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1. Introduction

Scattering amplitudes of gluons in gauge theory can be computed straightforwardly using
Feynman diagrams. However, in practice this task becomes very difficult, for the number of Feyn-
man diagrams increases rapidly with the number of external gluons. For example, the number goes
from 4 diagrams in a 2→ 2 scattering to more than 107 diagrams in a 2→ 8 scattering process. For
reviews see [1] and [2].

In this talk I will present an alternative to Feynman diagrams introduced in [3] which uses as
vertices maximal helicity violating (or MHV) amplitudes [4][5]. Using a given set of amplitudes as
vertices serves as an effective resummation of Feynman diagrams which provides simple answers
with a relatively small number of diagrams. The new diagrams are called MHV diagrams.

The discovery of MHV diagrams was motivated by a new string theory on twistor space intro-
duced by Witten in [6]. The theory is based on the topological B model with target twistor space.
This model when enriched with D-instantons provides a description of the perturbation theory of
N = 4 super Yang-Mills1. At tree-level, amplitudes of gluons in N = 4 super Yang-Mills are the
same as amplitudes of gluons in QCD. The reason is that neither fermions not scalars can propagate
in the internal lines.

2. Tree-Level Amplitudes of Gluons

We will compute amplitudes of n-gluons at tree-level. Each external gluon carries the fol-
lowing information: {pµ,εµ,a}, i.e., momentum, polarization vector, and color index. Amplitudes
computed by a straightforward application of Feynman rules are given by very complicated results.
The main reason is the large number of invariant but redundant quantities one can built by com-
bining the data for each gluon. There are two main simplifications that lead to more manageable
expressions, they are known as the color decomposition and the spinor-helicity formalism. See [2]
for a recent review and references.

2.1 Color-Decomposition

The first step in simplifying the calculation of gluon amplitudes is to strip out the color struc-
ture. This can be achieved as follows,

Atree
n ({pµ

i ,ε
µ
i ,ai}) = ∑

σ
Tr(T aσ(1) . . .T aσ(n))Atree(σ(pµ

1,ε
µ
1), . . . ,σ(pµ

n,ε
µ
n))

where the sum is over all permutations σ of n gluons up to cyclic permutations. The amplitudes
on the right hand side are known as partial amplitudes. They are computed using color-ordered
Feynman rules.

2.2 Spinor-Helicity Formalism

The partial amplitudes Atree(σ(pµ
1,ε

µ
1), . . . ,σ(pµ

n,εµ
n)) can still be very complicated objects. The

reason is that there are many possible Lorentz invariant combinations of momenta and polarization

1It turns out that at one-loop, twistor string theory amplitudes of gluons contain superconformal gravity in addition
to N = 4 super Yang-Mills [7].
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Figure 1: Parke-Taylor amplitudes. From left to right: the first two, (a) and (b), vanish for any number of
gluons. The third kind, (c), is non-zero and is known as MHV amplitude.

vectors. The key to simplify this is to realize that in four dimensions, any null vector can be written
in terms of two spinors of different chirality. Consider for example the momentum of the ith gluon,
p2

i = 0, then pi
aȧ = λi

aλ̃i
ȧ. Likewise polarization vectors can be written in terms of spinors depending

on the helicity of the gluon,

ε(−i)
aȧ =

λ(i)
a µ̃ȧ

[λ̃(i), µ̃]
, ε(+i)

aȧ =
µa λ̃(i)

ȧ

〈µ, λ(i)〉
where µ and µ̃ are fixed reference spinors.

Now a given partial amplitude is simply specified by giving λ and λ̃ for each gluon and its
helicity. We denote this by An(1h1 , . . . ,nhn).

In the end, all amplitudes An(1h1 , . . . ,nhn) are given as rational functions in the natural inner
products of spinors of positive and negative chirality. Take for example the ith and the jth gluons
with pi = λiλ̃i and p j = λ jλ̃ j. The inner products of spinors are defined as follows: 〈λi,λ j〉 =
εabλa

i λb
j and [λ̃i, λ̃ j] = εȧḃλ̃ȧ

i λ̃ḃ
j . In terms of these one can write 2pi · p j = 〈i, j〉[i, j].

2.3 MHV Amplitudes

The complexity of the amplitudes depends very strongly on the helicity configuration. To see
this, consider the process where three negative helicity gluons scatter to produce n− 3 positive
helicity gluons (see figure 1a). Recall that in field theory it is useful to write amplitudes with all
legs outcoming, this means that the amplitude in figure 1a is given by A(1+,2+,3+,4+, . . . ,n+).
It turns out that these amplitudes all vanish. The next case is given in figure 1b, where one of the
external gluons has negative helicity, A(1−,2+,3+,4+, . . . ,n+); these also vanish. Next, consider
figure 1c, where two external gluons have negative helicity, say ith and jth gluons, then

A(1+,2+, . . . , i−, . . . , j−, . . . ,n+) = i
〈i j〉4

〈1 2〉〈2 3〉 . . .〈n−1 n〉〈n 1〉 . (2.1)

This surprisingly simple formula was conjectured by Parke and Taylor [4] and later proven by
Berends and Giele [5]. These are known as maximally helicity violating or MHV amplitudes. The
reason for this name should be evident at this point!

3. MHV Diagrams

The natural question at this point is whether the simplicity of MHV amplitudes continues to
hold as we increase the number of minus-helicity gluons. It turns out that amplitudes with three
minuses are complicated and do not reveal any particular structure [8].
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Figure 2: Twistor space structure of tree-level amplitudes of gluons. From top to bottom, (a) an MHV
amplitude is localized on a complex line. (b) a next-to-MHV amplitude is localized on the union of two
complex lines.

Recently, Witten introduced a twistor string theory whose instanton expansion encodes the
perturbative expansion of N = 4 super Yang-Mills [6]. Here we are only concerned with tree
amplitudes of gluons and supersymmetric partners of the gluons cannot modify the amplitudes.

Twistor space was introduced by Penrose in 1967 [9]. In its simplest version, twistor space is
the space with coordinates (Z1,Z2,Z3,Z4) = (λ1,λ2,µ1̇,µ2̇), with µȧ = −i∂/∂λ̃ȧ. It turns out to be
natural to mod out by a C∗ action which leads to CP3 instead of C4. Twistor string theory is defined
by using the topological B-model which can only admit a Calabi-Yau space as its target space.
However, CP3 is not Calabi-Yau. Witten circumvented this problem by adding four Grassman
coordinates in order to produce the Calabi-Yau supermanifold CP3|4.

One can study how different amplitudes look like when written in twistor coordinates. It turns
out that MHV amplitudes vanish unless the twistor coordinates of the gluons lie on a line or CP1.
Even more surprising is the fact that amplitudes with three minus helicity gluons, which do not
seem to have any particular structure in momentum space, vanish unless the twistor coordinates are
on the union of two lines or CP1’s. See figure 2a and 2b for examples in eight-gluon amplitudes.

These observations led to the idea that all amplitudes of gluons could be computed by sawing
MHV amplitudes, suitably continued off-shell, and connected by some sort of propagator. These
are called MHV diagrams [3].

3.1 Definition of MHV Diagrams

The precise definition of MHV diagrams is the following: Consider an amplitude with (q)
minuses and (n− q) pluses. Draw all possible tree diagrams with q− 1 nodes and q− 2 links.
Attach external gluons to the nodes (in cyclic order) and helicities to the internal propagators such
that each node has the structure of an MHV amplitude with only two minuses. (Everything here
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Figure 3: Example of possible external gluon assignments to a tree with two nodes and one link. One the
left, one finds MHV like helicities at each vertex, this is an MHV diagram. On the right none of the two
vertices has MHV like structure and therefore it should not be considered.

can be repeated using MHV amplitude with only two pluses, the important thing is not to use both
at the same time.)

The contribution from each MHV diagrams is computed by the product of MHV amplitudes,
one for each node, and scalar Feynman propagators, one for each link.

One immediate problem with this prescription is that the Parke-Taylor formula for MHV
amplitudes (2.1) is only valid when the momentum of all gluons is light-like. In a MHV dia-
gram, the momentum P flowing through an internal propagator is not light-like. This means that
Paȧ = λaλ̃ȧ + λ′aλ̃′̇a. In the Parke-Taylor formula we have to give a meaning to λP. We choose to
define

λP a = Paȧηȧ,

where η is a fixed negative chirality spinor.
Let us give an example: Consider the six gluon amplitude A(1−,2−,3−,4+,5+,6+). In figure

3 we see two possible diagrams, one of them satisfies all the criteria to be a “good" MHV diagram
and the other one fails.

Consider the contribution from the good graph to the amplitude

〈1 2〉3
〈2 P〉〈P 6〉〈6 1〉 ×

1
P2 ×

〈P 3〉3
〈3 4〉〈4 5〉〈5 P〉 . (3.1)

Here P = p6 + p1 + p2 and 〈P i〉 means Paȧλa
i ηȧ.

3.2 Proof of The Equivalence to Feynman Diagrams

Having defined MHV diagrams we now prove that the amplitudes computed from them are
well-defined, this means that the amplitudes are independent of the choice of η.

Once we make a choice of η, Lorentz invariance is broken. Therefore, proving η independence
is equivalent to proving that Lorentz invariance is restored. Note that the contribution form each
MHV diagram has poles of the form 〈P, i〉. These poles do not correspond to any physical singu-
larity of the total amplitude and therefore one should prove that they are spurious, i.e., that they
have zero residue. Since these poles are at non-Lorentz invariant locations, the proof of Lorentz
invariance also implies the vanishing of residues of unphysical poles.

3.2.1 Lorentz Invariance and Spurious Poles

The key to prove the η independence of the amplitude comes from the twistor string theory
construction of the amplitudes. Describing such a construction in detail is beyond the scope of this
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talk. Instead we start by saying that in twistor string theory there is no natural way of defining the
null vector ` associated to P. Instead, one has to integrate over all possible choices. Parameterizing
`aȧ = λaλ̃ȧ, the integral is given by

Z 〈λ,dλ〉[λ̃,dλ̃]
(Paȧλaλ̃ȧ)2

×MHVL(λ)×MHVR(λ) (3.2)

where MHVL and MHVR are the Parke-Taylor amplitudes associated to a given node. Each of them
only depends on the positive chirality spinor of external gluons and λP is replaced by λ. Note that
in this integral representation there is no reference to η, moreover, the result of the integration can
only depend on products 〈i, j〉 and [i, j] of external gluons.

The integral (3.2) has a measure over CP1×CP1 but the contour of integration is over the
diagonal CP1 defined by λ̃ = λ̄. This is the condition for the internal momentum to be real in
Minkowski space.

It turns out that this integral is easy to do. One can show that for any function g(λ), i.e.,
independent of λ̃,

[λ̃,dλ̃]
(Paȧλaλ̃ȧ)2

g(λ) =−dλ̃ċ ∂
∂λ̃ċ

(
[λ̃,η]g(λ)

(Paȧλaλ̃ȧ)(Pbḃλbηḃ)

)
. (3.3)

Here η is any arbitrary but fixed negative chirality spinor. If this identity was true for all λ then
the integral we want would be zero. However, the equality breaks down where the denominator
vanishes in the contour of integration. This happens when Paȧλaηȧ = 0 and when 〈λ,•〉 in the
denominator of g(λ) vanishes. The pole Paȧλaλ̃ȧ = 0 is outside the contour of integration and does
not contribute.

The conclusion is that the integral localizes to the location of the poles and it is given by the
sum of the residues. The residue at the pole Paȧλaηȧ = 0 is given by

MHVL(λa = Paȧηȧ)× 1
P2 ×MHVR(λa = Paȧηȧ) (3.4)

which is exactly the contribution from the MHV diagram prescription.
It turns out that the remaining residues cancel pairwise when the contribution of all integrals

is taken into account. This shows that the amplitude computed by adding integrals of the form
(3.2), which is η independent by definition, is equal to the amplitude computed by adding MHV
diagrams. This concludes the proof.

3.2.2 Collinear and Multiparticle Singularities

An scattering amplitude has singularities associated to internal particles becoming on-shell. At
tree-level, these singularities can only come from propagators that go on-shell. When the momen-
tum in the propagator is given by the sum of two external gluon momenta one says that one has a
collinear singularity. When the propagator involves more gluons one has a multiparticle singularity.

Close to any of these singularities, the leading behavior of the amplitude is given by the prod-
uct of two amplitudes with smaller number of external legs, AL and AR, one to the left and one to the
right of the internal gluon that becomes on-shell. It is not difficult to show by induction that the am-
plitudes computed from MHV diagrams reproduce the correct singularities with the corresponding
residues.
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4. Conclusions

We have introduced an alternative to Feynman diagrams for the computation of tree-level
amplitudes of gluons. The new diagrams, called MHV diagrams, are defined by using MHV
amplitudes, continued off-shell, as vertices which are connected by Feynman propagators 1/P2.
Amplitudes computed using MHV diagrams can be shown to be well-defined and to have all the
correct singularities of an amplitude computed by Feynman diagrams. This turns out to be enough
to conclude that the two are the same since one can complexify the momenta and show that as
rational functions of complex variables they are the same. Therefore, we can conclude that MHV
diagrams provide a simple and systematic way of computing any tree amplitude of gluons.
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