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Abstract: In this research work, for the �rst time we in-
troduced and described the new method, which is modi-
�ed extended auxiliary equation mapping method. We in-
vestigated the new exact traveling and families of solitary
wave solutions of two well-known nonlinear evaluation
equations, which are generalized Zakharov-Kuznetsov-
Benjamin-Bona-Mahony and simpli�ed modi�ed forms of
Camassa-Holm equations. We used a new technique and
we successfully obtained the new families of solitary wave
solutions. As a result, these new solutions are obtained
in the form of elliptic functions, trigonometric functions,
kink and antikink solitons, bright and dark solitons, pe-
riodic solitary wave and traveling wave solutions. These
new solutions show the power and fruitfulness of this new
method. We can solve other nonlinear partial di�erential
equations with the use of this method.

Keywords:Modi�ed extended auxiliary equationmapping
method; GZK-BBM equation; modi�ed form of CH equa-
tion; exact and Traveling wave solutions; solitary wave so-
lutions
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1 Introduction
A few years ago many authors found the di�er-

ent types of exact traveling and solitary wave solutions
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of both nonlinear models GZK-BBM and GCH-equations.
These both equations are well-known nonlinear evalua-
tion equations and play important role in many scienti�c
�elds. The GZK-BBM equation used in the studies of acous-
tic waves, acoustic-gravity waves, surface waves with long
wavelength, hydromagnetic waves, these all mentioned
waves have source harmonic crystals, compressible �u-
ids, cold plasma and liquids, respectively. The GCH equa-
tion play important role in shallow water waves. In 2005
Wazwaz [1] studied the GZK-BBM equation for the �rst
time and found some complex solutions, kink type solu-
tions, periodic wave solutions and solitons solutions with
the help of the sine-cosine method. Wazwaz [2] found the
two types of compactons and solitary patterns wave solu-
tions of ZK-BBM equation by applying the extended tanh
method. Abdou [3] found the set of exact solutions of
ZK-BBM equation with the help of extended F-Expansion
method. Mahmoudi et al. [4] investigated the periodic soli-
tary wave solutions of ZK-BBM equation by applying the
exp-function method. Wang and Tang [5] studied the ex-
istence property of smoothness of traveling wave solu-
tions of ZK-BBM equation by apply the bifurcation theory
of planner. Song and Yang [6] with the help of bifurca-
tion technique found the travelingwave, solitarywave and
kink type solutions of ZK-BBM equation.

Camassa and Holm [7] derived a Camassa-Holm equa-
tion (CH-equation) by using the Hamiltonian methods,
which is a completely integrable dispersive water waves
equation by holding two terms, which are neglected in
the limit of shallow water waves, having small amplitude.
After that many authors started to investigate the di�er-
ent types of travelling solitary wave solutions of CH equa-
tion by using various methods. Cooper and Shepard [8]
found the solitary wave solutions of GCH-equation by us-
ing the variational function. Liu et al. [9] improved? CH
equation and found traveling wave solutions. Zhang and
Bi [10] studied the bifurcation technique of CH-equation.
Liu and Tang [11] investigated the bifurcation phenomena
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and found the periodic solutions of GCH-equation with
the help of integrated scheme. Deng et al. [12] found the
compacton, kink and anti-kink, periodic solitarywave and
solitons solutions of GCH-Degaspersi-Procesi-equation.
Kalla and Klein [13] found the multidimensional theta
functions independent derivation solutions of GCH equa-
tionwith the help of technique that is related to Fay’s iden-
tity.

Recently, Liu and Song [14] found the smooth periodic
and blow-up periodic solutions of GZK-BBM equation by
applying the bifurcation method. Khadijo Adem and Ma-
sood Khalique [15] investigated the traveling waves solu-
tions and conservation laws of GZK-BBM equation with
the help of (G

′
/G)− expansion method. Harun-Or-Roshid

et al. [16] found the families of solitary waves solutions
of GZK-BBM and RLW equations by using the modi�ed
simple equation method. Seadawy et al. [17] found the
families of exact travelling and solitary wave solutions of
GZK-BBMequationwith the help of exp (−φ(ξ ))-expansion
method. Many other authors have investigated the trav-
elling solitary wave solutions of GZK-BBM equation and
GCH-equation see Ref. [18–20, 26–30].

The nonlinear system of partial di�erential equations
is veryuseful to study thephysical nature inmanydi�erent
scienti�c �elds, such as engineering, physics, geophysics,
optics, chemistry, biology, material science, computer sci-
ence,mechanics, electricity, ultrasound, thermodynamics
and so on. The solitary and travelling wave solutions of
NPDEs have many applications to understanding the pro-
cess andphysical phenomena inmanyareas of applied sci-
ence. In the last �ve decades a lot of new methods have
been developed by many groups of mathematicianas and
engineers to investigate the (NPDEs). For example some
important methods such as, exp-function method; mod-
i�ed Extended tanh-expansion method; modi�ed simple
equation method; homotopy perturbation method; novel
(G

′
/G)− expansion method; extended modi�ed direct al-

gebraic method; generalized kudryashov method; modi-
�ed extendedKudryashovmethod; exp (−φ(ξ ))-expansion
method; extended Jacobian method; extended trial equa-
tion method and so on [31, 32, 35–50].

The main aim of this research is to investigate the ex-
act traveling and solitary wave solutions of GZK-BBM and
simpli�ed modi�ed form of CH-equations. These new so-
lutions are obtained with the help of new method, which
ismodi�ed extended auxiliary equationmappingmethod.
The arrangement of this article is organized as fellows.
Description of the modi�ed extended auxiliary equation
mappingmethod is given in Section 2. Section 3 deals with
the investigation of the solitary wave solutions of GZK-
BBM-equation and simpli�edmodi�edCH-equationbyus-

ing the described method. Finally, the conclusion are pre-
sented in Section 4.

2 Modi�ed extended auxiliary
equation mapping method
Consider the general formof (2+1)-dimensional NPDEs

as
F(U, Ut , Ux , Uy , Uxt , ...) = 0, (1)

here F denotes the polynomial function of U(x, y, t) and
its all derivatives which contained highest order nonlin-
ear terms and highest order partial derivatives. Herewe ex-
plain the important steps of the new method as:
Step1. We apply the traveling wave transformations as

U (x, y, t) = U (ξ ) , ξ = lx + my + ωt, (2)

where l and m are the wave numbers and ω is the fre-
quency of the wave. We obtained the ODE of Eq.(1) as

P(U, U
′
, U

′′
, U

′′′
, ...) = 0, (3)

here P is the polynomial function in U(ξ ) and its deriva-
tives.
Step2. We consider the general solution of Eq.(2), in the
following form

U(ξ ) =
n∑
i=0

aiΨ(x)i +
−n∑
i=−1

b−iΨ(x)i +
n∑
i=2

c2Ψ(x)i−2Ψ ′(x)

+
n∑
i=1

di
(
Ψ ′(x)
Ψ(x)

)i
(4)

where a0, a1, ...an , b1, b2, ...bn , c2, c3, ...cn , d1, d2, ...dn
are constants parameter to be �nd later, the values of Ψ(ξ )
and its derivative Ψ

′
(ξ ) satisfy to the given auxiliary equa-

tion

Ψ
′
(ξ ) =

√
β1Ψ2(ξ ) + β2Ψ3(ξ ) + β3Ψ4(ξ );

Ψ
′′
(ξ ) =β1Ψ(ξ ) +

3
2β2Ψ

2(ξ ) + 2β3Ψ3(ξ );

Ψ
′′′
(ξ ) =

(
β1 + 3β2Ψ(ξ ) + 6β3Ψ2(ξ )

)
Ψ
′
(ξ );

Ψ
′′′′
(ξ ) =12Ψ(ξ )(2β

2
1 + 15β1β2Ψ(ξ ) + 5(3β22 + 8β1β3)Ψ2(ξ )

+ 60β2β3Ψ3(ξ ) + 48β23Ψ4(ξ )).
(5)

Where β,is are real constants, which determine later such
that βn = ̸ 0.
Step3. Balance of the highest order nonlinear terms and
highest order partial derivatives in Eq. (3) is found to be
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the positive integer n of Eq. (3).
Step4. Substituting Eq. (5) into Eq. (4) and combining
each coe�cients of Ψ i(ξ )(i = 1, 2, 3, ...n), then mak-
ing a every coe�cient equal to zero and obtaining a
families of algebraic equations, solving this system of
equations with the help of Mathematica, the constants
a0, a1, ...an , b1, b2, ...bn , c2, c3, ...cn , d1, d2, ...dn can
be determined.
Step5. Substituting the values of obtained constants and
Ψ(ξ ) into Eq. (3), then required solutions of Eq. (1) are
obtained.

3 Application of the proposed
method
Now we applying the modi�ed extended auxiliary

equation mapping method to investigate the families of
new solitary wave solutions for the (2+1)-dimensional
GZK-BBM-equation and simpli�ed modi�ed form of CH-
equation.

3.1 Generalized Zakharov-Kuznetsov-
Benjamin-Bona-Mahony
equation

We consider a (2+1)-dim GZK-BBM-equation as

Ut + Ux + α(U3)x + γ (Uxt + Uyy)x = 0, (6)

where γ and α are non zero constants. Consider the travel-
ingwave transformationU(x, y, t) = U(ξ ), ξ = lx+my+ωt,
by this transformation we obtained ordinary di�erential
equation of Eq.(6) as

ωU ′ + lU′ + 3αlU2U ′ + γm3U ′′′ + γl2ωU ′′′ = 0, (7)

we integrate the Eq.(7) once time according to ξ and inte-
gration constant equal to zero, then we obtained as

ωU + lU + αlU3 + γ l2ωU ′′ + γm3U ′′ = 0, (8)

Balance the highest order nonlinear term and highest
order partial derivative in Eq.(8) obtained the value of n =
1. The general solution of Eq.(8) takes form of

U (ξ ) = a0 + a1Ψ(ξ ) +
b1
Ψ(ξ ) + d1

Ψ
′
(ξ )

Ψ(ξ ) (9)

Substituting Eq. (9) into Eq. (8) and combining each co-
e�cients of Ψ

′ j(ξ )Ψ i(ξ )(j = 0, 1; i = 1, 2, 3, ...n), then

making a every coe�cient equal to zero and obtaining
a set of algebraic equations. We solve this system of
equations with the aid of Mathematica. The parameters
a0, a1, b1, d1 can be determined as

Case-I

a0 =0, a1 = a1, b1 = 0, d1 = ±
√
−l − ω

√
α
√
β1

√
l
, β3 = ±

αa21β1l
l + ω ,

m = ± (−1)
2/3 3
√
β1(−γ)l2ω + 2l + 2ω

3
√
β1 3

√
γ

.

(10)

Substituting the Eq.(10), only for the positive value of d1 in
Eq. (9), then solitary wave solutions of Eq. (6) are obtained
in simpli�ed forms as:

U1 (x, y, t) = −
ϵ
√
−l − ωcsch

[
1
2
√
β1 (lx + my + ωt + ξ0)

]2
√
α
√
l
(
2ϵ coth

[
1
2
√
β1 (lx + my + ωt + ξ0)

]
+ 2
)

−
a1β1

(
1 + ϵ coth

[
1
2
√
β1 (lx + my + ωt + ξ0)

])
β2

(11)

U2 (x, y, t) =
(
2ϵ

√
−l − ω

(
η cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ 1
)

−
√
α
√
l
(
η + cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ϵ sinh

[√
β1 (lx + my + ωt + ξ0)

])2
a1

√
β1
β3

)
/(

2
√
α
√
l
(
η + cosh

[√
β1 (lx + my + ωt + ξ0)

])
η + cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ϵ sinh

[√
β1 (lx + my + ωt + ξ0)

])
(12)

U3 (x, y, t) = ϵ
√
−l − ω

(
η
√
p2 + 1 cosh

[√
β1 (lx + my + ωt + ξ0)

]
−p sinh

[√
β1 (lx + my + ωt + ξ0)

]
+ 1
)
/(√

α
√
l
(
cosh

[√
β1 (lx + my + ωt + ξ0)

]
+η
√
p2 + 1

) (
cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ η
√
p2 + 1 + ϵ

(
sinh

[√
β1 (lx + my + ωt + ξ0)

]
+ p
)))

+ a1

−1 − ϵ
(
sinh

[√
β1 (lx + my + ωt + ξ0)

]
+ p
)

cosh
[√

β1 (lx + my + ωt + ξ0)
]
+ η
√
p2 + 1


(13)
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Case-II

a0 = ±
√
−l − ω
√
α
√
l
, a1 = a1, b1 = d1 = 0,m = ±

3
√
2(l + ω) − β1γ l2ω

3
√
β1 3

√
γ

, β2 = ±
√
αa1β1

√
l√

−l − ω
, β3 = −

αa21β1l
4(l + ω) . (14)

Substituting Eq.(14), only the positive value of a0 into Eq.(9), the solutions of Eq.(6) are given as:

U4 (x, y, t) =
√
−l − ω
√
α
√
l
−
a1β1

(
1 + ϵ coth

[
1
2
√
β1 (lx + my + ωt + ξ0)

])
β2

(15)

U5 (x, y, t) =
√
−l − ω
√
α
√
l
− 1
2a1

√
β1
β3

1 + ϵ sinh
[√

β1 (lx + my + ωt + ξ0)
]

η + cosh
[√

β1 (lx + my + ωt + ξ0)
]
 (16)

U6 (x, y, t) =
√
−l − ω
√
α
√
l

+ a1

−1 − ϵ
(
sinh

[√
β1 (lx + my + ωt + ξ0)

]
+ p
)

cosh
[√

β1 (lx + my + ωt + ξ0)
]
+ η
√
p2 + 1

 (17)

Case-III

a0 = a1 = b1 = 0, d1 = ±
√
−l − ω

√
α
√
β1

√
l
,m = ± (−1)

2/3 3
√
2(l + ω) − β1γ l2ω
3
√
β1 3

√
γ

. (18)

Substituting Eq.(18) into Eq.(9), then the solutions of Eq.(6) can be obtained as:

U7 (x, y, t) =
ϵ
√
−l − ωcsch

[
1
2
√
β1 (lx + my + ωt + ξ0)

]2
√
α
√
l
(
2ϵ coth

[
1
2
√
β1 (lx + my + ωt + ξ0)

]
+ 2
) (19)

U8 (x, y, t) = − ϵ
√
−l − ω

(
η cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ 1
)
/
(√

α
√
l
(
η + cosh

[√
β1 (lx + my + ωt + ξ0)

])
η + cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ ϵ sinh

[√
β1 (lx + my + ωt + ξ0)

]) (20)

U9 (x, y, t) =ϵ
√
−l − ω

(
η
(
−
√
p2 + 1

)
cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ p sinh

[√
β1 (lx + my + ωt + ξ0)

]
− 1
)
/(√

α
√
l
(
cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ η
√
p2 + 1

)(
cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ η
√
p2 + 1

+ ϵ
(
sinh

[√
β1 (lx + my + ωt + ξ0)

]
+ p
))) (21)
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(a) (b)

Figure 1: Solitary wave solution given in Eq.(11) when a1 = 0.5, β1 = 2, β2 = 4, ϵ = 10, η = −8, ξ0 = 0.5, l = 0.8,m = 0.2, ω = −8, y = 1, a =
1

(a) (b)

Figure 2: Solitary wave solution given in Eq.(12) when a1 = 0.5, β1 = 4, β2 = 8, β3 = 4, ϵ = 28, η = −18, ξ0 = 0.3, l = 0.2,m = 0.4, ω =
−5, y = 1, a = 1

Case-IV

a0 = ±
√
−l − ω

2
√
α
√
l
, a1 = b1 = 0, d1 = ±

√
−l − ω

2
√
α
√
β1

√
l

(22)

Substituting Eq.(22), only the positive value of a0 into Eq.(9), then the solutions of Eq.(6), can be given as:

U10 (x, y, t) =

√
−l − ω

(
ϵ
(
sinh

[√
β1 (lx + my + ωt + ξ0)

]
− 1
)
csch

[
1
2
√
β1 (lx + my + ωt + ξ0)

]2
+ 2
)

4
√
α
√
l
(
ϵ coth

[
1
2
√
β1 (lx + my + ωt + ξ0)

]
+ 1
) (23)
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U11 (x, y, t) =
(√
−l − ω

(
1 + 2ϵ + 2η2 + 2η(ϵ + 2) cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ cosh

[
2
√
β1 (lx + my + ωt + ξ0)

]
+

2ϵ sinh
[√

β1 (lx + my + ωt + ξ0)
] (
η + cosh

[√
β1 (lx + my + ωt + ξ0)

])))/
(
4
√
α
√
l
(
η + cosh

[√
β1 (lx + my + ωt + ξ0)

]) (
η + cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ϵ sinh

[√
β1 (lx + my + ωt + ξ0)

]))
(24)

U12 (x, y, t) =

√
−l − ω

(
ϵ
(
η
√
p2+1 cosh

[√
β1(lx+my+ξ0+tω)

]
−p sinh

[√
β1(lx+my+ξ0+tω)

]
+1
)

(
cosh

[√
β1(lx+my+ξ0+tω)

]
+η
√
p2+1

)(
ϵ
(
sinh

[√
β1(lx+my+ξ0+tω)

]
+p
)
+cosh

[√
β1(lx+my+ξ0+tω)

]
+η
√
p2+1

) + 1
)

2
√
α
√
l

(25)

Case-V

a0 = a0, a1 = 0, b1 =
2a0β1
β2

, d1 = 0,m =
3√−1 3√ω
3
√
β1 3

√
γ

(26)

Substituting Eq.(26) into Eq.(9), then the solutions of Eq.(6) can be obtained as:

U13 (x, y, t) = a0

1 − 2
ϵ coth

[
1
2
√
β1 (lx + my + ωt + ξ0)

]
+ 1

 (27)

U14 (x, y, t) = a0

1 − 4
√

β1
β3 β3

β2 +
β2ϵ sinh

[√
β1(lx+my+ωt+ξ0)

]
η+cosh

[√
β1(lx+my+ωt+ξ0)

]

 (28)

U15 (x, y, t) = a0

1 − 2β1

β2

(
ϵ
(
sinh

[√
β1(lx+my+ωt+ξ0)

]
+p
)

cosh
[√

β1(lx+my+ωt+ξ0)
]
+η
√
p2+1

+ 1
)
 (29)

Case-VI

a0 = ±
√
6β1γω2 + 9

2
√
α
(
4β21γ2ω4 − 9

) , a1 = b1 = 0, d1 = ±
√
6β1γω2 + 9

2
√
αβ1

(
4β21γ2ω4 − 9

) ,
l = 3

2β1γω
− ω,m = ±

3√−1 3
√
3 − 4β1γω2

(
β1γω2 − 3

)
22/3β2/31 γ2/3 3√ω

.

(30)

Brought to you by | CERN library
Authenticated

Download Date | 3/2/19 7:42 PM



902 | Dianchen Lu et al.

Substituting Eq.(30), only positive value of a0 and d1 into Eq.(9), the solitary wave solutions of Eq.(6) can be obtained
in the simpli�ed form as:

U16 (x, y, t) =
1
4
√
6β1γω2 + 9

 2√
α
(
4β21γ2ω4 − 9

) −
√
β1ϵcsch

[
1
2
√
β1 (lx + my + ωt + ξ0)

]2
√
αβ1

(
4β21γ2ω4 − 9

) (
ϵ coth

[
1
2
√
β1 (lx + my + ωt + ξ0)

]
+ 1
)


(31)

U17 (x, y, t) =
1
2
√
6β1γω2 + 9

 1√
α
(
4β21γ2ω4 − 9

)+ √β1ϵ (η cosh [√β1 (lx + my + ωt + ξ0)] + 1) /
(
η + cosh

[√
β1 (lx + my + ωt + ξ0)

] (
η + cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ ϵ sinh

[√
β1 (lx + my + ωt + ξ0)

]) √
αβ1

(
4β21γ2ω4 − 9

)))
(32)

U18 (x, y, t) =
1
2
√
6β1γω2 + 9

 1√
α
(
4β21γ2ω4 − 9

) + (ϵ (η√p2 + 1 cosh [√β1 (lx + my + ωt + ξ0)] + 1
− p sinh

[√
β1 (lx + my + ωt + ξ0)

])√
β1
)/(

cosh
[√

β1 (lx + my + ωt + ξ0)
]
+ η
√
p2 + 1(

cosh
[√

β1 (lx + my + ωt + ξ0)
]
+ η
√
p2 + 1 + ϵ

(
sinh

[√
β1 (lx + my + ωt + ξ0)

]
+ p
))

√
αβ1

(
4β21γ2ω4 − 9

)))
(33)

(a) (b)

Figure 3: Solitary wave solution given in Eq.(13) when a1 = 0.5, β1 = 4, ϵ = 8, η = −5, ξ0 = 0.3, l = 0.9,m = 0.2, ω = −5, y = 1, a = 0.4, p =
0.2
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(a) (b)

Figure 4: Solitary wave solution given in Eq.(21) when a1 = 0.4, β1 = 2, ϵ = 18, η = −15, ξ0 = 0.3, l = 0.5,m = 0.2, ω = −5, y = 1, a =
0.4, p = 0.2

Case-VII

a0 = ±

√
1 − β21γ2ω4

√
2
√
α
(
β1γω2 − 1

) (
β1γω2 + 2

) , a1 = b1 = 0,

d1 = ±

√
1 − β21γ2ω4

√
2
√
αβ1

(
β1γω2 − 1

) (
β1γω2 + 2

) , l = 2
β1γω

+ ω,m = −(−1)2/3ω.

(34)

Substituting Eq.(34), only the positive value of a0 and d1 into Eq.(9), then the solutions of Eq.(6) can be get in the
simpli�ed form as:

U19 (x, y, t) =

√
1 − β21γ2ω4

(
2√

α(β1γω2−1)(β1γω2+2)
−

√
β1ϵcsch

[
1
2

√
β1(lx+my+ωt+ξ0)

]2
√
αβ1(β1γω2−1)(β1γω2+2)

(
ϵ coth

[
1
2

√
β1(lx+my+ωt+ξ0)

]
+1
)
)

2
√
2

(35)

U20 (x, y, t) =
1√
2

√
1 − β21γ2ω4

 1√
α
(
β1γω2 − 1

) (
β1γω2 + 2

)+ √β1ϵ (η cosh [√β1 (lx + my + ωt + ξ0)] + 1) /
(
η + cosh

[√
β1 (lx + my + ωt + ξ0)

] (
η + cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ ϵ sinh

[√
β1 (lx + my + ωt + ξ0)

]) √
αβ1

(
β1γω2 − 1

) (
β1γω2 + 2

)))
(36)

U21 (x, y, t) =
1√
2

√
1 − β21γ2ω4

 1√
α
(
β1γω2 − 1

) (
β1γω2 + 2

)+ (ϵ (η√p2 + 1 cosh [√β1 (lx + my + ωt + ξ0)] + 1
− p sinh

[√
β1 (lx + my + ωt + ξ0)

])√
β1
)/(

cosh
[√

β1 (lx + my + ωt + ξ0)
]
+ η
√
p2 + 1(

η
√
p2 + 1 + cosh

[√
β1 (lx + my + ωt + ξ0)

]
+ ϵ

(
sinh

[√
β1 (lx + my + ωt + ξ0)

]
+ p
))

√
αβ1

(
β1γω2 − 1

) (
β1γω2 + 2

)))
(37)
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3.2 Simpli�ed modi�ed form of Camassa-Holm equation

We consider a simpli�ed modi�ed form of CH-equation as

Ut + 2βUx − Uxxt + δU2Ux = 0, (38)

where β and δ are non zero constants. Consider the wave transformation as; U(x, y, t) = U(ξ ), ξ = kx + ωt. By this
transformation we obtained ordinary di�erential equation of Eq.(38) as

ωU ′ + 2βkU ′ − k2ωU ′′′ + δkU2U ′ = 0, (39)

we integrate Eq.(39) once time according to the ξ and constant of integration equal to zero, then we obtained as

ωU + 2βkU − k2ωU ′′ + 1
3 δkU

3 = 0. (40)

We balance the nonlinear term and highest order derivative in Eq.(40) allow obtaining the value of n = 1. The
general solution of Eq.(40) takes the form of:

U (ξ ) = a0 + a1Ψ(ξ ) +
b1
Ψ(ξ ) + d1

Ψ
′
(ξ )

Ψ(ξ ) (41)

Substituting Eq.(41) into Eq.(40) and combining each coe�cients of Ψ
′ j(ξ )Ψ i(ξ )(j = 0, 1; i = 1, 2, 3, ...n), then making

a every coe�cient equal to zero and obtaining a set of algebraic equations. We solve this system of equations with the
aid of Mathematica. The parameters a0, a1, b1, d1 can be determined as

Case-1

a0 = 0, a1 = ±
√
6
√
β
√
β3k√

β1(−δ)k2 − 2δ
, b1 = 0, d1 = ±

√
6
√
βk√

β1(−δ)k2 − 2δ
, ω = − 4βk

β1k2 + 2
. (42)

Substituting the Eq.(42), only for the positive value of a1 and d1 in Eq.(41), the solutions of Eq.(38) are given as:

U1 (x, y, t) = −

√
3
2
√
βk
(
2β1

√
β3
(
ϵ coth

[
1
2
√
β1 (kx + ωt + ξ0)

]
+ 1
)
2 +
√
β1β2ϵcsch

[
1
2
√
β1 (kx + ωt + ξ0)

]2)
β2
√
−δ
(
β1k2 + 2

) (
ϵ coth

[
1
2
√
β1 (kx + ωt + ξ0)

]
+ 1
)

(43)

U2 (x, y, t) = −
(√

3
2 k
√
β
(
−2
√
β1ϵ

(
η cosh

[√
β1 (kx + ωt + ξ0)

]
+ 1
)
+
(
η + cosh

[√
β1 (kx + ωt + ξ0)

]
+ϵ sinh

[√
β1 (kx + ωt + ξ0)

])2 √β1
β3
√
β3

))/(
η + cosh

[√
β1 (kx + ωt + ξ0)

]
(
η + cosh

[√
β1 (kx + ωt + ξ0)

]
+ ϵ sinh

[√
β1 (kx + ωt + ξ0)

]) √
−δ
(
β1k2 + 2

))
(44)
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U3 (x, y, t) = −
(√

6
√
βk
((
ϵ
(
η
(
−
√
p2 + 1

)
cosh

[√
β1 (kx + ωt + ξ0)

]
+ p sinh

[√
β1 (kx + ωt + ξ0)

]
− 1

√
β1

+ sinh
[√

β1 (kx + ωt + ξ0)
]
+ p
(
2 cosh

[√
β1 (kx + ωt + ξ0)

]
+ 2η

√
p2 + 1

+ ϵ
(
sinh

[√
β1 (kx + ωt + ξ0)

]
+ p
))

ϵ
(
sinh

[√
β1 (kx + ωt + ξ0)

]
+ p
))

√
−δ
(
β1k2 + 2

) ϵ
(
sinh

[√
β1 (kx + ωt + ξ0)

]
+ p
)

cosh
[√

β1 (kx + ξ0 + tω)
]
+ η
√
p2 + 1

+ 1


(45)

(a) (b)

Figure 5: Solitary wave solution given in Eq.(44) when β1 = 2, β2 = 4, β3 = 2, ϵ = 5, η = −3, ξ0 = 0.5, k = 2, ω = 8, α = 0.2, δ = −2

(a) (b)

Figure 6: Solitary wave solution given in Eq.(49) when β1 = 4, β3 = 2, ϵ = −5, η = 2, ξ0 = 0.3, k = 2, ω = 8, p = 0.6, α = 0.2, δ = −4

Case-II

a0 = ±
√
6
√
β
√
β1k√

β1(−δ)k2 − 2δ
, a1 = ±

2
√
6
√
β
√
β3k√

β1(−δ)k2 − 2δ
, b1 = d1 = 0,

ω = − 4βk
β1k2 + 2

, β2 = ±2
√
β1
√
β3.

(46)
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Substituting Eq. (46), only the positive value of a0 and a1 into Eq. (41), the solutions of Eq. (38) can be given as:

U4 (x, y, t) = −

√
6
√
βk
(
2β1

√
β3
(
ϵ coth

[
1
2
√
β1 (kx + ωt + ξ0)

]
+ 1
)
−
√
β1β2

)
β2
√
−δ
(
β1k2 + 2

) (47)

(a) (b)

Figure 7: Solitary wave solution given in Eq. (51) when β1 = 1, β2 = 2, β3 = 1, ϵ = 5, η = 3, ξ0 = 0.2, k = 2, ω = 8, α = 1, δ = 2

(a) (b)

Figure 8: Solitary wave solution given in Eq. (52) when β1 = 2, β2 = 4, β3 = 2, ϵ = 18, η = −15, ξ0 = 0.8, k = 2, ω = 8, α = 8, δ = 2

U5 (x, y, t) =
(√

6k
√
β
(√

β1
(
η + cosh

[√
β1 (kx + ωt + ξ0)

])
−
(
η + cosh le�[

√
β1 (kx + ωt + ξ0)

]
+ ϵ sinh

[√
β1 (kx + ωt + ξ0)

]) √β1
β3
√
β3

))/√
−δ
(
β1k2 + 2

) (
η + cosh

[√
β1 (kx + ωt + ξ0)

]) (48)

U6 (x, y, t) =

√
6
√
βk
(√

β1 + 2
√
β3

(
−

ϵ
(
sinh

[√
β1(kx+ωt+ξ0)

]
+p
)

cosh
[√

β1(kx+ωt+ξ0)
]
+η
√
p2+1

− 1
))

√
−δ
(
β1k2 + 2

) (49)
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Case-III

a0 = 0, a1 = ±
2
√
3
√
β
√
β3k√

β1δk2 − δ
, b1 = d1 = 0, ω = 2βk

β1k2 − 1
.

(50)

Substituting Eq.(50), only the positive value of a1 into
Eq.(41) the solutions of Eq.(38) can be given as:

U7 (x, y, t) =

−
2
√
3
√
ββ1
√
β3k

(
ϵ coth

[
1
2
√
β1 (kx + ωt + ξ0)

]
+ 1
)

β2
√
δ
(
β1k2 − 1

)
(51)

U8 (x, y, t) =

−

√
3
√
β
√

β1
β3

√
β3k

(
ϵ sinh

[√
β1(kx+ωt+ξ0)

]
η+cosh

[√
β1(kx+ωt+ξ0)

] + 1
)

√
δ
(
β1k2 − 1

) (52)

U9 (x, y, t) =

2
√
3
√
β
√
β3k

(
−

ϵ
(
sinh

[√
β1(kx+ωt+ξ0)

]
+p
)

cosh
[√

β1(kx+ωt+ξ0)
]
+η
√
p2+1

− 1
)

√
δ
(
β1k2 − 1

) (53)

Case-IV

a0 = a1 = 0, b1 = 0, d1 = ±
2
√
3
√
βk√

−δ − 2β1δk2
, ω = − 2βk

2β1k2 + 1
(54)

Substituting Eq. (54), only the positive value of d1 into
Eq. (41), the solutions of Eq. (38) can be given as:

U10 (x, y, t) =

−

√
3
√
β
√
β1kϵcsch

[
1
2
√
β1 (kx + ωt + ξ0)

]2
√
−δ
(
2β1k2 + 1

) (
ϵ coth

[
1
2
√
β1 (kx + ωt + ξ0)

]
+ 1
)

(55)

U11 (x, y, t) = 2
√
3
√
β
√
β1kϵ

(
η cosh

[√
β1 (kx + ωt + ξ0)

]
+1) /

(
η + cosh

[√
β1 (kx + ωt + ξ0)

]
√
−δ
(
2β1k2 + 1

) (
η + cosh

[√
β1 (kx + ωt + ξ0)

]
+ϵ sinh

[√
β1 (kx + ωt + ξ0)

]))
(56)

U12 (x, y, t) = 2
√
3
√
β
√
β1kϵ

(
η
√
p2 + 1 cosh[√

β1 (kx + ωt + ξ0)
]
− p sinh

[√
β1 (kx + ωt + ξ0)

]
+ 1
)
/(

cosh
[√

β1 (kx + ωt + ξ0)
]

+η
√
p2 + 1

(
cosh

[√
β1 (kx + ωt + ξ0)

]
+ η
√
p2 + 1

+ ϵ
(
sinh

[√
β1 (kx + ωt + ξ0)

]
+ p
))√

−δ
(
2β1k2 + 1

))
(57)

Case-V

a0 = ±
√
2
√
β

√
δ

, a1 = ±
2
√
2
√
β
√
β3√

β1
√
δ

, b1 = d1 = 0, k = 1√
β1

,

ω = − 4β
3
√
β1

, β2 = ±2
√
β1
√
β3 (58)

Substituting Eq. (58), only the positive value of a0 and a1
into Eq. (41), the solutions of Eq. (38) can be given as:

U13 (x, y, t) =
√
2
√
β
(
β2 − 2

√
β1
√
β3
(
ϵ coth

[
1
2
√
β1 (kx + ωt + ξ0)

]
+ 1
))

β2
√
δ

U14 (x, y, t) =

√
2
√
β

1 −
√

β1
β3

√
β3

(
ϵ sinh[√β1(kx+ωt+ξ0)]
η+cosh[√β1(kx+ωt+ξ0)]+1

)
√
β1


√
δ

(59)

U15 (x, y, t) =

√
2
√
β

2
√
β3

(
−

ϵ(sinh[√β1(kx+ωt+ξ0)]+p)
cosh[√β1(kx+ωt+ξ0)]+η

√
p2+1

−1
)

√
β1

+ 1


√
δ

4 Conclusion
We have successfully applied a new method on two

nonlinear evaluation equations. We have obtained a new
exact traveling and solitary wave solutions of GZK-BBM-
equation and simpli�ed modi�ed form of CH-equation by
applying the Modi�ed extended auxiliary equation map-
ping method. As a results, these new solutions are ob-
tained in the form of elliptic functions, trigonometric func-
tions, kink and antikink solitions, bright and dark soli-
tons, periodic solitary wave and travelling wave solutions
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and also show two and three dimensional graphs with
the help of Mathematica. These new families of solutions
show the power, e�ectiveness, capability, realizabilities
and fruitfulness of this new method. We can solve other
nonlinear physical phenomena, which are related to non-
linear evaluation equations with the help of this new
method.
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