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Based on the modification to area-law due to thermal fluctuation at small horizon radius, we investi-
gate the thermodynamics of charged quasitopological and charged rotating quasitopological black holes. 
In particular, we derive the leading-order corrections to the Gibbs free energy, charge and total mass 
densities. In order to analyze the behavior of the thermal fluctuations on the thermodynamics of small 
black holes, we draw a comparative analysis between the first-order corrected and original thermody-
namical quantities. We also examine the stability and bound points of such black holes under effect of 
leading-order corrections.
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1. Overview and motivation

According to AdS/CFT duality, the Einstein general relativity in 
the bulk space–time corresponds to a gauge theory living on the 
boundary with a large N (number of colors) and large ’t Hooft 
coupling [1]. Since the coupling constants in the gravity side relate 
to central charges in the gauge theory, therefore Einstein gravity 
has limited number of dual CFTs, in particular only those CFTs 
which have equal central charges, as Einstein gravity does not 
have enough free parameters. The presence of various higher-order 
derivatives in AdS gravity corresponds to new couplings among op-
erators in the dual CFT. One well-known example of higher deriva-
tives gravity theories is Gauss–Bonnet gravity. The Gauss–Bonnet 
gravity involves only one quadratic coupling term and therefore 
the corresponding range of dual theory is still limited. In order 
to improve this limitation of holographic studies to the classes of 
CFTs, one has to introduce the new higher order curvature terms, 
at least curvature-cubed terms, into gravity. One may achieve such 
curvature-cubed interactions by adding the cubic term in Lovelock 
gravity [2], but can not be very helpful as such term is topological 
in nature and becomes significant only in very high dimensions.

Recently, a new toy model for gravitation action has been pro-
posed which contains not only the Gauss–Bonnet term but also a 
curvature-cubed interaction [3,4]. This is a quasitopological grav-
ity model as the cubic terms do not have a topological origin 
like Lovelock gravity but contribute dynamically to the evolution 
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of fields in the bulk. This quasitopological gravity theory is en-
dowed with two important properties. First, the equations of mo-
tion are generically of fourth order in derivatives of the metric 
which reduces to second order for spherically symmetric space-
times, and second there exist the exact black hole solutions [4]. 
The holographic discussions for these black hole solutions with 
some recipes of AdS/CFT duality have been given in [5]. The ba-
sic thermodynamics of quasitopological Reissner-Nordström black 
holes are studied in Ref. [6]. Recently, the surface term of qua-
sitopological gravity for space–time with flat boundary is intro-
duced and the thermodynamic properties of these solutions have 
been investigated by using the relation between on-shell action 
and Gibbs free energy [7].

An important discovery that black holes behave as thermody-
namic objects had affected our understanding of gravity theory and 
its relationship to quantum field theory considerably. Bekenstein 
and Hawking were first who proposed that black holes radiate 
as black bodies with characteristic entropy related to the area of 
the horizon [8]. In present scenario, it is more or less certain that 
black holes much larger than the Planck scale have entropy pro-
portional to its horizon area [8–12]. So, this poses an interesting 
question that what could be the leading-order corrections when 
one reduces the size of the black holes. To answer this question, 
several attempts have been made. For instance, using a corrected 
version of the asymptotic Cardy formula for BTZ, string theoretic 
and all other black holes, whose microscopic degrees of freedom 
are described by an underlying CFT [13], the leading-order correc-
tions have found logarithmic in nature. In fact, the consideration 
of matter fields in black hole backgrounds also yields logarithmic 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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correction to the black holes entropy at the leading order [14]. The 
leading-order correction to black holes entropy is also logarithmic 
by considering string-black hole correspondence [15,16] and using 
Rademacher expansion of the partition function [17]. Furthermore, 
Das et al. in Ref. [19] showed that the leading-order corrections to 
the entropy of any thermodynamic system due to small statistical 
fluctuations around equilibrium are always logarithmic.

The study of leading-order correction to the black holes ther-
modynamics is a subject of current interests. In this direction, re-
cently, the effects of quantum corrections on thermodynamics and 
stability of Gödel black hole [20], Schwarzschild–Beltrami–de Sit-
ter black hole [21] and massive black hole in AdS space [22] have 
been studied. The corrected thermodynamics of a dilatonic black 
hole has also been discussed [23] which meets the same universal 
form of correction term. In another work, the corrected thermody-
namics of a black hole is also studied from the partition function 
points of view [24]. The quantum gravity effects on the Hořava–
Lifshitz black hole thermodynamics are analyzed and their stability 
is also discussed [25]. Similar investigation in case of the modified 
Hayward black hole is also made, where it has been found that 
correction term reduces the pressure and internal energy of the 
Hayward black hole [26]. We try to extend such study to the case 
of quasitopological black holes.

In this paper, we consider a charged quasitopological model 
which exhibits black hole solutions and discuss the effects of 
leading-order correction on thermodynamics which becomes sig-
nificant for small size of the black holes. First, we compute the 
leading-order correction to the entropy of charged quasitopolog-
ical black hole and plot a graph to make a comparative analysis 
between corrected and uncorrected entropy densities for smaller 
black holes. Here, we find that for (negative-)positive correction 
parameter (α) there exists a (positive-)negative peak for the cor-
rected entropy density at sufficiently small black holes. The cor-
rected entropy density becomes negative valued for the positive 
correction parameter, which is not physical and therefore can be 
forbidden. We see that two critical points exist for the entropy 
density. The correction term affects significantly the entropy den-
sities in between these critical points. Furthermore, we derive the 
first-order corrected Gibbs free energy density and discuss the ef-
fects of correction terms. We observe that the correction terms 
with negative correction parameter make Gibbs free energy density 
(more-)less negative valued for the (smaller-)larger black holes. 
However, the correction terms with positive correction parameter 
make Gibbs free energy density more positive valued for the black 
holes with smaller horizon radius. For the larger values of charge 
and AdS radius, the deviation of corrected Gibbs free energy den-
sity with their original value becomes less. We also calculated the 
corrected expression for the total charge of the quasitopological 
black holes which coincides with their original expression in limit 
α → 0. Moreover, we evaluate the first-order corrected expression 
for the mass density of this black hole. We find that a critical point 
exists for total mass density below which corrected terms with the 
positive correction parameter shows opposite behavior. We also 
check the stability and bound point of black holes by calculating 
specific heat at constant chemical potential and plot with respect 
to horizon radius. We find that the phase transition does not oc-
cur due to the correction term with positive correction parameter 
and black holes are in stable state. The correction term with nega-
tive parameter causes instability for such black holes. Furthermore, 
in the same fashion, we investigate the effects of thermal fluc-
tuation on the thermodynamics of charged quasitopological black 
holes endowed with global rotation.

The paper is organized as follows. In section 2, we derive the 
corrected expression for entropy density due to the thermal fluc-
tuations when the size of the black holes is reduced to the Planck 
scale. In section 3, we discuss the effects of quantum corrections 
due to thermal fluctuations on the thermodynamics of charged qu-
asitopological black holes. Within this section, we study the influ-
ence of leading-order correction on stability of such black holes. In 
section 4, we consider a charged topological black holes endowed 
with global rotation and discuss the effects of thermal fluctua-
tions on the thermodynamics of it. We also study the stability 
and bound points of charged rotating quasitopological black holes 
under the influence of thermal fluctuations. We summarize our re-
sults with concluding remarks in the last section 5.

2. Thermodynamics under (quantum) thermal instability: 
Preliminaries

In this section, we review the corrections to thermodynamic 
entropy density of the quasitopological black holes when small sta-
ble fluctuations around equilibrium are taken into account. In this 
connection, one may assume that the system of quasitopological 
black holes is characterized by the canonical ensemble. In order 
to begin the analysis, let us first define the density of states with 
fixed energy as [27,28]

ρ(E) = 1

2π i

c+i∞∫
c−i∞

eS(β)dβ. (1)

Here S(β) refers to the exact entropy density which is not just its 
value at equilibrium and depends on temperature T = 1/β explic-
itly. The exact entropy density corresponds to the sum of entropy 
densities of subsystems of the thermodynamical system, which are 
small enough to be considered in equilibrium. In order to solve the 
complex integral (1), we utilize the method of steepest descent 
around the saddle point β0(= 1/T H ) such that 

(
∂S(β)

∂β

)
β=β0

= 0. 

We assume that the quasitopological black hole is in equilibrium 
at Hawking temperature T H . Now, the Taylor expansion of exact 
entropy density around the saddle point β = β0 yields

S(β) = S0 + 1

2
(β − β0)

2
(

∂2S(β)

∂β2

)
β=β0

+ (higher order terms),

(2)

where S0 = S(β0) refers the leading-order entropy density. Now, 
by plugging this S(β) (2) into (1), and solving integral by choosing 
c = β0 for positive 

(
∂2S(β)

∂β2

)
β=β0

leads to [19]

ρ(E) = eS0√
2π

(
∂2S(β)

∂β2

)
β=β0

. (3)

The logarithm of the above density of states yields the corrected 
microcanonical entropy density at equilibrium (obtained by incor-
porating small fluctuations around thermal equilibrium)

S = S0 − 1

2
log

(
∂2S(β)

∂β2

)
β=β0

+ (sub-leading terms). (4)

By considering the most general form of the exact entropy density, 
S(β), the form of 

(
∂2S(β)

∂β2

)
β=β0

can be determined. The generic 

expression for leading-order correction to Bekenstein–Hawking for-
mula is calculated by [19,18]

S = S0 + α ln(S0T 2
H ), (5)

where α is a (constant) correction parameter. One should note that 
we considered a general correction parameter α because this is not 
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fixed valued and takes different values in different circumstances. 
Eventually, we observe that the leading-order corrections to the 
entropy density of any thermodynamic system (quasitopological 
black holes) due to small statistical fluctuations around equilib-
rium are logarithmic in nature. Now, we shall study the effects of 
such correction term on the thermodynamics of both the charged 
and charged rotating quasitopological black holes.

3. Charged quasitopological black holes: Thermal instability

The general action for the quasitopological gravity with cos-
mological constant � in (d + 1) space–time dimensions in the 
presence of the electromagnetic field (Ab) can be given as [4,7]

I = 1

16πGd+1

∫
dd+1x

√−g

[
R − � + λl2

(d − 2)(d − 3)
X2

+ 8(2d − 1)μl4

(d − 2)(d − 5)(3d2 − 9d + 4)
X3 − 1

4
Fab F ab

]
, (6)

where � = −d(d − 1)/2l2, Maxwell field-strength tensor Fab =
∂a Ab − ∂b Aa , λ is the Gauss–Bonnet coupling constant and μ is 
the quasitopological coupling constant. Here, X2 and X3 are the 
Gauss–Bonnet and quasitopological terms, respectively, with the 
following explicit expressions:

X2 = Rabcd Rabcd − 4 Rab Rab + R2, (7)

X3 = R c d
a b R e f

c d R a b
e f + 1

(2d − 1)(d − 3)

[
3(3d − 5)

8
Rabcd Rabcd R

− 3(d − 1)Rabcd Rabc
e Rde + 3(d + 1)Rabcd Rac Rbd (8)

+ 6(d − 1)Ra
b Rb

c Rc
a − 3(3d − 1)

2
R b

a R a
b R + 3(d + 1)

8
R3

]
.

(9)

Now, in order to study the thermodynamics of quasitopological 
black hole described by the action (6), we consider a (d + 1)-di-
mensional static metric with a flat boundary as follows,

ds2 = N2(r) f (r)dt2 + dr2

f (r)
+ r2

d−1∑
i=1

dφ2
i , (10)

where N(r) is a lapse function. Here we should note that the field 
equations of quasitopological gravity are second-order differential 
equations only for this metric. It has been shown in Ref. [7] that 
N(r) must be a constant and therefore without loss of generality 
can be set to unit (i.e. N(r) = 1). By considering the gauge poten-
tial ansatz Aa = h(r)δt

a to have radial electric field, the equation 

of motion will have the following solution: h(r) = −
√

2(n−1)
n−2

q
rd−2 . 

Now, the solution for metric function is given by [7]

f (r) = r2

l2
− m

rd−2
+ q2

r2(d−2)
, (11)

where q and m are integration constants, respectively, related to 
the electric charge and total mass of the quasitopological black 
holes. The integration constant m can easily be evaluated from the 
metric function on the horizon ( f (r = r+) = 0) as

m = rd+
l2

+ q2

rd−2+
. (12)

Now, exploiting relations (11) and (12), the Hawking temperature 
of the event horizon can be calculated by [7]

T H = f ′(r)
4π

∣∣∣∣ = dr+ − (d − 2)q2l2r3−2d

4π l2
, (13)
r=r+
where r+ is the outer horizon radius. The Gibbs free energy per 
unit volume can be identified with the Euclidean action per vol-
ume times the temperature [29]. Corresponding to the resulting 
Gibbs free energy per unit volume, the leading entropy density of 
charged quasitopological black holes is calculated as [7]

S0 = 1

4
rd−1+ . (14)

The expression for electric potential, measured at infinity with re-
spect to the horizon, for static case is given by [7,30]

� =
√

2(d − 1)

d − 2

q

rd−2+
. (15)

With the help of relations (13) and (15), the Hawking tempera-
ture of quasitopological black holes can be expressed in terms of 
electric potential as follows:

T H = dr+
4π l2

− (d − 2)2�2

8π(d − 1)r+
, (16)

which leads to the horizon radius in terms of temperature and 
electric potential as

r+ = 2π l2

d
T + 2

[
π2l4

d2
T 2 + (d − 2)2l2

8d(d − 1)
�2

]1/2

. (17)

Utilizing the relations (13) and (14), the first-order corrected en-
tropy per volume (5) for the charged quasitopological black hole 
due to the thermal fluctuation is computed as

S = 1

4
rd−1+

+ α log

[
d2rd+1+ + (d − 2)2q4l4r5−3d+ − 2d(d − 2)q2l2r3−d+

64π2l4

]
.

(18)

This can further be expressed in terms of electric potential as fol-
lows:

S = 1

4
rd−1+ + α log

[
1

64π2

(
d2rd+1

l4
+ (d − 2)4

4(d − 1)2
�4rd−3+

− d(d − 2)2

(d − 1)

�2rd−1+
l2

)]
. (19)

The effects of leading-order correction on behavior of the en-
tropy per volume with respect to horizon radius can be seen in 
Figs. 1 and 2. For negative correction parameter α, the first max-
ima (positive peak) occurs in between the critical points for the 
entropy per volume at sufficiently small black holes. Also, one can 
see in figures that in four space–time dimensions a negative region 
for the entropy density occurs for quasitopological black holes be-
fore second critical point corresponding to the positive values of 
correction parameter α. After the second critical point, the entropy 
density is an increasing function only. For larger values of charge 
and AdS radius, the critical value of entropy density increases and 
occurs at larger horizon radius. In five space–time dimensions case, 
there exists only one critical point and the first maxima/minima 
(peak) occurs after the critical point. In this case, for larger values 
of charge and AdS radius, the corrected entropy density diverges 
just after the critical point.

The Gibbs free energy per unit volume for charged quasitopo-
logical black holes can be calculated utilizing the standard relation, 
G(T H , �) = − 

∫
SdT H , as follows
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Fig. 1. Left: Entropy per volume vs. the black hole horizon radius for d = 3, l = 1 and q = 1. Right: Entropy per volume vs. the black hole horizon radius for d = 3, l = 2
and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Left: Entropy per volume vs. the black hole horizon radius for d = 4, l = 1 and q = 1. Right: Entropy per volume vs. the black hole horizon radius for d = 4, l = 2
and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
G(T H ,�) = − 1

16π l2

[
rd+ + d − 2

2(d − 1)
l2�2rd−2+

]

+ α
d(1 + d)r+

4π l2
+ α

(d − 3)(d − 2)2

8π(d − 1)

�2

r+

− α
2d(d − 1)r2+ − (d − 2)2l2�2

8π(d − 1)l2r+

× log

[
1

64π2

(
d2rd+1

l4
+ (d − 2)4

4(d − 1)2
�4rd−3+

− d(d − 2)2

(d − 1)

�2rd−1+
l2

)]
. (20)

Here, it is evident that in the limit α → 0, this coincides with the 
original expression calculated in Ref. [7]. The effects of leading-
order correction terms on the Gibbs free energy per volume with 
respect to the black hole horizon radius in four space–time di-
mensions can be seen from Fig. 3. We observe that the Gibbs free 
energy per volume is a decreasing function with respect to hori-
zon radius. The Gibbs free energy density without any correction is 
negligibly small for smaller black holes and becomes negative val-
ued when horizon radius increases. However, the correction terms 
with negative correction parameter makes it finite negative valued 
for the smaller black holes. However, the correction terms with 
positive correction parameter makes the Gibbs free energy density 
positive valued for the smaller black holes, falls more sharply to 
take negative value along with increasing horizon radius. For hori-
zon radius r+ → 0, asymptotic behavior of corrected Gibbs free 
energy per volume with negative α is completely opposite to that 
of the uncorrected and corrected ones with positive α. In fact, for 
sufficiently larger size of black hole the corrected Gibbs free en-
ergy per volume coincides the uncorrected one as expected. For 
the larger values of charge and AdS radius, the corrected Gibbs 
free energy per volume behaves more closely to the uncorrected 
one.

The corrected charge density of charged quasitopological black 
holes under the influence of statistical fluctuations can be calcu-
lated as follows:

Q = −
(

∂G

∂�

)
T
,

= 1

16π

√
2(d − 1)(d − 2)q

+ α(d − 2)2

4π

√
2(d − 2)

d − 1

[
3d − (3d − 1)q2l2r2−2d+

d + (d − 2)q2l2r2−2d+

]
q

rd−1
. (21)

In limit α → 0, the above expression reduces to the original one 
obtained in [7]. Here, we notice that for space dimensions d < 3, 
one can not have charged quasitopological black holes.



134 S. Upadhyay / Physics Letters B 775 (2017) 130–139
Fig. 3. Left: Gibbs free energy per volume vs. the black hole horizon radius for d = 3, l = 1 and q = 1. Right: Gibbs free energy per volume vs. the black hole horizon radius 
for d = 3, l = 2 and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Left: Mass per volume vs. the black hole horizon radius for d = 3, l = 1 and q = 1. Right: Mass per volume vs. the black hole horizon radius for d = 3, l = 2 and q = 2. 
Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
The corrected expression for the mass per volume of the 
charged quasitopological black holes can be easily calculated from 
the definition, M = G + T S + �Q , as follows

M = (d − 1)

16π
m

+ α
(d − 2)

4π

[
d(7d − 15) − (d − 2)(5d − 1)q2l2r2−2d+

d + (d − 2)q2l2r2−2d+

]
q2

r2d−3+

+ α
d(d + 1)

4π l2
r+. (22)

A comparative analysis of corrected and uncorrected mass per vol-
ume can be seen in Fig. 4. One can see, for sufficiently large size 
of black holes, the corrected and uncorrected mass per volume 
show same behavior as expected. However, when horizon radius 
tends to zero value, the corrected mass per volume with positive 
correction parameter shows opposite behavior and takes negative 
asymptotic value. The larger values of charge and AdS radius min-
imize the differences of the corrected and uncorrected mass per 
volume. We note that a critical value exists for the mass per vol-
ume for small black holes after that the mass density becomes an 
increasing function.
3.1. Stability of charged quasitopological black holes

Now, we discuss thermal stability of the charged quasitopolog-
ical black holes. It is well-known that the stability conditions in 
canonical ensemble depend on sign of the specific heat. A change 
of sign may appear whether when specific heat meets root(s) or 
divergence(s). The root of specific capacity (or temperature) con-
firms a bound point. This bound point divides physical solutions 
(which corresponds to positive temperature) from non-physical 
solutions (which corresponds to negative temperature). However, 
the divergences of specific heat represent to the phase transition 
points. The negative specific heat represents to the unstable solu-
tions which may encounter a phase transition to acquire a stable 
state.

The specific heat per volume with a fixed chemical potential 
(�) is given by

C� = T

(
∂ S

∂T

)
�

,

= 2π(d − 1)2l2rd+
2d(d − 1)r2+ + (d − 2)2l2�2

+ 2α,

= π(d − 1)l2rd−1+
dr2d−2 + (d − 2)l2q2r3−2d

+ 2α. (23)

+ +
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Fig. 5. Left: Specific heat per volume vs. the black hole horizon radius for d = 3, l = 1 and q = 1. Right: Specific heat vs. the black hole horizon radius for d = 3, l = 2
and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
In order to get bound points, we solve the denominator of above 
expression with respect to horizon radius and get

rc =
[
− (d − 2)l2q2

d

]1/4d−3

. (24)

However, to get phase transition points, one can solve the nu-
merator of above expression with respect to horizon radius which 
seems a cumbersome task for an arbitrary space–time dimensions 
in presence of correction parameter.

From the Fig. 5, we observe that for quasitopological black holes 
in four space–time dimensions there exists no phase transition 
point corresponding to both the uncorrected and corrected specific 
heat per volume with positive α and black holes are stable. Inter-
estingly, we find that the correction term with negative correction 
parameter causes instability to the black holes and a stable state 
exists only in case of corrected specific heat density with smaller 
value of negative correction parameter.

4. Charged rotating quasitopological black holes: Thermal 
instability

In order to describe the charged rotating quasitopological black 
holes, we equip our charged static solution with a global rotation. 
The metric for a (d + 1)-dimensional asymptotically AdS rotating 
solution with k rotation parameters can be written as [7]

ds2 = N2(r) f (r)

(
�dt −

k∑
i=1

aidφi

)2

+ r2

l4

k∑
i=1

(aidt − �l2dφi)
2

+ dr2

f (r)
− r2

l2

k∑
i< j

(aidφ j − a jdφi)
2 + r2

d−1∑
i=k+1

dφ2
i , (25)

where �2 = 1 + ∑k
i=1

a2
i

l2
and the angular coordinates can have 

the following range: 0 ≤ φi < 2π . Also, the gauge potential 
corresponding to this metric has the following form: Aa(r) =
−

√
2(n−1)

n−2
q

rd−2 (�dt − 
k
i=1aidφi).

The Hawking temperature from the area law is calculated by

T H = f ′(r)
4π�

∣∣∣∣
r=r+

= dr+ − (d − 2)q2l2r3−2d

4π�l2
. (26)

The horizon radius in terms of the intensive quantities can be writ-
ten as
r+ = (1 − l2�2)−1/2

×
{

2π l2

d
T + 2

[
π2l4

d2
T 2 + (d − 2)2l2

8d(d − 1)
�2

]1/2}
, (27)

where � is the electric potential, measured at infinity with respect 
to the horizon, with the following explicit form [7]:

� =
√

2(d − 1)

d − 2

q

�rd−2+
. (28)

The entropy density of charged rotating quasitopological black hole 
without any thermal fluctuation can be calculated with the help of 
Gibbs free energy function and the temperature as [7]

S0 = �

4
rd−1+ . (29)

Due to thermal fluctuation around equilibrium induces a correc-
tion to the original entropy density. We calculate this first-order 
corrected entropy density as

S = �

4
rd−1+

+ α log

[
d2rd+1+ + (d − 2)2q4l4r5−3d+ − 2d(d − 2)q2l2r3−d+

64π2�l4

]
,

(30)

where relations (5), (26) and (29) have been utilized. A compara-
tive study of leading-order corrected and uncorrected entropy den-
sities with respect to horizon radius for four and five space–time 
dimensions can be seen in Figs. 6 and 7 respectively. For nega-
tive correction parameter α there exists first maximum (positive 
peak) for the entropy per volume in between the critical points. 
However, there exists a negative region for entropy density with 
a minimum (negative peak) corresponding to positive α which is 
physically irrelevant and can be ignored. One can see that the cor-
rection terms do not play an important role for the entropy per 
volume at sufficiently larger horizon radius. Also, there exist crit-
ical entropy densities at horizon radii r+ =≈ 0.2 and r+ =≈ 3 for 
four dimensional black holes. For larger values of charge and AdS 
radius, the second critical value of entropy density increases and 
occurs at larger horizon radius. For five space–time dimensions 
case, there exists only one critical point for entropy density and 
the corrected entropy density with large negative parameter falls 
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Fig. 6. Left: Entropy per volume vs. the black hole horizon radius for �2 = 2, d = 3, l = 1 and q = 1. Right: Entropy per volume vs. the black hole horizon radius for �2 = 2, 
d = 3, l = 2 and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Left: Entropy per volume vs. the black hole horizon radius for �2 = 2, d = 4, l = 1 and q = 1. Right: Entropy per volume vs. the black hole horizon radius for �2 = 2, 
d = 4, l = 2 and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
more sharply. As the charge and AdS radius take larger values, the 
corrected entropy density diverges after the first critical point.

The corrected expression for the Gibbs free energy per unit vol-
ume is calculated by

G(T H ,�,�) = − 1

16π l2

[
rd+ + d − 2

2(d − 1)(1 − l2�2)
l2�2rd−2+

]

+ α
d(1 + d)r+

4π�l2
+ α

(d − 3)(d − 2)2

8π(1 − d)�

�2

r+

− α
2d(d − 1)r2+ − (d − 2)2l2�2

8π(1 − d)�l2r+
×

log

[
1

64π2

(
d2rd+1

l4
+ (d − 2)4

4(d − 1)2
�4rd−3+

− d(d − 2)2

(d − 1)

�2rd−1+
l2

)]

+ α
log[�]

�
T H , (31)

where � is the angular velocity of the Killing horizon and has 
the following form: �i = ai/�l2. We draw a plot in Fig. 8 for 
the Gibbs free energy density with respect to horizon radius to 
make a comparative discussion between the corrected and uncor-
rected the Gibbs free energy densities. In this figure, we see that 
the Gibbs free energy density is a negative valued function for 
the larger horizon radius. The leading-order correction terms with 
(negative-)positive α make it (more-)less negative valued for larger 
horizon radius. For small horizon radius, the corrected Gibbs en-
ergy density with positive α is positive valued. In the limit r+ → 0, 
the corrected Gibbs free energy density with negative α shows 
opposite asymptotic behavior in comparison to uncorrected and 
corrected ones with positive α. Two critical points occur for the 
Gibbs free energy density. For the larger values of charge and AdS 
radius, after critical points the corrected Gibbs free energy per vol-
ume with negative α becomes less negative.

Now, we calculate the charge density of charged rotating qua-
sitopological black hole under the influence of statistical fluctua-
tions. This is given by

Q = −
(

∂G

∂�

)
T
,

= 1

16π

√
2(d − 1)(d − 2)�q

+ α(d − 2)2

4π�

√
2(d − 2)

d − 1

[
3d − (3d − 1)q2l2r2−2d+

d + (d − 2)q2l2r2−2d+

]
q

rd−1
. (32)

From the above expression, the original expression of total charge 
density given in [7] can be recovered in the α → 0 limit. Also, we 
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Fig. 8. Left: Gibbs free energy per volume vs. the black hole horizon radius for d = 3, �2 = 2, l = 1 and q = 1. Right: Gibbs free energy per volume vs. the black hole horizon 
radius for d = 3, �2 = 2, l = 2 and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black 
line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Left: Mass per volume vs. the black hole horizon radius for d = 3, �2 = 2, l = 1 and q = 1. Right: Mass per volume vs. the black hole horizon radius for d = 3, �2 = 2, 
l = 2 and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
see that the charged rotating quasitopological black hole does not 
exist for space dimensions d < 3.

Since the black hole solution is endowed with a global rota-
tion, therefore, this possesses an associated angular momentum 
also. We compute the first-order corrected angular momentum per 
volume as follows,

J i = −
(

∂G

∂�i

)
T ,�

,

= d

16π
�mai − α

2π

[
d2r+

l2
− (d − 2)

q2

r2d−3+

]
ai

+ α

4π

[
dr+
l2

+ (d − 2)q2

r2d−3+

]

× ai log

[
d2rd+1+ + (d − 2)2q4l4r5−3d+ − 2d(d − 2)q2l2r3−d+

64π2�l4

]
.

(33)

This expression also coincides with the original one calculated 
in [7], when we switch off thermal fluctuations (i.e. α = 0).

Now, utilizing the standard relation, M = G + T S + �Q +∑k
i=1 �i J i , we are able to calculate the first-order corrected to-
tal mass per volume of the charged rotating quasitopological black 
hole as follows:

M = 1

16π
(d�2 − 1)m + α

4π�l2
d(3d − 2d�2 + 1)r+

+ α
log[�]

�
T H − α(d − 2)

4π�

[
1 − 2�2(�2 − 1)

�2

− 2(d − 2)

(
3d − (3d − 1)q2l2r2−2d+

d + (d − 2)q2l2r2−2d+

)]
q2

r2d−3+

+ α
(�2 + 1)dr+ + (�2 − 1)�−2(d − 2)q2l2r3−2d+

4π�l2
×

log

[
d2rd+1+ + (d − 2)2q4l4r5−3d+ − 2d(d − 2)q2l2r3−d+

64π2�l4

]
.

(34)

This expression of corrected total mass density is also consistent 
with the one calculated originally in [7] in the limit α → 0.

In order to discuss the effects of thermal fluctuations on the 
total mass density as one reduces the size of the charged rotating 
quasitopological black hole, we plot Fig. 9. We see that the cor-
rected total mass density with negative α is an decreasing function 
before the critical point and increasing function after the critical 
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Fig. 10. Left: Specific heat per volume vs. the black hole horizon radius for �2 = 2, d = 3, l = 1 and q = 1. Right: Specific heat vs. the black hole horizon radius for �2 = 2, 
d = 3, l = 2 and q = 2. Here, α = 0 denoted by blue line, α = −0.5 denoted by green line, α = 0.5 denoted by red line, and α = −1.5 denoted by black line. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
point, but not a negative valued function. However, the corrected 
mass density with positive α is an increasing function only but a 
negative valued function before the critical point. The larger val-
ues of charge and AdS radius decrease the critical value of mass 
density a bit and occurs at bit larger horizon radius.

4.1. Stability of charged rotating quasitopological black holes

Here, in order to discuss the thermal stability for charged rotat-
ing quasitopological black holes, we would analyze the sign of the 
specific heat as the negative specific heat represents to the unsta-
ble solutions which may encounter a phase transition to acquire a 
stable state.

The specific heat per volume with a fixed chemical potential 
(�) for the charged rotating quasitopological black holes is calcu-
lated by

C� = T

(
∂ S

∂T

)
�

,

= 2π(d − 1)2l2�2rd+
2d(d − 1)r2+ + (d − 2)2l2�2

+ 2α,

= π(d − 1)l2�2rd−1+
dr2d−2+ + (d − 2)l2q2r3−2d+

+ 2α. (35)

The bound points can be obtained by solving the denominator of 
above expression with respect to horizon radius. By doing so, we 
obtain

rc =
[
− (d − 2)l2q2

d

]1/4d−3

, (36)

which is an exactly same point as obtained in the case of charged 
quasitopological black holes without rotation.

In order to see the effects of thermal fluctuations on the sta-
bility of charged rotating quasitopological black hole, we plot the 
Fig. 10. We see that due to the correction terms with negative 
correction parameters instabilities occur for the charged rotating 
quasitopological black holes. However, the correction terms with 
positive correction parameter make the specific heat more positive 
valued and therefore more stable. The larger values of charge and 
AdS radius improves the stability of such black holes correspond-
ing to the correction terms with negative correction parameters.
5. Concluding remarks

It is well-known that quasitopological gravity is a new gravi-
tational theory, including Gauss–Bonnet term and curvature-cubed 
interactions, which possesses exact black hole solutions. Here, we 
have considered both the charged and charged rotating quasitopo-
logical gravity with black hole solutions to study the effects of 
thermal fluctuation on thermodynamics of small black holes.

First, we have evaluated the leading-order correction to the en-
tropy density of charged quasitopological black hole and made a 
comparative analysis between corrected and uncorrected entropy 
densities through plots for small sizes of the black holes. We have 
found that corresponding to (negative-)positive correction parame-
ters there exist (positive-)negative peaks for the corrected entropy 
density in between the critical points. Also, corrected entropy den-
sity becomes negative valued corresponding to the positive val-
ues of correction parameter, which is not physical and therefore 
can be forbidden. The correction term plays a crucial role for en-
tropy densities in between these critical points. Furthermore, we 
have computed the first-order corrected Gibbs free energy den-
sity. We have plotted graph to make the comparative analysis and 
found that the leading-order corrected Gibbs free energy density 
with negative correction parameter makes it (more-)less negative 
valued for the (smaller-)larger black holes. In spite of that the cor-
rected Gibbs free energy density with positive correction parame-
ter became more positive valued. The higher values of charge and 
AdS radius decrease the deviation of corrected Gibbs free energy 
density to that of the uncorrected one. We have also calculated 
the corrected expression for total charge of quasitopological black 
holes. Finally, we have evaluated the more exact expression for the 
total mass density of such black holes. A critical horizon radius 
has been found for total mass density and before which the pos-
itive correction parameter causes opposite behavior. We have also 
discussed the stability of such black holes by calculating the cor-
rected specific heat density with fixed chemical potential and have 
found a bound point. We noticed that a phase transition does not 
exist for quasitopological black holes under the influence of ther-
mal fluctuation with positive α and therefore black holes are in 
stable state. However, due to the thermal fluctuation with negative 
α an instability occurs such black holes.

Furthermore, we have considered a charged quasitopological 
black holes endowed with the global rotation and have computed 
the Hawking temperature and leading-order correction to the en-
tropy density. We have found that a maximum (positive peak)
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occurs for the corrected entropy density with negative α in be-
tween the critical horizon radii. However, the corrected entropy 
density becomes negative for positive α which is physically irrele-
vant and can be ignored. This indicates that only negative valued 
correction parameter α is physically relevant. We also noted that 
for larger values of charge and AdS radius the second critical point 
occurs at larger horizon radius. We have obtained the corrected 
expressions for Gibbs free energy, charge, angular momentum and 
total mass densities. The correction terms with (negative-)positive 
α make the Gibbs free energy density (more-)less negative valued. 
The corrected Gibbs free energy density with negative α shows 
opposite asymptotic behavior. The larger values of charge and AdS 
radius make Gibbs free energy per volume more negative valued. 
We have noticed that the correction terms with negative α in-
crease total mass density before critical point and decrease after 
critical point. However, the corrected mass density with positive 
α takes negative asymptotic value as horizon radius tends to zero. 
Also, the larger values of charge and AdS radius increase the value 
of critical horizon radius. We have calculated the corrected specific 
heat with fixed chemical potential in case of charged rotating qua-
sitopological black holes also and discussed their stability. It would 
be interesting to investigate the effects of thermal fluctuation on 
the P − V criticality of quasitopological black holes where nega-
tive cosmological constant could play the role of thermodynamic 
pressure.
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