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Empirical moments of inertia, J1, J2, J3, of atomic nuclei with E(4+
1 )/E(2+

1 ) > 2.7 are extracted 
from experimental 2+

g,γ energies and electric quadrupole matrix elements, determined from multi-
step Coulomb excitation data, and the results are compared to expectations based on rigid and irro-
tational inertial flow. Only by having the signs of the E2 matrix elements, i.e., 〈2+

g ||M̂(E2)||2+
g 〉 and 

〈0+
g ||M̂(E2)||2+

g 〉〈2+
g ||M̂(E2)||2+

γ 〉〈2+
γ ||M̂(E2)||0+

g 〉, can a unique solution to all three components of the 
inertia tensor of an asymmetric top be obtained. While the absolute moments of inertia fall between 
the rigid and irrotational values as expected, the relative moments of inertia appear to be qualitatively 
consistent with the β2 sin2(γ ) dependence of the Bohr Hamiltonian which originates from a SO(5) in-
variance. A better understanding of inertial flow is central to improving collective models, particularly 
hydrodynamic-based collective models. The results suggest that a better description of collective dynam-
ics and inertial flow for atomic nuclei is needed. The inclusion of vorticity degrees of freedom may 
provide a path forward. This is the first report of empirical moments of inertia for all three axes and the 
results should challenge both collective and microscopic descriptions of inertial flow.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Atomic nuclei are finite many-body quantum systems composed 
of strongly interacting fermions that share remarkable similarities 
with other systems such as molecules, atomic clusters, and ultra-
cold atomic gases. In particular, some of these quantum systems 
exhibit quenching of the moments of inertia from their rigid-body 
values at very low temperatures. For over half a century, super-
fluidity has been studied in both fermionic, e.g., atomic nuclei [1], 
and bosonic, e.g., liquid 4He [2], systems. For fermionic systems, 
pairing is central to superfluidity. More recently, the nature of col-
lective excitations and superfluidity of strongly interacting Fermi 
gases has been of active interest [3–9]; nearly perfect irrotational 
flow with a quadratic dependence on the deformation has been 
observed by Clancy et al. [6]. With these recent advances, the mo-
ments of inertia of atomic nuclei warrant an updated investigation.

The standard approach to evaluating the empirical moments of 
inertia of atomic nuclei has been to assume an axially symmet-
ric rotor with rotational energies given by E(I) = AI(I + 1), where 
A = h̄2/(2J ) and J is the moment of inertia. For Iπ = 2+ , the 
energy reduces to E(2+) = 6A and J = 3h̄2/E(2+). A further as-
sumption is that the first Iπ = 2+ state is unmixed with other 
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states. This approach is sufficient to demonstrate that moments 
of inertia of atomic nuclei fall between the rigid-body and irro-
tational flow values, as shown by Bohr and Mottelson in 1955 [1]. 
However, this approach is limited in validating microscopic calcula-
tions of moments of inertia and in elucidating the existence of any 
underlying symmetries. A more thorough understanding of iner-
tial flow requires knowledge of all three components of the inertia 
tensor; this requires input beyond the energy of the first excited 
2+ state.

The description of low-lying excited states of deformed even–
even nuclei has been largely based on collective rotations and vi-
brations about the average β and γ quadrupole shape parameters 
(cf. Ref. [10] for a thorough overview). These nuclei possess rota-
tional bands built on the 0+ ground states and relatively low-lying 
excited 2+ states, which could be the result of triaxial rotations or 
γ vibrations; distinguishing the two is notoriously difficult but the 
latter interpretation has been traditionally adopted. Fortunately, 
the Kumar–Cline sum rules [11] provide an experimental means 
for determining the average quadrupole deformation values and 
variances. These sum rules have demonstrated that the average γ
deformations, < γ >, are non-zero; an axially symmetric nucleus 
would give zero. Unfortunately, the variances of the quadrupole 
deformations are not typically known; these are needed to differ-
entiate between rigid and soft deformation. The few cases where 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the variances are known, e.g., the Os isotopes [12], lack precision 
but suggest that nuclei are neither rigid nor soft but somewhere 
in between.

We explore the implications of assuming β- and γ -rigid de-
formation (i.e., an axially asymmetric top) on the extracted mo-
ments of inertia. This is accomplished by using a recently formu-
lated version of the triaxial rotor model with independent electric 
quadrupole and inertia tensors [13]; this is the simplest possible 
non-trivial view that allows a unique analytical solution to the 
three moments of inertia within the spin-2 subspace. While there 
have been investigations into the moments of inertia of axially 
asymmetric nuclei before, e.g., Refs. [14–18], empirical values for 
all three axes, to our knowledge, have never been reported.

In this Letter, empirical moments of inertia, J1, J2, J3, of 12 
atomic nuclei with E(4+

1 )/E(2+
1 ) > 2.7 are extracted from exper-

imental 2+
g,γ energies and electric quadrupole matrix elements, 

and the results are compared to expectations based on rigid and 
irrotational inertial flow. The E2 matrix elements used in this 
study are from multiple-step Coulomb excitation data [12,19–26], 
most of which are from the past two decades. Only by having 
the signs of the E2 matrix elements, i.e., 〈2+

g ||M̂(E2)||2+
g 〉 and 

〈0+
g ||M̂(E2)||2+

g 〉〈2+
g ||M̂(E2)||2+

γ 〉〈2+
γ ||M̂(E2)||0+

g 〉, can a unique so-
lution to all three components of the inertia tensor be obtained.

The Hamiltonian for rotations about three axes (i.e., an asym-
metric top) is

H = A1 Î2
1 + A2 Î2

2 + A3 Î2
3, (1)

where the parameters A1, A2, A3 are related to the components 
of the inertia tensor by A1 = h̄2/(2J1), A2 = h̄2/(2J2), A3 =
h̄2/(2J3) and Î1, ̂I2, ̂I3 are the angular momentum operators in 
the body-fixed frame with a |I K 〉 basis. The Hamiltonian can be 
rewritten as

H = A Î2 + F Î2
3 + G( Î2+ + Î2−), (2)

where

A = 1

2
(A1 + A2), F = A3 − A, G = 1

4
(A1 − A2), (3)

and

Î± = Î1 ± i Î2. (4)

When applied to doubly-even nuclei, there is an Iπ = 0+ ground 
state with E(0+) = 0, no Iπ = 1+ state, and two mixed Iπ = 2+
states (K π = 0+, 2+) with energies given by

H(2+) =
(

6A 4
√

3G
4
√

3G 6A + 4F

)
, (5)

which yields

E(2+) = 6A + 2F ± 2
√

F 2 + 12G2. (6)

The mixing angle is related to G and F by

tan 2� = 2
√

3
G

F
(7)

(note, � < 0 because G < 0) and the resulting E2 matrix elements 
for the Iπ = 0+, 2+ subspace are

〈0+
g ||M̂(E2)||2+

g 〉 =
√

5

16π
Q 0 cos(γ + �), (8)

〈0+
g ||M̂(E2)||2+

γ 〉 =
√

5

16π
Q 0 sin(γ + �), (9)

〈2+
g ||M̂(E2)||2+

γ 〉 =
√

25
Q 0 sin(γ − 2�), (10)
56π
and

〈2+
g ||M̂(E2)||2+

g 〉 = −
√

25

56π
Q 0 cos(γ − 2�)

= −〈2+
γ ||M̂(E2)||2+

γ 〉. (11)

The E2 matrix elements are described by three parameters, Q ◦
(axial deformation), γ (axial asymmetry), and � (mixing angle). 
Further details can be found in Refs. [13,25,27–29]. While the 2+
mixing angle, �, can be inferred from the excitation energies of 
higher spins, such an approach is not particularly sensitive and, 
more importantly, it does not lead to a unique empirical value.

Once the Q ◦ , γ , and � deformation and mixing parameters are 
determined from the experimental E2 matrix elements, the A, F , 
and G parameters of the Hamiltonian can be extracted exactly us-
ing the experimental 2+ energies, viz.

F = E(2+
γ ) − E(2+

g )

4
√

1 + tan2(2�)
, (12)

A = E(2+
g ) + E(2+

γ ) − 4F

12
, (13)

G = F

2
√

3
tan 2�, (14)

where the empirical moments of inertia are

J1 = 1

2

h̄2

A + 2G
, (15)

J2 = 1

2

h̄2

A − 2G
, (16)

J3 = 1

2

h̄2

A + F
. (17)

It is important to stress that the signs of the E2 matrix ele-
ments are required to obtain a unique solution to all three com-
ponents of the inertia tensor. In particular, 〈2+

g ||M̂(E2)||2+
g 〉 de-

termines whether the electric quadrupole moment is prolate or 
oblate, and 〈0+

g ||M̂(E2)||2+
g 〉〈2+

g ||M̂(E2)||2+
γ 〉〈2+

γ ||M̂(E2)||0+
g 〉 de-

termines whether γ > |�| or γ < |�|.
The present results can be connected directly to results ob-

tained using rigid and irrotational flow moments of inertia by

Jrigid, k = Brigid

[
1 −

√
5

4π
β cos

(
γ − k

2π

3

)]
(18)

and

Jirrot., k = 4Birrot.β
2 sin2

(
γ − k

2π

3

)
, (19)

where k = 1, 2, 3, Brigid = 2
5 M R2 = 0.0138 × A5/3 (h̄2/MeV), 

Birrot. = 3
8π M R2 = 0.00412 × A5/3 (h̄2/MeV), β = Q ◦

√
5π/(3Z R2), 

and R = 1.2A1/3 (fm). It is important to highlight the fact that the 
irrotational-flow component of the moment of inertia in Eq. (19)

resides in the mass parameter, Birrot. . The β2 sin2
(
γ − k 2π

3

)
de-

pendence is not explicitly limited to irrotational flow but results 
from the SO(5) invariance of the Bohr Hamiltonian (which hap-
pens to be fulfilled by irrotational flow), cf. page 121 of Ref. [10].

The mixing strength can be determined from the moments of 
inertia by

� = 1

2
tan−1

(√
3

J2 −J1
2J1J2 −J2 −J1

)
, (20)
J3
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Table 1
Summary of the 2+

g,γ energies, deformation parameters, and moments of inertia. See text for details.

Nuclei E(2+
g ) (keV)a E(2+

γ ) (keV)a Q ◦ (eb) β γ ◦ �◦ J1 (h̄2/MeV) J2 (h̄2/MeV) J3 (h̄2/MeV)b

110Ru 240.7 612.9 3.41(12) 0.283(11) 29.0(48) −10.7(48) 22.0(81) 8.1(11) 3.88(18)
150Nd 130.2 1062.1c 5.23(6) 0.283(3) 10.4(1) −0.8(1) 27.5(6) 19.8(3) 1.964d

156Gd 89.0 1154.1c 6.67(31) 0.330(15) 7.9(4) −1.1(3) 55.0(84) 24.2(16) 1.779(1)
166Er 80.6 785.9 7.75(3) 0.346(1) 9.2(2) −0.4(1) 42.2(15) 33.3(9) 2.635d

168Er 79.8 821.1 7.78(22) 0.345(10) 8.4(3) −0.4(2) 42.6(26) 33.6(16) 2.517d

172Yb 78.7 1465.9c 7.80(38) 0.331(16) 4.9(7) 0.0(4) 38.3(72) 37.9(70) 1.389d

182W 100.1 1221.4 6.24(13) 0.241(5) 10.0(2) −0.5(2) 35.9(25) 25.7(13) 1.684d

184W 111.2 903.3 6.10(12) 0.234(5) 11.3(3) −0.6(2) 30.6(15) 24.1(9) 2.309d

186Os 137.2 767.5 5.58(8) 0.207(3) 20.4(7) −2.4(7) 32.4(45) 16.3(11) 2.777(5)
188Os 155.0 633.0 5.25(3) 0.193(1) 19.9(3) −3.0(2) 26.5(6) 15.1(2) 3.451(2)
190Os 186.7 558.0 5.05(6) 0.184(2) 22.1(5) −5.9(5) 24.1(10) 11.7(2) 4.078(11)
192Os 205.8 489.1 4.81(3) 0.174(1) 25.2(5) −8.7(5) 21.6(7) 10.5(2) 4.857(19)

a Precision to better than ±0.1 keV [31].
b The precision is necessary to reconstruct F and E(2+

γ ); but is beyond any model significance.
c 2+

γ = 2+
3 .

d Precision better than given number of significant figures.
where � ≤ 0◦ for J1 ≥ J2 ≥ J3. For irrotational flow, the mixing 
reduces to

�irrot. = −1

2
cos−1

⎛
⎜⎝cos 4γ + 2 cos 2γ√

9 − 8 sin2 3γ

⎞
⎟⎠, (21)

which leads to the standard Davydov–Filippov rotor model [30]. 
Note that the mixing strength for “irrotational flow” does not ex-
plicitly depend on the irrotational-flow mass parameter Birrot. of 
Eq. (19).

A summary of the 2+
g,γ energies, deformation parameters, and 

moments of inertia for the 12 nuclei with E(4+
1 )/E(2+

1 ) > 2.7, clear 
γ -band candidates, and the necessary multi-step Coulex data is 
given in Table 1. The experimental energies and E2 matrix ele-
ments used in this study are from ENSDF [31] and multiple-step 
Coulomb excitation data [12,19–26], respectively. These data span 
A = 110 to 192 and γ = 4.9◦ to 29.0◦ , consistent with the model-
independent results of the Kumar–Cline sum rules [11]. It is in-
teresting to highlight the absence of any oblate nuclei in Table 1. 
While prolate dominance was once considered a mystery, it is now 
understood that the particle–hole symmetry, and hence prolate–
oblate symmetry, of nuclei hold only for nuclei with a single par-
tially occupied spherical harmonic oscillator shell; in multi-shell 
spaces there is no such symmetry [32,33].

All γ -band collectivity is described here as axially asymmet-
ric rotations because of the restricted degrees of freedom of the 
model; this allows a simple and unique analytical solution to 
the three moments of inertia within the spin-2 subspace. Within 
the model, only 172Yb is near symmetric with γ = 4.9(7)◦ , J1 =
38.3(72) (h̄2/MeV), and J2 = 37.9(70) (h̄2/MeV). It must be rec-
ognized that both triaxial and vibrational degrees of freedom may 
be involved and small values of � may be the model “image” of 
γ vibrations about axial symmetry. However, recent advances with 
the Algebraic Collective Model (ACM) [10,34] have demonstrated 
that rotational bands exhibit significant mixing effects when β- or 
γ -vibrational bands occur at low excitation energies, suggesting 
that the dominant character of the low-lying states may be triaxial 
with the vibrational excitations at higher energies. This viewpoint 
is consistent with the fact that the triaxial rotor model has been 
shown to reproduce much of the spectroscopic data (particularly 
quadrupole moments) for low to medium spin for 110Ru, 166Er, and 
186–192Os [25–27].

It is important to stress caution on some of the extracted mo-
ments of inertia in Table 1. In particular, nuclei such as 150Nd, 
156Gd, and 172Yb possess low-lying 2+ = 2+ states that could mix 
β 2
Fig. 1. The experimental (black) and irrotational (red) moments of inertia relative 
to the rigid-body value as a function of deformation, β , assuming J = J1 = J2

and J3 = 0. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

with the 2+
g,γ states. Further, generally speaking, shape coexistence 

[35] could potentially distort the extracted moments of inertia also 
through mixing.

Before analyzing the results of Table 1 in detail, it is impor-
tant to note an historical point regarding the moments of inertia of 
atomic nuclei. As demonstrated before [1] and illustrated in Fig. 1, 
by assuming axial symmetry, the moments of inertia are found to 
be quenched to values between rigid and irrotational values. While 
this was a significant revelation, the one-dimensional perspective 
is limited in its ability to elucidate the nature of inertial flow; this 
will become evident upon the following 3-dimensional analysis.

The empirical moments of inertia for all three axes are shown 
in Fig. 2 relative to the leading-order rigid-body values, i.e., 
Jrigid,k ∼ Brigid from Eq. (18). The irrotational values are shown 
for comparison. The moments of inertia for all three axes remain 
quenched to values between the rigid and irrotational expecta-
tions. The three-dimensional view reveals that all three axes are 
qualitatively correlated with β2 sin2(γ − 2πk/3), similar to ir-
rotational flow (cf. discussion in the conclusion). The empirical 
moments of inertia for all three axes are shown in Fig. 3 relative 
to the irrotational-flow values. The experimental moments of in-
ertia are on average a factor of 6.3, 7.4, and 10.0 larger than the 
irrotational flow values for the 1-, 2-, and 3-axis, respectively. The 
regularity in the three moments of inertia supports the triaxial 
assumption of the model. Despite the 3-axis having the small-
est moment of inertia, there is no general indication that it is 
significantly more coupled to the intrinsic motion than the other 
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Fig. 2. The experimental (black) and irrotational (red) moments of inertia relative 
to the leading-order rigid-body value as a function of β2 sin2(γ − 2πk/3) for the 
1-axis (a), 2-axis (b), and 3-axis (c), respectively. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

axes. However, the degree to which the 3-axis does deviate from 
the others, cf. the 172Yb outlier at γ = 4.9◦ in Fig. 3(c), may in-
dicate a partial coupling to the intrinsic motion, expected for a 
γ vibration. Alternatively, the 172Yb outlier may be the result of 
configuration mixing due to a relatively low-lying 0+

2 band head; 
note that 2+

γ = 2+
3 .

The relative moments of inertia as a function of axial asym-
metry, γ , are shown in Fig. 4 for all three axes. The relative irro-
tational values are shown for comparison. Note the normalization 
of the scale to J1. The relative moments of inertia are qualitatively 
consistent with irrotational flow (cf. clarification in the conclusion). 
It is also clear J1 >J2 ∼J3 is manifested in nuclei that approach 
the triaxial limit of the electric quadrupole tensor, γ = 30◦; this is 
a feature of the Bohr Hamiltonian that was pointed out by Meyer-
ter-Vehn [36] in 1975 and it is now shown for the first time to be 
exhibited qualitatively by nuclei. Recent Coulomb excitation results 
of 110Ru [26] establish it as the best candidate for triaxiality near 
the ground state to date. Additional Coulomb-excitation results for 
the neutron-rich Mo–Ru region with higher precision would be 
valuable. The outliers, 172Yb and 156Gd, correspond to cases with 
low-lying excited 0+ states (with K π = 0+, 2+ bands).
Fig. 3. The experimental moments of inertia relative to the irrotational flow value 
as a function of γ for the 1-axis (a), 2-axis (b), and 3-axis (c), respectively.

Fig. 4. The relative moments of inertia for all three axes as a function of axial asym-
metry, γ . The experimental values (circles) have been normalized to the irrotational 
values (lines) through the 1-axis.

The empirical 2+ mixing parameter, �, as a function of axial 
asymmetry, γ , is shown in Fig. 5(a). The rigid and irrotational val-
ues are shown for comparison. The experimental mixing strength 
reveals qualitative agreement with the irrotational flow expecta-
tion; this is due to the fact that the mixing is only dependent on 
the relative moments of inertia, which eliminates the explicit ir-
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Fig. 5. (a) The experimental (black), irrotational (red), and rigid (blue) 2+ mixing 
parameter, �, as a function of axial asymmetry, γ . (b) The ratio of the experimental 
and irrotational 2+ mixing values. (c) The experimental (black) versus irrotational 
(red) sin(γ + �) values, which are proportional to 〈0g ||M̂(E2)||2γ 〉. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

rotational dependence Birrot. in Eq. (19). This explains the limited 
success (cf. Ref. [13]) of the Davydov–Filippov rotor model [30]. It 
is important to stress that, while there are some qualitative agree-
ments in the relative moments of inertia with a β2 sin2(γ −2πk/3)

dependence, the quantitative moments of inertia on a case-by-case 
basis show significant deviations. Fig. 5(b) reveals the extent of the 
scatter of the 2+ mixing values with respect to the “irrotational” 
values. These deviations can have a large impact on the calculated 
E2 matrix elements when approaching γ = 30◦ due to destruc-
tive interference [29], cf. Fig. 5(c), which reveals the discrepancy 
between the fitted and irrotational 〈0g ||M̂(E2)||2γ 〉 ∝ sin(γ + �)

values. A β2 sin2(γ − 2πk/3) dependence of the moments of iner-
tia is not sufficient in quantitative calculations [13].

We recognize that actual nuclei are believed to possess fluctu-
ations in the β and γ shape parameters about average values. In 
some of the nuclei reported (chosen based on the availability of 
Coulex data, a clear γ -band candidate, and E(4+

1 )/E(2+
1 ) > 2.7), 

the present approach will be limited. This is particularly true for 
150Nd, 156Gd, and 172Yb which have low-lying 0+ states. How-
2
ever, the variance in the shape parameters, which could equally 
result from configuration mixing, remains largely unknown exper-
imentally and the present approach takes the simplest possible 
non-trivial view in extracting moments of inertia. We believe this 
will provide guidance to exploring, especially, γ -soft nuclei using 
a model such as the ACM [34], which will involve more param-
eters with concomitant difficulty in finding global minima in the 
fitting. However, it’s important to recognize that within the ACM, 
low-lying β- and γ -vibrational bands result in unrealistically large 
mixing effects [10,34]; this fact in combination with the regular-
ity of the 3 moments of inertia leaves one to conclude that the 
low-lying states are a composite of both triaxial and vibrational de-
grees of freedom with the former being the most likely dominant 
component. More precise Coulomb-excitation data, e.g., variances 
of quadrupole shape invariants, are needed to test this hypothe-
sis.

A better description of inertial flow will require improving both 
the absolute and relative values. The absolute values are deter-
mined by the mass parameter B , cf. Eqs. (18) and (19); Brigid
is too large and Birrot is too small. It is interesting to note that 
the relative moment of inertia values are qualitatively described 
by β2 sin2(γ − 2πk/3), cf. Fig. 2, which is a result of the SO(5) 
invariance [10,34] of the Bohr model [37,38]; irrotational flow is 
SO(5) invariant, but SO(5) invariance does not necessarily imply 
irrotational flow. Rowe et al. [34] have pointed out that a better de-
scription of inertial flow might be given within a collective model 
by the inclusion of vorticity degrees of freedom as done in su-
perfluid hydrodynamics [39]. The symplectic model, Sp(3, R) [40], 
provides a promising step in this direction: it possesses vorticity 
degrees of freedom in one of its submodels and, moreover, it is a 
submodel of the shell model. It is also interesting to note that tri-
axial deformation naturally emerges within the symplectic model 
with low-lying collectivity being the result of mixing several triax-
ial rotor-like configurations [33].

While there have been significant advances in microscopic cal-
culations [41–45], which include pairing interaction effects as sug-
gested by Bohr, Mottelson, and Pines [46], the theoretical moments 
of inertia have been limited to one-dimensional comparisons with-
out definitive evidence of axial symmetry. Furthermore, micro-
scopic theories of deformed nuclei are often limited to ground-
state calculations of the β and γ shape parameters, relying on a 
collective model to generate the excited states. A better under-
standing of inertial flow directly impacts the manner in which 
collectivity should be generated from predicted shape parameters. 
It is our hope that the new empirical moments of inertia for the 
1-, 2-, and 3-axis of atomic nuclei further stimulate multiple-step 
Coulomb excitation experiments and algebraic and microscopic 
theory in the quest to better understand the nature of inertial flow 
in finite many-body quantum systems composed of strongly inter-
acting fermions.
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