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We study the newly reported hidden-charm pentaquark candidates Pc(4312), Pc(4440) and Pc(4457)

from the LHCb Collaboration, in the framework of the effective-range expansion and resonance 
compositeness relations. The scattering lengths and effective ranges from the S-wave �c D̄ and �c D̄∗
scattering are calculated by using the experimental results of the masses and widths of the Pc(4312), 
Pc(4440) and Pc(4457). Then we calculate the couplings between the J/ψ p, �c D̄ channels and the 
pentaquark candidate Pc(4312), with which we further estimate the probabilities of finding the J/ψ p
and �c D̄ components inside Pc(4312). The partial decay widths and compositeness coefficients are 
calculated for the Pc(4440) and Pc(4457) states by including the J/ψ p and �c D̄∗ channels. Similar 
studies are also carried out for the three Pc states by including the �c D̄∗ and �c D̄(∗) channels.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The first discovery of the hidden-charm pentaquark states 
Pc(4380) and Pc(4450) [1] has triggered a plethora of in-depth 
theoretical studies [2]. Very recently, the LHCb Collaboration has 
reported updated results on the pentaquark states based on the 
combinations of the Run 1 + Run 2 data [3]. The first notable 
finding from the updated measurements is that a new hidden-
charm pentaquark state Pc(4312) is observed with the mass 
4311.9 ± 0.7+6.8

−0.6 MeV and the width 9.8 ± 2.7+3.7
−4.5 MeV. The sec-

ond notable and intriguing observation is that the previous single 
state Pc(4450) is superseded by two nearby states Pc(4440) and 
Pc(4457), with their masses 4440.3 ± 1.3+4.1

−4.7 MeV and 4457.3 ±
0.6+4.1

−1.7 MeV, respectively, and their widths 20.6 ± 4.9+8.7
−10.1 MeV 

and 6.4 ± 2.0+5.7
−1.9 MeV, respectively. The previous peak around 

the Pc(4380) state now becomes less clear and its existence 
needs to be confirmed further by the experimental analysis. The 
new measurements have already attracted attention from many 
groups [4–13].

All of the three new states are observed in the J/ψ p invari-
ant mass distributions from the �b → J/ψ p K − decay. One of 
the common features of the newly measured pentaquark states is 
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that they all have small widths. Another important common fea-
ture is that they lie quite close to the thresholds of two underlying 
hadrons. In the following discussions we take a conservative way 
to estimate the experimental values of the masses and widths for 
the Pc(4312), Pc(4440) and Pc(4457) [3]. To be more specific, we 
take the larger values in magnitude of the upper or lower lim-
its for the systematic uncertainties, and add them quadratically to 
the statistical ones as the total uncertainties. The resulting masses 
and widths are summarized in the second and third columns of 
Table 1. The differences between the mass of the Pc(4312) and 
the �+

c D̄0 and �++
c D− thresholds are 5.8 ± 6.8 MeV and 11.7 ±

6.8 MeV, respectively. The mass of Pc(4440) lie 19.5 ± 4.9 MeV 
and 23.9 ± 4.9 MeV below the �+

c D̄∗0 and �++
c D∗− thresholds, 

respectively. For the Pc(4457), the differences between its mass 
and the �+

c D̄∗0 and �++
c D∗− thresholds are 2.5 ± 4.1 MeV and 

6.9 ± 4.1 MeV, respectively. Taking into account the uncertain-
ties of the experimental measurements of the Pc(4312), we notice 
that its mass can be either below or above the �+

c D̄0 threshold, 
but it is always below the �++

c D− threshold. For the mass of the 
Pc(4457) a similar situation occurs, so that, within the present ex-
perimental uncertainties [3], its mass can be also either below or 
above the �+

c D̄∗0 threshold, but it is always below the �++
c D∗−

threshold. As a result one would expect that the isospin break-
ing effects could be visible [6]. In order to quantify the possible 
isospin breaking effects, we shall distinguish the elastic scattering 
with different thresholds involving �+

c or �++
c in a later study.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
The values of the scattering lengths and effective ranges of the S-wave amplitudes for different 
channels. The uncertainties for a and r are determined by adding in quadrature the resulting ones 
from the systematic and statistical errors of the masses and widths of the Pc states. The errors 
of the different thresholds are negligible in comparison with the uncertainties of the masses and 
widths of the Pc states.

Resonance Mass Width Threshold a r
(MeV) (MeV) (MeV) (fm) (fm)

Pc(4312) 4311.9 ± 6.8 9.8 ± 5.2 �+
c D̄0 (4317.7) −2.9 ± 0.8 −1.7 ± 0.7

�++
c D− (4323.6) −2.4 ± 0.6 −1.2 ± 0.3

Pc(4440) 4440.3 ± 4.9 20.6 ± 11.2 �+
c D̄∗0 (4459.8) −1.7 ± 0.2 −0.9 ± 0.1

�++
c D∗− (4464.2) −1.6 ± 0.2 −0.8 ± 0.1

Pc(4457) 4457.3 ± 4.1 6.4 ± 6.0 �+
c D̄∗0 (4459.8) −3.8 ± 1.6 −2.3 ± 1.3

�++
c D∗− (4464.2) −3.0 ± 0.7 −1.6 ± 0.4
In this work, our key aim is to quantify the possibilities of the 
Pc(4312) as the S-wave �c D̄ , and the Pc(4440) and Pc(4457)

as the S-wave �c D̄∗ molecular states. The effective range ex-
pansion (ERE) approach offers a reliable tool to analyze the dy-
namics around the threshold energy region. The combinations 
of the analyticity, unitarity and ERE have been demonstrated to 
be successful in analyzing the heavy-flavor exotic hadrons near 
thresholds [14–17]. Another powerful tool that can help to re-
veal the inner structures of the hadrons is the Weinberg’s com-
positeness relation [18], which is extended to the resonance case 
in Refs. [19–21]. Other forms of generalization for other compos-
iteness relation to address the resonances can be also found in 
Refs. [22–26]. In the current work we combine analyticity, unitar-
ity, the ERE and the resonance compositeness relation to study the 
three newly measured pentaquark states.

2. Effective-range-expansion study of the pentaquark states

The ERE approach relies on the power series expansion of the 
K -matrix V (k) at around threshold

V (k) = −1

a
+ 1

2
r k2 + O (k2) , (1)

where a is the scattering length, r denotes the effective range and 
k stands for the magnitude of three-momentum in the center of 
mass (CM) frame. For a two-particle system with masses m1 and 
m2, in the non-relativistic limit the three-momentum k is related 
to the CM energy E through

k = √
2μ(E − mth) , (2)

with the threshold mth = m1 + m2 and the reduced mass μ =
m1m2

m1+m2
.

For the �c D̄ scattering near the Pc(4312) and the �c D̄∗ scat-
tering near the Pc(4440) and Pc(4457) energy regions, the magni-
tudes of the three-momenta of the two-particle systems can range 
from 0 to 250 MeV, after taking into account the experimental 
uncertainties of the masses of the Pc states [3]. For the scat-
tering of two heavy-flavor hadrons, it is plausible that the pion 
exchanges can be treated perturbatively [27–31]. For the heavier 
vector-resonance exchanges, their contributions can be effectively 
included via contact interactions, since their masses are clearly 
larger than the scale of the relevant three-momenta. Therefore we 
take the point of view from the pionless effective field theory, 
which only needs to include the local contact interactions [32].

Under these circumstances only the unitarity/right-hand cut en-
ters and there is no crossed-channel dynamics. The elastic S-wave 
scattering amplitude around threshold that results from Eq. (1)
(without the crossed-channel cuts) can be written as
T (E) = 1

− 1
a + 1

2 r k2 − i k
, (3)

which satisfies the unitarity condition

Im T (E)−1 = −k , (E > mth) . (4)

The formula T (E) in Eq. (3) generally works well in the energy 
region near threshold even when resonances appear, except in the 
special situation that an underlying Castillejo-Dalitz-Dyson (CDD) 
pole sits on top of the threshold. In the latter case, one has to ex-
plicitly include the CDD pole in Eq. (3) and we refer to Ref. [17] for 
further details. It is difficult to know whether there is a CDD pole 
near threshold a priori. Nevertheless in Refs. [15,17] it is proved 
that when a CDD pole approaches to the threshold one has the 
following behaviors for the scattering length and effective range

a → −mth − MCDD

gCDD
, r → − gCDD

μ(mth − MCDD)2
, (5)

with MCDD the bare CDD pole mass and gCDD the residue. Accord-
ing to Eq. (5), one can infer that there exists a CDD pole near the 
threshold only for the situations with |a| � 1 fm and |r| � 1 fm. In 
this situation, one should use the formalism developed in Ref. [17]
to proceed, instead of Eq. (3).

In the present work we first blindly use the ERE formalism 
in Eq. (3). If the resulting a and r have natural values of the 
long-range hadronic scale at 1/mπ ∼ 1 fm, one could then safely 
conclude that the formalism in Eq. (3) is applicable in our study 
(with no indication of a near-threshold CDD pole). We demon-
strate below that the resulting values of a and r from the S-wave 
�c D̄ scattering around Pc(4312) and the S-wave �c D̄∗ scattering 
around the Pc(4440) and Pc(4457), indeed have typical long-range 
hadronic scale around 1 fm. Another issue that needs to be clar-
ified is that we implicitly assume a definite isospin number for 
the Pc states (although we do not need to specify it), otherwise 
we had to use a coupled-channel scattering formalism in the ERE 
study. Regarding the quantum numbers of J P , the negative P par-
ity can be uniquely fixed in the S-wave �c D̄(∗) scattering. Sim-
ilarly, the total angular momentum is J = 1/2 for �c D̄ S-wave 
scattering, while for the analogous �c D̄∗ case there are two possi-
bilities, J = 1/2 or 3/2, which can not be pinned down from our 
study.

For a resonance pole, its position E R is denoted as

E R = MR − i�R/2 , (6)

where MR is the resonance mass and �R denotes its width. The 
resonance poles lie on the second Riemann sheet (RS) of the scat-
tering amplitude T I I (E), which is given by

T I I (E) = 1

− 1 + 1 r k2 + i k
. (7)
a 2



146 Z.-H. Guo, J.A. Oller / Physics Letters B 793 (2019) 144–149
We mention that the convention Imk > 0 should be taken in 
Eqs. (3) and (7). Given the mass and width of the resonance, we 
can determine the scattering length a and effective range r by re-
quiring that T I I (E R)−1 = 0, i.e.

−1

a
+ 1

2
r k2

R + i kR = 0 , (8)

where kR is the corresponding three-momentum at the pole posi-
tion

kR = √
μ(E R − mth) . (9)

By solving Eq. (8), it is straightforward to determine the values 
of a and r once the masses and widths of the resonances are given, 
with the result [15]

a = − 2ki

|kR |2 , (10)

r = − 1

ki
,

where kr = Re kR and ki = Im kR . As mentioned above in the Intro-
duction, we distinguish the different charged states �+

c and �++
c , 

in order to quantify the isospin breaking effects. The thresholds 
of the different charged states are explicitly given in the fourth 
column of Table 1. The results for the scattering lengths a and ef-
fective ranges r with uncertainties are collected in the fifth and 
sixth columns of Table 1, respectively.

According to the values obtained for a and r in Table 1, al-
though we see some discrepancies in the central values for the 
channels with different charged states, they are compatible after 
taking into account the uncertainties. It implies that the isospin 
breaking effects in the three Pc states seem mild and further ex-
perimental reduction of the uncertainties could help to identify the 
roles of the isospin breaking.

All of the resulting scattering lengths a and effective ranges r
in Table 1 have natural values of the order of 1 fm, indicating that 
indeed there is no need for introducing CDD poles near the thresh-
olds. Let us notice that this outcome is consistent with the applica-
tion of Eq. (3) in our study. Furthermore, the natural values of the 
a and r allow us to qualitatively conclude that the Pc(4312) can 
be described as an S-wave �c D̄ molecular state, and the Pc(4440)

and Pc(4457) are S-wave �c D̄∗ composite states. Nevertheless, in 
the ERE approach we can not use the prescription in Ref. [19] to 
give a quantitative estimate of the probabilities of the �c D̄ compo-
nent in the Pc(4312) and of the �c D̄∗ component in the Pc(4440)

and Pc(4457) resonances. In Ref. [19] it has been demonstrated 
that one can only give the probabilistic interpretation of the com-
positeness coefficients when the resonance pole sR = E2

R lies in an 
unphysical RS that is directly connected to the physical one in the 
region sk < s < sk+1, such that sk < ResR < sk+1, with sk and sk+1
the two nearby thresholds. In the single-channel scattering case, it 
requires that the resonance pole mass should lie above the thresh-
old in the second RS. However in most of cases the pole positions 
of the Pc states in Table 1 are below the thresholds. This fact 
refrains us from discussing the probabilities of finding the two-
particle components in the Pc states in the ERE approach.

In the present formalism we are assuming that the whole width 
of a resonance is due to the corresponding �c D̄(∗) channel, and 
the resulting a and r are real. On general grounds, because of the 
presence of the inelastic channels below threshold, like the J/ψ p
one to which these resonances decay, the ERE parameters a and 
r are complex. One possible way to proceed is to include explic-
itly the inelastic channels below the �c D̄(∗) channel, such as the 
aforementioned J/ψ p. However, in the coupled-channel scattering 
case, there would be needed extra scattering input which is be-
yond the scope of the present study. In order to give quantitative 
information of the inner structures of the Pc states, and take into 
account at least one inelastic channel, we proceed the study by re-
lating the compositeness coefficients with the partial decay widths 
in next section.

3. Compositeness relations and the partial widths

As mentioned previously, we can not access the quantitative in-
formation of the constituents inside the Pc(4312) in the elastic 
scattering �c D̄ and the Pc(4440) and Pc(4457) from the elastic 
�c D̄∗ scattering. A straightforward extension is to include the ad-
ditional J/ψ p channel, in which invariant-mass distribution the 
different Pc resonances are actually detected [3]. For the two-
channel J/ψ p and �c D̄(∗) systems, it is natural to assume that 
the Pc resonances lie in the second RS, which now allows us to 
exploit the formalism in Ref. [19] to calculate the probabilities of 
the two-particle components in the Pc . Analogous study has been 
carried out for the obsolete Pc(4450) state by including the J/ψ p
and χc1 p channels in Ref. [21].

The essential prescription of Ref. [19] to calculate the partial 
compositeness coefficient X j of a resonance R contributed by the 
jth channel is given by

X j = |g j|2
∣∣∣∣∂G j(sR)

∂s

∣∣∣∣ , (11)

where g j denotes the coupling between the two-particle state and 
the resonance R , and the one-loop two-point function G(s) is given 
by

G(s) = i

∫
d4q

(2π)4

1

(q2 − m2
1 + iε)[(P − q)2 − m2

2 + iε] ,

s ≡ P 2 . (12)

This expression can be explicitly integrated out by using a once-
subtracted dispersion relation or dimensional regularization (re-
placing the divergence by a constant), which then reads [33]

G(s) = 1

16π2

{
a(μg) + ln

m2
1

μ2
g

+ s − m2
1 + m2

2

2s
ln

m2
2

m2
1

+ σ

2s

[
ln(s − m2

2 + m2
1 + σ) − ln(−s + m2

2 − m2
1 + σ)

+ ln(s + m2
2 − m2

1 + σ) − ln(−s − m2
2 + m2

1 + σ)
]}

, (13)

where

σ(s) =
√

[s − (m1 + m2)2][s − (m1 − m2)2] . (14)

The evaluation of G j(s) for the jth channel in Eq. (11) requires 
to use the proper masses m1 and m2 in that channel. In this 
equation ∂G j(sR)/∂s denotes the partial derivative evaluated at 
the resonance pole position sR = E2

R = (MR − i�R/2)2. Notice that 
∂G j(sR)/∂s is independent on the subtraction constant a(μg) and 
the regularization scale μg in Eq. (13).

In order to fix the two couplings gi=1,2, we impose that the 
decay widths �R of the Pc states are saturated by the two channels 
J/ψ p and �c D̄(∗) . The partial decay width �1 to J/ψ p takes the 
standard form [34]

�1 = |g1|2 q(M2
R)

8π M2
, (15)
R
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Table 2
Results obtained with X = X1 + X2 = 1. The J/ψ p and �c D̄(∗) channels, which are labeled as 1
and 2 respectively, are included.

Resonance |g1| |g2| �1 �2 X1 X2

(GeV) (GeV) (MeV) (MeV)

Pc(4312)

m�+
c

+ mD̄0 2.1+0.8
−2.1 10.9+2.1

−2.9 6.5+4.9
−6.5 3.3+10.5

−3.3 0.006+0.005
−0.006 0.994+0.006

−0.005

m�++
c

+ mD− 2.5+0.6
−0.9 12.6+1.6

−2.6 8.5+4.7
−4.6 1.3+6.1

−1.3 0.008+0.005
−0.005 0.992+0.005

−0.005

Pc(4440)

m�+
c

+ mD̄∗0 3.2+0.6
−0.9 14.9+1.2

−1.4 16.3+6.7
−7.4 4.3+9.2

−4.3 0.010+0.005
−0.004 0.990+0.004

−0.005

m�++
c

+ mD∗− 3.3+0.6
−0.9 15.6+1.0

−1.1 17.7+6.9
−8.2 2.9+8.3

−2.9 0.011+0.005
−0.005 0.989+0.005

−0.005

Pc(4457)

m�+
c

+ mD̄∗0 1.5+0.7
−1.0 9.5+2.2

−5.1 3.5+4.2
−3.5 2.9+9.5

−2.9 0.002+0.003
−0.002 0.998+0.002

−0.003

m�++
c

+ mD∗− 1.8+0.6
−0.9 11.2+1.6

−2.5 5.4+4.2
−4.0 1.0+6.1

−1.0 0.003+0.003
−0.002 0.997+0.002

−0.003
where the relativistic three-momentum q(M2
R ) is

q(M2
R) =

√
[M2

R − (m1 + m2)2][M2
R − (m1 − m2)2]

2MR
. (16)

Since in many cases the masses of the Pc resonances are below the 
thresholds of �c D̄(∗) , we introduce a Lorentzian mass distribution 
to calculate the partial width �2 to the �c D̄(∗) channel as

�2 = |g2|2
MR+2�R∫

mth

dw
q(w2)

16π2 w2

�R

(MR − w)2 + �2
R/4

. (17)

To restrict the discussion to the resonance energy region, we set 
the upper integration limit at MR + 2�R in Eq. (17), as in Ref. [21]. 
After taking into account Eqs. (15) and (17), the saturation con-
dition of the Pc decay widths by the J/ψ p and �c D̄(∗) channels 
gives

|g1|2 q1(M2
R)

8π M2
R

+ |g2|2
MR+2�R∫

mth

dw
q2(w2)

16π2 w2

�R

(MR − w)2 + �2
R/4

= �R , (18)

with q1 and q2 the three-momenta of the J/ψ p and �c D̄(∗) chan-
nels, respectively.

For the resonance poles in the second RS in the coupled-
channel J/ψ p and �c D̄(∗) scattering, one can identify the com-
positeness coefficient X j in Eq. (11) as the probability to find the 
two-particle state from the jth channel in the considered reso-
nance. We mention that within the uncertainties of the masses of 
the Pc(4312) and Pc(4457), a tiny portion of their poles lies in 
the third RS (in which the three-momenta of the two channels flip 
sign) so that they are continuously connected with the physical RS 
above the �c D̄(∗) threshold. Nevertheless, due to their closeness to 
the thresholds, their effects can be covered by the large uncertain-
ties of the Pc masses. Therefore we shall only focus on the poles 
on the second RS in the following.

As a clarification remark, let us notice that in Eq. (11) the cou-
pling is taken constant in the range of masses of the resonance 
along its Lorentzian mass distribution because of the finite width 
of the resonance, cf. Eq. (17). In this way, there is a smooth transi-
tion in the calculation of X2 as the value of the nominal resonance 
pole mass MR varies from above to below the threshold. This al-
lows us some flexibility in order to bypass the strict requirement 
that the resonance mass should lie above the thresholds of the 
channels for which X j is calculated. However, in the elastic ERE 
approach discussed in Sec. 2, the whole width is accounted for 
only by the channel explicitly taken into account (the second one 
in the present coupled-channel study), and the situation is more 
stringent in this respect [15].

The total compositeness X is the sum of X1 and X2, with X1

the partial compositeness coefficient of the J/ψ p and X2 the co-
efficient of �c D̄(∗) . By using Eq. (11), we can obtain

|g1|2
∣∣∣∣∣
∂G I I

1 (sR)

∂s

∣∣∣∣∣ + |g2|2
∣∣∣∣∂G2(sR)

∂s

∣∣∣∣ = X , (19)

where G I I
1 (s) stands for the G(s) function on the second RS and 

it is related to the expression in Eq. (13) through G I I (s) = G(s) +
iσ(s)/(8π s).

For a given value of the total compositeness X contributed by 
the J/ψ p and �c D̄(∗) channels, we can determine the couplings 
|g1| and |g2| by combining Eqs. (18) and (19). In this way, we can 
further calculate the partial compositeness coefficients X1,2 using 
Eq. (11) and the partial decay widths �1,2 via Eqs. (15) and (17). 
In principle the partial widths �2 consist of combinations of the 
�+

c D̄(∗)0 and �++
c D(∗)− channels, depending on the isospin of the 

pentaquark states Pc . Nevertheless, we point out that the method 
employed is not sensitive to whether we assume a definite isospin 
for the Pc states or not, as long as the same masses of the �c D̄(∗)

are taken in Eqs. (17) and (18). The reason is because the cou-
plings squared of the different charged states simply add together 
in these equations. In order to check the isospin breaking effects, 
we separately solve Eqs. (18) and (19) by using either the masses 
of �+

c D̄0(D̄∗0) or �++
c D−(D∗−).

Concerning the value of X in Eq. (19), we distinguish three 
different scenarios. In the first scenario, we assume that the com-
positeness of the Pc states is completely saturated by the J/ψ p
and �c D̄(∗)channels, that is, we first assume that X = 1. For each 
Pc state, we separately perform the calculations by using either 
the masses of �+

c D̄0(D̄∗0) or �++
c D−(D∗−). The resulting values 

of the couplings |g1| and |g2|, the partial widths �1 and �2, and 
the partial compositeness coefficients X1 and X2 are summarized 
in Table 2. The first lesson we learn from Table 2 is that the Pc

couplings |g1| to the J/ψ p channel are much smaller than the 
couplings |g2| to the �c D̄(∗) channel. The situation for the partial 
decay widths becomes less clear, since many of them have large 
uncertainties. In all the cases, the overwhelmingly dominant com-
ponents of the Pc states are found to be the �c D̄(∗) , in agreement 
with our qualitative understanding in Sec. 2 from the values of a
and r given in Table 1.

In the next two scenarios, we set the compositeness X = 0.8
and 0.5 in Eq. (19). In order not to overload the table, we only 
show the values obtained by using the masses of �+

c and D̄(∗)0

in Table 3. The results by using the masses of �++
c and D(∗)− are 

quantitatively similar. All the values in Table 3 show quite similar 
trends as those in Table 2, with X2 � X1.
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Table 3
Results obtained for X = 0.8 and X = 0.5 by including the J/ψ p (labeled as 1) and �c D̄(∗)

(labeled as 2) channels. The values in the table are calculated by using the masses �+
c and 

D̄(∗)0.

Resonance |g1| |g2| �1 �2 X1 X2

(GeV) (GeV) (MeV) (MeV)

Pc(4312)

X = 0.8 2.3+0.7
−1.8 9.8+1.8

−2.5 7.1+5.0
−6.8 2.7+7.3

−2.7 0.007+0.005
−0.007 0.793+0.007

−0.005
X = 0.5 2.4+0.7

−1.2 7.7+1.5
−2.0 8.1+5.1

−6.2 1.7+5.1
−1.7 0.008+0.005

−0.006 0.492+0.006
−0.005

Pc(4440)

X = 0.8 3.2+0.7
−0.9 13.3+1.0

−1.3 17.2+7.6
−8.2 3.4+7.4

−3.4 0.011+0.005
−0.005 0.789+0.005

−0.005
X = 0.5 3.4+0.7

−1.0 10.5+0.7
−1.0 18.5+9.0

−9.3 2.1+4.5
−2.1 0.012+0.006

−0.006 0.488+0.006
−0.006

Pc(4457)

X = 0.8 1.6+0.7
−1.5 8.5+2.0

−4.5 4.1+4.6
−4.1 2.3+7.9

−2.3 0.002+0.003
−0.002 0.798+0.003

−0.003
X = 0.5 1.7+0.8

−1.6 6.7+1.5
−3.3 5.0+5.1

−5.0 1.4+5.0
−1.4 0.003+0.003

−0.003 0.497+0.003
−0.003

Table 4
Results obtained when including the �+

c D̄∗0 (labeled as 1) and �+
c D̄∗0 (labeled as 2) chan-

nels for X = 1.0, 0.8 and 0.5.

Resonance |g1| |g2| �1 �2 X1 X2

(GeV) (GeV) (MeV) (MeV)

Pc(4312)

X = 1.0 4.0+2.0
−3.8 10.5+1.3

−2.5 6.8+5.4
−6.8 3.0+10.6

−3.0 0.09+0.16
−0.09 0.91+0.09

−0.16
X = 0.8 4.2+2.0

−3.4 9.2+1.2
−2.0 7.5+5.5

−7.2 2.3+8.1
−2.3 0.10+0.16

−0.10 0.70+0.10
−0.16

X = 0.5 4.5+2.0
−2.5 6.8+0.9

−1.2 8.5+5.7
−6.5 1.3+4.3

−1.3 0.11+0.17
−0.09 0.39+0.09

−0.17

Pc(4440)

X = 1.0 3.8+0.7
−1.0 14.8+1.0

−1.3 16.4+6.8
−7.5 4.2+9.1

−4.2 0.03+0.01
−0.02 0.97+0.02

−0.01
X = 0.8 3.9+0.8

−1.1 13.1+0.9
−1.1 17.3+7.7

−8.3 3.3+7.2
−3.3 0.03+0.01

−0.02 0.77+0.02
−0.01

X = 0.5 4.0+1.0
−1.2 10.2+0.6

−0.8 18.6+9.2
−9.4 2.0+4.3

−2.0 0.03+0.02
−0.01 0.47+0.01

−0.02

Pc(4457)

X = 1.0 1.7+0.9
−1.6 9.4+2.3

−5.0 3.5+3.7
−3.5 2.9+9.5

−2.9 0.005+0.007
−0.005 0.995+0.005

−0.007
X = 0.8 1.9+0.8

−1.9 8.4+2.0
−4.4 4.1+4.6

−4.1 2.3+7.9
−2.3 0.006+0.008

−0.006 0.794+0.006
−0.008

X = 0.5 2.0+0.9
−2.0 6.6+1.6

−3.2 5.0+5.1
−5.0 1.4+4.9

−1.4 0.008+0.008
−0.008 0.492+0.008

−0.008
The previous discussions rely on the assumption that the de-
cay widths of the Pc states are saturated by the J/ψ p and �c D̄(∗)

channels. Other decay patterns are also predicted, such as those 
in Refs. [35,36], which suggest that the partial decay widths of the 
pentaquark states to the �c D̄(∗) channels could be more important 
than to the J/ψ p. In order to check the robustness of our conclu-
sion, we include the �c D̄(∗) and �c D̄(∗) channels to perform a 
similar study. To be specific, we give the results in Table 4 by us-
ing the masses of �+

c D̄∗0 and �+
c D̄∗0. It is verified that to use the 

masses of other charged states leads to quantitatively similar re-
sults. Since to replace the �c D̄∗ channel by the �c D̄ does not lead 
to qualitatively new trends, we do not explicitly show the corre-
sponding results. Comparing the numbers in Tables 2, 3 and those 
in Table 4, not only the partial decay widths of the two different 
sets of dynamical channels are quite similar, but also the com-
positeness coefficients in the different cases are compatible within 
uncertainties.

Summarizing, we have studied the newly discovered hidden-
charm exotic states Pc(4312), Pc(4440) and Pc(4457) by the LHCb 
Collaboration [3]. We have first applied elastic effective-range ex-
pansion in the �c D̄(∗) channel with the scattering length and the 
effective range fixed by reproducing the mass and width of ev-
ery resonance separately. In all the cases one obtains values for 
these parameters of O(1) fm, which supports their interpretation 
as composite resonances of �c D̄(∗) . We have also employed an-
other coupled-channel approach involving the two channels J/ψ p
and �c D̄(∗) for each resonance, so that we require the saturation of 
the total width of the resonance. By assuming some values for the 
total compositeness coefficients for these two channels, ranging 
from 0.5 to 1, we conclude that the weight of the �c D̄(∗) chan-
nel is much larger than the one for J/ψ p, in agreement with the 
ERE approach. We have also performed similar studies by includ-
ing alternatively the �c D̄∗ and �c D̄(∗) as dynamical channels. The 
conclusions are basically the same as those obtained in the J/ψ p
and �c D̄(∗) channels. Needless to say that more thorough stud-
ies are needed, e.g., to disentangle the dynamics giving rise to the 
two nearby Pc(4440) and Pc(4457) resonances around the �+

c D̄∗0

and �++
c D∗− thresholds and its possible connection with isospin 

breaking (more likely in the case of composite resonances).
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