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Abstract
We study the redshift drift, i.e., the time derivative of the cosmological redshift in
the Lemâıtre-Tolman-Bondi (LTB) solution in which the observer is assumed to be
located at the symmetry center. This solution has often been studied as an anti-
Copernican universe model to explain the acceleration of cosmic volume expansion
without introducing the concept of dark energy. One of decisive differences between
LTB universe models and Copernican universe models with dark energy is believed to
be the redshift drift. The redshift drift is negative in all known LTB universe models,
whereas it is positive in the redshift domain z . 2 in Copernican models with dark
energy. However, there have been no detailed studies on this subject. In the present
paper, we prove that the redshift drift of an off-center source is always negative in
the case of LTB void models. We also show that the redshift drift can be positive
with an extremely large hump-type inhomogeneity. Our results suggest that we can
determine whether we live near the center of a large void without dark energy by
observing the redshift drift.

1 introduction

The standard cosmological model is based on the so-called Copernican principle that we are not located
in a special position in the universe. This model can naturally explain almost all observational data, and
consequently seems to imply that the Copernican principle is a reality. However, we should not blindly
rely on this principle without observational justifications. Here, we should note that it is not clear at
all how large the systematic errors would be in the determination of the cosmological parameters, if
the Copernican principle is abandoned. Thus, it is an unavoidable task in observational cosmology to
investigate possible “anti-Copernican” universe models and test if such models can be observationally
excluded.

Almost all anti-Copernican universe models are based on the Lemâıtre-Tolman-Bondi (LTB) solution
which describes the dynamics of a spherically symmetric dust. In order to check the LTB universe models
observationally, it is crucial to find observable quantities which can reveal differences between the LTB
universe models and Copernican universe models with the dark energy. One such quantity is believed to
be the redshift drift, i.e., the time derivative of the cosmological redshift [1]. In the case of the ΛCDM
model, which is the most likely Copernican model at present, the redshift drift is positive in the redshift
domain z . 2, since the cosmological constant Λ causes repulsive gravity. By contrast, there is no exotic
matter with the violation of the strong energy condition in the LTB solution. Thus, as long as there is no
highly inhomogeneous structure, the redshift drift might be negative in LTB universe models. Although
several authors have pointed out the importance of the redshift drift [1–4], there has been no detailed
study of its general behavior in LTB universe models. It is the purpose of this paper to investigate it.

In Sec. 2, we briefly review the LTB solution. In Sec. 3, we derive the equation for the redshift drift.
In Sec. 4, we define LTB void models and prove a theorem on the redshift drift in these models. In Sec. 5,
we show that the redshift drift can be positive even in an LTB universe model, if an extremely large
hump-type mass density distribution exists. Sec. 6 is devoted to the summary and discussion.

In this paper, we denote the speed of light and Newton’s gravitational constant by c and G, respec-
tively.
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2 the LTB solution

As mentioned in the introduction, we consider a spherically symmetric inhomogeneous universe filled
with dust. This universe is described by an exact solution of the Einstein equations, which is known as
the Lemâıtre-Tolman-Bondi (LTB) solution. The metric of the LTB solution is given by

ds2 = −c2dt2 +
(∂rR(t, r))2

1 − k(r)r2
dr2 + R2(t, r)dΩ2, (1)

where k(r) is an arbitrary function of the radial coordinate r. The matter is dust whose stress-energy
tensor is given by Tµν = ρuµuν , where ρ = ρ(t, r) is the mass density, and uµ is the four-velocity of the
fluid element. The coordinate system in Eq. (1) is chosen in such a way that uµ = (c, 0, 0, 0).

The circumferential radius R(t, r) is determined by one of the Einstein equations,
(

∂R
∂t

)2
= 2GM(r)

R −
c2kr2, where M(r) is an arbitrary function related to the mass density ρ by ρ(t, r) = 1

4πR2∂rR
dM
dr . M(r)

is known as the Misner-Sharp mass that is the quasi-local mass naturally introduced into the spherically
symmetric spacetime[5]. In this paper, we assume that the Misner-Sharp mass is a monotonically in-
creasing function of r in the domain of interest. This assumption is equivalent to the one that ∂rR is
positive if ρ is positive.

Following Ref. [6], we write the solution of Einstein equations in the form,

R(t, r) = (6GM)1/3[t − tB(r)]2/3S(x), x = c2kr2

(
t − tB
6GM

)2/3

, (2)

where tB(r) is an arbitrary function which determines the big bang time, and S(x) is an analytic function
in x < (π/3)2/3 (see Ref.[6] for the definition of S(x)).

As shown in the above, the LTB solution has three arbitrary functions, k(r), M(r) and tB(r). One
of them is a gauge degree of freedom for the rescaling of r. In this paper, since M is assumed to be a
monotonically increasing function of r, we can fix this freedom by setting M = 4

3πρ0r
3, where ρ0 is the

mass density at the symmetry center at the present time t0, i.e., ρ0 = ρ(t0, 0).

3 Equation for the redshift drift

In order to study the cosmological redshift and the redshift drift, we consider ingoing radial null geodesics.
The cosmological redshift z of a light ray from a comoving source at r to the observer at the symmetry
center r = 0 is defined by z(r) := kt (λ (r)) /kt (λ (0)) − 1, where kt is the time component of the null
geodesic tangent, and λ is the affine parameter which can be regarded as a function of r. From the
geodesic equations, we have the equation for the redshift z as

dz

dr
=

(1 + z)∂t∂rR

c
√

1 − kr2
. (3)

The null condition leads to
dt

dr
= − ∂rR

c
√

1 − kr2
. (4)

We denote the trajectories of light rays observed by the central observer at t = t0 and t = t0 + δt0,
respectively, by {

z = zlc(r; t0)
t = tlc(r; t0)

(5)

and {
z = zlc(r; t0 + δt0) =: zlc(r; t0) + δz(r)
t = tlc(r; t0 + δt0) =: tlc(r; t0) + δt(r) . (6)

Here, by their definitions, we have tlc(0; t0) = t0, zlc(0; t) = 0, δz(0) = 0 and δt(0) = δt0. Substituting
Eq. (6) into Eqs. (3) and (4), and regarding δz(r) and δt(r) as infinitesimal quantities, we obtain

d

dr
δz =

∂t∂rR

c
√

1 − kr2
δz +

(1 + z)∂2
t ∂rR

c
√

1 − kr2
δt,

d

dr
δt =

−∂t∂rR

c
√

1 − kr2
δt, (7)



462 Redshift drift in LTB universes

where we have used the fact that (5) satisfies Eqs. (3) and (4), and the arguments of ∂t∂rR and ∂2
t ∂rR

are t = tlc(r, t0) and r.
Hereafter, we consider the case where the cosmological redshift z is monotonically increasing with r.

We say that such a model is z-normal. Then, we replace the independent variable r by z = zlc(r; t0). By
using d

dr = dz
dr

d
dz = (1+z)∂t∂rR

c
√

1−kr2
d
dz , we have

d

dz
δz =

δz

1 + z
+

∂2
t ∂rR

∂t∂rR
δt,

d

dz
δt = − δt

1 + z
. (8)

We can easily integrate the above equation to obtain δt = δt0
1+z . By using the above result, we obtain

d

dz

(
δz

1 + z

)
=

1
(1 + z)2

∂2
t ∂rR

∂t∂rR
δt0. (9)

4 The redshift drift in LTB void models

We call an LTB universe model the LTB void model, if the following three conditions are satisfied. 1 the
mass density is non-negative; 2 the mass density is increasing with r increasing in the domain r > 0 on
a spacelike hypersurface of constant t; 3 ∂rR is positive; 4 z-normality.

Proposition 1 In LTB void models, ∂2
t ∂rR is negative.

Proof. By Einstein equations, we obtain

∂2
t ∂rR(t, r) = −G∂rM

R2
+

2GM∂rR

R3
= 4πG

∂rR

R3

(
−ρR3 + 2

∫ r

0

ρ(t, x)R2(t, x)∂rR(t, x)dx

)
. (10)

Since ∂rR is positive by the definition of LTB void models, we may replace the integration variable x by
R = R(t, x) and obtain

∂2
t ∂rR(t, r) = 4πG

∂rR

R3

(
−ρR3 + 2

∫ R(t,r)

0

ρR2dR

)
= −4πG

∂rR

R3

∫ R(t,r)

0

(
dρ

dR
R3 + ρR2

)
dR. (11)

Since dρ/dR = (∂rR)−1∂rρ is positive in the domain of R > 0, the integrand in the last equality of the
above equation is positive. Q.E.D.

Theorem In LTB void models, the redshift drift of an off-center source observed at the symmetry center
is negative.

Proof. Since the cosmological redshift z vanishes at r = 0, z is non-negative by the assumption of
z-normality. Further, the z-normality leads to ∂t∂rR > 0 through Eq. (3). Then, since δt0 > 0, we see
from Eq. (9) that Proposition 1 leads to the following inequality d

dz

(
δz

1+z

)
< 0. Since δz should vanish

at z = 0, we have δz < 0 for z > 0 from the above inequality. Q.E.D.

5 Redshift drift in LTB universe models with a large hump

In the preceding section, we showed that the redshift drift observed at the symmetry center is negative
for r > 0 in LTB void models. Conversely, if there is a domain in which the mass density is decreasing
with increasing r, the redshift drift might be negative. In this section, we show that it is true with
hump-type mass density distributions. We consider the following two LTB universe models, (i): k(r) = 0
and tB(r) = f(r; a, r1, r2) with a = −1.7H−1

0 , r1 = 0.12cH−1
0 and r2 = 0.9cH−1

0 , (ii): tB(r) = 0 and
k(r) = f(r; a, r1, r2) with a = −100c−2H2

0 , r1 = 0.1cH−1
0 and r2 = 0.2cH−1

0 , where f(r; a, r1, r2) = 0 for
r < r1, f(r; a, r1, r2) = a (r − r1)

3 (
r2
1 − 5r1r2 + 10r2

2 + 3r1r − 15r2r + 6r2
)
/(r2 − r1)5 for r1 ≤ r < r2

and f(r; a, r1, r2) = a for r2 ≤ r. In Figs.1 and 2, we show the redshift drifts of these models. Although
we do not show the energy densities of these models, a large hump in the mass density distribution exists
in each model as well as in tB(r) or k(r). Although there is a redshift domain with positive redshift drift
in each example, the distance-redshift relations of these models do not agree with the observational data,
and further, the inhomogeneities need to be very large.
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Figure 1: tB(r)(left panel) and δz/δt0(right panel) of the model (i).
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Figure 2: k(r)(left panel) and δz/δt0(right panel) of the model (ii).

6 summary and discussion

In this paper, we studied the redshift drift in LTB universe models in which the observer is located at the
symmetry center. We showed that, assuming that the mass density of the dust is positive, the redshift
drift of an off-center source is negative if the mass density and the circumferential radius are increasing
functions of the comoving radial coordinate. We also showed that if there is a very large hump structure
around the symmetry center, the redshift drift can be positive. As a result, by observation of the redshift
drift, we get a strong constraint on void-type universe models: if the redshift drift turns out to be positive
in some redshift domain, LTB void models can be rejected.
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