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Abstract

This thesis is a study of the thermal phase structure of systems that admit dual

gauge theory and string theory descriptions. In a pair of examples, we explore the connection

between perturbative Yang-Mills and gravitational thermodynamics which arises from the

fact that these descriptions probe different corners of a single phase diagram. The structure

that emerges from a detailed study of these isolated regions generally suggests a natural

conjecture how they may be connected to one another within the full phase diagram. This

permits the identification of interesting phenomena in the gauge and gravity regimes under

a continuous change in parameters.

We begin by studying the AdS5/CFT4 system which, when the supergravity de-

scription is valid, exhibits a first order Hawking-Page phase transition as a function of

temperature from a thermal gas of gravitons to a large black hole. In the perturbative

Yang-Mills regime, we find that the free theory exhibits a weakly first order deconfinement

transition whose precise nature at small nonzero coupling depends on the result of a non-

trivial perturbative computation. It is conjectured that this deconfinement transition is

continuously connected in the full phase diagram to the Hawking-Page transition at strong

coupling, with the confined phase identified with the graviton gas and the deconfined phase

identified with the black hole.

We then turn to the study of Gregory-Laflamme (GL) black hole/black string

transitions in supergravity and their realization in a setup that admits a dual description
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via the maximally supersymmetric Yang-Mills theory on T 2. The thermodynamics of Yang-

Mills theories on low dimensional tori is studied in detail revealing an intricate structure

of which the GL transition at strong coupling is a small piece. We are led to conjecture

that GL physics is continuously connected to deconfinement in maximally supersymmetric

0 + 1-dimensional gauged matrix quantum mechanics. This identification will then permit

us to probe GL transitions from the gauge theory point of view and comment on some

puzzles regarding their precise nature.
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Chapter 1

Introduction

Perhaps the most exciting development in string theory during the past decade

is Maldacena’s AdS/CFT conjecture relating strings propagating in asymptotically AdS

spacetimes to gauge theories defined on their conformal boundaries [1, 2, 3]. Among the

various implications of this correspondence is the incorporation of the thermodynamic struc-

ture of supergravity (SUGRA) and perturbative gauge theory into a single phase diagram.

This is particularly exciting because gravitational thermodynamics is driven primarily by

black holes and their higher dimensional cousins while Yang-Mills thermodynamics centers

on the physics of confinement. The AdS/CFT correspondence is apparently asserting that

these two phenomena, which have been at the heart of theoretical physics research for over

thirty years, may be related in a deep manner that is not yet completely understood.

In this thesis, we shall explore these ideas by studying the phase structure of

systems that, via AdS/CFT , can be described both by string theory and a dual non-

Abelian gauge theory. Because a comprehensive analysis of the full phase diagram will be

beyond our reach, the general strategy that we adopt is to use the SUGRA approximation to

probe one region and the techniques of perturbative gauge theory to probe another. Though

1
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the regimes that we can directly study in this manner are widely separated in general, we

shall find that the structure that emerges in each case is quite similar and, in fact, leads to

natural conjectures for how the two regions may be connected in the full phase diagram.

The first part of this thesis is devoted to a study of string theory on (global)

AdS5×S5, which admits a dual description in terms of 4-dimensionalN = 4 supersymmetric

Yang-Mills (SYM) on S3. In the SUGRA regime, the thermodynamics of this theory is

dominated by a gas of gravitons at low temperatures and a black hole at high temperatures

with a first order transition separating the two phases [4, 5]. In chapter 2, we review

what is known about this structure and how it might naively behave as we continue to the

perturbative Yang-Mills regime.

In the next chapter, we study the Yang-Mills description directly following [6, 7].

Perhaps surprisingly, we will find a finite temperature deconfinement transition even at zero

coupling that is driven by compactness of the space. The confined and deconfined phases

share similar properties, via the AdS/CFT dictionary, with the graviton gas and black hole

at strong coupling and are distinguished by the same order parameter. We are thus led to

conjecture that, in the full phase diagram, the deconfinement transition that we encounter

in the perturbative regime is continuously connected to the Hawking page transition in the

SUGRA regime1. The particular form of this conjecture is complicated by the fact that a

small nonzero coupling can change the qualitative behavior of the deconfinement transition

somewhat. We outline the two primary scenarios, which lead to two different conjectures

for the full phase diagram, and describe how one might distinguish between the two with a

perturbative computation.

The rest of this thesis is devoted to the application of these ideas to study Gregory-

Laflamme black hole/black string phase transitions, which arise in higher dimensional the-
1This idea was first proposed in [2, 5]
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ories of gravity that are compactified on a circle, from a gauge theory point of view. Such

transitions occur when black strings that wrap the circle become unstable to ”clumping”

as the temperature is decreased, eventually giving way to a phase dominated by a localized

black hole. The process by which this ”clumping” occurs is still not completely understood

from the gravity point of view, though a great deal of progress has been made in recent

years. In the first part of chapter 4, we briefly review the physics of Gregory-Laflamme

transitions in higher dimensional gravity as it is currently understood.

Following this, we search for a realization of Gregory-Laflamme physics in a system

that admits a dual Yang-Mills description. There, one might hope to probe the transition

line, albeit in a different region of the phase diagram, using the techniques of perturbative

gauge theory. In the second part of chapter 4, we find just such a realization using the ideas

of AdS/CFT and demonstrate that the dual gauge theory is the maximally supersymmetric

Yang-Mills theory on T 2.

Finally, in chapter 5, we study the phase structure of this Yang-Mills theory as a

means of probing Gregory-Laflamme physics. Our analysis is complicated by the fact that

the system becomes effectively strongly coupled near the phase transition line even far from

the SUGRA regime. The physics there can be described in terms of a dimensionally reduced

model, though, for which numerical analysis can be done without too much difficulty. In

the end, we will associate the Gregory-Laflamme phase transition with deconfinement in

this dimensionally reduced theory.



Chapter 2

The Hawking-Page Transition in

AdS5 × S5

In this first chapter, we review the thermodynamics of string theory on AdS5×S5.

After a lightning review of the AdS5/CFT4 correspondence, we shall embark on a qualita-

tive discussion of the spectrum and move from there to finite temperature thermodynamics,

culminating in a review of the Hawking-Page phase transition from graviton gas to ”big”

black hole. Some implications of this structure for the dual description via N = 4 super-

symmetric Yang-Mills (SYM) theory at strong coupling will then be discussed. While not

obvious, much of this structure is retained at weak coupling and will be a main focus of the

next chapter.

2.1 Lighting Review of AdS5/CFT4

We begin with a quick review of the duality between type IIB strings on AdS5×S5

and the N = 4 supersymmetric Yang-Mills theory [1, 2, 3]. The main purpose of this section

is to fix notation and recall the basic dictionary between the two sides and as such it is

4
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far from thorough. The reader interested in a more detailed treatment should consult the

classic review paper [8].

At the heart of the correspondence is the physics of a stack of N D3-branes in

IIB theory on flat space. Near the branes, one has both open and closed string degrees of

freedom, which give rise to gauge field and gravity degrees of freedom in the worldvolume

description, respectively. The key insight that drives AdS/CFT is the existence of a limit

which decouples the open strings from the closed strings, leaving a worldvolume description

in terms of a gauge theory alone. Specifically, we can accomplish this by taking α′ → 0

while keeping all energies and dimensionless parameters fixed. The result is that physics

near the D3-branes can be described by a gauge theory on their worldvolume, which is fixed

by supersymmetry to be N = 4 SU(N) SYM.

For large N and small gs, the D3-branes admit a description in supergravity

(SUGRA) [9], though, given by the charged black 3-brane solution [10]

ds2 = f(r)−1/2

(
−dt2 +

3∑
i=1

dx2
i

)
+ f1/2(r)

(
dr2 + r2 dΩ2

5

)
f(r) = 1 +

R4

r4

(2.1)

which also contains a nontrivial RR 5-form flux and R is related to the number of

D3-branes, N , by

R4 = 4πgsα
′ 2N (2.2)

Here, the above decoupling limit takes the form α′ → 0 with U = r/α′ fixed in

order to ensure that energies of modes near the horizon remain fixed as measured by an

observer at infinity. The limiting geometry, which provides a SUGRA description of the

near-horizon region, is given by
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ds2 = α′

[
U2

√
4πgsN

(
−dt2 +

3∑
i=1

dx2
i

)
+
√

4πgsN
dU2

U2
+
√

4πgsN dΩ2
5

]
(2.3)

This geometry is nothing more than AdS5 × S5 with the AdS and S5 radii both

given by R in (2.2). The weak conjecture of AdS/CFT is the equivalence of the two dual

descriptions that we have seen of physics near the D3-branes, namely N = 4 SU(N) SYM

theory at large N and type IIB SUGRA on AdS5×S5. One might think that this is obviously

wrong since these two theories look nothing alike. However, one must pay careful attention

to the regimes of validity on which our intuition is based. For the SUGRA approximation

to be reliable, one needs not only gs → 0, but also the AdS radius R to be large in string

units

R√
α′
� 1 (2.4)

So, in particular, N must be approaching infinity in such a way that the quantity

gsN is fixed and large. Since gs = g2
Y M here, this is nothing other than the ’t Hooft coupling

of the dual Yang-Mills theory[11]

λ = gsN = g2
Y MN (2.5)

and consequently the SUGRA approximation is valid in the ’t Hooft limit when

λ � 1. This corresponds to strong coupling in the gauge theory and is a regime far from the

perturbative one where we can trust naive intuition. A stronger form of the AdS5/CFT4

conjecture goes beyond this relation of strongly coupled Yang-Mills physics to SUGRA and

asserts that the two theories are completely equivalent. It is this statement, for which there

is now an overwhelming body of evidence1, that we shall assume throughout the remainder
1See, for instance, the review [8] and references therein.
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of this thesis.

The specific version of the correspondence that will interest us, though, is a slight

modification of what we have presented so far. As stated above, we have a relation between

a field theory in flat space and strings propagating on the so-called Poincare patch (2.3)

of AdS5 × S5. The region that this metric describes is not geodesically complete and

corresponds to only a small part of the maximally extended, global AdS5 which can be

covered by the metric

ds2 = R2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3

)
(2.6)

Global AdS, as this is called, has a well-defined timelike Killing vector which

provides a distinguished choice of time variable both here and in the dual Yang-Mills theory.

This is related to the time variable of the Poincare patch by an AdS5 isometry, which is

an element of the isometry group SO(4, 2) and corresponds to a conformal transformation

in the gauge theory. The effect of this transformation on the latter is to map constant

time slices from copies of R3 ⊂ R4 to spheres S3 ⊂ R4 with time evolution proceeding

radially. This is analagous to the radial quantization that one encounters in worldsheet

string theory by using a conformal transformation to pass from the cylinder to the complex

plane. Among other things, this implies that the Yang-Mills theory dual to strings on global

AdS5 × S5 is defined on S3 × R, which is conformally equivalent to R4 but differs in the

important respect that the spatial slices are compact. This is to be expected from the

holographic interpretation of AdS/CFT since the boundary of global AdS is S3 ×R. This

is also expected from the point of view of the spectrum since that of the Poincare patch is

ungapped and hence consistent with a flat space gauge theory, while that of global AdS is

gapped and hence consistent with gauge theory on a compact space.

Finally, we close this section with a recap of the basic dictionary for relating gauge
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theory and string theory quantities in AdS5/CFT4. The primary entry in this dictionary is

the relation (2.2) which arises from comparing the RR charge of the black 3-brane solution

with that of N D3-branes as computed in string theory. The only other relation that one

needs is the standard one relating the 10-dimensional Newton constant with the string

coupling and scale

GN ∼
(
gsα

′ 2)2 (2.7)

which permits one to pass to SUGRA variables as well.

2.2 Spectrum of Strings on AdS5 × S5

Though quantizing IIB strings on AdS5 × S5 is notoriously difficult, one can still

say quite a bit about the qualitative structure of the spectrum provided gs is small and the

AdS radius, R, is much larger than
√

α′ so that the SUGRA approximation is valid. In

Yang-Mills variables, this corresponds to the ’t Hooft limit, namely small gY M and infinite

N , with the ’t Hooft coupling λ = g2
Y MN fixed and large. We will follow here roughly the

treatment of [8, 6], starting with the spectrum at low energies and moving up from there2.

Note, however, that we shall focus on the spectrum as a function of the energy E meausred

by an observer at infinity, and hence an observer in the dual Yang-Mills theory. This differs

from the proper energy, Eproper, of states in the far interior of AdS, which is where our states

will be constrained to lie, by a factor of R

E = EproperR (2.8)

2Previous discussions of the thermodynamics that we now describe have also appeared in [12, 13, 14, 15].
See also [16, 17, 18]
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2.2.1 Free Graviton Gas

At energies Eproper <
√

α′ = R/λ1/4, the spectrum consists of gravitons and their

superpartners. Energies are quantized in units of 1/R and single-particle states are insulated

from both quantized string effects and quantum gravity by their BPS nature. Multiparticle

states are also essentially uncorrected since the gravitational potential E2/(m8
P R7) scales

with N and consequently is much larger than α′ −1/2.

We thus conclude that for E � λ1/4 the system is well described by a free 1+9-

dimensional graviton gas. The entropy of this gas is given by the standard result

S(E) ∼ E9/10 (2.9)

2.2.2 Free String Gas

At energies E larger than λ1/4, excited string modes become accessible. The

masses of these modes are quantized roughly in units of α′ −1/2 and, in the usual SUGRA

regime R/
√

α′ � 1, the spectrum is expected to be similar to that of string theory in flat

space. In particular, we can imagine expanding the masses in a perturbative expansion in

α′ of the form

m2 =
1
α′

[
n +O

(
α′

R2

)]
(2.10)

The spectrum of free string theory, though, is quite interesting in itself and exhibits

a well-known exponential growth in the density of states [19] as we now briefly review.

Hagedorn Growth

To see this quickly, we follow essentially the approach of volume 1 in the book by

Green, Schwarz, and Witten [20]. For simplicity, let us consider the density of states in
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the subspace generated by just one of the physical bosonic oscillators of the superstring. A

generic state in this space is labeled by the number nm of excitations at level m so that, for

instance, the state with n1 = 1 and n2 = 1 corresponds to α−1α−2|0〉. The proper energy

of such a state is given by

α′M2 = N =
∑
m

mnm (2.11)

so counting the number of states ρN at fixed energy N is a nontrivial combinatorics

problem. When faced with such problems in statistical physics, it is often useful to introduce

partition function, compute the free energy as a function of temperature, and perform a

Legendre transform to obtain the entropy. This situation is no different, so we define z

according to

z(β) =
∑
N

ρNe−βN (2.12)

We can think of excitations at different levels as describing distinct noninteracting

particles, in which case the partition function factorizes as usual and becomes easier to

compute

z(β) =
∏
n

[ ∑
states at level n

e−βN

]

=
∏
n

(
1− e−βn

)−1

= e−β/24η

(
iβ

2π

)−1

(2.13)

where in the last line we have written z(β) in terms of the Dedekind η function

η(τ) = eiπτ/12
∞∏

n=1

(
1− e2πinτ

)
(2.14)
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The appearance of η is of course not surprising given its relation to the exact result

for noninteracting closed strings in flat space. The density of states at high energies plays

little role in the partition function at large β but is important determining the form of the

partition function at small β and consequently it is in this regime that we expect it to be

extractible from our general expression for z(β). A small β expansion of (2.13) as written

is difficult but one can take advantage of the modular property of η

η

(
−1

τ

)
= (−iτ)1/2 η(τ) (2.15)

in order to write z(β) in a form more amenable for this analysis. In particular,

using (2.15) we can write z(β) as

z(β) = e−β/24

√
β

2π
eπ2/6β

∏
n

(
1− e−4π2n/β

)−1

∼ eπ2/6β as β → 0

(2.16)

and hence the leading free energy at high temperatures is given by

F (β) = − π2

6β2
+ . . . (2.17)

It is now straightforward to perform a Legendre transform to obtain the entropy

as a function of energy. We first find that β as a function of N is given simply

β =
π√
6N

+ . . . (2.18)

which is small in the limit of large N as expected. The entropy is now easily

determined from

S(N) = β(N − F ) ≈ c
√

N (2.19)
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with a coefficient c that here takes the value 2π/
√

6. Exchanging N for proper

energy Eproper = E/R, this corresponds to a density of states that exhibits an exponential,

or Hagedorn growth at large energies

ρ(E) ∼ ec′
√

α′E/R (2.20)

and an entropy that is extensive along the string

S(E) ∼ E
√

α′

R
(2.21)

This last result is fairly intuitive and provides a natural explanation for the Hage-

dorn growth (2.20).

As mentioned above, we expect the same qualitative behavior for strings in AdS5×

S5 in the limit that we are considering R/
√

α′ � 1. Comparing (2.9) and (2.21), we see

that this phase has higher entropy than the graviton gas when

E >
R10

α′ 5
∼ λ5/2 (2.22)

2.2.3 Small Black Hole

As we increase the proper energy beyond mP , corresponding to taking E > N1/4,

we expect the gas of strings to collapse and form a small black hole of horizon radius r0. If

we assume that r0 � R, the corresponding SUGRA geometry should be well-approximated

by the 10-dimensional Schwarzschild solution

ds2 = −f(r) dt2 + f−1(r) dr2 + r2dΩ2
8 (2.23)

where the harmonic function is given by
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f(r) = 1−
r7
+

r7
(2.24)

The entropy of this solution scales with the horizon area

S(r+) ∼
(

r+

`P

)8

(2.25)

and the proper energy is given by the mass

Eproper ∼
(

r+

`P

)7

(2.26)

where we have inserted factors of the Planck length `P by dimensional analysis.

Combining these, we find that the entropy scales as

S(E) ∼
(

E`P

R

)8/7

(2.27)

Comparing this with the entropy of the string gas (2.21) we see that small black

hole states have higher entropy when

E >
Rα′ 7/2

`8
P

∼ N2

λ7/4
(2.28)

2.2.4 Big Black Hole

As we move to even higher energies, the Schwarzschild radius of the dominant

black hole grows until it eventually becomes of order R, at which point the approximation

by 10-dimensional Schwarzschild breaks down completely. Beyond this point, the horizon

wraps completely around the S5 and is strongly affected by the curved geometry in the

AdS directions. We will refer to this geometry as the ”big” black hole. The corresponding

gravity solution given by the AdS-Schwarzschild metric [4, 5]
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ds2 = −f(r) dt2 + f−1(r) dr2 + r2 dΩ2
3 (2.29)

with harmonic function

f(r) =
r2

R2
+ 1− µ

r2
(2.30)

The ADM mass M of this black hole is proportional to µ and consequently can be

related to the Schwarzschild radius by

M ∼
r2
+

`3
P,5

(
1 +

r2
+

R2

)
(2.31)

where `P,5 is the effective five-dimensional Planck length which is related to the

ten-dimensional one by

`3
P,5 = `8

P /R5 (2.32)

The entropy is proportional to the horizon area as usual

S ∼
(

r+

`P,5

)3

(2.33)

and consequently the entropy as a function of energy scales as

S(E) ∼
(

R

`P

)2

E3/4 (2.34)

This is quite a remarkable result as the scaling of entropy with energy in (2.34)

is equivalent to what one finds for a free gas in 1+3-dimensions. We will see in the next

chapter that this is for good reason.

As discussed above, the big black hole is expected to overtake the small black hole

when its horizon radius becomes of order R. Given (2.31) and (2.32), this corresponds to
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Log(T_1)

Black Holes
Big AdS

Gravitons

Small Black Holes

Hagedorn 

Log(T_2)

= Log(T)

−Log(S’(E))

Log(E) Log(E_1) Log(E_2)

Figure 2.1: ln T as a function of ln E for the four phases discussed in section 2.2.

E >
R8

`8
P

∼ N2 (2.35)

This exhausts our qualitative study. In summary, we have found four phases which

dominate the microcanonical ensemble for various ranges of energies.

2.3 Hawking-Page Phase Transition

Now that we have understood the various phases present within the spectrum, we

turn next to a study of this system at finite temperature. To get a feel for the qualitative

structure of the canonical ensemble, we plot ln T as a function of lnE in figure 2.1 for

the phases discussed above, using the expressions (2.9), (2.21), (2.27), and (2.34) for their

entropies to obtain the corresponding temperatures.

From this plot, we see a few things right away. First, since the sign of the specific

heat is equivalent to that of the slope of this curve, the small Schwarzschild black holes are

thermodynamically unstable as usual and do not play a role in the canonical ensemble. One



Chapter 2: The Hawking-Page Transition in AdS5 × S5 16

might be surprised, then, that the big AdS black holes are stable. A ”physical” reason for

this is that their horizon is sufficiently far from the center of AdS that it is sensitive to the

curvature, which serves to ”reflect” enough Hawking radiation back into the black hole to

render it thermodynamically stable.

Since the Hagedorn phase exists only at a fixed temperature, namely the Hagedorn

temperature TH , it doesn’t play a role and consequently only the graviton gas and ”big”

AdS black hole phases are relevant for the finite temperature thermodynamics. At low

temperatures, the graviton gas is the only phase and hence dominates by default. At higher

temperatures, though, we expect the ”big” black hole to become favored and hence we

anticipate the existence of a phase transition separating these phases at a finite temperature

THP [4, 5] that should scale as R−1 with some constant of order unity. Moreover, the

dramatic disparities between the two phases lead us to expect this transition, typically

referred to as the Hawking-Page transition, to be of first order3.

2.3.1 Euclidean Gravity Approach

We now try to be more precise and explicitly demonstrate that this transition

occurs and, along the way, determine the value of the critical temperature THP . How shall

we proceed? Let us look to typical quantum field theories for guidance.. The natural

framework there for studying finite temperature thermodynamics is the Euclidean path

integral with the time direction compactified on a thermal S1 of length β

∫
Dφe−SE (2.36)

In this expression, it is important to note that if the space is noncompact the
3Note that the existence of this phase transition prevents us from reaching the divergence associated to

the Hagedorn phase at TH . It has been suggested that a first order transition such as this must occur in
flat space string theory as well [21] though it is not clear what the high temperature phase could be in that
case.
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integral is not taken over all field configurations but instead those with some fixed boundary

conditions at infinity. Typically these restrict to configurations that vanish sufficiently fast

at infinity, though this need not be the case.

In the classical limit, the integral (2.36) can be evaluated in the saddle point

approximation. This corresponds to replacing the integral by a sum over configurations

that extremize the action

∫
Dφe−SE ∼

∑
saddles

e−SE (2.37)

Hence, we see that the field configurations of the saddles correspond to the various

phases that are possible within the system4 and the Euclidean action indicates their relative

weighting in the partition function5. The particular phase that dominates the partition

function in general depends on the parameters of the system, including the temperature. If

the difference between individual terms of (2.37) is parametrically large then the crossovers

that occur when the dominant phase changes can be sharpened into phase transitions. In

noncompact examples this happens because SE scales with the volume. In large N gauge

theories, on the other hand, it happens because SE scales with N2. Note that this latter

fact implies that sharp phase transitions are possible in gauge theories even at finite volume

provided N is taken to infinity6.

While we know much less about quantum gravity, the path integral framework

exists at least formally and can be used to provide a definition of what one means by the

partition function in the classical SUGRA limit [22, 23]. Indeed, one defines the classical

limit of the Euclidean path integral at finite temperature in a similar manner
4Of course, each such term should be weighted by a 1-loop determinant but this is unimportant in what

follows since we assume that the various terms differ exponentially.
5This is as we would expect since SE roughly computes the free energy associated to a given phase.
6The reason for this is that by taking N to infinity, we ensure that there are effectively infinitely many

degrees of freedom below any fixed energy scale. Of course at finite N , the transitions will be smoothed out.
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ZSUGRA ≈
∑

saddles

e−SE (2.38)

The sum here includes geometries that extremize the Euclidean IIB SUGRA action

and satisfy the appropriate boundary conditions. For AdS5/CFT4 at finite temperature,

the relevant boundary conditions are those of thermal AdS5. The geometry of thermal

AdS5 itself corresponds to the graviton gas phase and exists for any temperature. The

”big” black hole phase, on the other hand, corresponds to the Euclidean version of the

metric that we have already written down (2.29). When compactifying Euclidean time on

the thermal circle, though, we must be careful because this circle shrinks to zero size in

the interior where the horizon was located in the Lorentzian solution. In order to obtain a

smooth solution, it is necessary to choose the particular value of β which, for this particular

black hole, takes the form

β =
2πR2r+

2r2
+ + R2

(2.39)

This is, of course, just the inverse of the Hawking temperature TH of the ”big”

black hole. Note that β has a maximum possible value of πR/
√

2 and hence we see explicitly

that the ”big” black hole phase exists, as we knew it must, only for temperatures that are

sufficiently large.

To determine which solution dominates, we need to compare the IIB SUGRA

action evaluated on the thermal AdS and the ”big” black hole solutions. The individual

actions actually diverge due to infinite contributions from the boundary but can be suitably

regulated to obtain a difference that is finite and can be computed. The result for AdS5

was first obtained by Witten [5] and takes the simple form
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S (”big” black hole)− S (graviton gas) =
πr3

+

(
R2 − r2

+

)
4G5

(
2r2

+ + R2
) (2.40)

The ”big” black hole thus becomes dominant precisely when the horizon radius is

equivalent to the AdS radius, r+ = R. This corresponds to a critical temperature

THP =
3

2πR
(2.41)

that differs from R−1 by a constant of order unity, as expected. From (2.40) it is

also easy to see that this phase transition of first order.

2.4 Implications for the dual gauge theory

Now that we have a qualitative understanding of the spectrum and phase diagram

of the theory in the SUGRA regime, it is natural to ask about the extent to which this

structure persists at weak coupling, where the perturbative Yang-Mills description is valid.

Provided one doesn’t cross a phase transition line while decreasing the coupling, one expects

that at least some of the features that we have seen should survive and, in fact, it should

be possible to make some rough conjectures as to how this occurs 7.

Let us begin with the spectrum. Since λ is related to the string scale according

to λ1/4 ∼ α′ −1/2, we see that decreasing the coupling has the effect of making the string

modes lighter. As a result, we expect the gap between the graviton and string excitations

to close, leaving us with one phase whose density of states grows roughly exponentially with

energy. This phase shouldn’t be a Hagedorn phase with purely exponential growth since we

expect that it captures the low temperature thermodynamics. It may eventually give way
7Evidence of a phase transition that would invalidate this line of reasoning has been presented in [24].

Because of the consistent picture that emerges here, we believe that this phase transition line, if it exists,
does not extend down in the λ/T plane to temperatures of the order that we are considering.
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to a Hagedorn phase, though, at some finite energy.

Turning now to the small black holes, their energy is independent of the coupling,

scaling as N7/4 at large N . However, the range of energies over which they have maximum

entropy (2.28) depends on λ and seems to be squeezed out as λ → 0. Consequently, we

don’t expect to see states corresponding to small black holes dominating the spectrum

at any energy scale, though they may appear as an unstable phase of the microcanonical

ensemble.

Finally, the ”big” black holes have energy and range of dominance that are in-

dependent of λ and scale with N2 at large N . We expect this phase to survive at weak

coupling and dominate the spectrum at high energies.

Since we expect the phases that dominate the finite temperature thermodynamics

to survive at weak coupling in some form, it is natural to expect the Hawking-Page transition

line to continue down to this regime as well. There, it will separate phases with free energies

of order 1 and N2 at large N , which is a hallmark of confinement/deconfinement transitions

in gauge theories. That the Hawking-Page phase transition connects smoothly to such a

transition at weak coupling is an observation that was made by Witten [5], who also noted

that there is a natural choice of order parameter in both regimes as well.

2.4.1 Order Parameter at Weak and String Coupling

At strong coupling, the distinguishing characteristic of the black hole phase is the

presence of a horizon which, in the Euclidean formulation, corresponds to the fact that the

thermal circle is contractible in the bulk. One observable that is sensitive to this fact is

the string partition function with the boundary condition that a string worldsheet ends on

the thermal circle at infinity. In the SUGRA regime, this quantity will be proportional to

e−A where A is area of the minimal worldsheet consistent with the boundary condition. If
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the thermal circle is not contractible in the bulk, no finite area worldsheet exists and hence

the partition function vanishes 8. Thus, we see that a nonzero result for this computation

signifies contraction of the time circle and hence the existence of a horizon in the bulk

[5, 26].

Unfortunately, things are a bit more complicated than this since there is an addi-

tional degree of freedom on the worldsheet, the B-field, that we have yet to take into account.

As discussed in [5], we must integrate over all values of the B field with H = dB = 0. These

contribute a phase i
∫

B to the action so that this integral leads to a vanishing of the string

partition function in question9. Of course this vanishing is of a different nature than that

which occurs when the time circle is not contractible in the bulk. We will encounter a similar

phenomenon in the next chapter as well. For now, we simply note that one can distinguish

between these two situations and hence render this object a suitable order parameter by

deforming the theory in a suitable way.

As argued in [25, 27], the string computation described above corresponds, in the

Yang-Mills description, to expectation values of Wilson loop operators10

W (C) = P exp
(

i

∮
C

A

)
(2.42)

The motivation for this correspondence is roughly as follows. The insertion of

W (C) into the path integral essentially mimics the placement of heavy classical sources of

the non-Abelian gauge field along the loop. To see what this looks like from the point of
8Actually, all worldsheets are technically infinite in area due to divergent contributions from the region

near the boundary. This divergence can be regulated in a sensible manner, though, so that we can associate
a finite area to worldsheets capable of capping off in the bulk [25]

9As pointed out by Witten, this is necessary to avoid an obvious contradiction since a nonzero result
would have led to spontaneous breaking of the gauge group center in finite volume [5].

10Actually, the object to which the string computation corresponds is a bit more complicated, involving
couplings to scalar fields as well. This complication does not change the qualitative features of our order
parameter, though, so we do not worry about it. Computations of ”generalized Polyakov loops” such as this
first appeared in [5, 28, 29, 30].
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view of the N D3-branes on whose world volume the gauge theory propagates, consider

instead starting with a stack of N + 1 branes which is Higgs’ed down to an SU(N) theory

by separating one of the branes from the rest. The Higgs multiplets arise from strings

stretched between the separated brane and the stack and hence have mass proportional

to the distance between them. Taking the separated brane to infinity gives us infinitely

massive Higgs multiplets which then behave like classical sources from the point of view of

the remaining stack. Consequently, we see that the insertion of classical sources in the Yang-

Mills theory corresponds to the imposition of boundary conditions in the string description

in which a string extends out toward infinity. A Wilson loop W (C), then, is associated to

boundary conditions in which the string worldsheet ends at infinity along the curve C.

As discussed above, the particular Wilson loop that we shall be interested in is

that which winds around the Euclidean time circle since it is this object that, at strong

coupling, indicates the presence of absence of a horizon. In perturbative gauge theory this

object, often referred to as the Polyakov loop [31, 32], computes the exponential of the free

energy cost Fq(T ) associated to the placement of a classical quark at a fixed point in space

W (S1
β) ∼ e−Fq(T ) (2.43)

If the Polyakov loop expectation value vanishes, the free energy cost for adding a

classical charge is apparently infinite. This is a characteristic of a confined phase in which

the independent degrees of freedom correspond to gauge singlets, leading to difficulty in

charge screening and a free energy that scales as N0 at large N . On the other hand, if the

Polyakov loop expectation value is nonvanishing, the free energy cost is finite. This is a

characteristic of a deconfined phase in which gluons effectively behave as N2 independent

degrees of freedom, leading to ease of charge screening and a free energy that scales as N2

at large N .
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We thus see that the Yang-Mills situation closely resembles the stringy one in

that two phases with free energies of order N0 at N2 at large N are distinguished by the

Polyakov loop expectation value. We thus expect that the gauge theory counterpart to

the Hawking-Page phase transition is simply a confinement/deconfinement transition that

occurs at a temperature of order R−1 [5]. At strong coupling, AdS/CFT directly implies

that such a transition is present. That it continues to weak coupling is not immediately

obvious and will be the focus of the next chapter.



Chapter 3

Deconfinement Transition in

Yang-Mills Theories on S3

In this chapter, we seek to probe the phase structure of the AdS5/CFT4 system

in the weak coupling regime, where the description in terms of perturbative gauge theory

is valid. We shall find, perhaps surprisingly, that the qualitative structure of the spectrum

and phase diagram is quite similar to what we anticipated in section 2.4 even in the free

theory. In particular, we shall find a Hagedorn growth in the density of states up to a

limiting temperature equivalent to the Hagedorn temperature, TH . At this point, the sys-

tem undergoes a confinement/deconfinement transition that we conjecture is continuously

connected to the Hawking-Page transition present at strong coupling.

Perhaps more surprisingly, this structure turns out to be quite generic, at least for

asymptotically free Yang-Mills theories on S3 coupled to adjoint matter. Because of this,

we shall be quite general in our analysis throughout most of this chapter, specializing to

the N = 4 theory only when absolutely necessary. Of course, one might worry about the

validity of perturbation theory in the asymptotically free theories since one cannot simply

24
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set the coupling to be small as in the N = 4 theory. Because we are studying the theories

on a compact manifold, though, the size provides us with a dimensionful scale that can

be adjusted independently of ΛQCD. In particular, perturbation theory is reliable when

the radius R of the S3 is sufficiently small that RΛQCD � 1. Moreover, it is natural to

conjecture that the transition we shall find in this regime continues, upon varying RΛQCD,

to the usual flat space confinement/deconfinement transition at RΛQCD � 11.

Most of this chapter will thus be devoted to a systematic study of free Yang-

Mills theories on S3 coupled to adjoint matter following [6]. For simplicity we shall focus

primarily on U(N) theories, though the generalization to the SU(N) theories is not difficult

and should be clear from our analysis. We shall begin with a toy example that illustrates

the main ideas and then proceed to demonstrate that it is dominated at low temperatures

by a confined phase with a Hagedorn growth in the density of states. This analysis will

depend crucially on the assumption of infinite N and consequently will not be suitable

for a study of the deconfined phase. To go further, we will then demonstrate, using two

different approaches, that the thermal partition function of free Yang-Mills theories on S3 is

effectively computed by a unitary matrix model. This will permit a more detailed analysis

of the transition point and provide a framework for studying the effects of a small nonzero

coupling.

We finally note that much of the material in this chapter appeared before the

publication of [6] in a beautiful paper written by B Sundborg [34] of which we became

aware only after [6] was completed. A phase transition of the sort that we shall discuss was

also studied in a specific example in [35].
1See [33] for a review of this system.
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3.1 Confinement in a Free Theory?

To begin our study, we first address the important issue of how confinement can

possibly occur in a free gauge theory. After all, one normally associates confinement with

strong coupling dynamics which are obviously absent in theories without interactions. In

the case of Yang-Mills theories on compact spaces such as S3, though, there is a sense

in which confinement comes for free. What drives this is the Gauss law constraint, which

restricts the space of physical states to those which are gauge invariant2. Roughly speaking,

this is required by the fact that field lines for a single gluon, for instance, have nowhere to

end on the S3. From the path integral point of view, one can see this more directly, as we

will later on, by noting that the restriction to gauge singlets is imposed by integrating over

the constant mode of the component of the gauge field along the Euclidean time circle, A0
3.

In some sense, then, the theory is always confined since nonsinglet states can never

appear. As a result, we expect the free energy cost of adding a classical charge to be infinite,

leading to vanishing of the Polyakov loop at all temperatures. Nonetheless, we shall see

deconfinement in two ways. First, above the critical temperature the free energy will scale

as N2 at large N , indicating that the system indeed behaves as though there are roughly

O(N2) degrees of freedom. Second, we will find that there is a sense in which the Polyakov

loop is nonzero at high temperatures.
2Note that the situation differs from that of flat space because here one cannot define asymptotic gauge

invariant single gluon states by adiabatically turning off the coupling. Consequently, one is restricted to
singlet combinations even at infinitesimal coupling. Of course, if one starts with a free theory then there is a
choice as to whether or not to impose this condition. The two possibilities correspond to the gY M → 0 limit

of the U(N) and U(1)N2
theories. We wish to focus on the former and consequently impose the constraint.

3Note that this mode is nonnormalizeable in theories on noncompact spaces so in such cases it is not
integrated over.



Chapter 3: Deconfinement Transition in Yang-Mills Theories on S3 27

3.1.1 A toy model of two matrices

To demonstrate how application of the Gauss law impacts the thermodynamics,

we turn now to a simple toy system, namely free quantum mechanics of two U(N) adjoint-

valued fields A and B of unit mass. We can think of these fields as corresponding to the

constant modes of two scalars of the N = 4 theory on S3 with mass arising from the

usual coupling Rφ2 of scalars to the background curvature that is required for conformal

invariance. With this in mind, we impose the constraint that physical states in our model

must be singlets under the U(N) gauge group.

Because this system is simply a pair of matrix-valued harmonic oscillators, the

states are enumerated by the Fock space associated to two N × N matrices of creation

operators, A† and B†. Physical states then correspond to those that are created by gauge-

invariant combinations of A† and B†. There is another way to think about the state space

that provides a more useful language in our study of of gauge theories, though. In particular,

note that the various combinations of creation operators are trivially in one-to-one corre-

spondence with local operators formed from the fields A and B. That this is true is hardly

surprising since our toy model, by virtue of being a theory of noninteracting scalar fields

with the appropriate Rφ2 couplings, is itself conformal. As a result, this correspondence is

nothing more than the usual state-operator map.

State-Operator Map

Because we shall make extensive use of it later, we pause now to say a few brief

words about the state-operator correspondence in conformal field theories and, specifically,

in the systems of interest to us. The basic idea is that, in the path integral, the effect of

boundary conditions associated to a particular state on an initial value surface are com-

pletely captured by the insertion of a local operator in a conformally equivalent formulation.
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The example most familiar in string theory is that of two-dimensional conformal field theory

on a cylinder S1×R with the R direction identified with time. There, one associates states

of the CFT with boundary conditions on the circles in the far past and far future. This

system can be conformally mapped to the complex plane in such a manner that constant

spatial slices are mapped to circles of increasing radius centered at the origin. In particular,

the circle in the infinite past gets mapped to the origin itself so that, roughly speaking, all

information regarding the boundary conditions there determine a local operator insertion.

Moreover, because the time coordinate on the cylinder is mapped to the radial direction

on the complex plane, energies of states correspond to scaling dimensions of operators.

The situation for the four-dimensional conformal theories that we shall study is completely

analagous, with quantization along the ”cylindrical” S3 × R being conformally mapped to

radial quantization on R4. A state on the S3 in the infinite past with energy E is mapped

to the origin in R4 where it is identified with a local operator of scaling dimension E.

Hagedorn Growth and Confinement in the Strict N = ∞ Limit

We now return to our toy model and describe some basic features of the ther-

modynamics at large N , postponing a precise treatment to the next section. In the strict

N = ∞ limit, this system is particularly easy to study since all gauge invariant operators

can be written uniquely as polynomials of single trace operators. Because of this, we can

think of single (multi) trace operators as single (multi) particle states in a Bose gas. The

full partition function can then be constructed from that of single trace operators using

simple Bose statistics.

A single trace operator of energy E is specified by a string of E fields, each of which

can be either an A or a B. Because of the cyclicity property of the trace, though, we must

impose a series of relations on these strings that cut down the number which correspond to
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distinct operators. In particular, a given string of E operators will be identified with up to

E − 1 others. From these considerations, we obtain the following upper and lower bounds

on the number n(E) of single trace operators at energy E

2E

E
< n(E) < 2E (3.1)

With this result alone, we can already say quite a lot about the thermodynamics.

In particular, we note that the spectrum of single trace states exhibits the Hagedorn growth

that we anticipated in section 2.44

ρ(E) ∼ EαeβHE (3.2)

where βH = ln 2 and α is a constant that we have not determined. The finite

temperature partition function for single trace states can be computed directly from this

and is perfectly well-behaved for sufficiently small temperatures. Due to the exponential

growth in the density of states, though, this partition function, and hence the full multi-trace

partition function as well, diverges for temperatures larger than β−1
H .

How are we to interpret this structure? Because we have implicitly assumed strictly

infinite N throughout this discussion, the free energy at low temperatures, which is finite

in this limit, must scale as N0 at large N . Consequently, we see that the gauge invariance

constraint has led to the expected confining behavior at least at low temperatures. More

interestingly, though, the divergence of the partition function caused by the Hagedorn

growth should be associated with diverging N -dependence and hence suggests that the free

energy scales as a positive power of N at high temperatures.

We can understand this roughly as follows. The importance of the infinite N

limit was our ability to write gauge invariant operators as polynomials of single traces of
4Hagedorn-like behavior in free large N systems has also been observed in [36].
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arbitrary length. At finite N , however, the number of gauge-invariant degrees of freedom

of the two fields is of order N2 5 and consequently there are a finite number of independent

operators that one can write down. In the language of traces, this cut down in the number

of operators arises from nontrivial relations between polynomials of traces of varying degree.

For instance, single traces with more than N2 fields can be written as polynomials of traces

of fewer fields. The effect of this is to render our polynomial basis of single trace operators

vastly overcomplete. Our method thus leads to significant overcounting that drives the

divergence at β−1
H . Unfortunately, there is no clear choice of complete polynomial basis at

finite N which permits us to construct the full partition function from a simpler one over

a reduced sector of ”single-particle” states. Consequently, we will have to be a bit more

clever in order to see the deconfined phase explicitly. We will demonstrate how to do this

in the next section.

3.2 Partition Function of the Free Theory I – Counting

We now move on to study free theories with more general adjoint matter content.

Provided the scalars are conformally coupled, we can use the state-operator correspondence

as in the previous section to formulate the computation of the thermal partition function

as a constrained counting problem. The basic ”letters” which form the building blocks of

operators and play the role of A and B in our toy model consist of the fields themselves, φ,

as well as derivatives of fields, ∂kφ, modulo combinations that vanish by the equations of

motion. A convenient way of packaging the information related to matter content is with

the ”letter” partition functions
5One might think that since there are N eigenvalues the number of gauge invariant degrees of freedom

scales like N . Note, however, that we do not assume the two fields to be commuting so it is impossible to
simultaneously diagonalize them both.
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z(x) =
∑
letters

x∆ (3.3)

where x = e−β and ∆ is the scaling dimension of each letter. For instance, in

the N = 4 SYM theory, the full letter partition function z(x) receives contributions from

scalar, fermion, and gauge field letters. The partition functions zS(x), zF (x), and zV (x)

corresponding to these three contributions are easy to compute. This is done in appendix

A with the result

zS =
x(1 + x)
(1− x)3

zF (x) =
4x3/2

(1− x)3
zV (x) =

x2(6− 2x)
(1− x)3

(3.4)

As we shall now demonstrate, the full partition function can be expressed, both in

the strict infinite N limit as well as the more general case of finite N in terms of the total

letter partition function, z(x). In particular, it is only through z(x) that model-specific

information enters into the problem. Interestingly, the qualitative structure will depend

only on generic properties of z(x) so we will not find it necessary to restrict to the N = 4

theory at any point in this analysis.

3.2.1 Partition Function at N = ∞

We begin by reconsidering the strict infinite N limit, this time in a bit more detail.

For simplicity, we also restrict ourselves to bosonic fields for now. As in the previous section,

we expect in this limit to compute the full partition function from that of the single-trace

sector through the application of Bose statistics. The partition function Zk of single-trace

states built from k letters is naively given by the kth power of the letter partition function.

However, as we have seen before, one must also impose relations arising from cyclicity of

the trace. This implies that Zk takes the form
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Zk =
z(x)k

k
+ . . . (3.5)

where the contributions that we have neglected are positive. For now, let us be

a bit naive and simply drop these additional terms entirely. In this case, the single trace

partition function can be written as

ZST =
∞∑

k=1

Zk = − ln (1− z(x)) (3.6)

and consequently the full partition function takes the form

Z(x) = exp

{ ∞∑
n=1

1
n

ZST (xn)

}

= exp

{ ∞∑
n=1

1
n

ln (1− z(xn))

} (3.7)

To study the behavior of Z(x), we note that the letter partition function z(x)

increases monotonically with x starting from z(0) = 0. This implies that for sufficiently

small x, corresponding to sufficiently small temperatures, the partition function Z(x) is

well-behaved, even at infinite N . This is the confined phase.

At the critical value xH satisfying z(xH) = 1, though, we see that the partition

function diverges at infinite N , signaling the likely onset of deconfinement as discussed in

the previous section. The divergence of the single-trace partition function is proportional

to − ln(β − βH) which is a hallmark of exponential growth in the density of states

ρST (E) ∼ eβHE (3.8)

Note that, for the two matrix example of the previous section, z(x) = 2x so that

xH = 1/2. This corresponds to βH = ln 2 as we saw there.
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Of course, we have neglected the impact of the cyclic property of the trace in the

analysis above. To include this, we need to do a more careful counting of single-trace states.

This can be accomplished using Polya theory, as demonstrated in the appendix A. Here,

we simply quote the result that the actual single-trace partition function takes the form

ZST = −
∞∑

q=1

ϕ(q)
q

ln (1− z(xq)) (3.9)

with ϕ(q) the Euler totient function yielding the number of positive integers which

are relatively prime to and not larger than q. Using this result, it is straightforward to obtain

the exact expression for the full partition function

Z = exp

{
−

∞∑
n=1

ln (1− z(xn))

}
(3.10)

which differs from the naive result (3.7) only in the disappearance of a factor of

n−1 in the summand. Taking care to impose trace cyclicity thus has very little effect on

the qualitative structure of this partition function below the critical temperature at which

it diverges. Indeed, the Hagedorn temperature itself even continues to be determined by

the equation z(xH) = 1.

Before concluding this subsection, we note that it is straightforward to include

fermi fields into the analysis above. The result of doing this is simply the replacement [6]

z(xk) → zB(xk) + (−1)k+1zF (xk) (3.11)

in equation (3.10) where zB (zF ) is the bosonic (fermionic) letter partition function.

3.2.2 Exact Partition Function

As discussed at the end of section 3.1.1, we will need more sophisticated analysis

in order to directly probe the deconfined phase where the leading free energy scales with



Chapter 3: Deconfinement Transition in Yang-Mills Theories on S3 34

N2. For this reason, we drop our attempts to reformulate the counting problem as one of

Bose statistics and instead attack the counting of gauge invariant states as a group theory

problem. In particular, we wish to sum over all series of letters weighted by the number of

ways in which a given series can be combined to form a gauge singlet. Schematically, this

can be written as

Z(x) =
∞∑

n1=0

xn1E1

∞∑
n2=0

xn2E2 . . . {#of singlets in symn1(R1)⊗ symn2(R2)⊗ . . .} (3.12)

where Ri is the representation in which the ith letter transforms and symni(Ri)

denotes the ni-fold symmetric tensor product of the representation Ri. Determining the

number of singlets that appear in a given tensor product is a purely group theoretical

question so one might hope that a general answer is simple to obtain. Indeed, this is easily

done using group characters, which we now briefly review.

Group Characters

Given a group G and a representation R, the character χR(U) evaluated on the

element U of G is simply the trace of U in the representation R. Among the various

properties of χR(U) are the useful relations

χR1⊕R2 = χR1 + χR2 χR1⊗R2 = χR1 · χR2 (3.13)

as well as the orthogonality property

∫
dU χ∗R1

(U)χR2(U) = δR1R2 (3.14)

where R1 and R2 are irreducible representations and dU denotes the Haar mea-

sure normalized so that the group volume is unity. Consider now the tensor product rep-
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resentation R1 ⊗ R2 ⊗ . . . which decomposes into irreducible representations according to

R′
1 ⊕ R′

2 ⊕ . . .. Using (3.13), (3.14), the the fact that the character χ1(U) of the singlet

representation is 1 for all U , we see that integrating the character of the tensor product

over the group manifold yields the result

∫
dU χR1⊗R2⊗...(U) =

∫
dU χR′1⊕R′2⊕...(U)

=
∫

dU χ∗1(U)
(
χR′1

(U) + χR′2
(U) + . . .

)
=
∑

i

δ1,R′i

(3.15)

This is nothing more than the number of singlets that appear in the tensor product.

We thus see that the group theoretic factor we seek is nothing more than a character integral.

For this result to be useful, though, we wish to find a simple expression for the character

of the n-fold symmetric tensor product of a given representation R. Letting UR denote

the matrix representation of the element U in the representation R, this character can be

written as

χsymn(R)(U) = (UR)a1

{a1
. . . (UR)an

an} (3.16)

where the curly braces { } denote symmetrization of indices with unit weight.

Fortunately, the object that will arise in our analysis is actually a generating function of

such characters, for which a simple formulae is easy to obtain. Indeed, if we define

G+(U, t) =
1
π

dim(R) ∫
dφ exp

{
−φ̄φ + tφ̄URφ

}
(3.17)

for φ a complex bosonic variable in the representation R, then it is easy to verify

the following by expanding the integrand in powers of t
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G+(U, t) =
∞∑

n=0

tnχsymn(R)(U) (3.18)

The integral in G+(U, t) is Gaussian, though, so can be evaluated directly

G±(U, t) = (det(1∓ tUR))−1

= exp {−tr ln (1− tUR)}
(3.19)

Expanding in t we thus finally arrive at the result

∞∑
n=0

tnχsymn(R)(U) = exp

{ ∞∑
`=1

t`

`
χR(U `)

}
(3.20)

It is a simple manner to repeat this procedure for antisymmetric tensor products

to obtain the analagous result [6]

∞∑
n=0

tnχantin(R)(U) = exp

{ ∞∑
`=1

(−1)`+1t`

`
χR(U `)

}
(3.21)

Exact Result as a Unitary Matrix Model

Let us return now to the expression (3.12), which we rewrite using group characters

as

Z(x) =
∫

dU

[∏
i

(∑
ni

xniEiχsymni (Ri)(U)

)]
(3.22)

where as usual we include only bosonic fields for simplicity. Using the result (3.20)

we can rewrite this as

Z(x) =
∫

dU exp

{∑
i

∞∑
`=1

x`Ei

`
χR(U `)

}
(3.23)
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We now specialize to the case of adjoint matter so that the character χR(U) can

be written in terms of traces in the fundamental as

χR=Adj(U) = tr (U)tr (U †) (3.24)

Using this and the definition (3.3) of the letter partition functions we can finally

write (3.23)

Z(x) =
∫

dU exp

{ ∞∑
`=1

z(x`)
`

tr (U `)tr (U−`)

}
(3.25)

As usual, it is not difficult to generalize this to include the possibility of fermionic

letters. The resulting expression is identical to (3.25) with the replacement (3.11).

We have thus demonstrated that the exact partition function of a free conformally

invariant Yang-Mills theory with generic adjoint matter content is equivalent to a unitary

matrix model. A direct analysis of (3.25) should be able to reproduce the Hagedorn growth

at low temperatures as well as permit a direct study of the deconfined phase at high tem-

peratures. The meaning of the matrix U here, though, is quite unclear as it was introduced

as an auxiliary object to faciliate the computation of group theoretical factors. Before pro-

ceeding to analyze this matrix model in detail, we digress for a moment to derive it directly

from the path integral point of view. This will make clear the physical interpretation of

U as well as provide a framework with which we can extend our analysis to theories with

small nonzero coupling.

3.3 Partition Function of the Free Theory II – Path Integral

We now seek to study the thermal partition function of free U(N) Yang-Mills

theories coupled to adjoint matter from the path integral point of view. This is accomplished
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by considering the Euclidean path integral on S3×S1
β where the radius of the S3 is denoted

by R and the circumference of the thermal circle is the inverse temperature. We shall find

it convenient to instead rescale the entire system so that the S3 has unit radius and the

thermal circle has circumference given by the dimensionless inverse temperature β = 1/RT .

3.3.1 Partition Function as an Integral over a Single Matrix?

Our goal is to reproduce the unitary matrix model (3.25) from this approach.

While the equivalence of the partition function of a four-dimensional field theory to an

integral over a single unitary matrix may seem surprising at first glance, it is actually

quite easy to see how it occurs from a quick perusal of the mode spectrum. Because the

theory is free, the action contains a collection of noninteracting modes corresponding to

various eigenfunctions of the Laplace operator. The scalar fields, for instance, admit a

decomposition into S3 scalar spherical harmonics. As mentioned in appendix A, these

transform in representations (k/2, k/2) of the isometry group SU(2)×SU(2) = SO(4) and

have eigenvalue k(k + 2). Combined with the unit mass that arises from the conformal

coupling Rφ2 of scalars to the sphere’s curvature, the energies of these modes are given by

(k + 1)2 for integer k ≥ 0. The key point here is that all of the scalar modes are massive.

Similar arguments apply for the fermions, which can be expanded in spinor spher-

ical harmonics, and gauge fields, whose components can be expanded in combinations of

vector and scalar spherical harmonics. Studying the spectrum in each case, we find that all

modes in the problem are massive except for exactly one, namely the constant mode α of

A0

α =
1

Vol(S3 × S1)

∮
S3

∮
S1

A0 (3.26)

We actually knew that something like this had to be the case from the state-
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operator map since a massless mode would have corresponded to an operator of scaling

dimension zero. There are no such operators other than the identity operator, which is

identified with the vacuum, so all modes should be massive.

This presents us with a slightly different puzzle, then. Since the state-operator

map suggests that all states are massive how do we interpret the massless mode α? As we

have hinted at before, α plays a rather special role from the path integral point of view

in that performing the integral over this mode precisely enforces the Gauss law constraint

that drives all of the interesting physics. Let us see this in a bit of detail.

The Gauss Law Constraint

Consider pulling the integral over α outside of the others in the path integral.

We would naively like to perform a gauge transformation within the remaining integral

to remove this mode so that the integral over α can be performed trivially. This can be

accomplished with a gauge transformation generated by

Uα(t) = eiαt (3.27)

since

α → Uα(t)αU †
α(t)− i [∂tUα(t)]U †

α(t) = 0 (3.28)

In addition to removing the zero mode from A0, though, this gauge transformation

shifts the boundary conditions in the path integral from periodic along β to

Aµ(t = 0) = Aα
µ(t = β) (3.29)

where Aα
µ denotes the image of Aµ under the constant unitary rotation generated

by
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Uα,β = eiβα (3.30)

Integrating over α now corresponds to integrating over boundary conditions for the

gauge fields twisted by gauge transformations of this type. This amounts to a projection onto

invariant states and hence is responsible for imposing the constraint that only configurations

that are invariant under global U(N)-transformations contribute to the path integral6. It

is now clear why there is no operator corresponding to α in the counting arguments of

the previous section. When we impose this constraint on physical states, we have already

implicitly integrated over α.

Form of the Matrix Integral

Since we have seen that the spectrum of the free theory on S3 is gapped, it is

sensible to integrate all of the massive modes in order to obtain an effective action Seff(α)

for the massless one. Before actually computing this action, wow much can we say about

its from simply from the constraints of gauge invariance?

We first note that Seff(α) should be invariant under constant U(N) rotations. This

implies that the action should depend only on the eigenvalues of α, which we can now take

to be diagonal. In addition, because they don’t mix α with other modes of the gauge field,

the effective action should also be invariant under gauge transformations of the form

V (t) = eitD (3.31)

for D a diagonal matrix with eigenvalues that must be integer multiples of 2π/β to

guarantee single-valuedness on the thermal circle. This individually shifts the eigenvalues
6Note that this is enough to completely account for the Gauss law constraint that we imposed on local

operators at zero coupling.
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of α and consequently implies that α appears in Seff(α) only through the quantity

U = eiβα (3.32)

Finally, the action should also be invariant under gauge transformations of the

form

V ′(t) = eiθt/β (3.33)

which are single-valued by virtue of the fact that eiθ belongs to the center of U(N).

Since the effect of this is an arbitrary constant shift of all eigenvalues of α, Invariance under

V ′(t) implies that U may only appear in combinations for which the total power of U is

equivalent to the total power of U † as in

tr (Un1) . . . tr (Unk)tr (U−n1−...−nk) (3.34)

Of course, all of the arguments that we made above apply to the full path integral

so we expect that the integration measure of the model obtained after integrating out the

massive modes is simply the Haar measure of U(N). We have thus found that the effective

theory for the dynamics of α must take the form of a unitary matrix model whose form is

somewhat constrained. Not surprisingly, the resulting model in the free theory will turn

out to be (3.25) with the matrix U identified with α as in (3.32).

3.3.2 Deriving the Matrix Model

We now proceed to integrate out the massive modes of the free theory to directly

obtain an effective action for α (3.26). This corresponds to a 1-loop computation in the

weakly coupled theory that can be supplemented by higher loop contributions later if we
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wish to consider the effects of interactions. For simplicity, we shall specialize to pure U(N)

Yang-Mills theory with no matter fields. The generalization to theories with adjoint matter

will then be straightforward.

Gauge Fixing and the Measure

Our first task is to choose a suitable gauge in which to perform the computation.

Because of the natural splitting of space, S3, and time, S1, a convenient choice is provided

by Coulomb gauge

∂iA
i = 0 (3.35)

where i runs over the three S3 directions. This choice fixed the gauge freedom only

partially, though, as it leaves unfixed gauge transformations that are spatially independent

but time dependent. We fix this residual gauge-invariance with the further condition

∂t

∮
S3

A0 = 0 (3.36)

This has the effect of eliminating all spatially constant modes of A0 except for the

zero mode α.

As usual, when we impose the gauge fixing conditions (3.35) and (3.36), we pick

up Fadeev-Popov determinant factors. That associated to (3.35) is given by

∆1 = det ′ (∂iDi

)
(3.37)

where Di denotes a gauge covariant derivative along one of the spatial S3 directions

and the prime on the determinant indicates that zero modes are omitted. In the free theory,

Di is simply ∂i so this is nothing more than
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∆1 = det ′ (∂i∂
i
)

(3.38)

When we turn on interactions, the full covariant derivative will become important

and it will be necessary to introduce Fadeev-Popov ghosts to facilitate the computation of

∆1.

The determinant associated to the second condition, (3.36), will turn out to be a

bit more interesting. It takes the form

∆2 = det ′ (∂0 − i[α, ∗]) (3.39)

where the prime on the determinant again indicates that zero modes are omitted.

Letting λi denote the eigenvalues of α, we can evaluate this determinant explicitly as follows

∆2 =
∏
n6=0

∏
i,j

[
2πin

β
− i (λi − λj)

]

=

∏
m6=0

2πim

β

∏
i,j

2
β(λi − λj)

sin
(

β (λi − λj)
2

) (3.40)

To see the importance of this, recall that the measure for integrating over the

eigenvalues of a Hermitian matrix is

dα =
∏
k

dλk

∏
i<j

(λi − λj)
2 (3.41)

while the measure for integrating over the eigenvalues eiβλi of the unitary matrix

U (3.32) is

dU =
∏
k

dλk

∏
i<j

sin2

(
β(λi − λj)

2

)
(3.42)
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Consequently, up to an overrall constant the Fadeev-Popov determinant (3.40) has

the effect of converting the Hermitian integration over α (3.26) to unitary integration over

U (3.32)

dα ∆2 = dU (3.43)

This natural emergence of unitary measure is quite encouraging.

The Effective Action Seff(U)

Now that we have gauge-fixed the path integral, let us turn to its evaluation. In

Coulomb gauge, the path integral of the free Yang-Mills theory takes a particularly simple

form

Z =
∫

dU DAi DA0 δ
(
∂iA

i
)

∆1 exp
{
−
∫

tr
(

1
2
Ai

(
D̃2

0 + ∂2
)

Ai +
1
2
A0∂

2A0

)}
(3.44)

where

D̃0 = ∂0 − i[α, ∗] (3.45)

To proceed further, we note that any vector field on the sphere may be decomposed

as

Ai = ∂iφ + Bi (3.46)

where ∂iB
i = 0. Integration over the scalar piece, φ, can be done using the

δ-function. In the process, we pick up a determinant factor

det ′ (∂i∂
i
)−1/2 (3.47)
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Performing the integral over A0 yields an equivalent factor so that these two com-

bine to cancel the determinant from ∆1. In the end, we are thus left with

Z =
∫

dU dBi exp
{
−1

2

∫
tr
(
Bi

(
D̃2

0 + ∂2
)

Bi
)}

=
∫

dU exp {−Seff(U)}
(3.48)

where Seff(U) is computed by performing the Gaussian integration over Bi. The

result of this is

Seff(U) =
1
2

ln det
(
−D̃2

0 − ∂2
)

=
1
2

∑
∆

n(∆) ln det
(
−D̃2

0 + ∆2
) (3.49)

where ∆2 are the eigenvalues of the Laplace operator acting on vector spherical

harmonics and n(∆) is the corresponding degeneracy. The above functional determinant is

straightforward to compute by passing to momentum space

Seff(U) = det
U(N)

[ ∞∏
n=−∞

(
4π2n2

β2
+

4πn

β
α + α2 + ∆2

)]
(3.50)

The above product is similar to those that appear when studying harmonic oscil-

lators and is hence straightforward to evaluate [6]. The result is given by

∞∏
n=−∞

(
4π2n2

β2
+

4πn

β
α + α2 + ∆2

)
= N eβ∆

(
1− e−β∆U

)(
1− e−β∆U−1

)
(3.51)

where N is a divergent β-dependent constant that we set to unity in order to

correctly reproduce the free energy of the harmonic oscillator at α = 0. Using this result,

we can write Seff(U) as
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Seff(U) =
1
2

∑
∆

n(∆)tr
(
β∆ + ln

(
1− e−β∆U

)(
1− e−β∆U−1

))
(3.52)

We now drop the U -independent β∆ term, which contributes a Casimir energy

that we shall neglect, and expand the logarithms. Passing from the adjoint representation

to the fundamental via (3.24) and using the definition (3.3) we finally obtain the result

Seff(U) = −
∞∑

n=1

zV (xn)
n

tr (Un)tr (U−n) (3.53)

which is precisely the matrix model (3.25) that we derived before by completely

different means. It is now straightforward to include adjoint matter fields and demonstrate

that in these cases the matrix models agree as well.

3.4 The Unitary Matrix Model – A Heuristic Analysis

Now that we have demonstrated the equivalence of the thermal partition function

of our free Yang-Mills theory with the unitary matrix model (3.25) in two different ways,

we turn to a direct study of the model with particular attention to its phase structure. The

analysis of this section will be somewhat heuristic as we seek to demonstrate the existence

of a large N phase transition and study its general behavior. Some technical details that

are not immediately necessary for what we want to say are relegated to appendix B.

To study the matrix model (3.25) at large N , we first write it as an integral over

eigenvalues αi which take values on a circle of unit radius

Z =
∫ ∏

k

dαk

∏
i<j

sin2

(
αi − αj

2

)
exp

∑
n

∑
i,j

1
n

z(xn)
(
ein(αi−αj)

) (3.54)
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At large N , there are enough eigenvalues that we can describe any given con-

figuration by a density function ρ(α) on the circle. Choosing this function to have unit

norm

∫
dα ρ(α) = 1 (3.55)

we see that its Fourier moments correspond precisely to the normalized traces

ρn =
∫

ρ(α)einα =
1
N

tr (U) (3.56)

To approximate the matrix integral (3.25) at large N , we now replace sums over

eigenvalues with integrals weighted by the density function ρ. Because the action contains

N2 terms at large N , we can effectively treat the model as a functional integral over ρ of

the form [6]7

Z =
∫

Dρ exp

{
−N2

∞∑
n=1

1
n

(1− z(xn)) |ρn|2
}

(3.57)

where the ”1” in the sum arises from exponentiating the unitary measure and

expanding the logarithm. Roughly speaking, what we have now is a model with infinitely

many modes ρn of with mass m2
n = 1−z(xn). Recalling the general fact that z(x) increases

monotonically from 0 at x = 0, we see that for x less than the critical point xH defined by

z(xH) = 1 all modes are massive and hence the dominant configuration is given by a density

with all nonzero ρn vanishing. This is simply a uniform distribution of eigenvalues on the

circle. Since the action evaluates to zero on this configuration, the leading contribution to

the free energy arises from the 1-loop determinant associated to integrating out the ρn and

scales as N0 at large N

7The Jacobian associated with changing variables from the eigenvalues αi to the moments ρn of ρ appears
to be irrelevant at all orders in the 1/N expansion [37].
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lnZ ∼
∑

n

− ln [1− z(xn)] (3.58)

This is precisely the low temperature result that we obtained from operator count-

ing (3.10).

For x larger than xH , the mode ρ1 becomes tachyonic and is driven away from zero.

One might think that it is actually driven all the way to infinity but this isn’t quite right

because the allowed configuration space for the ρn is complicated by the normalization

constraint (3.55) and the requirement that ρ(α), as a density, must be positive definite.

These conditions impose complicated relations among the various ρn’s as well as limit how

large any individual moment can become. Since ρ1 is the only tachyonic mode near xH ,

it is reasonable to expect that it rolls to the boundary of the allowed configuration space.

However, the particular point on the boundary to which it rolls depends on these relations

and in general will have nonzero expectation values for the higher moments as well. Indeed,

as described in appendix B one can actually obtain an explicit expression for the saddle

point density very near the critical point x− xH � 1 and see explicitly that it is clumped

in the sense that it vanishes over a finite region on the S1. It follows that the density here

must receive contributions from infinitely many modes.

All of these complications aside, we see that ρ1 is driven to a nonzero value for

x > xH and hence the action evaluated on the saddle point no longer vanishes. The leading

contribution to the free energy thus scales as N2 at large N , indicating that there are

effectively N2 degrees of freedom, and the theory is said to be deconfined. Moreover, we see

that ρ1 is a natural order parameter for the transition from confined to deconfined phase as

it seems to vanish at low temperatures and become nonzero above the critical point x = xH .

Thanks to our path integral derivation of the matrix model, we can in fact identify this

order parameter with the usual one for deconfinement, namely the normalized Polyakov
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Figure 3.1: LG Effective Potential V (ρ1) in the Free Theory

loop.

The qualitative structure of the phase transition should be captured by a Landau-

Ginzburg effective potential for the order parameter ρ1. This is easily obtained from the

matrix model by replacing the heavy modes with a simple upper limit on the magnitude of

ρ1. The resulting potential is purely quadratic

VLG(ρ1) = m2|ρ1|2 m2 = 1− z(x) (3.59)

and is depicted in figure 3.1. While this is indicative of a first order phase transi-

tion, the potential (3.59) is completely flat at the critical point so an infinitesimal correction

can potentially raise the order. In this sense, the transition in the free theory is ”weakly”

first order and may lift to higher order when the coupling is turned on. We will discuss this

more in the next section.

Before concluding our present analysis, though, we pause to discuss a subtle issue

regarding the order parameter, ρ1. While it is true that its magnitude has a nonzero

expectation value in the deconfined phase, ρ1 itself actually vanishes due to the fact that

we must average over its phase, which is completely unconstrained by the effective action
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due to a global U(1) symmetry. This is analagous to the vanishing that we saw at strong

coupling in section 2.4.1 and reflects the fact that the theory is always confined in some

sense due to compactness of the space.

The problem here is similar to one which arises in the study of ferromagnets in

the absence of an external field. In this case, if one measures the expectation value of the

spin, the result vanishes because the average must include both the configuration with all

spins up and that with all spins down. To define an order parameter sharply in this case,

we can consider measuring the spin in the presence of a small field, which selects a preferred

direction, that we slowly turn off. This avoids a trivial cancellation and renders the spin

expectation value sensitive to order within the system.

We can do something analagous here, namely introduce a small deformation that

breaks the U(1) symmetry and take the limit in which it goes to zero. An extra term in the

action of the form tr (U) + tr (U−1), for instance, will do the trick by selecting a preferred

location on the circle for the eigenvalues to clump. It is this sense in which the Polyakov

loop becomes a good order parameter for the confinement/deconfinement transition in this

theory.

3.5 The Phase Transition at Weak Coupling

We saw above that the degenerate nature of the effective potential near the crit-

ical point implies that perturbative effects can potentially lift the order. This can have

a dramatic impact on the phase diagram and consequently it is important to extend our

analysis to weakly coupled theories. The most natural framework for doing this is the path

interal approach of section 3.3. To determine the impact of a small nonzero coupling on

the effective action Seff(U), we need only include higher loop contributions that arise when
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integrating out the massive modes.

3.5.1 Corrections to VLG

The form of the effective action obtained in this manner is not only constrained

by the considerations of section 3.3.1 but also by the structure of perturbation theory

itself. In particular, diagrams that occur at order λk−1 have at most k + 1 index loops and

consequently terms with at most k + 1 independent traces can be generated. To order λ2,

then, the most general form of the effective action is given by

Seff(ρn) = N2

[∑
n

m2
n(x)|ρn|2 + λ

∑
m,n

Fm,n(x) (ρmρnρ−n−m + cc)

+λ2
∑

m,n,p

Fm,n,p(x) (ρmρnρpρ−m−n−p + cc) + . . .

] (3.60)

where mn and Fm,n may acquire a dependence on λ. From this it is straightforward

to obtain the corrected LG effective potential relevant for describing physics near the critical

point by integrating out the modes ρn>1 that are heavy there. To order λ, the resulting

potential continues to be quadratic but at order λ2 a quartic term may be generated. To see

this explicitly, note that the terms of (3.60) that contribute to VLG to order λ2 are simply

Seff(ρn) = m2
1|ρ1|2 + m2

2|ρ2|2 + λI
(
ρ−2ρ

2
1 + ρ2ρ

2
−1

)
+ λ2A|ρ1|4 + . . . (3.61)

Integrating out ρ2 from the above we obtain the corrected LG effective potential

VLG(ρ1) = m2
1|ρ1|2 + b|ρ1|4 (3.62)

where
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Figure 3.2: Effective Potential if b > 0 at various values of T .

b = λ2

(
A− I2

m2
2

)
(3.63)

3.5.2 Implications for the Phase Structure

The phase structure described by the LG effective potential (3.62) is highly depen-

dent on the sign of b at the critical temperature TH = − lnxH where ρ1 becomes massless.

Before addressing the computation of this sign, we first describe the qualitative features of

both possible scenarios.

Case 1 – b > 0

In this scenario, the system undergoes a second order phase transition at TH

to a new phase that, as T is increased further, moves toward the boundary of the ρ1

configuration space. Upon reaching the boundary, we expect another phase transition that,

as demonstrated explicitly in appendix B, is of third order8. A depiction of the effective

potential in this case is presented in figure 3.2.

If this scenario is realized in the N = 4 theory, it would have striking implications
8Polyakov loops associated to larger representations of U(N) can be useful for distinguishing the two

phases of this transition [38]



Chapter 3: Deconfinement Transition in Yang-Mills Theories on S3 53

Hagedorn

HagedornPHASE II

PHASE III

R

PHASE I

λ

T

Log(E)

= Log(T)

−Log(dS/dE)

Phase I

Hagedorn 

Phase III

Phase II

Figure 3.3: Conjectured phase diagram for the N = 4 theory if b > 0. Phase I is the
confined phase at T < TH , phase II the new phase which emerges for T just beyond TH ,
and phase III the phase in which ρ1 sits at the boundary of its configuration space. The
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the ”big” black hole.

for the phase structure of the full theory. Among other things, it predicts the existence of a

third phase intermediate between the confined and deconfined phases that we are inclined

to associate with the graviton gas and ”big” black hole at strong coupling. A conjectured

phase diagram that represents the simplest possible connection of the weak and strong

coupling regimes in this scenario is depicted in figure 3.3. Notice that we are forced to

include a tricritical point at a finite value of the ’t Hooft coupling, λ, beyond which the

intermediate phase ceases to exist. For comparison with figure 2.1, we also include in figure

3.3 a conjectured plot of lnT as a function of lnE at weak coupling.

Case 2 – b < 0

In this scenario, the system undergoes a first order phase transition at a tempera-

ture Tc less than TH . Intermediate between the minima at the origin and the boundary of

the ρ1 configuration space is a maximum corresponding to a thermodynamically unstable

phase. A depiction of the effective potential in this case is presented in figure 3.4.

The qualitative structure of this scenario is quite similar to what we saw in the
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Figure 3.4: Effective Potential if b < 0 at various values of T

N = 4 theory at strong coupling. It thus seems most likely that this is the situation realized

by N = 4 SYM at weak coupling. The simplest possible connection of the weak and strong

coupling regimes in this scenario is obtained by simply continuing the Hawking-Page transi-

tion line down to λ = 0, where it is directly identified with the confinement/deconfinement

transition studied in this chapter. A phase diagram depicted this behavior is presented in

figure 3.5. In that figure we also plot lnT as a function of ln E for this scenario. Comparing

this to figure 2.1, it is natural to conjecture that the unstable phase in this scenario is

smoothly connected to the small black hole phase at strong coupling.

3.5.3 Determining the sign of b

Since we are unaware of any physical principle which selects one scenario over the

other, it is necessary to embark on a perturbation computation of the parameter b in order

to determine which is realized in a given theory. Unfortunately, we see from equations (3.61)

and (3.63) that a three-loop calculation is required so our task is far from easy. Things are

complicated even further by the fact that placing the theory on an S3 adds a host of new

technical challenges.

In pure Yang-Mills theory without matter, this computation has been performed
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in [7] with the result that, at the critical point of the free theory

b = −5.7× 10−4 (3.64)

As a result, we see that the phase transition in this model remains of first order

at small nonzero coupling. Unfortunately, extending the calculation to the N = 4 SYM

theory is a difficult task that has not yet been addressed. Thus, the nature of the phase

structure of this theory at weak coupling remains unknown, though we repeat again that a

first order transition there seems most likely.

3.6 Summary

In this chapter, we have seen that the thermodynamics of free large N Yang-Mills

theories on S3 exhibit all of the qualitative features that we anticipated in section 2.4. Due

to the Gauss law constraint, these theories are confined at low temperatures with a free

energy of order 1 and vanishing Polyakov loop. The spectrum exhibits a Hagedorn growth



Chapter 3: Deconfinement Transition in Yang-Mills Theories on S3 56

in the density of states which culminates in a phase transition at the Hagedorn temperature

TH . The high temperature phase is deconfined with free energy of order N 2 and Polyakov

loop nonvanishing in an appropriate sense. The phase transition is of first order and is most

naturally identified, in the context of the N = 4 theory, directly with the Hawking-Page

transition at strong coupling.

As one moves from zero to small coupling, though, the degenerate nature of the

phase transition in the free theory is such that perturbative effects can lift the order. We

have presented two scenarios for the structure that may emerge in the weak coupling regime

though others, in which the quartic term in (3.62) vanishes, are possible. To distinguish

among the possibilities, a perturbative computation is required. For pure Yang-Mills theory

in the absence of additional matter fields, this calculation has been done [7] with the result

that the phase transition there continues to be of first order as one turns on the coupling.

It is natural to conjecture that this is true in the N = 4 theory as well but one cannot be

sure until the analagous calculation is done for this case.

We finally complete our study of this first system by noting that it is quite re-

markable that a free gauge theory realizes such a nontrivial phase structure.



Chapter 4

Black Hole/Black String Phase

Transitions

We now move on to the second topic of this thesis, namely Gregory-Laflamme

(GL) black hole-black string transitions and their gauge theory duals. In this chapter, we

will give a brief introduction to the GL transition, which has been a subject of intensive

study in the GR community for a number of years, and review some of the recent results. As

our primary interest lies elsewhere, this discussion will not be extensive and the interested

reader is referred to B Kol’s excellent review [39]. We will then discuss a setup in which

GL transitions arise in type II SUGRA, where a gauge theory dual can be realized. The

implications of GL physics on the gauge theory are briefly discussed with details postponed

to the following chapter.

57
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4.1 Black Holes, Black Strings, and the GL Instability

4.1.1 Gravity in d > 4 – Some new players

One of the reasons for the significant interest in higher dimensional gravity is the

existence of an increasingly large variety of ”black” objects of different types. Indeed, the

restrictive uniqueness theorems [40, 41, 42, 43, 44] that exist in four dimensions break down

for d > 4, where exotic objects such as black rings [45] and black branes [10] can be found.

The existence of this multitude of objects implies the possibility of a rich phase structure

that we wish to probe both from the point of view of gravity as well as that of the dual

gauge theory where one exists.

In the present context, we shall focus our attention on what is arguably the sim-

plest setup with exotic ”black” objects, namely five-dimensional gravity with one direction

compactified on a circle of radius R. What sort of interesting solutions might we find here?

To start, let us look for solutions with radius R much smaller than the inverse ADM mass,

M−1. In this regime, our setup is not so different from 4-dimensional gravity in flat space

where the well-known uniqueness theorem permits only one solution, the Schwarzschild

black hole [40, 41]:

ds2
Sch = −f(r) dt2 + f−1(r) dr2 + r2dΩ2

3 (4.1)

where

f(r) = 1−
(r0

r

)
(4.2)

and the Schwarzshild radius, r0, is related to the mass, M , by

r0 = 2G(4)M (4.3)
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As a result, we expect our five-dimensional solution to approach (4.1) in the large

4-dimensions as R → 0. Moreover, when R � r0, we expect the horizon, which has

characteristic size r0, to wrap completely around the circle. Such solutions, which have

horizon topology S1×S2, are generally termed black strings. In this case, the black string’s

nontrivial horizon topology is supported by the existence of a compact cycle in the geometry

that it can wrap. Such an object should not be confused with the recently discovered five-

dimensional black ring solutions, which have nontrivial horizon topology supported instead

by a pair of angular momenta [45].

It is easy to write down a solution describing a black string wrapping the S1 as

the product of (4.1) with S1 does the trick

ds2
UBS = ds2

Sch + R2 dθ2 (4.4)

This solution exists for all radii, R, and is referred to as a uniform black string

due to its preservation of translational symmetry along the S1. In addition to this, one

might also hope to find analagous nonuniform black string solutions which break translation

symmetry along the S1. While this seems unlikely at small radius due to four-dimensional

uniqueness theorems, it is quite plausible that such solutions emerge at larger radii. Writing

analytic expressions for a nonuniform black string is a very difficult enterprise, but numerical

techniques have been developed to study them. See for instance [46, 47, 48].

While black strings are the only solutions that we expect at small radius, what

new solutions might emerge as we increase the radius? If we instead take R much larger

than the inverse ADM mass, our setup now looks similar to 5-dimensional gravity in flat

space, where we expect to find the 5-dimensional analog of the Schwarzschild black hole

(4.2). In flat space, this solution is easy to write down
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ds2
Sch = −f(ρ) dt2 + f−1(ρ) dρ2 + ρ2dΩ2

3 (4.5)

where

f(ρ) = 1−
(

ρ0

ρ

)2

(4.6)

and the five-dimensional Schwarzschild radius, ρ0, is related to the mass, M , by

ρ0 =

√
8G(5)M

3π
(4.7)

While (4.5) is not compatible with periodic boundary conditions along one of the

spatial directions, it is natural to expect that for R � r0 a suitable deformation of (4.5)

can be found that yields a solution with horizon localized around a point on the S1. We

will follow B Kol and refer to solutions such as this as ”caged” black holes. While it has

proven very difficult to obtain analytic expressions for caged black hole metrics, there has

been a great deal of progress in both analytical [49, 50, 51, 52] and numerical techniques to

study them [53, 54, 55, 56].

In five dimensions, this exhausts the set of solutions without charge or angular

momentum that have been found or conjectured to date and it is unlikely that others exist.

Black hole uniqueness theorems in four dimensions suggest that any new solutions in five-

dimensional gravity on a circle will be rather mundane and Schwarzschild-like in the four

large dimensions with only variations of behavior along the S1 distinguishing the various

possibilities. Here, the possibilities are that the horizon is localized or wrapped on the

circle, corresponding to ”caged” black holes and black strings as we have seen.
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4.1.2 A Transition in the Microcanonical Ensemble

With the increased number of nontrivial solutions, the possibility exists for an

interesting and nontrivial phase structure in 5-dimensional gravity on a circle. Indeed, at

small radii the uniform black string is entropoically favored by virtue of being the only

solution. On the other hand, it seems reasonable to expect that the caged black hole

becomes favored at larger radii due to the tendency of matter to ”clump” up in gravitational

systems. We can see this somewhat more explicitly by comparing their entropies. Defining

the dimensionless parameter µ by

µ =
G(5)M

R2
(4.8)

and using the fact that G(4) ∼ G(5)/R, we can write the uniform black string

entropy as

SUBS ∼ µ2 (4.9)

On the other hand, if we use the horizon of five-dimensional Schwarzschild (4.5)

as an approximation to that of the caged black hole, we find that its entropy is roughly

SBH ∼ µ3/2 (4.10)

Consequently, the uniform black string is favored at small radii, corresponding to

large µ, while for large radii it becomes entropically favorable for the string to ”clump”

on the circle, forming a caged black hole. Assuming that these are the only solutions that

ever maximize the entropy, this signals the existence of a transition in the microcanonical

ensemble at a critical value µ = µc separating regions where the uniform black string and

caged black hole dominate the thermodynamics. Determining the location of the critical



Chapter 4: Black Hole/Black String Phase Transitions 62

point precisely is quite difficult, though, since near µ = µc ∼ 1 the approximation of the

caged black hole horizon as that of five-dimensional Schwarzschild isn’t expected to work

very well. Instead, a numerical constricution of the caged black hole metric is required and

this is not a trivial task.

So is it impossible to learn anything precise about the phase diagram without

appealing to complicated numerics? The answer to this is essentially yes with one notable

exception. One might expect the uniform black string to develop a tachyonic mode at a

particular value µ = µGL and, since we have the uniform black string metric in hand, there

is no obvious obstacle to determining µGL. If the transition is of second or higher order, this

will accomplish a lot as µGL will coincide with the critical point. The possibility remains,

though, that the transition is of first order in which case µGL, if such a point even exists,

will not give any information about µc.

4.1.3 The Gregory-Laflamme Instability

The question of whether black strings develop perturbative instabilities is one that

was considered long ago by Gregory and Laflamme [57, 58], whose work served to stimu-

late the subsequent research into the phase structure of higher dimensional gravity. They

found that infinitely long black strings, corresponding to the R → ∞ limit of our present

considerations, are indeed perturbatively unstable. Moreover, this instability persists for

sufficiently large but finite R. We now briefly review these results.

To study metric perturbations in the black string geometry we begin by writing

the perturbation as

δgMN = hMN M,N = 0 . . . 4 (4.11)

Requiring the equations of motion to be satisfied at leading order is equivalent to
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requiring that hMN satisfy the Lichnerowicz equation

∆̃(5)
L hMN =

(
δA
MδB

N∇C∇C + 2RM
A

N
B
)
hAB = 0 (4.12)

where ∆̃(5)
L is the five-dimensional Lorentzian Lichnerowicz operator, for which we

have given an explicit expression in the transverse-traceless de Donder gauge hM
M = 0 =

hM
N ;M . To look for instabilities, one searches for solutions to (4.12) that grow exponentially

in time and are well-behaved both at infinity and at the future event horizon. The solu-

tions must also be physical perturbations, rather than gauge artifacts. In the de Donder

gauge, some residual gauge freedom remains and can be used to show that perturbations

annihilated by ∆̃L are unphysical.

It is straightforward to verify, following Gregory and Laflamme, that there are no

unstable metric perturbations of the form hµ5 or h55, where µ = 0 . . . 3. As a result, we

will focus our attention on perturbations of the form hµν , namely tensor perturbations from

the 4-dimensional point of view. Adding the assumption of three-dimensional rotational

invariance, this leads to the s-wave ansatz of Gregory and Laflamme

hµν(r, φ, t) = eΩteikφHµν(r) (4.13)

where r, φ are as in (4.4), k denotes the inverse wavelength of the perturbation

along the compact S1, and Hµν(r) is rotationally invariant. Plugging this in to the Lich-

nerowicz equation, we find the following

(
∆̃(4)

L + k2
)

Hµν(r, 0, t) = 0 (4.14)

where ∆̃(4)
L is the four-dimensional Lorentzian Lichnerowicz operator. Our prob-

lem has thus been reduced to finding eigenfunctions of ∆̃(4)
L that satisfy the appropriate
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boundary conditions. Henceforth, we will refer to eigenfunctions with Ω < 0 (Ω > 0) as

(un)stable solutions since the corresponding metric perturbation is (un)stable.

Had we been dealing with noncompact black strings, say in flat 4 + 1-dimensional

space, all values of k would be allowed and the question of stability would be equivalent

to determining whether any unstable solutions to (4.14) exist. For the black string on S1,

though, the wave numbers k of perturbations along the length of the string are quantized

in units of the inverse radius. Thus, the question of stability here is whether any unstable

solutions exist that ”fit” inside the S1. In other words, the black string will become unstable

only when there exists an unstable solution to (4.14) at k = 2πn/R for some integer n.

Carrying out this program directly, namely determining those values of k for which unstable

eigenfunctions exist, is in general a difficult task but can be done [57, 58]. Instead of

proceeding along these lines, though, we follow [59] to argue that the existence of instabilities

is connected with a well-known fact about Schwarzschild black holes.

To start, we first note a few elementary facts. Since the black string is stable for

small radii, solutions to (4.14) for sufficiently large k are necessarily stable. As the radius is

increased, we expect an unstable mode to appear and, given our picture of the black string

”clumping” along the circle, it is natural to assume that this instability will have maximal

wavelength along the S1. The two anti-nodes of this perturbation will then correspond to

the regions of maximal and minimal clumping. Since increasing the radius is equivalent to

decreasing the minimum wave number that can ”fit” in the S1, our picture suggests that

(4.14) admits unstable solutions for k less than a critical value kGL while all solutions with

a larger value of k are necessarily stable. What is of interest, then, is determining the

critical value kGL separating the unstable and stable regimes. Precisely at the point kGL,

we expect to find what [59] terms a threshold unstable mode, namely a time-independent

mode having Ω = 0. If we can determine when this solution exists, we will obtain the
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critical wave number kGL that signals the onset of perturbative instability.

Looking for time-independent solutions to (4.14) is not a new problem, though.

In particular, using the fact that H
(Ω=0)
µν is time-independent and rotationally invariant, we

can easily Wick rotate the equation (4.14), obtaining

∆(4)
L H(Ω=0)

µν (r) = −λ2H(Ω=0)
µν (r) (4.15)

where ∆(4)
L is the four-dimensional Euclidean Lichnerowicz operator. This equa-

tion is familiar, though, as it arises when studying the thermodynamics of 4-dimensional

Schwarzschild black holes! To see this note that, in the Euclidean path integral approach

to quantum gravity at finite temperature, expanding the Euclidean action IE to quadratic

order in perturbations Hµν about a saddle point gµν , such as 4-dimensional Schwarzschild,

yields

IE → IE +
∫

d4x
√

gHµν∆(4)
L Hµν (4.16)

The eigenvalues of ∆(4)
L give the ”masses” of various perturbations with negative

eigenvalues corresponding to tachyonic modes that trigger thermodynamic instability. What

we need for our threshold unstable mode, though, is precisely (the Wick rotation of) an

eigenfunction with negative eigenvalue so we see that the question of classical instability of

our black string is intimately related to the question of thermodynamic instability of the

4-dimensional Schwarzschild black hole. A relation of roughly this sort was first conjectured

by Gubser and Mitra [60, 61] and we will have more to say about it later.

For now, we recall that the Schwarzschild black hole is well-known to be thermody-

namically unstable. For instance, it is trivial to compute the specific heat and demonstrate

that it is negative. This is already enough to permit the conclusion that a threshold unsta-

ble mode indeed exists and that the black string exhibits a classical instability at a critical
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radius.

More interestingly, the Schwarzschild instability from the Euclidean gravity point

of view has been studied previously by Gross, Perry, and Yaffe [62] who found that there

exists exactly one negative mode of the Euclidean Lichnerowicz operator with eigenvalue

−k2
GPY ≈ −

0.19
M2

(4.17)

in units where G(4) = 1. This corresponds to a critical wavenumber

kGL =
√

k2
GPY ≈

0.44
M

(4.18)

and agrees with the results obtained by Gregory and Laflamme [57, 58, 59]. From

this, we see conclude that there exist unstable modes with wavelengths longer than k−1
GL.

Such modes can ”fit” in the circle and trigger an instability provided

µ ≤ µGL =
MkGL

2π
≈ 0.07 (4.19)

We thus conclude that, for µ ≤ µc, the uniform black string wrapping S1 becomes

perturbatively unstable and is classically driven to a configuration of higher entropy.

The Gubser-Mitra Correlated Stability Conjecture

As noted above, the connection between existence of a classical Gregory-Laflamme

instability and existence of a thermodynamic instability of the 4-dimensional Euclidean

Schwarzschild black hole is not an accident. Rather, it is related to the following striking

conjecture of Gubser and Mitra:
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A noncompact black brane is classically stable if and only if

it is thermodynamically stable
(4.20)

Our previous analysis essentially ”proves” (4.20) for the case of noncompact black

strings, which inherit the thermodynamic instability of 4-dimensional Schwarzshild and suf-

fer from perturbatively unstable modes with k < kGL. We have also seen the necessity of

assuming noncompactness as the unstable modes persist for compact strings wrapping S1

only if they ”fit” in the circle. It is now useful to pause for a moment and recast our analysis

in a slightly different language that makes the connection between classical and thermo-

dynamic instsability even more transparent and easy to generalize [59]. Considering again

a static perturbation of the GL form, hmn = Hmn(r)eikφ, and expanding the Lorentzian

action to quadratic order we obtain

I → I +
∫

d5x
√

gHMN
(
−∆̃(4)

L − k2
)

HMN (4.21)

On the other hand, expanding the Euclidean action to quadratic order in the Wick

rotated perturbation yields

IE → IE +
∫

d5x
√

gHMN
(
∆(4)

L + k2
)

HMN (4.22)

As we have seen, the key point is that the eigenvalues of ∆(4)
L and ∆̃(4)

L agree

when acting on static HMN . Consequently, the absence of tachyonic modes in (4.21) is

equivalent to the absence of tachyonic modes in (4.22). On the other hand, if ∆(4)
L has

a negative eigenvalue, λ, then perturbations of the GL form are tachyonic modes of both

the Lorentzian and Euclidean actions for k2 < λ. Moreover, the perturbation with k2 = λ

satisfies the equations of motion that follow from (4.21) and hence corresponds to the



Chapter 4: Black Hole/Black String Phase Transitions 68

classical threshold unstable mode. This analysis can be easily extended to more general

examples, including branes of higher dimension and branes that carry charges [59, 63, 64].

Of course, what we have said is intended only to make the result (4.20) plausible

and is far from rigorous. To actually prove that (4.20) holds for a given example, there are

many issues that one must deal with. For instance, simply demonstrating that the existence

of a Euclidean tachyonic mode implies thermodynamic stability requires the construction

of a family of metrics near the brane solution along which one can locally vary. We refer

the reader to [64] for a discussion of the general requirements of proof1.

4.1.4 Horowitz-Maeda and the Nonuniform String

So far, we have argued that the uniform black string is stable at small radius,

develops a perturbative instability at a finite radius, and has lower entropy than the caged

black hole at large radius. It is then natural to conjecture, as Gregory and Laflamme did,

that the flow induced by triggering the perturbative instsability of the black string ends with

the caged black hole. This process is potentially interesting for a host of reasons, not the

least of which being that it involves a change in topology of the horizon. Understanding the

dynamics associated with ”pinching” of the horizon and the potential violation of cosmic

censorship that may occur are both interesting questions.

It was the study of precisely these questions by Horowitz and Maeda [70] that

stimulated a rethinking of this picture, which had been generally accepted for a number of

years. In particular, they proved on quite general grounds that any process during which

a horizon ”pinches” off cannot proceed in finite affine time. With this conclusion, they

then argued that the caged black hole could not be the endpoint of the Gregory-Laflamme
1There is a vast literature that studies the application of (4.20) to various systems [60, 61, 59, 65, 66, 67,

64, 68]. It should also be noted that at least one counterexample to (4.20) has been constructed [69] but we
will not review this here as the features apparently required to violate (4.20) do not appear in the examples
of interest to us.
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instability. This led them to conjecture an alternative possibility for the endpoint, namely

a nonuniform black string!

4.1.5 Conjectured Phase Structure of 5-Dimensional Gravity on S1

If we accept the existence of nonuniform black string solutions, how can they fit

with what we already know to form a consistent picture of the phase structure? It turns out

that we can actually say quite a bit given only a few simplifying assumptions. Our strategy

in this subsection will be to build a consistent phase diagram from the limited information at

hand by recalling that the various possible phases are associated with extrema of the entropy,

a single function of (infinitely) many variables. Requiring then that extrema appear and

disappear consistently will restrict the various possible phase structures [71]. The arguments

that follow are a simplification of those of Kol [71].

Instead of studying the entropy function on the full space of physical metrics, let

us assume for simplicity that one can construct an order parameter, λ, which distinguishes

all possible phases [71]. An order parameter of this sort can be realized explicitly near the

uniform black string solution, where it roughly parametrizes nonuniformity. We won’t need

any details of its construction or extension beyond this neighborhood other than the fact

that one can take λ ≥ 0 with λ = 0 corresponding to the uniform black string.

In general, the dynamics of λ can be determined from an effective Landau-Ginzburg

potential V (µ, λ) which, in this case, arises roughly from thinking of −S as a function of λ

and µ. The various phases that exist at fixed µ correspond to extrema of V with respect

to λ, with the global minimum determining the dominant phase.

For large µ, we have seen that the uniform black string is the only solution so

the potential must have a single minimum at λ = 0 there. As we decrease µ, the form

of V will change and new extrema will appear. We already know of one place this occurs,
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namely the GL point µGL where the uniform black string becomes unstable and merges with

the branch of nonuniform black string solutions. As µ decreases through µGL, consistency

requires that such a merger must either consist of the annihilation of a previously existing

unstable solution or the nucleation of a new stable solution. Both of these possibilities can

be seen in figures 4.1 and 4.2.

We now make the minimal assumption that the only other relevant phase is the

caged black hole, which we expect to be stable whenever it exists. A new minimum of

V such as this, though, can only arise from ”pair production”, in which a maximum and

minimum appear simultaneously, or by ”rolling in from infinity”, a possibility that we

neglect as unlikely. If the nonuniform black string that emerges from the GL point is

unstable, the simplest possibility then is that it merges with the caged black hole at a

critical value µc > µGL. If the nonuniform black string is stable the simplest possibility is

again a merger. However, the fact that two minima cannot annihilate without the existence

of additional extrema requires that this merger actually take the form of a smooth crossover

to the caged black bole.

By assuming that V is as simple as possible while remaining consistent with all

previously known information, we have thus arrived at two possible phase diagrams. In

the first, the caged black hole and nonuniform string solutions are stable and unstable,

respectively, and emerge simultaneously at a critical point µc > µGL. Decreasing µ from µc,

the nonuniform string merges with the uniform string at the Gregory-Laflamme point, µGL.

Because the caged black hole has a higher entropy than the uniform black string, we see

that the system undergoes a first order phase transition at µc before the Gregory-Laflamme

point is even reached. It is not difficult to write an effective potential that realizes this

qualitative structure
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Figure 4.1: Qualitative behavior of an effective potential, V , exhibiting a first order black
string/black hole phase transition

V (µ, λ) =
1
2

(µ− µGL) λ2 − 1
2
√

µc − µGLλ4 + λ6 (4.23)

We depict the evolution of this potential for decreasing µ in figure 4.1. Note that

the λ6 term is necessary to avoid having runaway directions.

The second possibility is that the uniform black string remains the only solution

for µ > µGL, with a stable nonuniform black string emerging there. As µ is decreased,

this solution then ”merges” smoothly into the stable caged black hole. One example of an

effective potential that realizes this qualitative structure is

V (µ, λ) =
1
2

(µ− µGL) λ2 + λ4 (4.24)

and its evolution for decreasing µ is depicted in figure 4.2.

While we have assumed that the entropy can be thought of as a function of a single

variable, λ, the above argument captures the essential features of the more general one in
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Figure 4.2: Qualitative behavior of an effective potential, V , exhibiting a second order
uniform/nonuniform string phase transition. The nonuniform phase is expected to crossover
smoothly to the caged black hole for sufficiently small µ.

[71], which arrives at precisely this picture. The key input was the trivial observation that,

for functions of one variable, new maxima and minima only arise in maximum/minimum

pairs. This can be easily generalized, using Morse theory, to restrict the appearance of new

extrema in a multivariate function and leads essentially to the same conclusion.

Which of the two possible phase structures that we have suggested is more likely?

A key difference between them is the mass at which the caged black hole becomes a viable

solution. The existence of the caged black hole for µ > µGL is consistent with the picture

of a first order transition while failure of this existence is consistent with the picture of

a second order one. Since µ is related to the Schwarzschild radius ρ0 of five-dimensional

Schwarzschild by

µ =
(ρ0

R

)2
(4.25)

the result (4.19) for µGL implies that, at the GL critical point

ρ0 < R (4.26)
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This suggests that the black hole should be able to ”fit” in the circle for a range

of µ > µGL and hence that the qualitative structure of figure 4.1 accurately captures the

physics of the system in question. We thus arrive at the prediction that a uniform black

string in 5-dimensions on S1 undergoes a first order phase transition to the caged black hole

at a critical value µc > µGL
2.

It is amusing to note that the simplified picture we have used above, with the

phase structure being determined by an effective potential for a single order parameter, is

precisely that which arose when we studied the gauge theory dual of the Hawking-Page

transition. Moreover, in the next chapter we will see that it arises again when studying the

gauge theory dual of a black string/black hole transition.

4.1.6 Brief Summary of Numerical Evidence

How can one attempt to verify the above predictions for the phase structure? A

natural place to begin is with the order of the phase transition, which can be studied in the

neighborhood of the uniform black string solution. The key question here is whether the

entropy increases or decreases as one moves along the nonuniform branch. This has been

studied by Gubser [46] and Wiseman [47], who numerically constructed the nonuniform

branch near the GL point and found evidence in support of a first order phase transition.

The predicted phase diagram contained even more information than this, though,

including the instability of the entire nonuniform string branch as well as the existence of a

critical point at which the nonuniform black string and black hole branches merge. A great

deal of work has been invested in the construction of uniform black string [46, 47, 48] and

caged black hole solutions [53, 54, 55, 56] and, in the case of six dimensions, Kudoh and
2This prediction also applies for black strings in D dimensions for sufficiently small D. One can show

that µGL increases with dimension as
√

D [72] so that eventually it is reached before the caged black hole
exists. Approximating the horizon size by 5-dimensional Schwarzschild gives a critical dimension of D = 12.5
[72, 73] while numerical studies show the actual critical dimension to be D = 13.5 [74]
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Wiseman have completed the full phase diagram [56], which is in excellent agreement with

Kol’s picture presented above [71]. In the case of five dimensions, the supporting evidence

is also quite strong [56].

The techniques required to perform such detailed studies of the phase structure are

quite intricate and we do not attempt to discuss them here. Instead, we refer the interested

reader to the original papers and the review [39].

4.1.7 Summary

Let us now summarize, for clarity, what we have learned about the phase structure

of 5-dimensional gravity on an S1 of radius R. There are three sorts of black solution, namely

the uniform black string, nonuniform black string, and caged black hole. At large mass

µ � 1, only the uniform black string solution exists. As the mass is decreased to µ = µc,

the nonuniform black string and caged black hole solutions emerge. The uniform black string

and caged black hole are both stable solutions here, but the caged black hole has higher

entropy and the system undergoes a first order phase transition. As µ is decreased further to

µ = µGL, the uniform black string develops a perturbative instability of wavelength R that

connects to the nonuniform black string branch. While we haven’t mentioned it explicitly,

the uniform black string develops additional instabilities of higher wavelength, from which

increasingly nonuniform string branches emerge, as µ is decreased further. None of these

new solutions are relevant for the thermodynamics, though, so we can safely ignore them.

In what follows, we will be interested in higher dimensional examples, specifically

ten-dimensional gravity with one compact direction since it is there that one can easily make

connection with gauge theories. As the discussion of section 4.1.5 was quite general, we will

assume the picture that emerged there carries over to these higher-dimensional systems as

well. There have been studies of uncharged black strings which indicate that for D ≤ 13
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(12) dimensions the nonuniform string branch emerging at the GL point has lower entropy

(higher free energy) than the uniform branch [74, 75]. As a result, the qualitative picture

described above is expected to capture the essential physics of both the microcanonical and

canonical ensembles. Beyond this, however, no numerical data is currently available for

D > 6 so, while there is supporting evidence that the basic structure remains the same, for

clarity we remind the reader that this is presently an assumption.

Finally, we conclude this brief review of GL physics with a puzzle. Where did the

arguments of Horowitz and Maeda [70], which led them to conjecture a second order phase

transition to a stable nonuniform string, go wrong? This question is not easily answered

and in fact, to the best of my knowledge, remains currently unsolved.

4.2 Black String/Black Hole Phase Transitions in SUGRA

We now seek to determine whether GL structure persists in systems that readily

admit gauge theory duals and, if so, how one might use the techniques of gauge theory to

probe it. As mentioned above, we will move from five to ten dimensions since there a Yang-

Mills description will be easy to obtain. In particular, we will find, perhaps surprisingly,

that the physics of uncharged black strings in ten dimensions can be directly connected,

via a short chain of boosts and dualities, with wrapped D1-branes, whose near-horizon

physics is captured by the maximally supersymmetric Yang-Mills theory in two-dimensions

[1, 76]. Our discussion of this roughly follows that of [77], which built on the earlier works

[78, 79, 80]. More general studies that relate GL instabilities of p-branes to the phase

structure of Yang-Mills theories in 1 + p-dimensions can be found in [81, 64].
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4.2.1 From Uncharged String to Wrapped D1-Brane

The ten-dimensional analog of the compact uniform five-dimensional black string

is a simple generalization of (4.4)

ds2 = −f(r)dτ2 + f−1(r) dr2 + r2 dΩ2
7 + dy2 (4.27)

where

f(r) = 1− r6
0

r6
y = y + L̄ (4.28)

As before, the family of strings is conveniently parametrized by a dimensionless

mass, µ

µ =
G(10)M

L̄7
∼ r6

0

L̄6
(4.29)

As this parameter is varied, we expect to find a GL instability analagous to that

discussed in the 5-dimensional case at a critical value of order unity

µGL ∼ O(1) (4.30)

corresponding to the Schwarzshild radius being of the same order as the circle size

(r0)GL ∼ L̄ (4.31)

We would now like to map the instability and corresponding nontrivial phase

structure of (4.27) to one of the familiar p-brane type solutions of type II SUGRA since

their near-horizon physics admit Yang-Mills descriptions. To do this, we must first address

the fact that the p-branes carry charge, something our uniform string solution (4.27) lacks.
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To proceed, we adopt a ”charging up” technique for generating charged solutions from

uncharged ones based on the equivalence of KK momentum in circle compactifications and

dimensionally-reduced gauge field charge. We will make use of the most common example of

this, namely the relation between momentum along the M -theory 11th circle and D0-brane

charge.

The basic procedure now consists of three steps. First, we uplift the solution (4.27)

to 11-dimensions, where it will describe an uncharged membrane solution of 11-dimensional

SUGRA. We then boost this membrane along the 11th circle, generating KK momentum.

Finally, we reduce back to 10-dimensions along the 11th circle, whereby the KK momentum

descends to D0-brane charge. The uplift of (4.27) is trivial

ds2
11 = −f(r)dτ2 + f−1(r) dr2 + r2 dΩ2

7 + dy2 + dx2 (4.32)

where x = x + L11. Performing the boost

τ

x

→

coshβ sinhβ

sinhβ coshβ


τ

y

 (4.33)

then yields the 11-dimensional solution

ds2
11,boost = −

(
f(r) cosh2 β − sin2 β

)
dτ2 − 2 (1− f(r)) cosh β sinhβ dτ dx

+
(
−f(r) sinh2 β + cosh2 β

)
dx2 + dy2 + f−1(r) dr2 + r2 dΩ2

7

(4.34)

Finally, reducing back to 10 dimensions along the x circle and converting to string

frame yields the metric

ds2
smeared D0 = −H−1/2(r, β)f(r) dτ2 + H1/2(r, β)

(
f−1(r) dr2 + dy2 + r2 dΩ2

7

)
(4.35)
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along with a nontrivial dilaton and 1-form gauge potential

e2φ = H3/2(r, β) Aτ = cothβ
(
H−1(r, β)− 1

)
(4.36)

where

H(r, β) = 1 +
r6
0 sinh2 β

r6
(4.37)

We immediately recognize this solution as that which describes the low energy

physics of non-extremal D0-branes smeared uniformly along the y-circle in type IIA theory.

While we have succeeded in mapping the 10-dimensional uniform black string

(4.27) to a familiar system, namely smeared D0-branes, what has happened to the nontrivial

phase structure? In particular, does (4.35) suffer from a GL instability? To answer this,

recall that onset of the instability is associated with the existence of a threshold unstable

mode which, among other things, is time-independent. It is trivial to see that the boost has

absolutely no effect on this mode and, consequently, the GL instability carries over to the

smeared D0-brane system [77, 64]. The form of the instability will be affected, of course, as

the boost will turn on components along the 11th circle which, upon reducing back to 10

dimensions, give rise to variations of the dilaton and 1-form as well as the metric. However,

the point at which the instability sets in does not change so that µGL for the uniform string

is identical to µGL for the smeared D0-brane system3.

For the phase structures to agree, though, we need a little more. It is not enough

that the GL points, at which the uniform and nonuniform branches merge, agree for both

systems. We also need the relative ordering of free energies to remain the same as this

fixes the order of the transition. While it is not immediately obvious that the uplift/boost
3Of course, throughout all of this we are assuming that the unstable modes remain normalizable. For

finite boosts, this is obviously the case. In fact, this is true also for infinite boosts provided the limit is taken
carefully [64].
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procedure utilized here preserves the order, it is at least plausible that this is the case. After

all, following the discussion of section 4.1.5, one expects that the two scenarios corresponding

to first and second order transitions can be distinguished by determining when, relative to

the GL point, the caged black hole can ”fit” inside the S1. It seems reasonable that the

boost doesn’t affect this size and consequently that the order of the phase transition is

preserved. That this is the case can also be checked explicitly in six dimensions [77],

where the nonuniform string and caged black hole branches have been constructed [47,

55, 56]. We will therefore assume that the smeared D0-brane solution (4.35) exhibits the

same qualitative phase structure as the original uniform black string (4.27) from this point

onward.

We now move to the final step in our chain of boosts and dualities, namely to

notice that a collection of D0-branes uniformly smeared along a circle in type IIA theory is

T -dual to a D1-brane wrapping the dual S1 in type IIB theory. This relation is manifested

in SUGRA by our ability to generate the nonextremal D1-solution from (4.35) using the

Buscher rules [82, 83]. Applying these rules, we obtain the usual metric, dilaton, and

two-form potential

ds2
D1 = −H−1/2(r, β)

[
f(r) dτ2 + dy2

]
+ H1/2(r, β)

(
f−1(r) dr2 + r2 dΩ2

7

)
(4.38)

e2φ = H(r, β) Aτy = cothβ
(
H−1(r, β)− 1

)
(4.39)

y = y + L (4.40)

To close this section, we remind the reader that, from the SUGRA point of view,

the solutions (4.35) and (4.38) do not necessarily describe the same physics. Rather, they



Chapter 4: Black Hole/Black String Phase Transitions 80

represent two different approximations to the low energy dynamics of the same physical

system provided we make the identifications

LL̄ = α′
gs

ḡs
=

√
L

L̄
(4.41)

where gs (ḡs) is the value of e−Φ at infinity for the D1-brane (smeared D0-brane)

solution. Note that the range of parameter space for which these approximations are valid is

not identical as, for instance, the D1-brane description breaks down due to the appearance

of string winding modes when L is small while the D0-brane description breaks down for

similar reasons when L̄ is small.

4.2.2 The Near Horizon Limit

So far, we have succeeded in mapping the GL instability of the 10-dimensional

compact uniform black string to an instability of the SUGRA approximation to a collec-

tion of D0-branes smeared on an S1. By T -duality, this is also an approximation to a

collection of D1-branes wrapping the S1, whose near horizon physics is completely cap-

tured by the gauge theory on their world volume, namely the maximally supersymmetric

1+1-dimensional Yang-Mills theory on S1. Any instability that appears in the low energy

SUGRA description should manifest itself in the gauge theory somehow provided, of course,

that it survives the near-horizon limit. Since the GL unstable modes decay exponentially

away from the horizon [57, 58], it is natural to expect that this is the case away from ex-

tremality [77]. One can explicitly verify this fact as well as demonstrate that the unstable

modes of (4.35) become marginal at extremality [64].

Let’s be a little more concrete about the near-horizon limit and resulting geome-

tries. What we would like to do is decouple the world-volume gauge theory from gravity in

the bulk while keeping the energy ε above extremality finite in order to preserve the non-
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trivial GL physics. Explicitly, this is accomplished for the D1-brane solution (4.38)-(4.39)

by taking

α′ → 0 r →∞ (4.42)

keeping fixed proper distances as measured at infinity, the coupling constant of

the gauge theory on the brane, and the energy above extremality

r/α′ g2
Y M = (2πα′)−1gs ε =

Ω8−p

16πG
r6
0 [7 + 6 sinh β (sinhβ − coshβ)] (4.43)

Defining a dimensionless ’t Hooft coupling constant λ′ by

λ′ = g2
Y MNL2 (4.44)

it is straightforward to write the resulting metric in gauge theory variables [76]

ds2 = α′


√

u6

d1λ′

[
−
(

1− u6
0

u6

)
dt2

L2
+

dθ2

(2π)2

]
+

√
d1λ′

u6

(
1− u6

0

u6

)−1

du2 + u−1
√

d1λ′ dΩ2
7


(4.45)

Here, the coordinate u is related to the original r by

u =
rL

α′
θ = θ + 1 (4.46)

the variable θ is periodic

θ = θ + 1 (4.47)

and the constants u0, d1 are given by
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u0 = 273π5

(
λ′

N

)2

ε d1 = 26π3 (4.48)

There is also a nonzero dilaton and 2-form field strength but we will not need

either.

The precise duality statement that we shall utilize is the equivalence of string

theory propagating in this background (4.45) and the maximally supersymmetric Yang-

Mills theory on the world-volume. Since the branes are not extremal, the dual gauge theory

has a nonzero vacuum energy and is most easily studied in the canonical ensemble at

finite temperature. As we mentioned briefly at the end of subsection 4.1.7, one expects the

qualitative phase structure of the canonical ensemble to resemble that of the microcanonical

ensemble4. For this reason, it is natural to parametrize the solutions not by µ, but rather

by a dimensionless temperature t

t = TL (4.49)

For the near-horizon solution (4.45) it is not difficult to see that t is is determined

according to

u2
0 =

16π5/2

3
t
√

λ′ (4.50)

From this, it is easy to determine the critical point tGL at which the instability

sets in. We simply need to recall that, for the uniform black string, it occurred for
4One might worry that the phase structure in the canonical ensemble may differ from that in the mi-

crocanonical ensemble. The discussion in section 4.1.5 was quite general, though, and can be applied to
thermodynamics controlled by the free energy, F , and dimensionless temperature, t, just as easily as it was
applied to thermodynamics controlled by the entropy, S, and dimensionless mass, µ. If we accept the two
phase structures elucidated there as the only possibilities, the only worry then is that the canonical ensemble
may exhibit second order behavior while the canonical ensemble exhibits first order behavior. While there
is evidence that this may occur in 13 dimensions, for D < 13 numerical evidence suggests otherwise [74, 75].



Chapter 4: Black Hole/Black String Phase Transitions 83

r0 ∼ L̄ =
α′

L
↔ u0 ∼ 1 (4.51)

Using (4.50), we see that this is equivalent to

tGL ∼
1√
λ′

(4.52)

The next question of importance is when SUGRA provides good approximation

in this background. Near the horizon, the solution (4.45) has characteristic length scale

` =
(

d1λ
′α′ 2

u2
0

)1/4

(4.53)

To ensure that α′ corrections are negligible, we must have ` �
√

α′, which is

equivalent to

t �
√

λ′ (4.54)

This is not the only sort of stringy correction that we must worry about, though.

For t sufficiently small, winding modes wrapping the S1 can potentially become light. The

mass of these modes is given roughly by

Mw ∼
(

u3
0

d1α′λ′

)1/4

(4.55)

Since there are negligible provided Mw` � 1, we see that winding modes can be

neglected for t such that

t � 1√
λ′

(4.56)
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Note that in order to simultaneously satisfy (4.54) and (4.56) one must have λ′ � 1

so that, as usual, the SUGRA regime corresponds to the limit of strong coupling in the dual

gauge theory.

The potential importance of winding modes at t ∼ λ′ −1/2 should not be very

surprising since we have already seen that this is precisely when the GL instability sets in.

In the T -dual D0-brane picture, the instability takes the form of momentum modes along

the S1. In the D1-brane picture, these are precisely the winding modes that are becoming

light.

While SUGRA in the D1-brane background doesn’t know how to deal with these

winding modes, the D0-brane picture does so it is to this that we turn in order to obtain

a gravity description for t <∼ λ′ −1/2. The quickest way to find the relevant geometry is

a simple application of the Buscher rules [82, 83] to the solution (4.45). This leads to the

metric

ds2 = α′

−
√

u6

d1λ′

(
1− u6

0

u6

)
dt2

L2
+

√
d1λ′

u6

[(
1− u6

0

u6

)−1

du2 + (2π)2 dθ̃2

]
+ u−1

√
d1λ′ dΩ2

7


(4.57)

along with a dilaton and RR field strength that we don’t bother to write down.

As before, the SUGRA approximation is valid when α′ corrections and winding modes are

negligible. The characteristic length scale near the horizon is again ` (4.53) so that α′

corrections are negligible provided

t �
√

λ′ (4.58)

Now, however, winding mode masses are given roughly by
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Mw ∼
(

d1λ
′

u6α′ 2

)1/4

(4.59)

so that the condition that they are negligible becomes

t � 1 (4.60)

In particular, we see that there is no problem describing the system near t ∼ λ′ −1/2

using SUGRA in the D0-brane picture.

Summary of the D1-brane system

To summarize, we have demonstrated that the GL instability of uniform 10-

dimensional compact black strings can be related to a similar instability of N nonextremal

D1-branes wrapping an S1 in otherwise flat space, for which the near horizon physics is

captured by maximally supersymmetric Yang-Mills theory on the worldvolume at finite

temperature. At high temperatures, corresponding to large circle size, the approximation

of SUGRA in the near-extremal D1-brane background is valid at strong coupling λ′ � 1.

This background has no clumping instability since it is physically impossible for D1-brane

charge to do so in SUGRA. One might naively think that a D1-brane wrapping a circle is

always stable for this reason but at smaller temperatures, corresponding to smaller circle

size, winding modes invalidate the SUGRA approximation. To proceed further, we T -

dualize to a collection of D0-branes smeared on the dual circle. The winding modes, which

SUGRA couldn’t describe in terms of black 1-branes, have become momentum modes in the

D0-brane picture. Moreover, these momentum modes destabilize the system at a critical

temperature, tGL, below which we expect the D0-brane charge to ”clump” on the circle.
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4.2.3 Implications for the dual gauge theory

What are the implications of GL physics for the gauge theory dual to our D1-

brane system? More specifically, how does the gauge theory ”know” about the distribution

of D0-brane charge?

The answer to this last question is remarkably simple once we recall the relation

between D0-branes and holonomies, WC , in the world volume theory:

WC = P exp i

∮
C

A (4.61)

In particular, the expectation value of WC is a unitary matrix whose eigenvalues

take the form eiα. The α are circle-valued and, when C is the spatial circle, correspond

to the locations of D0-branes on the dual circle. As with the N = 4 theory, we expect to

generate an effective potential for the holonomies, obtaining a unitary matrix model that

can be solved by saddle point techniques. What we are seeing here is that the eigenvalue

distributions which arise during the course of such a solution have a physical meaning in the

case of the spatial holonomy – it is telling us the distribution of D0-brane charge! The three

possibilities that we saw before, namely uniform, wavy, and clumped, correspond precisely

to the three sorts of D0-brane charge distributions that we expect to find.

It is thus quite clear how we can proceed to probe GL physics from the dual gauge

theory point of view. We need only determine the dominant spatial eigenvalue distributions

throughout the parameter space. This should permit us to map out the phase struture, at

least for the part of the parameter space where the gauge theory analysis can be carried

out, and find one of the two possibilities enumerated by Kol.

The only question that remains is what relevance the gauge theory analysis may

have for the phase structure of the 10-dimensional uniform black string. We saw that the
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GL point in that setup is identical to that of the D1-brane setup which we directly probe

via Yang-Mills theory. If the transition is of second order, this is where it will occur so the

critical points of the uncharged uniform string and D1-brane system agree. If instead it is

of first order, though, there is no reason to believe that the transition points are the same

and the agreement is simply qualitative.

It isn’t even obvious, though, that the order is preserved by the uplift/boost pro-

cedure. We have argued based on numerical analysis that the 10-dimensional uniform

string undergoes first order transitions in both the microcanonical and canonical ensembles

[74, 75]. However, the uplift/boost procedure could potentially disrupt the relative order-

ing of entropies and/or free energies of the various solutions, interchanging first and second

order scenarios. Where numerical constructions are available, namely in six dimensions,

one can argue that this doesn’t occur and that the phase structure of the charged string

obtained via uplifting/boosting is qualitatively identical to that of the uniform string. It

seems reasonable that these arguments will hold also in the ten-dimensional case but we

should be clear that this is an assumption. Later we will see, though, that this assumption

fits nicely with the gauge theory results.

Of course, when discussing the relevance of our gauge theory analysis for uniform

uncharged strings, it is also necessary to emphasize that, as usual, the gauge theory probes

a region of the full phase diagram complementary to that accessible to SUGRA analysis.

We can make simplifying assumptions concerning the manner in which the weak and strong

coupling regimes are connected and gain satisfaction if this can be done simply. However,

we simply cannot directly probe the SUGRA regime from perturbative gauge theory. For-

tunately, the gauge theory analysis of the next chapter will fit in nicely with everything

we’ve learned on the gravity side to form a consistent picture that is quite compelling.



Chapter 5

Yang-Mills Theories on Low

Dimensional Tori

In this final chapter, we seek to study the phase structure of the maximally su-

persymmetric Yang-Mills theory (SYM) on S1 at finite temperature, or Euclidean SYM on

T 2. As argued in the previous chapter, the strong coupling regime of this theory captures

the physics of Gregory-Laflamme (GL) black string/black hole phase transitions. As usual,

the standard methods of gauge theory analysis are unable to directly probe this structure

at strong coupling so we turn instead to the opposite limit. We shall see, however, that it

is difficult to use such techniques even throughout most of the weak coupling regime since

perturbative methods often break down there as well. Indeed, all of the interesting struc-

ture that exists at weak coupling is outside of the realm of perturbative control. Numerical

analysis will help us considerably by allowing a direct study of this structure for some of

the parameter space, including part of the phase transition line, but a systematic study of

even the full weak coupling regime is presently out of reach.

As in our study of the N = 4 theory on S3, where only limited information was

88
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available from weak and strong coupling, we will be forced to take what data we have and

make reasonable conjectures regarding the remainder of the phase diagram. Instead of

restricting only to the SYM theory in question, though, we will make up for our limited

data by increasing the sample size, so to speak. In particular, we will consider deformations

of the SYM theory as well as related bosonic models where more direct analysis can be

done and a feel for the physics obtained. We shall also enlarge the class of models that

we consider to include those of dimension less than 2. Strictly speaking this isn’t much

of an enlargement since the 0- and 1-dimensional theories describe the physics of the 2-

dimensional theory when cycles are small. We will treat them in their own right, though,

as they provide simple laboratories in which essential techniques can be developed.

We are thus led to undertake a systematic study of Yang-Mills theories on low

dimensional tori. We will follow roughly the structure of [84], beginning with the simple

models in low dimensions and working up from there. By the end, we will find a remarkably

rich phase structure of which the GL transition is an important piece.

5.1 Preliminaries

Before proceeding with our study, we first comment on some general features of the

analysis. As our eventual goal is to study theories with maximal supersymmetry, we shall

restrict ourselves to models with adjoint matter fields having the usual quartic couplings.

Occasionally we shall include masses as well in order to provide means of deformation to

regions of parameter space where the models become easier to analyze.

As we have seen already in the N = 4 theory, Wilson loops provide natural order

parameters which can be used to distinguish the various phases of Yang-Mills at finite

temperature. For the deconfinement transition studied in chapter 3, we argued on physical
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grounds that the two phases could be distinguished by the value of the Polyakov loop. That

this is the relevant object to study is also clear simply from a practical point of view, as it

captures the dynamics of the only light degree of freedom in the problem.

Similarly, we will focus on the light degrees of freedom in our study of Yang-Mills

theories on tori. These technically include not only constant modes of the gauge field, but

also those of the scalars since there is no curvature to give make them massive as happened

on S3. The dynamics of the scalar field zero modes turns out to be quite boring, though, as

their eigenvalue distributions are always clumped. Had this not been the case, one would

have worried about convergence issues since the scalar eigenvalues can take arbitrary real

values, as opposed to the gauge field eigenvalues which are circle-valued.

We thus focus our attention primarily on the dynamics of gauge field zero modes.

Unlike what we saw on S3, each component of the gauge field will have such modes here,

the dynamics of which are captured by Wilson loops about nontrivial cycles of the torus.

Since we limit our considerations to tori of dimension d ≤ 2, we will have up to two

such Wilson loops, U and V , and can use the corresponding eigenvalue distributions to

distinguish among the various possible phases. We will be a bit sloppy in this discussion

and enumerate the possibilities according to whether tr (U) and tr (V ) vanish or not. What

makes this a bit crude is that it does not make a distinction between the nonuniform and

clumped distributions, for both of which the trace of the corresponding holonomy is nonzero.

However, we shall see that if nonuniform phases exist in the theories under study, it is likely

over only very small parameter ranges so this simplification is acceptable to describe the

bulk of the phase diagram.

For Yang-Mills theories on S1, there is a single holonomy tr (U) which, provided

the fermions have appropriate boundary conditions, we can think of as the Polyakov loop

associated to a 0+1-dimensional gauged quantum mechanics system at finite temperature.
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The phases with tr (U) vanishing and nonvanishing are interpreted as the usual confined and

deconfined phases of this system. Of course, we are being sloppy here since the quantity that

takes values zero and nonzero at large N is actually N−2tr (U). Throughout this chapter,

we will not write the N−2 explicitly though its presence is implied.

For Yang-Mills theories on T 2, there are two holonomies and consequently four

possible phases. We will always consider fermion boundary conditions that permit one

of the cycles to be thought of as a thermal circle so the corresponding holonomy, V , has

the interpretation of a Polyakov loop that distinguishes between confined and deconfined

phases of 1+1-dimensional quantum mechanics on a circle. The interpretation of the spatial

holonomy, U , is similar in the sense that, as happens with V , a nonzero expectation value

of U spontaneously breaks a global symmetry. In the case of confinement transitions, the

symmetry is a ZN arising from gauge transformations that are not periodic around the

thermal circle. Spontaneous breaking of this ZN by a nonzero expectation value of the

Polyakov loop tr (V ) is a standard signal of deconfinement. While we cannot use the words

confinement and deconfinement to describe the physics associated to the spatial holonomy,

U , a nonzero expectation value of tr (U) indeed spontaneously breaks an analagous ZN

symmetry that arises from nonperiodic gauge transformations about the spatial circle.

For the maximally supersymmetric theories, the phases discussed above are con-

nected with those of the gravity duals as we have discussed in detail already. When an S1

is identified as a thermal circle, the eigenvalue distribution of the corresponding holonomy

indicates the presence or absence of a horizon in analogy to the discussion in 2.4.1. On the

other hand, when an S1 is identified as a spatial circle the eigenvalue distribution of the

corresponding holonomy is giving a snapshot of the distribution of D0-brane charge along

the circle. It is this picture that permits us to connect the phase structure that we find

here to the physics of black string/black hole transitions in chapter 4. Identifying V as the
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holonomy of the time circle, the black string phase corresponds to tr (V ) 6= 0, tr (U) = 0

while the black hole phase corresponds to tr (V ) 6= 0, tr (U) 6= 0.

5.2 Bosonic Matrix Integrals

We now begin our systematic study of Yang-Mills theories on low-dimensional tori

with the simplest possible example, namely 0-dimensional Yang-Mills coupled to p adjoint

scalars with a quartic interaction. There are no Yang-Mills fields in 0-dimensions and the

effect of gauging is trivial, introducing only an overall factor of the gauge group volume.

As a result, the partition function that we wish to study takes the form of a simple matrix

integral

Z =
∫

DΦi exp

− N

2λ0
tr

∑
i

m2
i Φ

2
i −

∑
i<j

[Φi,Φj ]2


=
∫

Dφi exp

−N

2
tr

∑
i

Φ̃2
i

2
−
∑
i<j

λ0

m2
i m

2
j

[Φ̃i, Φ̃j ]2


(5.1)

where we have rescaled the Φi in the second line to make clear that the effective

couplings are λ0/m2
i m

2
j .

We are interested in studying the eigenvalue distributions of the Φi as a function

of λ0. Doing so generally is quite difficult, but there are two limits in which an analytic

treatment is possible. The first corresponds to the limit of weak coupling, λ0/m2
i m

2
j → 0,

in which the partition function reduces to that of N decoupled Gaussian matrix integrals.

The dominant saddle point configuration of such integrals is well-known to be given by the

Wigner semicircle

ρ(x) =
2
π

√
1− x2 (5.2)
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and consequently the eigenvalues of the Φ̃i are clumped on an interval of size 1,

corresponding to a clumping of the Φi eigenvalues on an interval of size
√

λ0/mi.

The other analytically tractable regime is the limit of very large coupling, λ0/m2
i m

2
j �

1. Here, the quadratic term is negligible and we are left with

Z =
∫

DΦi exp

 N

2λ0

∑
i<j

[Φi,Φj ]2

 (5.3)

Because the squared commutator is negative definite, the configurations of least

action are those for which all Φi are diagonal. Denoting the eigenvalues of the Φi by φi, we

can expand about the diagonal configuration to quadratic order in the off-diagonal terms

S =
N

4λ0

∑
i<j

[(
∆φI

)2
ij
|Φj

ij |
2 −

(
∆φI

)
ij

(
∆φJ

)
ij

ΦI
ijΦ

J ast
ij + . . .

]
(5.4)

where the (∆φI)ij are the eigenvalue differences

(
∆φI

)
ij

= φI
i − φI

j (5.5)

The cubic term that we have neglected will have coefficient linear in eigenvalue

differences while the quartic term has no eigenvalue dependence at all. If the distance

between eigenvalues is characterized by the scale a, then the effective coupling of the off-

diagonal components is simply λ0/a4. When this is small, we can reliably integrate out the

off-diagonal components at one-loop to obtain

Z ∼ det(M)−1 M IJ = δIJ
∑
K

(
∆φK

)2
ij
−
(
∆φI

)
ij

(
∆φJ

)
ij

(5.6)

which can be evaluated once we note that the eigenvalues of M are simply
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[∑
K

(
∆φK

)2
ij

]
with degeneracy p− 1 and 0 with degeneracy 1 (5.7)

The presence of a zero eigenvalue may seem troublesome at first, but its appearance

is easily understood. In particular, we have run into this potential divergence because we

neglected the existence of flat directions in the space of off-diagonal components which

arise due to the SU(N) gauge symmetry of (5.1). In other words, we could use gauge

invariance to exactly diagonalize one of the matrices so we had no business integrating over

the corresponding set of off-diagonal modes.

To proceed, we go back to (5.3) and fix this SU(N) symmetry by using it to

diagonalize Φ1. In doing this, we pick up a Fadeev-Popov determinant factor that is nothing

other than the usual Vandermonde that one typically encounters when moving to eigenvalue

variables

∆FP = det
([

Φ1, ∗
])
∼
∏
i<j

(
∆φ1

)2
ij

(5.8)

Once Φ1 is diagonalized, its off-diagonal components no longer contribute to the

1-loop computation above. This has the effect of removing the first row and column of the

matrix M (5.6), leaving a (p− 1)× (p− 1) matrix with eigenvalues

[∑
K

(
∆φK

)2
ij

]
with degeneracy p− 2 and

(
∆φ1

)2
ij

with degeneracy 1 (5.9)

The contribution of (∆φ1)2ij to the determinant cancels against ∆FP , leaving the

following result for (5.3)

Z ∼
∫

dφI
j

∏
i<j

(∑
K

(
φK

i − φK
j

)2)−(p−2)

(5.10)
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Figure 5.1: Sample eigenvalue distribution from a Monte Carlo analysis of (5.1) with λ0 = 1,
p = 10, N = 20. Reprinted from [77].

We see that the effective potential for the eigenvalues generated by integrating

out the off-diagonal components at 1-loop is attractive, leading to a clumped distribution.

From (5.10), one might naively conclude that, in fact, this distribution is a δ-function with

all eigenvalues on top of one another. Of course, we do not expect this to be the case as

the approximation that the off-diagonal modes are weakly coupled breaks down when the

eigenvalues are within a distance of order λ
1/4
0 from one another. At this point, off-diagonal

modes become strongly coupled and, presumably, the distribution stabilizes at the scale

a ∼ λ
1/4
0 suggested by ’t Hooft scaling.

That this is actually the case can be checked using Monte Carlo techniques to

compute the integeral (5.3) numerically and determine not only the λ
1/4
0 scaling but also

the numerical prefactor that sets the precise length of the clumping interval. We include a

sample plot of the eigenvalue distributions that may be obtained from such a computation

in figure 5.1.
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Summary

Because the essential features of the bosonic matrix integral (5.1) studied here will

arise again in the more complicate examples considered throughout the remainder of this

chapter, we close this section with a brief summary of what we have found. In the limit

of infinite masses, the integral can be solved exactly at large N and seen to be dominated

by a clumped eigenvalue distribution of characteristic size
√

λ0/M . In the opposite limit,

mi → 0, the problem is perturbatively tractable provided the eigenvalues are sufficiently

far apart, in which case the effective eigenvalue interactions are attractive. Rather than

maximally clumping, though, the distribution is expected to stabilize at a scale λ
1/4
0 . This

lies outside of the weak coupling regime where perturbation theory can be trusted, though,

so to see this stabilization we must turn to numerics.

We will see this pattern continue, with the massless theories becoming effectively

strongly coupled when interesting physics is expected to set in. Deforming the theory by

turning on large masses is one way to get a qualitative handle on things but ultimately

numerical techniques become necessary to probe the full structure when fields are light.

5.3 Bosonic Yang-Mills on S1

We now move up in dimension to consider bosonic Yang-Mills on an S1. The

particular model that we consider is

S =
N

2λ1

∫
dt tr

 p∑
i=1

D0ΦiD0Φi +
p∑

i=1

M2Φ2
i −

p∑
i<j

[Φi,Φj ]2

 (5.11)

From λ1, M , and the size R of the S1, which we will think of as an inverse

temperature, we can construct two dimensionless parameters



Chapter 5: Yang-Mills Theories on Low Dimensional Tori 97

t̃ =
(
Rλ

1/3
1

)−1
m = Mλ

−1/3
1 (5.12)

5.3.1 High temperatures – t̃ � 1

There are two regimes for which the theory is easily analyzed. The first is the limit

of large temperature, t̃ � 1, in which case the model (5.11) reduces to the zero-dimensional

matrix integral (5.1) studied in section 5.2. There, we saw that the dominant eigenvalue

distributions of all fields were clumped. Note in particular that this includes the dimensional

reduction of the gauge field, A0, which is indistinguishible from the scalars in this limit1.

5.3.2 Large masses – m � 1

The second regime that one can study corresponds to the limit of large mass

m � 1 and displays a much more interesting and nontrivial structure. Here, the theory

is effectively weakly coupled and, since all modes except the zero component of the gauge

field, A0, are massive, they can be integrated out in perturbation theory. The result of this

procedure will be an effective action for A0 which, by analogy to the discussion in section

3.3.1, is constrained by gauge invariance to be a function of a unitary matrix U

Z =
∫

DU exp
[
−N2Seff(U)

]
U = ei

H
dt A0 (5.13)

The computation of Seff(U) now proceeds exactly as in the N = 4 theory with the

identification

x = e−MR = e−m/t̃ (5.14)
1One might worry about the fact that A0 is circle valued, which didn’t appear in the 0-dimensional

problem. More specifically, though, A0 = A0 + 2πn/R so the circle on which A0 takes values has size 1/R
and decompactifies in the limit R→∞.
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Indeed, it is the same calculation as that of sections 3.2 and 3.3 with the result

again depending on letter partition functions that one can associate with state counting

(3.3). Here, the letter partition function is rather trivial as there is only one bosonic state

at energy 1 for each scalar field

z(x) = x (5.15)

This leads to a simple effective action for U

Seff(U) = p

∞∑
n=1

xn

n
tr (Un)tr (U−n) (5.16)

where the factor of p arises because Seff receives contributions from p scalar fields.

Writing this in terms of moments ρn of the corresponding eigenvalue distribution as in

section 3.4, this becomes

Seff(ρn) =
∞∑

n=1

1
n

m2
n|ρn|2 (5.17)

m2
n = 1− pxn (5.18)

where the 1 in (5.18) arises from the Vandermonde measure as usual. We have

thus arrived at an effective action for eigenvalue moments that precisely resembles that

which arose in our study of the N = 4 theory. Since we studied it in detail in section 3.4

and appendix (B), we simply repeat a few facts here. For small temperatures, the ρn are

all massive and the saddle point distribution is uniform. For sufficiently high temperatures,

on the other hand, ρ1 will become tachyonic and condense, leading to the GWW clumped

distribution (B.8). This phase transition is weakly first order and occurs at a critical

temperature that is easily read from (5.18)
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t̃c = m (ln p)−1 (5.19)

Away from the strict m → ∞ limit, (5.17) will receive corrections that can po-

tentially alter the order of the transition. In particular, as we have seen many times it is

the sign of the quartic term in the effective potential for ρ1 that is the difference between

first and second order. This can be determined by computing higher-loop perturbative cor-

rections to (5.17) and integrating out the modes ρi with i > 1 that remain massive at the

transition point. The result is an effective potential for ρ1

S(ρ1) = m2
1(x,m−3)|ρ1|2 +

1
m6

b(x,m−3)|ρ1|4 + . . . (5.20)

The calculation of m1 and b to the requisite orders is straightforward but tedious,

yielding [84]

m2
1 = (1− px)− 1

4m6
(p2 − p)(x2 + 2x) ln x

b = − 1
32

(p− 1) ln p

p3

(
ln(p)(9p2 + 2p) + 4p3 + 7p2 − 4p− 4

)
m−6 + . . .

(5.21)

Since b < 0 for all p > 1, we see that the phase transition is indeed of first order

as one moves away from m = ∞. From the correction to m2
1 in (5.21), we can also compute

the leading order shift in the phase transition temperature, obtaining [84]

t̃c = m (ln p)−1 +
1

4m2

(p− 1)(2p + 1)
p ln p

+ . . . (5.22)

This result will fit in nicely the picture of the m = 0 theory that we now describe.



Chapter 5: Yang-Mills Theories on Low Dimensional Tori 100

5.3.3 Massless theory – m = 0

Now that we have treated the two regimes of the m− t̃ plane that admit analytic

treatments, we move now to the case of massless fields. The phase structure here will

effectively describe a region of the supersymmetric theory on T 2 relevant for GL physics so

we try to understand it as best we can.

From our analysis above, we already know that the eigenvalues of U are clumped

at high temperatures. What we don’t know is whether the system undergoes a phase

transition analagous to what we saw at large m. It seems plausible that it does since a

naive extrapolation of the critical temperature (5.22) to small masses indicates that the

critical line meets the positive t̃ axis at m = 0. However, we would like to have more

convincing evidence than this.

To study the theory directly, we can attempt to use perturbation theory. Provided

the KK modes are weakly coupled, we can integrate them out at 1-loop, obtaining an

effective matrix model for the zero modes that can be treated by analogy to (5.1). As in

that case, the eigenvalue potential is purely attractive when the eigenvalue separations are

sufficiently large [84]

Seff = (p− 1)
∑
m∈Z

∑
i<j

ln

[(
(∆A0)ij −

2πm

R

)2

+
∑

I

(
∆φI

)2
ij

]
(5.23)

where (∆A0)ij denote A0 eigenvalue separations analagous to (∆φI)ij (5.5). When

eigenvalue separations become small, off-diagonal components again become strongly cou-

pled and we expect stabilization to occur on a scale set by λ
1/4
1 .

What we have seen using these perturbative methods is not too surprising and,

unfortuantely, doesn’t go very far beyond what we already knew. The effective coupling

of the KK modes is t̃−3 so at infinite t̃, they completely decouple. This is just another
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Figure 5.2: Sample eigenvalue distributions in massless bosonic Yang-Mills on S1 (5.11)
for p = 9 and various values of λt = t̃−3. The middle distribution is near the numerically
estimated critical point. Reprinted from [77]
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Figure 5.3: |ρ1| as a function of λ = t̃−3 in massless bosonic Yang-Mills on S1 (5.11) for
various values of N . Reprinted from [77, 84]

statement of the dimensional reduction that we used above to study the theory with t̃ � 0

generally. What we have shown is that if the KK modes are weakly coupled, perturbative

corrections do not change the conclusion that eigenvalues continue to clump.

If the phase transition at m → ∞ truly does persist in the m = 0 theory, it

apparently lies in the strong coupling regime where perturbation theory is of no use to

us. That this is the case isn’t too surprising since the absence of any scale other than the

torus volume suggests a critical point at t̃ ∼ 1. Unfortunately, it seems that no analytic

techniques are available to help us verify this conjecture.

However, one-dimensional matrix quantum mechanics isn’t too terribly compli-

cated and can be simulated on a lattice using Monte-Carlo methods. This was done in [77]
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with the result that the massless theory indeed exhibits a phase transition at

t̃ = t̃(p)
c ∼ O(1) (5.24)

When p = 9, for instance, t̃(9) ≈ 0.89. This can be seen either by eyeballing the

eigenvalue distributions, a few of which we plot in figure 5.2, or from plots of the moment

|ρ1|, which we present in figure 5.3.

While the presence of a phase transition is clear from the data, what is not so clear

is the order. Of course, naively we might expect that the order remains first throughout the

downward flow from infinite m. The data seems consistent with this, as the jump in figure

5.3 at t̃c looks as though it is sharpening as N is increased. Without the ability to study

arbitrarily large N , though, it is difficult to rule out the possibility of two successive second

order transitions. To make progress in this direction, we note that in all of our studies thus

far, we have encountered the same standard Landau-Ginzburg potential for first and second

order transitions2

VLG(U) = a|tr(U)|2 + b|tr(U)|4/N2 (5.25)

As we have seen, the sign of b determines the order of the phase transition. Thus,

an alternative means of studying the order is to ask for what sign of b does the potential

(5.25) most accurately fit the Monte Carlo data? One can try simulate both the original

model (5.11) as well as that constructed from (5.25) and attempt to compare the results for

various values of a and b. It turns out that the LG model (5.25) works very well for b very

small. In fact, the agreement is quite good even at b = 0, for which data from both models

is plotted in figure 5.4.
2We write it as a matrix potential rather than as a potential for moments of the eigenvalue density but

the structure is clearly the same
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Figure 5.4: Comparison of Monte-Carlo simulations of massless bosonic Yang-Mills on S1

(5.11) with results from the LG model (5.25) at b = 0 for N = 12. Reprinted from [77].
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Figure 5.5: Level contours of the least-squares-fit function L(a, b) (5.26) just below and
above the phase transition in massless bosonic Yang-Mills on S1 (5.11), which occurs at
λt = t̃−1/3 ≈ 1.44. Reprinted from [77]
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One can attempt to go further and determine how small the parameter b is. This

was done in [77] by performing a least squares fit to the first two moments, |ρ1| and |ρ2|, of

the eigenvalue distribution over a range of N . To get a feel for the size of b, one can plot

level contours on the ab plane of the function L that is minimized in this approach

L(a, b) =
∑
i=1,2

∑
N=6,12,20

(
|ρi|MM(a,b)(N)− |ρi|(N)

)2
(5.26)

We reproduce such plots just above and below the transition point in figure 5.5.

We see explicitly that b is small near the transition. From the numerics, it seems most

likely that b is negative, indicating a first order transition, so from this point onward we

will simply assume this to be the case. Let us be clear, however, that positive b, indicating

a second order transition, is certainly not ruled out. In fact, b = 0, in which case the

transition might be of even higher order, is not ruled out either. One might expect the

smallness of b to have a simple physical explanation but so far none exists so this remains

an oustanding puzzle.

Summary

We can now summarize the phase structure that we have found for (5.11). At

high temperatures, the eigenvalues of the holonomy are always clumped on the circle. At

large mass, we found a clumping/declumping transition line that asymptotes to t̃ ∼ m/ ln p.

We conjectured that this transition persists even in the massless theory at a finite critical

temperature t̃c and used Monte Carlo techniques to demonstrate this explicitly. It seems

likely that the transition is of first order but a sequence of closely spaced second order

transitions cannot be ruled out. All of this data leads to the phase diagram of figure 5.6.
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Figure 5.6: Phase diagraom of bosonic Yang-Mills on S1 coupled to p interacting adjoint
scalars (5.11).

5.4 Supersymmetric Yang-Mills on S1

In this section we move on to the maximally supersymmetric Yang-Mills theory

on S1 with action

S =
N

λ1

∫
dt tr

(
1
2

(D0Φi)
2 +

i

2
Ψ†D0Ψ−

1
4

[Φi,Φj ]
2 +

1
2
Ψ†γi [Φi,Ψ]

)
(5.27)

which we study as a function of the dimensionless parameter t̃ defined as in (5.12).

With the introduction of fermions comes a choice of the boundary conditions that

we impose on them. If we choose periodic boundary conditions then the corresponding

partition function computes the Witten index of the associated 1+0-dimensional quantum

mechanics system. To see this, we interpret the S1 as a thermal circle so that one naively

expects the partition function to be the usual thermal one tr (e−βH). However, the con-

nection between the thermal partition function and Euclidean path integral requires the

fermions to have antiperiodic boundary conditions around the thermal circle. The object
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that is computed by the Euclidean path integral with periodic fermion boundary conditions

has an extra insertion of (−1)F

∫
periodic fermions

e−SE = tr
(
(−1)F e−βH

)
(5.28)

This is precisely the Witten index [85], which counts the number of supersymmetric

vacua. The result is, under relatively mild assumptions, independent of β and has no

interesting phase structure.

For this reason, we focus instead on the case of antiperiodic fermion boundary

conditions. A key feature of this case is that there are no fermi zero modes on the circle.

This implies that for very large temperatures, t̃ � 1, all fermi modes become massive and

can be effectively neglected so that there is effectively no difference between the bosonic

(5.11) and supersymmetric (5.27) theories in this limit. The holonomy eigenvalues are

clumped in both cases and tr (U) 6= 0.

We now look at the opposite limit, t̃ � 1, which is equivalent to large ’t Hooft

coupling λ1. For this, we can use the fact that this theory (5.27) has a string theory dual

for which we expect the SUGRA approximation to be valid. Indeed, the dual geometry is

simply the near-horizon limit of a collection of non-extremal D0-branes [76]

ds2 = α′

−
√

u7t̃3

d0

[
1−

(u0

u

)7
]

dτ2 +

√
d0

u7t̃3

([
1−

(u0

u

)7
]−1

du2 + u2 dΩ2
8

) (5.29)

where β is the size the S1, d0 = 240π5 and

u0 ∼ t̃21/5 (5.30)

Using this last result, it is now easy to verify directly that SUGRA is a good

approximation for t̃ � 1. The key point here is that the solution (5.29) has a horizon and
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consequently tr (U) is nonzero in this regime as well. While this is not enough to distinguish

between nonuniform and clumped eigenvalue distributions, the simplest assumption is that

the the eigenvalues remain clumped and the model (5.27) undergoes no phase transition at

all. This will have implications for the two-dimensional theories that we study next and fits

with the other data there. We thus find this conjecture quite compelling though it would

be nice to understand it further.

5.5 Bosonic Yang-Mills on a Rectangular T 2

We now consider the first of our two-dimensional models, namely bosonic Yang-

Mills on a rectangular two-torus with radii R1, R2. Unlike the lower-dimensional models

that we have studied so far, this system will not have any direct relevance to the maximally

supersymmetric theory whose analysis is our primary goal in this chapter. However, the

phase structure is similar in some respects and, moreover, the bosonic theory at large

scalar masses is an example where one can probe almost all nontrivial aspects of the phase

structure, including a tricritical point, analytically. For this reason we find it an interesting

playground in which to learn about these theories in general and worth the brief digression.

The specific model that we consider has action

S =
N

2λ2

∫
d2x tr

(
F 2

12 +
p∑

i=1

[(
DµΦI

)2
+ M2Φ2

I

]
−
∑
I<J

[
ΦI ,ΦJ

]2)
(5.31)

and can be parametrized by the two dimensionless radii

r1 = R1

√
λ2 r2 = R2

√
λ2 (5.32)

and the dimensionless mass
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m = λ
−1/2
2 M (5.33)

Throughout the ensuing discussion, we will refer to the holonomy about the r1

(r2) circle as V (U).

5.5.1 Infinite masses m = ∞

We begin our study of (5.31) by considering the strict limit m = ∞. The reason

we do this is to recall some elementary facts about the exact solution of pure Yang-Mills

on a two-torus that will be useful when we study large but noninfinite masses.

The exact result for the two-dimensional Yang-Mills partition function was first

obtained by Migdal [86] using a lattice regularization of the theory. We consider putting

unitary matrices UL on the links of the lattice and consider the partition function

Z =
∫ ∏

L

DUL

∏
P

ZP (UP ) (5.34)

where the product is over plaquettes P of the lattice and ZP is a plaquette action

chosen so that the continuum theory coincides with Yang-Mills. One example of a plaquette

action is the usual Wilson one

ZP = exp
{

N

λ2
tr
(
UP + U−1

P

)}
(5.35)

One can imagine integrating out some of the links to generate an effective action

for the larger plaquettes that remain. Under this RG flow, the action (5.35) is not invariant,

instead flowing to the plaquette action [86]

ZP (UP ) =
∑
R

dRχR(UP ) exp
{
−λ2A

2N
C2(R)

}
(5.36)
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where the representation R has dimension dR and quadratic Casimir C2(R) and

A is the area of the new plaquettes in units of the fundamental ones. It is easy to verify

that (5.36) satisfies the additivity property

∫
DU ZP (V1U,A1)ZP ′(U †V2, A2) = ZP+P ′(V1V2, A1 + A2) (5.37)

and consequently is an RG fixed point. To compute the partition function of 2-

dimensional Yang-Mills, we are equally justified in using (5.35) or (5.36). The former is

easier to work with as the property (5.37) can be used to integrate out all of the links except

those wrapping nontrivial cycles. Restricting to the torus for simplicity, we arrive at the

following expression for the partition function

Z =
∫

DU DV
∑
R

dRe−
r1r2
2N

C2(R)χR(UV U−1V −1) (5.38)

where we have used the definitions (5.32) of r1, r2. The links which remain are

precisely the holonomies that we wish to study. The remaining integrals (5.38) are now

sufficiently simple that we can perform them exactly to obtain

Z =
∑
R

e−
r1r2
2N

C2(R) (5.39)

This partition function is very well-behaved and exhibits no nontrivial phase struc-

ture. As an exercise, let us obtain this conclusion in a manner more in line with the sort

of analysis that we have used to study other theories above. In particular, let us consider

integrating out only one holonomy, say V , from (5.38). We obtain

Z =
∫

DU
∑
R

e−
r1r2
2N

C2(R)χR(U)χR(U †) (5.40)
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Using the generalized Frobenius relations of [87, 88, 89] it is possible to write the

integrand in terms of an effective action for U [84]

Z =
∫

DU exp

{∑
n

1
n

(
−e−r1r2n + 2e−r1r2n/2

)
tr (Un)tr (U−n)

}
(5.41)

Introducing an eigenvalue density ρ as usual, we can obtain an effective action for

the moments of ρ

Seff (ρn) =
∑

n

1
n

(
1− e−r1r2n/2

)2
|ρn|2 (5.42)

We see that for all values of the coupling λ2A = r1r2 the effective masses of the

ρn are positive. In the limit r1r2 →∞ they become arbitrarily light but the never become

tachyonic. The eigenvalue distributions are thus always uniform and there is no phase

transition.

5.5.2 Large masses m � 1

While we saw that the infinitely massive theory had no nontrivial phase structure,

this shouldn’t come as too much of a surprise since analagous conclusions could be drawn

in the 1-dimensional case of section 5.3 as well. We now move to the regime of large

but finite masses so that the scalars are present but heavy and can be reliably integrated

out at one-loop. As we saw above, the eigenvalue moments become arbitrarily light at high

temperatures so even a small attractive force from the scalars can induce a phase transition.

Indeed, we will find several transition lines and can say more about the structure of this

regime than any other two-dimensional example we shall study.
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Large radius r1 � r2,m

We begin our analysis of the massive model (5.31) with the limit in which one

of the circle sizes, say r1, approaches infinity. In this limit, the theory becomes effectively

decompactified so that it approaches that which describes the thermodynamics of the as-

sociated 1+1-dimensional theory in flat space. Because the r1 circle grows to infinity, the

circle on which the V eigenvalues take values shrinks to zero size so their distribution is

uniform. The dynamics of U is a bit more interesting, though, as it corresponds to the

Polyakov loop of the flat space theory, which one expects to exhibit a deconfinement tran-

sition. This can be studied as usual by integrating out all massive degrees of freedom to

obtain an effective action for U [90]

S =
∫

dx

{
N

2λ2R2
tr
(
|∂xU |2

)
− p

√
M

2πR2
e−MR2tr (U(x))tr (U †(x))

}
(5.43)

Note that since the spatial direction is flat the corresponding spectrum of U modes

is ungapped. It is for this reason that U is a function of x above and cannot be reduced to

a zero mode as we have done in the compact cases.

The effective action (5.43) is a bit more complicated than what we are used to,

but it can be analyzed using techniques of collective field theory [90]. One finds that U

undergoes a clumping/declumping transition at critical temperature

r−1
2,c =

2
m

ln(m) + . . . (5.44)

that is of first order. In particular, tr (U) = 0 for r2 > r2,c while tr (U) 6= 0 and

the eigenvalues are clumped for r2 < r2,c. There is of course an analagous transition at

r−1
1,c = 2 lnm/m in the limit of infinite r2 at which V undergoes a clumping/declumping

transition.
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Small radius r1 � r2,m
−1

We now turn to the opposite limit, namely that for which one of the circle sizes r1

approaches zero. Provided the KK masses are larger than all other scales in the problem,

the theory reduces to that of the 1-dimensional model (5.11) considered in section 5.3 with

an extra massless scalar arising from the gauge field component A1 along r1. The precise

conditions for the validity of this reduction are those indicated above, r1 � r2,m
−1, and

correspond to KK masses being larger than all scalar masses as well as the temperature.

The parameters of the reduced 1-dimensional model are related to r1, r2,m by

t̃ =
r
1/3
1

r2
m(d=1) = mr

1/3
1 (5.45)

For r1 � m−3 the dimensionally reduced theory is effectively massless and we

expect a phase transition separating regions with tr (U) vanishing and nonvanishing at the

critical temperature

t̃ = t̃(p+1)
c (5.46)

where t̃
(p+1)
c is the critical point of (5.24). For r1 � m−3, the dimensionally

reduced theory has all scalars massive except that arising from A1, which is massless. This

isn’t quite the large mass scenario that we studied in section 5.3 since all scalars are not

heavy. It turns out, though, that the case of one additional massless scalar remains tractable

because a mass for that field is generated by the heavy scalars at 1-loop [84]. One can then

integrate out everything except for the holonomy U at 1-loop level, finding a transition line

along

t̃ =
2m(d=1)

3 ln m(d=1)
+ . . . (5.47)
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Translating these results back to the parameters r1, r2,m of the two-dimensional

theory in question, we find explicit expressions for the transition line in two regimes

r1 = r1,c(r2) =


(
r2t̃

(p+1)
c

)3
r1 � m−3

m−3e2mr2 m−3 � r1 � m−1

(5.48)

For r1 > r1, c, tr (U) 6= 0 and its eigenvalues are clumped. For r1 < r1,c, on the

other hand, tr (U) = 0 and its eigenvalues are uniform. On the other hand, A1 becomes a

typical scalar field in the reduction so tr (V ) 6= 0 and its eigenvalues are clumped. As with

the large radius case, there is an analagous transition at small r2 along which the holonomy

V undergoes a declumping transition.

Intermediate radii

So far, we have probed only a few corners of the phase diagram, corresponding to

cycle sizes very large or small. A summary of what we have found is illustrated in figure

5.7, which also depicts the three simplest conjectures for the interior region about which we

have said nothing so far. Our goal in this subsection is to utilize the simplicity of pure two-

dimensional Yang-Mills theory reviewed in section 5.5.1 to probe this region as precisely as

possible. In particular, the effect of the massive scalars is to slightly perturb an otherwise

exactly solvable theory. Treating this carefully will permit us to probe a large interior region

of the phase diagram 5.7 that will distinguish among the three possibilities indicated.

Our general strategy will be to integrate out the scalars at 1-loop and obtain a

deformation of the matrix model (5.38) that solves the pure Yang-Mills theory without

scalars. This a bit trickier than it might seem at first since the determinant one obtains

in this manner will be a complicated function of the gauge fields that doesn’t obviously

reduce to the zero modes to which U and V correspond. It is thus possible in some regimes
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Figure 5.7: Partial phase structure of massive bosonic Yang-Mills on T 2 (5.31). The qual-
itative structure of this phase diagram also captures what we know about the massless
theory.

that the deformation has a much more drastic effect on the Yang-Mills theory than simply

modifying (5.38) in a simple way.

All is not lost, though, as we can see from the following situation. Let us return

to the result (5.43) for the effective action of the spatially varying holonomy U about the

r2 circle in the limit r1 → ∞. Rather than taking r1 strictly infinite, let us consider

instead taking r1 large and continue to utilize this action. Mode expanding the holonomy

U(x) =
∑

n Uneinx and integrating over the r1 direction, x, we obtain

S ∼
∑

n

(
n2

2r1r2
− pr1

√
m

2πr2
e−mr2

)
|Un|2 (5.49)

From this we see that nonconstant modes of U are very massive and should be

negligible over a large region
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r2
1 �

1
√

mr2
emr2 (5.50)

Moreover, we see that a very specific potential is generated for the constant mode

Veff (U) = f(U) = − p√
2π

r1

r2

√
mr2e

−mr2tr (U)tr (U−1) (5.51)

We could perform a similar exercise for the analagous regime

r2
2 �

1
√

mr1
emr1 (5.52)

and find there an effective potential for V

Veff (V ) = g(V ) = − p√
2π

r2

r1

√
mr1e

−mr1tr (V )tr (V −1) (5.53)

The simplest possible conjecture for how to modify (5.38) in the presence of massive

scalars is then to simply include both of the effective potentials, (5.51) and (5.53). While

this seems overly simplistic, it turns out to be completely valid for a surprisingly large range

of parameters!

To justify this, we turn to a direct computation of the one-loop determinant arising

from the scalar fields

Seff =
p

2
ln det

(
−D2

µ + M2
)

(5.54)

As mentioned before, the result can be quite complicated but we will make the

simplifying assumption that nonzero modes of U and V can be neglected. In fact, we

have already argued that this is the case when (5.50) and (5.52) are satisfied so we restrict

ourselves to this regime. Evaluating the determinant is then straightforward and yields the

result
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Seff = −p
∑

(k,n) 6=(0,0)

tr (UnV k)tr (U−nV −k)mr1r2

K1

(
m
√

r2
1k

2 + r2
2n

2
)

2π
√

r2
1k

2 + r2
2n

2
+ . . .

→ −p
∑

(k,n) 6=(0,0)

tr (UnV k)tr (U−nV −k)
√

mr1r2

exp
(
−m

√
r2
1k

2 + r2
2n

2
)

2
√

2π
(
r2
1k

2 + r2
2n

2
) + . . .

(5.55)

where we have used the asymptotic form of the Bessel function K1 and the omitted

terms . . . denote additional contributions in which the ordering of U ’s and V ’s inside the

traces is permuted. The key point here is that terms with increasing powers of U and V are

exponentially damped so that for mr1 � 1 and mr2 � 1 only the leading terms contribute.

These are precisely the potentials f(U) and g(V ) that we found above

Seff = f(U) + g(V ) + . . . (5.56)

so for a large range of parameters the naive approximation that we suggested there

is completely justified.

We have thus managed to reduce the theory (5.31) to the matrix integral

Z =
∫

DU DV
∑
R

dRe−
r1r2
2N

C2(R)χR(UV U−1V −1e−f(U)e−g(V ) (5.57)

in the parameter range

r2
1 �

1
√

mr2
emr2 r2

2 �
1

√
mr1

emr1 m � r−1
1 , r−1

2 (5.58)

The effect of the new potentials f(U) and g(V ) is easily seen by first considering

the limit r1 � r2, in which case g(V ) is negligible compared to f(U). Performing the V

integration exactly as we did to derive (5.40) we obtain

Z =
∫

DU e−f(U)
∑
R

e−
r1r2
2N

C2(R)χR(U)χR(U−1) (5.59)
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Using the result (5.41) and introducing the eigenvalue density ρ, we then find an

effective action for the moments ρn

Seff(ρn) =
[(

1− e−r1r2/2
)2
− p√

2π

r1

r2

√
mr2e

−mr2

]
|ρ1|2 +

∑
n>1

1
n

(
1− e−r1r2n/2

)
|ρn|2

(5.60)

We see that the deformation gives a small tachyonic contribution to the mass of

ρ1. Because ρ1 was becoming massless in the pure Yang-Mills matrix integral (5.40) as

r1, r2 → ∞, this small tachyonic kick is all that we need to generate a phase transition at

a location determined by the point at which ρ1 becomes tachyonic

(
1− e−r1r2/2

)2
=

p√
2π

r1

r2

√
mr2e

−mr2 (5.61)

This curve intersects the parameter range (5.58) in the region r1r2 � 1 so we can

replace the conditions there with

m−1 � r2 � r1 � r−1
2 � m (5.62)

where the curve (5.61) takes the simpler form

r1,c(r2) =
4p√
2π

√
m

r
5/2
2

e−mr2 (5.63)

For r1 < r1,c(r2) the moment ρ1 is massive, the eigenvalue distribution of U is

uniform, and tr (U) = 0. For r1 > r1,c(r2) the moment ρ1 is tachyonic, the eigenvalue

distribution of U is clumped, and tr (U) 6= 0. Meanwhile, there was no potential for V in

this limit so its eigenvalues remain uniformly distributed and tr (V ) = 0 throughout.

Note that at r1r2 ∼ 1, the curve (5.63) roughly approaches the point
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(r1, r2) ∼
(

m

2 ln m
,
2 ln m

m

)
(5.64)

so that the naive r1 →∞ limit of (5.63) reproduces the earlier result (5.44). What

we have thus found is an extension of the previously obtained transition lines (5.63) into

the interior.

We would like to do better, though, and study the regime where these transition

lines meet. For this, we must consider the full matrix integral (5.57). As written it is

quite complicated, but we can make some progress by changing variables according to

U → WUW−1 for unitary W and integrating over this quantity, which is roughly a relative

”angle” between U and V . The result of this manipulation is that Z can be written as

Z =
∫

DU DV
∑
R

e−
r1r2
2N

C2(R) d2
R

d2
R − 1

e−f(U)e−g(V )

×
{
−1 + χR(V )χR(V −1) + χR(U)χR(U−1)− 1

d2
R

χR(U)χR(U−1)χR(V )χR(V −1)
}

(5.65)

where we can replace d2
R/(d2

R − 1) by 1 at large N . This isn’t quite of the form

of an effective action, though the first three terms can be individually written that way.

The fourth term, on the other hand, is much more problematic but we now argue that

it can be neglected for the purpose of computing expectation values of tr (U), tr (V ) for a

range of parameters and consequently doesn’t impact the phase structure. To be specific,

suppose we wish to compute a correlator involving only one of the two matrices, say U .

The contribution from the last two terms in (5.65) is given by

∫
DU DV

∑
R

e−
r1r2
2N

C2(R)

{[
e−g(V )

(
1− 1

d2
R

χR(V )χR(V −1)
)] [

e−f(U)O(U)χR(U)χR(U−1)
]}

(5.66)
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where O(U) denotes the operator insertion in question. Let us suppose now that

we can pass the V integration through the sum over representations3. Doing so, the V -

dependent terms can be written as

∫
DV e−g(V )

(
1− 1

d2
R

χR(V )χR(V −1)
)

= 〈1〉g −
1
d2

R

〈χR(V )χR(V −1)〉g (5.67)

where we have introduced the notation 〈 〉g for the expectation value in a model

with action g. Provided the coefficient of tr (V )tr (V −1) in g (5.53) is small

r2 �
1
p

√
r1

m
emr1 (5.68)

the eigenvalue repulsion factor will dominate in this model and the corresponding

matrix integral will be in a confined phase. This always holds in the regime (5.62) and

hence

1
d2

R

〈χR(V )χR(V −1)〉g = 0 (5.69)

at large N and the corresponding term can be neglected. Similarly, this term can

be neglected when computing expectation values involving only the matrix V provided

r1 �
1
p

√
r2

m
emr2 (5.70)

Again, this is always true in the regime (5.62). Our problem is now greatly sim-

plified as the partition function can be written as a sum of effective decoupled models

Z = −〈1〉M=∞〈1〉g〈1〉f + 〈1〉f 〈1〉S∞(V )+g + 〈1〉g〈1〉S∞(U)+f (5.71)

3This sort of operation can actually be quite troublesome when analyzing the matrix integral in ques-
tion but in the present situation we will demonstrate that the result of the V integral doesn’t scale with
representation size so such a manipulation can be trusted here.
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where 〈1〉M=∞ is the partition function (5.38) of pure Yang-Mills and S∞(U)

(S∞(V )) is the effective action (5.41) obtained from (5.38) by integrating over V (U).

The models with actions g and f are confined when (5.68) and (5.70) are satisfied,

as we discussed above, so the corresponding partition functions are of order 1 at large N .

We have seen, though, that the model with action S∞(V )+g(V ) (S∞(U)+f(U)) exhibits a

clumping/declumping phase transition separating regions where tr (V ) (tr (U)) is vanishing

or nonvanishing. When tr (V ) (tr (U)) is nonzero, the free energy scales as N2 and hence

the partition function diverges at large N in that phase. From (5.71) we see that the full

partition function exhibits this behavior precisely when one of ZS∞(V )+g or ZS∞(U)+f does.

So, if we start in the regime of large r1, r2 where all eigenvalues are uniform and start to

move toward the interior, the full model will not undergo a phase transition until one of

the one-matrix models does. Consequently, the transition lines that we found above, (5.63)

and its r1 ↔ r2 counterpart, extend all the way into the interior until they meet at

r1 = r2 =
4
m

lnm + . . . (5.72)

Let’s push this even further and attempt to go beyond this first transition line. For

definiteness, we consider r2 < r1 so that the transition line separates regions with tr (U) = 0

and tr (U) 6= 0. In the ”deconfined” phase with tr (V ) 6= 0 we can compute the expectation

value of tr (U)4 as

〈
1

N2
|tr (U)|2

〉
=
−ZM=∞ZgZf 〈|ρ1|2〉f + ZfZS∞(V )+g〈|ρ1|2〉f + ZgZS∞(U)+f 〈|ρ1|2〉S∞(U)+f

−ZM=∞ZgZf + ZfZS∞(V )+g + ZgZS∞(U)+f

(5.73)

where ρ1 is the first moment of the U eigenvalue distribution. The quantities

ZM=∞, Zf , and Zg are all of order one so the first terms in the numerator and denomina-
4As usual, what we mean by tr (U) is the suitably normalized object N−2tr (U).
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tor may be neglected. Before the transition point of the model ZS∞(U)+f , it can also be

neglected and we are left with

〈
1

N2
|tr (U)|2

〉
= 〈|ρ1|2〉f = 0 (5.74)

so there is no further phase transition in this region. One might expect, however,

that U undergoes a clumping transition at the critical point of the model ZS∞(U)+f so that

the phase transition line (5.63) continues right through the meeting point (5.72). This isn’t

the case, though, as beyond this point the expectation value above becomes

〈
1

N2
|tr (U)|2

〉
=

ZfZS∞(V )+g〈|ρ1|2〉f + ZgZS∞(U)+f 〈|ρ1|2〉S∞(U)+f

ZfZS∞(V )+g + ZgZS∞(U)+f

→ 〈|ρ2
1|〉

= 0

(5.75)

The reason for this is that the model with action S∞(V )+g has smaller free energy

than that with action S∞(U) + f and consequently terms involving the former dominate.

What we conclude from all of this is that beyond the transition line formed from

(5.63) and its r1 ↔ r2 counterpart only one of the two matrices is clumped. The regions

in which tr (U) 6= 0 and tr (V ) 6= 0 are thus separated by a new phase transition line that

extends toward the origin along r1 = r2. Of course, given what we know about the small

r1, r2 regimes this cannot continue all the way to r1 = r2 = 0. Indeed, our assumption

that higher order terms in the determinant (5.55) are negligible breaks down for r1 or r2

of the order m−1 so presumably the structure changes in that regime. The most natural

conjecture to complete the phase diagram is that the r1 = r2 line splits into two lines which

join those that we found in the limit of small r1 and r2.

Throughout this analysis we have seen that, while the model (5.31) at large m
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tr(U)   0
tr(V)   0

r 1

tr(U)   0
tr(V)   0

tr(V)   0
tr(U)   0
tr(V)   0

tr(U)   0

r 2

Figure 5.8: Phase diagram of the bosonic Yang-Mills theory (5.31) for large scalar masses.
The solid lines denote those for which we have analytic expressions (see figure 5.9). Dashed
lines denote the conjectures that provide the most simple completion of the phase diagram.

isn’t exactly solvable, we can use the exact solution of pure Yang-Mills to say quite a lot

about the phase structure. Our results are summarized in the phase diagram of figure 5.8

where we explicitly show the transition lines for which analytic expressions can be found.

Half of these analytic expressions are tabulated in figure 5.9, with the other half given by

flipping r1 ↔ r2 and U ↔ V .

5.5.3 Massless theory – m = 0

How much of the structure that we found above persists in the massless theory?

We begin with the limit r1 � r2 where, as in the massive case, the theory reduces to a

one-dimensional model (5.11). Since the scalars are massless here, an analytic treatment

is not available. Nonetheless, the numeric studies of subsection (5.3.3) suggest a clumping

transition associated to the matrix U at a value of the 1-dimensional temperature t̃ that is

of order unity. As with the massive theory this translates to a critical line
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Critical Line r1,c(r2) Regime of Validity Phase for r1 > r1,c Phase for r1 < r1,c(
r2t̃

(p+1)
c

)3

r1 � m−3 tr (U) = 0 tr (V ) 6= 0 tr (U) 6= 0 tr (V ) 6= 0

e2mr2/m3 m−3 � r1 � m−1, r2 tr (U) = 0 tr (V ) 6= 0 tr (U) 6= 0 tr (V ) 6= 0

r2 m−1 � r1 < 4 ln m
m tr (U) = 0 tr (V ) 6= 0 tr (U) 6= 0 tr (V ) = 0

4p
√

me−mr2/
√

2πr5
2 m−1 � r2 < r1 tr (U) = 0 tr (V ) = 0 tr (U) 6= 0 tr (V ) = 0

� r−1
2 � m

m/2 ln m r2 � m−1, r1 tr (U) = 0 tr (V ) = 0 tr (U) = 0 tr (V ) 6= 0

Figure 5.9: Summary of analytic results for transition lines in the bosonic Yang-Mills theory
(5.31) and their regimes of validity (m � 1 throughout).

r1 = r1,c(r2) =
(
r2t̃

(p+1)
c

)3
(5.76)

The dimensional reduction is valid provided r1 � r2 so that this critical line

extends throughout the region r1, r2 � 1. There is of course the usual r1 ↔ r2 partner

of this line. In between these two lines we can, as usual, study the system perturbatively

by integrating out KK modes at 1-loop. This produces an attractive potential for the

eigenvalues of the form (5.23) and is thus consistent with our expectation that tr (U) 6=

0, tr (V ) 6= 0 there.

At large radius an effective action of the form (5.43) is unavailable so analytic

results are also difficult to come by here as well. Again the r1 → ∞ theory describes the

thermodynamics of a 1 + 0-dimensional Yang-Mills theory that is expected to deconfine at

a critical value of the effective temperature r−1
2

5. In general, we expect this to occur at the

scale set by the coupling and consequently for r2 of order unity. The numerical coefficient

is, unfortunately, out of our reach.
5For the case of one scalar, this has been demonstrated explicitly in [91].
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What we have thus argued for here is a phase diagram of the qualitative form

depicted in figure 5.7. That the structure in asymptotic regimes is similar to that of the

massive theory is not completely unexpected and it is natural to conjecture a completion in

the interior of the form (5.8). Unfortunately, we do not know of any controlled manner in

which to probe this regime in the massless theory. Even the numerics is more demanding

there since a full 2-dimensional calculation is needed.

5.6 Supersymmetric Yang-Mills on a Rectangular T 2

We finally arrive at the example of most relevance to our study of black string/black

hole phase transitions, namely the maximally supersymmetric Yang-Mills theory on a torus

S =
N

2λ2

∫
d2x tr

(
F 2

12 +
8∑

I=1

(
DµΦI

)2 −∑
I<J

[
ΦI ,ΦJ

]2
+ fermions

)
(5.77)

For simplicity we shall consider rectangular tori throughout most of the discussion

that follows though we will make a few comments about more general tori later. As with the

one-dimensional supersymmetric theory (5.27), we are presented with a choice regarding

boundary conditions to impose on the fermions. In all, there are four choices since the

fermions can be periodic or antiperiodic about each of the two nontrivial cycles. If we take

the fermion boundary conditions to be periodic about both cycles, the resulting partition

function will amount to an index computation of a one-dimensional theory analagous to

(5.28) and consequently exhibit no nontrivial phase structure. We will thus always take

antiperiodic boundary conditions about at least the r2 cycle, which we think of as a thermal

circle. This leaves two possible choices for the boundary conditions along r1 that we now

consider in turn.
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5.6.1 Antiperiodic r1 Boundary Conditions

The first case that we consider corresponds to antiperiodic boundary conditions

about both cycles. Because of this choice the r1 ↔ r2, U ↔ V symmetry of the phase

diagram that we have grown used to will persist.

Small radius r1 � r2

Let us focus first on the limit in which one of the cycles becomes small r1 � r2.

As we have become accustomed to, KK modes about the r1 cycle are negligible in this limit

and the theory reduces to a one-dimensional model. Since the fermion boundary conditions

are antiperiodic, though, there are no fermi zero modes in the problem so, in particular, the

dimensional reduction eliminates all of them and we are left with a purely bosonic theory!

In particular, the small radius limit of the supersymmetric theory (5.77) is equivalent to

that of the bosonic theory (5.31) at m = 0. Consequently, there is a clumping/declumping

phase transition associated with the matrix U along

r1 =
(
r2t̃

(9)
c

)3
(5.78)

where t̃
(9)
c is the critical point (5.24) of the one-dimensional model (5.11) at m = 0

with p = 9 scalar fields. As noted below (5.24) the value of t̃
(9)
c has been determined from

Monte Carlo methods to be

t̃(9)c ≈ 0.89 (5.79)

Large volume r1r2 � 1

By analogy with our study of the bosonic theory (5.31) we look next at large radii.

In the bosonic case, we relied on the fact that the problem reduced to the thermodynamics
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of a 1 + 1-dimensional model in flat space that is expected to exhibit deconfinement. We

could estimate the location of the transition line by noting that the deconfinement scale is

set roughly by the coupling λ2. This was as far as we could take the analysis in the massless

theory, though, as further analytic treatments were unavailable.

Here we can do a bit better since the large radius regime, which corresponds to

strong coupling, admits a dual description in supergravity via AdS/CFT . In fact, we have

already seen that the model in question arises as a description of SUGRA in the near-

horizon region of N D1-branes wrapping an S1. The relevant Euclidean solution is given

by the analytic continuation of (4.45)

ds2 = α′


√

u6

d1λ′

[(
1− u6

0

u6

)
dt2E
L2

+
dθ2

(2π)2

]
+

√
d1λ′

u6

(
1− u6

0

u6

)−1

du2 + u−1
√

d1λ′ dΩ2
7


(5.80)

where we recall that

λ′ = λ2L t = TL u2
0 =

16π5/2

3
t
√

λ′ (5.81)

and the angle θ and Euclidean time tE are identified according to

θ = θ + 2π tE = tE +
1
T

(5.82)

At this point, one might ask whether the tE circle should be identified with the

r1 or r2 cycles in the Yang-Mills theory (5.77). Of course the answer to this is that both

possibilities should in principle be considered. Said more explicitly, the gauge theory par-

tition function is computed, in the SUGRA regime, by a saddle point approximation to

the Euclidean path integral which includes a sum over all geometries with the appropriate

asymptotics [2, 5]
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ZY M =
∑

relevant geometries

exp (−S) (5.83)

To compute the partition function of (5.77), we thus need to sum over all matchings

of the torus at infinity of (5.80) with the torus of our Yang-Mills theory (5.77). We must

take care, of course, to include only matchings that are consistent with fermion boundary

conditions since one cannot have fermions that are periodic at infinity about a cycle that

contracts in the interior.

In the case at hand, we have a rectangular torus with antiperiodic fermion bound-

ary conditions about both cycles so there are two terms in the sum (5.83) distinguished by

which of the two cycles of our torus contracts in the interior. In general, we expect one of

these two geometries to give a dominant contribution to the partition function (5.83) with

the possibility of a phase transition between the two as parameters are varied.

To determine which contribution dominates, we need only evaluate the Euclidean

actions of the two and compare. This computation is slightly subtle since the Euclidean

action for an individual solution diverges. The difference is finite, though, and can be

evaluated without too much difficulty. Comparing solutions X1, in which the r1 circle is

contractible, and X2, in which the r2 circle is contractible, yields [84]

S(X1)− S(X2) ∼ N2

(
r
3/2
2 − r

3/2
1

(r2r1)3/2

)
(5.84)

Consequently, we see that the dominant geometry is that for which the smaller of

the two cycles is contractible in the bulk.

The implications of this result for the Yang-Mills theory are now quite clear. When

the r1 (r2) cycle contracts in the interior, the corresponding Wilson loop, tr (V ) (tr (U)) is

nonzero while tr (U) (tr (V )) vanishes. The two phases are separated by a phase boundary

at r1 = r2 along which a first order transition takes place.
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r 1
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tr(U)   0
tr(V)   0

tr(U)   0
tr(V)   0

tr(U)   0
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r 2

large λ
~

small λ
~

Figure 5.10: Phase diagram of maximally supersymmetric Yang-Mills theory on a rectan-
gular T 2 (5.77) with antiperiodic boundary conditions along both cycles. We have directly
probed the weak coupling (r1, r2 � 1) and strong coupling (r1, r2 � 1) regimes indicated.
The interior region is our conjectured completion.

We can now combine this result with what we saw at small r1, r2 to make a

conjecture for the full phase diagram of the theory (5.77) in the case of antiperiodic fermion

boundary conditions about both cycles in figure 5.10. Note that the only regions that we

have been able to probe are those corresponding to weak coupling (r1r2 � 1) and strong

coupling (r1r2 � 1) so in particular we have not probed the region near the tricritical point.

What happened to the GL transition?

One might be a little puzzled at this point since, according to the phase diagram

of figure 5.10, the phase with tr (U) and tr (V ) both nonzero, which we would naturally

identify as the localized black hole, apparently doesn’t extend into the gravity regime. We

saw ample evidence for this phase transition in the previous chapter, though, so what is

going on?

To address this question, let us consider focus our attention on the geometry of the
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form (5.80) with r2 identified with the time circle tE . In the previous chapter, we argued

that SUGRA in this background was valid provided λ′,−1/2 � t � λ′ 1/2 where t, λ′ are as

in (4.49) and (4.44). Translating this to the variables r1 and r2, this condition amounts to

1 � r2 � r2
1 (5.85)

At the point r2 ∼ r2
1, winding modes become light and drive the GL instability to

the recently emerged localized black hole solution. Notice, however, that before this point

is even reached the system undergoes the phase transition at r1 = r2 beyond which the

dominant phase is that for which r1 is identified with the time circle. In this background,

SUGRA is valid in the regime

1 � r1 � r2
2 (5.86)

and consequently we expect the new solution to completely mask the GL physics,

which becomes relevant only for subdominant contributions to the partition function. That

this occurs for the theory in question is not too surprising since our choice of boundary

conditions implied a symmetry of the phase diagram under r1 ↔ r2. For GL physics, the

time and space circles are distinguished by the fact that the holonomy of the former is

always nonvanishing and consequently the corresponding phase diagram does not exhibit

this symmetry.

To probe GL physics we are thus led to a slightly different situation, namely the

case of periodic fermion boundary conditions about one of the cycles. In that case, only

one of the cycles will be allowed to contract in the interior, eliminating the second saddle

point which masked the GL phase transition.



Chapter 5: Yang-Mills Theories on Low Dimensional Tori 130

5.6.2 Periodic r1 Boundary Conditions

We finally turn to the model whose phase structure will include the GL transition,

the maximally supersymmetric Yang-Mills theory on T 2 with periodic fermion boundary

conditions along the ”spatial” r1 circle and antiperiodic fermion boundary conditions along

the ”thermal” r2 circle. Because of the different boundary conditions, the r1 ↔ r2 symmetry

of the phase diagram to which we have grown accustomed will no longer persist.

Small radius r1 � r2

As usual, we start with the limit r1 � r2 where a dimensionally reduced model

describes the physics. Because of the periodic boundary conditions along the r1 circle,

though, there are fermi zero modes which survive in this limit and consequently the effective

1-dimensional theory is the supersymmetric model (5.27) considered in section 5.4. We saw

there that a phase transition in this model was unlikely and, if such existed, would separate

two phases with tr (U) 6= 0. Consequently, the small radius transition line r1 ∼ r3
2 that we

have seen many times is absent here.

Small radius r2 � r1

In the limit r2 � r1, things are a bit different since there are no fermi zero modes

about the r2 circle. As a result, the effective 1-dimensional model that describes the physics

is the bosonic one (5.11) considered in section 5.3 at m = 0. As discussed there, we expect

a transition line along

r2 = r2,c(r1) =
(
t̃(9)c r1

)3
(5.87)

where as we have mentioned before below (5.24), Monte Carlo studies yield the

result t̃
(9)
c ≈ 0.89. For r2 < r2,c tr (U) 6= 0 and tr (V ) = 0 while for r2 > r2,c tr (U) 6= 0 and
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tr (V ) 6= 0.

Large radii r1, r2 � 1

At large radii, corresponding to strong coupling, we again turn to the SUGRA

approximation provided by AdS/CFT where the relevant solution continues to be the Eu-

clideanized near-horizon geometry of N D1-branes wrapping an S1 (5.80). The situation

is slightly different from that of section 5.6.1, though, since the periodic fermion boundary

conditions around the r1 circle prevent it from being identified with a circle at the bound-

ary of (5.80) that degenerates in the bulk. This implies that the sum (5.83) has only one

contribution in this case, namely that for which the r1 circle is identified with θ and the r2

circle with tE . As discussed in section 5.6.1, the SUGRA approximation in this geometry is

valid only for 1 � r2 � r2
1. At the upper end of this regime, winding modes become light

and trigger the GL instability. Consequently, we expect the GL phase transition to occur

along

r2 ∼ r2
1 (5.88)

and to separate regimes in which tr (V ) is zero and nonzero. The most natural

conjecture for the remaining parts of the phase diagram is for the lines (5.87) and (5.88) to

connect in the interior, producing the result depicted in figure 5.11.

Discussion

We have now seen the appearance of GL physics in the strong coupling regime

of a gauge theory and have a natural conjecture for its continuation to weak coupling.

Remarkably, the transition can be studied in a region that admits a lower dimensional

description so that, in particular, the GL black string/black hole phase transition continues
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Figure 5.11: Phase diagram of maximally supersymmetric Yang-Mills theory on T 2 (5.77)
with periodic (antiperiodic) fermion boundary conditions along r1 (r2). The phase transition
line in the weak coupling region, r1, r2 � 1 can be studied numerically. In the strong
coupling region, r1, r2 � 1, it is the GL transition discussed in chapter 4. The interior
represents our conjectured completion of the phase diagram.

smoothly to the confinement/deconfinement transition of a 1+0-dimensional bosonic gauged

matrix quantum mechanics model at finite temperature.

It is now clear why the extensive numeric effort in section 5.3.3 was expended

and, in fact, why we found a determination of the order there important. It is natural to

conjecture that the order of the transition doesn’t change as one continues along the phase

transition line in figure 5.11 so had the numerics there been able to yield a sharp answer

then we would have had evidence from gauge theory in support of Kol’s picture for black

string/black hole phase transitions.

What we have seen instead is that two scenarios remain possible, though we find

one more likely than the other. The most probable situation is that the phase transition is

of first order at weak coupling. As mentioned in section 5.3.3, though, it remains possible

that there are two second order transitions whose separation in t̃ is (unnaturally) small.

It is somewhat satisfying that the structures which emerge from the gauge theory
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analysis correspond naturally to those anticipated in the previous chapter. In particular,

the data is fit well by an effective potential (5.25) of precisely the form that we had hoped

could capture the physics of GL transitions. Moreover, we have seen that the eigenvalue

distributions corresponding to ρ1 sitting at the origin and the boundary (roughly at 1/2)

give snapshots of uniformly distributed and clumped D0-brane charge, respectively. It is

natural to expect that the saddle points of ρ at the relative extremum in between, which is a

maximum or minimum depending on the sign of b, corresponds to nonuniformly distributed

D0-brane charge though we have not shown this explicitly. What we have in the end is a

very concrete realization of the situations described in figures 4.1 and 4.2.

Of course, all of the intuition that one might gain from such analysis is limited

by our inability to determine the parameters a and b in (5.25) analytically. Perhaps it is

to be expected that a problem in gravity that is sufficiently complicated that analytical

treatment is difficult will repel such treatment in the gauge theory regime as well. However,

one might hope to obtain at least a qualitative understanding for the puzzle mentioned in

section 5.3.3 related to the unnaturally small size of the parameter b. It seems as though

something interesting, perhaps (weakly broken) symmetry, is at work here.

5.6.3 More general tori

Finally, we consider the supersymmetric theory on more general tori than the

simple rectangular ones to which we have restricted our attention thus far. Among other

things, this will allow us to continuously connect the two choices of boundary conditions

that we have made above. To see how this works, consider taking both of the fundamental

cycles of the torus to have antiperiodic boundary conditions for fermions. The torus with

modular parameter τ = τ1+iτ2 such that τ1 = 0 is rectangular with the boundary conditions

considered in section 5.6.1 and for which the conjectured phase diagram is that of figure
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5.10. The torus with τ1 = 1, on the other hand, is equivalent to a rectangular torus with

periodic boundary conditions for fermions along one of the cycles. This is precisely the

situation considered in 5.6.2 for which the phase diagram is given in figure 5.11. Varying τ1

from 0 to one should yield a continuous deformation connecting the two phase diagrams.

We can be surprisingly precise in describing this deformation. To elaborate on this,

it is convenient to move from the parameters r1 and r2 to the modular parameter τ = ir1/r2

and a dimensionless coupling λ̃ = λA with A denoting the area of the torus6. With these

variables, we can include the possibility of nonrectangular tori by simply permitting τ to

take arbitrary complex values. Such a torus will have two fundamental cycles. Using the

standard realization of the T 2 moduli space as C modulo a lattice generated by the vectors

z = 1 and z = τ , we denote the cycle associated to z = 1 by (1, 0) and that associated

z = τ by (0, 1). By analogy with our notation in the rectangular case, we will then refer to

the holonomies associated to these cycles by V and U , respectively.

The phase structure in the τ plane at fixed λ̃ is completely determined by mod-

ular invariance from that of the fundamental domain. Because of the fermion boundary

conditions, though, the torus is not invariant under the usual modular group SL(2, Z) but

rather the subgroup Γ generated by τ → −1/τ and τ → τ + 2. As a result, the relevant

fundamental domain, which corresponds to regions I, II, and IV in figure 5.12, is a bit larger

than than the usual one, which corresponds to region I only. We now proceed to study the

phase structure of this fundamental domain at weak and strong coupling.

Weak coupling

As usual at weak coupling, or small volumes, we look for regimes in which the

theory can be described by a dimensionally reduced model. To see when this is possible we
6For the rectangular torus, A is given by A = r1r2. For more general tori, though, it will be given by

A = r2
2τ2
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Figure 5.12: Depiction of the τ plane. The fundamental domain associated to the torus
with antiperiodic boundary conditions corresponds to regions I, II, and IV.

will need the KK mass spectrum, which takes the form

m2
np =

4π2

τ2

[
(nτ1 − p)2 + n2τ2

2

]
(5.89)

in units of inverse torus area with n and p corresponding to momentum quantum

numbers about the fundamental cycles (1, 0) and (0, 1), respectively. Due to the boundary

conditions, n and p take integer values for bosonic fields and half-integer values for fermionic

ones.

The analog of the limit r1 � r2 that we studied for rectangular tori is the limit

τ2 � 1, which introduces a scale separation between modes with n = 0 and those with

n 6= 0. In particular, those with n 6= 0 become massive and decouple from the theory in

this limit, leaving behind the familiar 1-dimensional bosonic theory (5.11) with effective

temperature t̃ given by
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t̃ =
(
λ̃τ2

2

)−1/3
(5.90)

This amounts to a reduction to modes propagating on the (0, 1) cycle of the torus as

it is becoming parametrically larger than the (1, 0) cycle as we take τ2 to infinity. The phase

transition that we found in the model (5.11) implies the existence of a similar transition in

the present system along the curve

λ̃τ2
2 =

(
t̃(9)c

)−1/3
∼ O(1) (5.91)

For λ̃τ2
2 larger than this, we expect the holonomies to satisfy tr (U) = 0 and

tr (V ) 6= 0 while for the opposite regime both holonomies have clumped eigenvalues tr (U) 6=

0,tr (V ) 6= 0.

One can check this last fact perturbatively and, in fact, extend it beyond the

regime τ2 � 1 by noting that, in regions I and II, the KK modes become weakly coupled

and can be integrated out when

λ̃τ2
2 � 1 (5.92)

As we have seen before, this results in an attractive potential for the holonomy

eigenvalues of the form (5.10) that ensures clumped distributions.

We turn now to region IV, for which the analysis is a bit different. Specializing to

IVa for simplicity, we consider the limit

τ1 → 1 τ2 → 0
τ1 − 1

τ2
fixed (5.93)

which is analagous to r1 � r2 and introduces a scale separation between modes

with n = p and those with n 6= p. The latter become massive and decouple, leaving us
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with a one-dimensional supersymmetric theory that is nothing other than our old friend

(5.27). We have argued previously that this model exhibits no nontrivial phase structure,

though, as eigenvalues are clumped throughout. It is easy to check that this conclusion

remains valid in the perturbative regime when the KK modes are weakly coupled and can

be reliably integrated out at 1-loop

λ̃τ2
2[

(1− τ1)
2 + τ2

2

]2 � 1 (5.94)

What we have seen then is that there is a single phase transition line in the

fundamental region of figure 5.12 along

λ̃τ2
2 ∼ O(1) (5.95)

above which tr (U) = 0 and below which tr (U) 6= 0. The holonomy tr (V ), on the

other hand, is nonzero throughout.

It is now straightforward to obtain the full phase diagram at weak coupling on

the τ -plane using modular invariance. In particular, there will be infinitely many phase

transition lines corresponding to the infinitely many images of the line (5.95). We exhibit

some of these in figure 5.13.

From these results, we can see how figures 5.10 and 5.11 are related through

variation of τ1 in the weak coupling regime. To get a feel for the intricate structure involved,

let us consider fixed r2 so that the transition lines there reduce to points. These points

correspond, in figure 5.13, to intersections of the transition lines with the slices τ1 = 0 for

figure 5.10 and τ1 = 1 for figure 5.11. As expected, the former contains two points while

the latter contains only one. We see now that as τ1 is increased from 0 to 1, the number

of transition lines changes many times with new phases appearing and annihilating one
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Figure 5.13: Phase transition line at λ̃τ2
2 ∼ O(1) at weak coupling and some of its images

under modular transformations.

another. In particular, the transition present in figure 5.10 that is absent in figure 5.11

annihilates against a transition that emerges from τ2 = 0 at infinitesimal τ1. To be sure,

the structure is quite a bit more intricate than one might have naively thought.

Strong coupling

In the strong coupling limit, we proceed as in our study of the supersymmetric

theory on rectangular tori and use the SUGRA approximation (5.83). The relevant geometry

continues to be of the form (5.80) but we must be particularly careful when matching the

torus at infinity with that of the Yang-Mills theory (5.77). In particular, we must naively

include not only SUGRA solutions with a torus of modular parameter τ equivalent to that

of the gauge theory, but also all solutions with tori related to this one by an SL(2, Z)

transformation since these differ from the Yang-Mills torus only by what cycles we think of

as being the fundamental ones.

To enumerate all of the terms that contribute, it suffices to consider all possible

cycles of the Yang-Mills torus that can be identified with the Euclidean time circle of the
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SUGRA solution. The only constraint is that the corresponding cycle must have antiperiodic

fermion boundary conditions to be consistent with the fact that the thermal circle contracts

in the bulk. The boundary conditions of a cycle (p, q) of the Yang-Mills torus are completely

determined by our choice of antiperiodic fermion boundary conditions for the (1, 0) and (0, 1)

cycles, though, so this condition amounts to the requirement that p + q is odd. Combining

this with the further requirement that p and q are coprime, which avoids overcounting of

identical cycles, we have thus enumerated all geometries of the form (5.80) that contribute

to the sum (5.83).

From this discussion, we see that the partition function of the Yang-Mills theory

at strong coupling gets contributions from infinitely many terms 7, each of which we expect

to contribute with action proportional to N2. Consequently, we expect the sum to be

dominated by a single term with the possibility of phase transitions as parameters are varied.

We can determine which term dominates for a given choice of parameters by comparing

the Euclidean actions of the various geometries that contribute. In particular, consider

two terms in the sum corresponding SUGRA solutions with modular parameters τ and τ ′

when thinking of the Euclidean time circle as the (1, 0) cycle8. The difference between the

Euclidean actions of these solutions is straightforward to evaluate, up to the divergence

issues discussed in sections 5.6.1 and 5.6.2 [84]

S(τ)− S(τ ′) ∼
(
τ
′ 3/2
2 − τ

3/2
2

)
(5.96)

From this, we see that the geometry with the largest value of τ2 dominates the

sum. To get a feel for what this means, note that the geometry with τSUGRA = τY M ,

corresponding to the (1, 0) cycle of the Yang-Mills torus contracting in the bulk, dominates
7Note that, as mentioned there, we omitted a number of terms in the analagous discussions of sections

5.6.1 and 5.6.2. The analysis that follows justifies this assumption.
8The parameters τ and τ ′ here are of course necessarily related to the modular parameter of the Yang-

Mills torus by an SL(2, Z) transformation.
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Figure 5.14: Conjectured phase boundary separating regions with tr (V ) vanishing and
nonvanishing within the fundamental domain.

throughout region I of figure 5.12. Since τ2
1 + τ2

2 > 1 there, the contracting cycle is the

shorter of the two fundamental cycles. This generalizes the result for rectangular tori that

the smaller of the two cycles shrinks in the bulk.

We can now use modular invariance to extend this result to the full τ plane. In

particular, we see that the dominant geometry in any image of the fundamental domain

is that for which the image of the (1, 0) cycle contracts in the interior. As a result, the

boundaries of fundamental domains correspond precisely with the phase transition lines!

This generalizes the transition line r1 = r2 that we found at strong coupling in section 5.6.1

for the theory (5.77) on a rectangular torus with antiperiodic fermion boundary conditions

along both cycles.

Of course, as discussed in section 5.6.2, we must be careful about where on the τ
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plane the SUGRA approximation is valid. Indeed, we know that it must break down for a

part of the τ1 = 1 line where, as we saw, the physics is captured by the T-dual D0-brane

solution that exhibits a GL instability. Finding an explicit expression for the extension of

this phase transition line away from τ1 = 1 is a difficult problem but its qualitative form is

reasonably clear. We attempt to depict this situation in figure 5.14, which illustrates the

phase transition surface associated to the matrix V in the fundamental domain. That part

of the surface along the boundary of the fundamental domain corresponds to the transition

at which tr (V ) becomes nonzero and tr (U) vanishes. That part of the surface within the

fundamental domain itself corresponds to an extension of the GL transition line along which

only tr (V ) becomes nonzero while tr (U) remains unchanged.

5.7 Summary

In this chapter, we have seen that Yang-Mills theories on tori admit a very rich

phase structure of which the region relevant for GL physics is but a small part. Un-

fortunately, a constant theme throughout most of our analysis has been the inability to

analytically probe the most interesting regions of the phase diagram directly. However,

the numerics of section 5.3.3 combined with our enlargement of the parameter space via

scalar masses to include more analytically tractable regions has led to the development of

an intricate picture that is fully self-consistent. In the end, we have identified a series of

transitions that can be interpreted for at least some values of parameters deconfinement in

a dimensionally reduced theory. The GL transition itself, for instance, corresponds to the

confinement/deconfinement transition of bosonic 0+1-dimensional gauged matrix quantum

mechanics.



Appendix A

Counting states in U(N) gauge

theories

In this appendix we derive the precise formula (3.9) for the counting of gauge-

invariant states in a large N theory with adjoint fields, and we discuss the single-particle

partition functions for theories on a sphere with various field contents.

A.1 Counting gauge-invariant states precisely

In order to count the number of independent operators corresponding to traces of

products of fields in the large N limit, we wish to count the number of different arrangements

of objects subject to an identification of arrangements related by a cyclic permutation. This

can be done using Polya’s theorem [34, 92]

Consider a set of m types of objects, and associate a weight xi with each of these

objects. The weight associated with a collection of these objects is simply the product of

the weights associated with each of the individual objects. Polya solved the general problem

of summing over weights for all sets of k of these objects, two sets being treated as identical

142
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if they are related to each other under the action of a specified subgroup of the permutation

group. The subgroup relevant to us is simply the cyclic subgroup of order k; we will state

Polya’s result for this case. Define the polynomial

pk(y1, y2, . . . , yk) =
1
k

∑
π

y
n(π)1
1 y

n(π)2
2 . . . y

n(π)k

k (A.1)

where the summation in (A.1) runs over all elements π of the cyclic subgroup, and

n(π)i is the number of cycles of length i in the permutation π. The answer to the question

addressed earlier in this paragraph is simply

pk(
m∑

i=1

xi,
m∑

i=1

x2
i , . . . ,

m∑
i=1

xk
i ) (A.2)

Applying this result to our problem, we find that the large N partition function

of single-trace states with k oscillators is precisely given by

Zk = pk(z(x), z(x2), z(x3), · · · , z(xk)) (A.3)

where, as in section 3.2, z(x) is the single-particle partition function. This implies

that

ZST =
∞∑

k=1

pk(z(x), z(x2), z(x3), · · · , z(xk))

=
∞∑

k=1

1
k

k∑
l=1

z(x)n(k,l)1z(x2)n(k,l)2 · · · z(xk)n(k,l)k

(A.4)

where n(k, l)q refers to the number of cycles of length q in the cyclic permutation

by l shifts of k objects.

It is easy to convince oneself that for specific values of k and l, n(k, l)q is non-zero

for only one value of q. At that value of q it is given by G(l, k), the greatest common divisor
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of l and k. It then follows that the q for which n(k, l)q is non-zero is given by q = k/G(l, k).

Consequently, (A.3) may be rewritten as

ZST =
∞∑

k=1

1
k

k∑
l=1

z(xk/G(l,k))G(l,k) (A.5)

We now group together all terms with the same (fixed) q = k/G(l, k), so that

k = G(l, k)q. Denoting j = G(l, k), we change the sum over l and k to a sum over j and

q, where each term appears once for every l ≤ jq such that G(l, jq) = j. The number of

such l’s is precisely ϕ(q), the number of positive integers which are not larger than q and

are relatively prime to q. Thus, we obtain

ZST =
∞∑

j=1

∞∑
q=1

ϕ(q)
jq

z(xq)j = −
∞∑

q=1

ϕ(q)
q

ln(1− z(xq)) (A.6)

as in (3.9).

A.2 Evaluating single-particle partition functions on spheres

Next, we turn to a different topic which is the evaluation of the single-particle

partition functions for d-dimensional field theories compactified on Sd−1 × R, with unit

radius for Sd−1. This may be carried out directly by noting that the Laplacian on the

sphere (or the spatial parts of the other wave operators corresponding to particles with

spin) may be written directly in terms of angular momentum generators, which may be

diagonalized in the usual way.

Alternatively, since free field theories are conformally invariant, and we are in-

terested in conformally coupled fields (though it is easy to generalize our results also to

other cases), we can use the conformal transformation that relates Sd−1 × R to Rd. This

transformation takes states of the field theory on Sd−1 × R to local operators on Rd, with
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the energy of the state becoming the scaling dimension of the operator. Thus, an equivalent

way to define the partition function in such a case is by z(x) =
∑

local operators
x∆, where ∆

is the scaling dimension of the operator.

We begin by considering a free scalar field φ. The local operators in the theory are

φ, ∂iφ, ∂i∂jφ, and so on, modulo the equation of motion. Ignoring the equation of motion

for a moment, these operators are all generated by repeated application of the d different

derivative operators ∂1, ∂2 . . . ∂d, each of which is of unit dimension and so has the partition

function 1
1−x , on the free field φ of dimension (d/2− 1). Multiplying the various partition

functions we find

z′S(x) =
x

d
2
−1

(1− x)d
(A.7)

In order to obtain zS(x) we must subtract from this the partition function for

operators that vanish by the equation of motion ∂2φ = 0. Such operators are generated

by acting with an arbitrary number of derivatives on ∂2φ, so their partition function is

x2z′S(x). Thus, we find

zS(x) = (1− x2)z′S(x) =
x

d
2 + x

d
2
−1

(1− x)d−1
(A.8)

As a check, we note that in d = 4 the operators that we get by acting with k

derivatives are in the kth traceless symmetric representation of SO(4) which has j1 = j2 = k
2 ,

and they have dimension ∆ = k+1. These are simply the scalar spherical harmonics on S3.

This implies that the number of operators of dimension ∆ is nS(∆) = (2j1+1)(2j2+1) = ∆2,

consistent with the Taylor expansion of (A.8) for d = 4.

Next, we turn to the free vector field. The number of gauge-invariant operators is

independent of the gauge, so we can fix an arbitrary gauge for the counting. We will use

the gauge A0 = 0 on Sd−1 × R, which becomes the gauge xµAµ = 0 after the conformal
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transformation to Rd (recall that, according to the state-operator map, all operators are to

be evaluated at x = 0). Differentiating the gauge condition at the point x = 0 we find the

relations

Aµ = 0 ∂µAν + ∂νAµ = 0 . . . ∂{i1∂i2 . . . ∂inAin+1} = 0 . . . (A.9)

where the brackets {} denote symmetrization. To start with we ignore both (A.9)

and the equation of motion – this leads to a single-particle partition function z′V (x) =

x2− d
2 dz′S(x) (since the gauge field must have scaling dimension one in any space-time di-

mension). Operators of dimension ∆ that are set to zero by (A.9) are given by symmetric

tensors of rank ∆; based on the previous paragraph the corresponding partition function is

x1− d
2 z′S(x)− 1, where the last subtraction comes because there are no tensors of rank zero

in (A.9). With the condition (A.9), the Maxwell equation (at x = 0) simply reduces to

∂2Aµ = 0. The number of independent operators set to zero by the equation of motion is,

therefore, counted by dx4− d
2 z′S(x). Finally, the number of operators set to zero by both the

constraint (A.9) and the equation of motion is encoded in the partition function x5− d
2 z′S(x).

Putting it all together, using (A.7), we find

zV (x) =
dx

(1− x)d
− 1

(1− x)d
− dx3

(1− x)d
+

x4

(1− x)d
+ 1

= 1− (1 + x)(1 + x2 − dx)
(1− x)d−1

(A.10)

As a check, we note that in four dimensions, the set of operators formed by acting

with k derivatives on Aµ, obeying (A.9) and the equation of motion, transform in the SO(4)

representation (j1, j2) = (k+1
2 , k−1

2 )⊕ (k−1
2 , k+1

2 ). These are the vector spherical harmonics

on S3. It follows that the number of operators at dimension ∆ is nV (∆) = 2(∆2 − 1),

consistent with (A.10).
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Finally, we turn to free fermions. For concreteness we work in even dimensions

with complex spinors of no chirality restrictions. Such a spinor has 2
d
2
+1 real components.

Ignoring the equation of motion, the partition function for spinors is z′F (x) = 2
d
2
+1√xz′S(x).

The partition function that counts the operators which are set to zero by the Dirac equation,

is 2
d
2
+1x

3
2 z′S(x). Subtracting the second from the first we find

zF (x) =
2

d
2
+1x

d
2
− 1

2

(1− x)d−1
(A.11)

Of course, (A.11) should be divided by two for chiral spinors or real spinors, and

by four for spinors that are both chiral and real. As a check on (A.11), note that, in d = 4,

the operators made from a complex chiral fermion field, at dimension k + 1
2 , transform in

the SO(4) representation with (j1, j2) = (k
2 , k−1

2 ); there are 2k(k + 1) such operators (the

factor of 2 is because the spinors are complex), in agreement with (A.11).

Note that each of (A.8), (A.10), and (A.11) tends as x → 1 (the high temperature

limit) to

z(x) → 2N dof

(1− x)d−1
(A.12)

where N dof is the number of physical real degrees of freedom in the corresponding

field.

The formulas in this section, used for d = 4, imply the formula (3.4) of section

(3.2).



Appendix B

Detailed Study of some Unitary

Matrix Models

In this appendix, we study some of the unitary matrix models that arise in the

study of Yang-Mills theories on S3.

B.1 The Free Yang-Mills Matrix Model

We begin with the matrix model (3.25) describing the thermal partition function

of a free Yang-Mills theory with matter content encoded in the letter partition function

z(x) (3.3), which we take to contain only bosonic fields for simplicity. We begin with the

expression (3.54) for the partition function as an integral over eigenvalues

Z =
∫ ∏

k

dαk

∏
i<j

sin2

(
αi − αj

2

)
exp

∑
n

∑
i,j

1
n

z(xn)ein(αi−αj)

 (B.1)

We seek to study this system near the critical point xH . Because the first moment

ρ1 becomes tachyonic there while the others remain massive, it is reasonable to expect that
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the physics in this regime is well described by a truncated model in which we drop all terms

in the sum over n with n > 1. We will later justify this approximation by demonstrating

that for x sufficiently close to xH , the expectation values of these terms are all negligible.

With this assumption, we are led to consider the reduced model

Z =
∫ ∏

i

dαi exp

∑
i6=j

ln
∣∣∣∣sin(αi − αj

2

)∣∣∣∣+ z(x)
∑
i,j

ei(αi−αj)

 (B.2)

The saddle point equations of this model are easily determined to be

∑
j

cot
(

αi − αj

2

)
= 2Nρ̃1z sin αi (B.3)

where we have defined ρ̃1 as

ρ̃1 =
1
N

∑
j

eiαj (B.4)

and implicitly assumed that it is real. In actuality, this isn’t much of an assumption

since if ρ̃1 is not real to begin with, we can make it real with a U(1) transformation of the

form described in section 3.3.1. Introducing an eigenvalue density ρ(α) as usual, we can

write the saddle point condition as a series of two equations

2ρ̃1z sinαi =
∫

dx ρ(x) cot
(

αi − x

2

)
ρ̃1 =

∫
dx ρ(x) cos x

(B.5)

Expressing the problem in this manner greatly simplifies our life because the first

of the equations (B.5) is the saddle point condition for a unitary matrix model of the Wilson

type

∫
dU exp

{
N

λ
tr
(
U + U †

)}
(B.6)
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which has been solved before by Gross and Witten [93] and Wadia [94, 95]. The

solution for ρ(x) takes the form

ρ(x) = 1
2π

(
1 + 2

λ cos x
)

λ ≥ 2 (B.7)

= 2
πλ cos

(
x
2

)√
λ
2 − sin2 x

2 λ ≤ 2 (B.8)

where

λ =
1

ρ̃1z
(B.9)

We can now determine when the solutions (B.8) and (B.7) are saddle points for

our reduced model (B.2) by studying when they also solve the second equation in (B.5).

Before doing this, though, let us comment for a moment about the form of the

solutions (B.8) and (B.7). The first (B.7), valid for λ ≥ 2, is a nonuniform distribution

corresponding to turning on the moment ρ1 only. It vanishes only at isolated points on

the circle. On the other hand, the second solution (B.8), valid for λ ≤ 2, corresponds to

turning on infinitely many of the moments ρn. The distribution is clumped in the sense

that it vanishes over a finite range on the circle. As λ approaches 2, the clump widens until

eventually the gap over which the density vanishes closes to zero size.

It is easy to verify that, for λ ≤ 2 the GWW solution (B.8) is a saddle point of

our reduced model (B.2) provided

λ = 2

(
1−

√
1− 1

z(x)

)
(B.10)

We thus see that for z(x) ≥ 1, the clumped distribution is a saddle point for our

model. Evaluating the partition function on this saddle yields
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lnZ = N2

(
1
λ

+
1
2

ln
(

λ

2

)
− 1

2

)
(B.11)

We see from this that the free energy vanishes at z(x) = 1 while becoming negative

and scaling as O(N2) for z(x) > 1.

On the other hand, for λ ≥ 2 the second condition (B.5) leads to the requirement

z(x) = 1 (B.12)

Consequently, we have no consistent GWW saddle points for z(x) < 1. This isn’t

surprising, though, as we expect the system there to be dominated a saddle point config-

uration that we have neglected to include in our analysis above: the uniform distribution.

The free energy in this regime scales as O(N0) at large N as usual.

What we have seen here is that our reduced model exhibits precisely the behavior

we expected of the full system. For temperatures sufficiently small that z(x) < 1, the

uniform distribution dominates and the model is confined. For temperatures sufficiently

large that z(x) > 1, the free energy is proportional to N2 as the model is deconfined. In

this simplified model, though, we have an explicit expression for the eigenvalue distribution

in the high temperature phase. It is simply the GWW clumped distribution.

While we don’t expect this distribution to describe the high temperature phase of

the full model, it gives a reasonable approximation to the true distribution near the critical

point since, by taking z(x) arbitrarily close to 1 we can make the expectation values of the

higher moments ρn as small as we like. Indeed, the nonuniform solution at z(x) precisely

equal to 1 is an exact saddle point of both the reduced and the full models.

It is actually possible to do better than this. As discussed in [6], the saddle

point conditions for the full matrix integral (3.25) can be related to those of a model that

generalizes (B.6)
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∫
dU exp

{
−N

∞∑
n=1

anρn

n
tr
(
Un + U †n

)}
(B.13)

which has also been solved exactly [96]. The consistency equations that relate

the couplings an to properties of z(x) are quite complicated in this case, but it is possible

to find a systematic expansion for the dominant eigenvalue distribution above the critical

temperature TH in powers of T − TH . For details, the interested reader is referred to [6]

B.2 The Effective Model at Weak Coupling

The second model that we study in this appendix is the Landau-Ginzburg model

(3.62) that we wrote in section 3.5 to describe the physics near the critical point for small

nonzero coupling. Expressed as a unitary matrix integral, it takes the form

Z =
∫

dU exp
{
−
(
|tr (U)|2

(
m2

1 − 1
)

+
b

N2
|tr (U)|4

)}
(B.14)

We now seek to study the phase structure of (B.14) as a function of m1 and b. Of

course, in the Yang-Mills theory these will themselves be potentially complicated functions

of x and λ.

To study this model, we can proceed exactly as in the analysis of the truncated

model. In particular, we rewrite Z as an integral over eigenvalues, obtain saddle point

equations, and write them in terms of the quantity ρ̃1 defined as in (B.4). The key point

here is that the action is a polynomial in tr (U) and tr (U−1) only, the resulting saddle point

equation is identical to the first equation of (B.5) with λ this time being given in terms of

the parameters of the model as

λ−1 = ρ̃1

(
1−m2

1 − 2bρ̃2
1

)
(B.15)
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Note that at b = 0, this reduces to (B.9) as it should.

We thus see that the candidate eigenvalue densities are again the uniform distri-

bution and GWW solutions (B.8) (B.7) with λ determined from m1 and b by (B.15). As

before, these distributions are actual saddles of the model in question (B.14) provided they

satisfy the self-consistency condition

ρ̃1 =
∫

dθ ρ(θ) cos θ (B.16)

We now study each of the three possible phases in turn. The first possibility is

the uniform distribution, on which the free energy vanishes at order N2. We expect this

distribution to describe a local minimum when the mass m2
1 of the mode ρ1 is positive.

We next turn the solution (B.7), which we refer to as the nonuniform distribution.

The conditions (B.15) and (B.16) combine to imply that this is a true saddle point only

when

ρ̃2
1 = −m2

1

2b
(B.17)

and

λ−2 =
∣∣∣∣m2

1

2b

∣∣∣∣ (B.18)

Using these equations and the fact that λ ≥ 2 for the nonuniform distribution, we

see that it is a viable saddle point precisely when

b > 0 and − b

2
≤ m2

1 ≤ 0 (B.19)

or
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b < 0 and 0 ≤ m2
1 ≤ −

b

2
(B.20)

The free energy evaluated on the nonuniform distribution is given by

F (T ) = −N2Tm4
1

4b
(B.21)

so that it is positive for b < 0 and negative for b > 0. Comparing with the

vanishing free energy of the uniform distribution , we see that the nonuniform phase is

subdominant when it exists for b < 0 and dominant when it exists for b > 0. There is a

phase transition when it takes over for the uniform phase at m2
1 = 0 that, because m2

1 is

quadratic in (T − TH) near the critical point, is of second order.

We now move on to the solution (B.8), which we refer to as the clumped distribu-

tion. The analog of (B.18) in this case is

ρ̃1 = 1−
[
4
(
ρ̃1(1−m2

1)− 2ρ̃3
1b
)]−1 (B.22)

Once ρ̃1 is known, the free energy evaluated on this saddle is then determined to

be

F (T ) = N2T

[(
m2

1 − 1
)
ρ̃2
1 + bρ̃4

1 +
1
4
− 1

2
ln (2(1− ρ̃1))

]
(B.23)

Using (B.22), it is straightforward to check that the clumped distribution is a

viable saddle point whenever

m2
1 < − b

2
(B.24)

Moreover, when m2
1 = − b

2 , the value of ρ̃1 is 1
2 . This is interesting because it

is the same value for ρ̃1 that we find from (B.18) in the nonuniform phase. In fact, the
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two distributions completely agree at this point. For b < 0, neither phase exists for m2
1 >

| b2 | and both are subdominant to the uniform phase near their appearance at m2
1 = | b2 |.

We thus interpret m2
1 = | b2 | as the nucleation point of two subdominant saddles. Using

the expressions (B.21) and (B.23), it is possible to demonstrate that the free energy of

the clumped distribution decreases while that of the nonuniform distribution increases.

Eventually, the former becomes negative and a first order phase transition is triggered.

For b > 0, the nonuniform phase exists and dominates for m2
1 > − b

2 while the

clumped phase exists and dominates for m2
1 < − b

2 . What is apparently happening here

then is a transition between two dominant phases. To determine the order, one need only

study the free energies (B.21) and (B.23) in the vicinity of this point. Expanding in powers

of y = −m2
1− b

2 , we find that the free energy of the clumped distribution takes the form [6]

F (T ) = N2T

[
−m4

1

4b
+

1
6b3

y3 +O(y4)
]

(B.25)

Comparing with (B.21) and using the fact that y is linear in temperature, we

conclude that the transition that occurs at m2
1 = − b

2 is of third order.

The picture that has emerged is precisely that of section 3.5 from the heuristic

analysis of the effective potentials plotted in figures 3.2 and 3.4. For b > 0, we have seen

that the new minimum emerging from the origin corresponds to the nonuniform GWW

distribution (B.7). Moreover, we have demonstrated explicitly that this happens via a

second order phase transition. We have also seen that when this minimum reaches the

boundary, it undergoes a third order transition to a phase corresponding to the clumped

GWW distribution (B.8).

For b < 0, we have seen explicitly that at a positive value of the ρ1 mass m2
1, a

stable and unstable phase are nucleated corresponding to the new minimum and maximum

that arise in the effective potential. The unstable phase at the maximum corresponds to the
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nonuniform GWW distribution (B.7) while the stable one at the minimum corresponds to

the clumped GWW distribution of (B.8). Eventually, the clumped distribution dominates

the uniform one and a first order phase transition occurs.
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