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Abstract
Machine Learning (ML) techniques are widely used in

science and industry to discover relevant information and
make predictions from data. The application ranges from
face recognition to High Energy Physics experiments. Re-
cently, the application of ML has grown also in accelerator
physics and in particular in the domain of diagnostics and
control. The target of this paper is to provide an overview
of ML techniques and to indicate beam diagnostics tasks
where ML based solutions can be efficiently applied to com-
plement or potentially surpass existing methods. Besides, a
short summary of recent works will be given demonstrating
the great interest for use of ML concepts in beam diagnos-
tics and latest results of incorporating these concepts into
accelerator problems, with the focus on beam optics related
applications.

MOTIVATION
Traditional optimization tools demonstrate successful per-

formance in applications on linear optics corrections and
problems with limited amount of optimization targets [1–6].
Bigger challenges emerge when diagnostics of complex non-
linear behavior is required and several variables have to be
taken into account as final objective. The amount of time
and computational power required by traditional methods
might become unacceptable for future accelerator facilities.
ML is well known for surpassing human performance in

some specific tasks such fraud detection, forecasting of mar-
ket trends and risks, online recommendations, recognition of
voice and images and in general in discovering correlations
in large scale data sets. Most of these tasks can find analo-
gies in beam control and diagnostics. For example, anomaly
detection methods applied for fraud detection can be used
to detect defects in the instrumentation and forecasting tech-
niques can be transferred to predict beam behavior during
operation.
Free Electron Lasers (FEL) problems for optimization

and diagnostics have to deal with non-linear, multi-objective
functions which depend on thousands of time-varying ma-
chine components and settings. These properties meet the
limitations of traditional optimization methods and make
this problem a perfect candidate for application of ML-based
techniques. The main limitation of traditional optimization
methods is that the objective function or specific rules and
thresholds have to be known. ML methods can learn from
given examples without requiring explicit rules.

∗ elena.fol@cern.ch

RELEVANT MACHINE LEARNING
CONCEPTS

ML techniques aim to build computer programs and algo-
rithms that automatically improve with experience by learn-
ing from examples with respect to some class of task and per-
formance measure, without being explicitly programmed [7].
Depending on the problem and existence of learning exam-
ples, different approaches are preferred. If pairs of input and
desired output are available, an algorithm can generalize the
problem from the given examples and produce prediction for
unknown input. ML algorithms that learn from input/output
pairs are called supervised learning algorithms. Opposite to
supervised learning, unsupervised learning algorithms solve
the tasks where only input data is available. Unsupervised
learning is suitable for the problems such anomaly detection,
signal denoising, pattern recognition, dimensionality reduc-
tion and feature extraction. In the following a brief overview
on significant machine learning concepts that can be used as
supervised as well as unsupervised approaches is presented.
We also give a short introduction to Reinforcement Learn-
ing - ML technique which recently became of great interest
especially for control tasks.

Artificial Neural Network
Artificial Neural Networks (ANNs) are well suited for

learning tasks, where data is represented by noisy, complex
signals and the target output function may consist of several
parameters. A basic ANN consists of a single processing
unit (neuron), that takes the weighted inputs and an addi-
tional activation function to introduce the nonlinearity in
the output. For more complex practical problems, ANNs
are composed of several interconnected hidden layers with
multiple neurons stacked. ANNs can be used for both regres-
sion and classification problems. In case of classification
the output can be either a class label or a probability of
an item belonging to a class. The learning of ANN is per-
formed using backpropagation algorithm [8] on a set of
examples. For each example the training algorithm com-
putes the derivatives of the output function of the network.
The obtained gradients with respect to all weights are then
used to adjust the weights in order to achieve a better fit to
the target output. In backpropagation stochastic gradient
descent or one of its improved extensions [9,10] is applied as
optimization method in order to minimize the loss between
the network output values and the target values for these
outputs by updating the connection weights. ANNs with
many hidden layers called deep neural networks are able to
use fewer neurons per layer and have a better generalization
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ability [11], however the optimization of the structure and
training of these networks is not trivial. There are no strict
rules for building ANN architecture (number of neurons,
layers, initial weights) as it usually heavily depends on a
particular problem. However, techniques to adjust the ar-
chitecture parameters exist. A detailed overview on various
ANN architectures and training methods and their suitability
for different applications can be found in [12–14].

Decision Trees and Ensemble Methods
Decision tree learning is a method for approximating

discrete-valued target functions, which are represented by
decision trees. Considering the case of classification, deci-
sion trees sort down the input instances from the root to leaf
nodes. Usually, the splitting is based on one of the input
parameters or a specified set of splitting criteria [15, 16].
Each leaf corresponds to one class representing the most
appropriate class label. For regression problems the leaf
nodes correspond to an approximation of target values.

Using a single tree, amodel might not be able to generalize
and perform poorly on unexplored sample. One possible
solution to overcome this problem is to build ensembles of
trees [17]. By training several slightly different models and
taking the average prediction, the variance of the model can
be reduced.

Compared to ANNs, decision trees are simpler to interpret
and to understand its way of obtaining the final results and
the underlying process, e.g through the feature importance
analysis. Feature importance analysis helps to understand the
contribution of each input parameter to the decision during
the training process. The ability of decision trees to evaluate
the importance of input parameter is a significant advantage
of these algorithms. Knowing the importance of the features
we can reduce the model complexity and simplify the data
preprocessing steps without significant accuracy loss.

Clustering
Cluster analysis includes methods of grouping or separat-

ing data objects into clusters, such that dissimilarity between
the objects within each cluster is smaller than between the
objects assigned to different clusters [18, 19]. Cluster analy-
sis is used in a wide range of applications. Data clusters can
be considered as a summarized representation of the data,
such that group labels can describe patterns or similarities
and differences in the data. Moreover, clustering can be
used for prediction, such that classification of unseen data
is performed based on knowledge about the properties of
present data and by evaluating their similarity to the incom-
ing data sample. The significant benefit of cluster analysis
is the unsupervised learning approach, which means that no
labeled data is needed to find a solution.
The simplest and the most commonly used clustering

algorithm is k-means [20], which is based on centroid search.
Another kind of clustering algorithms are the density-based
algorithms such DBSCAN [21], that views clusters as areas
of high density separated by areas of low density, instead of
looking for the centroids. Decision tree based methods also

can be applied for cluster analysis using the data splits based
on different features. Most of cluster analysis techniques
allow to build clusters in a multidimensional space.
Apart from classification and pattern recognition, clus-

ter analysis can be used as denoising method looking for
abnormalities in the signal. Moreover, building clusters com-
bining a large set of different observables can simplify the
data visualization and manual analysis, such elimination of
outliers in the measurements and detection of anomalies.

Reinforcement Learning
The concept of Reinforcement Learning (RL) is based

on environment-agent interaction [22]. The agent takes an
action on the environment, and the environment reacts pro-
ducing a reward, which is used by the agent to learn how
to improve its actions. The approach does not require an
existing data set consisting of input-output pairs, instead the
agent is learning based on the continuous interaction with
the environment which is varying depending on the action
and its own dynamics. Considering this learning principle,
RL can be applied to unstable, time-varying problems since
the agent should be able to adjust its action to the changes
of the response from the environment. The ability of RL
techniques to be applied on time-varying unknown dynamics
makes this approach particularly appealing for the control
and optimization of accelerator components. Recent ad-
vances on RL application on accelerator control tasks can
be found in [23].

OVERVIEW ON CURRENT
APPLICATIONS

In the following we demonstrate some ML applications
currently being used in accelerator technology and ongo-
ing research on potential ML based approaches. An earlier
overview on previous works related to beam diagnostics can
be found in [24], for a wider overview on opportunities in
ML for particle accelerators see [25–27].

Virtual Diagnostics
Various instruments and diagnostics techniques are re-

quired in order to monitor the beam itself and variables
which affect its parameters. Virtual diagnostics can assist
in case a direct measurement would have a destructive im-
pact on the operation or in the locations where no physical
instrumentation can be placed. ML can provide techniques
to build such virtual beam diagnostics instruments. Simu-
lation studies and experimental demonstrations have been
carried out on FACET-II and Linac Coherent Light Source
(LCLS) to study ML-based longitudinal phase space (LPS)
prediction. Training data for a feed-forward ANN has been
acquired from a large number of simulations that represent
changes in LPS distribution as response to the change of
various accelerator parameters, as well as from the existing
measurements at LCLS. ML model demonstrates a good
agreement between the prediction and simulated or mea-
sured LSP images [28]. Another example is the estimation of
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oscillation amplitude and synchrotron damping time based
on LPS measurements at Shanghai Synchrotron Radiation
Facility (SSRF) [29]. Here, Gradient descent algorithm is
used to estimate the fitting parameters which are then used
as target variables in a supervised model. ANN is trained to
predict these values from longitudinal phase measurements
obtained from the Beam Position Monitors (BPM). Another
example from SSRF is a study on correlations between the
beam size and the images from multi-slit imaging system,
aiming to improve the accuracy of BPMs using ANN [30].
A special kind of ANN, convolutional neural networks

(CNN) [31] have been applied at FAST on image based
diagnostic during beam operation [32]. A combination of a
CNN and a feed-forward NN yields promising results for the
prediction of beam parameters on simulated data sets. The
model uses simulated cathode images, solenoid strengths and
the gun phase as inputs and produces a prediction for various
downstream beam parameters. Application of ANN can be
found also in correction of distorted beam profiled measured
at ionization profile monitors (IPM) [33]. ANN model has
been trained on IPM simulations in order to establish the
mapping between measured profiles together with bunch
length and bunch intensity to the original beam profile.

Optimization and Operation
ML methods are especially suited for non-linear and time-

varying systems with large parameter spaces. Operation
of a complex system such as an accelerator, whose beam
dynamics exhibits nonlinear response to machine settings
can be considered as a typical ML task. Due to the constant
increase of machine design complexity and development of
new interacting systems, traditional techniques might be-
come insufficient. Reinforcement learning demonstrates a
great ability to solve complex control tasks [23]. Recently, its
application has been studied on control tasks in the domain
of accelerators, e.g. for the control of the micro-bunching
instability at the KIT storage ring Karlsruhe Research Ac-
celerator (KARA) [34].
ANN based application has been successfully applied

at the LCLS to predict x-ray pulse properties by decoding
complex hidden correlations between parameters obtained
from slow diagnostics such as photon energy and properties
measured by fast diagnostics [35]. Another example is the
application of intelligent control techniques to maximize the
average pulse energy in FELs. The developed techniques
allow to tune up to 105 components simultaneously based
only on noisy average bunch energy measurements [36].

Beam Optics Correction
Attempts to build beam diagnostics and beam control sys-

tems using ML have been made already in the past decades
[37–39]. Despite the early stage of ANN technology at the
time, the obtained results have shown the potential of super-
vised learning solution to be applied in beam control tasks,
mainly for linear orbit correction.
Apart from supervised learning, optics correction can

be approached from a probabilistic point of view as it was

recently shown in [40]. In this example, the quadrupole error
distribution is fitted using Bayesian approach. Degeneracy
of error sources is solved by selecting non-correlated BPM
signals.

Supervised learning is being under study with two differ-
ent approaches for optics correction at the LHC aiming to
reduce optics errors by finding quadrupolar gradient errors.
In order to compute the corrections, measured data have to
be compared with the ideal optics design. The deviations
from ideal optics introduced by quadrupolar gradient errors
have to be compensated by applying corrections [41, 42].
In terms of machine learning, this task can be defined as a
regression problem.
In the first approach, simulations of randomly generated

errors in the quadrupoles powered in series (circuits) are
used as target values and the optics perturbation produced
by these errors is the input of the regression model. To cor-
rect the perturbed optics, the circuit errors predicted by the
trained regression model just have to be applied with the
opposite sign. However, under realistic conditions the errors
of every single magnet instead of circuits perturb the optics,
which has a different effect compared to the strength change
in the circuits. In case the objective is to obtain the circuits
settings to be implemented in the LHC, the optics functions
in the training data have to be perturbed by errors in circuits
in order to build input-output pairs required for supervised
learning approach. As input we use phase advance, beta
and normalized dispersion deviations from the ideal model
simulated as measurements at the BPMs, 2560 features in
total. The output variables are the values for the strength
change in the circuits (193 target variables). The simulated
phase advance measurements are given Gaussian noise rel-
ative to the

√
β - function at the location of the BPM. In

order to assert the ability of the model to correct the optics
under realistic conditions, an additional data set is generated
for the validation where the optics is perturbed by single
quadrupoles instead of circuits. As figures of merit we use
β-beating and the deviation of the normalized dispersion
to the ideal model after applying the obtained correction
values for the circuit strength. The comparison between dif-
ferent algorithms [43], shows that all appliedmodels perform
equivalently, therefore we chose Linear Regression imple-
mentation of Scikit-learn [44] for further studies since the
obtained model is easier to interpret and the training can be
performed significantly faster. The advantage of regression
model against currently used response matrix approach [45]
is the ability of extracting an average linear response over
the training population instead of only using the unperturbed
model and the response of a single observable to a strength
change in a single corrector. Despite the fact that the errors
of prediction on training and test set are acceptably small,
the predicted corrections are less effective on the validation
data which is perturbed with individual quadrupole errors.
Nevertheless, the ability of such a model to reduce the op-
tics perturbation to the level comparable with traditional
response matrix approach is clearly demonstrated and shows
the potential of ML-based optics correction.
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In the second approach we studied the ability of regression
models to address directly the single quadrupole errors. An-
other simulation dataset is generated in order to train a model
to predict the errors of each quadrupole from the phase, beta
and dispersion perturbations. Themodel achieves acceptably
high score for R2 coefficient which is defined as follows:

R2(y, ŷ) = 1 −
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(1)

where ŷi is the predicted value of the i-th sample, y is the
corresponding true value for n total samples and ȳ is the
mean of true values. The scores of the model are 0.98 and
0.86 for training and test data set respectively, it has to be
noted that the resulting difference between training and test
scores exhibits slight overfitting of the model. This issue also
explains the high relative error between true and predicted
values for the validation set (~20% ± 0.23). Identification
of magnet errors in a circular machine is known to be a
degenerate problem with multiple solutions. Despite this
limitation, the attempt to correct the optics using the ML-
model prediction yields impressive results. Figure 1 shows
correction results obtained with iterative response matrix
approach [46] and ML model using linear regression for 120
LHC simulations. The great correction results achieved with
ML model despite the relatively poor performance of the
model on the training and test sets can be explained with
the fact, that in order to correct the optics, it is sufficient to
find one of the multiple solutions which can compensate the
introduced optics perturbations fitted into the model.

High R2 score shows that the model can explain the vari-
ance of target values based on all features, but not all of the
features are significant to obtain the correct output. Reducing
the number of the features by selecting the least correlated
BPMs should improve the accuracy of model prediction,
prevent overfitting, as well as provide help to deal with the
degeneracy. Dimensionality reduction techniques already
demonstrated their potential for orbit correction, as well as to
be applied to dynamic aperture optimization [47]. Therefore,
the next steps of the study is the application of dimension-
ality reduction techniques, followed by the introduction of
non-linear error sources into the data sets and generalization
to different optics settings.

Instrumentation Fault Detection
Anomaly detection techniques are suitable for the detec-

tion of unusual events that do not conform to expected pat-
terns. They also can be used to identify outliers and remove
noise. Anomaly detection can be performed using classifi-
cation on labeled data (supervised learning), unsupervised
learning techniques including clustering or semi-supervised
learning methods such as autoencoder, a special ANN rep-
resenting the model trained on normal data set and then
detect the anomalies based on the value of the loss function
generated by the representative model on the given test sam-
ple [48]. An early example on anomaly detection in beam
diagnostics in storage ring is the application of ANN to pre-
dict the orbit at particular beam position monitor (BPM)
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Figure 1: Results on β-beating and normalized dispersion
deviation from ideal optics after applying linear regression
prediction of individual quadrupole errors (LR) and correc-
tions values for the circuits computed by response matrix
(RM). The figure shows rms distribution of 120 simulations.

based on measurements at other BPMs at the Pohang Light
Source [49]. A large deviation between measured and pre-
dicted orbit should mark malfunctioning BPM.
An example for anomaly detection using unsupervised

learning is the detection of faulty BPMs at the LHC [50,51].
This method recently became a standard part of optics mea-
surements at LHC and has been successfully used during
beam commissioning and machine developments for dif-
ferent optics settings in 2018. BPMs measure the beam
position at several turns around the machine. The optics
functions are then calculated from the harmonic analysis
of the turn-by-turn BPM readings. Most of the noise and
faulty signals can be removed using predefined thresholds,
as well as through applying advanced signal-improvement
techniques based on SVD [52] to reduce noise in BPM read-
ings. However few nonphysical values are usually observed
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in the optics computed from the data cleaned with these
techniques. These spikes have to be removed by manually
identifying the faulty BPMs, removing them from the har-
monic analysis data and repeating the optics analysis, which
requires human intervention and loss of valuable machine
development time.

Further issue is that the spike does not necessarily appear
directly at the location of the faulty BPM, due to the method
applied for the optics computation at the LHC [53,54], so
identification of actual BPM faults is not trivial. Moreover,
not all reasons for the appearance of BPM anomalies are
known, therefore we cannot define thresholds which would
indicate remaining faulty BPMs. Giving these constraints,
unsupervised learning appears as appropriate technique to
detect faulty BPMs prior to optics computations. The appear-
ance of outliers is challenging for the application of centroid
or distance based clustering methods. Instead, density-based
clustering methods such as DBSCAN and LOF [55] have
been applied, however Isolation Forest (IF) algorithm which
is a decision tree - based method [56] achieves the best re-
sults. Figure 2 shows a comparison between the beta-beating
reconstructed from the measurements before and after apply-
ing IF. It can be clearly observed that most of the remaining
outliers have been removed.
Since the knowledge about actual defective BPMs is not

available, the assessment of cleaning algorithms has to be
performed on simulations where the actual bad BPMs are
known and can be used as labeled data to evaluate the per-
formance of the method. The detailed description of this
simulations study can be found in [51]. The main challenge
of applying any cleaning methods on the measurements data
is, that depending on the chosen algorithm parameter, some
of the good BPMs can be wrongly identified as faulty. The
comparison of different anomaly detection methods applied
on the simulated BPM faults is demonstrated in Fig. 3. In
case of large machines such as the LHC equipped with hun-
dreds of BPMs, it is important to decrease the number of
faulty signal artifacts as much as possible, because a single
faulty BPM can affects the optics computation at multiple

0 5000 10000 15000 20000 25000
Longitudinal location [m]

0.2

0.1

0.0

0.1

0.2

x/
x

SVD SVD and Isolation Forest

IP2 IP3 IP4 IP5 IP6 IP7 IP8 IP1

Figure 2: The comparison between beta-beating computed
before and after IF cleaning demonstrates that IF anomaly
detection significantly reduces the number of nonphysical
spikes. The optics is computed for Beam 2 in horizontal
plane with β∗=50 cm.
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Figure 3: The comparison is carried out on 20 simulations
for each plane, the results are averaged. Each bar represents
the number of BPMs removed by the method. Dark frac-
tion corresponds to the number of removed BPMs that are
actually bad.

locations. The absence of few good BPMs that might be
caused by IF algorithm does not have a significant negative
effect since the optics computation can be propagated to the
next available BPM. Considering smaller machines, it is cru-
cial to keep as much BPM information as possible, removing
only critically erroneous signal. In this case, a method such
DBSCAN appears to be more appropriate since, as it was
shown on simulations [51], the method does not identify any
good BPMs as faulty, however a portion of bad BPMs is still
remaining in the measurement.

CONCLUSION
Typical characteristic of supervised ML tasks is the ability

to deal with large amount of structured data. This leads to
the conclusion that the implementation of supervised ML
solutions requires large existing training data sets or de-
velopment of appropriate data acquisition tools in order to
provide the data in "machine-understandable" format, which
is not necessarily available out-of-the-box since the tradi-
tional control systems usually imply human intervention.
The effort that has to be put on automation such as build-
ing data acquisition infrastructure and training of complex
models might be more costly and resources expensive than
traditional methods. On the other hand, automation of some
particular systems using ML as it was done for example, in
collimators alignment at LHC [57] is very effective and can
save operational resources.

The ability of unsupervised learning to discover unknown
patterns in the data is useful especially for anomaly detec-
tion tasks such as detection of instrumentation defects, e.g.
using clustering for faulty BPMs signal. Such methods can
be performed directly without training in arbitrary acceler-
ator systems. The optics correction results achieved with
supervised learning convincingly demonstrate the great po-
tential of this approach opening new opportunities for optics
control in current and future accelerators.
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