORM [89]. Evaluating the right hand side of (3.16) one finds for the desired
dressings gi (p, q; p · q)

gi =
1√
2
fi for i ∈ {1, 3, 5, 7} , (3.17)

g2 = f2 −
1√
2
f5, (3.18)

g4 = f4 +
1√
2
f7, (3.19)

g6 = f6 −
1√
2
f1, (3.20)

g8 = f8 +
1√
2
f3. (3.21)

3.4 Renormalization
The renormalization of the system is performed by employing a momentum
subtraction (MOM) scheme for the propagator, the vertex is renormalized
by using the Slavnov-Taylor identity, as we will detail below. The quark
propagator has two dressing functions, A and B, see Figure A.1. The formal
structure of the decoupled self-consistent integral equations is given by

A = Z2 + Z1FΣA, (3.22)
B = Z2Zmm0 + Z1FΣB, (3.23)

with ΣA,B the self energy parts. In the following, a subscript s means
that the corresponding quantity has to be taken at the renormalization point
s. The renormalized dressing functions A and B are then given by

A = As︸︷︷︸
=1

+Z1F (ΣA − ΣA,s) (3.24)

= 1 + Z1F (ΣA − ΣA,s) ,

B = Bs︸︷︷︸
=m0

+Z1F (ΣB − ΣB,s) (3.25)

= m0 + Z1F (ΣB − ΣB,s) ,
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where we used the renormalization conditions that the dressing func-
tions A and B should acquire a value of 1 and m0 at the renormalization
point respectively. The renormalization constant Z1F is determined via the
Slavnov-Taylor identity,

Z1F =
Z2

Z̃3

, (3.26)

and is also used for the vertex equation.

3.5 Solving the system

This section is meant as an instruction manual of how the system of the
propagator equation and the vertex equation can be solved. Many aspects
of the procedure are further detailed in Appendix B, such that the compu-
tation can be reproduced if desired. Note that this calculation is presented
for non-parallel execution. Once the single core code has been written and
tested, one can parallelize it as discussed below. Running as one thread on
a standard desktop computer, the system converges within a couple of hours
with reasonable precision.

3.5.1 Preparational steps

We want to solve the coupled integral equations (3.4) and (3.5). The propa-
gators and vertices are defined as shown in Figures A.1 and A.2, so we have
ten integral equations to solve. Two correspond to the propagator dressings
A and B, the remaining eight equations correspond to the vertex. For the
vertex on the right hand side of equation (3.4) we employ the basis system
(3.15) for the vertex. The same basis is also used for the two quark-gluon
vertices on the right hand side of the vertex equation (3.5). On the left hand
side of equation (3.5) however, we use the orthonormal basis system given
by equation (3.14). As a first step, one has to find the equations for A and
B. To this end, we perform the projections

PA =
1

4
TrD

{
i�p

p2
◦
}
, (3.27)

PB =
1

4
TrD {◦} , (3.28)
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on both sides of equation (3.4), where ◦ has to be replaced by either the
left or the right hand side of (3.4) respectively. For the vertex equation we
perform a similar procedure, this time using

Pfi = 1
4
TrD {τ̄µi ◦} , (3.29)

which gives rise to eight equations corresponding to the eight dressing
functions in the orthonormal basis fi (p, q; p · q) . The Lorentz contractions
and Dirac traces are conveniently computed using FORM [89], where the
number of terms can be reduced considerably if the gluon momenta in the
non-abelian diagram are abbreviated by introducing new variables, uµ =
wµ − qµ and vµ = pµ − wµ. A further reduction is possible by using the
transverse projected three-gluon vertex, see Section B.1.4 for details on this
step.

3.5.2 Numerical strategy

In this section we briefly discuss the numerical strategy we used to solve
the system of DSEs. For all angles appearing in the system of equations we
use nodes and weights according to a quadrature based on Gauss-Chebyshev
polynomials of the second kind [90]4. For the radial grid however, we em-
ploy two different grids that have no coinciding nodes5 Having different grids
externally and internally provides numerical stability, as numerically patho-
logical points are removed in an elegant way, see Section J.1 of Appendix J
for details.

Using different integration grids for external and internal nodes makes
it clear that we have to interpolate the quark-propagator and the quark-
gluon vertex throughout the calculation. The internal grid is applied for the
loop momenta q and w, see (3.4) and (3.5), where the former is the loop
momentum of the quark self-energy, the latter the loop momentum of the
non-abelian diagram. The propagators are evaluated at the external grid-
points and are interpolated at the values of the internal grid using cubic
spline interpolation. Employing cubic splines adds global information to the
system, as the functions are expected to be smooth in the end. For the vertex
we have to deal with the same situation, only that we have two external grids,
one for the square of the momentum p and one for the square of q. One could
use bi-cubic spline interpolation here, and in fact we use this technique to
calculate the output once the system has converged to the desired level of
accuracy – however, throughout the iteration the necessity of splining both

4For this study, 8 angular nodes are sufficient
5This procedure has been suggested by Richard Williams.

http://inspirehep.net/author/profile/R.Williams.3
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external vertex grids at the same time does not arise, as the left vertex in
the non-abelian diagram has one external leg with momentum q2 and the
right vertex has one external leg with momentum p2. Also in the quark-self
energy there is one leg which only requires external information. It is thus
sufficient to use one-dimensional cubic splines to spline-interpolate at values
of w2, one time for the left leg and one time for the right leg of the vertex.

3.5.3 Parallelization

Designing the system as discussed above provides also a setting that is suit-
able for a hybrid CPU-GPU based parallelization. One can use MPI threads
for coarse graining the external grids of both, the propagator and the ver-
tex equation and use GPUs to operate on the internal grids. A parallelized
implementation will become available at [81].

3.5.4 Validity of the results

This calculation has been implemented also by a fellow PhD student [81].
At the time of writing this thesis we established agreement for a defined set
of parameters, up to a small overall shift of our solutions. The eight vertex
dressings and the propagator are however in perfect qualitative agreement.
We present the numerical solutions of the fully dressed quark-gluon vertex,
an analysis of the importance of the structures, as well as solutions that have
been obtained with a reduced set of tensor structures below.

3.6 Numerical results

Here we present the numerical results that have been obtained following the
procedures described in Section 3.5 and Appendix B.

3.6.1 Solution with all eight tensor structures

In the following we present the solution of the coupled system of the fully
dressed quark-gluon vertex and the quark propagator. We see dynamical
chiral symmetry breaking as indicated by the mass function acquiring a non-
zero value in the infrared. In this truncation and with our numerical approach
we do not see a scaling behavior of the vertex. The fact that the system
decouples in the infrared might be due to numerical reasons. This issue is
definitely an interesting subject for future studies. We proceed by presenting
solutions of the system with a reduced set of tensor structures and show the
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Figure 3.5: The solution of the quark-propagator dressing functions with all
8 vertex dressing functions taken into account, leading to dynamical chiral
symmetry breaking as indicated by the mass function. The mass function is
obtained from M (x) = B(x)

A(x)
. The parameters of this and all the other runs

are given in the main text.

impact of the various basis elements on the dressing functions of the vertex
and the propagator. The calculations in this section have been performed in
the chiral limit with an IR cut-off of 10−4 GeV2, an UV cut-off of 5×104 GeV2,
where we used the last node as renormalization point. For this calculation we
used 32 external nodes and 93 internal integration nodes, as well as 8 angular
nodes for all angles. The value of the coupling at the renormalization point
has been put to αs = 0.1, and the renormalization constant Z1F = 1. The
three-gluon vertex has been modeled by equation (3.3). In Figure 3.5 we
show the solution of the quark-propagator dressing functions with all vertex
dressings taken into account. In Figures 3.6 and 3.7 we show the solutions
of the chirally symmetric and anti-symmetric tensor structures of the vertex
at the kinematic points where the squares of the external momenta are equal
and where the cosine of the angle between them vanishes6.

6In fact, almost vanishes, as we evaluate the expression at the angular node that is
closest to zero. With 8 second-kind Gauss-Chebyshev quadrature nodes this is around
z = ±0.1736.



3.6. NUMERICAL RESULTS 31

Figure 3.6: The full solution of the four dressing functions going with the
chirally symmetric tensor structures.

Figure 3.7: The full solution of the four dressing functions going with the
chirally anti-symmetric tensor structures.
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3.6.2 Solutions with one tensor structure removed

In this section we provide solutions of the system where one tensor structure
has been removed. By doing that we can see the effect of individual tensor
structures on the system. The tree-level structure ρµi = γµT is kept in all
reduced systems. For every solution with {gi} \gj, j ∈ [2, 8] , where the gi
are the dressing functions of the basis elements summarized in Table 3.2,
we show the chirally symmetric and anti-symmetric dressing functions of the
quark-gluon vertex. Additionally, the propagator dressing functions 1/A and
M are shown as an inset-plot in the anti-symmetric solutions. In all plots we
show the full solution given by thin solid lines with symbols marking the node
positions. The dashed and dashed-dotted lines correspond to the solutions of
the reduced system. All runs have been made using 32 external radial nodes
distributed according to J.1 over a range given by an IR cut-off of 10−4 GeV2

and an UV cut-off of 5× 104 GeV2. We used 3 intermediate Gauss-Legendre
nodes for every interval with neighboring external nodes, such that we have
3 × (32− 1) = 93 internal integration nodes. The renormalization point
used for this calculation is 5 × 104 GeV2. All plots have been generated for
p2 = q2 and p · q = 0, and represent just one slice of the three-dimensional
array. Qualitative insights into the effects of removing structures can still be
observed, in particular also the effect on the propagator dressings. A quan-
titative analysis of the effect of removing tensor structures will be presented
in a paper on the quark-gluon vertex, as well as in [81], where the effect on
the pion decay constant and the chiral condensate will be studied.

3.6.3 Solution with three tensor structures removed

The analysis of the importance of the tensor structures suggests that we can
at least neglect three structures, namely ρµ5 , ρ

µ
6 and ρµ8 , see Figures 3.14, 3.15,

3.16, 3.17, 3.20 and 3.21. The solutions of the dressings with the reduced
system are shown in Figures 3.22 and 3.23.

3.7 Conclusions
In this Chapter we presented solutions of the fully dressed quark-gluon vertex,
coupled to the quark propagator Dyson-Schwinger equation. The propaga-
tor acquires a dynamical mass. The eight vertex dressings show a decoupling
behavior in our numerical implementation. This behavior has to be inves-
tigated more closely in future studies. We investigated the impact of the
tensor structures on the solution of the reduced system. We found two ten-
sor structures to be negligible, the elements ρµ5 and ρµ8 . They cause only very
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Figure 3.8: Chirally symmetric solutions of the vertex without ρµ2 . Neglect-
ing this structure leads to some overshooting of the tree-level structure, the
remaining solutions are practically on top of each other.

Figure 3.9: Chirally anti-symmetric solutions of the vertex without ρµ2 . Only
minor deviations can be found when the second structure is neglected. The
mass generation (see inset plot of 1/A and M) is close to the one of the full
solution.
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Figure 3.10: Chirally symmetric solutions of the vertex without ρµ3 . Ne-
glecting the third structure leads to a significant shift in the dressings of the
other tensor structures.

Figure 3.11: Chirally anti-symmetric solutions of the vertex without ρµ3 .
Without the third structure, no mass is generated (see inset plot of propa-
gator), so it has to be taken into account.
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Figure 3.12: Chirally symmetric solutions of the vertex without ρµ4 . The
effect is a slight shift in most of the remaining dressings.

Figure 3.13: Chirally anti-symmetric solutions of the vertex without ρµ4 . All
remaining structures are shifted when neglecting the fourth dressing. The
dynamical mass overshoots its original value by almost 100 percent.
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Figure 3.14: Chirally symmetric solutions of the vertex without ρµ5 . This
structure can safely be neglected, as there is no visible effect from removing
it.

Figure 3.15: Chirally anti-symmetric solutions of the vertex without ρµ5 . The
solution is practically unchanged when the fifth structure is removed. Also
the propagator dressings are on top of each other.
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Figure 3.16: Chirally symmetric solutions of the vertex without ρµ6 . This
structure can safely be neglected, as there is no visible effect from removing
it.

Figure 3.17: Chirally anti-symmetric solutions of the vertex without ρµ6 .
There is a small effect on the propagator dressing functions visible.
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Figure 3.18: Chirally symmetric solutions of the vertex without ρµ7 . This
structure has to be taken into account.

Figure 3.19: Chirally anti-symmetric solutions of the vertex without ρµ7 . All
dressings respond to the removal of this structure.
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Figure 3.20: Chirally symmetric solutions of the vertex without ρµ8 . This
structure can safely be neglected, as there is no visible effect from removing
it.

Figure 3.21: Chirally anti-symmetric solutions of the vertex without ρµ8 .
Like the fifth structure, this basis element can be neglected.
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Figure 3.22: Chirally symmetric solutions of the vertex without structures
ρµ5 , ρ

µ
6 and ρµ8 .

Figure 3.23: Chirally anti-symmetric solutions of the vertex without struc-
tures ρµ5 , ρ

µ
6 and ρµ8 . Even with only 5 structures left, the system produces

results that deviate only slightly from the full solution.
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slight deviations from the full result. Depending on the desired level of ac-
curacy one might also neglect another tensor structure, namely the element
ρµ6 . Also ρ

µ
2 does not have a huge impact and might also be neglected. Next

we will have to establish full quantitative agreement of our two independent
solutions and quantify the qualitative discussion presented in this section.
Another interesting aspect for future studies is to investigate the impact of
the three-gluon vertex on the solution. Reducing the system to the four most
important tensor structures might also make non-vacuum calculations feasi-
ble, and one could also try to include the reduced vertex in the study of the
complex quark propagator discussed in Section 4.6 of Chapter 4.



42 CHAPTER 3. QUARK-GLUON VERTEX



Chapter 4

The analytic structure of Green’s
functions

4.1 Introduction

This chapter is dedicated to the computation of the analytic structure of
Green’s functions in Euclidean space. Over the years, various attempts of
calculating the analytic structure of fermionic Green’s functions have been
made, see [91, 92, 93, 94, 52] for a not complete list of studies throughout the
last decades. The constant interest in this field is not surprising, as the an-
alytic structure of Green’s functions plays an important role in bound state
equations such as the Bethe-Salpeter equation (BSE). Additionally, studying
the analytic structure of fundamental Green’s functions is a very interesting
subject on its own, as the notion of reflexion positivity provides a simple
mechanism of confinement by expelling degrees of freedom that violate this
property from the space of physical states. Here we are interested in calcu-
lating the analytic properties of the Landau gauge quark propagator DSE
numerically. Only very recently, a study on this subject has been published
[95]. However, we try to not restrict the area of evaluation to a parabolic
region, but we are aiming at solving the quark propagator for arbitrary com-
plex external momenta. Such an investigation has also become available for
the gluon propagator recently, where the authors solved the gluon Dyson-
Schwinger equation in the complex plane [54]. In order to compute the
analytic structure of the quark propagator, the analyticity properties of the
quark-gluon vertex will play an important role. In [96], the authors consider
the coupled system of the quark and quark-gluon vertex DSE for complex
Euclidean momenta1, where they employ a numerical method developed in

1See also [26] for a very recent study.

43
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[27]. For a study performed in Minkowski space see e.g. [97].
This Chapter is organized as follows. First we introduce our numerical

technique and apply it to perturbative Yang-Mills one-loop studies, see Ap-
pendix F and Sections 4.2, 4.4, 4.52. In Section 4.6 we discuss a possible
extension of the method to non-perturbative self-consistent integral equa-
tions. The major difference as compared to the perturbative case is, that
the location of the poles induced by the quark propagator are not known a
priori. As these poles play a decisive role in the determination of the actual
form of the contour deformation, we have to find a way to address this issue
in order to get the deformation right. The numerical setting is also more
demanding as in the perturbative case. In order to make up for the increas-
ing numerical effort, we developed a hybrid parallelization framework using
CPUs and GPUs. While the framework is already set up and tested, the
computation of the analytic structure of the quark propagator DSE is still
work in progress by the time of writing this thesis.

4.2 A test case for the numerical procedure

The aim of this section is to provide the numerical framework that we devel-
oped in order to cope with the problems arising throughout the calculations
of perturbative one-loop amplitudes in the complex plane of squares of the
external momentum. The advantage of studying perturbative expressions
before considering non-perturbative quantities lies in the fact that the an-
alytic structure of the integrand of the loop integral can be fully analyzed,
which allows for the development of contour deformations without having to
deal with the problem that the actual structure of the integrand is not known
beforehand3, as it is the case for the dressed quark propagator showing up in
the quark self-energy of the propagator DSE. In order to perform high accu-
racy calculations for a reasonable number of x-points4 in the complex plane
(x = p2, the square of the external momentum) we use GPUs for paralleliza-
tion. As a test case, we use equation (32) of [100], which is a correlator that
can be computed analytically in the complex plane. The calculation and the
result is presented in [100]. Here we will use their result as a test case for our
numerical procedure, whose most general form is described in Appendix F.
Furthermore we will use this example to explicitly work out each of the steps
of the procedure, such that the interested reader can apply it to a suitable

2The perturbative method and an application have been published in [98, 99]
3This issue will be addressed below when we discuss the extension of the method to

non-perturbative treatment.
4We used 1282, 2562 and 5122 lattices in the complex plane.
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problem.
The correlator of the test example is given by

G
(
p2
)

=

ˆ
dDk

(2π)4

1

(p− k)2 − i
√

2θ2

1

k2 + i
√

2θ2
. (4.1)

In Ref. [100] they show, that in four Euclidean dimensions, with the
choice of 2

√
2θ2 = 1, the solution of the (regularized) correlator (4.1) takes

the form

Gsub (x) =
1

16π2

(
1− π

2x
+

√
1− x2

x
arccos (x)

)
. (4.2)

The aim is to obtain this result employing our numerical procedure, where
we furthermore rescale the result such that the trivial pre-factor is gone,

Gsub,rescaled (x) =

(
1− π

2x
+

√
1− x2

x
arccos (x)

)
. (4.3)

Now we can elaborate each of the steps outlined in Appendix F.

4.2.1 STEP 1 (A): Hyper-spherical coordinates

We have to evaluate (16π2) × [Eq. (4.1)] for D = 4 and with 2
√

2θ2 = 1.
Switching to hyper-spherical coordinates using equation (A.7), we get

Grescaled (x) =
16π2

(2π)3

ˆ ∞
0

dy y

ˆ 1

−1

dz
√

1− z2 (4.4)

× 1(
x+ y − 2

√
x
√
yz − i

2

) 1(
y + i

2

)
4.2.2 STEP 2 (A): Regularization

The superficial degree of divergence follows from equation (4.1) with D = 4.
The integral measure yields four powers in the loop momentum k, and the
propagators yield -2 powers in k each, such that we are left with a superficial
degree of divergence s = 4 − 4 = 0. The integral diverges logarithmically.
Using equations (F.4) and (F.5) we construct the regularized integrand,
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Fsub

(
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√
x
√
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√
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(4.5)
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) .
With this integrand the correlator becomes

Grescaled (x) =
2

π

ˆ ∞
0

dy y

ˆ 1

−1

dz
√

1− z2 (4.6)

×
−x+ 2

√
x
√
yz(

x+ y − 2
√
x
√
yz − i

2

) (
y2 + 1

4

) ,
where we also canceled the trivial pre-factor.

4.2.3 STEP 3 (A,N): Analysis of the integrand

In this step we have to determine the analytic structure in the complex plane
of the radial integration variable, induced by the angular integral. First, let
us follow the procedure outlined in Appendix D. With the definitions

Grescaled (x) =
2

π

ˆ ∞
0

dy
y(

y2 + 1
4

)︸ ︷︷ ︸
A

(4.7)

×
ˆ 1

−1

dz
√

1− z2
−x+ 2

√
x
√
yz(

x+ y − 2
√
x
√
yz − i

2

)︸ ︷︷ ︸
B

,

we see that A features two poles in the complex y−plane at y = ± i
2
.

The angular integral B induces a branch cut in the y-plane. Following the
analytic approach first, we look at the denominator (now again expressed in
terms of momenta p and k) in search for all values of k such that

p2 + k2 − 2pk cos θ1 −
i

2
= 0 (4.8)
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is satisfied. We find two redundant solutions for this equation, which can
be used as a parametrization for the branch cut,

ξ̃
(
p2, θ1

)
= p cos θ1 ±

√
−p2 sin θ1 +

i

2
, 0 ≤ θ1 ≤ π. (4.9)

As we have found the solution with respect to k, the parametrizations of
the branch cut in the complex plane of the radial momentum square, y, is
given by

ξ
(
p2, θ1

)
=

(√
p2 cos θ1 ±

√
−p2 sin θ1 +

i

2

)2

, 0 ≤ θ1 ≤ π. (4.10)

We have found complex conjugate poles, as well as a branch-cut in the
complex y-plane, where the pole information can be read off term A of equa-
tion (4.7), while the branch cut parametrization is given by equation (4.10).
We also performed this analysis numerically, where we used again GPUs to
evaluate the angular integral for a given value of x with high precision. Figure
4.1 shows that we find perfect agreement with the analytic prediction.

Now we have to work out the restrictions imposed on the contour by this
branch cut. In this case it turns out that there is a parabola shaped region in
the complex plane of x where no contour deformation is necessary, see Figure
4.2.

It is convenient to split the complex plane into regions where different
classes of contour deformations are employed. Region 1 does not need any
deformation, so we only have to find contour deformations for the regions 2
to 5.

• Region 2 and 5

– C(2,5),1 : 0 ≤ t ≤ 1
C(2,5),1(t) = 15t exp{i arg(x)}

– C(2,5),2 : 1 ≤ t ≤ 2
C(2,5),2(t) = 15(2− t) exp{i arg(x)} − (1− t)Λ2

• Region 3

– C3,1 : 0 ≤ t ≤ 1
C3,1(t) = t0.4i

– C3,2 : 1 ≤ t ≤ 2
C3,2(t) = 0.1(sin((2− t)π) + i(cos((2− t)π) + 5))
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Figure 4.1: The analytic structure in the complex y-plane for given x ∈ C.
The solid lines are visualizations of equation (4.10), the density plot in the
background has been obtained numerically on a GPU. The arrow running
from the origin along the positive real axis represents the undeformed radial
integration contour. Only in the upper left plot the contour is not affected
by the branch cut.
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Figure 4.2: In the parabolic region one can keep the contour undeformed,
while in the region outside of the parabola the contour has to be modified.

Figure 4.3: The complex plane is split into regions where different classes of
contour deformations are employed.
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– C3,3 : 2 ≤ t ≤ 3
C3,3(t) = (3− t)(0.6i)− (2− t)13 exp{i arg(x)}

– C3,4 : 3 ≤ t ≤ 4
C3,4(t) = (4− t)13 exp{i arg(x)} − (3− t)(−20 + 18i)

– C3,5 : 4 ≤ t ≤ 5
C3,5(t) = (4− t)(−20 + 18i)− (3− t)Λ2

• Region 4

– C4,1 : 0 ≤ t ≤ 1
C4,1(t) = −t0.4i

– C4,2 : 1 ≤ t ≤ 2
C4,2(t) = 0.1(sin((t− 2)π − π) + i(cos((t− 2)π − π)− 5))

– C4,3 : 2 ≤ t ≤ 3
C4,3(t) = (3− t)(−0.6i)− (2− t)13 exp{i arg(x)}

– C4,4 : 3 ≤ t ≤ 4
C4,4(t) = (4− t)13 exp{i arg(x)} − (3− t)(−20− 18i)

– C4,5 : 4 ≤ t ≤ 5
C4,5(t) = (4− t)(−20− 18i)− (3− t)Λ2

Figures 4.4 to 4.6 show examples of contours in this regions5.

4.2.4 STEP 4 (N): Initialization

For this test case we used a discrete lattice for the complex values of x of
size 1282. We restricted the region in the complex plane to −5 ≤ <x ≤ 5
and −5 ≤ =x ≤ 5. The discrete points are equally distributed over the
these intervals. This preparation step is performed on a GPU, where the
complex matrix is filled with the discretized x values. Patches in multiples
of the warp size6 are executed in parallel on the GPU. In this preparation
step, but also for the actual evaluation, each thread running on the GPU
operates on one point of the external grid only. The fact that blocks can be
2-dimensional quantities allows for a straight-forward mapping of the threads
to the grid-points. A perturbative integral in the complex plane is a perfect
candidate for parallelization on a GPU, as there is no communication be-
tween the individual threads required. One could also use multiple GPUs,

5Two dimensional animations of the contours moving with the external parameter x
can be found on the DVD enclosed to this thesis. For a short description of the movies
see Appendix K.

6See e.g. [98] for a brief discussion of GPU programming.



4.2. A TEST CASE FOR THE NUMERICAL PROCEDURE 51

Figure 4.4: The dots are poles, the circular line is the branch cut. The
contour is composed of straight line segments. Left: Contour deformations
employed in regions 2 and 5. Right: This point lies within the parabola, so
one could also keep the contour undeformed.

Figure 4.5: The dots are poles, the circular line is the branch cut. The contour
is composed of straight line segments. Left: Contour deformation employed
in region 3. Right: The pole is avoided by a small circular deformation.
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Figure 4.6: The dots are poles, the circular line is the branch cut. The
contour is composed of straight line segments. Left: Contour deformations
employed in region 4. Right: Again the pole is avoided by a small circular
deformation.

as we employ for the non-perturbative case. There, however, communication
becomes important.

4.2.5 STEP 5 (N): Evaluation

This is the final step of the procedure. For each value in the matrix that
has been constructed in the previous step, a dynamically adjusted contour is
computed by a thread on the GPU. As before, each thread operates on one
entry only and performs the integrations, where the radial integration now
runs along the appropriate contour. As always we use non-adaptive Gaussian
quadrature rules to perform the numerical integration. For visualization, we
processed the data using Mathematica.

4.2.6 Numerical results

In Figures 4.7 and 4.8 we show the results of our computation. The solid
plots show the exact solution (4.3), the blue dots are the numerical solutions
on a 1282 grid. Running times on the GPU are summarized in Table 4.1.
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Figure 4.7: The imaginary part of the solution. The solid plot corresponds
to the exact solution (4.3), the blue dots have been obtained numerically by
employing our algorithm on a GPU.

Figure 4.8: The real part of the solution. The solid plot corresponds to
the exact solution (4.3), the blue dots have been obtained numerically by
employing our algorithm on a GPU.
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Intel CPU NVIDIA GPU
Device Xeon X5650 GTX 550 Ti GTX 480 Tesla C2070
Runtime 252m 2s 6m21s 4m21s 2m38s

Speedup (A) 1 ≈ 39.6 ≈ 57.9 ≈ 95.5
Speedup (B) 1 ≈ 3.3 ≈ 4.9 ≈ 8.1

Table 4.1: Comparison of running times on various GPUs. In case ’A‘ we
compared the GPU running time against one thread running on the Xeon
CPU. This is however a quite unfair comparison, so we included case ’B‘,
where we use the one-thread data and adapted it to 2× 6 = 12 hypothetical
threads running on the 6 cores of the Xeon using Hyper-Threading.

4.2.7 Conclusions

The procedure outlined above, as well as the results of the test case depicted
in Figures 4.7 and 4.8 show that we have developed a framework that allows
for fast and reliable numerical calculations of the analytic structure of Green’s
functions. If a higher level of parallelization is sought, one can easily extend
the procedure to use multiple GPUs, as we employ for the non–perturbative
case. Even though the test case can be solved without the need of any
numerics, it still features all the non-trivial obstacles typically arising in this
kind of calculations. This particular test case is a very valuable opportunity
for a comparison, as it allowed us to learn how to cope with the obstructive
structures arising in the radial integrand. The method is now ready to use
and has been published in [98].

4.3 Scalar glueball operators at the Born level

In Section 4.2 we proved the validity of our numerical approach that evalu-
ates correlators perturbatively at one-loop level in the complex plane. Now
we want to apply this procedure to a case that cannot be solved analytically.
While still operating at the perturbative level, we are interested in calculating
the analytic structure of a correlator of two Yang-Mills field strength tensor
squares, 〈F 2 (x)F 2 (0)〉, which corresponds to a scalar glueball. Details of
this study can be found in [99, 101]. Glueballs are studied in a variety of
approaches, for a review see e.g. [102]. The expression of the momentum
space operator corresponding to the F 2 correlator in d Euclidean dimensions
is presented in [100]. In Appendix G however, we give an explicit deriva-
tion for the expression and re-obtain the result of [100]. The d-dimensional
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expression at the Born level reads

O
(
p2
)

=

ˆ
ddk

(2π)d
G
(
k2
)
G
(
(p− k)2) (k2 (p− k)2 + (d− 2) (k · (p− k))2) ,

(4.11)

where

〈F 2(x)F 2(0)〉d =

ˆ
ddp

(2π)4 exp {i p · x}Od

(
p2
)
. (4.12)

Born level means, that throughout the construction of O (p2) we com-
pletely neglect the presence of the non-abelian term in the field strength
tensor. The functions G (p2) are the scalar parts of the gluon propagators
we plug into the expression,

Dµν(p
2) =

(
δµν −

pµpν
p2

)
G (p2). (4.13)

The transverse projectors of the gluons have been absorbed throughout
the construction of the expression. Even though the self-interacting part
of the field strength tensor is missing, we are now in the comfortable posi-
tion that we can use non-perturbative gluonic expressions as an input. The
advantage of being able to do that is at least two-fold. On the one hand,
using fits to non-perturbatively obtained gluon propagators introduces some
amount of self interaction again, such that from this point of view one might
consider this framework as being semi-perturbative. On the other hand, as
we are interested in using positivity violation as a signature of ’confinement‘7
here, so we use positivity violating parametrizations as an input. The con-
struction should then take care of producing a positivity respecting quantity,
which is an interesting thing to observe. In the following we study the two-
dimensional and the four-dimensional case, where we use two different types
of parametrizations for the gluon propagators in the latter case.

4.4 The analytic structure of F 2 in two dimen-
sions

We start by considering the two-dimensional case, because in two dimensions
the expression corresponding to the correlator diverges only quadratically,

7By this we just mean that degrees of freedom possessing negative norm contributions
are absent from the space of asymptotic states.
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Figure 4.9: Imaginary part of the solution of (4.12) using (4.14) as an input.
There are two branch-cuts (one lies behind the peaked structure).

allowing for an easier treatment. The two-dimensional case features only one
type of solution, whose infrared parametrization reads [52]

G (p2) = w
1

p2

(
p2

p2 + Λ2

)1+2κ

, (4.14)

with κ = 0.2 [103]. The value κ = 0 has also been considered and ex-
cluded by [104]. The parametrization (4.14) reproduces lattice data [105, 106]
and solutions from functional methods [104] with w = 1.065 and Λ = 1 GeV.
However, we used the 4-dimensional parameters w = 2.5 and Λ = 0.51 GeV
also for the two dimensional case, which allows for easier comparison. UV
and mid-momentum deviations are small and irrelevant for this study. Us-
ing Cutkosky cut-rules [107], one expects a branch cut at the position x =
−1.04 GeV2. However, the cut-rules are not exactly applicable in this sce-
nario, see for example [108]. Nevertheless we can perform the analysis out-
lined in Appendix E to predict the position of the branch-point. This analysis
confirms the point x = −1.04 GeV2 as a branch point, however, we find an
additional branch point at x = −Λ2 = −0.2601 GeV2.

4.4.1 Numerical results

Performing the numerics on a GPU, we obtain the results shown in Figures
4.9 and 4.10.
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Figure 4.10: Real part of the solution of (4.12) using (4.14) as an input.

There are two branch cuts showing up in the solution, as predicted by the
analysis of the integrand. One starts at x1 = −1.04 GeV2 and runs towards
<x → ∞. The other cut has an opposite discontinuity and opens at x2 =
−0.26 GeV2, running towards the first branch point x1. The discontinuity
has been extracted and is shown in Figure 4.11. The peaked structure located
at x1 is also shown as a density plot in Figure 4.12.

4.4.2 Conclusions

The extraction of the analytic structure of the two dimensional case only
served as a technical test case for to prepare the numerics for the four di-
mensional investigation. Interestingly, we get an additional branch cut of
finite length in this case. The origin of this cut might be some truncation
artifact. The remaining branch cut gives rise to a negative spectral density,
signaling the absence of the computed quantity from the asymptotic state
space. This is of course expected, as in two dimensions there are no glueballs
present. The resolution of the branch points however worked well and the
calculation produced smooth and trustable results. We can thus move on to
the physically more interesting four dimensional case.
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Figure 4.11: The discontinuity of the 2-dimensional case. There are two
branch cuts present, see main text.

Figure 4.12: A density plot of the peaked structure that arises in the 2-
dimensional case around x1 = −1.04 GeV2.
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4.5 The analytic structure of F 2 in four dimen-
sions

4.5.1 Decoupling propagator

Let us start the discussion of the four dimensional case by considering prop-
agators of the decoupling-type first. From the functional equation point of
view, there are two solutions to the gluon propagator, depending on the
chosen boundary conditions of the equations [53]. There are solutions of the
decoupling type [53, 109, 110, 111, 112] and the scaling type [53, 113, 114, 25],
see also [115, 116, 31] for reviews on the subject. At zero momentum, the
decoupling solution acquires a non-vanishing value, such that G (0)−1 serves
as a screening mass. The scaling solution, on the other hand, vanishes like
(p2)

2κ−1 in the infrared, where κ = 0.595353[103, 117].
A decoupling fit of the form

G (p2) ∼ 1/(p2 +m2), (4.15)

featuring a constant mass is not suitable for reproducing lattice data
[118, 119]. The introduction of a mass with momentum dependence, i.e.
m→ m (p2), leads to better results. A model for the IR part of m (p2)reads

m2(p2) =
m4

0

p2 +m2
0

, (4.16)

see [120], where also terms with the correct UV behavior are presented.
In the Refined Gribov Zwanziger (RGZ) framework, more parameters are
needed due to the dimension two condensates, see [121, 122]. A suitable
fit-form reproducing lattice data is given by [123]

G (p2) = C
p2 + s

p4 + u2p2 + t2
. (4.17)

The fit eq. (4.15) with (4.16) is contained in this more general expression
when choosing s = u2 = t = m2

0. For our study, we used the parameters
summarized in Table 4.2.

Here we only employ and investigate the fit (4.17), but we do not work
with the RGZ action8. A similar propagator has been used in a recent study

8If we did, we would get mixing between the F 2 operator with other operators [124].
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C [1] s
[
GeV2

]
t
[
GeV2

]
u [GeV]

0.784 2.508 0.72 0.768

Table 4.2: The parameters for the fit (4.17), see [123].

Figure 4.13: The imaginary part of the obstructive structure in the complex
y-plane for an external momentum square x=-2+2i. The lines are cuts, dots
correspond to poles. This parametrization has been obtained analytically,
following the prescription in Appendix D.

and allowed for a pole mass extraction via bubble-resummation within the
toy-model [125].

The decoupling case turned out to be rather complicated, as the numerical
evaluation has to be performed very carefully. Following the steps of the
procedure outlined in Appendix F, we have to perform a thorough analysis
of the analytic structure of the radial integrand. As shown in Appendix D,
branch cuts show up in the complex plane of the radial integration variable
y. In the particular case of a propagator of the form (4.17), we find two
branch cuts and a pair of complex conjugate poles in the complex y-plane.
The exact shape and location of these non-analyticities has been extracted
analytically, as well as numerically, see Figures 4.13 and 4.14.

Knowing the obstructive structure is most important, as the contours
have to be adjusted in order to avoid them. They also allow for a prediction
of where to expect the branch points of the result, see Appendix E for the
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Figure 4.14: The imaginary part of the obstructive structure in the complex
y-plane for an external momentum square x=-2+2i. This solution has been
obtained by solving the angular integral for 1282 values of y ∈ C numerically
using a GPU. The obtained structure perfectly coincides with the one shown
in Figure 4.13.

procedure. One can also employ the Cutkosky cut-rules. From the previous
analysis we know that there are poles located at

k2
1,2 = −0.29± 0.66 i. (4.18)

Taking these values to Minkowski space, we can use

(√
−k2

i +
√
−k2

j

)2

, (4.19)

to predict the branch-points. Hereby i and j are either 1 or 2. Taking
the result back to Euclidean space, one obtains a branch point located at
x1 = −2.03 GeV2 for i 6= j. For i = j, there are two solutions, x2,3 =
−1.18 ± i2.63 GeV2. The latter cuts are considered as being unphysical, as
they spoil the possibility to write down a spectral representation9. However,
strictly speaking we used the cut rules for a situation where they are not
applicable. However, we find agreement with the cut-rule based result when
we employ the procedure of Appendix E. The result of our analysis is shown
in Figures 4.15, 4.16 and 4.17.

9This was one of the motivations for the introduction of the so-called i-particles in
[100].
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Figure 4.15: This configuration gives rise to the physical branch cut (lines).
The poles are depicted as dots. Even though one might think that a contour
connecting the origin with the UV cutoff can be obtained by continuous
deformation from the axis, this is not the case, because regardless of whether
the contour is closed above or below, one always picks up the residue of one
of the poles. The external value for this situation is x = −2.03GeV2.

Figure 4.16: The configuration in the y-plane for x = −1.18 − 2.7i. Lines
correspond to cuts, dots to poles. Also this value of x corresponds to a branch
point of the overall expression.
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Figure 4.17: The complex conjugate situation of 4.16.

There are three 3d-movies concerning the obstructive structure and the
branch-point locations of the overall expression on the DVD enclosed to this
thesis, see Appendix K for a short description of the movies.

4.5.2 Numerical results: Decoupling propagator

The obstructive structure of the decoupling propagator fit we employed made
it quite hard to produce a robust result numerically. We succeeded in getting
smooth results, however, the branch point locations were very hard to resolve
and led to a bad numerical signature for smaller values of x. In Figures
4.18 and 4.19 we show the imaginary and real part of the F 2 correlator
using decoupling fits as input. All three branch cuts are clearly visible.
Despite the bad resolution of the branch points, which causes a small dip to
negative values of the discontinuity of the physical cut, the spectral density
corresponding to the physical cut is positive everywhere, see Figure 4.20.

4.5.3 Scaling propagator

In the infrared, a four dimensional fit to the scaling propagator is given by
[52]

G (p2) = w
1

p2

(
p2

p2 + Λ2

)2κ

, (4.20)



64 CHAPTER 4. ANALYTIC STRUCTURE

Figure 4.18: The imaginary part of the solution using a RGZ propagator
fit. There are two unphysical cuts, as well as a physical cut in the solution.
The branch point resolution is very bad, as the obstructive structure in the
complex y-plane gives rise to a very noise numerical signal.

Figure 4.19: The real part of the solution using a RGZ propagator fit as
input.
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Figure 4.20: The discontinuity of the physical cut shown in Figure 4.18. Due
to numerical issues, the discontinuity becomes negative in the beginning and
rises too early, that is, the branch cut is expected to open much later.

with κ = 0.595353 [103, 117]. Here we neglected the UV part of the
parametrization, as we are solely interested in the non-perturbative part of
the propagator. The absence of the UV tail is also an advantage from a
numerical point of view, as there is less structure to deal with. For the
parameters in the fit we took w = 2.5 and Λ = 0.51 GeV. The obstructive
structure arising in the complex y-plane can be avoided easily in the scaling
case, such that the numerics is well under control for that case. The expected
branch cut opening at x = 1.04 GeV2 was nicely reproduced.

4.5.4 Numerical results: Scaling propagator

The results of the F 2 correlator using scaling propagators as an input are
shown in Figures 4.21 and 4.22.

The discontinuity of the branch cut gives rise to a positive definite spectral
density, see Figure 4.23.

4.5.5 Conclusions

As a non-trivial application of the numerical technique developed in Ap-
pendix F and Section 4.2 we studied the analytic structure of an operator
corresponding to the correlator of two Yang-Mills field strength squares in
four Euclidean dimensions at the Born level. Expressing the operator in
terms of scalar gluonic input allowed us to investigate the analytic struc-
ture of this expression depending on the parametrization (fit) of the gluon
propagator. We studied parametrizations of the ’decoupling‘ and ’scaling‘
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Figure 4.21: The imaginary part of the F 2 correlator with scaling propagators
as input. As expected, a branch cut opens at x = 1.04 GeV2.

Figure 4.22: The real part of the F 2 correlator with scaling input.
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Figure 4.23: The discontinuity of the branch cut arising in the scaling case,
leading to a positive definite spectral density.

type. The former leads to an analytic structure that features two unphysical
branch cuts in addition to one that can be considered being physical, while
in the latter case only a physical branch cut remains. There are no poles
signaling the glueball mass, as we are operating solely at the Born level. In
both cases we used positivity violating gluon input, which spoils a probabilis-
tic interpretation and can be understood as an indication for the absence of
these two-point functions from the asymptotic state space. After convolving
the gluon input to calculate the F 2 correlator, we find physical cuts whose
discontinuities give rise to positive definite spectral densities in both cases.
The composite object respects positivity and is thus, at least by this simple
argument, not removed from the physical subspace. Note that for the decou-
pling fit, two additional unphysical branch cuts are present10. Even though
one might argue that these unphysical contributions might be canceled once
higher order contributions are taken into account, it could still be interpreted
as a shortcoming of the proposed fit form employed for this propagator. This
statement is also supported by a recent study, where the analytic structure
of the gluon propagator has been calculated non-perturbatively by solving
the gluon DSE in the complex plane [54].

After a successful test (Section 4.2) and application (Section 4.3) of our
method we are now ready to go one step further and extend the procedure
such that it is suitable for non-perturbative investigations.

10See [100] for how to cure this issue.
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Figure 4.24: The discretized complex external momentum plane close to the
origin.

4.6 The analytic structure of the quark propa-
gator

4.6.1 The numerical method

As in the perturbative case, we have to discretize the plane of external com-
plex momenta, which from now on will be referred to as the x-plane. In
the perturbative case it was sufficient to restrict the calculation to complex
momenta to the region of interest. For the DSE approach however, this does
not apply anymore. Here we have to choose a mapping from the complex
numbers to the discretized x-plane, C→ X, in a way that allows for a high
resolution in the infrared, while the node density in the ultraviolet is less
important. A further constraint is, that the (discretized) real axis should be
a subset of the discretized x-plane, including the origin11. In our setting, the
grid is constructed such that it features a Gauss-Legendre node distribution12
in real and imaginary direction. Figure 4.24 shows a closeup of the (loga-
rithmically mapped) density of the external complex momentum nodes close
to the origin. Note that the discretized real axis is a subset of the discrete
x-plane.

The overall structure of the grid is shown in Figure 4.25.
As we will use Gauss-Legendre quadrature integrators to perform the

11We solve the real-axis DSE in a separate computation and compare it against the
complex calculation. This provides at least some check for the numerics, as in the complex
study the real axis solution is computed as any other point in the complex plane, involving
the full machinery of deformations.

12See [90] for the Gauss-Chebyshev quadrature.
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Figure 4.25: The discretized plane of complex external momenta, see text for
explanation.

radial part of the integration, the grid features nodes corresponding to the
roots of the Legendre polynomials on the interval [0,Λ2], where ngl nodes
are used. The grid points are then remapped in a way to provide a better
resolution of the infrared region. After generating the nodes on the real axis,
the nodes are flipped and assigned to the negative real half axis. As we
want the grid to feature an even number of nodes along its two dimensions,
the grid ends one node below the cutoff at negative values. Then the same
procedure is applied to the imaginary axis, where again the negative half-axis
features one node less than the positive half axis. Thus we are left with a
matrix X ∈ M (n× n,C) , n = 2 ngl. This matrix provides the values of
where A and B are to be evaluated. Thus, the dressing functions A and B
are matrices in the same space, and the usual real-valued solutions A(x ∈ R)
and B(x ∈ R) are contained within them. An absolutely crucial ingredient of
the method is the way of interpolating the data. Here we perform a complex
bi-cubic spline interpolation, see Section J.3 of Appendix J for details on
our routine. Apart from the non-analytic points expected to show up in the
solution, A and B are smooth functions. Using bi-cubic spline interpolation
implements this information in our calculation. Test calculations showed
that the level of resolution increases tremendously by using bi-cubic splines.
With this technique we can deform the contours in the complex plane (and
thus also in the matrices A and B), using a very high resolution along the
radial integration contours.

The main problem in the non-perturbative case is, that the structure of
the integrand changes throughout the iteration steps. To account for that,
we start the iterations by guessing the deformation of the contours. Here
the experience with the perturbative integrals is very helpful, as it allowed
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us to gain some insight in the generic features of obstructive structures. A
standard deformation would thus be to start integrating into the direction
of arg (x), before closing the contour above (Quadrant I and II) or below
(Quadrant III and IV). The occurrence of complex conjugate poles at some
values x0 ,(x̄0), can then be read off from the solution, as their position is
indicated by numerical noise starting at angles equal or larger than arg(x0).
Additionally we take ’snapshots‘ of the y-plane every couple of iterations to
check on the dynamically generated obstructive structures, re-adjusting the
contours if necessary.

4.6.2 The truncated quark DSE

The ansatz for the inverse quark propagator is

S−1 (p) = −i�p A
(
p2
)

+B
(
p2
)

(4.21)

and the quark propagator becomes

S (p) =
i�p A (p2) +B (p2)

p2A2 (p2) +B2 (p2)
. (4.22)

The bare inverse quark propagator is

S−1
0

(
p2
)

= Z2 (−i�p+ Zmm0) , (4.23)

and the free Landau gauge gluon propagator reads

Dµν
free (p) =

1

p2

(
δµν − pµpν

p2

)
. (4.24)

The rainbow truncated quark propagator DSE is then given by

S−1 (p) = S−1
0 (p) + Z1Fg

2N
2
C − 1

2NC

ˆ
d4q

(2π)4

[
Z
(
(p− q)2)

× (p− q)2Dµν
free (p− q) γµS (q) γν

]
, (4.25)

where we already dealt with the color space, and Z is the gluon dressing
function. In order to solve the equation numerically, we have to isolate the
quark propagator dressing functions A and B. As before, we apply (3.27)
and (3.28) to both sides of equation (4.25). The traces are taken in Dirac
space. The decoupled equations are then



4.6. ANALYTIC STRUCTURE OF THE QUARK PROPAGATOR 71

A
(
p2
)

= Z2 +
Z1Fg

2

p2

N2
C − 1

2NC

ˆ
d4q

(2π)4

[
Z
(
(p− q)2)

(p− q)2

× A(q2)

q2A2(q2) +B2(q2)

((
−2p2q2 (4.26)

+p.q
(
p2 + q2

))
+ 2p.q

)]
,

B
(
p2
)

= Z2Zmm0 + Z1Fg
2N

2
C − 1

2NC

ˆ
d4q

(2π)4

[
Z
(
(p− q)2)

(p− q)2

× 3B(q2)

q2A2(q2) +B2(q2)

]
. (4.27)

In order to get rid of the renormalization constants Z2and Zm we demand
that the dressing functions A and B become one and m0 at the renormal-
ization point respectively. They can be subtracted in a straight forward way
by employing a momentum subtraction (MOM) renormalization scheme, see
Section 3.4. The functions A and B on the real axis serve as a check for
the subsequent complex evaluation of the equations, where the real axis is a
subset of the external grid and is treated in the same, more general way as
all other complex values of the external momentum. In particular, a differ-
ent integration grid is employed, as the integration contour is deformed in
several steps and the integration boundaries are mapped to 0 and 1 respec-
tively. Taking the quark-gluon vertex in the self-energy as a bare quantity
alone is not sufficient to generate dynamical mass in the propagator. The
Maris-Tandy [126] interaction we used in the beginning of this study,

Z1F g2 Z

k2
=

4π2

ω6
Dk2e−

k2

ω2 (4.28)

+4π2

12
33−2Nf

1
2

ln

[
e2 − 1 +

(
1 + k2

Λ2
QCD

)2
]F

(
k2
)
,

with

F
(
k2
)

=
1

k2

(
1− e

− k2

4m2
t

)
., (4.29)

with parameters Nf = 4, ΛNf=4
QCD = 0.234 GeV, ω = 0.3 GeV, D = 1.25

GeV2 and mt = 0.5 GeV, turned out to be a rather complicated case to
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start with. Thus we switched back to taking the vertex just bare, multiplied
by some arbitrary constant to generate mass. One could also use a 1 BC
construction13, which we have on the agenda. However, in order to learn
how to deal with the non-perturbative case, a constant times the tree-level
structure is a reasonable setting.

4.6.3 Computational strategy

By now, we have fully developed the numerical framework to study the non-
perturbative case with our method. The code is designed to run on hybrid
clusters with CPUs and GPUs and features a coarse and a fine grained level
of parallelization.

• Coarse grained parallelization: The strategy is to use as many Message
Passing Interface (MPI) threads as GPUs are available on the cluster.
Each MPI thread is assigned to a subset of the set of complex numbers
contained in X ∈M (n× n,C) , n = 2 ngl. Each MPI thread claims
one GPU that performs the fine grained parallelization.

• Fine grained parallelization: Each GPU operates on the subset of points
contained in the partition that has been assigned to a particular MPI
thread using CUDA Fortran [128]. Within this subset, each thread
evaluates the DSE at a particular point, using an appropriate con-
tour deformation. Once the results of all points are available they are
broadcasted over the cluster using MPI. This step corresponds to one
iteration of the system.

4.6.4 Conclusions

This project is still work in progress at the time of writing this thesis. How-
ever, we successfully constructed the whole numerical framework needed for
this study and reduced the problem to a truncation that is suitable to refine
and adjust our numerical procedure. We have found a promising strategy
of how to cope with the dynamically generated obstructive structures in the
complex plane of the radial integration variable, which is the main issue that
has to be dealt with in such calculations.

131st term of the Ball-Chiu vertex construction, [127].



Chapter 5

Color superconductivity in flavor
asymmetric quark matter

5.1 Introduction

In the QCD phase diagram Figure 1.1 is a region marked as ’neutron stars‘,
which is situated at the cold and intermediately dense regime1. This chapter
is dedicated to study this region. Contrary to asymptotically high densities,
where the coupling of QCD becomes weak, the intermediately dense regime
features a strong coupling that does not allow for perturbative expansions.
The phase structure in this regime can be explored employing Nambu–Jona-
Lasinio (NJL) based approaches [129, 130, 131, 132], but there are also studies
of this regime based on Dyson-Schwinger equations available2, see e.g. [136,
137, 138, 139, 140, 141]. Our focus lies on color superconducting phases that
might arise in this scenario, [142, 143, 144, 145, 132, 146, 147]. In particular,
we are interested in the scenario where the chemical potential of the two
species forming a Cooper pair are different–the case of asymmetric matter. It
is convenient to introduce a common chemical potential µ̄ = 1

2
(µ1 + µ2) and a

parameter for the separation of the Fermi spheres δµ = 1
2

(µ1 − µ2) , µ1 ≥ µ2,
such that the individual chemical potentials can be written as µ1,2 = µ̄± δµ.
This situation is a more realistic scenario than a system featuring a common
chemical potential for all species and arises in a broad variety of systems,
ranging from ultra-cold atoms to quark matter [148]. In the latter case,
the asymmetry is induced by the strange quark mass and the requirement
of beta equilibrium and charge neutrality as demanded for quark matter in
a neutron star [149]. At vanishing separation, the Fermi seas coincide and

1See [22] for an introduction to dense matter in compact stars.
2For Dyson-Schwinger studies at lower densities see e.g. [133, 134, 135].
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standard Bardeen-Cooper-Schrieffer (BCS) [150] pairing can occur. There,
the constituents of the pair are arranged at antipodal points on the Fermi
sphere, such that the pair has a vanishing net momentum. While in the
original context of BCS the attractive interaction is phonon-mediated, in
QCD one finds an attractive channel in the anti-symmetric anti-triplet3 3̄A
[142]. As the separation of the Fermi spheres grows large, the benefit from
Cooper pair formation decreases. This is due to the fact that one can put a
quark of the first species at its Fermi surface at zero costs in free energy, while
one has to ’pay‘ the difference in free energy to bring the second constituent
of the Cooper pair up to the position where it features a momentum that
is equal in modulus but opposite in direction to the momentum of the first
constituent. At some point the gain in energy due to condensation does not
compensate the costs of pair formation and the ground state of the system
goes from the BCS-like state back to the normal (unpaired) state. This
transition has been predicted to be of first order [151, 152] by Chandrasekhar
and Clogston. In the vicinity of the phase transition – the Chandrasekhar-
Clogston limit (CCL)– however, the true ground state of the system might
correspond to neither of these two possibilities, but to an inhomogeneous
phase4.

A first study concerning the physics of quark matter in this regime has
been performed in [149]. They investigated the LOFF5 phase [154, 155] in
the context of quark matter. The LOFF phase, named after Larkin, Ovchin-
nikov, Fulde and Ferrell, is a particular type of an inhomogeneous phase that
features a crystalline condensate. A LOFF-like phase for quark matter in a
neutron star might provide an explanation of glitch phenomena6 of neutron
stars through the pinning of rotational vortices in the rigid structure of the
crystalline condensate [143, 149, 146].

While the LOFF phase breaks rotational and translational invariance,
another inhomogeneous phase has been proposed that breaks rotational, but
maintains translational invariance, the Deformed Fermi Surface (DFS) phase,
see [159, 160, 161, 162]. This sets the stage of our investigation7. This
Chapter is organized as follows. In Section 5.2 we review the DFS phase in the

33⊗3 = 3̄A⊕6S , where the symmetric sextet channel features a (much weaker) induced
pairing, see e.g. [146] and references therein.

4Here and in what follows we are interested in di-quark condensation only. However,
one can also study chiral condensation in asymmetric systems, see [153] for a nice review
on the subject.

5Sometimes also called FFLO phase in the literature (pronounce ["f2f@loU]).
6A glitch is a sudden increase in the rotational frequency of a radio pulsar, see e.g.

[156, 157, 158].
7I am very grateful to Mark Alford and Kai Schwenzer for introducing me to this

exciting field of physics.

http://inspirehep.net/author/profile/M.G.Alford.1
http://inspirehep.net/author/profile/K.Schwenzer.1
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context of strongly interacting quark matter. In Section 5.3 we introduce the
idea of four-fermion condensation in the context of quark matter with large
flavor asymmetry, using exact renormalization group equations (ERGEs) to
study a SU (2)f × SU (2)c toy model.

5.2 The Deformed Fermi Surface phase

The idea behind the Deformed Fermi Surface (DFS) phase [159, 160, 161, 162]
is, that the system spontaneously chooses a direction along which it breaks
rotational invariance by deforming the Fermi spheres. Starting from the
spherical case, the Fermi surfaces of the fermionic species (e.g. up and down
quarks) are deformed to an ellipsoidal shape such that the Fermi surfaces are
close to each other in a certain region. This is achieved by deforming one
Fermi sphere to an oblate, the other sphere to a prolate form, see Figures
5.1 and 5.2. Following the procedure as described in [159], the chemical
potentials µf=u,d are deformed according to the prescription

µf = µ̄f
(
1 + (εS ± εA) sin2 ϑ

)
, (5.1)

where the upper sign goes with u and the lower sine with the d quarks8.
Equation (5.1) corresponds to an expansion of the spherical Fermi sea in
Legendre polynomials, where only the 0th and the 2nd order polynomial have
been taken into account,

µf =
∞∑
l=0

µf,lPl (cosϑ) ≈ µf,0 + µf,2
1

2

(
3 cos2 ϑ− 1

)
, (5.2)

and where we defined

µ̄f = µf,0 −
1

2
µf,2 (5.3)

and

εS/A =
3

4

(
µ2d

µ̄d
± µ2u

µ̄u

)
. (5.4)

In Appendix H we show that these definitions lead to consistent equations.
We furthermore detail the calculation in this and in the following section.

8Note that in [159] a cosine appears instead of the sine given in equation (5.1). Also
they used the opposite sign convention for up and down quarks, which is why we give a
redefinition of εS/A below.
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Figure 5.1: The larger d-quark and the smaller up-quark Fermi surfaces prior
to deformation.

Figure 5.2: Deforming by means of equation (5.1) brings the Fermi surfaces
close to each other in a certain region. Note that only proper normalization
ensures conservation of the particle densities.
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Note that the Fermi surfaces are not really deformed, but their shape
is modified by removing and adding particles. There are four parameters
controlling the process, µ̄u, µ̄d, εS and εA. In [160], the authors present a
comparison of the LOFF phase and the DFS phase for isospin asymmetric
nuclear matter. Letting LOFF and DFS compete with each other they find
LOFF to correspond to a local minimum, while the state with the lowest free
energy is DFS-like. This raises the question whether the state with lowest
free energy is LOFF or DFS-like in flavor asymmetric quark matter around
the Chandrasekhar–Clogston limit.

5.2.1 Estimate of the DFS free energy

In this Section we provide a very crude estimate of the free energy of a DFS
state in flavor asymmetric quark matter. In a full-fledged calculation the
system would adjust its deformation in a self-consistent way, however, here
we assume that there is an optimal deformation parameter that provides the
biggest gain in pairing at a minimum of deformation costs9. The aim is, to
provide a parametric expression for the difference in free energy between the
DFS state and the unpaired state in terms of the quantities of the average
chemical potential, the gap and the separation of the Fermi surfaces. Equa-
tion (84) in [143] provides such an expression for the 2-flavor superconducting
(2SC) phase. It is convenient to switch to an ellipsoidal coordinate system
that suits this particular type of deformation,

~r =

 µf (sinϑ) sinϑ cosϕ
µf (sinϑ) sinϑ sinϕ
µf (sinϑ) cosϑ

 (5.5)

=

 µ̄f
(
1 + (εS ± εA) sin2 ϑ

)
sinϑ cosϕ

µ̄f
(
1 + (εS ± εA) sin2 ϑ

)
sinϑ sinϕ

µ̄f
(
1 + (εS ± εA) sin2 ϑ

)
cosϑ

 ,

where ϑ and ϕ are the usual spherical angles. Treating the u and d quarks
as massless, the Jacobian can be written as

det (J)f =
1

8
k2
f (2 + (εS ± εA) (5.6)

× −(εS ± εA) cos 2ϑ)3 sinϑ

= k2
f

(
1 + (εS ± εA) sin2 ϑ

)3
sinϑ.

9This is of course a very rough estimate, but we are only interested in how the free
energy of the system scales parametrically.
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As in [161], we will not establish beta equilibrium or charge neutrality,
but we will proceed in such a way that the baryon density is kept constant
throughout the deformation process. In order to do this, we need the particle
number density of the ellipsoidal Fermi seas. We thus have

nf = C

ˆ
V

d3kf
(2π)3

(5.7)

=
C

(2π)3

ˆ kF,f

0

dkf

ˆ π

0

dϑ

×
ˆ 2π

0

dϕk2
f

(
1 + (εS ± εA) sin2 ϑ

)3
sinϑ,

with C a general factor dealing with degeneracy (spin degree of freedom).
Solving this expression (see Apendix H), we find

nf =
C k3

F,f

6π2
[1 + 2(εS ± εA) (5.8)

+
8

5
(εS ± εA)2 +

16

35
(εS ± εA)3

]
.

This result can be used to readjust the deformation such that the particle
density is preserved. The normalized parameter kF,f (and µ̄f in equation (5.1)
respectively) depends on the momentum ksph.F,f of the undeformed spherical
case,

4π
(
ksph.F,f

)3

3
!

=
4π k3

F,f

3

[
1 + 2(εS ± εA) +

8

5
(εS ± εA)2 (5.9)

+
16

35
(εS ± εA)3

]
⇒ kF,f = ksph.F,f

[
1 + 2(εS ± εA) +

8

5
(εS ± εA)2

+
16

35
(εS ± εA)3

]−1/3

. (5.10)

Now we have to evaluate the energy integrals for the deformed case. The
calculation is again presented in Appendix H and yields the deformation
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’costs‘ in terms of the energy density u,

udeform =
C k4

F,u

8π2

[
1 +

8

3
(εS + εA) +

48

15
(εS + εA)2

+
64

35
(εS + εA)3 +

128

315
(εS + εA)4

]
(5.11)

−
C
(
ksph.F,u

)4

8π2

+
C k4

F,d

8π2

[
1 +

8

3
(εS − εA) +

48

15
(εS − εA)2

+
64

35
(εS − εA)3 +

128

315
(εS − εA)4

]

−
C
(
ksph.F,u

)4

8π2
.

In this rough estimate we are only interested in an asymmetric deforma-
tion, i.e. εs = 0. Therefore an optimal εA can be determined which provides
the best overlap of the two Fermi surfaces. For simplicity, the optimal choice
of εA is obtained by demanding that the Fermi surfaces acquire the same
value at a fixed inclination angle ϑ = π

2
. The optimal asymmetric deforma-

tion is then given by

kF,u
(
1 + εoptA

) !
= kF,d

(
1− εoptA

)
(5.12)

⇒
kF,u
kF,d

+
kF,u
kF,d

εoptA = 1− εoptA (5.13)

εoptA =
1− kF,u

kF,d

1 +
kF,u
kF,d

(5.14)

εoptA =
kF,d − kF,u
kF,d + kF,u

(5.15)

εoptA =
1
2

(µd − µu)
1
2

(µd + µu)
≡ δµ

µ
. (5.16)

In order to establish a consistent choice of the parameters εoptA and the
properly normalized kF,f , the system of equations (5.10) and (5.15) has to
be solved in a closed form. This can be done numerically, however, as we



80 CHAPTER 5. COLOR SUPERCONDUCTIVITY

are interested in leading order effects only we will look into this matter ana-
lytically first10. The system has to be treated in a closed form, because εoptA

depends on the properly normalized momenta kF,f , and the properly normal-
ized momenta kF,f depend on the optimal deformation parameter, εoptA . Thus
we have to look at the condition for the optimal epsilon eq. (5.12) again and
modify it by inserting the properly normalized kF,f eq. (5.10). We find an
optimal εoptA of

εoptA ≈ 3
δµ

µ
, (5.17)

see Appendix H for the derivation. We assume that within a certain
region of the deformed Fermi surfaces, BCS pairing is possible 11. First, we
consider shells of width 2∆ centered around each deformed Fermi surface,
where ∆ ≈ O(δµ). The pairing region is then given by the overlap of the
shells of the two Fermi seas, see Figure 5.3 for an explanation.

The resulting region where pairing is considered to occur is depicted in
Figure 5.4.

The pairing region consists of two disjoint parts, one for hole-hole pairing
below the up Fermi surface, and one for particle-particle pairing above the
down Fermi surface. The regions are obtained by demanding that a point
belonging to the region is either below/above the up/down Fermi surface,
as well as within one ∆ of the down/up Fermi surface. The regions can be
parametrized as follows. Each region has two different ϑ-dependent bound-
aries for the radii ri,j, where the first index i denotes whether the radius
belongs to surface one or two, while the second index j labels the radius as
inner or outer radius of that region. The radii are

r11 = µ̄d
(
1− εA sin2 ϑ

)
−∆, (5.18)

r12 = µ̄u
(
1 + εA sin2 ϑ

)
, (5.19)

r21 = µ̄d
(
1− εA sin2 ϑ

)
, (5.20)

r22 = µ̄u
(
1 + εA sin2 ϑ

)
+ ∆. (5.21)

The first boundary value for the angle ϑ11 (where the first index again
labels the surface while the second index labels the upper or lower value of
the angle) are then obtained by solving

10In a numerical check we found agreement with our leading order result.
11Again we stress that the whole estimate is based on assuming a particular form of the

optimal deformation parameter. Nevertheless our approach should be capable of capturing
the parametrical behavior on a qualitative level.
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Figure 5.3: A part of the pairing region. To obtain this picture, we sliced the
Fermi surfaces along the z and y axis and zoomed in to the region where the
shells overlap. The dashed line is the Fermi surface of the up quarks, the thick
solid line corresponds to the Fermi surface of the down quarks. Each surface
serves as the center of a shell of width 2∆. The region where BCS pairing is
possible is the green area, which is the set of all points which are below the up
Fermi surface but still within one ∆ from the down Fermi surface, as well as
the set of all points which are above the down Fermi surface and still within
one ∆ from the up Fermi surface. For this plot we used the following values
for the undeformed Fermi seas: µd = 1, µu = 0.95, δµ=0.025, ∆=0.025.
The radii of the deformed Fermi surfaces, as well as the optimal asymmetric
deformation parameter εA have been determined numerically and are in good
agreement with the leading order calculation derived in the main text.

Figure 5.4: The three-dimensional region where pairing is considered to oc-
cur. The pairing region consists of the inner part (solid) and the outer part
(opaque), which are disjoint. The structure of the pairing region is quite
complicated. A section through the geometrical region is shown in Figure
5.5. For the calculation of the region we used the same parameters as in
Figure 5.3.
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µ̄d
(
1− εA sin2 ϑ11

)
−∆

!
= µ̄u

(
1 + εA sin2 ϑ11

)
(5.22)

⇒
µ̄d −∆− µ̄u = (µ̄u + µ̄d) εA sin2 ϑ11 (5.23)

⇒

ϑ11 = arcsin

√
µ̄d − µ̄u −∆

(µ̄u + µ̄d) εA
(5.24)

= arcsin

√
δµ̄− ∆

2

εAµ̄
.

The second boundary, ϑ12, follows immediately by symmetry, i.e.,

ϑ12 = π − ϑ11. (5.25)

Analogously we get for the first boundary value of the second surface

µ̄d
(
1− εA sin2 ϑ21

) !
= µ̄u

(
1 + εA sin2 ϑ21

)
+ ∆ (5.26)

⇒
µ̄d − µ̄u −∆ = (µ̄u + µ̄d) εA sin2 ϑ21 (5.27)

⇒

ϑ21 = arcsin

√
µ̄d −∆− µ̄u
(µ̄u + µ̄d) εA

(5.28)

= arcsin

√
δµ̄− ∆

2

εAµ̄
,

as well as

ϑ22 = π − ϑ21. (5.29)

The boundary angles are the same, so we can drop the region index for
the angle,

ϑ1 = arcsin

√
δµ̄− ∆

2

εAµ̄
, (5.30)

ϑ2 = π − ϑ1. (5.31)
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Figure 5.5: A section of the pairing regions we consider for our estimate.
We assume that in the regions only either hole-hole pairing (lower region) or
particle-particle pairing (upper region) is possible.

The cross section of the regions where both, hole-hole pairing and particle-
particle pairing are possible are shown in Figure 5.5. This regions have to be
integrated in order to estimate the gain due to Cooper pair condensation.

Assuming that pairing is possible in a shell of thickness 2∆ around the
Fermi surface, we take a look at the standard BCS situation where the Fermi
surfaces of the two species are level with each other. We thus have to integrate
over the pairing regions, which we did by using Mathematica. We find that
to leading order the benefit due to pairing in the DFS case is given by

ˆ
pairing region

∆dA ≈ C
4

3π2

√
2

3
µ̄2∆δµ

√
4 +

∆

δµ
,

which is parametrically of the same order as equation (84) in [143]. In
this simple approximation one cannot find a parametrical suppression of this
phase12 as compared to others13.

5.2.2 The stability of the DFS phase

In this section we provide a numerical stability check of the deformed phase.
To this end we investigate the possibility of flavor-changing and non-flavor
changing scattering processes numerically, taking energy and momentum con-
servation into account. We consider the following particular processes,

(kuF −∆) +
(
kdF −∆

)
→ (kuF + ∆) + (ksF + ∆) , (5.32)

(kuF −∆) + (kuF −∆) → (kuF + ∆) + (kuF + ∆) , (5.33)(
kdF −∆

)
+
(
kdF −∆

)
→

(
kdF + ∆

)
+
(
kdF + ∆

)
, (5.34)

(kuF −∆) +
(
kdF −∆

)
→ (kuF + ∆) +

(
kdF + ∆

)
. (5.35)

12First calculations of this kind with weak equilibrium and charge neutrality taken into
account suggest that the overall behavior remains unchanged.

13We also investigated the breached-pairing phase [148] in a similar manner and found
roughly the same parametrical behavior.
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Hereby we make the simplified but conservative assumption that all species
are gapped with ∆ over their whole respective Fermi surfaces, thus these
regions are not accessible for scattering processes14. We are looking for scat-
tering processes where two filled particle states undergoing this process, both
taken one ∆ below their respective Fermi surfaces, scatter into two empty
states just one ∆ above their respective Fermi surface. States of width 2∆
around each Fermi surface are assumed to be blocked due to pairing. We find
that all processes (5.32)-(5.35) can occur in this setting. This means that
momenta can not only be exchanged by different species, but also among a
single species. Examples of such processes are depicted in Figures 5.6, 5.7,
5.8 and 5.9.

From this very simplistic calculation we conclude that there are scattering
processes that are out of detailed balance, as it is possible to scatter particles
(even within one species) across the Fermi surfaces in the presence of the gap.
In particular one can scatter into regions where no particles are present, as
the system is not isotropic. Processes of that type cannot occur in reversed
order, so they are leading to a violation of detailed balance. We conclude that
due to this processes the system has the ability to re-arrange itself, and we
deduce that the proposed ellipsoidal deformed surfaces will become unstable
due to this freedom of re-arrangement. Then it is a natural question to ask
where the system is driven to, but this is very hard to answer without having
a numerical framework that computes the free energy of the deformed system
while allowing for (arbitrary) deformations due to the scattering processes
(5.32) - (5.35). However, providing at least an educated guess one might
anticipate that the system acquires a form similar to the breached pairing
(or interior gap binding) [148, 163] scenario, if not running into the LOFF
or unpaired state.

5.2.3 Conclusions

We derived an estimate for the gain in free energy for the DFS phase by
comparing the deformation costs in free energy with the pairing benefit due
to some (assumed) pairing region. From this crude approximation one cannot
draw a conclusion that shows whether DFS or 2SC is favored, as the net gain
in free energy in both cases is parametrically of the same order. We then
addressed the stability of the DFS phase by looking for momentum and
energy preserving scattering processes that allow for a re-arrangement of the

14This assumption is very exaggerated, but also very generous in the sense that we
consider a much larger region around the Fermi surfaces to be blocked than it would be
the case for the real DFS state. This provides additional ’stability‘, as it is not possible
to scatter into this region.
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Figure 5.6: This plot shows a (numerical) solution of a flavor-changing scat-
tering process, (5.32), that gives rise to an instability of the ellipsoidal Fermi
surfaces (see text). The outer solid line is the Fermi surface of the down
quarks, the inner solid line the one of the up quarks. The dashed lines within
the respective Fermi surfaces mark the depth of one ∆. Note that the Fermi
surface of the strange quarks almost coincides with the one-∆ depth mark of
the down Fermi surface. Starting form the 12-o’-clock position going clock
wise, the dots mark the in-going down quark one ∆ below its Fermi surface,
the outgoing strange quark one ∆ above its Fermi surface, the ingoing up
quark one ∆ below its Fermi surface, as well as the outgoing up quark one ∆
above its Fermi surface. Ingoing particles are marked blue, outgoing particles
are marked green, to provide some guidance for the eye. The parameters of
this particular calculation are summarized in the table on the right.
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u + u -> u + u

CONSISTENCY CHECK
energy balance 0.

momentum x-comp balance -6.93889´10-17

momentum y-comp balance 0.

Figure 5.7: This plot shows a (numerical) solution of the scattering process
eq. (5.33).
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d + d -> d + d

CONSISTENCY CHECK
energy balance -4.44089´10-16

momentum x-comp balance -2.08167´10-16

momentum y-comp balance -2.22045´10-16

Figure 5.8: This plot shows a (numerical) solution of the scattering process
eq. (5.34).
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-1.0
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1.0

u + d -> u + d

CONSISTENCY CHECK
energy balance 0.

momentum x-comp balance 6.38378´10-16

momentum y-comp balance 1.11022´10-16

Figure 5.9: This plot shows a (numerical) solution of the scattering process
eq. (5.35).

Fermi surfaces even in the presence of a gap. We found that such processes
can indeed occur and conclude that the phase featuring ellipsoidal Fermi
surfaces seems to be unstable.

5.3 Cooper Quartetting

When considering Cooper pair formation from a renormalization group point
of view (see e.g. [164, 165, 166]), one finds that the operator corresponding
to the two-fermion condensate is a marginal operator due to the kinematic
restriction of the Cooper pair constituents having momenta which are equal
in modulus and opposite in direction. Its coupling grows strong once the
relevant scale – the distance to the Fermi surface – is driven towards zero.
This corresponds to the picture of Cooper pairing formulated in the elegant
language of the renormalization group. As we are considering systems of
asymmetric quark matter here, the kinematical requirement directly affects
the possibility of pair formation, as in a system with differing chemical poten-
tials our original argument of costs and gain through pairing as presented in
Section 5.1 applies. There are at least two possible ways out of this dilemma.
On the one hand, one can give up on the idea of translational invariance by
allowing the Cooper pairs to carry some net momentum (LOFF-phase). On
the other hand, however, one can loosen the kinematic restriction by taking
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two more fermions, considering quartetting rather than pairing15. There are
many ways to arrange four momenta around the Fermi spheres such that the
overall momentum vanishes, even if the difference of the Fermi surfaces is
large. This is the idea of Cooper quartetting16 for strongly coupled quark
matter we investigate further in this chapter17.

Clearly, the operator corresponding to a four fermion condensate is ir-
relevant, and no kinematical constraint will render it marginal. In a weakly
coupled system we thus do not expect the four fermion condensate to play
any role. However, dealing with QCD in a strongly coupled regime with
two-particle condensation being suppressed opens the possibility that the
four-fermion condensate might become a viable candidate. In the following
we present this idea in more detail and investigate this possibility in a toy
model.

5.3.1 A toy model

Our strategy is to use a spin-1
2
toy model with two flavors. Taking SU (2)s×

SU (2)f as a toy model with a very particular eight-fermion interaction that
allows for bosonization through sequentially performed Hubbard-Stratonovich
transformations. Taking gauge interactions into account complicates the
search for a viable condensate18 considerably, so we are after a proof-of-
principle calculation in this first exploratory study. The Lagrangian of our
toy model is given by

L = ψ̄αA
(
��∂µ − (µ+ δµσ3) γ4 +m

)αβ
AB

ψβB (5.36)

−g4

(
ψαAψ

β
BT

αβγδ
ABCDψ

γ
Cψ

δ
D

)(
ψ̄εEψ̄

η
FT

εηθζ†
EFGHψ̄

θ
Gψ̄

ζ
H

)
where greek indices label spin and latin indices label flavor. The tensor

TαβγδABCD represents the four fermion interaction in our model and is given by

TαβγδABCD = εrstuc
r
Aαc

s
Bβc

t
Cγc

u
Dδ. (5.37)

The quantities crAα are tensor products of unit vectors in spin- and flavor-
space, responsible for arranging the fermions in such a way that the overall

15In principle one could also consider three quarks, however, we are interested in the
spin singlet case only.

16I am grateful to Mark Alford for suggesting this possibility.
17For a study of four fermion condensation in the context of homogeneous nuclear matter

see [167].
18I want to thank Krishna Rajagopal for suggesting candidates for more realistic con-

densates.

http://inspirehep.net/author/profile/M.G.Alford.1
http://inspirehep.net/author/profile/K.Rajagopal.1
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wave function of the condensate is totally antisymmetric with respect to
its indices, and εrstu is the 4-dimensional Levi-Civita tensor. Having the
Lagrangian (5.36) at hand we will proceed by bosonizing the theory in two
steps.

5.3.2 Bosonization of the toy model

With the first Hubbard-Stratonovich transformation we identify

exp

{ˆ
d4x g4 (ψiψjTijklψkψl)

(
ψ̄mψ̄nT

†
mnopψ̄oψ̄p

)}
∝
ˆ

D [Ξ] exp

{
−
ˆ
dx
m2

Ξ

2
|Ξ|2

}
(5.38)

× exp

{
−
ˆ
d4x

gY4
2

Ξ∗ψiψjTijklψkψl

}
× exp

{
−
ˆ
d4x

gY4
2

Ξψ̄mψ̄nT
†
mnopψ̄oψ̄p

}
.

Up to this point, the path integral becomes

Z =

ˆ
D
[
ψ̄
]
D [ψ] D [Ξ]

× exp

{
−
ˆ
d4x (Lfree + Lgauge)

}
× exp

{
−
ˆ
d4x

m2
Ξ

2
|Ξ|2

}
(5.39)

× exp

{
−
ˆ
d4x

gY4
2

Ξ∗ψiψjTijklψkψl

}
× exp

{
−
ˆ
d4x

gY4
2

Ξψ̄mψ̄nT
†
mnopψ̄oψ̄p

}
.

Now we have to bosonize once more. In order to do so, the exponents of
the exponentials have to be written in a bi-linear form with a real symmetric
non-singular matrix connecting the fields, otherwise the integral would not
be of the Gaussian type. In Appendix I we show that the four fermion
interaction terms of equation (5.39) can indeed be brought to the desired
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form. We can thus proceed by writing

exp

{ˆ
d4x

(
−gY4

)
2

(√
Ξ∗
)2

ψiψjTijklψkψl

}
(5.40)

∝
ˆ

D [Θ] exp

{
−
ˆ
d4x

m2
Θ

4
ΘijTijklΘkl

}
× exp

{ˆ
d4x

gYΘ
2

√
Ξ∗TijklΘijψkψl

}
,

where the couplings are related by

gY4
!

=

(
gYΘ
)2

2m2
. (5.41)

In equation (5.40) we used the freedom to choose the relative sign in the
binomial of the completed square of the Gaussian integral in order to produce
a real-valued Yukawa coupling. Note further, that the fields Θij are bosonic
tensor fields with spinor indices. They do not carry baryon number and obey
Fermi statistics, so they are ghost-like. Treating also the last term, we find

exp

{ˆ
d4x

(
−gY4

)
2

(√
Ξ
)2

ψ̄mψ̄nT
†
mnopψ̄oψ̄p

}
(5.42)

∝
ˆ

D [Θ] exp

{
−
ˆ
d4x

m2
Θ

4
Θ∗ijT

†
ijklΘ

∗
kl

}
× exp

{ˆ
d4x

gYΘ
2

√
ΞT †ijklΘ

∗
ijψ̄kψ̄l

}
,

where the same relation for the coupling holds. The path integral of our
theory after full bosonization becomes
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Z =

ˆ
D
[
ψ̄
]
D [ψ] D [Ξ] D [Θmn] (5.43)

exp

{
−
ˆ
d4x (Lfree)

}
× exp

{
−
ˆ
d4x

m2
Ξ

2
|Ξ|2

}
× exp

{
−
ˆ
d4x

m2
Θ

4
ΘijTijklΘkl

}
× exp

{ˆ
d4x

gYΘ
2

√
Ξ∗TijklΘijψkψl

}
× exp

{
−
ˆ
d4x

m2
Θ

4
Θ∗ijT

†
ijklΘ

∗
kl

}
× exp

{ˆ
d4x

gYΘ
2

√
ΞT †ijklΘ

∗
ijψ̄kψ̄l

}
.

5.3.3 Towards the solution

Our intention is to study the possibility of the four-fermion condensation
discussed above in the framework of exact renormalization group equations.
Taking the bosonized theory (5.43) as a starting point, we write down an
action that is appropriate for our study,

S =

ˆ
d4x

(
ψ̄αA
(
��∂µ − (µ+ δµσ3) γ4 +m

)αβ
AB

ψβB (5.44)

+
1

2
(|∂µΞ|)2 +

1

2
(|∂µΘ|)2

+
m2

Θ

2
Θαβ
ABT

αβγδ
ABCDΘγδ

CD

−g
Y
Θ

2

√
Ξ∗T εζηθEFGHΘεζ

EFψ
η
Gψ

θ
H

−g
Y
Θ

2

√
ΞT µνωρMNOPΘµν

MN ψ̄
ω
Oψ̄

ρ
P

+U (|Ξ|) + g̃ιπτξIJKL |Ξ|Θ
ιπ
IJΘτξ

KL +mΘ |Θ|2
)
,

It turned out to be sufficient to treat the Θ fields as real-valued. We
furthermore add a term for the potential of the four-fermion condensate,
as well as a vertex between two Θ-fields and a Ξ field. These terms are
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allowed by symmetry and can be generated by the dynamics. They have to
be included to allow for a formation of a four fermion condensate. The flow
equation reads

∂

∂k
Γk [φ] =

1

2
Tr
{[

Γ
(2)
k [φ] +Rk

]−1 ∂

∂k
Rk

}
, (5.45)

with the regulators [69, 70]

Ropt
k

(
q2
)

= Zk
(
k2 − q2

)
Θ
(
k2 − q2

)
(5.46)

and

Rf,opt
k

(
q2
)

= �q

(√
k2

q2
− 1

)
Θ
(
k2 − q2

)
(5.47)

for bosons and fermions respectively. Note that this system cannot be
solved in a mean-field like approximation, as the two-fermion condensate does
not acquire a non-zero expectation value in the regime we are interested in.
In order to derive the flow equations we have to calculate

[
Γ

(2)
k [φ] +Rk

]−1 ∂

∂k
Rk = M−1 · ∂

∂k
R, (5.48)

where Γ
(2)
k is the second functional derivative with respect to the various

fields. This yields a Hessian of the form

H ∼

ψ ψ̄ Ξ Ξ∗ Θ
ψ • • 0 0 0
ψ̄ • • 0 0 0
Ξ 0 0 • • •
Ξ∗ 0 0 • • •
Θ 0 0 • • •

, (5.49)

where the • stands for the non-vanishing entries to be derived below. In our
truncation we thus exclude mixing among fermionic and bosonic fields, so
they decouple and can be treated separately. Furthermore it turned out
throughout the calculation that a

√
Ξ -term always goes along with a√

Ξ∗-term to form a modulus of Ξ, so we can also treat the Ξ-field as
real-valued. The Hessian thus reduces to
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H ∼

ψ ψ̄ Ξ Θ
ψ • • 0 0
ψ̄ • • 0 0
Ξ 0 0 • •
Θ 0 0 • •

. (5.50)

The fermionic block, for example, becomes

(M)11 =
δ2S

δψλLδψ
κ
K

, (5.51)

(M)12 =
δ2S

δψ̄λLδψ
κ
K

, (5.52)

(M)21 =
δ2S

δψλLδψ̄
κ
K

, (5.53)

(M)22 =
δ2S

δψ̄λLδψ̄
κ
K

. (5.54)

We are interested in the fermionic contribution to the coupling of the
Θ-Θ-Ξ vertex, so let me briefly outline the procedure. In order to obtain the
contribution, we have to perform functional derivatives with respect to Θ, Θ
and Ξ, where we put all vacuum expectation values except the one for Ξ to
zero in the end. Let us consider the derivative δM−1

δΘδΘ
first. The highest order

of Θ appearing in M−1 is one, thus the second derivative with respect to Θ
vanishes, such that we are left with

δ2M

δΘχψ
ST δΘ

υφ
QR

= (5.55)

= M−1

(
δM

δΘυφ
QR

)
M−1

(
δM

δΘχψ
ST

)
M−1

+ M−1

(
δM

δΘχψ
ST

)
M−1

(
δM

δΘυφ
QR

)
M−1,

where we have exploited the fact that the derivative acting on the unit
matrix vanishes to reshuffle the derivatives acting on an inverse matrix to
act on non-inverted matrices only. The plan now is the following: first, we
have to perform the derivatives as denoted in (5.55), then we will multiply
the result with the field-independent off-diagonal regulator matrix R. The
derivative with respect to Ξ will be performed afterwards. As we evaluate the
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expression (5.55) at vanishing vacuum expectation values (except the one for
Ξ), the matrixM−1 acquires an off-diagonal structure. This is because the Θ
fields in the diagonal entries are set to 0, and only the (regulated) propagator
terms in the off-diagonal entries remain. The matrices δM

δΘ
acquire a diagonal

form, as we will discuss now. The entries of the matrix M are of the form

M =

(
A S−1

1

S−1
2 B

)
, (5.56)

which, upon matrix inversion turns into

M−1 = 1
AB−S−1

1 S−1
2

(
B −S−1

1

−S−1
2 A

)
, (5.57)

=

∣∣∣∣vev Θ = 0

∣∣∣∣
=

(
0 S2

S1 0

)
,

where the Si correspond to the propagators. These terms are the only
terms that survive, because the expressions for A and B contain one instance
of Θ each, which we put to 0 as we evaluate the expression at its vacuum
expectation value. Once the derivatives onM are performed, the off-diagonal
structures ofM equation (5.56) vanish, as they contain the propagator terms
with no field content that might be hit by the derivatives. The overall struc-
ture is thus given by the matrix product

δ2M−1

δΘδΘ
= (5.58)

=

(
0 S2

S1 0

)
.

(
D1 0
0 E1

)
.

(
0 S2

S1 0

)
.

.

(
D2 0
0 E2

)
.

(
0 S2

S1 0

)
+

(
0 S2

S1 0

)
.

(
D2 0
0 E2

)
.

(
0 S2

S1 0

)
.

(
D1 0
0 E1

)
.

(
0 S2

S1 0

)
=

(
0 S2E1S1D2S2

S1D1S2E1S1 0

)
+

(
0 S2E2S1D1S2

S1D2S2E1S1 0

)
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Figure 5.10: A sketch of the fermion loop that contributes to the coupling
of two Θ-fields to the Ξ-field. This is just a sketch of the actual diagram,
as in the derivation the square roots of Ξ and Ξ∗ always go along to form a
modulus of Ξ.

Hereby, S, D and E are the propagator as well as the functional derivative
with respect to Θ on the upper and lower non-vanishing matrix entry re-
spectively, the indices 1 and 2 refer to it being the derivative with respect to
the first or the second Θ field in the term in the first line of equation (5.58).
We will perform the derivative with respect to Ξ later. As a next step, we
multiply the result of (5.58) with the off-diagonal regulator matrix R, which
also has an additional sign because of the derivative,

(
δ2M−1

δΘδΘ

)
.
∂

∂k
R = (5.59)

=

(
0 S1S

2
2D1E2

S2
1S2D2E1 0

)
.

(
0 ∂

∂k
R

∂
∂k
R 0

)
=

∂

∂k
R

(
S1S

2
2D1E2 0
0 S2

1S2D2E1

)
.

In order to obtain the flow equation one has to take the trace over all
spaces, as well as the Matsubara sum, as we are working at non-vanishing
temperature. From the fermionic block, we can thus derive a flow equation
for the couplings gιπτξIJKL by derivatives with respect to Θ, Θ and Ξ. This
contribution is driven by a fermionic loop, see Figure 5.10 for a sketch.

Furthermore, we need a flow equation for the potential of Ξ, which receives
contributions from the bosonic block only. The separately obtained equation
for the coupling can then be plugged into the flow equation for the potential.
We performed some preliminary calculations of the potential of Ξ, which
indicate that condensation can indeed occur. The results are however too
preliminary to be presented in this thesis.
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5.3.4 Conclusions

In this study we investigate the possibility of four-fermion condensation in
strongly coupled asymmetric matter. In our toy model we consider two
flavors with spin. As a first step, we successfully bosonized the system. This
step already turned out to be non-trivial, as we had to bring the four-fermion
interactions arising from the first Hubbard-Stratonovich transformation to a
form that allows for an application of further bosonization steps. We then
provided a setting that is suitable for a treatment within the framework of
renormalization group equations and presented a way of how the system can
be solved.



Chapter 6

Conclusions and Outlook

The main subject of this thesis was to provide a full solution of the coupled
system of the quark-gluon vertex and the quark propagator Dyson-Schwinger
equation in the Landau gauge. We found a stable solution of the fully back-
coupled system and compared the results of two independently implemented
calculations. We have found perfect qualitative agreement in the behavior
of all dressing functions. A subsequent qualitative analysis of the impor-
tance of the various tensor structures used to span the vertex revealed that
two tensor structures can be neglected with almost no effect on the results.
Another tensor structure can be removed while maintaining still good agree-
ment with the full solution. The reduction of necessary components leads to
a significant simplification of the system. There are many future task that
can be addressed as a next step. Apart from investigating the possibility
of a scaling solution, it would also be very interesting to study the effect
of the three-gluon vertex on the quark-gluon vertex by solving them in a
full self-consistent way. Also the inclusion of the abelian diagram that has
been neglected in this first study would be a logical next step. One can also
consider a reduced system and study the vertex for complex momenta or at
non-vanishing temperature and/or density.

We furthermore started to investigate the analytic structure of the quark-
propagator Dyson-Schwinger equation for arbitrary complex Euclidean mo-
menta. In particular we are interested in a method that is capable of provid-
ing results in the deep time-like regime. We thus developed a novel numerical
method to solve perturbative one-loop expressions for arbitrary Euclidean
momenta. After a successful test of the method, we applied it to study a
correlator of two Yang-Mills field-strength tensor squares at the Born level,
using different gluonic input. We investigated two popular positivity violat-
ing gluon parametrizations and found that one leads to a positivity respect-
ing analytic structure, while the other develops additional unphysical branch
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cuts that spoil the validity of the parametrization. We then started to ex-
tend the method to apply it to the non-perturbative quark-propagator DSE.
Having successfully constructed a numerical framework that allows for an
adequate treatment of the equations we are very optimistic that first results
will become available soon.

Another part of this thesis is dedicated to inhomogeneous phases in the
context of strongly interacting flavor-asymmetric quark matter. We reviewed
the Deformed Fermi surface phase and derived a parametrical expression for
the benefit in free energy due to pairing in a rough approximation. We found
that the DFS phase scales parametrically roughly like the LOFF phase, so
the true ground state of the system cannot be determined from this naïve
consideration. We then looked into scattering processes that are allowed by
energy and momentum conservation in the DFS phase. We found that this
phase might suffer from an instability induced by these scattering processes,
as they allow for a rearrangement of the Fermi surfaces even in the presence
of a gap.

Finally we looked into the possibility of four-quark condensation in the
regime of large flavor asymmetry. In this regime, two-fermion condensation
is suppressed. The hope is, that, while the two-quark condensate suppres-
sion results from a kinematic constraint imposed on the system, a four-quark
condensate is not affected by this restriction and might become a viable
candidate in this scenario. In the beginning it was unclear how one could
study four fermion condensation in a reasonable approach. Now we have
found and constructed a framework that allows us to study four-fermion
condensation using ERGEs. To this end we constructed a toy model and
successfully bosonized the corresponding eight-fermion interaction, by apply-
ing further Hubbard-Stratonovich transformations to deal with the resulting
four-fermion interactions. We furthermore found a suitable truncation to
employ ERGEs and we are now able to start employing them. The goal is
to deliver a proof of principle that a phase with four-fermion condensation is
possible in a strongly coupled system with large flavor-asymmetry.
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Appendix A

Conventions and notation

In this section we establish the notation and convention used throughout
this thesis. Here and throughout this calculations we will use the standard
representation for the Gamma matrices,

γk =

(
0 −iσk
iσk 0

)
, γ4 =

(
1 0
0 −1

)
, γ5 =

(
0 1

1 0

)
, (A.1)

with σk the Pauli matrices, such that

γµ = (γµ)† , (A.2)

γ5 = −γ1γ2γ3γ4, (A.3)

and (
γ1
)2

=
(
γ2
)2

=
(
γ3
)2

= (γ4)
2

= 1. (A.4)

Furthermore, the Clifford algebra

{γµ, γν} = 2δµν (A.5)

is satisfied. The charge conjugation matrices are given by

C = γ4γ2, CT = C† = C−1 = −C. (A.6)

As all investigations are performed in Euclidean space it is often con-
venient to express an integral over a four momentum k in hyper-spherical
coordinates,

101



102 APPENDIX A. CONVENTIONS AND NOTATION

ˆ
R4

d4k →
ˆ 2π

0

dφ

ˆ ∞
0

dk k3

ˆ π

0

dθ1 sin2 θ1

ˆ π

0

dθ2 sin θ2 (A.7)

=

∣∣∣∣∣
y ≡ k2 → dy = 2kdk

θ1 ≡ arccos z → dθ1 = − dz√
1−z2

θ2 ≡ arccosw → dθ2 = − dw√
1−w2

∣∣∣∣∣
=

1

2

ˆ 2π

0

dφ

ˆ ∞
0

dy y

ˆ 1

−1

dz
√

1− z2

ˆ 1

1

dw.

The definitions of the propagators and vertices needed for the quark-gluon
vertex study are presented in Figures A.1 and A.2.

Figure A.1: The inverse bare, inverse dressed and dressed quark propagator,
together with the gluon propagator.
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Figure A.2: The bare and dressed quark-gluon vertex and the model for the
three-gluon vertex.
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Appendix B

Solving the quark-gluon vertex
DSE

In this Appendix we outline the steps that have to be performed to solve the
coupled system of the quark-propagator and the quark-gluon vertex DSE.

B.1 Prerequisites

B.1.1 Coordinate frame and momentum routing

Contrary to the alternative approach discussed in Appendix C we use the
quark momenta pµ and qµ explicitly here. The coordinates are chosen as
shown in Figure B.1.

The momenta are routed such that a minimum effort on interpolation
and extrapolation is necessary. This means in particular that we compute the
vertex exactly as it is needed for the self-energy term of the quark propagator,
see Figure B.2.

There are three momenta involved. According to our choice of coordinates
they are

p =


0
0
0
|p|

 , q =


0
0

|q|
√

1− z2
1

|q|z1

 , (B.1)

w =


0

|w|
√

1− z2
2

√
1− z2

3

|w|
√

1− z2
2z3

|w|z2

 ,
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Figure B.1: The choice of coordinates.

Figure B.2: Our choice of momentum routing .
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where

zi = cos θi, i ∈ {1, 2, 3} . (B.2)

It is important to note the cosine of the angle between the momenta w
and q is given by

cos∠w,q =
√

1− z2
1

√
1− z2

2z3 + z1z2. (B.3)

B.1.2 Expressing the basis elements

In the previous section we defined the momenta p, q and w. The vertex is
computed for external momenta q and p, but is also needed for the momenta
q and w (left vertex in the non-abelian diagram), as well as for the momenta
w and p. For all these pairs of momenta we thus have to express the basis
elements in terms of the Lorentz invariants p2, q2, w2, p · q, p ·w and q ·w.
For example, the normalized momentum d for the left quark-gluon vertex in
the non-abelian diagram is given by (3.8)

dµl =
(w − q)µ

||wµ − qµ||
=

(w − q)µ√
q2 + w2 − 2w · q

(B.4)

(B.3)
=

(w − q)µ√
q2 + w2 − 2

√
w2q2

(√
1− z2

1

√
1− z2

2z3 + z1z2

) .
The normalized vector sµ for the left quark-gluon vertex in the non-

abelian diagram is obtained by following the prescription of (3.9). The aver-
age quark momentum for the left vertex is

Ωµ =
1

2
(qµ + wµ) . (B.5)

Taking the part that is transverse to the gluon momentum we have

(δµν − dµdν) Ων (B.6)
= Ωµ − dµd · Ω

=
1

2
(qµ + wµ)− 1

2

(w − q)µ (w2 − q2)

q2 + w2 − 2w · q
.



108 APPENDIX B. SOLVING THE QUARK-GLUON VERTEX DSE

This expression has to be normalized, so we take the square first, where
we drop the factor of 1

2
as it is canceled by the normalization anyway.

(
(qµ + wµ)− (w − q)µ (w2 − q2)

(q2 + w2 − 2w · q)2

)2

(B.7)

= q2 + w2 + 2w · q +
(w2 − q2)

2
������
(wµ − qµ)2

(wµ − qµ) �4 2

−2
(w2 − q2)

2

(wµ − qµ)2

= q2 + w2 + 2w · q − (w2 − q2)
2

(wµ − qµ)2 ,

and we find that the vector sµl is given by

sµl =
1√

q2 + w2 + 2w · q − (w2−q2)2

q2+w2−2w·q

(B.8)

×
(

(qµ + wµ)− (w − q)µ (w2 − q2)

q2 + w2 − 2w · q

)
,

where w · q is

w · q =
√
w2q2

(√
1− z2

1

√
1− z2

2z3 + z1z2

)
. (B.9)

Similar expressions have to be computed for the right quark-gluon vertex
in the non-abelian diagram, as well as for the quark gluon vertex on the left
hand side of the equation.

B.1.3 Color pre-factor of the vertex equation

The color factors of the vertex equation including the bare vertex and the
non-abelian diagram on the right hand side become1

1The symbol ◦
= is to remind the reader that this is not an equation, but just the left

and right hand side in color space.
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(ta)ij
◦
= (ta)ij + (tm)ik(tl)k′jfamlδmm′δll′δkk′ (B.10)

(ta)ij
◦
= (ta)ij + (tm)ik(tl)kj︸ ︷︷ ︸

(tmtl)ij

faml (B.11)

(ta)ij
◦
= (ta)ij + (famltmtl)ij (B.12)

�
��(ta)ij

◦
= �

��(ta)ij +
iNC

2 �
��(ta)ij, (B.13)

thus only the non-abelian diagram obtains a non-trivial color factor of
i NC

2
.

B.1.4 Reducing the number of terms

This step is crucial, as it reduces the number of terms, that have to be com-
puted to obtain the vertex dressing functions, considerably. Here we partic-
ularly focus on the evaluation of the Lorentz contractions and Dirac traces
using FORM [89]. In the non-abelian diagram we have three relative mo-
menta, see Figure B.2. Even though these momenta have to be expressed in
terms of the Lorentz invariants constructed from p, q and w, it is convenient
to introduce the momenta

∆µ = pµ − qµ, (B.14)
uµ = wµ − qµ, (B.15)
vµ = pµ − wµ, (B.16)

as in the definition depicted in Figure A.2. Apart from the pre-factors,
the three-gluon vertex reads

Γµνρggg = δµν (∆ + u)ρ + δνρ (v − u)µ − δρµ (v + ∆)ν . (B.17)

Exploiting transversality,

T µνx = δµν − xµxν

x2

for some momentum x, one can reduce (B.17) to

T µµ
′

∆ T νν
′

u T ρρ
′

v Γµ
′ν′ρ′

ggg = 2 (δµν∆ρ − δνρuµ − δρµ∆ν) , (B.18)
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where we used the projections

(∆ + u)ρ
′

= (p− 2q + w)ρ
′
, (B.19)

T ρρ
′

v (p− 2q + w − p+ p)ρ
′

= (2p− 2q)ρ = 2∆ρ, (B.20)

and similarly

(v − u)µ
′

= (p− 2w + q)µ
′
, (B.21)

T µµ
′

∆ (p− 2w + q − q + q)µ
′

= (2q − 2w)µ = −2uµ, (B.22)

and

(v + ∆)ν
′

= (2p− w − q)ν
′
, (B.23)

T νν
′

u (2p− w − q − q + q)ν
′

= (2p− 2q)ν = 2∆ν . (B.24)

The momenta ∆, u and v can then be expressed in terms of d, dl and dr,
as they only differ by a normalization factor. This reduces the number of
terms further, and one obtains scalar expressions with a reasonable number
of terms. The orthonormality of the momenta s and d can be exploited for
each set individually,

s · s = d · d = 1, s · d = 0, (B.25)
sl · sl = dl · dl = 1, sl · dl = 0, (B.26)
sr · sr = dr · dr = 1, sr · dr = 0, (B.27)

where the indices l and r label the left and right basis elements in the non-
abelian diagram, and the momenta without a label belong to the outer basis.
The output of FORM is processed using Linux shell-scripts together with
sed-scripts. The shell-scripts manipulate the integration kernels in such a
way that it can be interpreted by the compiler. This step is crucial, as it does
not require any modifications of the output by hand, which would introduce
a source of errors. The output is expressed in terms of scalar products among
the momenta appearing in the diagrams. The scalar products were computed
using Mathematica [168], where the output of Mathematica is also processed
by the shell-script. The script merges the output of the two computer algebra
systems and produces the compilable source code. This also allows for fast
change of basis elements, as all necessary input is generated by just calling
one script.
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B.2 The structure of the program

In this section we give the details on how the system is solved. The structure
of the program is shown in Figure B.3.

B.2.1 Initialization

In this section the grids are initialized as described in Section J.1 of Appendix
J. The angular grid2 is computed using Gauss-Chebyshev polynomials of the
second kind. We employ the same grid for the angle θ2 in equation (A.7)
by modifying the weights for this angle accordingly. Using Gauss-Chebyshev
quadrature for the angular integration proved to be very efficient3. The
discrete solutions of the Yang-Mills system 3.2.1 are read and stored to an
array, the second derivatives needed for the cubic spline interpolation are
computed. The dressing functions of the quark propagator are initialized us-
ing the fit-functions (6.85) and (6.86) from [23]. All vertex dressing functions
are initially zero, except the two structures of the outer basis that contribute
to the tree-level structure, f1 and f6. They are put to f1 =

√
2 and f6 = 1

initially, such that g1 = 1 after a change of basis has been performed. The
parameters of the run are written to the standard stream and the system
starts to iterate.

B.2.2 The iteration process

B.2.2.1 Vertex update

Each full iteration consists of two vertex iterations and as many propagator
iterations as needed to achieve convergence. The two vertex updates are
performed first. Equation (3.5) is evaluated for all eight dressings fi, after
each vertex iteration a change of basis is necessary to transfer the information
from the fi dressings of the outer basis to the gi dressings of the inner basis.
This step also involves spline interpolation as discussed in Section J.1, as
the gi dressings are tied to the internal grid, the fi dressings to the external
grid. For the first seven iterations we do not take the full information from
the newly calculated vertex dressings, but only a certain percentage of the
solution, where the complementary part that adds up to one is the fraction
we take of the old solution from the previous update (or initialization if it

2We only use one angular grid for all angles arising throughout the calculation.
3We also used 12 angular nodes and found no significant deviation from the 8-node

result. In principle one could also use sinh-tanh quadrature [170], but this rule is quite
sensitive to the cut-off.
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Figure B.3: The structure of the program. This plot has been generated
automatically using doxygen [169].
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is the first update). This stabilizes the first iterations and allows the system
to adjust itself to the iteration. The ratio of the percentage of the old and
new solution is gradually driven towards one, such that after 7 iterations4
the system runs at full updates.

B.2.2.2 Propagator update

After two vertex updates, the propagator is iterated till it converges5. After
each update of the propagator, the propagator dressings have to be spline
interpolated again to transfer the information from the externally calculated
propagator dressings A and B to the internally required fine grained dressing
functions Ai an Bi. As in the vertex case, we switch on the iteration process
gradually by taking more and more information from the newly updated
dressing functions into account.

B.2.2.3 Iteration output

After each iteration consisting of the two steps described above we compute
a control-output that shows the maximum value of the deviation between
the old and the new solution, as well as the maximum and minimum value
of each dressing function. We furthermore compute a rough ASCII plot
of the propagator dressing functions 1/A and M (see Listing B.1 for the
iteration output). The ASCII plot is very convenient because one can read
off tendencies of the iteration procedure just by looking at the standard
stream throughout the calculation. The information is also stored to a log-
file separately. The ASCII plot has been computed by allocating a character
array and initializing it with white spaces. We then computed a mapping
of the external grid to the width of the character array, the ’y-axis’ of the
character array has been mapped from 0 to 1. Each letter in the ASCII
diagram is a point of the external grid and has been mapped to the region
covered by the character array. Each letter ’A‘ corresponds to a point of the
function 1

A
, and each letter ’M ‘ to a point of the mass function.

1 -----------------------------------------------------
2 -dressing --max.deviation ------min -------------max ----
3 -----------------------------------------------------
4 A : 0.00E+00 1.00E+00 1.26E+00
5 B : 8.67E-19 3.84E-07 3.54E-01
6 f1 : 4.19E-03 1.42E+00 3.92E+00
7 f2 : 5.14E-05 -5.70E-01 2.52E-05
8 f3 : 1.23E-03 5.92E-10 1.25E+00

4These iterations are full iterations of the whole system, consisting of two vertex updates
and a converged propagator.

5In fact we did not apply a criterion of convergence, but rather implemented a fixed
number of iterations. Usually we run 100 propagator iterations and consider the system
as converged.
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9 f4 : 8.17E-05 -1.15E-01 1.17E-01
10 f5 : 1.82E-04 -6.40E-02 6.28E-02
11 f6 : 2.91E-03 9.93E-01 2.72E+00
12 f7 : 2.32E-04 -2.81E-03 7.54E-01
13 f8 : 3.67E-04 -8.88E-01 -4.83E-10
14 g1 : 2.97E-03 1.00E+00 2.77E+00
15 g2 : 7.83E-05 -5.92E-01 3.43E-03
16 g3 : 8.69E-04 -6.64E-06 8.97E-01
17 g4 : 1.77E-04 -2.43E-02 5.95E-01
18 g5 : 1.36E-04 -4.60E-02 4.52E-02
19 g6 : 2.22E-05 -2.56E-01 -2.11E-04
20 g7 : 1.66E-04 -2.02E-03 5.34E-01
21 g8 : 1.00E-04 -3.30E-02 6.14E-04
22 -----------------------------------------------------
23 ------------- min ------------ max ---------- avg ---
24 -----------------------------------------------------
25 Z1F: 1.00E+00 1.00E+00 1.00E+00
26 -----------------------------------------------------
27 ----------- checking propagator integrity -----------
28 -----------------------------------------------------
29 ------------------- propagator OK -------------------
30 -----------------------------------------------------
31 1 AAAAAAAAAAAA
32 | AAA
33 | A
34 | AA
35 |AAAAAAAAAAAAAA
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |MMMMMMMMMMM
49 | M
50 | M
51 | M
52 | M
53 | M
54 0 MMMMMMMMMMMMMMMM
55 IR ----------------------------------------------UV
56 -----------------------------------------------------

Listing B.1: It is convenient to write an ASCII-plot of the quark-propagator
dressings to the standard stream after each iteration step of the system
vertex-propagator.

B.2.2.4 Finalization

Depending on the Yang-Mills input, the system converges to a reasonable
amount of precision within roughly 10-12 iterations. The information of the
vertex and propagator dressings are written to files, which are then processed
further by awk-based Linux shell-scripts.



Appendix C

An alternative approach to the
quark-gluon vertex DSE

Here we present an interesting alternative to the approach we employed in
the main text1. The truncation is the same as the one presented in the main
text 3.2, however, here we use a different momentum routing in the vertex
equation. The idea is to use a tensor decomposition for a sub-diagram2

contained in the non-abelian contribution. This vertex consists of the two
quark-gluon vertices, connected by one dressed quark propagator. In Figure
C.1 we show the momentum routing for the vertex equation employed in this
study. We use the average fermion momentum p,

p =
1

2
(pi + pf ) , (C.1)

the average gluon momentum Σ,

Σ =
1

2
(Q+Q′) , (C.2)

and the momentum ∆,

∆ +Q′ −Q = 0 ⇒ ∆ = Q−Q′, (C.3)
pi + ∆− pf = 0 ⇒ ∆ = pf − pi. (C.4)

1This procedure has been suggested by Gernot Eichmann, who successfully employed
a similar construction for a study involving the fermion Compton vertex [171].

2The sub-diagram consists of two fully dressed quark-gluon vertices, connected by a
dressed quark propagator. It thus corresponds to a non-1PI four-point function, see Figure
C.2.
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http://inspirehep.net/author/profile/G.Eichmann.1
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With (C.2) and (C.3) it follows that

Σ =
1

2
(Q+Q−∆) ⇒ Q = Σ +

∆

2
, (C.5)

Σ =
1

2
(∆ +Q′ +Q′) ⇒ Q′ = Σ− ∆

2
. (C.6)

Furthermore, for the average momentum p+
i we have

p+
i =

1

2
(pi + p+ Σ) , (C.7)

and together with

pi − p− Σ + 1 = 0⇒ pi +Q = p+ Σ (C.8)

it follows that
p+
i =

1

2
(pi + pi +Q) = pi +

Q

2
. (C.9)

On the other hand, p = 1
2

(pi + pf ), such that through adding and subtracting
a term we get

p+
i =

1

2
pi +

1

2
pf︸ ︷︷ ︸

=p

−1

2
pf +

1

2
pi︸ ︷︷ ︸

=−∆
2

+
Q

2

︸ ︷︷ ︸
=+Q′

2

= p+
Q′

2
, (C.10)

where we also used (C.3) and (C.4). Similarly we find

p+
f =

1

2
(p+ Σ + pf ) , (C.11)

and with
p+ Σ−Q′ − pf = 0⇒ p+ Σ = Q′ + pf (C.12)

we have
p+
f =

1

2
(Q′ + pf + pf ) = pf +

1

2
Q′. (C.13)

Using p = 1
2

(pi + pf ) again we finally get

p+
f =

1

2
pi +

1

2
pf︸ ︷︷ ︸

=p

+
1

2
pf −

1

2
pi︸ ︷︷ ︸

= ∆
2

+
1

2
Q′

︸ ︷︷ ︸
=+Q

2

= p+
Q

2
, (C.14)
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Figure C.1: The momentum routing for the vertex equation.

Figure C.2: This four point function is contained in the non-abelian diagram.
It is spanned by 128 basis elements, see text.

where we used (C.3) and (C.4) as before. The three momenta p, Σ and ∆
produce 6 Lorentz invariants,{

p2,Σ2,∆2, p.Σ, p.∆,Σ.∆
}
. (C.15)

We rename these invariants as follows:

p2 → p2

p.∆ → z
Σ2 → σ
∆2 → t

Σ.∆ → Z
p.Σ → y


⇒ {

fermion︷ ︸︸ ︷
p2, z, y,

gluon︷ ︸︸ ︷
t, σ, Z } . (C.16)

C.1 A basis for the lower quark line

The coordinates are chosen as shown in Fig. C.3.
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Figure C.3: The choice of coordinates.

The vectors ∆,Σ and p are then

∆ = 2
√
t


0
0
0
1

 , Σ =
√
σ


0
0√

1− Z2

Z

 , p =
√
p2


0√

1− z2
√

1− y2
√

1− z2y
z

 .

(C.17)
Next we will use transversality with respect to the external momentum

∆, which we denote by a subscript T , as well as transversality with respect
to both, ∆ and ΣT , denoted by a subscript t:

Σµ
T = T µν∆ Σν =

(
δµν − ∆̂µ∆̂ν

)
Σν , (C.18)

where the ˆ indicates normalization. For the double-transverse p we have

pµt = pµT −
pT .ΣT

Σ2
T

Σµ
T . (C.19)

Let us introduce the normalized external, transverse and double-transverse
momenta d, s and r,

dµ = ∆̂µ, (C.20)
sµ = Σ̂µ

T , (C.21)
rµ = p̂µt . (C.22)
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The vectors d, s and r are orthonormal:

d2 = s2 = r2 = 1, d.s = d.r = s.r = 0. (C.23)

Together with the totally antisymmetric Levi-Civita symbol εµαβγ a fourth
orthonormal (pseudo-)vector can be constructed,

vµ = εµαβγrαsβdγ, (C.24)

where an additional γ5 is needed to make vµ transform as a vector under
parity. Taking this into account we can form a complete and orthonormal
tensor basis by appropriate combinations of the following elements:

{1, �r, �s, ��d, γ5v
µ, rµ, sµ, dµ} . (C.25)

The vectors v, r, s and d are just the Euclidean unit vectors in 4 dimensions:

v =


1
0
0
0

 , r =


0
1
0
0

 , s =


0
0
1
0

 , d =


0
0
0
1

 . (C.26)

The aim is to span the lower line of the non-abelian diagram by the orthonor-
mal basis. We define the lower line of the non-abelian diagram as

ΓµνB := Γµ(p+
f ,−Q

′)S(p+ Σ)Γν(p+
i , Q), (C.27)

i.e. it consists of two full vertices connected by a full quark-propagator. This
object can then be spanned by the basis


γ5v

µ

rµ

sµ

dµ

⊗


γ5v
ν

rν

sν

dν

⊗



1

�r

�s

��d

�r�s

�r��d

�s��d

�r�s��d


, (C.28)

τµνi,a = Xµν
i (r, s, d)

[
1

γ5

]
i

τa(r, s, d), (C.29)

where the γ5 has to be chosen if the corresponding Xi contains one quantity
of vµ. Thus we can write

ΓµνB (p,Σ,∆) = (C.30)
16∑
i=1

8∑
a=1

fi,a(p
2, z, y, t, σ, Z)Xµν

i (r, s, d)︸ ︷︷ ︸
Lorentz

[
1

γ5

]
i

τa(r, s, d).︸ ︷︷ ︸
Dirac
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Xµν
1 = 1√

2
(vµvν + rµrν) Xµν

9 = 1√
2
(rµsν + sµrν) τ1 = 1

Xµν
2 = 1√

2
(vµvν − rµrν) Xµν

10 = 1√
2
(vµsν + sµvν) τ2 = �r

Xµν
3 = 1√

2
(vµrν + rµvν) Xµν

11 = 1√
2
(rµsν − sµrν) τ3 = �s

Xµν
4 = 1√

2
(vµrν − rµvν) Xµν

12 = 1√
2
(vµsν − sµvν) τ4 = ��d

Xµν
5 = 1√

2
(sµsν + dµdν) Xµν

13 = 1√
2
(rµdν + dµrν) τ5 = �r�s

Xµν
6 = 1√

2
(sµsν − dµdν) Xµν

14 = 1√
2
(vµdν + dµvν) τ6 = �r��d

Xµν
7 = 1√

2
(sµdν + dµsν) Xµν

15 = 1√
2
(rµdν − dµrν) τ7 = �s��d

Xµν
8 = 1√

2
(sµdν − dµsν) Xµν

16 = 1√
2
(vµdν − dµvν) τ8 = �r�s��d

Table C.1: The basis elements as presented in [171].

The basis elements summarized in Table C.1 obey an orthonormality
relation,

1

4
Tr
{
τ̄ νµi,a τ

µν
j,b

}
= Xµν

i Xµν
j

1

4
Tr{τ̄aτb} = δijδab, (C.31)

where τ̄ means
τ̄ νµi,a (r, s, d) = Cτµνi,a (−r,−s,−d)TCT . (C.32)

C.2 Outer quark-gluon vertex basis (orthonor-
mal)

We will employ two different basis sets to span the quark-gluon vertex in
this calculation. For the actual evaluation of the quark-gluon vertex dressing
functions we use an orthonormal basis, while for the evaluation of all vertices
appearing internally we will use a non-orthonormal basis. For the orthonor-
mal basis we use another frame, where we exploit the Lorentz invariance of
the equation. There we use the momenta as depicted in Figure C.4.

The momenta p and Σ are redefined,

p =
√
p2


0
0√

1− z2

z

 , Σ =
√
σ


0√

1− Z2
√

1− y2
√

1− Z2y
Z

 , (C.33)

and ∆ is defined as before. The transverse part of the quark-gluon vertex is
then given by

Γρ(p,∆) =
8∑
i=1

fi(p,∆)τ ρi (R, d), (C.34)
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Figure C.4: The choice of coordinates for the orthonormal basis.

The orthonormal basis elements read (equation (D22) of [88])


1√
2
γµt

Rµ

dµ

⊗


1

��d

��R

��R��d

 , (C.35)

where we used the normalized gluon momentum

dµ := ∆̂µ =


0
0
0
1

 , (C.36)

and introduced the normalized average momentum transverse to the gluon
momentum,

Rµ := p̂µT =


0
0
1
0

 . (C.37)

Note that the element γµt is transverse to d and R, i.e.

γµT = (δµν − dµdν) γν , (C.38)
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γµt = γµT − (γT .R)Rµ. (C.39)

This gives 12 tensor structures in total. We use the 8 transverse structures
to span the vertex, i.e. the ones obeying

d.τi = 0, (C.40)

see Table C.2.

τµ1 = 1√
2
γµt 1 τµ5 = Rµ

1

τµ2 = 1√
2
γµt ��d τµ6 = Rµ

��d

τµ3 = 1√
2
γµt��R τµ7 = Rµ

��R

τµ4 = 1√
2
γµt��R��d τµ8 = Rµ

��R��d

Table C.2: The orthonormal basis of the quark gluon vertex, [88].

Again the basis elements fulfill an orthonormality relation,

1

4
Tr{τ̄µi τ

µ
j } = δij, (C.41)

where τ̄µi = (τµi )† is the hermitean conjugate of the basis element.

C.3 Inner quark-gluon vertex basis

The dressed quark-gluon vertex also appears in the lower quark-line of the
non-abelian diagram. There we employ a different basis to span the two
dressed vertices, as there is no benefit from the basis elements being or-
thonormal there. The basis is taken from [171], equation (89). Its elements
are shown in Table C.3 and we choose the coordinates as depicted in Figure
C.5.

In this frame, the momenta are

Qµ = Q


0
0
0
1

 , kµ = k


0
0√

1− ξ2

ξ

 , (C.42)

where Qµ is the gluon momentum and kµ the average quark momentum.
Hereby, tµνab reads

tµνab = a · bδµν − bµaν , (C.43)
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Figure C.5: The choice of coordinates for the inner basis.

ρµ1 = tµνQQγ
ν ρµ5 = tµνQQik

ν

ρµ2 = tµνQQk ·Q i
2
[γν ,��k] ρµ6 = tµνQQk

ν
��k

ρµ3 = i
2
[γµ,��Q] ρµ7 = tµνQkk ·Qγν

ρµ4 = 1
6
[γµ,��k,��Q] ρµ8 = tµνQk

i
2
[γν ,��k]

Table C.3: The inner basis of the quark-gluon vertex, [171]. The momenta
are shown in Figure C.5.

and the triple-commutator is

[a, b, c] = [a, b]c+ [b, c]a+ [c, a]b. (C.44)

The transverse parts of the quark-gluon vertex are then spanned by

ΓµT (k,Q) =
8∑
i=1

gi(k
2, Q2, k ·Q)ρµi (k,Q). (C.45)

C.4 Change of basis

The quark-gluon vertex dressings are evaluated in an orthonormal basis, but
for the determination of the dressing functions of the four point function
and the quark propagator a different basis is employed. Therefore we have
to calculate the projections of the orthonormal outer onto the inner basis.
This gives the desired dressing functions in the inner basis in terms of linear
combinations of the dressing functions of the orthonormal basis. Suppressing
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momentum dependence, the vertex reads

Γµτ =
8∑
i=1

fiτ
µ
i , (C.46)

Γµρ =
8∑
i=1

giρ
µ
i , (C.47)

such that the relations between the dressing functions gi and fi are obtained
by

8∑
j=1

gj(ρ̄
µ
i , ρ

µ
j ) =

8∑
k=1

fk(ρ̄
µ
i , τ

µ
k ). (C.48)

The scalar product (·, ·) means Lorentz contraction and Dirac tracing,

li :=
8∑
j=1

gj
1

4
Tr{ρ̄µi ρ

µ
j } =

8∑
k=1

fk
1

4
Tr{ρ̄µi τ

µ
k } =: ri. (C.49)

The projections on the left hand side, li, result in linear combinations
of the inner quark-gluon vertex dressings gi, i ∈ [1, 8], while the right hand
side projections, ri, hold linear combinations of the orthonormal quark-gluon
vertex dressings fi, i ∈ [1, 8]. This system of linear equations can then be
solved to obtain the desired dressing functions.

C.5 Analysis of the vertex equation

Here we study the structure of the vertex equation by employing the basis sets
defined in the preceding sections. We want to span the four-point function
as follows,

ΓµνB (p,Σ,∆) = (C.50)
16∑
i=1

8∑
a=1

fi,a(p
2, z, y, t, σ, Z)Xµν

i (r, s, d)

[
1

γ5

]
i

τa(r, s, d),

where we can use the orthonormality relation

1

4
Tr
{
τ̄ νµi,a τ

µν
j,b

}
= Xµν

i Xµν
j Tr{τ̄aτb} = δijδab (C.51)
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to obtain the dressing functions fi,a. Considering the Lorentz and Dirac
structure only, we have

fi,a(p
2, z, y, t, σ, Z) (C.52)

=
1

4
Tr
{
Xµν
i τ̄a(r, s, d)

[
1

γ5

]
i

ΓµνB

}
=

8∑
k=1

8∑
l=1

gk(p
+
f ,−Q

′)gl(p
+
i , Q)Xµν

i (r, s, d)× 1

4

Tr
{
τ̄a(r, s, d)

[
1

γ5

]
i

ρµk(p+
f ,−Q

′)S(p+ Σ)ρνl (p
+
i , Q)

}
.

Note that the quark-gluon vertices in this expression are spanned by the in-
ner basis (C.47). The angular dependence of the dressing functions (variables
y, z and Z) will be expanded in Chebyshev polynomials. For the evalua-
tion of the vertex equation we plug the expansion of the four point function
into the non-abelian diagram. Now we use the orthonormal basis (C.46),
which allows for easy disentanglement of the dressing functions. The vertex
equation reads

8∑
j=1

fj(p
2, z, t)τ ρj (p,∆) = (C.53)

Z1Fγ
ρ + ig2NC

2

ˆ
Σ

16∑
i=1

8∑
a=1

fi,a(p
2, z, y, t, σ, Z)

×Xµν
i (r, s, d)

[
1

γ5

]
i

τa(r, s, d)

×Γρµ
′ν′(Σ,∆)Dµµ′(Q′)Dν′ν(Q),

where Γρµ
′ν′ and Dµµ′ are the 3-gluon vertex and the gluon-propagator re-

spectively, Z1F is the renormalization constant. The factor of i and the sign
has already been chose in a consistent way, also color space has been taken
into account (see Section B.1.3 for the computation of the color factor). The
integration is performed over the loop momentum Σ. In hyper-spherical co-
ordinates this corresponds to a radial component σ, as well as to the two
angles y and Z. Exploiting the orthonormality of the outer quark gluon
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vertex basis we find

fk(p
2, z, t) = Z1F

1

4
Tr{τ̄ ρk (p,∆)γρ} (C.54)

−ig2NC

2

ˆ
Σ

16∑
i=1

8∑
a=1

fi,a(p
2, z, y, t, σ, Z)

×1

4
Tr{τ̄ ρk (p,∆)Xµν

i (r, s, d)

[
1

γ5

]
i

τa(r, s, d)

×Γρµ
′ν′(Σ,∆)Dµµ′(Q′)Dν′ν(Q)}.

The pure Lorentz part of the right hand side of this expression can be dragged
out of the trace, such that the summand factorizes. Considering the integrand
of the right hand side only, we thus have

fi,a(p
2, z, y, t, σ, Z)

1

4
Tr{τ̄ ρk (p,∆) (C.55)

×Xµν
i (r, s, d)

[
1

γ5

]
i

τa(r, s, d)

×Γρµ
′ν′(Σ,∆)Dµµ′(Q′)Dν′ν(Q)}

= fi,a(p
2, z, y, t, σ, Z)

×Xµν
i (r, s, d)Γρµ

′ν′(Σ,∆)Dµµ′(Q′)Dν′ν(Q)︸ ︷︷ ︸
=:Mρ

i (y,t,σ,Z)

× 1

4
Tr{τ̄ ρk (p,∆)

[
1

γ5

]
i

τa(r, s, d)}︸ ︷︷ ︸
=:Mρ

k,i,a

.

Using these pre-calculable structures, equation (C.54) becomes

fk(p
2, z, t) = Z1F

1

4
Tr{τ̄ ρk (p,∆)γρ}︸ ︷︷ ︸

=:Mk

−ig2NC

2
(C.56)

×
ˆ

Σ

16∑
i=1

8∑
a=1

fi,a(p
2, z, y, t, σ, Z)Mρ

i (y, t, σ, Z)Mρ
k,i,a︸ ︷︷ ︸

=:Mk,i,a(y,t,σ,Z)

= Z1FMk − ig2NC

2

×
ˆ

Σ

16∑
i=1

8∑
a=1

fi,a(p
2, z, y, t, σ, Z)Mk,i,a(y, t, σ, Z).
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The Mk and Mk,i,a(y, t, σ, Z) can be calculated in advance, using a computer
algebra system3.

C.6 The structure of the elements Mk,i,a

Besides the dressing functions of the four point function, the only input to
the vertex equation are the elements of Mk,i,a, which hold the information of
the contracted Lorentz- and traced Dirac space, where

Mk,i,a(y, t, σ, Z) = Mρ
i (y, t, σ, Z)Mρ

k,i,a. (C.57)

With the quark-gluon vertex dressing label k ∈ [1, 8], the four point function
Lorentz-part label i ∈ [1, 16] and the four-point function Dirac-part label
a ∈ [1, 8], the cardinality of the set of {k, i, a} 3-tuples of indices is k · i · a =
8 · 16 · 8 = 1024. However, we are fortunate here, because many of the Mk,i,a

turn out to be zero. While in the most general case one would have to sum up
i · a = 16 · 8 = 128 products of the four-point dressings times Mk,i,a elements
for every of the 8 ks, here their number is reduced significantly, as for each of
the 8 ks at most 16 elements have to be summed up. The cardinality of the
set of relevant{k, i, a} 3-tuples drops from 1024 to 104, meaning that only
104 out of 128 vertex dressings have to be evaluated. Let us work this out
to see which of the 4-point function dressing are needed.

Once the Mk,i,a are known, the structure of the non-vanishing elements
can be studied. For a given k ∈ [1, 8], the i and a indices of the nonzero
elements come in two classes of symmetry. The first symmetry for the indices
i and a is established for the elements k ∈ [1, 4], the second symmetry class
for the i and a indices is realized for k ∈ [5, 8]. Let us start with k ∈ [1, 4].
Here all indices of i ∈ [1, 16] appear, but for each of the 16 is only one a
leads to a nonzero element Mk,i,a. For a given value of i, the corresponding
values of a follow a pattern, see Tables C.4 and C.5.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
a X X Y Y X X X X X Y X Y X Y X Y

Table C.4: The symmetry pattern for nonzero elements of Mk∈[1,4],i,a.

This accounts for k · i = 4 · 16 = 64 nonzero elements, because each i is
only paired with just one a. The second symmetry class is realized for values
of k ∈ [5, 8], see Table C.6 and C.7.

3Here we used FORM [89] and Mathematica [168] to have two independent calculations
for comparison.
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k X Y
1 2 8
2 6 5
3 5 6
4 8 2

Table C.5: The as belonging to k and i are obtained by plugging the values
of X and Y into Table C.4.

i 1 2 5 6 7 8 9 11 13 15
a Z Z Z Z Z Z Z Z Z Z

Table C.6: The symmetry pattern for nonzero elements of Mk∈[5,8],i,a.

This accounts for k · i = 4 · 10 = 40 nonzero elements. Thus, in total we
have the 64 + 40 = 104 nonzero elements, which are summarized in Table
C.8.

Using the symmetry, equation (C.56) becomes

fk(p
2, z, t) = Z1FMk − (C.58)

ig2NC

2

ˆ
Σ

∑
l∈Pk

fl(p
2, z, y, t, σ, Z)Mk,l(y, t, σ, Z),

where the index l runs through the 104 nonzero elements in partitions Pk
of 16 for k ∈ [1, 4], and in partitions Pk of 10 for k ∈ [5, 8]. The dressing
functions of the four point function have to be stored in the l-indexed array
according to the order of their appearance in the Mk,l elements. Note that
each of the 104 dressing functions appears exactly one time for all ks, i.e. the
set of the four point function dressings contributing to a particular quark-
gluon vertex dressing labeled by k is disjoint from all sets contributing to the
other 7 quark-gluon vertex dressing functions labeled by [1, 8] \ {k}.

C.7 Relation between the dressing functions
In general, the four-point function is spanned by 128 basis elements, dressed
with 128 functions, see equation (C.50). There are 16 Lorentz- and 8 Dirac-
parts, giving rise to the 16 × 8 = 128 elements. The quark-gluon vertex
equation takes 128 dressing functions as an input, see equation (C.54). Above
we have shown, that equation (C.54) reduces to equation (C.56), where the
Mk,i,a elements are the pre-calculated trace of equation (C.54). The indices
k, i and a label the quark-gluon vertex dressing, the Lorentz-part and the
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k Z
5 1
6 4
7 3
8 7

Table C.7: The as belonging to k and i are obtained by pairing the is of
Table C.6 with the Z as given here.

k X Y Z
1 2 8 0
2 6 5 0
3 5 6 0
4 8 2 0
5 0 0 1
6 0 0 4
7 0 0 3
8 0 0 7

Table C.8: Summary of nonzero elements. For a given k, take the non-zero
values of X, Y and Z and plug them into the Tables C.4 and C.6 to obtain
the corresponding a for a given i. The resulting 104 3-tuples of {k,i,a} are
the non-zero elements of Mk,i,a.

Dirac-part respectively. In the most general case, for each of the eight quark-
gluon vertex dressings the full double sum would have to be carried out, i.e.
a sum over 128 elements. However, here the symmetry of the construction
can be exploited. In fact, most of the 1024 Mk,i,a are zero, and the terms
appearing in the k sums are also mutually exclusive, which reduces the 8
double sums from 128 terms down to 16 or even 10 terms each (see Section
C.6 for a discussion). The 104 non-zero elements summarized in Table C.8
have thus been labeled by a multi index l, see equation (C.58). The fact that
the terms in the eight sums are mutually exclusive, plus the fact that there
are 104 non-zero elements leads to the conclusion, that 24 combinations {i,a}
need not to be evaluated. The 104 remaining dressing functions are either
imaginary or real. Table C.9 summarizes the dependence of the quark-gluon
vertex dressings on the four point function dressings.

All traces needed for this calculation have been performed using FORM
[89]. The FORM output is then processed employing sed and bash shell
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scripts.

C.8 Solving the system
One iteration consists of several steps:

1. Four-point function trace evaluation

2. Vertex update

3. Change of basis

4. Propagator update

The system has been parallelized and designed to run on a CPU cluster us-
ing MPI. Here we have chosen a simple way of parallelization, where 104
threads evaluate one four-point function dressing each. This is the compu-
tationally most expensive part. The results of the dressings are broadcasted
to all threads once the calculation has been performed and the vertex and
propagator can be evaluated. One problem of this approach is that one has
to store a four-point function depending on 6 Lorentz invariants times 104,
as we have 104 dressing functions. This might become a problem on smaller
clusters, where RAM capacity per thread is not big. In order to reduce the
memory consumption we thus used a Chebyshev expansion for the three an-
gular variables of the four point function. Even though the system iterates
stable by now and converges, the dynamically generated mass is too low.
This issue is currently under investigation.
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fi proportional to fi,a

f1 12 22 38 48 52 62 72 82 92 108 112 128 132 148 152 168

f2 16 26 35 45 56 66 76 86 96 105 116 125 136 145 156 165

f3 15 25 36 46 55 65 75 85 95 106 115 126 135 146 155 166

f4 18 28 32 42 58 68 78 88 98 102 118 122 138 142 158 162

f5 11 21 51 61 71 81 91 111 131 151 — — — — — —

f6 14 24 54 64 74 84 94 114 134 154 — — — — — —

f7 13 23 53 63 73 83 93 113 133 153 — — — — — —

f8 17 27 57 67 77 87 97 117 137 157 — — — — — —

Table C.9: Summary of nonzero dressing functions. The fi in the column
on the left are the quark-gluon vertex dressing functions given in equation
(C.34), appearing on the left-hand side of equation (C.56). The fi,a elements
whose indices i and a are shown in a concatenated way in the following cells
are the four-point function dressing functions appearing on the right-hand
side of equation (C.56). Elements marked with an under-bar are imaginary.
The table shows the dependence of the quark-gluon vertex dressings on the
dressings of the four point function which are labeled by the indices i and a,
where i ∈ [1, 16] and a ∈ [1, 8]. For example, in the first line, i.e. for f1 the
first entry reads 12, meaning the first dressing contributing to f1 is fi,a = f1,2,
which is an imaginary quantity. The 8th entry of f5 on the other hand reads
111, meaning fi,a = f11,1. For a given quark-gluon vertex dressing fi, only the
elements shown in the corresponding line have to be taken into account by
summing them up after multiplication with the corresponding Mkia element.
The quark-gluon vertex dressings f2, f3, f5, and f8 inherit the imaginary
nature from the multiplication of the four-point function dressings with the
purely imaginary Mk,i,a elements. The elements in the various basis systems
are chosen such that the dressing functions going with the inner basis are
real-valued quantities.
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Appendix D

Induced branch cuts in the radial
integration-plane

As induced branch cuts are a major obstacle when extending one-loop ex-
pressions to the complex plane, we briefly discuss how they come about and
how they can be dealt with. To this end consider a (Euclidean) two-point
function of the form

M (x) = 〈O (p) O (−p)〉 =

ˆ
d4k

(2π)4

f (p, k, cos θ1)

g (p, k, cos θ1)
. (D.1)

The fact that the integrand is expressed as a fraction of two functions
allows us to access the non-analyticities of the integrand via the zeros of g
(where we assume that zeros in g give rise to integrable singularities, f is
assumed to be analytic and non-zero everywhere). Depending on the super-
ficial degree of divergence it might be necessary to regularize such integrals,
e.g. by employing a BPHZ procedure. Using the relation (A.7) to switch to
hyper-sphericals, as well as performing the trivial angular integration, one is
left with

M (x) =

ˆ Λ2

0

dy y

ˆ 1

−1

dz
√

1− z2
f̃ (x, y, z)

g (x, y, z)
, (D.2)

where, as usual, we use the abbreviations p2 = x, q2 = y and cos∠p,q = z.
The f̃ is to signal that we absorbed the trivial constants from the integral
measure and the angular integrations into f , Λ2 is the UV cut-off. As long
as x ∈ R+

0 , the integration can be performed in a straight-forward manner.
However, we are interested in the case where this is not the case. The problem
that might arise here is that the angular integral can induce branch cuts in the
complex plane of the radial integration variable for a given x ∈ C, such that
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Figure D.1: The branch cut arising form equation (D.3) for y ∈ [−1, 1] .

the contour has to be deformed in order to avoid the branch cut. Consider
for example the integral

f (y) =

ˆ b

a

dz

y + z
= log z

∣∣∣∣y+b

y+a

= log

(
y + b

y + a

)
. (D.3)

With the arbitrary choice of a = −1 and b = +1 one finds a branch cut
along the interval y ∈ [−1, 1] , see Figure D.1.

The branch cut shows up in the complex y-plane because the angular
variable z picks up singular values. This can be already read off the integrand
without solving the angular integral. One only has to find all values of y ∈ C
(for a given x ∈ C) for which the z-integrand becomes singular. For equation
(D.3) with integral boundaries ±1 this is trivial, as all values of y for which
the integrand can become singular are obviously given by y ∈ [−1, 1] (if z
runs from −1 to +1, let y run from +1 to −1). In the more general case
(D.2) one can parametrize the branch cut using the angular variable z, while
there is some extra dependence on the square of the external momentum x
that remains,

c (x) = y0 (x, z)

∣∣∣∣z=+1

z=−1

, (D.4)

and y0 (x, z) is a solution of

g (x, y, z) = 0, x ∈ C, x const., z ∈ [−1, 1] . (D.5)

It is important to note that this provides all branch cuts parametrized by
the angular variable and all non-analyticities that are purely y-dependent1.

1Note that 2d and 3d animations of branch-cuts induced by angular integration can be
found on the DVD enclosed to this thesis, see Appendix K for details.



Appendix E

Predicting the branch point
locations of the solution

The branch point locations in the solution of a one-loop expression in the
complex plane can be predicted easily once the analytic structure in the com-
plex plane of the radial integration variable has been obtained, see equation
(D.5). In this analysis we re-obtained the long known results published in
[172, 173, 107].

The calculation is formulated in a language suitable for the problems
we are dealing with, further details can be found here [174]. This analysis
serves as guideline for the validity of the result of the numerical complex
one-loop integration. As can be seen in the main text, sometimes there
are more than just one branch-cut showing up in the result. Resolving the
branch points numerically can be very hard because the numerics becomes
dominated by noise present through the non-analyticities of the result in the
vicinity of the cut. For the perturbative case one can however easily predict
the exact locations of the branch-point(s) in the result. This is an obvious
statement, as a non-analytic point in the result has to originate somehow
from the one-loop integral that represents the correlator. From this point of
view it is clear that one has to look for situations in the complex plane of the
radial integration variable that do not allow for the existence of an arbitrarily
deformed contour. These points can be extracted analytically, providing a
valuable check for the result of the numerics. There are three simple analytic
steps that have to be performed.

• STEP 1: (Integrand analysis) In this step one has to perform a thor-
ough analysis of the analytic properties of the y-integral after the z-
integral has been performed. This yields all poles and cuts in the
y-plane.
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• STEP 2: (Identify candidates) Candidates for possible branch-point
locations can be found by putting the end-points of the x-dependent
branch-cuts to values where only y-dependent poles are located.

• STEP 3: (Check contours) Now one only has to check the validity of
the contour for the situations resulting from STEP 2

Let us discuss the procedure by considering a generic Euclidean correlator
with masses m1 ∈ R+ and m2 ∈ R+,

M (x) = 〈O (p) O (−p)〉d=4 =

ˆ
d4k

(2π)4

f (k, p− k)(
(p− k)2 +m2

1

)
(k2 +m2

2)
, (E.1)

with f (k, p− k) being a function built from the Lorentz invariants. Using
hyper-sphericals (A.7) again, we get

M (x) =

ˆ ∞
0

dy y

ˆ 1

−1

dz
√

1− z2
f̃ (x, y, z)(

x+ y − 2
√
x
√
yz +m2

1

)
(y +m2

2)
, (E.2)

where we used the identifications x = p2, y = k2 and z = cos θ1 as usual.
Trivial constants have been absorbed into f̃ .

• STEP 1: Using the procedure outlined in Appendix D we find one pole
and a branch cut,

y1 = −m2
2, (E.3)

y2(x, z) = −m2
1 − x+ 2xz2 − 2

√
−m2

1xz
2 − x2z2 + x2z4,

y3(x, z) = −m2
1 − x+ 2xz2 + 2

√
−m2

1xz
2 − x2z2 + x2z4.

• STEP 2: Here we have to solve the equations y2(x, z) = y1 and y3(x, z) =
y1 (where z = ±1) with respect to x. This yields

x = −(m1 ±m2)2. (E.4)

• STEP 3: An analysis of the two solutions show that only the solution
with the ′+‘ sign gives rise to a branch-point in the solution, see Figure
E.1.

From the procedure we conclude that the only branch-point in the complex
x-plane of the correlator (E.1) is located at

x = −(m1 +m2)2. (E.5)
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Figure E.1: The plot to the very left shows the analytic structure in the
y-plane for x = − (m1 −m2)2 , m1 = 0.5 au, m2 = 1.0 au. This point x
is no branch point, as the contour is not affected by the structure in the
y-plane. The remaining plots show the analytic properties of the y-plane
slightly below, at, and slightly above the point x = − (m1 +m2)2 , m1 =
0.5 au, m2 = 1.0 au. This point is a branch point, as the contour cannot
connect the origin with the UV cut-off without hitting the cut and picking
up its discontinuity.

This is in agreement with the solutions provided by [172, 173, 107] if
applied to the Euclidean case, that is, using negative mass squares:

x = − (m1 +m2)2 =

(
i
√
m2

1 + i
√
m2

2

)2

=

(√
−m2

1 +
√
−m2

2

)2

. (E.6)
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Appendix F

Numerical evaluation of 1-loop
terms in the complex plane

Working in four Euclidean dimensions, a one-loop expression might be writ-
ten as

G
(
p2
)

=

ˆ
R4

d4k

(2π)4 F
(
p2, k2, p · k

)
, (F.1)

with F (p2, k2, p · k) the integrand as a function of the external and loop
momentum squared, p2 and k2, and their scalar product p · k. Formulating
the task is simple: evaluate expression (F.1) for p2 ∈ C numerically. Here
we provide the procedure we developed to evaluate expressions of that type.
Each of the steps in this procedure bears a label marking it as being a task
to be either performed analytically ’A‘ or numerically ’N‘.

• STEP 1 (A) : (Hyper-spherical coordinates) As we are seeking a solution
for a one-loop integral in four Euclidean dimensions we can employ
hyper-spherical coordinates and remove the two trivial angles,
ˆ
R4

d4k

(2π)4

(A.7)→ 1

2 (2π)4

ˆ 2π

0

dφ

ˆ ∞
0

dy y

ˆ 1

−1

dz
√

1− z2

ˆ 1

1

dw

=
1

(2π)3

ˆ ∞
0

dy y

ˆ 1

−1

dz
√

1− z2, (F.2)

which we can apply to expression (F.1) to find

G (x) =
1

(2π)3

ˆ ∞
0

dy y

ˆ 1

−1

dz
√

1− z2F
(
x, y,
√
x
√
yz
)
, (F.3)

where we have used the abbreviations p2 = x, k2 = y and cos∠p,k = z.
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• STEP 2 (A): (Regularization) The one-loop integral (F.1) might be a
divergent quantity (otherwise one can proceed with STEP 3). Power-
counting reveals the superficial degree of divergence, that might be
removed in the spirit of BPHZ [40, 41, 42]. Let the superficial degree
of divergence be n. The regularized expression is then obtained by
employing a Taylor subtraction operator tn to the integrand F of the
divergent integral, where tn is given by

tn =
n∑
i=0

xi

i!

[
∂i
∂xı̂

]
x=0

. (F.4)

The regularized integrand can be written as

Fsub

(
x, y,
√
x
√
yz
)

= (1− tn) F
(
x, y,
√
x
√
yz
)
. (F.5)

After this step has been performed, we are left with

Gsub (x) =
1

(2π)3

ˆ Λ2

0

dy y

ˆ 1

−1

dz
√

1− z2Fsub

(
x, y,
√
x
√
yz
)
, (F.6)

where we also replaced the upper integration boundary by some finite
cut-off Λ2. This is legitimate, as the BPHZ procedure removes any
cut-off dependence from the regularized expression.

• STEP 3 (A,N): (Analysis of the integrand) In this step one has to ana-
lyze the analytic structure in the complex plane of the radial integration
variable. Usually, a non-trivial (obstructive) structure arises through
the angular integration in the variable z. For a given x ∈ C, a branch
cut might show up in the complex plane of the radial integration vari-
able (see Appendix D to learn how this comes about). This branch cuts
change their shape, size and orientation with varying external momen-
tum square x, so eventually they spoil the validity of an undeformed
contour along the real axis that connects the origin with the UV cut-
off. A parametrization of the branch cut can be obtained by following
the procedure outlined in Appendix D, but one can also perform this
step numerically. In the main text we show results obtained by both
procedures. After identification of regions in the complex plane where
the radial contour has to be modified, this step leaves us with

Gsub (x) =
1

(2π)3

ˆ
C

dy y

ˆ 1

−1

dz
√

1− z2Fsub

(
x, y,
√
x
√
yz
)
, (F.7)

with C an appropriate contour.
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• STEP 4 (N): (Initialization) Following the previous steps we are finally
left with equation (F.7). In this step we have to initialize the grid of
external nodes stored in an L = (M ×N,C) matrix, where M and
N are the number of grid points in the real and imaginary direction
respectively. In our approach this step is performed on a GPU [98].
Furthermore one has to define and initialize all contour deformations
resulting from the previous step.

• STEP 5 (N): (Evaluation) In this final step the integrations are per-
formed using a GPU. For every given grid point x ∈ L we evaluate
equation (F.7) by using non-adaptive quadrature rules for the inte-
grals. Subsets of the matrix L are evaluated in parallel on the GPU,
where the architecture of the GPU determines the maximal size of the
subset.

The tremendous level of parallelization provided by the GPU allowed us
to sample the integrand with a very high level of accuracy, which becomes
important if one wants to resolve a branch point (see example in main text).
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Appendix G

Constructing the F² correlator

In this section we construct an expression for 〈F 2(x)F 2(0)〉, which corre-
sponds to a scalar glueball (0++). The expression we are after can be found
in [100], however, we derive it here and find agreement with their result. To
this end we are solely operating at the Born level, that is, we turn off the
non-Abelian term by putting the coupling to zero. The field strength tensor
becomes

F a
µν = ∂µAaν − ∂νAaµ, (G.1)

such that the correlator of F 2 reads

〈F 2(x)F 2(0)〉d = 〈(∂µAaν − ∂νAaµ)2 (x) (∂µAaν − ∂νAaµ)2 (0)〉d. (G.2)

As we are working in Euclidean momentum space, we are looking for a
momentum space operator Od (p2) that corresponds to (G.2) ,

〈F 2(x)F 2(0)〉d =

ˆ
ddp

(2π)4 exp {i p · x}Od

(
p2
)
. (G.3)

Omitting the space and color labels, as well as considering only one of
the two squares on the left hand side of (G.3), we have

F 2 = (∂µAν − ∂νAµ) (∂µAν − ∂νAµ) (G.4)
= (∂µAν) (∂µAν)− (∂µAν) (∂νAµ)− (∂νAµ) (∂µAν) + (∂νAµ) (∂νAµ)

= 2 (∂µAν) (∂µAν)− 2 (∂µAν) (∂νAµ) ,

where the Einstein sum convention applies. Diagonal terms (µ = ν) van-
ish because of the ′−′ sign, so we only have to consider terms where µ 6= ν.
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Reintroducing the space and color dependence we take two squares appear-
ing in expression (G.2), where each square is expressed as in the last line of
(G.4), we have

lim
y→0

〈 [
2 (∂µ,xA

a
ν (x)) (∂µ,xA

a
ν (x))− 2 (∂µ,xA

a
ν (x))

(
∂ν,xA

a
µ (x)

)]
(G.5)

×
[
2
(
∂ρ,yA

b
σ (y)

) (
∂ρ,yA

b
σ (y)

)
− 2

(
∂ρ,yA

b
σ (y)

) (
∂σ,yA

b
ρ (y)

)] 〉
= lim

y→0

(
4
〈

(∂µ,xA
a
ν (x)) (∂µ,xA

a
ν (x))

(
∂ρ,yA

b
σ (y)

) (
∂ρ,yA

b
σ (y)

) 〉
−4
〈

(∂µ,xA
a
ν (x)) (∂µ,xA

a
ν (x))

(
∂ρ,yA

b
σ (y)

) (
∂σ,yA

b
ρ (y)

) 〉
−4
〈

(∂µ,xA
a
ν (x))

(
∂ν,xA

a
µ (x)

) (
∂ρ,yA

b
σ (y)

) (
∂ρ,yA

b
σ (y)

) 〉
+4
〈

(∂µ,xA
a
ν (x))

(
∂ν,xA

a
µ (x)

) (
∂ρ,yA

b
σ (y)

) (
∂σ,yA

b
ρ (y)

) 〉)
.

The overall structure of terms appearing in (G.5) can be described in a
general way by writing

T ab
αβγδεζηθ(x, y) = (G.6)

=
〈 (
∂α,xA

a
β (x)

)
(∂γ,xA

a
δ (x))

(
∂ε,yA

b
ζ (y)

) (
∂η,yA

b
θ (y)

) 〉
,

which will become useful later. Expanding a 4-point function to zeroth
order in the coupling g yields

〈φ (x1)φ (x2)φ (x3)φ (x4)〉 = 〈φ (x1)φ (x2)〉〈φ (x3)φ (x4)〉 (G.7)
+ 〈φ (x1)φ (x3)〉〈φ (x2)φ (x4)〉
+ 〈φ (x1)φ (x4)〉〈φ (x2)φ (x3)〉
+ O (g) .

Using this expansions and taking only connected terms in x into account,
we find

T ab
αβγδεζηθ(x, y) = (G.8)

=
〈 (
∂α,xA

a
β (x)

) (
∂ε,yA

b
ζ (y)

) 〉〈
(∂γ,xA

a
δ (x))

(
∂η,yA

b
θ (y)

) 〉
+

〈 (
∂α,xA

a
β (x)

) (
∂η,yA

b
θ (y)

) 〉〈
(∂γ,xA

a
δ (x))

(
∂ε,yA

b
ζ (y)

) 〉
.

According to this prescription we can now decompose the terms of equa-
tion (G.5), such that each of the 4-point functions making their appearance
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there is written in terms of two products of two-point functions. This al-
lows us to insert a transverse gluon propagator Dab

µν (x− y) for the two point
functions. Following this procedure, we get

∂α,x∂β,y
〈
Aaγ (x)Abδ (y)

〉︸ ︷︷ ︸
Dabγδ(x−y)

= (G.9)

= ∂α,x∂β,y

ˆ
dDk

(2π)D
exp {i (x− y) · k}Dab

γδ (k)

=

ˆ
dDk

(2π)D
exp {i (x− y) · k} (ikα) (−ikβ)︸ ︷︷ ︸

kαkβ

Dab
γδ (k)

=

ˆ
dDk

(2π)D
exp {i (x− y) · k} kαkβ

×δab
(
δγδ − kγkδ

k2

)
G (k)

where we introduced the transverse projector and the scalar part of the
gluon propagator, which is denoted by G (k). In each of the two terms of the
building block (G.8) we have a product of two terms of the form (G.9), thus
we have to introduce two integrations. The integrand (without the integral
kernels of the Fourier transforms) Ĩabαβγδεζηθ(x, y, k, q) of this most general
building block is then given by

Ĩabαβγδεζηθ(k, q) = (G.10)

=
(
∂α,x∂ε,yD

ab
βζ (x− y)

) (
∂γ,x∂η,yD

ab
δθ (x− y)

)
+
(
∂α,x∂η,yD

ab
βθ (x− y)

) (
∂γ,x∂ε,yD

ab
δζ (x− y)

)
= δabG

(
k2
)
G
(
q2
) [(

kαkε

(
δβζ − kβkζ

k2

))
×
(
qγqη

(
δδθ − qδqθ

q2

))
+

(
kαkη

(
δβθ − kβkθ

k2

))(
qγqε

(
δδζ − qδqζ

q2

))]
.

Now we rewrite (G.10) by introducing an auxiliary tensor A that ex-
presses the most general building block (G.8) of equation (G.5) by making
use of expression (G.10). Note that the order of the indices is crucial here,
as it determines whether an index goes with k or q. We get
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A ab
αβγδεζηθ (k, q) = (G.11)

= δabG (k) G (q) kαqγ
[
kεqηδ

βζδδθ + kηqεδ
βθδδζ

− 1

q2

(
kεqηqδqθδ

βζ + kηqεqδqζδ
βθ
)

− 1

k2

(
kεkβkζqηδ

δθ + kηkβkθqεδ
δζ
)

+
1

k2q2
(kεkβkζqηqδqθ + kηkβkθqεqδqζ)

]
.

Expression (G.11) can now be used to write down the integrand (without
the integral kernels of the Fourier transform) in d Euclidean dimensions,where
we make the summation of indices explicit,

Id (x, y, k, q) = 4
d∑

µ=1

d∑
ν=1

d∑
ρ=1

d∑
σ=1

(
A ab
µνµνρσρσ (k, q) (G.12)

−A ab
µνµνρσσρ (k, q)

−A ab
µννµρσρσ (k, q) + A ab

µννµρσσρ (k, q)
)
.

Because of symmetries among the indices appearing in this expression
one can easily work out the combinations to find that the expression for A
reduces to

A ab,sym
αβγδεζηθ (k, q) = (G.13)

= δabG (k) G (q) kαqγ
[
kεqηδ

βζδδθ + kηqεδ
βθδδζ

]
.

This step can be verified either by hand or by using a computer algebra
system. For example, using FORM [89] one only needs a few lines to show
that the expressions (G.11) and (G.13) for the indices appearing in (G.12)
give the same result, see Listings G.1 and G.2 for the FORM code and the
result respectively.

1 Dimension 10;
2 On statistics;
3 Vector k,q;
4 Indices alpha ,beta ,gamma ,delta ,eps ,zeta ,eta ,theta ,mu,nu,rho ,

sigma;
5 Symbols ook2 ,ooq2 ,ookpq2 ,Gk2 ,Gq2;
6 Local masterterm1 = 4*Gk2*Gq2*k(alpha)*q(gamma)*(k(eta)*q(eps

)*d_(beta ,theta)*d_(delta ,zeta)+k(eps)*q(eta)*d_(beta ,zeta
)*d_(delta ,theta)-ooq2*(k(eta)*q(delta)*q(zeta)*q(eps)*d_(
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beta ,theta)+k(eps)*q(delta)*q(eta)*q(theta)*d_(beta ,zeta))
-ook2*(k(beta)*k(eta)*k(theta)*q(eps)*d_(delta ,zeta)+k(
beta)*k(zeta)*k(eps)*q(eta)*d_(delta ,theta))+ookpq2 *(k(
beta)*k(eta)*k(theta)*q(delta)*q(zeta)*q(eps) +k(beta)*k(
zeta)*k(eps)*q(delta)*q(eta)*q(theta)));

7 Local masterterm2 = 4*Gk2*Gq2*k(alpha)*q(gamma)*(k(eta)*q(eps
)*d_(beta ,theta)*d_(delta ,zeta)+k(eps)*q(eta)*d_(beta ,zeta
)*d_(delta ,theta));

8 Local term11 = (d_(alpha ,mu)*d_(beta ,nu)*d_(gamma ,mu)*d_(
delta ,nu)*d_(eps ,rho)*d_(zeta ,sigma)*d_(eta ,rho)*d_(theta ,
sigma))*masterterm1; Local term12 = (d_(alpha ,mu)*d_(beta ,
nu)*d_(gamma ,mu)*d_(delta ,nu)*d_(eps ,rho)*d_(zeta ,sigma)*
d_(eta ,sigma)*d_(theta ,rho))*masterterm1; Local term13 = (
d_(alpha ,mu)*d_(beta ,nu)*d_(gamma ,nu)*d_(delta ,mu)*d_(eps ,
rho)*d_(zeta ,sigma)*d_(eta ,rho)*d_(theta ,sigma))*
masterterm1; Local term14 = (d_(alpha ,mu)*d_(beta ,nu)*d_(
gamma ,nu)*d_(delta ,mu)*d_(eps ,rho)*d_(zeta ,sigma)*d_(eta ,
sigma)*d_(theta ,rho))*masterterm1;

9 Local term21 = (d_(alpha ,mu)*d_(beta ,nu)*d_(gamma ,mu)*d_(
delta ,nu)*d_(eps ,rho)*d_(zeta ,sigma)*d_(eta ,rho)*d_(theta ,
sigma))*masterterm2; Local term22 = (d_(alpha ,mu)*d_(beta ,
nu)*d_(gamma ,mu)*d_(delta ,nu)*d_(eps ,rho)*d_(zeta ,sigma)*
d_(eta ,sigma)*d_(theta ,rho))*masterterm2; Local term23 = (
d_(alpha ,mu)*d_(beta ,nu)*d_(gamma ,nu)*d_(delta ,mu)*d_(eps ,
rho)*d_(zeta ,sigma)*d_(eta ,rho)*d_(theta ,sigma))*
masterterm2; Local term24 = (d_(alpha ,mu)*d_(beta ,nu)*d_(
gamma ,nu)*d_(delta ,mu)*d_(eps ,rho)*d_(zeta ,sigma)*d_(eta ,
sigma)*d_(theta ,rho))*masterterm2;

10 Local total1 = (term11 - term12 - term13 + term14);
11 Local total2 = (term21 - term22 - term23 + term24);
12 Print +s, total1 ,total2;
13 .end

Listing G.1: A simple FORM code that shows the reduction from (G.11) to
(G.13), here for 10 dimensions.

The result of the simple program shown in Listing G.1 is given in Listing
G.2.

1 total1 = + 8*k.k*q.q*Gk2*Gq2 + 64*k.q^2*Gk2*
Gq2 ;

2 total2 = + 8*k.k*q.q*Gk2*Gq2 + 64*k.q^2*Gk2*
Gq2 ;

Listing G.2: The result of the code in Listing G.1.

Here we made an arbitrary choice of the Euclidean space-time dimension
by putting it to 10. Using the simplified expression (G.13), one can immedi-
ately calculate the d-dimensional integrand of the Fourier transform. To this
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end it is convenient to introduce a table showing the relation of the indices,
see Table G.1.

term sign α β γ δ ε ζ η θ

1 + µ ν µ ν ρ σ ρ σ
2 - µ ν µ ν ρ σ σ ρ
3 - µ ν ν µ ρ σ ρ σ
4 + µ ν ν µ ρ σ σ ρ

Table G.1: Indices to insert in equation (G.13) to obtain the d-dimensional
integrand (G.12).

The integrand becomes

Id (k, q) = 4
d∑

µ=1

d∑
ν=1

d∑
ρ=1

d∑
σ=1

(
Aab,symµνµνρσρσ (k, q) (G.14)

−Aab,symµνµνρσσρ (k, q)− Aab,symµννµρσρσ (k, q) + Aab,symµννµρσσρ (k, q)
)

= 4δabG (k) G (q)
d∑

µ=1

d∑
ν=1

d∑
ρ=1

d∑
σ=1

[kµqµ (kρqρδ
νσδνσ + kρqρδ

νσδνσ)

−kµqµ (kρqσδ
νσδνρ + kσqρδ

νρδνσ)

−kµqν (kρqρδ
νσδµσ + kρqρδ

νσδµσ)

+kµqν (kρqσδ
νσδµρ + kσqρδ

νρδµσ)]

= 4δabG (k) G (q)
[
2 (k · q)2 d− 2 (k · q)2 − 2 (k · q)2 + 2k2q2

]
= 8δabG (k) G (q)

[
k2q2 + (d− 2) (k · q)2] ,

which is the final result that holds for arbitrary Euclidean dimensions
d ≥2. With the trace in color space NC we can finally obtain the desired
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integral corresponding to the momentum space operator O (p),〈
F 2(x)F 2(0)

〉
= (G.15)

= 8NC

ˆ
ddk

(2π)d

ˆ
ddq

(2π)d
exp {i (k + q) · x}

= ×G (k) G (q)
(
k2q2 + (d− 2) (k · q)2)

=

∣∣∣∣q = p− k
∣∣∣∣

= 8NC

ˆ
ddp

(2π)d
exp {ip · x}

×
ˆ

ddk

(2π)d
G (k) G (p− k)

(
k2 (p− k)2 + (d− 2) (k · (p− k))2)

︸ ︷︷ ︸
=O(p2)

,

such that the final expression is

O
(
p2
)

=

ˆ
ddk

(2π)d
G
(
k2
)
G
(
(p− k)2) (k2 (p− k)2 + (d− 2) (k · (p− k))2) ,

(G.16)
where we expressed the momentum dependence of the scalar parts of the

gluons (G ) in terms of momentum squares.
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Appendix H

Calculations in the DFS phase

Here we present the details of the calculation discussed in Section 5.2 of
Chapter 5. Let us start by showing that equation (5.1) indeed follows with
the definitions (5.3) and (5.4).

µf = µ̄f
[
1 + (εS ± εA) cos2 ϑ

]
(H.1)

=

(
µf,0 −

1

2
µf,2

)
×
[
1 +

(
3

4

(
µd,2
µ̄d

+
µu,2
µ̄u

)
± 3

4

(
µd,2
µ̄d
− µu,2

µ̄u

))
cos2 ϑ

]
=

(
µf,0 −

1

2
µf,2

)[
1 +

3

2

(
µf,2
µ̄f

)
cos2 ϑ

]
=

(
µf,0 −

1

2
µf,2

)[
1 +

3

2

(
µf,2

µf,0 − 1
2
µf,2

)
cos2 ϑ

]
= µf,0 −

1

2
µf,2 +

3

2

(
µf,0µf,2

µf,0 − 1
2
µf,2

)
cos2 ϑ

−3

4

(
µ2
f,2

µf,0 − 1
2
µf,2

)
cos2 ϑ

= µf,0 +
1

2
µf,2

[
−1 + 3

(
µf,0 − 1

2
µf,2

µf,0 − 1
2
µf,2

)
cos2 ϑ

]
= µf,0 +

1

2
µf,2

[
3 cos2 ϑ− 1

]
,

which shows that the definitions are consistent. The particle number
density of the ellipsoidal Fermi surfaces is given in (5.7). Performing two of
the three integrals we get
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nf =
C k3

F,f

(2π)23

ˆ π

0

dϑ
[(

1 + (εS ± εA) sin2 ϑ
)3

sinϑ
]

(H.2)

=
C k3

F,f

(2π)23

ˆ π

0

dϑ sinϑ

[
3∑

k=0

(
3
k

)
×(εS ± εA)3−k sin2k ϑ

]
=

C k3
F,f

(2π)23

ˆ π

0

dϑ sinϑ
[
1 + 3(εS ± εA) sin2 ϑ

+3(εS ± εA)2 sin4 ϑ+ (εS ± εA)3 sin6 ϑ
]

=
C k3

F,f

(2π)23

ˆ π

0

dϑ
[
sinϑ+ 3(εS ± εA) sin3 ϑ

+3(εS ± εA)2 sin5 ϑ+ (εS ± εA)3 sin7 ϑ
]

Integrating the remaining term finally yields

nf =
C k3

F,f

(2π)23
[2 + 4(εS ± εA) (H.3)

+
16

5
(εS ± εA)2 +

32

35
(εS ± εA)3

]
=

C k3
F,f

6π2
[1 + 2(εS ± εA)

+
8

5
(εS ± εA)2 +

16

35
(εS ± εA)3

]
.

Next, let us calculate the energy density of the deformed case. The lin-
ear dispersion relation enters the integral together with the Jacobian. The
momentum reads

|k| = kf
(
1 + (εS ± εA) sin2 ϑ

)
(H.4)

×
[
sin2 ϑ cos2 ϕ+ sin2 ϑ sin2 ϕ+ cos2 ϑ

] 1
2

= kf
(
1 + (εS ± εA) sin2 ϑ

)
.,
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and the energy density becomes

uf = C

ˆ
d3kf
(2π)3

k3
f

(
1 + (εS ± εA) sin2 ϑ

)4 (H.5)

=
C

(2π)3

ˆ kF,f

0

dkf

ˆ π

0

dϑ

ˆ 2π

0

dϕk3
f

× sinϑ
(
1 + (εS ± εA) sin2 ϑ

)4

=
C

(2π)2

k4
F,f

4

×
ˆ π

0

dϑ

4∑
k=0

(
4
k

)
14−k(εS ± εA)k sin2k+1 ϑ

=
C

(2π)2

k4
F,f

4

ˆ π

0

dϑ
[
sinϑ+ 4(εS ± εA) sin3 ϑ

+6(εS ± εA)2 sin5 ϑ+ 4(εS ± εA)3 sin7 ϑ

+(εS ± εA)4 sin9 ϑ
]
.

Performing the integral we get

uf =
C

(2π)2

k4
F,f

4

[
2 +

16

3
(εS ± εA) +

96

15
(εS ± εA)2 (H.6)

+
128

35
(εS ± εA)3 +

256

315
(εS ± εA)4

]
=

C k4
F,f

8π2

[
1 +

8

3
(εS ± εA) +

48

15
(εS ± εA)2

+
64

35
(εS ± εA)3 +

128

315
(εS ± εA)4

]
.

The ’costs‘ for the deformation in terms of the energy density reads
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udeform =
C k4

F,u

8π2

[
1 +

8

3
(εS + εA) +

48

15
(εS + εA)2

+
64

35
(εS + εA)3 +

128

315
(εS + εA)4

]
(H.7)

−
C
(
ksph.F,u

)4

8π2

+
C k4

F,d

8π2

[
1 +

8

3
(εS − εA) +

48

15
(εS − εA)2

+
64

35
(εS − εA)3 +

128

315
(εS − εA)4

]

−
C
(
ksph.F,u

)4

8π2
.

Next we have to re-adjust the optimal deformation parameter εoptA .

kF,u
(
1 + εoptA

) !
= kF,d

(
1− εoptA

)
(H.8)

⇒ kF,u,s[
1 + 2εoptA + 8

5

(
εoptA

)2
+ 16

35

(
εoptA

)3
] 1

3

(
1 + εoptA

)
(H.9)

!
=

kF,d,s[
1− 2εoptA + 8

5

(
εoptA

)2 − 16
35

(
εoptA

)3
] 1

3

(
1− εoptA

)

⇔
k3
F,u,s[

1 + 2εoptA + 8
5

(
εoptA

)2
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35

(
εoptA

)3
] (H.10)
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(
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)3
+ 3
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εoptA

)2
+ 3εoptA

)
!

=
k3
F,d,s[

1− 2εoptA + 8
5

(
εoptA

)2 − 16
35

(
εoptA

)3
]

×
(

1−
(
εoptA

)3
+ 3

(
εoptA

)2 − 3εoptA

)
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⇔ k3
F,u,s

(
1− 2εoptA +

8

5

(
εoptA

)2 − 16

35

(
εoptA

)3
)

(H.11)

×
(

1 +
(
εoptA
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(
εoptA
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+ 3εoptA
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8
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)2
+
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35

(
εoptA
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)

×
(
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(
εoptA

)3
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(
εoptA

)2 − 3εoptA

)

⇔ k3
F,u,s

(
1− 2εoptA +

8
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εoptA

)2 − 16

35

(
εoptA

)3 (H.12)
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35
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)
.

The optimal deformation parameter εA has to satisfy H.13, where we can
safely neglect orders higher than linear in εA. As the expansion parameter
for the squared term has the same sign on both sides, the next contribution
depends on the (small) difference of the Fermi momenta cubed. The sup-
pression of terms of order of 3 or higher due to the small parameter εA is
obvious, such that we can safely neglect higher orders form here on. The
modified condition for the optimal deformation parameter εA is then
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k3
F,u,s

(
1 + εoptA

)
= k3

F,d,s

(
1− εoptA

)
(H.14)

⇒

εoptA =
k3
F,d,s − k3

F,u,s

k3
F,d,s + k3

F,u,s

(H.15)

=
(µ+ δµ)3 − (µ− δµ)3

(µ+ δµ)3 + (µ− δµ)3

=
6µ2(δµ) + 2(δµ)3

2µ3 + 6µ(δµ)2

≈ 3
δµ

µ

We also confirmed this result by solving the system numerically in a self-
consistent way.



Appendix I

Details of the bosonization

In this Appendix we show that the four fermion interaction c4 can be written
as a bi-linear of two tensor fields,

c4 = εijklψiψjψkψl (I.1)
= χiMijχj,

whereM is a real symmetric non-singular matrix and χ are vectors storing
the tensor fields φij composed of two fermionic fields ψi and ψj. To this end
consider the Levi-Civita tensor in the multi-index notation involving i, j, k
and l. In total there are 4! = 24 non-trivial contributions. The idea is to
use the anti-symmetry of the Levi-Civita-symbol to re-arrange the terms in
such a way that they can be reduced to multiples of the 6 non-vanishing
combinations in the Levi-Civita tensor, see Table I.1.

Θ12 Θ13 Θ14 Θ23 Θ24 Θ34 permutation
Θ12 0 0 0 0 0 1 sgn (1234) = +1
Θ13 0 0 0 0 -1 0 sgn (1324) = −1
Θ14 0 0 0 1 0 0 sgn (1423) = +1
Θ23 0 0 1 0 0 0 sgn (2314) = +1
Θ24 0 -1 0 0 0 0 sgn (2413) = −1
Θ34 1 0 0 0 0 0 sgn (3412) = +1

Table I.1: Non-vanishing pairing patterns after bosonization are used as a
basis, see text.
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The desired bi-linear form is then given by

χ̃.M̃ .χ̃ = (I.2)

=


Θ12

Θ13

Θ14

Θ23

Θ24

Θ34



T

.


0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

 .


Θ12

Θ13

Θ14

Θ23

Θ24

Θ34

 ,

where M̃ is a real symmetric non-singular matrix. In order to cover all
combinations occurring in the Levi-Civita tensor we make use of the anti-
symmetry of the fermionic fields under exchange. The term εijklψiψjψkψl
can then be written in a bi-linear form of tensor fields φij,

(
χ̃
−χ̃

)T
.

(
M̃ −M̃
−M̃ M̃

)
.

(
χ̃
−χ̃

)
(I.3)

=

(
χ̃
−χ̃

)T
.

(
2M.χ̃
−2M.χ̃

)
= χ̃T .4M̃.χ̃,

where the lower entry of the vector corresponds to the basis elements
shown in Table I.1 with their indices flipped, hence the ’-‘ sign. Let us discuss
the bosonization in greater detail. The interaction we want to bosonize after
the first Hubbard-Stratonovich transformation reads

exp

{
−
ˆ
d4xLint

}
(I.4)

= exp

{
−
ˆ
d4xg̃4ψiψjTijklψkψl

}
.

In order to use the bi linear form constructed above, the interaction term
in the exponential on the right hand side of (I.4) has to be re-written in a
suitable form. As the tensor T is totally antisymmetric, we may write
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ψiψjTijklψkψl (I.5)
= εijklψiψjψkψl

= ψ1ψ2ψ3ψ4 − ψ1ψ2ψ4ψ3 − ψ1ψ3ψ2ψ4 + ψ1ψ3ψ4ψ2

+ ψ1ψ4ψ2ψ3 − ψ1ψ4ψ3ψ2 − ψ2ψ1ψ3ψ4 + ψ2ψ1ψ4ψ3

+ ψ2ψ3ψ1ψ4 − ψ2ψ3ψ4ψ1 − ψ2ψ4ψ1ψ3 + ψ2ψ4ψ3ψ1

+ ψ3ψ1ψ2ψ4 − ψ3ψ1ψ4ψ2 − ψ3ψ2ψ1ψ4 + ψ3ψ2ψ4ψ1

+ ψ3ψ4ψ1ψ2 − ψ3ψ4ψ2ψ1 − ψ4ψ1ψ2ψ3 + ψ4ψ1ψ3ψ2

+ ψ4ψ2ψ1ψ3 − ψ4ψ2ψ3ψ1 − ψ4ψ3ψ1ψ2 + ψ4ψ3ψ2ψ1.

We want to express the interaction (I.5) in the basis shown in Table I.1,
where the basis elements correspond to the six combinations

B1 = +ψ1ψ2ψ3ψ4, (I.6)
B2 = −ψ1ψ3ψ2ψ4,

B3 = +ψ1ψ4ψ2ψ3,

B4 = +ψ2ψ3ψ1ψ4,

B5 = −ψ2ψ4ψ1ψ3,

B6 = +ψ3ψ4ψ1ψ2.

Permuting the terms of (I.5) by shuffling each line to a certain basis
element we get

ψ1ψ2ψ3ψ4 + ψ1ψ2ψ3ψ4 + ψ1ψ2ψ3ψ4 + ψ1ψ2ψ3ψ4

+ ψ1ψ4ψ2ψ3 + ψ1ψ4ψ2ψ3 + ψ1ψ4ψ2ψ3 + ψ1ψ4ψ2ψ3

+ ψ2ψ3ψ1ψ4 + ψ2ψ3ψ4ψ1 + ψ2ψ3ψ1ψ4 + ψ2ψ3ψ1ψ4

− ψ1ψ3ψ2ψ4 − ψ1ψ3ψ2ψ4 − ψ1ψ3ψ2ψ4 − ψ1ψ3ψ2ψ4

+ ψ3ψ4ψ1ψ2 + ψ3ψ4ψ1ψ2 + ψ3ψ4ψ1ψ2 + ψ3ψ4ψ1ψ2

− ψ2ψ4ψ1ψ3 − ψ2ψ4ψ1ψ3 − ψ2ψ4ψ1ψ3 − ψ2ψ4ψ1ψ3

= 4B1 + 4B3 + 4B4 + 4B2 + 4B6 + 4B5 (I.7)

= 4
6∑
i=1

Bi.

For the interaction (I.4) we can now write
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exp

{
−
ˆ
d4xLint

}
(I.8)

= exp

{
−
ˆ
d4xg̃44

6∑
i=1

Bi

}
.

This, in turn, allows us to perform the bosonization in a straight-forward
way,

exp

{ˆ
d4x (−g̃4) 4

6∑
i=1

Bi

}
(I.9)

∝
ˆ 6∏

m,n=1
m<n

D [Θmn] exp

{
−
ˆ
d4x

m2
Θ

2
4χ̃iM̃ijχ̃j

}

× exp

{
−
ˆ
d4xgYΘ4M̃ijχ̃iψj1ψj2

}
,

where we used an implicit way to write down the bi-linear form and
the Yukawa term for the new fields. However, now that we have the desired
bosonic fields Θij (in fact they are tensor fields carrying baryon number 0 and
they obey Fermi statistics) we convert them back to an expression involving
the Levi-Civita tensor. Making the last expression explicit in the indices of
the bosonic fields, as well as using their antisymmetry under exchange of
their indices, we have
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4χ̃iM̃ijχ̃j (I.10)
= 4 (Θ12Θ34 −Θ13Θ24 + Θ14Θ23

+Θ23Θ14 −Θ24Θ13 + Θ34Θ12)

= Θ12Θ34 + Θ12Θ34 + Θ12Θ34 + Θ12Θ34

− Θ13Θ24 −Θ13Θ24 −Θ13Θ24 −Θ13Θ24

+ Θ14Θ23 + Θ14Θ23 + Θ14Θ23 + Θ14Θ23

+ Θ23Θ14 + Θ23Θ14 + Θ23Θ14 + Θ23Θ14

− Θ24Θ13 −Θ24Θ13 −Θ24Θ13 −Θ24Θ13

+ Θ34Θ12 + Θ34Θ12 + Θ34Θ12 + Θ34Θ12

= Θ12Θ34 −Θ21Θ34 −Θ12Θ43 + Θ21Θ43

− Θ13Θ24 + Θ31Θ24 + Θ13Θ42 −Θ31Θ42

+ Θ14Θ23 −Θ41Θ23 −Θ14Θ32 + Θ41Θ32

+ Θ23Θ14 −Θ32Θ14 −Θ23Θ41 + Θ32Θ41

− Θ24Θ13 + Θ42Θ13 + Θ24Θ31 −Θ42Θ31

+ Θ34Θ12 −Θ43Θ12 −Θ34Θ21 + Θ43Θ21

= Θ12Θ34 −Θ12Θ43 −Θ13Θ24 + Θ13Θ42

+ Θ14Θ23 −Θ14Θ32 −Θ21Θ34 + Θ21Θ43

+ Θ23Θ14 −Θ23Θ41 −Θ24Θ13 + Θ24Θ31

+ Θ31Θ24 −Θ31Θ42 −Θ32Θ14 + Θ32Θ41

+ Θ34Θ12 −Θ34Θ21 −Θ41Θ23 + Θ41Θ32

+ Θ42Θ13 −Θ42Θ31 −Θ43Θ12 + Θ43Θ21

= εijklΘijΘkl,

where we just rearranged the terms in the same way as we got them when
evaluating equation (I.5). Making also the last term in (I.9) explicit, we find

4M̃ijχ̃iψj1ψj2 (I.11)
= 4 (Θ12ψ3ψ4 −Θ13ψ3ψ4 + Θ14ψ3ψ4

+Θ23ψ3ψ4 −Θ24ψ3ψ4 + Θ34ψ3ψ4)

=

∣∣∣∣same calculation as (I.10)
∣∣∣∣

= εijklΘijψkψl.

From equations (I.10) and (I.11) we thus infer that the bosonization steps
(5.40) and (5.42) are justified as long as Tijkl is the Levi-Civita tensor, that
is, εijklψiψjψkψl can indeed be written as a bi-linear form.
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Appendix J

Algebraic and numerical
techniques

In this section we introduce some techniques that we employed to perform
algebraic and numerical calculations.

J.1 Radial grids for the quark-gluon vertex

Throughout the computation of the quark-gluon vertex we employ two dif-
ferent grids for the radial1 components of the momenta. This procedure has
been suggested by Richard Williams. Taking points on the external grid
slightly different from internal points excludes nodes that might become nu-
merically troublesome. This procedure still places points very close to the
external nodes. First, the external grid is constructed. It spans the dis-
tance from the IR-cut-off to the UV-cut-off and features nodes which are
distributed according to the prescription

xi = xir

(
xuv
xir

) i−q
n−q

, i ∈ [1, n], (J.1)

where xir and xuv are the IR and UV cut-off respectively, and n is the
number of external nodes. On a log10 scale, the nodes obtained by this
prescription appear equidistant. For our calculation we considered xir =
10−4 GeV 2, xuv = 5× 104 GeV 2 and n = 32. The external grid is employed
for the left hand side of equations (3.4) and (3.5), that is, the propagator and
vertex dressings are evaluated at these nodes for all their radial variables. For

1Radial with respect to hyper-spherical coordinates, see (A.7).
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Figure J.1: A sketch of the external momentum grid as obtained from equa-
tion (J.1).

the propagator there is only p2, while in case of the vertex the grid is used for
p2 and q2. Internally, for the loop integrals in the quark self-energy and in the
non-abelian diagram, we use a different grid. The internal grid is obtained
from the external grid as follows. For all neighboring nodes on the external
grid, compute ns abscissas and weights according to the Gauss-Legendre
quadrature rule [90], using the neighboring external nodes as boundaries for
the Gauss-Legendre rule. The external grid has n nodes, thus there are n−1
such intervals. Starting in the IR and working towards the UV one can then
store the nodes and weights obtained through that procedure to arrays of
dimensionality ns (n− 1), which hold the full internal grid-points and their
weights after this step. The external nodes are then automatically removed
from the internal grid, as they serve as end-points for the Gauss-Legendre
quadrature rule and are as such not roots of the Gauss-Legendre polynomials
that are used to construct the abscissas. In Figures J.1, J.2 and J.3 we show
the procedure graphically.

J.2 Treating systems with broken Lorentz in-
variance using FORM

In the following we briefly summarize how to treat systems with broken
Lorentz invariance using the computer algebra system FORM [89]. In such
systems, usually one encounters scalar products of different dimensionality,
which requires slight modifications of FORM code written for the Lorentz
symmetric case.



J.2. FORM AND BROKEN LORENTZ INVARIANCE 165

Figure J.2: The internal grid points are distributed between the external
nodes according to the Gauss-Legendre quadrature rule, applied for ns = 3
points for every interval with neighboring external grid points.

Figure J.3: The actual internal grid consists of ns (n− 1) nodes resulting
from the Gauss-Legendre quadrature rule. The external nodes are not part
of this grid.

When evaluating the tensor algebra of systems at non-vanishing tem-
perature and/or density with computer algebra systems (CAS), the broken
Lorentz invariance requires that the CAS is capable of treating the different
types of scalar products arising from three and four-dimensional contractions.
The computer algebra system FORM [89] has been specifically developed to
perform algebraic manipulations arising in the evaluation of Feynman dia-
grams very efficiently, but it assumes Lorentz symmetry to be maintained,
at least as far as any straight-forward application of the routines provided
by FORM is concerned. FORM is however a quite powerful tool, so it is
quite easy to exploit the native features of FORM to make it suitable for non
Lorentz invariant systems.

In FORM one can define the space-time dimension using the Dimension
statement in the preamble of the FORM code, for example

1 On Statistics;
2 Dimension 3;
3 Symbol x,y,z;
4 ...

Listing J.1: Defining the dimension.
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The Dimension declaration statement determines the dimension of all
indices that have been defined without giving an explicit number for their
dimension. As FORM uses Einstein’s sum convention, the number given
here directly affects the results of contractions of various quantities. Our
goal is to treat three and four dimensional quantities in one FORM code at
the same time. This is very convenient when performing computations at
non-vanishing temperature and/or density, as can be seen when e.g. looking
at the photon polarization tensor at non-vanishing temperature [175],

Πµν = F PL
µν +G P T

µν , (J.2)

P T
44 = P T

4i = 0, P T
ij = δij −

qiqj
~q2

, (J.3)

PL
µν = δµν −

qµqν
q2
− P T

µν , (J.4)

where F and G are some dressing functions. Note that Latin indices
run from 1 to 3, Greek indices from 1 to 4, which makes it clear that once
this propagator is connected to other ingredients of some Feynman diagram,
mixed scalar products of different dimensionality will occur after the contrac-
tions of all indices have been performed. One can achieve this with FORM
quite easily.

FORM comes with the feature that, despite the overall dimension deter-
mined by the Dimension statement, one can define indices of different dimen-
sionality. In particular one can assign a dimensionality of 0 to a particular set
of indices, which suppresses the sum convention. The actual dimensionality
of these indices is inherited from the Dimension statement.

1 On Statistics;
2 Dimension 3;
3 Indices i=0,j=0,k=0,l=0;
4 Indices mu=4,nu=4,rho=4,sigma =4;

Listing J.2: Indices of different dimensions. If the value 0 is assigned to an
index, Einstein’s sum convention is not implied for that particular index.

In Listing J.2 we have defined a dimension of 3, which means that all
sum convention based contractions involving indices with no dimension as-
signment are performed with respect to three dimensions. Furthermore we
declared Greek indices to be four-dimensional, while the 0 going with Latin
indices prevents the sum convention from being executed for these indices. In
principle one could also put the value for the Latin indices to 3 at this point,
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which would result in the correct expressions coming from e.g. δii, which
would simply yield 3. However, this would spoil the possibility of identifying
three and four dimensional scalar products as distinct quantities, as both
expressions p(i)·k(i) and p(mu)·k(mu) would yield p.k. Thus we perform
the computation in two sequential steps. In Listing J.3 we show examples of
several scalar products and Kronecker-delta contractions.

1 On Statistics;
2 Dimension 3; * contratctions wrt dim=3 (

despite the fact
3 * * that we want to perform 4-

dim Euclidean
4 ******************** * computations we put the

internal dim to 3)
5 *** DEFINITIONS ***
6 ********************
7 Symbol k3,k4 ,p3 ,p4 ,pk3 ,pk4; * 3 and 4 dim scalar products
8 Vector p,k; * two momenta
9 Indices mu=4, nu=4; * greek indices run over 4

dim
10 Indices i=0, j=0; * latin indices are not

summed over
11 ********************
12 *** TEST CASES ***
13 ********************
14 Local test1 = d_(i,i); * should give 3
15 Local test2 = d_(mu ,mu); * should give 4
16 Local test3 = p.k; * should give pk4
17 Local test4 = p(i)*k(i); * should give pk3
18 Local test5 = p(mu)*k(mu); * should give pk4
19 ********************
20 * STEP ONE : *
21 * contract 4-dim *
22 * indices first *
23 * and identify *
24 * the resulting 4d *
25 * quantities. *
26 ********************
27 repeat;
28 id p.p = p4^2;
29 id p.k = pk4;
30 id k.k = k4^2;
31 endrepeat;
32 ********************
33 * STEP TWO : *
34 * Sum over the *
35 * 3-dim indices *
36 * and identify the *
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37 * remaining *
38 * quantities as *
39 * three dimensional*
40 ********************
41 sum i,j;
42 repeat;
43 id p.p = p3^2;
44 id p.k = pk3;
45 id k.k = k3^2;
46 endrepeat;
47 ********************
48 *** PRINT RESULTS ***
49 ********************
50 Print +s test1;
51 Print +s test2;
52 Print +s test3;
53 Print +s test4;
54 Print +s test5;
55 .end

Listing J.3: FORM code giving some examples of 3 and 4-dimensional
contractions.

In the first step of the computation we perform all 4-dimensional contrac-
tions. The index dimension of 4 of the Greek indices ensures that expres-
sions like the Kronecker delta yield the correct number of Euclidean space
time. All Latin indices remain untouched at this point, and we can use the
repeat and id statements to assign the final 4-dim expressions to the inter-
mediate results. The following sum i,j; command performs the remaining
contractions, which are performed with respect to 3 dimensions, as this is the
standard dimension defined above. We successfully applied this procedure
to derive the gluon DSE at non-vanishing chemical potential (a project that
is not part of this thesis), where we confirmed the result by cross-checking
with an independent (much slower) Mathematica computation. However,
one should always be careful and check the correct behavior of the code by
evaluating test-cases suitable for the particular problem.

J.3 Bi-cubic spline interpolation in the com-
plex plane

Interpolation of two-dimensional complex data is a crucial aspect of the an-
alytic structure calculations, as the integration contours are deformed to
arbitrary shapes in the complex plane. The data however is discrete and
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only accessible via tabulated functions. As the result in the end should be
a smooth function (apart from non-analyticities, in that regions we will ap-
ply bi-linear interpolation), we use a complex bi-cubic spline interpolation to
obtain information at arbitrary points in the complex plane. If the function
that is to be interpolated is known to be a smooth differentiable continuous
function, cubic spline interpolation can be used to obtain function values at
arbitrary points in good approximation, as long as the point lies within the
boundaries of the region that is to be interpolated and the resolution of this
area is sufficiently high to capture local variations of the function. The spline
interpolation is performed in two steps.

Consider a complex tabulated function f(X) whose values are known
on a Nreal × Nimag rectangular grid (parallel to the axes), where Nreal and
Nimag denotes the extent of the grid in real and imaginary direction and
X ∈ M (Nreal ×Nimag,C) is a complex matrix holding the values of the
independent variable (boundaries xr,l = minRX, xr,u = maxRX, xi,l =
min IX, xi,u = maxIX) respectively. Our goal is to interpolate the function
f(x0) at some value x0 ∈ C, where xr,l < Rx0 < xr,u and xi,l < Ix0 < xi,u.
We will use the routines spline and splint of [176]. Note that the values
of X have to be strictly increasing in real and imaginary direction in order
to apply these interpolation routines.

• STEP I: For every yi ∈ IX, spline along the corresponding real values
of X for this given imaginary number yi and interpolate the real part
of the function f(x) at the real part of the interpolation value Rx0,
which gives a one dimensional grid IR(yi) of length Nimag, as there are
Nimag different imaginary numbers yi in the rectangular grid. Spline
once more along the real values of X belonging to any given imaginary
number yi and interpolate the imaginary part of the function f(x) at
the pointRx0 again, storing the results to IC(yi) . After performing this
step we have two one-dimensional grids IR and IC of length Nimag that
hold the real part-interpolated real and imaginary part of the function
for all discrete imaginary values. See Figures J.4 and J.5 for this step,
where only one situation (real or imaginary part) is shown.

• STEP 2: To obtain the real part of the function at the interpolation
value, Rf(x0), we have to spline the previously obtained set IR and
interpolate at the imaginary part of Ix0. To obtain the imaginary part
of the function at the interpolation value, If(x0), we have to spline
the previously obtained set IC and interpolate at the imaginary part of
Ix0. This step is depicted in Figure J.6.
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Figure J.4: Bi-cubic spline interpolation. The (smooth) function is known
on a discrete lattice, the point to be interpolated is depicted by the green
dot.

Figure J.5: In STEP 1 one has to spline interpolate at all discrete imaginary
numbers along the real direction and store the result to an array (yellow
dots).
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Figure J.6: In the second step, the array obtained in the previous step has
to be spline interpolated at the value of the imaginary part.

To test the routine we set up a complex tabulated function on a regular
12 × 12 grid, Rx ∈ [−5, 5], Ix ∈ [−5, 5]. The function is constructed in
such a way that it features a Gaussian centered around Rx = 1 in the
real part, and a Gaussian centered around Rx = −1 in the imaginary part.
The function is then interpolated using the routine described above, where
a regular 128 × 128 grid, Rx ∈ [−5, 5], Ix ∈ [−5, 5], is used. While the
tabulated function is only known on 144 discrete points, after interpolation
we have an approximation of the function on 16384 points. As the Gaussians
are very smooth functions, the interpolated values give nice results. The
results of this test-run are summarized in Figures J.7 to J.10.

For this particular run we mapped the complex plane to the matrix X in
such a way that the imaginary part of the values stored in X decrease with
increasing index of the matrix. As the interpolation routine requires strictly
increasing behavior, the corresponding arrays have to be reversed before they
are passed to the routine.

In our study of the complex quark propagator this routine is also a good
tool for calculating a grid needed for generating plots, because the internal
grid features a high density of nodes close to the axes and the origin. The grid
points have been mapped logarithmically to resolve that region, which is a
bad setting for 3d plotting routines which try to interpolate the data in order
to generate a smooth surface. Here we use the spline interpolation routine
to go back to a equally-distanced grid which can then be used conveniently
to plot the result.
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Figure J.7: Complex bi-cubic spline interpolation (see text). Left: Absolute
value of the tabulated function. Right: Absolute value after complex bi-cubic
spline interpolation.

Figure J.8: Data points before (144) and after (16384) complex bi-cubic
spline interpolation.
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Figure J.9: Real part before and after interpolation.

Figure J.10: Imaginary part before and after interpolation.
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Appendix K

Supplementary material: Movies

These movies have been calculated using Mathematica 8 by Wolfram Re-
search [168]. The movies show the analytic structure in the radial integration
plane of the correlator of the square of the Yang-Mills field strength tensor
〈F 2(x)F 2(0)〉 at the Born level after the angular integration (see [98],[174]).
The 2-dimensional movies are dedicated to contour parametrizations for the
case of i-particle propagators [100] that we used to develop the numerical
procedure of massively parallel complex integration using GPUs [98]. The 3-
dimensional movies show the analytic structure arising in the complex plane
of the radial integration variable after the evaluation of the angular integral.

K.1 2d Movies

There are four 2-dimensional movies showing the obstructive structure in the
complex plane of the radial integration variable y for the correlator (4.4).

K.1.1 The movie 2d_movie_1.mp4

The left panel shows the branch cut (blue line) and the two poles (green
dots) situated at y = ± i

2
in the complex y-plane. The right panel shows

the complex x-plane. As the movie progresses, the imaginary part of the x-
variable is varied, as one can see on the right panel. The left panel shows how
the branch cut changes shape, size and orientation in dependence on x. The
three red points mark the positions where the branch cut hits the axis. They
have been used as adaptive orientation points for a dynamically deformed
contour. However, in the end it was not necessary to use these points, the
simple contour deformations presented in Chapter 4 were sufficient to produce
robust results.
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K.1.2 The movie 2d_movie_2.mp4

This movie shows the same setting as the first one, but now the real part of
x is varied.

K.1.3 The movie 2d_movie_3.mp4

This movie shows a dynamically deformed contour (red line) that connects
the origin with the UV cut-off in the complex y-plane. The corresponding
value of x = p2 is shown explicitly. This contour deformation is not the one
we used ultimately, but it also produces the right result. The contour is how-
ever more complicated to compute as it requires more dynamical adaptions
than the ones presented in Chapter 4. The situation shown in this movie
corresponds to region 4 in Figure 4.3.

K.1.4 The movie 2d_movie_4.mp4

This movie shows a similar setting as the third movie, this time covering
values of x corresponding to the regions 5, 1 and 2, see discussion in Chapter
4. The blue line blocking the contour in the last third of the movie is a
numerical artifact.

K.2 3d Movies

There are three 3-dimensional movies regarding the analytic properties of
〈F 2(x)F 2(0)〉 at Born level, where Gribov-type propagators have been used
as an input. The movies have been calculated by producing a 3d plot with
Mathematica, changing the position of the camera by small steps. The plots
show the analytic structure of the radial integration variable after the inte-
gration of the angular variable has been performed. Apart from a pair of
complex conjugate poles (visualized as purple pillars in the movies) there are
also two intersecting branch cuts showing up. The size, shape, orientation
and position of the branch cuts has been calculated for all given parameters.
However, for the purpose of visualization we furnished them with a brick-wall
texture to indicate that they are obstacles for the radial integration contour
connecting the origin with the UV cut-off. Several relevant parameters are
shown in the movie to allow for orientation in the complex plane. This ’head
up display‘ is depicted and explained in Figure K.1.
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Figure K.1: The ’head up display’ used in the 3d movies for orientation in
the complex plane.

K.2.1 The movie 3d_movie_1.avi

This movie shows a 360° panorama at the point y0 = 1 GeV2 for an external
momentum square of p2 = x = −2 + 2i GeV2. A compressed version of this
movie (mp4) can be found in the folder ’3d-movies-compressed’.

K.2.2 The movie 3d_movie_2.avi

This movie shows a possible path of a radial integration contour connecting
the origin with the UV cutoff. The camera moves along the contour by
passing the pole in the second quadrant on the right side in order to avoid
a modification through its residue. The camera moves out far enough such
that the obstructive structure is left behind and heads straight for the UV
cutoff, which is called ξ2 in this case. The external momentum square is
again given by p2 = x = −2 + 2i GeV2.

K.2.3 The movie 3d_movie_3.avi

In this movie we show how non-analyticities arise in the result of the overall
expression. The camera moves up and hovers above the plane while looking
down on it. Then we vary the external momentum square and identify three
points where the endpoints of the cuts coincide with one or both poles, com-
promising the existence of unaffected contours. These points are the branch
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points of the result.
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