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1. Introduction

To find a bridge between short and long distances physics in the high energy QCD remains a
topic of high interest. At small transverse distances where perturbation theory can be applied QCD
predicts the BFKL Pomeron ( [1] and refs. therein) and more general, the BFKL Pomeron can be
seen as the basic building block of QCD reggeon field theory in which the reggeized gluon is the ba-
sic field and the Pomeron is generated as a composite state of two or more reggeized gluons. Within
this perturbative QCD reggeon field theory, the BFKL Pomeron is expected to receive corrections,
have self interactions leading to Pomeron loops etc. In this case one can calculate the hard BFKL
Pomeron Intercept: αP = 1+µ = 1.4. On the other hand, high energy scattering of hadrons strongly
depends upon large transverse distances where perturbation theory is not applicable. As the most
promising theoretical concept, again Regge theory (Regge trajectory α(t = −q2) = α(0)−α ′q2,
and α ′ Pomeron slope) can be used, where the total cross section is given by σ = A0sα(0)−1 and
the parameters have to be taken from data. Most prominent and phenomenologically successful
examples include the Regge pole model of Donnachie and Landshoff [2] , where from Fig. 2b.
the µpp = α(0)−1 = 0.08. We therefore see strong evidence that in both regions - short and long
transverse distances - we have the same structure: reggeon field (RFT) which lives in one time
(rapidity) and two space dimensions (transverse distances)

2. Functional Renormalization Group FRG

The tool we are going to use is the FRG technique in an essentially Wilsonian form, i.e. we
shall make use of the effective average action (EAA) description, which allows to study the change
of the generator of the proper vertices of the theory as one integrates over the ultraviolet field
modes. The analysis of the flow equation for the effective average action has successfully been
applied to numerous problems in statistical mechanics, in particle physics, and in quantum gravity.
We can write down the Exact FRG (Wetterich [3]) equation for Γk:

∂tΓk =
1
2

Tr[Γ(2)
k +Rk]

−1
∂tRk. (2.1)

For constant fields the propagator on the rhs of the flow equation (2.1) is derived from:

Γ
(2)
k +Rk =

(
Vkψψ −iZkω +Zkα ′kq2 +Rk +Vkψψ†

iZkω +Zkα ′kq2 +Rk +Vkψ†ψ Vkψ†ψ†

)
. (2.2)

where Rk is the cut-off regulator and inserting the inverse of this into the rhs of (2.1) we arrive at a
partial differential equation for the potential Vk which provides the starting point of our analysis.

2.1 Flow equations for the Reggeon Field Theory

Let us now consider the RFT, in the lowest truncation of the local field approximation, where
the effective action is a function of the pomeron field ψ and its hermitian conjugate ψ†, and it is:

Γk[ψ
†,ψ] =

∫
dDxdτ

(
Zk(

1
2

ψ
†
∂
↔
τ ψ−α

′
kψ

†
∇

2
ψ)+Vk[ψ

†,ψ]

)
, (2.3)
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where τ is the rapidity, the dimension D = 2 of the transverse space and the potential Vk has the
general properties: it is symmetric under the interchange ψ ↔ ψ†, and for real values of ψ and
ψ†, the real part of Vk is symmetric under ψ → −ψ , ψ† → −ψ†, the imaginary part odd. In
a polynomial expansion in the region of small fields, this implies that even powers of the field
variables come with real coefficients (couplings), whereas odd powers have imaginary coefficients.
This, in particular, ensures the negative sign of closed Pomeron loops.

3. Search for fixed points and anomalous dimensions (LPA’)

Generically we write the truncation of the potential in terms of ψ , ψ†, or we may use: r =
ψ†ψ, u = ψ +ψ† and with these variables, we can write a completely equivalent expansion around
the origin;

Vk = ∑
n,m

Vnm(k)(ψ−ψ0)
n(ψ†−ψ

†
0 )

m or Vk = ∑
n,m≥0

λn,m(k)r1+n(iu)m (3.1)

with real-valued constants λn,m. Calculating the flow equation (2.1), we can obtain the beta func-
tions for the dimensionless running couplings λn,m(k) of the RFT. To move to dimensionless
quantities we shall use: [x] = k−1, [τ] = E−1 so that [ψ] = [ψ†] = kD/2, [α ′] = Ek−2 and ψ̃ =

Z
1
2
k k−D/2ψ,Ṽk =

Vk
α ′kkD+2 . In Fig.1a we show the non trivial fixed point at (µ∗ = 0.11,λ ∗ = 1.05),

considering a truncation of Vk up to cubic order and with cut-off regulator Rk(q) = Zkα ′k(k
2 −

q2)Θ(k2−q2):

Figure 1: (a) Flow portrait µ,λ for potential up to cubic order. (b) Loop expansion to calculate the anoma-
lous dimensions

In Table 1 we list, for different truncations, the fixed points and the critical exponent ν which
is defined as the negative inverse of the negative eigenvalue:

truncation 3 4 5 6 7 8 9 10 11 12
exponent ν 0.53 0.59 0.59 0.78 0.76 0.72 0.72 0.74 0.74 0.73
mass µ̃ 0.111 0.274 0.386 0.429 0.341 0.388 0.388 0.400 0.399 0.397
iψ0,diag 0.035 0.059 0.072 0.078 0.075 0.073 0.073 0.074 0.074 0.074
iψ0,axis 0.106 0.175 0.214 0.228 0.221 0.215 0.217 0.219 0.219 0.218

Table 1: Parameters at the fixed point for different truncations around (ψ,ψ†) = (0,0).
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For comparison, the critical value obtained from a Monte Carlo simulation is ν = 0.73 1.
Numerical results for (r,u) = (0,u0) are shown in Table 2 and the sequence of truncations

shows a good convergence:

truncation 3 4 5 6 7 8
exponent ν 0.74 0.75 0.73 0.73 0.73 0.73
mass µ̃e f f 0.33 0.362 0.384 0.383 0.397 0.397
iψ0,diag 0.058 0.072 0.074 0.074 0.0.074 0.074
iu0 0.173 0.213 0.218 0.218 0.218 0.218

Table 2: Parameters of the fixed point for different truncations around (r,u) = (0,u0).

Results with anomalous dimensions ηk = − 1
Zk

∂tZk and ζk = − 1
α ′k

∂tα
′
k are shown in Table 3: the

sequence of truncations shows a good convergence, and the numerical values of η∗,ζ∗ are small:

truncation 3 4 5 6 7 8
exponent ν 0.660 0.659 0.635 0.633 0.634 0.634
mass µ̃e f f 0.356 0.376 0.396 0.396 0.414 0.414
anom.dim. η -0.054 -0.087 -0.081 -0.080 -0.080 -0.080
anom.dim. ζ 0.061 0.113 0.118 0.117 0.117 0.117
iψ0,diag 0.0593 0.0754 0.0766 0.0763 0.0762 0.0763
iu0 0.178 0.222 0.226 0.225 0.225 0.225

Table 3: Polynomial expansion around (r,u) = (0,u0) with anomalous dimensions.

A comparison with Table 2 shows, for the parameters of the potential, a strong similarity: the ef-
fective mass µ (0.414 vs. 0.397), the position of the stationary point on the diagonal (0.0763 vs
0.074) and on the axis (0.225 vs 0.218). The quantity which changes more is the critical exponent
ν , which seems to become worse, if we compare it to numerical Monte Carlo estimates, which
where very close to the asymptotic values. The reason for this should be found in the poorness of
the anomalous dimension estimates, which strongly depends here on the field configuration chosen.

Finally, in Table 4 we summarize and compare our results in D = 2 spatial dimensions, obtained in
LPA’s, with the two-loop ε-expansion and with recent Monte Carlo data:

LPA LPA’ LPA’2 2-loop ε-exp. MC
ν 0.730 0.634 0.771 0.709 0.729
z 2 1.883 1.911 1.716 1.766
β 0.730 0.608 0.669 0.622 0.580

Table 4: Comparison of our results with the ε expansion and MC results for percolation in
d = 2+1.

1It has been shown long ago by J. Cardy [4] that RFT belongs to the same universality class as the critical phenomena
known as directed percolation.
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One notices that the determination of the critical exponent ν is almost exact in the simplest LPA
truncation. This is a common feature in several FRG studies applied to other theories. In contrast,
β is better approximated in the LPA’ truncation. We notice that when taking into account the
anomalous dimension in LPA’ scheme, this truncation reduces the quality of the estimate for ν .

Finally, our discussion has been formulated in terms of dimensionless parameters. Physical
quantities, i.e. the value of the Pomeron intercept, carry dimension, is showed in the Fig. 2a.,
where t = lnk/k0:

Figure 2: (a) Running Pomeron intercept µk = αk−1. (b) Total cross section pp-Scattering.

From this figure we can see the behavior of the running Pomeron intercept in the UV region.

Conclusions

As our main result we have found that there exist a non trivial interacting fixed point (for
dimensionless quantities) with one single relevant direction associated to it. Moreover, the µ-value
associated with the fixed point is positive, i.e. the corresponding intercept is greater than one and
in the UV region (short distance region) the BFKL Pomeron predicts an intercept greater than one.
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