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Our Galaxy is thought to have undergone an active evolutionary history 

dominated by star formation, the accretion of cold gas, and, in particular, mergers 

up to 10 gigayear ago1,2. The stellar halo reveals rich fossil evidence of these 

interactions in the form of stellar streams, substructures, and chemically distinct 

stellar components3,4,5.  

The impact of dwarf galaxy mergers on the content and morphology of the 

Galactic disk is still being explored. Recent studies have identified kinematically 

distinct stellar substructures and moving groups, which may have extragalactic 

origin6,7. However, there is mounting evidence that stellar overdensities at the 

outer disk/halo interface could have been caused by the interaction of a dwarf 

galaxy with the disk8,9,10. 

Here we report detailed spectroscopic analysis of 14 stars drawn from two stellar 

overdensities, each lying about 5 kiloparsecs above or below the Galactic plane – 

locations suggestive of association with the stellar halo. However, we find that the 

chemical compositions of these stars are almost identical, both within and between 

these groups, and closely match the abundance patterns of the Milky Way disk 

stars. This study hence provides compelling evidence that these stars originate 
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from the disk and the overdensities they are part of were created by tidal 

interactions of the disk with passing or merging dwarf galaxies11,12.  

We present the spectroscopic analysis of 14 stars from two diffuse structures in the 

Milky Way halo, separated vertically by more than 10 kpc: the Triangulum-Andromeda 

(TriAnd) and A13 overdensities13,14,15,16,17. TriAnd and A13 are located towards the 

Galactic anti-centre, at latitudes −35 deg < b < −15 deg and +25 < b < +40 deg. The age 

of stars in TriAnd is estimated at 6-10 Gyr from the colour-magnitude diagram15. 

Studies of motions of stars in these two structures revealed that they are kinematically 

associated17 and could be related to the Monoceros Ring, a ring-like stellar structure that 

twists around the Galaxy. However, the nature of the TriAnd and A13 structures 

remains hotly contested, with formation scenarios ranging from a disrupted dwarf 

galaxy to their origin in the Galactic disk18. 

We obtained high-resolution spectra of 14 stars using the Keck and VLT 

telescopes (Extended Data Table 1). The stars are confirmed members of the A13 and 

TriAnd overdensities based on their radial velocities, proper motions, and photometry. 

We determine fundamental atmospheric parameters of the stars, as well as chemical 

abundances for O, Na, Mg, Ti, Fe, Ba, and Eu, by combining analysis of their colours 

with standard spectroscopic methods (Methods). We derive stellar distances from 

2MASS photometry and spectroscopic gravities, which place the TriAnd stars at a 

Galactocentric distance of rGC = 18 ± 2 kpc (where 2 kpc ~ 1σ, one standard deviation, 

s.d.), roughly 5 kpc below the plane, and A13 at rGC = 16 ± 1 kpc, roughly 4 kpc above

the Galactic disk plane (Figure 1). The typical distance uncertainties are ~ 1 − 2 kpc 

(Extended Data Table 2). From the same spectra, we determine the line-of-sight velocity 

dispersion corrected for the solar motion and azimuthal velocity of stars (Methods), σlos,

to be 27 km s-1, markedly smaller than that of the halo stars12,19, which have σlos ≈ 100 
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km s-1. The rotational velocity for the stars in the sample is 195 ± 25 km s-1 consistent 

with the circular velocity in the outer disk. 

Our analysis shows that the abundance distribution in A13 and TriAnd is 

extremely compact, and the spread is consistent with observational errors, which are of 

the order 0.15 dex. For the abundances, we use the notation [A/B], which refers to the 

logarithm of the abundance ratio of the chemical element A to the element B scaled to 

the solar value. Our results are: ⟨[Fe/H]⟩ = −0.59 ± 0.12 dex, ⟨[O/Fe]⟩ = 0.24 ± 0.11 

dex, ⟨[Na/Fe]⟩ = 0.09 ± 0.11 dex, ⟨[Mg/Fe]⟩ = 0.20 ± 0.03 dex, ⟨[Ti/Fe]⟩ = 0.08 ± 

0.09 dex, ⟨[Ba/Fe]⟩ = 0.14 ± 0.13 dex, ⟨[Eu/Fe]⟩ = 0.20 ± 0.16 dex (Extended Data 

Table 3), where the spread is given by the sample s.d. We compare these abundance 

ratios with literature measurements of stars from the Galactic disk and halo, dwarf 

spheroidal (dSph) galaxies, and globular clusters, finding that our measurements are 

consistent with abundances in the “thin” disk, the younger component of the Milky 

Way, and are inconsistent with all other stellar populations (Figure 2, Extended Data 

Figure 1). All but one star from the two overdensities lie directly on the metal-poor end 

of the thin disk track, which represents stars in the outer disk of the Galaxy20. The only 

TriAnd star with slightly lower metallicity, [Fe/H] ≈ −0.9, resides on the canonical 

“thick disk” track with higher [Ba/Fe] and lower [Na/Fe].  The overdensity abundances 

are also consistent with those derived from stars in open clusters21,22 and with 

Cepheids23,24 at comparable Galactocentric distances, in the rGC range 10 to 20 kpc. 

The similarity of abundances suggests that the TriAnd and A13 stars have a 

common origin. However, their origin in a star cluster is very unlikely, as stellar clusters 

are compact in physical space, in sharp contrast to the overdensity stars. A tidal 

disruption of a globular cluster, for example such as known for Palomar 525, can cause 

individual stars to be strewn over large distances in one direction on the sky. However, 

unlike the overdensities, the tidal tails of Palomar 5 are thin in the transverse directions 
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to the resulting stellar stream. Also, the A13 and TriAnd stars do not exhibit the anti-

correlation between sodium and oxygen abundances, which is found in almost all 

globular clusters in the Milky Way26. 

On the other hand, dSph galaxies, which can extend over several kpc, and can be 

disrupted to extend over tens of kpc, show a much larger scatter in abundance space 

(Figure 2, Extended Data Figure 1), which is thought to be due to multiple generations 

of star formation27. Also, in contrast to the stars in the overdensities, dSph galaxies are 

known to extend to very low, typically sub-solar, [O/Fe], [Mg/Fe], and [Na/Fe] ratios at 

[Fe/H] ≈ −0.5. Fornax, a dwarf galaxy most close to TriAnd in metallicity, has [Na/Fe] 

≈ −0.6 dex, almost one order of magnitude lower than the relative Na abundance of the 

A13 overdensity stars. On the other hand, the relative Ba abundance of the Fornax stars 

is a factor of 10 higher than that of the A13 and TriAnd stars.  

The key challenge to the origin of the A13 and TriAnd stars in the Milky Way 

disk, although strongly supported by the stellar chemical abundances and their motions, 

is that the stars are located very far away from the disk plane and at large Galactocentric 

distances, rGC > 15 kpc. A plausible scenario that may explain our observations is 

related to a merger of a dwarf galaxy with the Milky Way disk. Simulations show that 

such mergers can trigger vertical oscillations and flaring in the pre-existing disk, which 

naturally explains the existence of stellar overdensities above and below the Galactic 

midplane9,28. To test this scenario, we compare the spatial locations of the TriAnd and 

A13 stars with the predictions of an N-body model, which follows the interaction of the 

Sagittarius (Sgr) dSph galaxy with an initially stable Galactic disk29 (Figure 3). The 

initial dark halo mass for the Sgr dSph progenitor was M200 ~ 1011 M
¤, which, after 5.57 

Gyr of evolution, was stripped down to a bound mass of 3x109 M
¤

. Initially, the disk in 

the region of A13 and TriAnd, corresponding to heliocentric distances of 8 kpc < rhelio < 

22 kpc, is confined between −5 deg < b < +5 deg. However, during its interaction with 
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the Milky Way, Sgr is able to excite the outer disk out to −30 deg < b < +30 deg, 

kicking material well above the mid-plane out into the regions of our TriAnd and A13 

stars. The results from these simulations – also considering the timescales of the 

interaction of the Sgr dSph with the Milky Way, which vary between 5 − 9 Gyr – 

support our interpretation that these stars may have originated from the disk. 
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Figure 1 | The location of the observed stars in Galactocentric Cartesian 
coordinates. 
The location of stars in the x-y and z-r plane, where x, y, and z are the 
directions in the Cartesian system of Galactic coordinates. rGC is the 
Galactocentric distance of the stars defined as √ x2

 + y2 , in kiloparsec (kpc). The 
green curve in the right-hand-side panel indicates the flare profile of the Milky 
Way disk. The error bars represent the uncertainties of the distance 
measurements, which are estimated from the full posterior probability 
distributions as 1 s.d. confidence level.  
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Figure 2 | Chemical abundances of the observed stars. 
Chemical abundance ratios of [Na/Fe] and [Ba/Fe] against metallicity [Fe/H] in: 
the TriAnd (black crosses) and A13 overdensities (black circles), Milky Way disk 
and halo stars (grey circles), Fornax (blue symbols) and Sgr dwarf spheroidal 
galaxies (green symbols), globular clusters (orange symbols with error bars 
reflecting the intra-cluster abundance variation, derived as the root mean 
square variance (r.m.s.) of the sample, with N=13 for the 13 for M3 and N=25 
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for M71), and open clusters in the Galactic outer disk (red squares). The 
references are given in the Methods section. The typical uncertainty of the 
abundance measurements is 0.15 dex. The source data are provided in 
Extended Data Tables 1 and 3. 
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Figure 3 | Comparison of the observed positions of the observed stars with an 
N-body simulation of dwarf–Galaxy interaction.  
The locations of the observed A13 and TriAnd stars (yellow squares and 
magenta triangles) compared with the two snapshots from the N-body model 
(represented as grey map), which follows the interaction of the Sagittarius dwarf 
spheroidal galaxy with an initially stable Galactic disk29. The top panel shows 
the distribution of star particles at the beginning of the simulation and bottom 
panel depicts the final distribution at present, after 5.6 Gyr. The confirmed 
members of the overdensities15,17 are also shown with small yellow and 
magenta symbols. 
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Methods  

We acquired high-resolution spectra of 14 red giant branch (RGB) stars in the TriAnd 

and A13 overdensities15,17. The stars are confirmed members of the overdensities based 

on their photometry, radial velocities, and proper motions. We chose the brightest 

members of both groups in order to achieve the highest possible signal-to-noise within 

the available time on Keck. Metallicity was not a selection criterion. The photometric 

properties of the observed stars are reported in Extended Data Table 1. All observed 

stars are cool red giants on the upper part of the red giant branch (RGB) and their 

spectra are generally complex and display strong absorption features caused by 

molecules, circumstellar shells, and mass loss.  

Thirteen stars were observed with the HIRES-R spectrograph (spectral resolution R of 

36,000) at the Keck-1 telescope 30 and one star, TriAnd0_1, was observed using the 

UVES spectrograph (R of 47,000) at the VLT. The Keck spectra were taken on the 

night of Oct. 22, 2016, with typical exposure times of 20 to 30 minutes through thin 

cirrus. The UVES spectrum was taken on the night of Sept. 04, 2016 with 1 hour 

exposure. All Keck spectra cover the full optical region, from 4800 to 8770 Å, and the 

UVES spectrum covers the range from 4800 to 6800 Å. The signal-to-noise ratio 

(SNR/Å) of the HIRES spectra exceeds 200 near 5200 Å at the center of the echelle 

order. For the UVES spectrum, the average SNR/Å at the order center near 5500 Å is 50 

and it increases to 85 at 6700 Å. The MAKEE pipeline that was specifically designed 

by T. Barlow was used to reduce HIRES spectra following standard procedures (i.e. 

bias subtraction, flat fielding, sky subtraction, order extraction, and 
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wavelength calibration); the UVES spectrum was reduced using the ESO Reflex 

pipeline31. 

Detailed spectrum synthesis is essential to determine accurate chemical abundances. We 

use the MARCS32 stellar model atmosphere grid, because it densely covers the 

parameter space of the stars we are interested in. Moreover, it also accounts for the 

necessary molecular opacities, such as MgH33, that plague the spectra of cool RGB 

stars. The MARCS models are spherically-symmetric for low-gravity giants and line 

blanketing is treated using the opacity sampling method. The models account for the 

radiation pressure on molecules, although this does not affect stars in the temperature 

range and evolutionary stage in our sample. 

Stellar atmospheric parameters are determined using several techniques. We attempt to 

follow our standard procedure34 to derive the atmospheric parameters as closely as 

possible for the program RGB stars. For cool red giants, spectroscopic estimates based 

on the excitation-ionization equilibrium of iron provide reliable diagnostic of the gravity 

and metallicity. We used the Infrared Flux Method35,36 to determine Teff. Optical and 

infrared magnitudes were taken from the APASS and 2MASS photometry and corrected 

for interstellar reddening37. Surface gravities, metallicities, and microturbulent 

velocities were determined by means of excitation and ionization balance of Fe I and Fe 

II lines. NLTE corrections for the stars with log(g) ~ 1 and metallicity [Fe/H] above −1 

dex are very small38, and barely affect the estimates. The derived stellar parameters and 

their uncertainties are reported in Extended Data Table 2. The uncertainties of Teff were 

derived using the standard approach36. The uncertainties of log(g) and [Fe/H] are 0.15 

and 0.1 dex, respectively. They represent the total uncertainty of the method, including 

the systematic and random error components34. 

Abundances are computed for the chemical elements O, Na, Mg, Ti, Fe, Ba, and Eu, 

using the least blended spectral lines that are detected in the observed spectra. Line 

fitting is done using spectral synthesis with the SME code39. For Mg, we use two 
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diagnostic lines at 5528 and 5711 Å, adopting experimental data for atomic 

transitions40. For Mg, the mean NLTE abundance corrections are −0.10 for the 5711 Å 

line and 0.02 dex for the 5528 Å line40. The Fe linelist contains 123 lines of Fe I and Fe 

II41. Oxygen abundance was derived using the two forbidden [OI] lines at 6300 and 

6363 Å, with log(gf)  = −9.717 and −10.185 dex42, respectively. In the UVES spectrum, 

the 6300 Å line is contaminated by telluric absorption lines, therefore the spectrum is 

first corrected using the ESO Molecfit package43. The 3D NLTE abundance corrections 

are negligible for the forbidden oxygen lines in our regime of stellar parameter space44. 

Na abundances are measured using the features at 5682 Å and 5688 Å (6 stars), or 6154 

Å and 6160 Å (7 stars). This is because slightly different settings are used for Keck 

observations, and for a given setting one of the Na I doublets falls in the gap between 

spectral orders.  However, all four Na I features are available in the UVES spectrum of 

TriAnd0_1, and they give consistent abundances. The 6154 Å and 6160 Å features are 

also used to estimate Na abundance in Fornax dSph galaxy45. The spectrum for one of 

the Keck targets is shown in Extended Data Figure 2, with prominent lines in the region 

around the 6154 Å Na I line labeled. The NLTE corrections for Na I lines are ≈ −0.12 

dex for the 6154 and 6160 Å lines and ≈ −0.14 dex for the 5682 and 5688 Å lines46. For 

Ti, we used 23 lines, including 18 lines of Ti I and 5 lines of Ti II, which are least 

blended by molecular transitions, in particular, MgH, which is a major contaminating 

species at wavelengths below 6000 Å. We use LTE Ti abundances in this work, because 

NLTE Ti model does not give consistent solutions with 1D hydrostatic models47. Ba 

abundances are determined using the Ba II lines at 5853, 6141, and 6496 Å applying 

NLTE corrections48. The NLTE corrections for these lines are −0.03 to −0.05 dex. The 

isotopic shifts and hyperfine splitting (HFS) are also taken into account49,50,51. The only 

Eu II line that can be measured in the spectra is the feature at 6645 Å, which is affected 

by isotopic and HFS splitting. The main isotopes are 151Eu and 153Eu, with the solar 

abundances of 47.8 and 52.2 % respectively. The isotopic shifts, HFS magnetic dipole 
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and electric quadrupole constants, are taken from experimental studies52,53. The average 

solar-scaled abundance ratios are reported in Extended Data Table 3. 

Every effort has been made to check the accuracy of each abundance measurement; all 

spectral fits are examined by eye. To estimate the uncertainties in the chemical 

abundances, we follow our standard procedure40. The typical measurement error is ≈ 

0.15 dex. The individual abundance errors are given in Extended Data Table 3. If the 

atomic lines of interest are contaminated by blends, the measurements have been 

deemed unreliable and no abundance is provided. Furthermore, we determine the solar 

abundances using the same linelist as for the program stars. Our derived NLTE solar 

abundances are in a very good agreement with reference estimates54. The stellar 

abundances are taken relative to our solar abundances.  

The distances to TriAnd and A13 stars are estimated using the Bayesian method55, with 

the 2MASS colours and the stellar parameters (Figure 2). The distances are the median 

of the posterior probability distribution (PDF) functions, and uncertainties are estimated 

from the full PDF as 1 s.d. confidence level. Our new distances are ~ 30% lower than 

those determined by our group previously, because that work used an approximate 

linear relationship between the absolute magnitude and colour of a star including a 

parameterised metallicity term. This revision is not crucial for this work, because it 

applies to all stars in the overdensities and does not affect the stellar membership 

classification. Figure 2 also shows the average disk scale height profile for the low-α 

stellar population56. 

The line-of-sight velocity dispersion was derived from the measured radial velocities 

(Extended Data Table 2), after correcting them for the Galactic standard of rest57 and for 

the average motion of stars in the azimuthal direction (Extended Data Figure 3).  The 

raw data represent the measured radial velocities, from which we first subtract the line-

of-sight motion to the Sun, that is, we show the estimated line-of-sight velocity in the 

Galactic standard of rest, 𝑉GSR =  𝑉LOS −  𝑉Sun ∙ (𝑟 −  𝑟Sun) , where 𝑉Sun is the velocity of 
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the Sun in the Galactic standard of rest57, 𝑟 is the position vector of the star, and 𝑟Sun is 

the position vector of the sun. In a second step, we correct for the projected rotation 

component of the stellar population, i.e. we define 𝑉! =  𝑉GSR −  𝑉rot  ∙ (𝑟 −  𝑟Sun), 

where 𝑉rot  is an estimate for the average motion in the azimuthal direction. 

The abundances in Figure 3 and in Extended Data Figure 1 are compared with the 

following data: Galactic disk and halo stars20; Sgr dSph galaxy58,59,60 (ref. 60: only 

abundances with uncertainties of less than 0.1 dex), Fornax45,61,62,63; globular clusters 

(M364, M7165); open clusters Be 25 and NGC 2243 in the outer disk of the Milky 

Way21,22. The [Fe/H] and [Na/Fe] data for the Galactic disk were derived in NLTE. The 

[Ba/Fe], [Ti/Fe], and [Mg/Fe] data for the Galactic disk stars are LTE estimates. All 

literature data for the dSph systems, globular and open clusters, represent LTE 

estimates. The NLTE corrections tend to lower [Ba/Fe] and [Na/Fe] for red giants with 

sub-solar metallicity. For the dwarf stars, which constitute the comparison sample for 

the Milky Ways disk, the [Ba/Fe] NLTE corrections are negligible, within −0.02 dex. 

The typical NLTE corrections for the Mg I lines in the spectra of dwarfs are ~ 0.15 dex, 

and for RGB stars of the order −0.10 dex (5711 Å line) or close to zero (5528 Å line). 

Therefore, our conclusions would not be affected by the fact that some abundances were 

derived using LTE. 

 

Data Availability Statement 
 
All data relevant to the manuscript are available from the authors. The N-body 
simulation data shown in Figure 3 are available by request. The data shown in Figure 1 
and in Extended Data Figures 1, 2 are included with the manuscript as source data. The 
data shown in Figure 2 and in Extended Data Figure 3 are provided in Extended Data 
Tables 1 and 3. 

The HIRES spectra are available at the Keck Observatory Archive, funded by NASA 

https://www2.keck.hawaii.edu/koa/public/koa.php 

The UVES data (Program ID: 097.B-0770(A)) are available from  ESO Science Archive 

Facility at http://archive.eso.org/eso/eso_archive_main.html 
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The code used to determine stellar parameters and abundances is available at 

http://www.stsci.edu/~valenti/sme.html 

The input linelist can be provided at the request to the corresponding author. The 

MARCS model atmospheres are available at the developer’s website 

http://marcs.astro.uu.se 

The NLTE abundance corrections for O, Mg, Ti, and Fe lines are available at the online 

database http://nlte.mpia.de 
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Extended Data Figure 1 | Chemical abundances of the observed stars. 
Chemical abundance ratios of [Mg/Fe] and [Ti/Fe] against metallicity [Fe/H] in 
the TriAnd (black crosses) and A13 overdensities (black circles). Symbols as in 
Figure 3. The source data are provided in Extended Data Tables 1 and 3. 
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Extended Data Figure 2 | Comparison of the observed and a model spectrum 
for a star in the A13 overdensity.  
The Keck spectrum of the star 2MASS 07154242+6704006 (black line) and the 
best-fit model spectrum (red line). The two Na I lines at 6154 and 6160 Å are 
used to determine Na abundance of the star. 
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Extended Data Figure 3 | The line-of-sight velocities of the observed stars 
against galactic longitude l. See methods. 
 
 


