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A B S T R A C T

We analyze the bosonic and super-membrane in 11D Minkowski space-
time. Passing on to light-cone coordinates, and gauge, to truncate the
infinite dimensional Lie algebra on the membrane to arrive at M(atrix)
theory. We give an introduction to M(atrix) theory, develop some
tools needed to calculate the scattering of two D0-branes in M(atrix)
theory to first loop order. We derive the M(atrix) theory from Yang-
Mills theory, calculate the scattering of two D0-branes and compare
this to the first term in super-gravity. We find that M(atrix) theory at
this order indeed coincide with super-gravity.
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Part I

I N T R O D U C T I O N

We give an historical introduction and an outline of the
thesis, followed by some conventions and notations.





1
I N T R O D U C T I O N

1.1 history

Dirac was the first to study relativistic membranes, in 1962, trying to
model an electron with a vibrating spherical shell [1]. This theory did
however not include spin and to implement it was hard, the theory
was therefore abandoned.

String theory appeared in the late 1960s’. In string theory one con-
siders strings, that is 1-dimensional objects instead of what previously
had been considered, point particles, that is; zero dimensional parti-
cles. But if one starts to study 1- dimensional object a natural ques-
tion arises; why not consider membranes, i.e. 2-dimensional objects
or even higher dimensional objects? The first paper to investigate
the Lagrangian and Hamiltonian formalism of the bosonic membrane
was [2] published in 1976, where they also considered some different
gauge choices, which arises naturally since one is bound to have a
reparametrization invariance of the membranes world volume if one
does not gauge fix.

Since bosonic membranes lack fermions it was natural to try to in-
troduce fermions into the theory, this was done using supersymmetry.
This can be done in 1 of 3 ways, one can introduce supersymmetry on
the world volume of the membrane (called a “spinning membrane”),
or embed the membrane in a super-space, or both at the same time
(called super-embedding). There is however a paper which presents
a no-go theorem for spinning membranes [3], which in turn made
most people consider the target-space alternative, as shall we.

To match the bosonic degrees of freedom with the fermionic de-
grees of freedom one needs a fermionic symmetry, called kappa-
symmetry (κ-symmetry). This symmetry was derived for general
membranes in 1987 [4].

Hoppe and Goldstone found a clever way in 1982 [5] to regularize
the field theory living on the spherical bosonic membrane’s world
volume. This was done by truncating the infinite Lie algebra to a fi-
nite Lie algebra, described by su(n)1. One then recovers the infinite
Lie algebra in the N → ∞ limit in some sense, more on this in chapter
(4.4.4). This was later done for a supersymmetric membrane of arbi-
trary geometry [6, 7]. This truncation leads to a theory called M(atrix)
theory, which the last part of this thesis will treat.

1 su(n) is for the case where the center of mass motion has been removed, if one
considers a theory where the center of mass motions has not been removed the Lie
algebra will be u(n).

3



4 introduction

To date no normalized ground state for the super-membrane is
known.

1.2 outline

In the second part we establish the mathematical framework, we de-
fine vectors, dual vectors, manifolds and some other mathematical
tools.

In the third part we describe the bosonic membrane. First in the
Lagrangian formalism where we analyze the equations of motion and
symmetries of the Lagrangian. Then we make the transition to the
Hamiltonian formalism. Here we analyze the constraints due to the
reparameterization invariance of the membranes world volume. We
choose the so called light-cone coordinates and a gauge called the
light-cone gauge. We analyze the infinite dimensional Lie algebra
and truncate it to arrive at a finite dimensional M(atrix) theory.

We will try to make calculations explicit in the third part so that one
can follow them if one stares at the equations for a reasonable time.
In the fourth part the calculations often get to long to be written out
explicitly, but one should have a better feeling for the equations from
the bosonic part.

In the fourth part we will basically do the same thing as in the
third part but with a supersymmetric membrane. For the super-
membranes we need an additional symmetry called the κ-symmetry.
We show how this symmetry works and elaborate on it’s necessity. In
the last section of this part we make the transition to supersymmetric
M(atrix) theory.

In the fifth and final part we give an introduction to M(atrix) theory,
connecting it to other theories (not only membranes), develop some
tools and lastly give an explicit calculation to show that scattering of
two D0-branes in M(atrix) theory, at one loop correction, gives the
first term of super-gravity.

1.3 notation and conventions

We will use units in which h̄ = c = 1. This means that we will
measure everything in units of mass2, i.e. [time] = [length] = −1
and [energy] = 1, where “1” means Mass1 and “−1” means Mass−1.

2 The relations can be seen from the standard well know equations, E = mc2, E = h̄ω

and ct = x.
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Partial derivatives are written as ∂i =
∂

∂σi and ∂m = ∂
∂Xm . The indices

are (for the bosonic and super-membrane chapters)

M, N, P coordinate super indices





m, n, p coordinate vector indices

µ, ν, ρ coordinate fermionic indices

A, B, C inertial super indices





a, b, c inertial vector indices

α, β, γ inertial fermionic indices

and

i, j, k are world-volume indices

with i, j, k = 0, 1, 2. r, s will be range over 1 to 2. If we run out of
indices we will prime the indices, e.g. M, N, P, M′, N′, P′, M′′, . . .

In this thesis we consider 11-dimensional target space3.

3 The treatment of the number of dimensions the membrane can live in and what this
implies for the spinors and number of supersymmetries is investigated in the so
called “brane scan”. See e.g. [8] for such a review.





Part II

M AT H E M AT I C A L P R E L I M I N A R I E S

In this part we define the manifold, the Lie derivative and
we take a look at the Cartan formalism. The larger part of
this is heavily based on [9]. We will define the terminol-
ogy, show some properties and make some claims. For a
deeper treatment, more rigorous and systematic introduc-
tion see [10] or [11].





2
M AT H E M AT I C A L P R E L I M I N A R I E S

We will go over the mathematical preliminaries. This is not strictly
necessary since there is a great deal one could understand about the
membrane with ordinary calculus and some good guessing, but it
is necessary in order to get a deeper and proper understanding of
the theory. First we will try to get an intuition of what a manifold
is, then we will define maps and special kinds of sets, after this we
define the manifold. We will mention some important concepts as
pullbacks and pushforwards. We will take a look at two types of
vector representations (and their dual vectors, called forms) and look
at different kinds of connections and relate these to each other. At the
end we will take a look at some special kinds of tools for manifolds,
that is: Covariant derivatives, Lie derivatives in different kinds of
shapes and some other tools.

2.1 manifolds

A manifold (to be define later in this chapter) is a topological space1

which is topologically equivalent2 to Rm locally. Especially is Rm a
manifold. Some other examples are

A circle

A sphere

A torus

Figure 1: Examples of manifolds.

Examples of non-manifolds are

1 A set of points each with it’s set of neighborhood points that satisfy a set of axioms
relating points and neighborhoods.

2 One can think of “topologically equivalent to” as “looks like”.

9
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A plane with a one dim. line

Two cones stuck at their vertices

Figure 2: Examples of non-manifolds.

since they are not topologically equivalent to Rm locally.
We will introduce some terminology and definitions so that we can

define a manifold a little more exactly.

Definition 1. Map
A map φ between two sets M and N is a relationship which assigns

exactly one element in N to every element in M. We write this as
φ : M→ N. �

φM

N

Figure 3: The map φ maps every element in the set M to exactly one element
in the set N.

Note that φ is not always invertible.
When we have many maps we can compose them. We define the

composition:

Definition 2. Composition
Given two maps φ : L → M and ψ : M → N, we define the

composition ψ ◦ φ : L → N by the operation (ψ ◦ φ)(l) = ψ(φ(l)),
with l ∈ L, φ(l) ∈ M and ψ(φ(l)) ∈ N. �

φ

M

NL

ψ
l

m
φ(l)

ψ(φ(l))

n
ψ(m)

(ψ ◦ φ)(l) = ψ(φ(l))

Figure 4: Composition.
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A map φ : Rm → Rn takes an m-tuple (x1, x2, . . . , xm) to an n-tuple
(y1, y2, . . . , yn). We can therefore think of the map as n functions
yi = φi(x1, x2, . . . , xm) with (i = 1, 2, . . . , n). That is, yi are functions
of m variables.

Onward!
We define a very usable word, namely smooth:

Definition 3. p times differentiable and Smooth
If a function is p times differentiable and continuous, we denote

this by Cp. In particular C∞ maps are called “smooth”. �

Looking ahead, it turns out that our Lagrangian will be invariant
under reparametrization3. We say that the Lagrangian for the mem-
brane has diffeomorphisms. The mathematical definition is:

Definition 4. Diffeomorphic & diffeomorphism
If there exists a smooth (C∞) map φ : M → N with a smooth (C∞)

inverse φ−1 : N → M, we call φ a diffeomorphism and we say that M
and N are diffeomorphic. �

Smooth maps are differentiable by definition. We claim that there
is a chain rule for compositions of maps:

Claim 1. Chain rule
If we have two maps f : Rl → Rm and g : Rm → Rn, we will also

have it’s composition (g ◦ f ) : Rl → Rn with coordinates xa ∈ Rl ,
yb ∈ Rm and zc ∈ Rn. The chain rule relates the partial derivatives of
the composition to the partial derivatives on the individual maps

∂(g ◦ f )c

∂xa =∑
b

∂ f b

∂xa
∂gc

∂yb (1)

which we usually write as

∂

∂xa =∑
b

∂yb

∂xa
∂

∂yb . (2)

Any manifold will be topologically equivalent to Rm by definition so
this will be the local chain rule of the manifold. �

Manifolds are built from atlases which are built from charts which
are built from open sets which are built from open balls. We need to
define these to define the manifold. Here we go:

Definition 5. Open ball
An open ball is the set of all points xi ∈ Rm such that all points xi

lies inside some fixed radius, that is
[
∑m

i=1(xi − yi)2]1/2
< r for some

fixed y ∈ Rm and r ∈ R with i = 1, . . . , m. �
Note the strict
inequality.

3 No physical properties can depend on the choice of coordinates.
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y = (y1, y2)

r

x1

x2

Figure 5: Open ball in R2.

The open ball allows us to define the open set.

Definition 6. Open set
An open set in Rm is a set constructed from an arbitrary union of

open balls. �

Which allows us to define a chart.

Definition 7. Chart
A chart consists of a subset U ⊆ M along with a one-to-one contin-

uous (and invertible obviously) map φ : U → Rm such that the set of
points φ(U) is an open set in Rm. That is, a chart is (U, φ). �

φM

U φ(U)

Rm

Figure 6: Chart.

We are now ready to define a special kind of atlas. The smooth
(C∞) atlas.

Definition 8. Smooth Atlas
A smooth atlas is an indexed collection of charts {(Uα, φα)} where

the union of the Uα covers all of M. The charts are also smoothly sewn
together; that is, if Uα∩Uβ 6= ∅ then (φα ◦φ−1

β ) :
[
φβ(Uα ∩Uβ) ⊆ Rn]→[

φα(Uα ∩Uβ) ⊆ Rn] (see fig 7) and we require these maps to be smooth
everywhere they are defined. �
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φα
M

Rm

Rm

φβ

φβ ◦ φ−1
α

φα ◦ φ−1
β

Uβ Uα

φβ(Uβ)

φα(Uα)

Figure 7: Atlas.

We can now define the manifold.

Definition 9. Manifold
A (smooth) manifold is a set M that contains every possible (smooth)

atlas built from every compatible chart. �
The meaning of the partial derivative on a manifold is (by the chain

rule, see fig 8)

∂ f
∂xµ
≡∂(ψ ◦ f ◦ φ−1)(xµ)

∂xµ
, (3)

where xµ are the coordinates in Rm.

M

Rm

N

Rn

f

φ−1φ ψ
ψ−1

ψ ◦ f ◦ φ−1

xµ

Figure 8: Derivatives on the manifold.
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2.2 basis vectors

Vectors on the manifold are defined through curves on the manifold.
Every point p on the manifold will have its own vector space.

Definition 10. Vectors
Consider a curve on a manifold M parametrized by a parameter

λ described by the equations xi = xi(λ) with i = 1, . . . , m, where m
is the dimension of the manifold M. Consider also a differentiable
function f (xi) on M. There then has to be another function g(λ)
which gives the value f of every point on the curve parametrized
by λ. Differentiation and using the chain rule at a point p on the
manifold M we get

dg
dλ

=
m

∑
i=1

dxi

dλ

∂ f
∂xi (4)

but this has to be true for any function g and f related in this way.

d
dλ

=
m

∑
i=1

dxi

dλ

∂

∂xi . (5)

Now the object d
dλ is a vector which lives in the tangent space of the

manifold M at point p. {dxi

dλ } are to be seen as the vector components
and ∂

∂xi are the basis vectors4. �
We can only compare vectors which lives in the same tangent space,

that is; on the same point p on the manifold. We will however develop
tools which will enable us to move these vectors between the tangent
spaces to compare them, but at this point we can’t move the vectors
between the vector spaces.

There are also dual vectors:

Definition 11. Dual vectors (One-forms)
The dual vectors (also called one-forms) ω are defined as linear,

real-valued functions of vectors which takes the vectors to R (or C if
the underlying field is complex.).

ω : V → R. (6)

�
We will also define vector fields:

Definition 12. Vector fields
A vector field is given by some rule which defines a vector at each

point of the manifold M. �
Lets take a look at the different basis for vectors and dual vectors

(one-forms). There are two main choices of basis vectors, “the coordi-
nate basis” and “the Cartan formalism”.

4 Working in the { dxi

dλ } basis we often write the vector V as V = ( dx1

dλ , dx2

dλ , . . . , dxm

dλ ).
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2.2.1 Coordinate basis

Definition 13. Coordinate basis
We say that we have chosen the coordinate basis if we at point

p on the manifold M choose the partial derivatives ∂µ = ∂
∂xµ as a

basis, denoted by ê(µ) = ∂µ and take the dual vector space basis to be
θ̂(µ) = dxµ. Here the coordinates xµ are the local coordinates for the
neighborhood which are topologically equivalent to Rm. �

It is easy to prove that these choices form a vector space, we will
however not prove this here.

Claim 2. Complete basis for tangent space Tp and cotangent space
T∗p

The coordinate basis
{

∂µ

}
at point p form a complete basis for the

tangent space Tp at point p.
The basis {dxµ} form a complete basis for the cotangent space T∗p

at point p. T∗p is the set of linear maps which takes a vector V in Tp

to R ω : Tp → R. �
Lets see how these objects transforms. By the chain rule we get the

transformation

∂µ′ ≡
∂xµ

∂xµ′ ∂µ (7)

from our old coordinate system xµ to the new coordinate system xµ′ .
The transformation for a vector is then (by demanding scalars to be

invariant)

V =Vµ∂µ

=Vµ′∂µ′

=Vµ′ ∂xµ

∂xµ′ ∂µ (8)

so that

Vµ′ =
∂xµ′

∂xµ
Vµ. (9)

For a one-form ω we get (by demanding scalars to be invariant)

ωµ′ =
∂xµ

∂xµ′ ωµ (10)

since the basis transforms (by the chain rule)

dxµ′ =
∂xµ′

∂xµ
dxµ. (11)

Note that we have the following relation between the tangent space
and cotangent space

θ̂(µ) ê(ν) =dxµ∂ν =
∂xµ

∂xν
= δ

µ
ν . (12)
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2.2.2 Cartan formalism

This is a set of basis vectors in the tangent space which is not derived
from any coordinate system, and can’t be. This basis is also referred
to as “non-coordinate basis”.

Definition 14. Non-coordinate basis and veilbein
We denote the basis vectors by ê(a) and choose them to be orthonor-

mal, i.e the inner-product are g(ê(a), ê(b)) = ηab where ηab is the metric
of the tangent space. �

The relation between the non-coordinate basis and the coordinate
basis are

ê(µ) =ea
µ ê(a) (13)

where ea
µ is an n × n invertible matrix with n being the number of

values a or µ takes. We will often refer to ea
µ as the vielbein’s. The

inverse obeys

eµ
a ea

ν = δ
µ
ν and ea

µeµ
b = δa

b (14)

so that

gµν =ea
µeb

νηab. (15)

In an analogs way we introduce the same concept to the dual vector
space. It turns out that the relation are the inverses

θ̂(µ) =eµ
a θ̂(a). (16)

The relation between the dual vector space and the vector space are

θ̂(a) ê(b) =δa
b . (17)

As an example a vector V is written as Vµ ê(µ) in coordinate basis and
written as Va ê(a) in the non-coordinate basis. The components are
related by Va = ea

µVµ.

2.3 pullbacks , pushforwards and integral curves

Now that we have established the manifold and vectors we will define
some important concepts.

Definition 15. Pullback
If we have two maps φ : M → N and f : N → R we can compose

the map ( f ◦ φ) : M→ R. We define the “pullback” of f by φ

φ∗ f =( f ◦ φ) (18)

since we think of φ∗ as pulling back f from N to M, see fig 9. �
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M

Rm

N

Rn

φ

xµ yα

R

φ∗f = f ◦ φ f

Figure 9: Pullback.

Note that φ do not need to have an inverse. So we can only pullback
functions from N to M. We can however pushforward vectors from
M to N since vectors can be thought of as derivative operators that
maps smooth functions to real numbers V : f → R.

Definition 16. Pushforward of vectors
Consider a vector at a point p on M, V(p). We define the pushfor-

ward vector φ∗V at point φ(p) on N as

(φ∗V)( f ) =V(φ∗ f ) (19)

see fig 10. �

M

Rm

N

Rn

φ

xµ yα

R

φ∗f f

V (p) φ∗V (p)

Figure 10: Pushforward of vectors.
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So on M the vector will be V = Vµ∂µ and on N (φ∗V) = (φ∗V)α∂α.
We use a test function f and the chain-rule to find the relation be-
tween these two

(φ∗V)α∂α f =Vµ∂µ(φ∗ f )

=Vµ∂µ( f ◦ φ)

=Vµ∂µ

(
f (φ(x)︸︷︷︸

y

)
)

=Vµ ∂yα

∂xµ
(∂α f )

where we in the first equality used the definition of the pullback. We
see that (φ∗V)α = (φ∗)α

µVµ with the matrix expressed in coordinates

(φ∗)α
µ = ∂yα

∂xµ . Note that α and µ do not need to have the same allowed
values and the matrix (φ∗)α

µ need not to be invertible.
We define a pullback of forms, where a scalar function can be seen

as a special case, a zero-form.

Definition 17. Pullback of forms
In analogy with the two previous definitions we define the pullback

of a one-form ω, for a map φ : M→ N and f : N → R as

(φ∗ω)(V) =ω(φ∗V) (20)

with (φ∗) α
µ = ∂yα

∂xµ , which again, might not be invertible. �

The reason why vectors can be pushed forward but not pulled back
and that one-forms can be pulled back but not pushed forward if we
have a map φ : M→ N is due to the fact that φ may not be invertible.
If φ is invertible then we can pushforward and pullback arbitrary ten-
sors (to be defined) however we choose to. This defines a diffeomor-
phism between M and N since they are the same abstract manifold.
This is why diffeomorphisms are coordinate transformations. Dif-
feomorphisms are “active coordinate transformation” and traditional
coordinate transformation are “passive”. This is illustrated in fig 11.

φ

M

Rmxµ

yµ

(φ∗x)µ

Figure 11: Diffeomorphisms and traditional coordinate transformations.
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Here xµ : M → Rn are coordinate maps on M, yµ : M → Rn

are the changes in the coordinate maps while holding the manifold
M fixed and the diffeomorphisms φ : M → M moves the points on
the manifold and the pullback (φ∗x)µ : M → Rn evaluates the new
points.

The diffeomorphisms allows us to compare tensors on the mani-
fold which lives in different tangent spaces on M. This suggests a dif-
ferent kind of derivative, something called the Lie derivative, which
measures the rate of change of the tensors under diffeomorphisms
(change of coordinates). For this we require a one parameter family
of diffeomorphisms, say φt for a continuous parameter t. Which we
will define now:

Definition 18. Integral curves
Given a vector field Vµ(x) we define the integral curves of the vec-

tor field to be the curves xµ(t) which obeys the equations

dxµ(t)
dt

=Vµ(x), (21)

where t is a continuous parameter. �

Our parameter φt is the flow down the integral curves. We say that
the vector field is the generator of diffeomorphisms.

Definition 19. Tensors
Direct products of arbitrary many one-forms and vectors are called

tensors. The tensors will have components Tµ1 ...µk

ν1...νl with k being
the number of one-form arguments and l being the number of vectors
arguments the tensor will need to take to arrive at R. �

2.4 mathematical tools

We will define the covariant derivative in the two basis, we will also
define torsion and the Lie derivative.

2.4.1 Covariant derivative

The partial derivative ∂µ in flat space in Cartesian coordinates is a
map which takes (k, l) tensors to (k, l + 1) tensors. Where k is the vec-

tor space and l is the dual vector space, i.e. Tµ1...µk

ν1...νl . However, this
is not true for arbitrary spaces in arbitrary coordinate systems. There-
fore we will construct a new derivative called the covariant derivative
∇, where this map∇ : (k, l)→ (k, l + 1) will be true in any coordinate
system, in any space. It will have to obey some properties, namely:

1. Linearity: ∇(T + S) = ∇T +∇S.

2. Leibniz rule: ∇(T ⊗ S) = (∇T)⊗ S + T ⊗ (∇S).
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3. Commutes with contractions: ∇µ(Tλ
λρ) = (∇T) λ

µ λρ.

4. Reduces to partial derivatives on scalars: ∇µφ = ∂µφ.

It turns out that we seek5

∇µVν =∂µVν + Γν
µλVλ, (22)

∇µων =∂µων − Γλ
µνωλ (23)

for some n × n matrix
(
Γµ

)ρ

σ
for each µ, where n is the dimension

of the manifold. These matrices are called affine connections. We do
not assume that they are symmetric in any indices (as one usually do
in an introduction to GR), that is, we do not assume that the space
is torsion free (to be defined). The only thing we require from the
connections Γ are that they transform according to

Γν′
µ′λ′ =

∂xµ

∂xµ′
∂xλ

∂xλ′
∂xν′

∂xν
Γν

µλ −
∂xµ

∂xµ′
∂xλ

∂xλ′
∂2xν′

∂xµ∂xλ
. (24)

The first term is what we would expect if it transformed as an tensor,
while the second term cancels the non-tensorial transformation term
from the partial derivative. This makes the linear combination of the
partial derivative and the connection to transform as a tensor. The
special derivative ∇µ is called the covariant derivative.

Definition 20. Covariant derivative (coordinate basis)
The covariant derivative of a vector V = Vν∂ν in coordinate basis

acts on it’s components as

∇µVν =∂µVν + Γν
µλVλ, (25)

and for a one-form ω = ωνdxν

∇µων =∂µων − Γλ
µνωλ. (26)

�

We define the torsion tensor before continuing with the covariant
derivative

Definition 21. Torsion tensor
The torsion tensor Tλ

µν is defined as

Tλ
µν =Γλ

µν − Γλ
νµ. (27)

�

5 We just state these results here. For a derivation see e.g. [12].
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From the fact that the commutator of two vector fields X and Y
gives a new vector field [X, Y]µ = Xν∂νYµ−Yν∂νXµ, we can write the
torsion as a map from two vector fields to a third vector field

T(X, Y) =Xµ∇µY−Yµ∇µX− [X, Y]. (28)

We will now define the covariant derivative in the non-coordinate ba-
sis and although going from the coordinate basis to non-coordinate
basis is mostly putting vielbeins in the right places. This is not
the case when we differentiate. When we differentiate in the non-
coordinate basis we have to use another connection, called the spin
connection ω a

µ b. (ω is the standard symbol for both the spin connec-
tion and for an arbitrary one-form, do not confuse them)

Definition 22. Covariant derivative (non-coordinate basis)
The covariant derivative of a vector V = Va ê(a) in non-coordinate

basis acts on it’s components as

∇µVa =∂µVa + ω a
µ bVb, (29)

and for a one-form Ω = Ωa ê(a)

∇µΩa =∂µΩa −ω b
µ aΩb. (30)

�

Under general coordinate transformation the lower index µ trans-
forms as a one-form and under local Lorentz transformations it trans-
forms as

ω a′
µ b′ =Λa′

aΛ b
b′ ω

a
µ b −Λ c

b′ ∂µΛa′
c (31)

which is exactly what we need for the covariant derivative to trans-
form like a tensor, in analogy with Γν

µλ.
Since we have a relation between the both basis there should be a

relation between the affine connection Γν
µλ and the spin connection

ω b
µ a.

Claim 3. Spin connection and affine connection relation
The relations for the spin connection and the affine connection are

Γν
µλ =eν

a∂µea
λ + eν

aeb
λω a

µ b, (32)

ω a
µ b =ea

νeλ
b Γν

µλ − eλ
b ∂µea

λ. (33)

�
From this it follows that ∇µea

ν = 0.
Using the Cartan formalism we are able to describe spinor fields

on space-time and take their covariant derivative which is impossible
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in the coordinate basis. It also allows us to think of tensors as tensor
valued differential forms, e.g.

Ω a
µ ”vector valued one-form”, (34)

A a
µν b ”(1,1)-tensor valued two-form” (35)

with A a
µν b being anti-symmetric in the indices µ and ν.

2.4.2 Lie derivative

A very useful tool is the Lie derivative. It measures the change in a
tensor due to diffeomorphisms (change of coordinates).

Definition 23. Lie derivative
Given a vector field Vµ(x) which generates a family of diffeomor-

phisms φt, parametrized by t, we define the change of a tensor travel-
ing down the integral curves as

∆tT
µ1...µk

ν1...νl (p) =φt∗

(
Tµ1 ...µk

ν1 ...νl

(
φt(p)

))
− Tµ1 ...µk

ν1 ...νl (p) (36)

and the Lie derivative LV along the vector field Vµ(x), at point p, as

LV Tµ1...µk
ν1 ...νl (p) = lim

t→0

(
∆tT

µ1...µk
ν1...νl (p)

t

)
. (37)

�

M

xµ(t)

p

φt(p)
T (p)

T
(
φt(p)

)

φt∗
[
T
(
φt(p)

)]

Figure 12: Lie derivative.

So we evaluate the tensor T at two different points, p and φt(p), to
get the tensors T(p) and T(φt(p)). Then we pullback T(φt(p)) to the
point p so that we can compare T(p) and T(φt(p)). We take the limit
to get the instantaneous change at the point p for T(p). This is the
Lie derivative.

Here follows some properties:
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Claim 4. Lie derivative properties

With a, b constants and T, S tensors we have the following proper-
ties

1. Linearity: LV(aT + bS) = aLV T + bLVS.

2. Leibniz rule: LV(T ⊗ S) = (LV T)⊗ S + T ⊗ (LVS).

3. Commutes with contractions: LV(Tλ
λρ) = (LV T)λ

λρ.

4. Reduces to partial derivatives on scalars: LV f = V( f ) = Vµ∂µ f .
�

There are some tricks to taking the Lie derivative.

Claim 5. Lie derivative of a vector
The Lie derivative along a vector field V = Vµ∂µ of a vector U =

Uµ∂µ is given by the commutator

LVU =LV(Uµ∂µ) = [V, U]µ ∂µ = [V, U] = (Vν∂νUµ −Uν∂νVµ) ∂µ.
(38)

�
From this follows that LVU = −LUV

Claim 6. Lie derivative of a one-form
The Lie derivative along a vector field V of a one-form ω = ωµdxµ

is

LVω =LV(ωµdxµ) = (Vν∂νωµ + (∂µVν)ων)dxµ (39)

where the first term can be thought of as a transport term and the
second as a shift in coordinates (a pullback of V). �

Despite it’s explicit appearance the Lie derivative is covariant. It
takes (k, l) tensors to (k, l) tensors. A reason why the Lie derivative
is so important are that; if we have a physical situation represented
by a manifold M with objects Ti and a diffeomorphism φ : M → M
then (M, Ti) represent the same physical situation as (M, φ∗Ti). This
is important because we do not want to over count configurations
and this gives us the tools to transform the object to spaces where
they might be easier to work with.

By defining the exterior derivative and the interior product of one-
forms we will get an alternative formulation for the Lie derivative of
forms.

Definition 24. Exterior derivative
The exterior derivative d is a map which takes a p-form to a (p+ 1)-

form. It’s action on a p-form

ω =
1
p!

ωµ1 ...µp dxµ1 ∧ · · · ∧ dxµp (40)
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is defined by

dω =
1
p!
(
∂νωµ1 ...µp

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµp . (41)

�

Claim 7. Exterior derivative properties
The exterior derivative obeys

1. d(ω + Ω) = dω + dΩ.

2. d(ω ∧ χ) = dω ∧ χ + (−1)pω ∧ dχ.

3. d(dω) = 0.
Here ω, Ω are p-forms and χ are a q-form. �

Definition 25. Interior product
The interior product iV (for a vector field V) is a map which takes

a p-form ω = 1
p! ωµ1...µp dxµ1 ∧ · · · ∧ dxµp to a (p− 1)-form defined as

iVω =
1

(p− 1)!
Vνωνµ2...µp dxµ2 ∧ · · · ∧ dxµp . (42)

�

With these two definitions we can give an alternative formula of
the Lie derivative of forms.

Claim 8. Lie derivative of forms (Cartan’s formula)
The Lie derivative of forms is given by the anti-commutator of the

exterior derivative and the interior product on a form

LVω = (diV + iVd)ω = d (iVω) + iV (dω) . (43)

�

2.4.3 Integration

We can also integrate forms. But this operation is only defined over a
manifold M if M is “orientable”, so we need to define orientation of
a manifold first.

Definition 26. Orientation
Let M be a connected manifold covered by the charts {Ui}. The

manifold is orientable if the Jacobian is greater then zero for any Uj ∩
Ui 6= ∅, with local coordinates {xµ} and {yα} respectively, i.e J =

det(∂xµ/∂yα) > 0. �

For an m-dimensional manifold M, all m-forms at a point p form
an one-dimensional vector space6. This tells us that there exists some

6 This can easily be seen due to the fact that all forms are anti-symmetric.
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function f (x1, . . . , xm) such that ω = f dx1 ∧ · · · ∧ dxm, where {xi}
are the local coordinates at point p. To integrate we divide it up into
small regions, the integral of the function f is then approximately the
sum of the product of the value of f at each cell times the volume of
the region. We then take the limit as these regions goes to zero.

Definition 27. Integration of a form
The integration of a m-form ω on an m-dimensional manifold M is

defined as
∫

ω ≡
∫

f (x1, . . . , xm)dx1 . . . dxm

≡
∫

f (x1, . . . , xm)dx1 ∧ · · · ∧ dxm (44)

�





Part III

B O S O N I C M E M B R A N E

We consider a toy model of the membrane. That is, one
that only contains bosons in space-time, known as the
bosonic membrane. We look at two different formulations
of the action, and their constraints, derive the general
Hamiltonian and the Hamiltonian in the so called light-
cone gauge. Then we make a transition from the mem-
brane theory to M(atrix) theory. Going from the infinite
dimensional group of area preserving diffeomorphisms
to SU(N) (neglecting the center of mass motion) or U(N)

(keeping the center of mass motion).





3
A C T I O N A N D L A G R A N G I A N

A membrane is a 2-dimensional object for a given time-slice in space-
time. As it travels in time it sweeps out a 3-dimensional “world-
volume” in space-time on which we want to construct a field theory.
The coordinates for the 11-dimensional space-time will be denoted by
xm (m = 0, . . . , 10) and the world-volume will be parametrized by σi

(i = 0, 1, 2). We will take σ0 to be the time coordinate and σ1 and σ2

to parameterize the area of the membrane. We define a map from the
world-volume Σ3 to the 11-dimensional space-time M11 called “target
space”

Xm(σi) :Σ3 → M11(gmn). (45)

Time Time

Space

σi

Xm(σi)

xm

Figure 13: Mapping the world-volume to space-time.

We will look at two different Lagrangians. We will simply mention
the first one (the Nambu-Goto action) since it’s intuitive, but we will
work with the second one (the Polyakov action) since this gets rid of
the square root.

3.1 nambu-goto action

The Nambu-Goto action is given by Note that the action
is proportional to the
world-volume.S =− T

∫
d3σ

√
−det

(
γij
)

(46)

where γij(σ) is the metric on the world-volume induced by the space-
time metric

γij(σ) =∂iXm∂jXngmn(X(σ)). (47)

and the integral is over the world-volume. This action is invariant
under reparameterization. That is; independent of our choice of σi,
as it better be. It’s proportional to the world-volume hence Lorentz
invariant, as it also should be. T is the constant of proportionality
which has the dimension [T] = 3. In the following we will set T = 1.

29
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3.2 polyakov action

We can get rid of the square-root at the cost of introducing an auxil-
iary field hij. The action can then be written as

S =
1
2

∫
d3σ
√
−h
(

1− hij∂iXm∂jXngmn

)
(48)

with h = det(hij). This form of the action is called “The Polyakov
action”. It gives the same equations of motions as the Nambu-Goto
action (46), i.e. the Polyakov action and the Nambu-Goto action are
equivalent “on-shell” (which will be shown later). Both the world-On-shell refers to

when the equations
of motion is are

satisfied.

volume metric hij and the target space metric gmn have inverses that
satisfy

gmngnp =δm
p , (49)

hijhjk =δi
k, (50)

where δi
j is the Kronecker delta which is defined as

δi
j =





1, if i = j

0, else
. (51)

This allows us to raise and lower the indices gmn An = Am, gmn An =

Am and hijBj = Bi, hijBj = Bi.

3.2.1 Equations of motion and boundary

Varying the Polyakov action (48) with respect to1 Xm and integrating
by parts we get the equations of motion according to the Lagrangian
theory

δS =T
∫

d3σ

(
δXm

[
∂i
(√
−hhij∂jXngmn

)
− 1

2

√
−hhij∂iXp∂jXn (∂mgpn

) ]

− ∂i
(√
−hhijδXm∂jXngmn

) )
= 0. (52)

The equations of motion are given by the equation in the square brack-
ets on the first row, which has to vanish independently of the second
term by local causality,

∂i
(√
−hhij∂jXngmn

)
− 1

2

√
−hhij∂iXp∂jXn (∂mgpn

)
=0. (53)

The second row gives us the constraint on the boundary, we expand
this equation in the i-sum to get three terms. The first one

∫
dσ1dσ2

(√
−hh0jδXm∂jXngmn

)∣∣∣∣
σ0=σ0

f

σ0=σ0
i

(54)

1 We treat Xm and hij as independent variables. The space-time metric gmn does
however depend on space-time gmn = gmn(x).
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is trivial since we want to know how the membrane evolves from
an arbitrary but fixed time σ0

i to an arbitrary but fixed time σ0
f . If

we allow these points to vary we do not know which times we are
considering. We therefore demand that the variations vanish, i.e.
δXm(σ0

i , σ1, σ2) = δXm(σ0
f , σ1, σ2) = 0, so that the above equation

(54) vanishes. We are then left with two boundary conditions

∫
dσ0
(

dσ2
√
−hh1jδXm∂jXngmn

∣∣∣∣
σ1=σ1

f

σ1=σ1
i

(55)

+dσ1
√
−hh2jδXm∂jXngmn

∣∣∣∣
σ2=σ2

f

σ2=σ2
i

)
= 0. (56)

These conditions will be satisfied if we have, with r = 1, 2,

• “Neumann boundary conditions”

∂iXm =0 (57)

for σr = σr
i and σr = σr

f .

• Or “Dirichlet boundary condition”

δXm = 0 ⇐⇒ Xm = fixed ⇐⇒ ∂0Xm = 0

for σr = σr
i and σr = σr

f .

However here we have to be careful, we can not have Dirichlet bound-
ary condition in the time direction (if e.g X0 is chosen as the time
coordinate, it cannot satisfy a Dirichlet boundary condition) since the
membrane has to be able to travel in time. We will however not con-
sider boundaries any further in this thesis.

Varying the Polyakov action (48) with respect to hij yields Note that δ
√
−h =

− 1
2
√
−hhijδhij by

Jacobi’s formula.δS =
1
2

∫
d3σ
√
−hδhij

[
− 1

2
hij
(
1− hki′∂kXm∂i′Xngmn

)

− ∂iXm∂jXngmn

]
= 0 (58)

or, using the notation of the induced metric (47) for the integrand
(which must vanish for the variation of the action to vanish)

−1
2

hij
(
1− hki′γki′

)
− γij =0. (59)

Taking the trace of this we find that hki′γki′ = 3. Using this in the
equation above we find that hij is simply the induced metric on the
world-volume by the target space

hij =∂iXm∂jXngmn. (60)

If we plug in (60) into (48) we recover (46), which shows the equal-
ity of the Polyakov action (48) and the Nambu-Goto action (46) and
shows that hij is only an auxiliary field.
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3.2.2 Symmetries

There is two types of symmetries for the bosonic membrane in flat
11-dimensional Minkowski space.

• Global Poincaré symmetries which is due to the invariance of
space-time

Xm →Λm
nXn + cm

where Λm
n is a Lorentz transformation and cm is a translations

in space-time.

• Local gauge invariance (reparameterization invariance or diffeo-
morphism) which is simply a change of parametrization coordi-
nates

σi →σ̃i(σ0, σ1, σ2).



4
H A M I LT O N I A N F O R M A L I S M

Since we are going to quantize the theory using the correspondence
principle rather than the path integral formulation we will have to
rewrite the Lagrangian theory in the Hamiltonian formalism. Here
we will consider Minkowski space-time as the target space rather than
curved space-time, so we change the curved space-time metric gmn to
the flat Minkowski space-time metric ηmn according to gmn → ηmn,
with ηmn = diag(−1, 1, . . . , 1).

If one is not familiar with Dirac’s generalization of the Hamiltonian
formalism there is a short overview in appendix A.

4.1 general hamiltonian and dirac brackets

We define the conjugate momenta

Pm ≡
∂L

∂(∂0Xm)
= −
√
−hh0j∂jXnηmn, (61)

(Ph)ij ≡
∂L

∂(∂0hij)
= 0. (62)

Multiplying (61) by ∂iXm or Pm yields the “primary constraints”1.
We are not allowed to use the primary constraints before we work
out all the Poisson brackets of the theory since phase space variables
may have non-vanishing Poisson brackets with the constrains. The
primary constraints are Use

h00 = det(hrs)/h
(where hrs is the
lower right part of
hij, see (72)) for Pm

case and (60).





φ1 ≡ Pm∂1Xm ≈ 0

φ2 ≡ Pm∂2Xm ≈ 0

φ3 ≡ PmPm +

(
∂1Xm∂1Xm∂2Xn∂2Xn −

(
∂1Xm∂2Xm

)2
)
≈ 0

.

(63)

1 In fact the primary constraints using the Polyakov action is given by (Ph)ij = 0, but
this is not very illuminating so we will use the equations of motion for hij given by
(60) to get the primary constraints in the Nambu-Goto formulation.

33
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Where (≈) stands for weakly, i.e. holds on-shell. The Legendre trans-
formation gives us the Hamiltonian density

H =Pm(∂0Xm)−L

=−
√
−hh0j∂jXnηmn(∂0Xm) +

1
2

√
−h
(

1− hij∂iXm∂jXnηmn

)

=−
√
−h
(

h0jh0j − 1
)

=0 (64)

We build the new Hamiltonian density according to Dirac’s theory

H ′ =H + uLφL = uLφL (65)

with L = 1, 2, 3. We have to ensure that the primary constraints are
preserved in time so that we don’t get secondary constraints. It turns
out that they are preserved [2], which means that the Poisson brack-
ets which governs the time evolution are weakly zero. The Poisson
brackets are

φ̇L =
{

φL, H ′}
p ≈0, ∀L. (66)

So the total Hamiltonian is

HT =
∫

d2σ H ′ =
∫

d2σ uLφL (67)

where the uL are to be determined by the gauge choices and d2σ =

dσ1dσ2.

4.1.1 Getting a feel for the constraints

If we make the gauge choice X0 = σ0, where σ0 is our time coordinate,
and consider the membrane in a fixed time we see that the first two
constraints

φ1 ≡Pm∂1Xm ≈ 0

φ2 ≡Pm∂2Xm ≈ 0

tells us that the momenta are normal to the membrane while for the
last constraint we make the additional choice ∂1Xm∂2Xm = 0, which
means that σ1 is orthogonal to σ2. We can then write the constraint
as

φ3 ≡PmPm +

(
∂1Xm∂1Xm∂2Xn∂2Xn

)
≈ 0.

We see that this constraint relates the magnitude of the momenta to
the (area)2 in the target-space associated with a unit dσ1dσ2 element
in parameter space.
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4.2 light-cone coordinates

This choice
simplifies a lot of
equations.

We introduce the so called “light-cone coordinates”, which are de-
fined as

Xm =

{
X± =

1√
2

(
X10 ± X0

)
; X I , I = 1, . . . , 9

}
. (68)

In these coordinates the length element is given by

ds2 =dx+dx− + dx−dx+ +
9

∑
I=1

dxIdxI . (69)

This means that the vectors will satisfy A+ = A−, A− = A+ and
AI = AI .

The equations of motion for hij (60) becomes

hij =∂iX+∂jX− + ∂iX−∂jX+ + ∂iX I∂jX I′ηI I′ , (70)

4.2.1 Light-cone gauge

We use the fact that the action (48) is parameterization invariant to
choose coordinates so that2

X+ =X+(0) + σ0 ⇐⇒ ∂iX+ = δi,0. (71)

This choice is called the “light-cone gauge” and it gauge fixes the
time coordinate σ0. So now we are left with only 2 parameterization
choices, both of them spatial on the world-volume σ1, σ2. We have one
requirement for the parameterization choices; they are not allowed to
change the area of a time-slice of the world-volume.

4.3 hamiltonian in light-cone coord. and gauge .

In the light-cone coordinates (68) and light-cone gauge (71) the equa-
tions of motion for hij (70) become

hij =

(
h00 ur

ur hrs

)
(72)

with

h00 =2∂0X− + ∂0X I∂0X I′ηI I′ , (73)

h0r ≡ur = ∂rX− + ∂0X I∂rX I′ηI I′ , (74)

hrs =∂rX I∂sX I′ηI I′ . (75)

2 This choice removes the constraint φ3 from (63) since this becomes identically satis-
fied (0 = 0) for all choices of σ1 and σ2.
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with r, s = 1, 2. Using this in the action (48) yields (by using Leibniz
formula for determinants)

S =−
∫

d3σ
√
−h

=−
∫

d3σ
√

h′U (76)

with U = (−h00 + urhrsus) and h′ = det(hrs). The conjugate momenta
are

P I ≡ ∂L

∂(∂0XI)
=

√
h′

U

(
∂0X I − urhrs∂sX I

)
, (77)

P+ ≡ ∂L

∂(∂0X−)
=

√
h′

U
. (78)

We use the Legendre transformation to get the Hamiltonian density

Hlc =P I(∂0X I′)ηI I′ +P+(∂0X−)−L

=
P IP I′ηI I′ + h′

2P+
= −P− (79)

where the last equality follows from the relation between the general
Hamiltonian (64) and the light-cone Hamiltonian above H = 0 =

P−(∂0X+) +Hlc.
We find the two primary constraints

φr ≡P I∂rX I′ηI I′ +P+∂rX− ≈ 0. (80)

There are only two left since we gauge fixed one parameterization.
We build the Hamiltonian density according to Dirac’s theory

H ′ =Hlc + crφr. (81)

Checking for inconsistencies or secondary constraints we find [7]

φ̇r =
{

φr, H ′}
p ≈0 (82)

We take the Lie derivative of ur to see how it transforms under
coordinate transformations

σr →σr + ξr(σi),

this yields

Lξur = (∂rξs) us + ξs∂sur + ∂0ξr.

We choose such a parameterization that ∂0ξr cancel the other terms,
i.e 3ur = 0. Using the Hamiltonian equations

∂0Xm =
∂Hlc

∂Pm
+ cr ∂φr

∂Pm
,

∂0Pm =− ∂Hlc

∂Xm − cr ∂φr

∂Xm (83)

3 This choice removes the two last constraints given by (80), since they are identically
satisfied (0 = 0).
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we find ∂0X I = P I

P+ + cr∂rX I which rearranged, using (77), shows that
cr = ur = 0. We get the total Hamiltonian density

HT =Hlc. (84)

From ur = 0 in (74) it follows that

∂rX− =− ∂0X I∂rX I′ηI I′ (85)

multiplying by εrs∂s we get the constraint (ε is anti-symmetric and
derivatives commute)

εrs(∂s∂0X I)∂rX I′ηI I′ =0. (86)

In phase space variables and with the brackets defined in (96) this
condition is given by

{
PI

P+
, X I

}
=0. (87)

This constraint is called the Gauss constraint.

4.3.1 Mass of membrane

Using the Hamilton’s equations (83) for P+ we find

∂0P
+ =0. (88)

Since P+ transforms as a density4 we write it as P+ = λ
√

w(σ),
with λ a scalar,

∫
d2σ
√

w(σ) = 1 and w(σ) = det(wrs(σ)). wrs are
to be viewed as a spatial Euclidean metric on the membrane at a
given time-slice, while hij are the Lorentzian metric on the world-
volume. We have one restriction on wrs, it is not allowed to be singular
anywhere on the membrane.

The momentum are the integrals over the momentum densities

p+ =
∫

d2σP+ = λ, (89)

p− =−
∫

d2σHlc =
1

2λ

∫ d2σ√
w(σ)

(
P IPI + h′

)
, (90)

pI =
∫

d2σP I (91)

and

h′ =
w(σ)

2

{
X I , X I′

}2
(92)

with
{

X I , X I′
}
≡ εrs
√

w(σ)
∂rX I∂sX I′ . (93)

4 Since p+ is proportional to the square root of a determinant, see (78).
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pI is just the center of mass motion by definition of center of mass.
The mass becomes

M2 = −pµ pµ =2p+p− − pI pI

=
∫

d2σ

(
[P IPI ]

′
√

w(σ)
+

√
w(σ)

2

{
X I , X I′

}2
)

(94)

where the prime [ ]′ indicates that the center of mass momentum has
been omitted. We see that this is the sum of the kinetic energy and
potential energy M2 = T + V. The Hamiltonian is given by

H =
∫

d2σ
1

2λ

(
P IPI√

w(σ)
+

√
w(σ)

2

{
X I , X I′

}2
)

. (95)

4.4 from membrane to m(atrix) theory

4.4.1 Infinite dimensional Lie algebra

The bracket

{A, B} ≡ εrs
√

w(σ)
∂r A∂sB (96)

is anti-symmetric {A, B} = −{B, A}, satisfies the Jacobi identity

{A, {B, C}}+ {C, {A, B}}+ {B, {C, A}} =0 (97)

and it is bi-linear

{aA + bB, C} =a {A, C}+ b {B, C} , (98)

for a, b being scalars independent of σ and A = A(σ), B = B(σ). So
this bracket is a Lie bracket which together with the functions on the
membrane forms an infinite dimensional Lie algebra.

4.4.2 Area preserving diffeomorphisms (APD)

We still have some residual gauge invariance called “area preserving
diffeomorphisms”. The APD are generated by ξs defined through

ξs =
εrs
√

w
∂rΛ (99)

where Λ is a scalar function of σs. ξs are divergence free vector-fields

∂s
(√

wξs) =εrs∂r∂sΛ = 0. (100)

We will now show that this does not change the potential energy of
the membrane.
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The change in the coordinates are

δσs =ξs(σ1, σ2) (101)

so that the change in X I becomes

δX I = εs∂sX I =
{

Λ, X I
}

. (102)

The change in the potential energy is then

δV =
∫

d2σ
√

w
{{

Λ, X I
}

, X I′
}
{XI , XI′}

=
1
2

∫
d2σ
√

w
{

Λ,
{

X I , X I′
}}
{XI , XI′}

=
1
4

∫
d2σ
√

w
{

Λ,
{

X I , X I′
}
{XI , XI′}

}

=
1
4

∫
d2σεrs∂rΛ∂s

{
X I , X I′

}
{XI , XI′}

=− 1
4

∫
d2σεrs∂r∂sΛ

{
X I , X I′

}
{XI , XI′}+ Boundary

=0 (103)

where we used the Jacobi identity (97) and partial integration. So the
change in the potential energy is the same, as promised, and hence
for all purposes we are still describing the same membrane which
proves the residual diffeomorphisms.

4.4.3 Membrane topology and second quantization

As we have seen the potential energy is given by

V =
1

4λ

∫
d2σ
√

w(σ)
{

X I , X I′
}2

(104)

which means that the potential energy vanishes whenever X I only
depend on either σ1 or σ2 but not both. This happens in the regions
where the membrane grows infinitely thin tubes on it’s world vol-
ume. Since the potential energy vanishes for such tubes there is no
distinction between two free membranes and two membranes con-
nected by a tube. This implies that the number of membranes are not
conserved.

The spectrum of the classical bosonic membrane is continuous[13,
14], the quantum version is discrete[13, 14], the spectrum of the quan-
tized super-membrane is continuous[15]5. Therefore the quantized

5 “We give a rigorous proof that the quantum mechanical Hamiltonians of a class of
supersymmetric matrix models have a continuous spectrum starting at zero. We are
thus led to conclude that super-membranes (which can be regarded as a limit of such
models) have a continuous mass spectrum and, in particular, no mass gap” from the
abstract of [15]



40 hamiltonian formalism

super-membrane theory is a second quantized theory, a multi-”particle”
theory where the number of “particles” can change.

Membranes can also use this fact to change shape. A spherical
membrane can grow a tube which connects two points on the surface
making it’s topology that of a torus, even though the membranes are
equivalent since the tubes carry no energy. So it is not quite clear if
one are even able to talk about membranes with a fixed topology [16].

4.4.4 General membrane regularization

We expand X I in a complete set of orthonormal functions YA (here
A, B, C are the basis function indices, not to be confused with the flat
super indices)

X I(σ) =X IAYA(σ), A = 0, 1, 2, . . . (105)

with the orthogonality condition
∫

d2σ
√

w(σ)YA(σ)YB(σ) =δB
A. (106)

We can then define a metric ηAB

∫
d2σ
√

w(σ)YA(σ)YB(σ) =ηAB, (107)

hence the metric lowers and raises the indices

ηABYB(σ) =YA(σ) (108)

and the inverse is defined

ηABηBC =δA
C . (109)

Multiplying (105) with
√

w(σ)YB(σ) on both sides and integrating
over d2σ we get (renaming indices and arguments)

X IA =
∫

d2σ′
√

w(σ′)YA(σ′)X I(σ′) (110)

Using this in (105) we get

X I(σ) =
∫

d2σ′X I(σ′)YA(σ)
√

w(σ′)YA(σ′) (111)

so that we get the completeness relation

YA(σ)YA(σ′) =
δ(σ− σ′)√

w(σ′)
. (112)

The structure constants are defined through

{YA(σ), YB(σ)} = f C
ABYC(σ) (113)
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with

f C
AB =

∫
d2σ′εrs∂rYA(σ

′)∂sYB(σ
′)YC(σ′), (114)

which can be seen by plugin in the explicit expression for the struc-
ture constant in the equation above and use the completeness relation
(112). Now we introduce a cut-off Λ on the number of modes YA, i.e.
A, B, C = 0, 1, . . . , Λ. Our infinite group of area preserving diffeomor-
phisms GAPD will then be approximated by a finite Lie group GΛ

lim
Λ→∞

f C
AB ∈ GΛ = f C

AB ∈ GAPD. (115)

The group GΛ will be the SU(N) group, i.e. GΛ = SU(N) (if we
include the center of mass motion the group will be U(N)), with
Λ = N2 − 1. This was proved for membranes of arbitrary genus [6].
We won’t give the proof here since it’s far to complicated. We will
however prove this statement for the torus. But since the membrane
can change genus through infinitely thin tubes this may be enough.

4.4.5 Torus membrane regularization

We choose the basis functions to be a double Fourier expansion

YA(σ
r) =eiArσr

, A = 0, 1, 2, . . . (116)

with r = 1, 2, and 0 ≤ σr ≤ 2π. The definition of the metric (107)
gives us

∫ 2π

0
d2σ
√

w(σ)ei(Ar+Br)σr
=δ0,Ar+Br (117)

if we choose
√

w(σ) = 1
4π2 , which we do. Calculating the bracket

{YA(σ
r), YB(σ

r)} =− (2π)2 εrs ArBsYA+B(σ) (118)

reveals that

f C
AB =− (2π)2 εrs ArBsδA+B,C. (119)

A generalization of the Pauli matrices are the shift and clock matrices,
defined

Σs =




0 1
. . . . . .

. . . 1

1 0




, Σc =




1

ω
. . .

ωN−1




, (120)

where N is defined from the group dimension, i.e from SU(N), and
ω = ei2πk/N , k ∈ Z. They commute up to a phase factor

ΣsΣc =ωΣcΣs (121)
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This is very useful since any trace-less N × N matrix can be written
as a linear combination of ΣA1

s ΣA2
c [16]. The commutator is then

{
ΣA1

s ΣA2
c , ΣB1

s ΣB2
c

}
=
(

ωA2B1 −ωA1B2
)

ΣA1+B1
s ΣA2+B2

c . (122)

Keeping A and B fixed and taking the limit as N → ∞ we have

lim
N→∞

ωC =1 +
i2πkc

N
+O(1/N2) (123)

which gives

lim
N→∞

{
ΣA1

s ΣA2
c , ΣB1

s ΣB2
c

}
= − i2πk

N
εrs ArBsΣA1+B1

s ΣA2+B2
c +O(1/N2).

(124)

This is the same Lie-algebra as in (118) after re-scaling.
This shows that we successfully truncated the infinite dimensional

Lie algebra (APD) to a finite dimensional Lie algebra of matrices.

4.5 summary

Our whole theory is now described by the Hamiltonian

H =
∫

d2σ
1

2λ

(
P IPI√

w(σ)
+

√
w(σ)

2

{
X I , X I′

}2
)

(125)

the Gauss-constraint6
{
PI , X I} = 0 and the residual gauge invari-

ance δσr = ξr, with ∂r(
√

wξr) = 0. Because of the residual gauge
invariance we have 8 degrees of freedom for the bosonic membrane.
Furthermore we have used our initial gauge freedom to fix ∂iX+ =

δi,0 and ur = 0. Note that the canonical momenta are now defined as
P I = P+∂0X I .

6 If we choose the spatial metric w(σ) on the membrane to be constant, as we do for
the torus case for example.



Part IV

S U P E R - M E M B R A N E

We describe the super-membrane. We introduce fermions
in the target space-time. We take a look at the super-
membrane Lagrangian. Since we relate bosons to fermions
they need to have the same degrees of freedom. For this
we need something called κ-symmetry (kappa-symmetry),
which we also take a look at. Then we derive the Hamil-
tonian in the light-cone gauge and truncate the infinite
dimensional algebra to arrive at super M(atrix) theory.
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Since the bosonic membrane lacks fermions, which we know exist, we
introduce supersymmetry. We introduce fermionic coordinates in tar-
get space which are denoted by θ (these are maps θ(σi) : Σ3 → M11),
with their Dirac conjugate θ̄ ≡ θ†C = θTC (since θ is real in 11-
dimensions [17]), these transform as spinors in space-time and anti-
commute θ1θ2 = −θ2θ1 (Grassmann variables) with each other but
commute with the bosonic maps θX = Xθ. The bosonic coordinates
(maps) are denoted by Xm as in the previous chapters. We also in-
troduce the super-space coordinates ZM = (Xm, θµ). The meaning of
this is that we embed the membrane in a supersymmetric space-time.
For an overview of gamma matrices and spinors see Appendix B

5.1 lagrangian

5.1.1 Lagrangian formulation in super-gravity

The Lagrangian density is given by [18, 19]

L =Lvol +Lwz, (126)

where Lvol is a kinetic term proportional to the world volume and
Lwz is the Wess-Zumino term which specifies the minimal coupling
to a 3-form potential under which the membrane carries charge

Lvol =−
∫

d3σ
√
−det(hij), (127a)

Lwz =
∫

C (127b)

with the induced metric hij = E m
i E n

j ηmn, the pullback of the anti-
symmetric tensor gauge field Cijk = E C

k E B
j E A

i CABC and C = 1
6 εijkCijk

with the pullback (∂iZM) of the super-vielbein to the membrane world
volume E A

i = ∂iZME A
M where the target-space super-vielbein is E A

M .
The εijk is the anti-symmetric Levi-Civita symbol, with ε123 = +1.

5.1.2 Lagrangian formulation in flat super-space

In flat target-space the super-vielbien becomes [19]

Em
i ≡∂iXm + θ̄Γm∂iθ. (128)

and the Lagrangian becomes

45
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Lvol =
1
2

√
−h
(

1− hijEm
i En

j ηmn

)
, (129a)

Lwz =− εijk
(

1
2

∂iXm (∂jXn + θ̄Γn∂jθ
)
+

1
6

θ̄Γm∂iθθ̄Γn∂jθ

)
θ̄Γmn∂kθ.

(129b)

The gamma matrices generate the target-space Clifford algebra

ΓmΓn + ΓnΓm =2ηmn (130)

and Γmn = 1
2 (ΓmΓn − ΓnΓm).

5.2 equations of motions

The equations of motion for the super-membrane in flat super-space
are [19, 7]

∂i

(√
−hhijE m

j

)
− εijkE n

i ∂j θ̄Γm
n∂kθ =0, (131)

(1 + Γ)hijΓmE m
i ∂jθ =0, (132)

hij − E m
i E n

j ηmn =0, (133)

with

Γ =
1

3!
√
−h

εijkΓijk. (134)

5.3 κ -symmetry

Since we have supersymmetry, which means that we relate fermions
to bosons, we need the fermions and the bosons to have the same
physical degrees of freedom. A Majorana spinor in 11-dimensions
has 32 components. This is reduced to half by the equations of mo-
tion. We need one more symmetry which reduces the components by
half, this is what the so called local κ-symmetry does, which we will
now show.

The κ-symmetry is generated by a super-space vector that only
points in the fermionic directions κ = κ M ∂ M = κ α E M

α ∂ M (i.e. κ A =

(κ a , κ α ) = (0, κ α )). The coordinates transforms as δκ Zm = κ M . To
see how the Lagrangian transform we take the Lie-derivative. We use
the general super-gravity formulation (127). The transformations are
(with pullbacks suppressed)

δκ C = iκ dC︸︷︷︸
H

+diκ C (135)
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and for the vielbein

δκ E A = iκ dE A + d iκ E A
︸︷︷︸

=κ M E A
M =κ A

= iκ

(
D E A
︸ ︷︷ ︸
≡T A

−ω A
B EB

)
+ Dκ A − ω A

B κ B

=
[

Dκ A + iκ T A
]
− iκ (ω A

B EB ) − ω A
B κ B

=
[

Dκ A + iκ T A
]
− iκ ω A

B EB + ω A
B iκ EB
︸︷︷︸
=κ B

−ω A
B κ B

︸ ︷︷ ︸
=0

=Dκ A + iκ T A (136)

where iκωA
BEB is Lorentz transformed away and TA is the super-

space torsion. For the induced metric we get

δκhij =δκ

(
E a

i E b
j ηab

)

=2
(

D κa
︸︷︷︸
=0

+iκTa)
(iE

b
j) ηab

=2E B
(i E a

j) καT b
αB ηab (137)

where we used (iκTa)i = E B
i καT a

αB . To show the κ-symmetry we
need iκ H and iκTa. In 11-dimensions they are [18]; Habαβ = 2(Γab)αβ

and T a
αβ = 2Γa

αβ. Now we have everything we need to show the
κ-symmetry:

δκS =−
∫

d3σ

(
1
2

√
−hhijδκhij

)
+
∫ (

iκ H + diκC︸︷︷︸
boundary

)

=−
∫

d3σ
√
−hhijE B

(i E a
j) καT b

αB ηab +
∫

iκ H

=− 2
∫

d3σ
√
−hE B

i hijE a
j καΓ b

αB ηab︸ ︷︷ ︸
=(Γi)αβκα

+
∫ 1

3!
κAεijk HAijk︸ ︷︷ ︸

2E β
i (Γjk)Aβ

d3σ

=− 2
∫

d3σ
√
−hE B

i

(
Γi − 1

3!
√
−h

εijkΓjk

)

αβ

κα (138)

=− 2
∫

d3σ
√
−hE B

i

(
Γi
[

1− 1
3!
√
−h

εijkΓijk

])

αβ

κα (139)

=− 2
∫

d3σ
√
−hE B

i

(
Γi[1− Γ]

)
αβ

κα = 0. (140)

Requiring this to be zero halves the components of the spinors since
the square bracket is a projection matrix1, projecting out half of the
spinor components [18]. The κ-symmetry hold only on-shell for super-
gravity [18]. We are left with 8 fermionic degrees of freedom and 8
bosonic degrees of freedom.

1 Since Γ2 = 1 and Tr(Γ) = 0. This is explicitly proven for the case of flat super-space
in [13].
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Since we are interested in going from the light-cone gauge to matrix
mechanics and already looked at the bosonic membrane from differ-
ent viewpoints we proceed directly to the light-cone gauge in the
Hamiltonian formalism.

6.1 light-cone hamiltonian

We define the light-cone coordinates as before

X± =
1√
2

(
X10 ± X0

)
, Γ± =

1√
2

(
Γ10 ± Γ0

)
(141)

and impose the light-cone gauge

∂iX+ =δi,0, Γ+θ = 0. (142)

The equations of motion (133) for the induced metric becomes

hij =δi,0
(
∂jX− + θ̄Γ−∂jθ

)
+ δj,0

(
∂iX− + θ̄Γ−∂iθ

)
+ ∂iX I∂jX I′ηI I′ ,

(143)

that is

h00 =2∂0X− + 2θ̄Γ−∂0θ + ∂0X I∂0X I′ηI I′ , (144)

h0r ≡ur = ∂rX− + θ̄Γ−∂rθ + ∂0X I∂rX I′ηI I′ , (145)

hrs =∂rX I∂sX I′ηI I′ . (146)

The Lagrangian becomes, using Leibniz formula for determinants
and the equation of motion for hij

L =−
√

h′U + εrs∂rX I θ̄Γ−ΓI∂sθ (147)

with h′ = det(hrs) and U = −h00 + urhrsus.
We define the conjugate momenta densities

P I ≡ ∂L

∂(∂0XI)
=

√
h′

U

(
∂0X I − ∂rX Ihrsus

)
, (148)

P+ ≡ ∂L

∂(∂0X−)
=

√
h′

U
, (149)

S ≡ ∂L

∂R(∂0θ̄)
= −

√
h′

U
Γ−θ ⇐⇒ S̄ ≡ ∂L

∂L(∂0θ)
=

√
h′

U
θ̄Γ−

(150)

49
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where ∂L and ∂R are left and right derivative respectively, this is
needed since these fermionic derivatives anti-commute with the spinors.
From these we get the primary constraints, multiplying (148) by ∂rX I

yields

φr =P I∂rX I′ηI I′ +P+∂rX− + S̄ ∂rθ ≈ 0 (151)

We construct the Hamiltonian density1

H =P I∂0XI +P+∂0X− + S̄ ∂0θ −L

=
P IPI

2P+
+

h′

2P+
+ θTγI

{
X I , θ

}
. (152)

Then we add the constraints according to Dirac’s theory

H ′ =
P IPI

2P+
+

h′

2P+
+ θTγI

{
X I , θ

}
+ Crφr. (153)

Now we have to check for inconsistencies, second constraints or
equations for Cr. This is done by checking that the constraints time
evolution are weakly zero. That is, checking that

φ̇r =
{
H ′, φr

}
≈ 0. (154)

It turns out that the time derivative for all these are weakly zero [7].
In analogy with the bosonic case we can set2 ur = 0 which when
using Hamilton’s equations reveals that Cr = 0. Just as in the bosonic
case this gives rise to a Gauss constraint, which is given by

{
∂0X I , XI

}
+
{

θT, θ
}
=0 (155)

So we get the total Hamiltonian

H =
1

2λ

∫
d2σ

(
P IPI√

w(σ)
+

√
w(σ)

2

{
X I , X I′

}2
+ 2λ

√
w(ω)θTγI

{
X I , θ

})

(156)

and in analogy with the bosonic case the mass becomes

M2 =
∫

d2σ

(
[P IPI ]

′
√

w(σ)
+

√
w(σ)

2

{
X I , X I′

}2
+ 2λ

√
w(ω)θTγI

{
X I , θ

})
.

(157)

1 Taking a look in appendix B we see that Γ−ΓI =
√

2

(
0 0

γI 0

)
and the gauge

condition Γ+θ = 0 gives θ32×1 =

(
θ16×1

016×1

)
. We therefore rewrite θ̄Γ−ΓI∂sθ (in

SO(10, 1)) as −θTγI∂sθ (in SO(9)) where we absorbed the factor
√

2 into the fields.
2 This choice removes the constraints given by (151) just as in the bosonic case.
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6.2 from super-membrane to m(atrix) theory

As stated above the mass of the super-membrane is given by (157)
which is just M2 = M2

bosonic + fermionic terms. In analogy with the
bosonic case we have residual gauge invariance, namely APD, which
for δσr = ξr have to satisfy ∂r

(√
wξr) = 0, that is, be generated by

divergence free vector fields.
In analogy with the bosonic case we expand the coordinates in a

complete set of orthonormal functions, which are different for differ-
ent topologies. We then translate the Hamiltonian to super M(atrix)
theory3 4

H =
1

2λ
Tr
(

PI PI +
1
2

[
X I , X I′

]2
+ θTγI

[
X I , θ

] )
, (158)

The matrices here are in U(N) since we haven’t omitted the zero
modes (center of mass). Note that the contraction for the indices are
done with the Euclidean metric (PI PI = PI PI′δI I′) now. This Hamil-
tonian need to be supplemented with the Gauss constraint found in
(155).

We will look more into this Hamiltonian in the M(atrix) theory
before we, in the final chapter, calculate the first order scattering am-
plitude for two D0-branes and compare the results to super-gravity.

6.3 summary

The super-membrane theory is now completely described by the Hamil-
tonian

H =
1

2λ

∫
d2σ

(
P IPI√

w(σ)
+

√
w(σ)

2

{
X I , X I′

}2
+ 2λ

√
w(ω)θTγI

{
X I , θ

})
,

(159)

the Gauss constraint
{
P I , XI

}
+
{

θT, θ
}
= 0 and the residual gauge

invariance for the bosonic coordinates described by δσr = ξr with
∂r(
√

wξr) = 0.

3 We let θ →
√

2λθ.
4 w(σ) depends on the membranes topology. Choosing for example a torus where

w(σ) is just a constant makes the transition easier.





Part V

M ( AT R I X ) T H E O RY

We give an introduction to M(atrix) theory and explain
how M(atrix) theory connects to, not just membrane the-
ory, but to other theories as well. We develop some needed
tools for our scattering calculation, e.g. Schwinger ac-
tion principle and the background field method. Then
we take a closer look at the M(atrix) theory to get a feeling
for the theory. In the last section we calculate the scat-
tering amplitude to first order in quantum corrections in
the M(atrix) theory and compare it to the results of super-
gravity (SUGRA) in 11D.
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M(atrix) theory is a supersymmetric quantum mechanics with ma-
trix degrees of freedom. The Lagrangian of the theory is built from
9 bosonic N × N matrices with their corresponding 16 components
(with every component a matrix1) fermionic partners θ. There is a
gauge invariance for the bosonic coordinates given by δXa = [Λ, Xa]

which are the APD in the membrane theory. This reduces the bosonic
degrees of freedom down to 8.

Since N is finite we have a finite degrees of freedom making the
theory manifestly well defined, note that this is not a field theory2

(which has infinite degrees of freedom) so we should not run into
any problems of re-normalization.

It is believed that M(atrix) theory describes M-theory in an infinite
momentum frame, in light-cone coordinate, in flat space-time3. Thus
M(atrix) theory provides a calculational framework for M-theory, how-
ever it has proved itself to be a theory where detailed calculations gets
hard quickly, even for small N. People have however, preformed de-
tailed calculations to show that 11-dimensional classical super-gravity
is produces by M(atrix) theory to some low orders. We shall, later on,
show this for the first term which we get from a first order loop cal-
culation in M(atrix) theory.

The action and Hamiltonian for M(atrix) theory is given by4

S =
1

2λ

∫
dt Tr

(
∂tXa∂tXa −

1
2

[
Xa, Xb

]2
+ iθT∂tθ − θTγa [Xa, θ]

)
,

(160)

H =
1

2λ
Tr
(

PaPa +
1
2

[
Xa, Xb

]2
+ θTγa [Xa, θ]

)
, (161)

where Xa are Hermitian N × N matrices, a = 1, . . . , 9 and θ is a 16
component matrix valued real spinor, i.e 16 Grassmann matrices of
SO(9). Here we use the Euclidean metric δab to raise or lower the
bosonic indices. This Hamiltonian is obviously the same as in the
truncated membrane theory (158).

1 Since the equations of motion halves the degrees of freedom for the fermions we
have equal degrees of freedom for the bosonic and fermionic parts. As we should
have in a supersymmetric theory.

2 Although we will often call the objects Xa and θ for fields anyway.
3 This conjecture is know as the BFSS conjecture, given in [20].
4 One can of course derive this Hamiltonian from the action, so they describe the same

theory.
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This theory is in (0 + 1) dimensions, meaning that the fields only
depend on time5.

We will show how this theory can be interpreted as N numbers
of D0-branes, elaborate on how this is a multi-particle theory and
calculate the first loop order for the scattering of two D0-branes.

5 We can also arrive at this theory by doing dimensional reduction of the (9 + 1)
dimensional Yang-Mills theory, which will be shown later.
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First we need to take a detour to develop some tools which tells us
how to compute the first order loop amplitude. This is done by some-
thing called the background field theory, where we expand the fields
in a classical background with some quantum fluctuations.

This chapter follows [21], which is a great introduction to effective
potentials and Schwinger action principle if one feels the need for
a more complete overview of the subject, and [22] which is a great
introduction to the background field method.

8.1 schwinger action principle

We will write1

∣∣a
〉

as the eigenket of an operator A and
∣∣b
〉

as the
eigenket of an operator B, and so forth. We won’t write out the time of
these kets since we want to keep the readability, thus it is understood
that

∣∣a
〉
=
∣∣a, ta

〉
and

∣∣b
〉
=
∣∣b, tb

〉
etc.

We can write

∑
b

〈
a
∣∣b
〉〈

b
∣∣c
〉
=
〈

a
∣∣c
〉

(162)

since we have a completeness relation

∑
b

∣∣b
〉〈

b
∣∣ =1 (163)

where the 1 on the right side is the identity operator.
If
∣∣a
〉

and
∣∣a′
〉

are both eigenkets of the same operator A we have
the orthogonal relation

〈
a
∣∣a′
〉
=δ(a− a′). (164)

The bras
〈

a
∣∣ are dual vectors to the kets

∣∣a
〉

which means that we
have

(〈
b
∣∣a
〉)†

=
〈

a
∣∣b
〉

(165)

where † is the Hermitian conjugate (transpose and complex-conjugate).
Varying (162) yields

δ
〈

a
∣∣c
〉
=∑

b

[(
δ
〈

a
∣∣b
〉)〈

b
∣∣c
〉
+
〈

a
∣∣b
〉(

δ
〈
b
∣∣c
〉)]

(166)

1 This is basic quantum mechanical notation called “brackets” and can all be found in
e.g. [23].
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and varying (165) yields

δ

(〈
b
∣∣a
〉)†

=δ
〈

a
∣∣b
〉
. (167)

We define an operator δWab through the equation

δ
〈

a
∣∣b
〉
=i
〈

a
∣∣δWab

∣∣b
〉

(168)

where we choose the normalization i to make δWab Hermitian (we
will show the Hermitian property of δWab soon).

We rewrite (166) with the aid of (168)

〈
a
∣∣δWac

∣∣c
〉
=∑

b

[(〈
a
∣∣δWab

∣∣b
〉〈

b
∣∣c
〉
+
〈

a
∣∣b
〉〈

b
∣∣δWbc

∣∣c
〉]

=
〈

a
∣∣δWab + δWbc

∣∣c
〉

(169)

where we used the completeness relation in the last step. We then get
the relation

δWac =δWab + δWbc. (170)

Varying (164) yields

δWaa =0. (171)

We set a = c in (170) and use the above equation to get

δWab = −δWba. (172)

Using (167) and (168) gives the equation
(

i
〈
b
∣∣δWba

∣∣a
〉)†

=i
〈

a
∣∣δWab

∣∣b
〉

(173)

reveling the property

δW†
ab =δWab (174)

which means that δWab is Hermitian.
Now we assume that the infinitesimal operator δWab can be ob-

tained as an variation of an operator Wab (called the action operator),
which then have to obey the properties above, just derived

Wac =Wab + Wbc,

Waa =0, (175)

Wab =−Wba = W†
ab.

If the time evolution from a state
∣∣a
〉

to a state
∣∣b
〉

is continuous in
time we may write

Wba =
∫ tb

ta

dt L(t), (176)
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where L(t) is the Lagrangian operator which must be Hermitian
L†(t) = L(t) due to (175). This gives us the Schwinger action princi-
ple

δ
〈
b
∣∣a
〉
=i
〈
b
∣∣δS
∣∣a
〉

(177)

where S =
∫ tb

ta
dt L(t) is the action.

8.1.1 Double variation of the Lagrangian

We will need the formula for two variations of an amplitude later on
so we will derive it here. Putting in two completeness relations in
(177) and giving the variation a label since we are going to take two
variations yields

δ1
〈
b
∣∣a
〉
=i
∫ tb

ta

dt ∑
c,d

〈
b
∣∣c
〉〈

c
∣∣δ1L(t)

∣∣d
〉〈

d
∣∣a
〉
. (178)

Now we perform another variation δ2 which is independent of the
first variation2

δ2δ1
〈
b
∣∣a
〉
=i
∫ tb

ta

dt ∑
c,d

[(
δ2
〈
b
∣∣c
〉)〈

c
∣∣δ1L(t)

∣∣d
〉〈

d
∣∣a
〉

+
〈
b
∣∣c
〉〈

c
∣∣δ1L(t)

∣∣d
〉(

δ2
〈
d
∣∣a
〉)]

. (179)

We can apply the Schwinger action principle (177) and expand out
the variation on the right hand side of the above equation as

δ2
〈
b
∣∣c
〉
=i
∫ tb

t
dt′
〈
b
∣∣δ2L(t′)

∣∣c
〉
, (180)

δ2
〈
d
∣∣a
〉
=i
∫ t

ta

dt′
〈
d
∣∣δ2L(t′)

∣∣a
〉
, (181)

with ta ≤ t ≤ tb. We plug this back into (179) and use the complete-
ness relations to get

δ2δ1
〈
b
∣∣a
〉
=i2

∫ tb

ta

dt

( ∫ tb

t
dt′
〈
b
∣∣δ2L(t′)δ1L(t)

∣∣a
〉

+
∫ t

ta

dt′
〈
b
∣∣δ1L(t)δ2L(t′)

∣∣a
〉)

. (182)

We can write this more compact by defining the time ordering opera-
tor T

T
{

δ1L(t)δ2L(t′)
}
=θ(t− t′)δ1L(t)δ2L(t′) + θ(t′ − t)δ2L(t′)δ1L(t)

(183)

2 Meaning that terms such as δ2
〈
c
∣∣δ1L(t)

∣∣d
〉

are zero.
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where θ(t− t′) is the Heaviside step function

θ(t− t′) =





1 for t− t′ ≥ 0

0 for t− t′ < 0
. (184)

The double variation can then be written as

δ2δ1
〈
b
∣∣a
〉
=i2

∫ tb

ta

dt
∫ tb

ta

dt′
〈
b
∣∣T
{

δ1L(t)δ2L(t′)
} ∣∣a

〉
. (185)

This can be generalized to arbitrary many variations but two is suffi-
cient for us.

8.2 effective action at first loop order

We consider a free field theory with a field operator φI(x, t) where
I runs over whatever indices we might have. We will use a very
condense notation due to Dewitt, where we will label the field oper-
ators by φi and let i stand for all the labels of the field operators, i.e.
i = (I, x, t). In this notation it is understood that for any repeated
indices we sum over all the I and integrate over all x and t. Two
examples are

Jiφ
i =∑

I

∫
dt
∫

dDx JI(x, t)φI(x, t), (186)

Oijφ
iφj =∑

I,J

∫
dt
∫

dDx
∫

dt′
∫

dDx′OI J(x, t; x′, t′)φI(x, t)φJ(x, t).

(187)

We will consider a free theory (that is, in the limit where the interac-
tions gets small) where the action S is given by

S[φ] =− 1
2
Oijφ

iφj + Jiφ
i (188)

where Oij is the wave operator (�x + m2 + iε)δ(x, x′) and Ji is called
the source function, we add Ji since it is convenient as we will see. It
can be set to zero at any time and no physical results are to depend
on Ji, it’s just a mathematical trick.

The equations of motion for φi following from the action (188) is

Oijφ
j =Ji. (189)

We define the Feynman Green function (also called the propagator)
Gjk in this notation as the inverse of Oij

OijGjk =δk
i . (190)

We can solve (189) in terms of the Green function

φi =Gij Jj. (191)
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Choosing the variation to be with respect to Ji for the Schwinger
action principle (177) we get3

δ

δJi

〈
b
∣∣a
〉
=i
〈
b
∣∣φi∣∣a

〉
. (192)

We introduce the standard notation

〈
O[φi]

〉
=

〈
b
∣∣T
{

O[φi]
}∣∣a
〉

〈
b
∣∣a
〉 (193)

where O[φi] is any operator and are also allowed to be a functional of
φi and T is the time ordering operator defined in (183).

Since
〈
b
∣∣a
〉

is just a complex number we can write it as
〈
b
∣∣a
〉
=eiW[J]. (194)

Varying (194) with respect to Ji gives

δ

δJi

〈
b
∣∣a
〉
=i

δW[J]
δJi

eiW[J] = i
δW[J]

δJi

〈
b
∣∣a
〉
. (195)

Comparing (192) and (195) we get

δW[J]
δJi

=
〈
φi〉 =

〈
Gij Jj

〉
(196)

where the last equality follows from (191). (196) is a functional differ-
ential equation for W[J] with the solution

W[J] =
〈1

2
JiGij Jj

〉
+ W[0] (197)

where W[0] is independent of the source J and can be thought of as
an integration constant.

Next we need to determine the explicit form of W[0].
Taking the variation of the action (188) with respect to Oij yields

δS =− 1
2

δOijφ
iφj, (198)

taking the variation of the Schwinger action principle (177) and using
(195) and (198) yields

δ
〈
b
∣∣a
〉
=
〈
b
∣∣a
〉
iδW = −i

1
2
(δOij)

〈
b
∣∣T
{

φiφj}∣∣a
〉

(199)

which gives us the relation, for J = 0,

δW[0] =− 1
2
(δOij)

〈
T
{

φiφj}〉. (200)

3 Here and for the rest of this section we take the states to be in the infinitely far past
ta → −∞ and infinitely far future tb → +∞ , so that we start with a state that is the
direct product of non-interaction states and end with such a state. These states are
often denoted

〈
Out

∣∣ and
∣∣in
〉
, we will however not use these conventions.
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From the double variation (185) we know that

δ2〈b
∣∣a
〉

δJiδJj
=i2〈b

∣∣T
{

φiφj}∣∣a
〉

(201)

we note that (196) gives δW
δJi

∣∣
Ji=0 = 0 and rewrite (201) with the help

of (194)

δ2W
δJiδJj

∣∣∣∣
Ji=0

=ie−iW[0]〈b
∣∣T
{

φiφj}∣∣a
〉
. (202)

We get the left hand side from (197) and note that e−iW[J]
∣∣

J=0 =
1〈

b
∣∣a
〉 ∣∣

J=0 by (194), giving us

−iGij =
〈
T
{

φiφj}〉. (203)

Using the result in (200) yields

δW[0] =
i
2
(δOij)Gij. (204)

But Gij and Oij are inverses and we are summing over both the in-
dices, that is, taking the trace, in crude notation4

(δOij)Gij =Tr(δO G)

=δTr(ln(O)), (205)

∴ W[0] =Tr(ln(O)). (206)

Combining this with (197) we get

W[J] =
〈1

2
JiGij Jj

〉
+

i
2

Tr(ln(O)). (207)

But we are not quite there yet. The source function J was just a
mathematical trick, we need to change these variables into the field
variables, remember that nothing were to depend on the source func-
tion. To eliminate J we do a Legendre transformation, note that
δW[J]

δJi
=
〈
φi〉 (which is how we usually define conjugate momenta

when we go from the Lagrangian to the Hamiltonian.) The Legendre
transform is given by

Γ
[〈

φi〉] =W[J]− Ji
〈
φi〉 (208)

=− 1
2
Oij
〈
φi〉〈φj〉+ i

2
Tr(ln(O)), (209)

4 One could think of this as matrix notation, but this is not quite true for this case
since we here have to sum over all indices and set the arguments of the functions
the same and integrate over all space-time.
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we call Γ
[〈

φi〉] the effective action since the first term is just the
classical Feynman diagram for a free theory and the second term is
the first quantum correction, which is a loop for free theories. So the
one loop effective action is given by

Γ(1) =
i
2

Tr(ln(O)) (210)

where O is the wave operator and the inverse of the propagator. This
formula is however derived with the Minkowski metric. We want the
Euclidean version.

If we look at the full quantum action S[φ] and expand z = b + ϕ

where b is the classical background and ϕ are the quantum fluctua-
tions, then we can expand the action as

S[φ] =S[b] +
δS

δφ(x)
[b]ϕ(x) +

1
2

ϕ(y)
δ2S

δφ(y)δφ(x)
[b]ϕ(x) + . . . (211)

The first term is just a constant, the second term is zero if b is on-
shell, which we choose it to be. The third term is the background
dependent kinetic term ϕOϕ. Going from the Minkowski theory to
the Euclidean theory we multiply the Minkowski action with −i and
take t → it, this gives the Euclidean action and hence the one loop
effective action for the Euclidean theory is

Γ(1) =
1
2

Tr(ln(O)) (212)

8.2.1 Heat kernel and effective action

We will introduce the heat kernel which we relate to a number of
quantities since this simplifies computations.

The heat kernel5 h(x, y, χ) is defined through the PDE it satisfy

Oh(x, y, χ) =− ∂

∂χ
h(x, y, χ) (213)

where O is the wave operator and therefore the inverse to the propa-
gator. The heat kernel also have a boundary condition to satisfy

lim
χ→o

h(x, y, χ) =δ(x, y). (214)

One does not have to stare long at these equations to see that the
explicit form for the heat kernel is

h(x, y, χ) =e−χOδ(x, y). (215)

We can express the propagator G(x, y) in terms of the heat kernel

G(x, y) =
∫ ∞

0
dχ h(x, y, χ) (216)

5 Often denoted by K in the literature, but we will call it h.
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which indeed is the inverse to O

G(x, y)O =
∫ ∞

0
dχOh(x, y, χ)

=
∫ ∞

0
dχ

(
− ∂

∂χ
h(x, y, χ)

)

=− h(x, y, χ)

∣∣∣∣
χ=∞

χ=0

=δ(x, y) (217)

Armed with this we can express (212) in terms of the heat kernel,
first we ask how the effective action varies as the wave operator O
varies

δΓ(1) =
1
2

δTr(ln(O))

=
1
2

Tr(G(x, y)δO)

=− 1
2

Tr
(∫ ∞

0

dχ

χ
δh(x, y, χ)

)
. (218)

Now we integrate over the variation and arrive at an expression for
the effective action in terms of the heat kernel

Γ(1) =− 1
2

Tr
(∫ ∞

0

dχ

χ
h(x, y, χ)

)
, (219)

remember that the trace here is over all indices and then we set x to y
and integrate over space-time, just as we defined the notation in the
section above.

8.2.2 Heat kernel a free field of mass n

For a free scalar field x(t) of mass n in 1 dimension we have the heat
kernel h (imaginary time propagator)

h
(
T, x(0), x(T)

)
=
∫

Dx exp
(
−
∫ T

0
dt
[

1
2

ẋ2 +
n2

2
x2
])

(220)

which is of the same form as the heat kernel for the harmonic oscilla-
tor ZHO (derived in appendix C). We use this result with the identifi-
cation m = 1

2 and n = ω ( and rename XT = t, X0 = t′, T = 2χ) to
get

h(t, t′, χ) =

√
n

2π sinh(2nχ)

× exp
(
− n

2 sinh(2nχ)

[
(t2 + t′2) cosh(2nχ)− 2tt′

])

(221)
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which can be rewritten as

h(t, t′, χ) =

√
n

2π sinh(2nχ)
exp

(
−nt2

− coth(nχ)− nt2
+ tanh(nχ)

)

(222)

for t± = t+t′
2 .





9
M AT R I X M O D E L S

9.1 d0-branes as particles

The bosonic part of the Lagrangian building the action (160) is given
by

L =
1

2λ
Tr
(

∂ t X a ∂ t Xa −
1
2

[
X a , X b

]2
)

. (223)

Small energies E � 1 implies large distances since [Energy ] =

[Len gth ]−1 by the equation E = h̄ω. Then by locality the poten-
tial energy V = 1

4λ

[
X a , X b ]2 must be small since it is built out of

commutators of the dynamical variables X a which are largely sep-
arated, resulting in

[
X a , X b ] = 0 ∀a , b , that is, all the dynamical

variables commute. By standard result in linear algebra or elemen-
tary quantum mechanics [23] this means that we can diagonalize all
the matrices X a simultaneously

X a =




λ a
1 ( t) . . . 0
...

. . .
...

0 . . . λ a
N ( t)


 (224)

Plugging this into the Lagrangian (223) (with V = 0) and deriving
the Euler-Lagrange equations of motion we find

∂2
t λ a

i ( t) =0, i = 1, . . . , N (225)

which means that we can write the eigenvalues λ a
i of X a as λ a

i ( t) =

v a
i t + b a

i , where v is the velocity and b is called the impact parameter.
If we place all these in vectors according to ~λ i ( t) = (λ1

i , . . . , λ9
i )

where i = 1, . . . N and N is the dimension of X a , we can interpret
the vectors ~λ i ( t) as position vectors for N D0-branes. Thus this
theory can also be seen as an interaction theory for N D0-branes.

9.2 multi-particle theory

The M(atrix) theory is a multi-particle theory1, just as the membrane
theory. However we got a restriction in the number of particles we

1 An old word for this, which is often used, is “a second quantized theory”. It is due
to the fact that if one quantize one, say scalar particle, one gets an equation for a
probability wave function. On the other side, if one quantize, say a scalar field, one
gets an quantized field built from an infinite number of harmonic oscillators. It just
so happens that the structure of the one particle probability wave and the classical

67
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can have in the M(atrix) theory, so this is not a quantum field theory
but a multi-particle quantum mechanics, a regulated theory. Our
dynamical variables in the (bosonic) M(atrix) theory are the N × N
matrices X m . This is also the number of maximal particles we can
have in our theory as we will now show.

The bosonic part of the classical Lagrangian is given by, when
rearranged (use the cyclicity of the trace Tr(ABC) = Tr(CAB) =

Tr(BCA))

L =
1

2λ
Tr
(

∂tXa∂tXa −
1
2

Xa

[
Xb,
[

Xa, Xb
]])

(226)

Using Euler-Lagrange equations we arrive at the M(atrix) theory’s
equations of motion

∂2
t Xa =

[
Xb

[
Xa, Xb

]]
. (227)

If the matrices are block diagonal

Xa =

(
Aa 0

0 Ba

)
, (228)

the two blocks decouple and satisfy their own equations of motion

∂2
t Aa =

[
Ab

[
Aa, Ab

]]
,

∂2
t Ba =

[
Bb

[
Ba, Bb

]]
, (229)

showing that we can think of them as two separate particles. We can
do this maximally N times if the matrices Xa are N × N. Particles in
M(atrix) theory can thus merge and unmerge, be created or annihi-
lated.

field are the same. This made people to think that they somehow quantized the one
particle two times. Both this is not at all what actually happened. The scalar field
and the probability wave can not be interpret the same way at all. Therefore we will
drop the old term and call it for what it actually means these days, a multi-particle
theory.
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10.1 gauge inv. [super yang-mills to m(atrix) theory]

Another way to arrive at the M(atrix) theory is the dimensional re-
duction of the 9 + 1 dimensional1 super Yang-Mills theory2 to a 0 + 1
dimensional theory. The advantage of this approach is that one ar-
rives at an gauge invariant formulation of the super M(atrix) theory,
which for the gauge choice A = 0 gives the case we arrive at through
the regularization of the super-membrane.

The super Yang-Mills action in flat Minkowski space is usually
given by [24]

S =
∫

d10σ Tr
(
−1

4
FµνFµν − θTγµDµθ

)
(230)

with the field strength defined as Fµν = ∂µ Aν − ∂ν Aµ − ig
[
Aµ, Aν

]
,

Aµ being a U(N) Hermitian gauge field in the adjoint representa-
tion, θ being a 16 × 1 Majorana spinor of3 SO(9, 1) in the adjoint
representation and µ = 0, . . . , 9. The covariant derivative is given by
Dµθ = ∂tθ − ig

[
Aµ, θ

]
.

We re-scale the fields by Aµ → i
g Aµ and let g2 → λ which gives us

S =
∫

d10σ Tr
(

1
4λ

FµνFµν − θTγµDµθ

)
(231)

with the field strength defined as Fµν = ∂µ Aν − ∂ν Aµ +
[
Aµ, Aν

]

and the covariant derivative Dµθ = ∂tθ +
[
Aµ, θ

]
. Aµ being anti-

Hermitian now.

10.1.1 Dimensional reduction

Now we perform a dimensional reduction from 9 + 1 dimensions to
0 + 1 dimensions, so that all the fields only depend on time, thus all
spatial derivatives vanish i.e. ∂a(Anything) = 0. The 10-dimensional
vector field decomposes into 9 scalar fields Aa which we rename Xa

and one gauge field A0 which we rename A. This gives4

F0a =∂tXa + [A, Xa] , Fab = +
[

Xa, Xb
]

(232)

γtDtθ =∂tθ + [A, θ] , γaDaθ = γa [Xa, θ] (233)

1 9 spatial dimensions and 1 time dimension.
2 Non-Abelian gauge theories are called Yang-Mills theories by physicists.
3 Requiring that half of these are zero as in the super-membrane case we can decom-

pose these into SO(9).
4 Note that γt = I and that γa = γa.
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The action for this theory is then

S =
∫

dt Tr
(

1
2λ

{
− (DtXa)2 +

1
2

[
Xa, Xb

]2
}
− θTDtθ − θTγa [Xa, θ]

)

(234)

with the covariant derivative defined as DtXa = ∂tXa + [A, Xa] and
Dtθ = ∂tθ + [A, θ].

10.1.2 Wick rotation

The degrees of freedom we have left in the truncated super-membrane
lives in Euclidean space. To match the dimensional reduced Yang-
Mills theory we have to perform a Wick rotation, that is, we make the
time coordinate imaginary5 t→ iτ which gives the transformation of
the derivative ∂t → −i∂τ. To keep the covariant derivative covariant,
we have to transform the gauge field A → −iA so that the covariant
derivative transforms as DtXa → −iDτXa. We define the Euclidean
action without the i as

iSEuc =i
∫

dτ Tr
(

1
2λ

{
(DτXa)2 +

1
2

[
Xa, Xb

]2
}
+ iθTDτθ − θTγa [Xa, θ]

)
.

(235)

Now we have a Euclidean metric as in the truncated super-membrane
case where we only have the transverse degrees of freedom left from
the super-membrane theory.

10.1.3 Yang-Mills - Super-membrane correspondence

Setting the gauge field to zero, A = 0 we get the action (we drop the
Euc subscript on the action S and rename τ to t)6

S =
∫

dt Tr
(

1
2λ

{
(∂tXa)2 − 1

2

[
Xa, Xb

]2
}
+ iθT∂tθ − θTγa [Xa, θ]

)
,

(236)

this gives us the Hamiltonian density (where we re-scaled the fermionic
fields θ → 1√

2λ
θ and changed the matrices to Hermitian matrices)

H =
1

2λ
Tr
(

P aP +
1
2

[
Xa, Xb

]2
− θ̄γa [Xa, θ]

)
(237)

5 Which transforms −dt2 → +dτ2, making the metric positive definite, i.e. XaδabXb ≥
0, where the equality only holds when Xa = 0.

6 Note that we changed the sign for the potential energy. In the action (235) the Xa are
anti-Hermitian since we let Aµ → i

g Aµ. The commutator of anti-Hermitian matrices

are also anti-Hermitian. So if we have (like for the potential energy) Tr(M2), with
M being anti-Hermitian, then we can write it as Tr(M2) = −Tr((iM)2), with iM
being Hermitian. Since the eigenvalues of an Hermitian matrix is real and we take
the trace of the square it, it follows that Tr(M2) ≤ 0. Changing the anti-Hermitian
matrices to Hermitian matrices yields (236).
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which is the same as for the truncated super-membrane (158) and our
starting point for M(atrix) theory in (161).

10.2 expansion of the fields

The background field method allows us to keep all the terms gauge
invariant, so we will start from the gauge invariant Euclidean La-
grangian (scaling λ → 1

2 λ, dropping the Euc subscript on the action
S and rename τ to t from (235))

S =
∫

dt Tr
(

1
λ

{
(DtXa)2 +

1
2

[
Xa, Xb

]2
}

+ iθTDtθ − θTγa [Xa, θ] +
1
λ
(∂t A +

√
λ [Ba, Ya])

2
)
+ Sghosts

(238)

where we added the background gauge fixing term7 (Dµ Aµ)2 and
ghosts, which will be given in explicit form later.

We expand the fields in a classical background Ba and quantum
fluctuations Ya according to Xa = Ba +

√
λYa, where we introduced a

coupling constant to count the loop order, we also re-scale A→
√

λA.
Expanding the bosonic+gauge-fixing part of the Lagrangian

LBosonic+Gauge =
1
λ

Tr
(
(DtXa)2 +

1
2

[
Xa, Xb

]2
+ (
√

λ∂t A +
√

λ [Ba, Ya])
2
)

(239)

and only keeping terms of the order λn with n ≥ 0, since the rest must
be fulfilled by the background, we find for the quantum fluctuations
Y

LY =Tr
(
(∂tYa)2 + [Ba, Ya]2 +

[
Ba, Yb

]2
+
[

Ba, Bb
] [

Ya, Yb
]

+
[

Ba, Yb
] [

Ya, Bb
]
+ 2
√

λ
[

Ba, Yb
] [

Ya, Yb
]
+

λ

2

[
Ya, Yb

]2
)

(240)

and for the gauge field A

LA =Tr
(
(∂t A)2 + [A, Ba]2 + 4∂tBa [A, Ya]

+ 2
√

λ∂tYa [A, Ya] + 2
√

λ [A, Ba] [A, Ya] + λ [A, Ya]2
)

. (241)

7 To get from (Dµ Aµ)2 to (∂t A +
√

λ [Ba, Ya])2 we have used the dimensional reduc-
tion, Wick rotated and let A → −iA to keep the covariant derivative covariant, as
before. B and Y are from Xa = Ba +

√
λYa as will be explained below.
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We write the action in terms of the U(2) generators (which are just
the Pauli matrices divided by 2)

A =
1
2

(
A0I2×2 + Aiσ

i
)

, Xa =
1
2

(
Xa

0I2×2 + Xa
i σi
)

,

θ =
1
2

(
θ0I2×2 + θiσ

i
)

, (242)

with σi being the anti-hermitian (
(
σi)†

= −σi) Pauli matrices

σ1 =

(
0 i

i 0

)
, σ2 =

(
0 1

−1 0

)
, σ3 =

(
i 0

0 −i

)
, (243)

with the identities
[
σi, σj

]
=2εijkσk, ε123 = +1, σiσj = εijkσk − δijI2×2. (244)

We will not consider the zero-modes any further since they only de-
scribe the center of mass motion which we always can take to zero if
we choose such a frame of reference, so it is not important.

We choose the background field Ba

B1 =
vt
2

σ3, B2 =
b
2

σ3, Ba 6=1,2 = 0, ~r = ~vt +~b (245)

which describe two D0-branes traveling on straight lines with relative
velocity ~v and impact parameter ~b. We choose ~v to be orthogonal to
~b which always can be accomplished by a shift in t.

Plugging in this in the Lagrangians (240) and (241) we arrive at

LY =
1
2

Ya
1 (∂

2
t − r2)Ya

1 +
1
2

Ya
2 (∂

2
t − r2)Ya

2 +
1
2

Ya
3 ∂2

t Ya
3

−
√

λraYb
i Ya

j Yb
k ε3ixεikx − λ

4
Ya

i Yb
j Ya

k Yb
l εijxεklx, (246)

LA =
1
2

A1(∂
2
t − r2)A1 +

1
2

A2(∂
2
t − r2)A2 +

1
2

A3∂2
t A3 − 2va AiYa

j εij3

+
√

λra Ai AjYa
k εix3εjkx −

√
λ∂tYa

i AjYa
k εijk − λ

2
Ai AjYa

k Ya
l εijxεklx.

(247)

As for the fermionic fields the expansion gives us

Lθ =i
[

iθT
+(∂t − γ1vt− γ2b)θ− +

i
2

θ3∂tθ3 +
√

λθT
+A3θ− −

√
λθ+Ya

3 γaθ−

+

√
λ

2

(
θT
+θ3(iA2 − A1) + θT

−θ3(iA2 + A1)

)

+

√
λ

2

(
θT
+γaθ3(Ya

1 − iYa
2 ) + θT

3 γaθ−(Ya
1 + iYa

2 )

)]
. (248)
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with θ± = 1√
2
(θ1± iθ2). Varying the gauge fixing term with respect to

the gauge transformation gives us the ghosts, we won’t derive them
here, we’ll just quote them from [25]

Sghost =
∫

dt
(

C∗1 (−∂2
t + r2)C1 + C∗2 (−∂2

t + r2)C2 − C∗3 ∂∗t C3

+
√

λεijk∂tC∗i Cj Ak −
√

λεi3xεkjxBa
3C∗i CjYa

k

)
, (249)

where C is a complex Grassmann variable, we have two complex
bosons with mass r and one massless.

10.2.1 Masses of fields

First of all we have to diagonalize the mass matrix in (247) given by
the term −2va AiYa

j εij3 (and the r2 terms for the relevant fields) , this
gives us two mass matrices

−
(

Y1
1 , A2

)( r2 −2v

−2v r2

)(
Y1

1

A2

)
, −

(
Y1

2 , A1

)( r2 2v

2v r2

)(
Y1

2

A1

)

(250)

which both have eigenvalues r2 ± 2v. So there are two bosons with
mass r2 + 2v and two bosons with mass r2 − 2v. We have 16 bosons
left in (246) from Ya 6=1

1 and Ya 6=1
2 which all have mass r2 each. We have

9 massless bosons from Ya
3 and 1 massless boson from A3.

The ghost are complex and thus we have 2 fermions of mass r2 from
C1 and 2 from C2, we also have 2 massless from C3, the ghosts are
Grassmann variable and anti-commute so we get a weight factor of
−1.
For θ+ and θ− we have to diagonalize the mass matrix γ1vt + γ2b.
There is however a trick we could use, where we rather then di-
agonalize the mass matrix calculate it’s square. The wave opera-
tor for the fermions θ+ and θ− is given by (ignoring the interac-
tions) Oθ = ∂t − γ1vt − γ2b and it’s Hermitian conjugate by O†

θ =

−∂t − γ1vt− γ2b since the gamma matrices in SO(9) is real and the
Hamiltonian is Hermitian and proportional to i∂t, which makes ∂t

anti-Hermitian. The effective action for these fermions is given by

Γ(1)
θ =

1
2

Tr(ln(Oθ)), (251)

but noting that ln(OθO
†
θ ) = ln(Oθ) + ln(O†

θ ) = 2 ln(Oθ), we could
rather calculate

Γ(1)
θ =

1
4

ln(OθO
†
θ )

=
1
4

ln(−∂2
t −

[
∂t, γ1vt + γ2b

]
+ r2)

=
1
4

ln(−∂2
t − γ1v + r2). (252)
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This is still not diagonal, but since Tr(γ1) = 0 and
(
γ1)2

= I, we know
that half of the 16 complex component of both θ± are m2 = r2− v and
the other 16 are of mass m2 = r2 + v, we will have to weight this with
a factor − 1

2 to compensate for calculating 2Γ(1)
θ rather then Γ(1)

θ when
we add all the field together in the next section. We do the same
trick for θ3 to easily match it’s propagator the that of an harmonic
oscillator.

We summaries the masses in table (1) below.

10.3 calculation of the first loop

The masses found in the previous section is collected in the table
below, where we also present the corresponding factor to the heat
kernel as calculated in subsection 8.2.2.

Real components (Mass)2 Weight factor Factor to heat kernel

16 r2 1 16e−χr2

2 r2 − 2v 1 2e−χr2
e2v

2 r2 + 2v 1 2e−χr2
e−2v

10 0 1 10

4 r2 −1 −4e−χr2

2 0 −1 −2

16 r2 − v − 1
2 −8e−χr2

evχ

16 r2 + v − 1
2 −8e−χr2

e−vχ

16 0 − 1
2 −8

Table 1: Mass and factor to the heat kernel table.

The sum of all of these terms gives us the effective action

Γ(1) =− 1
2

Tr
∫ ∞

0

dχ

χ
e−χr2[

12 + 4 cosh(2χv)− 16 cosh(χv)
]
h(t, t′, χ)

=− 1
2

∫ ∞

−∞
dt
∫ ∞

0

dχ

χ
e−χr2[

12 + 4 cosh(2χv)− 16 cosh(χv)
]
h(t, t, χ)

=− 1
2

∫ ∞

−∞
dt

v4
√

π

∫ ∞

0
dχe−χr2

χ
5
2

︸ ︷︷ ︸
15
√

π

8r7

+O(v6)

=
∫ ∞

−∞
dt
(
−15v4

16r7

)
+O(v6) (253)

which agrees with super-gravity in 11D [26, 20, 25, 27].
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S U M M A RY A N D C O N C L U S I O N S

We wrote down the action for a membrane in space-time and found
a field theory on its world-volume. It turned out that there was ways
to truncate this field theory to arrive at a regularized theory, namely
M(atrix) theory. This was however only one of the ways to arrive at
M(atrix) theory, another one was the dimensional reduction of a 9+ 1
dimensional super Yang-Mills theory to a 0 + 1 dimensional theory.
This path was in some way more general since this reduced in a par-
ticular gauge choice, A = 0, to the membrane point of arrival. It has
been pointed out[20] that M-theory should in its low energy limit re-
duce to super-gravity. We found that the M(atrix) theory does this!
Therefore both the membrane theory and the 9+ 1 Yang-Mills theory
become especially interesting since both of these reduces to M(atrix)
theory. M-theory is an ultimate theory of everything and since mem-
brane theory is a candidate for this theory, as we have proved, it is
also a candidate for the ultimate theory of everything. This thesis
have shown that in indeed reduces to the right limit, at least in first
order, and that it is a multi-particle theory, as an ultimate theory of
everything has to be. This theory is however computationally hard
and therefore only little bits of the theory have been uncovered.
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Part VI

A P P E N D I X

In this appendix we take a look at the Dirac theory which
is a generalization of the Hamiltonian formalism to incor-
porate constrained systems and systems with gauge free-
dom. We will also take a look at the Dirac matrices, how
to raise and lower the indices and give explicit representa-
tions to the ones that we use. In the last section we derive
the propagator for a free particle and the propagator for
the harmonic oscillator.





A
D I R A C T H E O RY

Here we will give a short overview of the generalization of the Hamil-
tonian formalism for systems with gauge freedoms and constraint
systems, due to Dirac [28]. qn are the generalized coordinates and
q̇n = dqn

dt are the generalized velocities. In this chapter we consider
theories in Euclidean space so that Ab = Ab, furthermore we sum
over repeated indices.

a.1 lagrangian

The Lagrangian L is defined as

S =
∫

L(qn, q̇n, t) dt. (254)

The equations of motion are given by the Euler-Lagrange equations
which one gets by varying S with respect to qn and q̇n and demanding
the action to be stationary, δS = 0. This yields

d
dt

(
∂L
∂q̇n

)
=

∂L
∂qn

. (255)

a.2 hamiltonian

The canonical momenta pn are defined as

pn =
∂L
∂q̇n

. (256)

From the above equation (256) we get “primary constraints”. That is,
functions of only the coordinates and momenta

φm(q, p) ≈0, (257)

with m = 1, . . . , M. We write these as weakly zero(≈) since these only
hold if the equations of motion are satisfied. No weak equations are
to be used before evaluation of any derivatives in the theory. These
equations are not invertible for q̇n since they are independent of them.
If they are invertible they are not primary constraints and they will
be used to replace q̇n in favor of pn when we build the Hamiltonian.

Now we build the Hamiltonian the usual way, through the Legen-
dre transformation

H(p, q, t) =pnq̇n − L(q̇, q, t). (258)
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80 dirac theory

But a more general Hamiltonian would be

H∗ =H + cmφm (259)

with cm = cm(q, p) being arbitrary functions of coordinates and mo-
menta. Since the constraints are zero on shell, φm ≈ 0, we get the
same dynamics for H∗ as for H.

Using the more general H∗ instead of H we get the Hamiltonian
equations of motion

q̇n =
∂H
∂pn

+ um ∂φm

∂pn
, (260)

ṗn =− ∂H
∂qn
− um ∂φm

qn
. (261)

We can rewrite these equations with “Poisson brackets” {·, ·}p, de-
fined as

Definition 28. Poisson bracket

{ f , g}p =
∂ f
∂qn

∂g
∂pn −

∂ f
∂pn

∂g
∂qn

(262)

or for the continuous case the Poisson bracket becomes a functionalNotice the sum over
n.

{ f , g}p =
∫ (

δ f (x)
δq(x)

δg(x)
δp(x)

− δ f (x)
δp(x)

δg(x)
δq(x)

)
dx. (263)

�
Since the Poisson brackets are formed from derivatives these must

be calculated before one uses any of the primary constraints (257).

Claim 9. Poisson bracket properties.
From the definition we get the relations

{ f , g}p =− {g, f }p , (264)

{ f1 + f2, g}p = { f1, g}p + { f2, g}p , (265)

{ f1 f2, g}p = f1 { f2, g}p + { f1, g}p f2 (266)

and the Jacobi identity

{ f , {g, h}}p + {g, {h, f }}p + {h, { f , g}}p =0. (267)

�
For any function f = f (q, p) we have

ḟ =
{

f , H′
}
≈ { f , H}+ um { f , φm}p (268)

with H′ = H + umφm. Notice that { f , um}p φm ≈ 0 since φm ≈ 0 (we
have dropped this term in the above equation).

The constraints are to hold for all times. So we have to check that
the time-evolution of the constraints are weakly zero

φ̇m ≈ 0 ≈
{

φm, H′
}

p . (269)

We can split this into 4 different cases:
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1. We get an inconsistency, e.g. 1 = 0, which would follow from
the Lagrangian L = q. This would mean that the Lagrangian
equations of motion would be inconsistent. I.e. we have de-
scribed the system wrong.

2. We get that this is identically satisfied 0 ≈ 0. Where we may
have used some of the primary constraints (257) after we worked
out the derivatives.

3. We could get another function of only coordinates and mo-
menta χk(q, p) ≈ 0, i.e no dependence of um. This would be
called a “secondary constraint”. We have to add this constraint
to H′ and do the checks again, until this case no longer appear.

4. We could get a function that involves um, i.e ϕ`(q, p, u) ≈ 0.
Each ϕ specifies one of the um.

For our purposes we will treat secondary constraints χ as primary
constraints φ. So we add all of these to a new φ

φj = {{φm} ∪ {χk}} ≈ 0. (270)

with j = 1, . . . , J and J = #{φm}+ #{χk}.
Solving for um from the 4:th case above ϕ`(q, p, u) ≈ 0, i.e.

{φ`, H}p + um {φ`, φm}p ≈0. (271)

We get (assuming that the Lagrangian equations are not inconsistent)

um =Um(q, p) + Vm(q, p) (272)

with Um the particular solution and Vm the general solution to the
homogeneous equation

Vm {φ`, φm}p ≈0. (273)

So the most general solution is

um =Um(q, p) + va(t)Vm
a (q, p) (274)

where a runs from 1 to the number of nonphysical degrees of free-
dom, which are the number of um minus the number of equations for
um. va(t) are arbitrary functions of time.

The total Hamiltonian becomes

HT =H + Umφm + vaVm
a φm. (275)

The equations of motions for all gauge invariant quantities, i.e. phys-
ical quantities are

ḟ ≈{ f , HT}p +
∂ f
∂t

. (276)
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a.3 dirac brackets

To canonically quantize the system we need to generalize the Poisson
brackets to “Dirac brackets”. We start of with some terminology.

If
{

f , φj
}

p ≈ 0, ∀j, then f is called “first-class” else f is called
“second-class”.

The phase space variables in the theory that are weakly equal to
zero are combinations of φj since these are the variables we defined
as weakly zero and everything else has been built up from them. So
if f is first class then the bracket can be written as

{
f , φj

}
p =rjj′φj′ (277)

for some rjj′ . One can then prove that if f and g are both first-class

so is { f , g}p, i.e. { f , φi}p ≈ 0 and
{

g, φj
}

p ≈ 0 ⇒
{
{ f , g}p , φk

}
p
≈

0, ∀i, j, k . Although the proof is simple we do not prove it, see [28]
page 18.

If we quantize the theory using the correspondence principle {·, ·}p →
1
ih̄ [·̂, ·̂] without doing anything about the second-class constraints, de-
noted by φ̃i , we see that

{
φ̃i, φ̃j

}
p = Mij →

1
ih̄

[
ˆ̃φi, ˆ̃

jφ
]
= M̂ij (278)

where the lhs of the quantum theory vanishes on any state by defini-
tion of the constraints φk, while the rhs do not vanish. This leads to
inconsistencies. We need new brackets that respects the constraints
in the quantized theory. They should

1. be bi-linear

2. anti-symmetric

3. satisfy Jacobi identity (267)

4. reduce to Poisson brackets when there are no constraints

5. for any constraint φi and any quantity f ( f is allowed to be φk)
we must have {φi, f } ≈ 0.

We define the “Dirac bracket”

Definition 29. Dirac bracket

{ f , g}D = { f , g}p − { f , φ̃i}M−1
ij

{
φ̃j, g

}
. (279)

�

Dirac proved that there always exists an inverse M−1 if M exists.
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a.4 procedure

1. Get canonical momenta pn = ∂L
∂q̇n

.

2. Get the primary constraints from pn − ∂L
∂q̇n

= 0. Or pn − ∂L
∂q̇n
≈ 0 to

remind our self that
they only hold
on-shell.

3. Build H′ = H + umφm, with H = pnq̇n − L.

4. Check for inconsistencies, second constraints, equations for um

or 0 ≈ 0.
{

φj, H′
}
= φ̇j

5. Repeat step 3 and 4 until the only thing we get are 0 ≈ 0.

6. Solve equations for um to get um = Um + vaVm
a .

7. Build the total Hamiltonian HT = H+Umφm + va(t)Vm
a φm. Now

we have the equations of motion ḟ ≈ { f , HT}+ ∂ f
∂t for all physi-

cal quantities.

8. Check for second-class constraints
{

φ̃i, φ̃j
}

p = Mij.

9. Build Dirac bracket { f , g}D = { f , g}p − { f , φ̃i}M−1
ij

{
φ̃j, g

}
.

10. Quantize {·, ·}p → 1
ih̄ [·̂, ·̂].





B
G A M M A M AT R I C E S A N D S P I N O R S I N 1 1 - D

The gamma matrices (Γµ)
β
α are 32 × 32 matrices and are defined

through

{Γµ, Γν} = ΓµΓν + ΓνΓµ =2ηµνI32×32, (280)

where I32×32 is the identity matrix which is 32× 32, this is often left
in-explicit, as well as the spinor indices α, β. The Lorentz-indices µ, ν

ranges from 0 to 10. The algebra in (280) is called a “Clifford-algebra”.

b.1 representations of gamma matrices

There are procedures to construct the representations (denoted by .
=),

see for e.g. [17]. We will however just list a set of matrices that fulfills
the Clifford algebra (280).

(Γ0)
β
α

.
=

(
0 +I16×16

−I16×16 0

)
, (Γ10)

β
α

.
=

(
0 +I16×16

+I16×16 0

)
,

(ΓI)
β
α

.
=

(
−γI 0

0 +γI

)
. (281)

Here the gamma matrices γI are of dimension 16× 16 for 9 dimen-
sional space-time, with I = 1, 2, . . . 9.

b.1.1 Representations in the light-cone coordinates

In light-cone coordinates we build two different matrices from Γ0 and
Γ10, namely

Γ± =
1√
2

(
Γ0 ± Γ10

)
. (282)

The new matrices are then

(Γ+)
β
α

.
=
√

2

(
0 +I16×16

0 0

)
, (Γ−)β

α
.
=
√

2

(
0 0

−I16×16 0

)
,

(ΓI)
β
α

.
=

(
−γI 0

0 +γI

)
. (283)

The light-cone matrices obeys
{

Γ±, ΓI
}
=0,

{
Γ+, Γ−

}
= −2,

{
ΓI , ΓI′

}
= 2η I I′ .
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b.2 the different gamma matrices

We can construct new matrices that also fulfill the Clifford-algebra.
Here is a table of these matrices

Object Spinor-index Lorentz-index # of obj.

Sym Type Sym Type

Cαβ A Spinor / Scalar (11
0 ) = 1

(Γµ)αβ S Spinor / Vector (11
1 ) = 11

(Γµν)αβ = (Γ[µΓν])αβ S Spinor A Bi-vector (11
2 ) = 55

(Γµνρ)αβ = (Γ[µΓνΓρ])αβ A Spinor A Tri-vector (11
3 ) = 165

(Γµνρσ)αβ A Spinor A Quad-vector (11
4 ) = 330

(Γµνρσξ)αβ S Spinor A Penta-vector (11
5 ) = 462

Total:1024 = 322 = 210

Table 2: Gamma matrices

where (Γµνρσ)αβ and (Γµνρσξ)αβ are also anti-symmetrized in the
Lorentz-indices the same way as the others. Gamma matrices with
more than 5 Lorentz-indices can be built as a linear combination of
the ones listed in the table.

b.2.1 Raise and lower spinor indices

We define the charge conjugation matrix1

Cαβ .
=

(
0 +I

−I 0

)
and its inverse Cαβ

.
=

(
0 −I

+I 0

)
. (284)

This enables us to raise and lower spinor indices

θα = Cαβθβ =θβCβα,

θα = θβCβα =− Cαβθβ, (285)

with θ a spinor.

b.3 spinors

We denote the 32× 1 spinors by θ
.
=

(
ψ

χ

)
, where ψ and χ are 16× 1

blocks of the spinors. We denote it’s dual 1× 32 by θ̄. Since we are

1 If one chooses a particular basis then the charge conjugation matrix C and the first
gamma matrix Γ0 will numerically be the same (they are numerically the same in
our basis). So Γ0 is often chosen as C, but in fact there is really no good reason to do
that choice, they do not even have the same index structure.
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in 11 dimensional space-time we can choose these to be real represen-
tations [17]. Spinors need to fulfill θ̄θ = χψ − ψχ, so we choose to
represent the dual spinor by θ̄

.
= (χ,−ψ).

θα = θ
.
=

(
ψ

χ

)
, θα = θβCβα = θ̄

.
= (χ,−ψ),

b.4 gauge fixing

The gauge fixing condition Γ+θ = 0 in this representation implies

Γ+θ = 0 .
=

(
0 I
√

2

0 0

)(
ψ

χ

)
=
√

2

(
χ

0

)
= 0 (286)

that χ = 0. This implies something for the dual vector, namely

θ̄Γ+ = 0 .
=(χ,−ψ)

(
0 I
√

2

0 0

)
=
√

2
(

0, χ
)
= 0. (287)





C
P R O PA G AT O R S A N D H E AT K E R N E L S

Since we use these propagators in Euclidean space we will do them
for Euclidean space, so we make a Wick rotation from Minkowski
space by1 t → it. Through out we will slice the time interval T into
N equally big slices εi = ti − ti−1 and use the path integral measure

Dx = lim
εi→0

√
m

2πεN

N−1

∏
i=1

√
m

2πεi
dxi. (288)

c.1 free particle

The path integral for a free particles is

ZFP =
∫

Dx exp
(
−
∫ T

0
dt

m
2

ẋ2
)

(289)

with the Wick rotated Hamiltonian H = − p2

2m . We calculate this using
brackets, with xT = x(T) and x0 = x(0),

ZFP =
〈

xT, T
∣∣xo, 0

〉

=
∫

dp
〈

xT
∣∣p
〉〈

p
∣∣eHT∣∣xo

〉

=
∫

dp exp(− p2T
2m

)
〈

xT
∣∣p
〉〈

p
∣∣xo
〉

=
1

2π

∫
dp exp(− p2T

2m
+ ip(xt − x0))

=
∫

dp
1

2π
exp(− T

2m
[p− im

T
(xt − x0)]

2 +
m2

T2 (xt − x0)
2)

=

√
m

2πT
exp(− m

2T
(xt − x0)

2). (290)

1 Note that if we calculate the propagator in Minkowski space and make a Wick rota-
tion we get the heat kernel instead.
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c.2 harmonic oscillator

We will follow the elegant derivation presented in [29], we will pro-
vide it here for completeness. The path integral for the imaginary
time harmonic oscillator is given by

ZHO =
∫

Dx exp
(
−
∫ T

0
dt
[

m
2

ẋ2 +
mω2

2
x2
])

=
∫

Dx exp
(
−
∫ T

0
dt
{

m
2
[ẋ + ωx]2 − mω

2
dx2

dt

})

= exp
(mω

2
(x2

T − x2
0)
) ∫

Dx exp
(
−
∫ T

0
dt

m
2
[ẋ + ωx]2

)
.

(291)

Now we make the transformation




x(t) = z(t)e−ωt

dxi = e−ωti dzi

(292)

and note that ∏N−1
i=1 e−ωti = e−

ω
2 (N−1)(t1+tN−1) = e−

ω
2 NT+ ωT

2

ZHO = exp
(mω

2
(x2

T − x2
0)
) ∫

Dz exp(−ω

2
NT +

ωT
2

) exp
(
−
∫ T

0
dt

m
2

e−2ωt ż2
)

.

(293)

Now we use time reparametrization to absorb the exponential in the
integrand for t. We take t̄ = e2ωt

2ω , which will change the integration
limits 0→ ta =

1
2ω , T → tb =

e2ωT

2ω and thus

lim
εi→0

εi → lim
ε̄i→0

ε̄i

= lim
εi→0

1
2ω

(e2ωti − e2ωti−1)

= lim
εi→0

e2ωt∗i

ω
sinh(ωεi)

' lim
εi→0

εie2ωt∗i ,

with t∗i = (ti − ti−1)/2 we also define z̄(t̄) = z(t). This gives the
change

Dz exp(−ω

2
NT +

ωT
2

) = lim
εi→0

exp(−ω

2
NT +

ωT
2

)

√
m

2πεN

N−1

∏
i=1

√
m

2πεi
dzi

→ lim
εi→0

exp(
ωT
2

)

√
m

2πεNe−ωNT∗

N−1

∏
i=1

√
m

2πεie2ωt∗i
dzi

= lim
εi→0

exp(
ωT
2

)

√
m

2πε̄N

N−1

∏
i=1

√
m

2πε̄i
dz̄i

=e
ωT
2 Dz̄. (294)
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The propagator for the harmonic oscillator is then given by

ZHO = exp
(

mω

2
(x2

T − x2
0) +

ωT
2

) ∫
Dz̄ exp

(
−
∫ tb

ta

dt
m
2

˙̄z2
)

.

(295)

Now we use the propagator for the free particle (290) which we de-
rived in the section above, and some straight forward algebra to arrive
at

ZHO(xT, x0, T) =
√

mω

2π sinh(ωT)
exp

(
− mω

2 sinh(ωT)
[
(x2

T + x2
0) cosh(ωT)− 2xTx0

])

(296)
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