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Conventional approach to constructing a quantum model,consisting in
canonical quantization of a related classical model,can be applied only if
we know the classical model and its Hamiltonian forinulation in advance.
Approach based on a set of postulates reflecting properties of physical
configuration space is more general. As an example,quantum mechanics
of a particle on a space consisting of just two points is constructed.

PACS numbers: 03.65. Ca

1. Introduction

The aim of this paper is to advocate certain non-canonical approach to
constructing quantum models. We point out shortcomings of the conven-
tional,based on canonical quantization,procedure for constructing quantum
models, and we show by presenting an example that a slightly less tra-
ditional approach,based on considerations of physical configuration space
only, can be more advantageous.

The approach based on canonical quantization of a classical model has
several unpleasant features. In our opinion the main one is that the con-
struction of quantum model is based on preceding considerations of a clas-
sical model. This order of appearence of the models does not seem to be
consistent with the fact that quantum description is apparently much closer
to the real workings of Nature than the classical description (unless there
are some yet undiscovered hidden variables). Therefore, it is the quan-
tum model which should be introduced first, on basis of some fundamental
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physical assumptions, and the classical model should appear only as a sec-
ondary one, derived from the quantum model merely as an approximation.
In particular, the classical canonical formalism should be obtained from the
quantum description.

The canonical approach has also the disadvantage that it can not be
applied in cases when it is not known in advance what is the relevant classi-
cal model to be quantized. One encounters this problem for example when
trying to construct quantum mechanics of a particle on a non-smooth con-
figuration space,e.g. on a lattice.

There are also other difficulties, like problems generated by presence
of constraints in the classical system [1], or the problem of dependence
of physical contents of quantum models on choice of canonical variables
used for the quantization, while such choice is irrelevant on the classical
level as long as the various choices of variables are related by canonical
transformations. Yet another shortcoming of the canonical quantization is
its nonuniqueness — in many cases canonical commutation relations have
several inequivalent representations.

For these reasons, we would like to have a more self-contained approach
to constructing quantum models which would not require foreknowledge of
related classical models.

Very popular path integral formulation of quantum models does not
provide the replacement for the canonical approach. This formulation is in
fact nothing more than a special formula for matrix elements of the time
evolution operator U(t;,¢0) giving them as a sum over paths. Nothing
new is said about Hilbert space of states, observables, their commutation
relations, etc. These important elements of definition of the quantum model
are taken over from the operatorial approach. Moreover, in most cases in
order to write the path integral formula a classical action is used, so again
in some sense one starts from the classical theory, even if this is not so plain
as in the case of canonical quantization.

It seems that more promising in this respect is the non-canonical ap-
proach based on a set of postulates which reflect properties of physical
configuration space. The idea of non-canonical approach to constructing
quantum models is not new. Very early example of non-canonical approach
is provided by Dirac equation for.a relativistic spin—% particle. Original ar-
guments leading to this equation were not based on canonical quantization
of a classical model. Only afterwards the relevant classical model has been
developed and canonically quantized to yield the Dirac equation. For a re-
view and literature on this very interesting topic see, e.g. [2, 3, 4]. Later,
the classic analysis of position operators {5, 6] was carried out without much
emphasis on the canonical quantization. Ideas presented in the paper [7] in
connection with the problem of nonrenormalizability in quantum field the-
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ory also point to a non-canonical approach. Quite recently, the role of the
configuration space in construction of quantum models has been emphasized
in (8].

In our present paper we give two elementary examples of consequent
construction of full quantum models in the non-canonical approach. We
show that this approach is very simple and natural. In both examples
pertinent classical models and their canonical formulations are derived from
the quantum theory as classical approximations.

We specify the main steps of the non-canonical approach in Section 2,
using for this purpose the standard quantum mechanics of a spinless particle
on the B3 configuration space. We show how to ohtain this quantum model
without referring to classical Poisson brackets. Because our goal is to recover
the standard quantum mechanics, ordinary canonical commutation relations
for momentum and position operators can not be avoided. The point is to
cbtain them from postulates which do not allude to classical mechanics. In
our approach the classical canonical formalism follows from the quantum
mechanics in a classical limit performed with the help of Weyl transforms
and Wigner densities.

In Section 3 we test usefulness of the non-canonical approach by apply-
ing it in a less obvious case. Namely, we construct quantum mechanics of
a particle on a space consisting of two points. In this case we do not know
relevant classical mechanics beforehand — in fact we shall see that it would
not be quite easy to guess it because the classical phase space is completely
different from the physical one. It turns out that the non-canonical approach
works very effectively also in this case. It is interesting that in the classical
limit of this quantum model we obtain straight away from the quantum
theory a classical Dirac bracket, consistent with a constraint present in the
classical model.

Section 4 contains ending remarks and suggestions for other applications
of the non-canonical approach.

2. Particle on the R® configuration space

We would like to construct the quantum model with R® as the config-
uration space. By this we mean that the model should fulfill the following
rather natural requirements.

(i) There exists observable (position operator) & =

spectrum covers the whole configuration space R

commute,

(z%), i=1,2,3, whose
3. The operators #*
25,25 = 0. (1)

The role of the requirement (1) is to ensure that there exist common
eigenvectors | Z) of the operators 2°.
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(i) The (improper in this case) eigenvectors | ¥) of the operator Z span the
whole Hilbert space H of physical states of the particle.
Thus, any normalizable state | 1) € H can be written in the form

)= [ dav@) 9.
The eigenvectors | £) are normalised in the usual way,
(F| ') = 6(F—2). (2)

If the requirement (i) was not imposed, in H would exist a normalizable
state | ¥) such that (Z | ¥9) = 0 for all £ € R®. According to the standard
interpretation of quantum mechanical formalism this would mean that the
particle in the state | 19) was wandering beyond the R® space, i.e. R® was
not the full configuration space.

(i11) The eigenvectors | &) of the operators i are nondegenerate.

The content of this requirement is that the particle does not have de-
grees of freedom other than the position, e.g. spin degrees of freedom.

The completeness of the set of states {| Z)} allows us to define linear op-
erators in the Hilbert space W which correspond to various transformations
of the R® space. For instance, the prescription

T(@) | 9| 7+ a) (3)

for @ € R3, defines unitary operator T (&) corresponding to translations; the
prescription

V(R)| Y| RF), ReSO(3), (4)

gives unitary operator V(R) corresponding to rotations; operator D()) de-
fined by the formula

Lo odf (3

DV &) SN2 |AD), A€ R, A>0, (5)

3
corresponds to dilatations. The factor A2 in formula (5) is necessary for
unitarity of the operator D(A), because

(AT A7) = A"HF | ),

as follows from formula (2).
It follows from formulae (4), (5) that the operators V(R), D(A) are
related to the translation operator T(ad):

V(R)|#) = T(RE - §) | &), (6)
D(\) | &) = AIT(\Z - ) | &) (7)
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These formulae reflect the fact that rotations and dilatations (as well as
any other transformation of R?) can be regarded as local, i.e. Z-dependent
translations. For this reason the translation operator 7(@) can he regarded
as more basic than operators corresponding to the other transformations.
From (6), (7) it easy to derive well-known formulae expressing generators
of infinitesimal rotations and dilatations by the position operators &' and
generators p* of infinitesimal translations.

The unitary translation operator T'(@) can be written in the exponential
form,

T(a@) = exp{~ia""}, (8)
where p*, i = 1,2, 3 are hermitean operators. We do not know yet that they
are related to the momentum. From definition (3) it follows that

-,

T(&T(8) = T(H)T(d) (9)
for any @, b € R3. Relation (9) implies that the operators p* commute,

(5, 5" = 0. (10)
Furthermore, from formula (3) it also follows that
&'T(@) = T(a) (it + d'1), (11)

and consequently that
&%, 5') = ibiil (12)

where I denotes the identity operator. Notice that we have obtained the
commutation relation (12) without any reference to the canonical formalism.
Notice also that there is not any % constant in formula (12) and that $* has
the dimension cmm ™!, To avoid possible misunderstanding, let us stress that
we do not use the units ¢ = h = 1 in this paper. Introducing the h constant
in formulae (8), (12) and the corresponding change of dimension of the p?
operators would be artificial at this point, hecause we have not shown yet
that the p* operators are related to the classical momentum.

Taking matrix elements of the both sides of relation {(12) we obtain the
following equation

(2% — e )& | p' | &) = i66(F - ). (13)
Its general solution has the form

ol - .0 L el e
(| pl |0 = —25;6(:1: - ) + cf)(a:)5(r - ), (14)
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where cé(f) are arbitrary real functions of #. However, it is easy to show that
we have to choose c}(Z) = 0, otherwise the operator T(@) computed from
formulae (8) and (14) does not satisfy the definition (3). The representation
(14) can be used to obtain generalised eigenvectors and spectrum of the
operators p*. Not surprisingly, they turn out to be plane waves and R?,
respectively.
Remaining element of quantum mechanics of the spinless particle on
R? we have yet to recover in our approach is Schrédinger equation. It is
needed in order to determine time evolution of states. General form of this
equation is a consequence of the following requirement.
(iv) There exists unitary time-evolution operator U(t,ty) which obeys the
usual composition law

U(tl’t) U(t’tﬂ) = U(tlvtﬂ) . (15)

Differentiating both sides of formula (15) with respect to ¢; and putting
t1 = t we obtain

igzU(t,to) = HU(t,ty), (16)

where the hermitean operator H (the quantum Hamiltonian) is defined as

~daf OU(ty,t)
H=1 égL.__) Ity =t - (17)
t

Equation (16) is equivalent to the Schrédinger equation. Notice however
that there is no k constant in it, and that the operator 7 has the dimension
sec™ !,

_ The last step is to choose a concrete form of the quantum Hamiltonian
H. For a free particle on R® one could use a requirement of Galilean or
Poincaré invariance [9, 10]. Then there is no need at all to consider a clas-
sical limit of our quantum model. In general case however, it is useful to
investigate the classical limit. Let us stress that we consider this classical
limit merely as a help in choosing the concrete form of the quantum Hamil-
tonian H. The basic commutation relations (1), (10) and (12) have already
been found without any reference to classical mechanics.

In the present context it is particularly convenient to work with an
equivalent reformulation of our quantum model in terms of Wigner distri-
butions on {(p,Z)} space, see e.g. [11]. This reformulation can be obtained
solely on the basis of commutation relations (1), (10), (12) and the assump-
tion that the spectrum of the ¢ operator is R*. We do not have to know
the precise form of the quantuin Hamiltonian A and there are no particular
restrictions on the wave functions. In our case there is no i constant as yet,
therefore the relevant formulae should be taken with appropriate changes.
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N

Let us recall that the Wigner distribution p(p, Z,t) corresponding to the
state | ¥) € H is given by the following formula

Lo 1 iFT e, 1a 1
(P, Z,t) = THE /dsve Pro*(Z + %v,t) (T — %v,t), (18)

where & (F) belongs to the spectrum of the operator & ( ) Operators are de-

scribed by Weyl transforms — for an operator A considered in Schrédinger
picture

5T Ag | &+ :

[ M

v) (19)

(ML

As(7, :z)‘%-f/d% P (7 _

(we assume for simplicity that Ag does not depend on time). Then

(| As | ) = /lﬂmﬂzp 7)As(7,7). (20)

Schrédinger equation (16) can be replaced by Heisenberg equation for op-
erators Ay (t) in Heisenberg picture

L Au(t) = i [, Au(t)). (21)

dt
Using a formula for the Weyl transform of a cornmutator [11], one can
show that the Weyl transform Ay (7, Z,t) of the operator Ag(t) obeys the
following equation

0Ap (P, Z,t) 1 (a(fn §(H)  §(A) 3(;1)) _ )
B PR 9 - A —”_')tH"v—‘,
T sin 57 o7 07 97 u(p, €, t)H(p,7)
(22)
where 9(H) (6(A)) means that the differential operator acts only on H (/—i)

For simplicity we have assumed that H does not depend on time. Expanding
in power series the sinus function on the r.h.s. of formula (22) gives

dAy(P, Z,t)

T = {Ay, H} + (terms with higher derivatives), (23)

where { , } denotes Poisson bracket,

df BAH aH 6AH 8H

{Am, H} = 97 0p 0p 07

(24)

Equations (22) or (23) are equivalent to Schrédinger equation (16). As yet
there has not been any classical limit involved.
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Formula (23) is a convenient starting point for discussion of the classical
limit. Classical limit of quantum models is a vast subject, and it is not the
goal of this paper to investigate it in detail. We shall be satisfied with
several simple observations.

First, because we do not have the k constant in our quantum model, it
is not possible to consider this limit as the formal A — 0 limit. We shall
consider Ehrenfest type (i.e. wave-packet type) of the classical limit, in
which one analyses equations of motion for expectation values of quantum
observables. In the Wigner formalism the expectation values are given by
formula (20), and equations of motion for them are obtained from equation
(23) by integrating the both sides of it with the p(g, Z) function which is
time-independent because we work in the Heisenberg picture. It is clear
that in general nothing simple is obtained. o

However, in the particular case when the functions %—‘;I:, %g— are approx-
imately constant for p, ¥ belonging to the support of the p(p, ) function,
the contribution from the higher derivative terms on the r.h.s. of formula
(23) is small, and in the Poisson bracket term the functions %% and % can
be taken out of the integral over p'and #. Now let us take the distribution
function p concentrated around P, X and having the form p(5 - P,Z — X).
For instance, it could correspond to an appropriate coherent state. Then

the expectation value A of the operator Ag(t) is a function of P, X,t,

/d3pd3:c p(F— P,z — X) Ay(p,,t) = A(P, X, 1),

and ) L.
Ay JA(P, X, t)
d3pd® = L
/ p T af p aXY b
Ay  BA(P,X,t)
Epdizr 2 p = i
/ P op P oP

Taking all this into account, it is easy to obtain from Eq. (23) the following
approximate equation

PALRD _ (amy, (25)

where now the Poisson bracket is taken with respect to the P, X variables.
In this way we have derived from the quantum mechanics the classi-

cal Hamiltonian dynamics. The only difference is that in formula (25) H

and P have dimensions sec™! and cm™!

H and P with classical Hamiltonian and momentum we have to change

, respectively. In order to identify
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their dlmensxons by multiplying them by the dimensionful constant k, t.e.
hH — H, hP — P. This is equivalent to the following rescaling of opera-
tors

hH — H, hp* — p*. (26)

After the rescaling, the operators p, Schrodinger equation (16) and Heisen-
berg equation (21) acquire the standard form with the A constant in the
right places. The Poisson bracket term on the r.h.s. of formula (23) is not
changed by the rescaling, while the terms with higher derivatives acquire
positive (even) powers of the Planck constant A.

Notice that H and P have to be multiplied by the same constant k if
we want to preserve the standard form of classical Hamilton equations of
motion. Also interesting is the fact that the Planck’s constant appears only
when relating the quantum model with the classical physics — our quantum
model is constructed essentially without that constant.

Now we can conclude our search for the concrete form of the H opera-
tor. We know that physically interesting models in classical mechanics of a
particle on R3 configuration space have classical Hamiltonians of the form

5 2
H, = L + V(X).
2m

On the basis of Eq. (25), which summarizes the classical limit of our quan-
tum model, it is therefore natural to choose

H = H., + OHR*).

The inverse Weyl transform then gives

52
A= 2 L vi@)+omy. (27)

2m
The O(h?) terms are allowed because of the presence of higher derivative
terms on the r.h.s. of Eq. (23). There are many quantum Hamiltonians
which have identical classical limits. When identifying the O(h?) terms,
the h present in the p* operators should not be counted. For consistency,
one should check that in the case of quantum Hamiltonian given by formula
(27) it is possible to satisfy the conditions for the classical limit. Discussion
of this point is completely standard, therefore we shall not present it here.

3. Particle on the two-point space

In the previous Section we have presented the main steps of the non-
canonical approach to constructing quantum models, and we have shown
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that in this approach one can easily recover the standard quantum mechan-
ics of spinless particle on R®. However a true advantage of the non-canonical
approach is that it can be applied without any essential changes also in less
obvious cases, when it is not clear at all what is the underlying classical
model which could be canonically quantized to yield the quantum model.
To illustrate this point we construct the quantum mechanics of a particle on
the configuration space consisting of just two points. We shall proceed by
following exactly the steps presented and motivated in the previous Section.

In this case, measurements of position of the particle can give only two
values, a or —a on a coordinate axis. The corresponding position operator
¢ can be written in the form

§=ala)a|+(-a)| -a)(-al, (28)

where | ta) are orthonormal eigenvectors of §. The Hilbert space Hy of
states is 2-dimensional

Ha 3| ) = ' | a) + ¢* | —a). (29)

In this manner we have satisfied the requirements (i)-(i1) of Section 2.
Again we have assumed that the particle has no other degrees of freedom
than the position — in particular it is spinless. Expectation values of the
position operator § in a normalized state | ¢) are

¢ L q1e)=a(l ! 12— w2 ), (30)

where | 9! |2 + | ¥? |2= 1 because of the normalization. Thus, ¢ can take
any value in the interval [—a, a]. For this reason we expect after all that
there exists a related classical model — classical variables correspond to
expectation values and these have continuous values. We shall derive this
classical model below.

It is clear that our quantum model has the following two-dimensional
matrix realisation:

im0 e (3) 1m0 = (V) iw= () o

where o3 is the Pauli matrix.

In the Hilbert space H; one can introduce unitary operators correspond-
ing to translations. It is natural to require that these operators act on the
basis states in the following manner

T(+2a) | Fa) =| *a). (32)
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In order to have a complete definition we also have to specify how T(+2a)
act on the states | £a). We shall be guided by the following intuition. For
the considered particle, in its world consisting of just two points there is no
intrinsic notion of direction. The fact that we imagine the two points +a
as located on the oriented axis is irrelevant. Whichever point the particle
is located at, the other point is “ahead”, that is the hoth movements, from
—a to +a and from +a to —a, are movements forward. Any asymmetry
between the two points should be interpreted as the effect of an external
potential rather than intrinsic property of the space itself. Therefore it is
natural to assume that operators of translations by 2a and —2a coincide,

T(2a) = T(-2a). (33)
Then, the complete definition of the operator T'(2a) is
T(2a)| Fa) =| +a). (34)

This operator is linear by definition, and it is unitary. In the matrix repre-
sentation
T(2a) « oy . (35)

For any state | ) € H, we can consider the transformation

| ) = ¥') = T(2a) | ¥). (36)

Under this transformation the components ¢!, ¢? of | ¢) are interchanged,
and therefore the expectation value of the position operator § changes its
sign
v, no_ - _
¢ =W 1gld)=-(@dl¥)=-q. (37)
The operator T(2a) can be written in exponential fortn. This form of
T(2a) defines a quasi-momentum p of the particle:

T(2a) = exp(—i2ap). (38)

From definitions (34), (38) it follows that we can take in the matrix repre-
sentation x

p= 5(00—01), (39)

where ¢ is the 2 by 2 unit matrix. The operator § has the following
eigenvalues and eigenvectors

=g lp= (L )im=o =2 (1) @)
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Expectation values p of the p operator take continuous values in the interval
[7/2a,0].

Amusingly, the p operator can be related to a discrete version of deriva-
tive. For a function f(z),z = ta ,on the two-point space one can define
two “derivatives”

4 f(z +2a) - f(z)
2a

4 f(z) ~ f(z ~ 20)
2a )

(0+ f)(2) » (8- f)(=) (41)

It is understood that in these formulae

fla+ 2a) = f(—a), f(—a-2a)= f(a).

It is easy to check that 04 f = —0_ f, and that in the matrix representation
01 = 5-(01 = 00)
— — —_ .
+ 2a 717 70
Comparing this formula with formula (39) we find that
Y
p= —J_ .
P=3

Definition (34) could be modified by multiplying the vectors | +a) on
the r.h.s. of that formula by phase factors. However by an appropriate
change of phase of one of the states | a) one can achieve that

T(2a) | £a) = ¢ | Fa),

and this is merely a redefinition of the T'(2a) operator by the phase factor
e'®. If we still define the quasi-momentum operator p by formula (38), then
p and its spectrum are shifted by the constant ¢/2a.

Because the Hilbert space H; is two-dimensional, the most general
Hamiltonian H for our particle has only four real parameters and it can
be written in the following form

H = hgog + hé. (42)

The parameters hg, h are fixed externally. They can depend on time. The
Hamiltonian (42) can be expressed by the §, p operators,
N da y. 2t ,.. . R,
H = (ho + h')og — —h'p+ =R*(§,p] + —q. (43)
T s a
There are three independent, nontrivial observables altogether: a;, ¢ =

d
1,2, 3, or equivalently ¢, p and ¢ 4 i[¢, p]. We shall denote expectation values
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of them by ¢, p, and ¢, correspondingly. These three expectation values
determine completely the density matrix | ¥)(% |,

1 2ap

| )Y |= %U()*‘ (5-?) a] +';0'2+%03, (44)

and therefore also expectation value of any observable. Using formula (44)
on the both sides of the identity

(o) D)? =l ¥},

we obtain the following constraint
4ap 2 42 q°
1———7r + =+ =5 =1, (45)

i.e. ¢, p, and ¢ lie on an ellipsoide. )
Heisenberg equations of motion for an ohservahle Ag(t),

dAz(t) =i[H,Ag(t)] + (a—gti)f{’ (46)

in the case of observables §, p and ¢ can be written in the form

dQ¥(t)

— = 2e;, R Q4 (1), (47)
where
" o1 p(t) 0'9 - 4?‘1131-1
Qult) = (UzH(t)) =1 ZGpe |- (48)
o3m(t) a-l(jH

Equations (47) are formally identical with equations for precession of a spin

% in an external magnetic field B = 2h. For constant in time A their solu-

tions are easy to obtain. For time-dependent k situation is more complicated
- in particular, Berry’s phase factor may appear. Of course, this relation-
ship with spin % is purely mathematical one. Any model dealing with 2
by 2 matrices can be expressed in terms of the spin % Physical meaning
of our model has nothing to do with spin, because we do not consider any
rotations.

Finally, let us turn to the problem of classical limit of our quantum
model. A classical model is a good approximation to the quantum model if
expectation values of all quantumn observables can be expressed by the clas-
sical dynamical variables with good accuracy. In the quantum mechanics of
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a spinless particle on R3 this is the case when we consider wave packets with
stnall dispersions of the 2* and p* observables. Then, with good accuracy,

(F(&5,5%) = F((&Y), (3%))

for a wide class of observables f(2*, 5*). In the case of our quantum model

on the two-point space a generic time-independent observable A in the
Schrodinger picture has the form

A = agoq + @7,
where ag, @ = (a') are real constants. The expectation value A(t) = (¢ |
Ag(t) | ) of the Heisenberg picture counterpart A (t) of the observable
A can be written in the form

At) = a0 + (1), (49)

where ag, @ are constant in time, and Q(t) is expectation value of Q g (t).
The constraint (45) means that Q% = 1. Taking expectation value of Heisen-
berg equation of motion (46) we find that A obeys the following equation

dA _
b 2(ad x h)@ . (50)
This equation can be written in the form of Hamilton equation of motion
dA
— ={AH 5
Y= (A, H), (51)
where we have introduced a classical Dirac bracket
0A OH
A HY = 26,4 Q° — ——, 52
and L
H = hy + RhQ (53)

is the expectation value of the Hamiltonian H. It is easy to check that the
Dirac bracket defined by formula (52) has all necessary properties. It is
bilinear, antisymmetric, it satisfies Lie identity and Leibniz rule

{4, BC} = B{A,C} + {4, B}C.

We call it the Dirac bracket because it is compatible with the constraint
& = Q2 — 1 = 0, in the sense that for any function A(Q)

(8,4} = 0.
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The Q* variables should be regarded as canonical variables for our clas-
sical system. The Q vector has values in the classical phase space which is
the sphere Qz =1.

Because any nontrivial observable is a linear combination of oy and
4, P, ¢ operators, and because their expectation values ¢, p, ¢ determine the
density matrix (44), the classical equation of motion (50) is exactly equiva-
lent to the quantum one given by formula (47). This is in contradistinction
with the case of particle on R®, where the relation between classical and
quantum equations of motion was approximate, and restricted to particu-
lar quantum states namely, to wave packets. Of course, that mathematical
equivalence of equations of motion does not imply that the classical and
quantum models are physically equivalent, e.g. spectra of observables are
different.

The classical model in its canonical formulation defined by equations
(51), (52) has been derived straight away from the quantum theory. The
classical phase space does not show in any apparent way that the physical
configuration space consists of just two points. One could hardly guess in
advance that this is the relevant classical model.

This classical model can be canonically quantized by passing to oper-
ators and replacing the Dirac bracket by —¢ times commutator. Then one
can have infinitely many inequivalent matrix models, characterised by the
dimension of the matrices. This follows from the fact that the classical
Dirac bracket algebra of the Q* observables mathematically coincides with
algebra of angular momentum, so all spin representations are possible. We
see that also in this example canonical quantization does not give unique
result.

4. Remarks

The two examples considered ahove show effectiveness of the non-
-canonical quantization. We hope that this approach will turn out very
useful also in other cases. For example, one could consider a quantum par-
ticle on a cone (which is not a smooth manifold), or on a lattice bigger than
the two-point one. We also hope that this approach can be generalised to
field theory. There, interesting prohlems are provided by models with fields
taking values in target spaces which are not smooth manifolds.

It would also be interesting to apply the non-canonical approach to
models which in the canonical approach are plagued by constraints. Im-
portant type of such models is the class of models with local gauge in-
variance.Perhaps one could avoid tedious identification and classification
of constraints, as well as computation of Dirac brackets. Taking classical
limit of the quantum model constructed with the help of the non-canonical
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approach we could derive classical Dirac brackets from quantum theory.
Example of such derivation we have seen in Section 3.

In the examples considered in Sections 2 and 3 we have investigated
the classical limit of the quantum models. In the case of particle on R3 we
have recovered the standard classical canonical formalism from the quantum
mechanics. We expect that this example can be generalised to cases in
which -configuration space is a more general smooth manifold. It would
be interesting to recover classical canonical formalism from the quantum
mechanics also in such more general case.

In the case of particle on the two-point space, the classical model has
different phase space than the quantum one. This is due to the fact that
classical observables are identified with expectation values, while measured
values of quantum observables (e.g. the position or the quasi-momentum)
are restricted to the discrete set of their eigenvalues. This renders the
canonical quantization practically useless, because in order to apply it we
have to know the classical model in advance, and in the case at hand it is
not easy to guess the correct one. This difficulty will appear also in other
models with discrete physical configuration space. We think that in such
cases the non-canonical approach will turn out to be much more effective.
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