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Abstract. For some class of studies, the space charge is treated as frozen, allowing to capture
the dynamics of incoherent phenomena. We explore the possibility that a beam may exhibit
non-resonant coherent behavior by developing and studying a one-dimensional model.

1. Introduction
The issue of whether space charge effects in a ring can be modeled by a frozen space charge or
not becomes, in term of the dynamics, the issue of whether the behavior of the beam in a high-
intensity beam is coherent or incoherent. In neutral plasmas, this property is incorporated into
the Debye length of λD. If a test particle is placed into a neutral plasma having a temperature
T and equal positive ion and electron densities n, the excess electric potential set up by an
extra charge is effectively screened off in a distance λD by charge redistribution in the plasma.
This effect is called “Debye shielding” and λD = ṽ/ω where ṽ is the thermal velocity of the

particles and ω =
[
q2n/(mε0)

]1/2
is the plasma frequency. For a particle beam of size a stored

in an accelerator Ref. [1] says that if λD � a the screening will be ineffective and single particle
behavior will dominate, while if λD � a the collective effects due to the beam self-fields will
play an important role. However, a particle beam in an accelerator is formed by particles with
the same charge state. Therefore how the Debye mechanism comes to play it is not so evident
[2]. To clarify what happens, we construct a simplified model and explore the dynamics.

2. A one dimensional model
In order to investigate the role of the Debye length in a particle beam stored in an accelerator, we
construct a simple one-dimensional model. We consider a region of space with a focusing electric
field Ez = −Kz along the z axis that does not depends on the transverse x and y coordinates.
In order to simplify the dynamics, we assume that the particles of charge q and mass m are
frozen in planes. Therefore, instead of discussing the dynamics of micro-particles we study the
motion of micro-planes. One micro-plane has position z, velocity ż, is normal to the z axis, and
has uniform particle surface density np.

The force on a charged particle is Fz = qEz, being Ez the composition of the electric
fields along z created by all micro-planes and the focusing field. The electric field Ez(z, z

′)
created at z by the micro-plane located at z′ is readily obtained from Gauss law as Ez(z, z

′) =
sign(z − z′)qnp/(2ε0), with ε0 the vacuum permettivity. As all particles in a micro-plane are
subject to the same force, the equation of motion of the micro-plane at z is

m
d2z

dt2
= −qKz + q2

np
2ε0

sign(z − z′). (1)
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We note two features of this model: 1) the motion of micro-planes is not subject to “collision”.
In fact, when z = z′ there is a discontinuity in the electric field, but not a divergence. Therefore
for a large number of micro-planes, this effect may be made arbitrarily small. 2) the acceleration
of one plane due to the Coulomb field exerted by another micro-plane does not vanish with the
distance. This effect is understood from the infinite extension of the micro-planes. This model
makes stronger the coherent response of this system as any plane feels equally the forces of all
the micro-planes present into the system.

A continuous beam is formed by many micro-planes, say N0, with density distribution
function ρN (z) = ∆N(z)/∆z, where ∆N(z) is the number of micro-planes in [z, z + ∆z]. From
Eq. 1 it is straightforward that the Coulomb force on a micro-plane located at z is proportional
to −N+(z) + N−(z), where N−(z) =

∫ z
−∞ ρN (z′)dz′ is the number of micro-planes with z′ < z.

Mutatis mutandi for N+(z). As N0 = N+(z) +N−(z) the equation of motion of one plane reads

d2z

dt2
= −kz0z + q2

np
2mε0

[2N−(z)−N0]. (2)

where in analogy to the beam dynamics in accelerators we define kz0 = (q/m)K.
This equation allows computing the evolution of the distribution of micro-planes when their

phase space distribution is known. The dynamical coordinates of one micro-plane are (z, ż),
and a distribution of micro-planes is identified by a distribution function f(z, ż). For brevity of
language we use the term “particle” instead using “micro-plane”. As for 2D beams, a special
role is played by a stationary particle distribution. This special class of particle distributions
has the property that f(z, ż) does not change in time. This happens naturally if all forces acting
on one particle are linear in z and if the particle distribution is a function of the invariant
εz = γzz

2 + βz ż
2, being βz, γz the optical functions of the system (in the time domain). This

means that the particle distribution is f
(
εz
Ez

)
, with Ez is the beam phase space emittance. The

linearity of the forces requires N−(z) ∝ z, which is possible only if∫
f

(
εz
Ez

)
dż = ρN (z) = constant. (3)

for any z inside the distribution. The function f() satisfying Eq. 3 can be constructed with a
“slice by slice” procedure with the result shown in Fig. 1a. The markers show the numerical
findings and the red curve is a fit. This particle distribution is also modeled with an acceptable
approximation, by transforming the bi-normal distribution (ξ, φ) according to

z

Z
= ξF (ξ, φ)

ż

żmax
= φF (ξ, φ) (4)

with F (ξ, φ) = 12/{41/3[8+(ξ2+φ2)3/2]} and Z, żmax the maximum extensions of the distribution
in phase space. In Fig. 1b we show this particle distribution.

A matched stationary particle distribution located in the interval [−Z,Z] has cumulative

number of particles N−(z) = N0(z + Z)/(2Z). Hence the equation of motion reads d2z
dt2

=

−kz0z+ω2z, with ω = ( q
2n0

mε0
)1/2 the Debye frequency, and n0 = npN0/(2Z) the particle density

of the stationary distribution. It is now convenient scaling the time to the phase created by
the focusing field, namely using the variable θ =

√
k0zt, and also scaling the particle coordinate

with the distribution size ẑ = z/Z. We find

d2ẑ

dθ2
= −ẑ +

ω2

kz0
ẑ. (5)
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Figure 1. Part a: the function f(εz/Ez) is obtained by requiring that the
projection is uniform. Part b: particle distribution in the normalized phase
space.

The condition of stationary particle distribution matching is obtained using the optical
functions from the space charge depressed focusing strength kz = kz0 − ω2, namely βz = 1/

√
kz

and γz = 1/βz. Any particle in this system will satisfy the relation βz ż
2 + γzz

2 = constant.
Therefore for a distribution with size Z we find that the consistent size in the velocity is
żmax =

√
kzZ, hence using Eqs. 4 we generate the stationary distribution. In Eq. 5 we

recognize the incoherent tune depression Qz,inch/Qz0 =
√

1− ω2/kz0 and for convenience we
define the relative Debye “tune” Qz,D/Qz0 = ω/

√
kz0. These two quantities satisfy relation

(Qz,D/Qz0)
2 + (Qz,inch/Qz0)

2 = 1.

3. The space charge limit
In this model the space charge limit is reached when Qz,inch = 0, namely when the Coulomb
forces compensate the force of the lattice. In this case, the stationary particle distribution is just
uniform in [−1, 1] with each particle having zero velocity. In order to evaluate/investigate the
effect of a possible Debye mechanism, we consider a particle distribution at the space charge limit
and apply a perturbation to the velocity of the particles in the region [ẑ0, ẑ1]. The particle density
ρN (ẑ) is now perturbed, hence the cumulative number of particles is N−(ẑ) = N0−(ẑ)+ δN−(ẑ),
withN0−(ẑ) corresponding to the stationary distribution, which create ω2 = kz0. In this notation
δN−(ẑ) can be positive or negative, but as the number of particles is preserved, it is always
δN−(∞) = 0. Therefore Eq. 2 reads

d2ẑ

dθ2
=
ω2

kz0

2

N0
δN−(ẑ). (6)

We next model δN−(ẑ) in the first part of the motion. We add the velocity ∆v > 0 to all
particles in the region [ẑ0, ẑ1] and let the system evolve. Let’s call ẑa the particle initially located
at ẑ0, which is subject to the perturbation. This beam particle will move with speed v = ∆v
and will leave an empty region behind (Fig. 2). Hence the cumulative perturbation in the first
instant of motion reads

δN−(ẑa) = −N0

2
(ẑa − ẑ0), (7)
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Figure 2. Schematic of the particle density perturbation in the first
instants of motion.

and the equation of motion of the particle ẑa is

d2ẑa
dθ2

= − ω
2

kz0
(ẑa − ẑ0). (8)

A generic particle with coordinate ẑr in the yellow region of Fig. 2 is subjected to the same
equation of motion as δN−(ẑr) = δN−(ẑa). The initial conditions of this particle are ẑr = ẑr,0
and dẑr

dθ = dẑr
dt

dt
dθ = ∆v/(

√
kz0Z). Therefore particles in the center of the perturbed region will

oscillate coherently according to

ẑr = ẑr,0 +
∆v

ωZ
sin

(
ω√
kz0

θ

)
. (9)

This formula shows that the oscillation of ẑr has amplitude of L̂D = ∆v/(ωZ). It is evident

that if L̂D > ẑ1 − ẑ0 any particle in the yellow region cannot follow Eq. 9 because δN−(ẑ) does
not follow Eq. 7 already after a phase advance θ given by ω√

kz0
θ = π/2. We show this effect in

Fig. 3 where we plot the particle distribution after 5 Debye oscillations. In the part a) the Debye

length is L̂D = (ẑ1 − ẑ0)/20 while in the part b) we set L̂D = (ẑ1 − ẑ0)/2. The comparison of

the two pictures shows that only if L̂D is much smaller than the size of the perturbed region the
perturbation can survive locally. In both pictures, the initial distribution is colored to highlight
the dynamics. We see that in Fig. 3a the particles do not excessively diffuse, while in Fig. 3b
the red colored particles spread over all the initial distribution length. L̂D plays the role of the
Debye length.

4. Above the space charge limit
The scenario discussed in the previous section regards the case in which the charge density
of micro-planes is extreme. For a less dense particle beam we do not approach the condition
Qz,inch = 0 and Eq. 2 acquires the form

d2ẑ

dθ2
= − kz

kz0
ẑ +

ω2

kz0

2

N0
δN−(ẑ). (10)
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Figure 3. Phase space after 5 Debye oscillations. On the part a) is

the case with L̂D/(ẑ1 − ẑ0) = 1/20, and on the part b) the case with

L̂D/(ẑ1 − ẑ0) = 1/2.

This equation shows a dynamics governed by the co-existence of two competing effects: 1) a
Debye dynamics characterized by the term with ω2/kz0 which involve the perturbation δN−(ẑ);
2) a depressed lattice kz/kz0 dynamics, which acts incoherently over all particles.

The form of the perturbation δN−(ẑ) in the first part of motion is now not equal to Eq. 7,
which is an upper bound, namely |δ(ẑa)| < (N0/2)(ẑa − ẑ0). From Eq. 10 we see that the
dominance of the incoherent regime over the coherent one surely happens for ω2 < kz, which
in terms of optical functions becomes ω2 < γz/βz. Multiplying and dividing by the beam rms
phase space emittance this condition reads z̃ < ṽz/ω, where z̃ is the rms size of the beam, and
ṽ is effectively the rms thermal component of the velocity, hence we recognize here the Debye
length λD = ṽz/ω. Defining ∆Qz = Qz,inch−Qz0 as the incoherent space charge tune-shift it is
straightforward to show that

λD
z̃

=
1 + ∆Qz/Qz0

[−2∆Qz/Qz0 − (∆Qz/Qz0)2]1/2
.

At the space charge limit ∆Qz/Qz0 = −1 the Debye length is λD = 0, instead at ∆Qz/Qz0 =
−0.29 we find λD = z̃.

To avoid the complication of modeling the initial perturbation we just do not apply any. We
instead create several matched beams each characterized by a specific relative Debye length of
λD/z̃ and study the oscillatory behavior of an ad-hoc test particle. The initial conditions of this
particle are ẑ = ẑini = 0.83, ż = 0 and its evolution is computed by solving numerically Eq. 10
with 5000 integration steps per Debye length for a time interval corresponding to 10 oscillations.
In Fig. 4 we show the results. In the part a) the red markers show Qz/Qz0 as obtained from the
test particle motion. For comparison we also plot Qz,inch/Qz0 (solid line), and relative Debye
“tune” Qz,D/Qz0 (dotted line) as obtained from the theory. In Fig. 4b we show with red markers
the average particle position (taken always positive) and with black markers the scaled standard
deviation of z/z̃ as function of λD/z̃. Part a) shows that for λD/z̃ & 0.1 the tune of the test
particle is locked to the incoherent tune as one expects. In the interval 0.01 . λD/z̃ . 0.1
the test particle tune makes a transition to the pure Debye tune, which surprisingly becomes
equal to the un-depressed tune Qz0. Part b) shows that the average center of oscillation remains
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Figure 4. Oscillatory properties of a test particle as function of λD/z̃.

close to the origin of the system z = 0 for large λD/z̃, but progressively approach z = zini for
λD/z̃ → 0.01. In this interval, the amplitude of oscillation (black markers) remains locked to
the initial amplitude with respect to z = 0. In the interval 10−4 . λD/z̃ . 0.01 the amplitude
of oscillation shrinks to z/z̃ ' 10−2. For λD/z̃ . 0.01 the average position of the center of
oscillation grows and becomes locked to the initial particle position.

5. Summary
With this study, we find evidence that the relative Debye length effectively is an indicator of
the incoherent/coherent character of the particle dynamics in this model. For small λD/z̃ each
particle oscillates around its initial position with the Debye frequency although this system is
not a neutral plasma.
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