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Abstract. Monte-Carlo sampling of two dimensional correlated variables (with non zero
covariance) has been carried out using an extended alias technique which was originally proposed
by A. J. Walker to sample from an one dimensional distribution. Although, the method has
been applied to a correlated two dimensional Gaussian data sample, it is quite general and can
easily be extended for sampling from a multidimensional correlated data sample of any arbitrary
distribution.

1. Introduction
Monte-Carlo technique enables one to generate random samples from distributions with known
characteristics and helps to make probability based inferences of the underlying physical
processes. Simulation codes based on Monte-Carlo techniques have become an important aspect
in science, technology and business. Fast and efficient Monte-Carlo particle transport code
particularly for high energy nuclear and particle physics experiments has become an important
tool starting from the design and fabrication of detectors to the modeling of the physics
outcome as close as the reality. Quite often Monte-Carlo simulations require multivariate
random numbers to be generated from correlated data both from normal and non-normal
distributions. Although several techniques exist for multivariate correlated samplings of varying
degrees of success, the most practical method is the technique that uses the principal component
analysis (PCA) of the given correlation matrix for generating multivariate random numbers with
specified inter-correlations. In case of multivariate correlated Gaussian, the distribution can be
transformed to a different orthogonal basis using PCA technique[1]. After PCA transformation,
the new distribution function can be expressed as the product of n independent Gaussian
distributions with variance λi where λis are distinct eigenvalues of the original covariance matrix
C. Monte-Carlo sampling is then carried out independently to build the normal random vector
Y = (y1, y2...yn)T with variance λi which can finally be transformed to the original vector
X = (x1, x2...xn)T with mean µx = E{X} through the relation X = ATY + µx. Here A is the
matrix consists of eigenvalue vectors of the covariance matrix C. While the above component
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analysis is suitable for multivariate normal distribution, it fails when the distribution is non-
Gaussian. Alternate methods have also been proposed for non-Gaussian multivariate analysis
which requires knowledge of higher order moments like skewness and kurtosis in addition to
mean and variance [2] thus adding further computational complexity. In this work, we propose
an extended alias sampling which was originally proposed by A. J. Walker in 1977 [3] to sample
from an one dimensional distribution. This method is quite simple to implement and reproduces
the original distribution well (verified through chi-square, co-variance and Kolmogorov-Smirnov
goodness fit tests). This method is also quite robust and is applicable to all type of multivariate
distribution irrespective of whether the distribution is Gaussian or Non-Gaussian.

Although this method is quite general and can be applied to any dimensions, in this work we
have restricted only to two dimensions. The motivation behind this study has been to develop a
ROOT based Monte-Carlo application package for low energy neutron transport (down to a few
keV) using data from ENDF (Evaluated Nuclear Data File) which is available in ROOT format
(for detail on ROOT, refer CERN web page). Work is in progress to apply this new method of
alias technique to data set where the angle and energy distributions of neutron emissions are
correlated.

2. The alias sampling
Theoretically any random variable x ε (a, b) with probability density p(x) satisfying∫ b

a
p(x)dx = 1 (1)

and cumulative probability density,

Q(x) =

∫ x

a
p(x′)dx′ (2)

can be sampled using the inverse function method which gives,

x = Q−1(u) (3)

where u is a random number uniformly distributed in the interval [0, 1]. Numerically, Q−1(u) can
be divided into N equal probable intervals. Sampling is carried out by selecting a bin randomly
between 1 and N with equal probability 1/N and with bin number, j = Nu1 + 1 and then
randomly selecting a value within the bin with an uniform probability x = (1− u2)xj+1 + u2xj
where u1 and u2 are random numbers uniformly distributed between 0 and 1. This method is
known as Equal Probable Bin (EPB) method which is quite fast and has been adopted in most
of the Monte-Carlo programs.

However, it is inaccurate as much of the original distribution is lost by the necessary
assumption of uniform likelihood within each bin. Another popular method is alias sampling
which is as fast as the equal probable bin and can be made as accurate as table look up.
Initially, it was proposed by A. J. Walker in 1977 to sample from a discrete data set [3] which
was subsequently modified to generate continuous distribution through the technique known as
linear alias sampling [4].

2.1. Alias sampling for discrete distributions
The alias method described by Walker, generates random variables from any discrete distribution
with a definite number of outcomes. The alias method very closely resembles the rejection
method of generating discrete random numbers, however instead of rejecting a number, a number
is either accepted or it is replaced with its alias value (defined later) . The alias technique works
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by constructing an alias table for a given distribution. Consider we are given a distribution
describing the probability of occurrence of N discrete events. The alias technique converts this
distribution to a distribution of N separate events which occur with the equal probability of
1
N . Each of these events Ei consists of two possible outcomes, the standard outcome xi with
probability pi and the alias outcome Λi with the probability of it’s occurrence Πi.

As suggested by Walker, we construct this table by considering any two events with
probabilities such that one is more and other is less than the average likelihood 1

N . In the
following, we give an example which has been adopted from [4]. Consider a data set having
N(= 6) discrete tabulated probability values pi such that

∑
pi = 1 (see table 1 below). The

first and second column of the table 1 show the original value of i (in case i represents a bin
number, xi represents the bin content) and it’s normalized probability pi. In Walker’s notation,
i and pi are called non-alias outcome and probability. In this example, the average likelihood
value is 1/6 = 0.1667. Consider two non-alias events i = 1 and i = 2. The probability of event
2 is less from the average by an amount 0.1667 − 0.08 = 0.0867 which is subtracted from the
probability of event 1 to get a new probability 0.24−0.0867 = 0.1533. The alias probability Π is
then calculated by multiplying N with 0.08 i.e to the probability of event 2 that gives Π = 0.48.
The corresponding alias outcome Λ is taken as 1 which is the donor event (reduced by donating
a value 0.0867). Thus, in the first step, we get alias outcome Λ = 1 corresponding to the alias
probability Π = 0.48. The corresponding non-alias outcome i and probability pi are 2 and
0.08 respectively. Next, event 2 is removed from the table and the second iteration begins with
remaining events (except 2) with event 1 replaced by the reduced probability of 0.1533. The
process continues and gets completed after six iterations (see appendix for remaining iterations).
The third and fourth column of table 1 show the alias outcome Λi and alias probability Πi

obtained after six iterations.
The outcome is sampled by first randomly selecting an equal probable event i,

i = dNu1 + 1e, (4)

where u1 is an uniform random number between [0, 1]. The method then compares a second
uniform random number u2 against the alias probability to select either the alias or non-alias
event. If u2 ≤ Πi, then non-alias event i is chosen. Otherwise an alias event Λi is selected. Note
that in case of i (or Λi) represents a bin number, the bin content x is selected by,

x =

{
x[i] if u2 ≤ Πi

x[Λi] otherwise
(5)

Table 1. The alias table, as an example.

i pi Λi Πi

1 0.24 3 0.92
2 0.08 1 0.48
3 0.28 3 1.0
4 0.12 3 0.72
5 0.12 3 0.72
6 0.16 3 0.96

ACAT 2011 IOP Publishing
Journal of Physics: Conference Series 368 (2012) 012045 doi:10.1088/1742-6596/368/1/012045

3



2.2. Alias sampling for continuous distributions
Though the above method is meant to generate random variables which has a discrete
distribution, it can be extended to sample continuous probability densities as well [4]. Given a
probability distribution function y(x), we estimate the discrete tables through the integral,

Fi =

xi+1∫
xi

y(x) dx (6)

We now construct the alias table for the discrete distribution (i, Fi) and carry out alias sampling
using the set [Fi] as discussed above which results in an interval [xi, xi+1]. Assuming that the
distribution is piece-wise linear, a third uniform random number u3 (between [0, 1]) is used to
estimate x1 and x2 given by,

x1 = (1− u3)xi + u3xi+1 (7)

x2 = u3xi + (1− u3)xi+1 (8)

Using a fourth uniform random number u4, we generate the required random variable x,

x =

{
x1 if u4(yi + yi+1) ≤ (1− u3)yi + u3yi+1

x2 otherwise
(9)

Thus, it can be noticed that the EPB method requires two random numbers where as the
alias sampling requires four random numbers. Another difference is that the alias method stores
two tables Π and Λ. Although extra storage requirement is a disadvantage as compared to EPB
method, the linear alias method is easy for numerical implementation. This alias technique can
also be used for interpolation between two tabulated discrete data sets [5].

In the following, we carry out a comparative study using both EPB and linear alias samplings.
As an example, we have considered RENDF/B-VI, file 5 for LF=1 which gives the secondary
neutron energy probability distribution as an arbitrary tabulated probability. We select the
reaction MT=91 for neutron interacting with 238U via inelastic continuum reaction. Figure 1
shows a typical sampling at En = 8 MeV and figure 2 shows the similar plot at En = 15 MeV
using both EPB and alias samplings. The filled circles (blue color) are the ENDF tabulated
data points. The red curve is the result of EPB samplings which divides the entire range into
25 equal probable bins of width 0.04 each. The blue curve is the result of linear alias sampling
which passes exactly though the data points which is by construction. However, in between
two data points, a linear alias sampling is carried out as discussed before. If the curve is linear
interpolable between two data points, the linear alias sampling will give accurate result. On the
other hand, the EPB sampling will not be able to reproduce the distributions if the rise is very
fast (see figure 1(b) on log scale) or the distribution has long tail.

2.3. A 2D correlated alias sampling
We have extended the above alias technique to sample from a multi dimensional correlated data
set. To demonstrate how it works, we consider a correlated two dimensional Gaussian given by,

f(x, y) = e−[(x−x0)
2+(y−y0)2+α(x−x0)(y−y0)]/σ2

(10)

The above function is uncorrelated Gaussian when α = 0.0 and can be written as the product
of two independent Gaussian. However for non-zero value of α, the above function can not
be factorized. This corresponds to a situation when co-variance is non zero. Therefore, we
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Figure 1. (a) The probability dis-
tribution of the out going neutron
of the reaction n +238 U → n′+238

at 8 MeV. The data points (blue
filled circles) are taken from ENDF
data file. The red curve is obtained
using EPB samplings where as the
blue curve is due to linear alias sam-
pling. (b) Same as (a), i.e. prob-
ability per eV versus energy, but
shown on log scale. The sampling
has been carried out using 10E7
events.
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Figure 2. The probability distri-
bution of the out going neutron of
the reaction n +238 U → n′+238

at 15 MeV. The data points (blue
filled circles) are taken from ENDF
data file. The red curve is obtained
using EPB samplings where as the
blue curve is due to linear alias sam-
pling. The sampling has been car-
ried out using 10E7 events.

have proposed a new sampling scheme based on the alias technique as described below. In this
example, we generate 100 discrete data points p[i][j] corresponding to i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
and j = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 for discrete sampling. First, we choose a row in random based on
the distribution px[i] (using alias technique) where px[i] =

∑
j p[i][j]. Once the row I is chosen

the corresponding j values are chosen depending on the distribution p[I][j]. In the present work,
we have considered alias sampling as this method helps to get back the original distribution at
each input points. So we can carry out χ2 , covariance and Kolmogorov-Smirnov (K-S) test
to study the quality of the sampling. It can be mentioned here that other methods like equal
probability bin can also be implemented with this algorithm.

Figure 3 shows the original and generated distributions after sampling n = 106 events for
α = 1.0.

We define χ2 as

χ2 =
1

N

∑[
p[i][j]− g[i][j]

p[i][j]

]2
, (11)

where g is the sampled distribution over the N data points. In addition to the χ2 test, we carry
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Figure 3. The comparison between
actual inputs (circles) and generated
data (shown as continuous line) using
alias sampling for α = 1.0. The X and
Y axes are bin numbers (0-9) whereas
the height represents the normalized
probability distribution of the correlated
Gaussian as described in the text.

out co-variance test which is defined as,

σxy =
1

n

∑
(x− x̄)(y − ȳ) (12)

We have also carried out goodness of fit test using similar procedure as that of K-S (one sample
test) where we compute the maximum absolute difference Dn of the observed and expected
cumulative distribution functions (cdf) Fo(i) and Fe(i),

Dn = max|Fno (i)− Fe(i)|. (13)

where cdfs Fno (i) and Fe(i) are given by,

Fno (i) =
1

n

n∑
j=1

Ij≤i Fe(i) =

i∑
j=0

p[i]. (14)

In the above, Ij≤i is the indicator function equal to 1 if j ≤ i and equal to zero otherwise [6].
Note that since our data set is discrete, we estimate the cdfs at each bin i. As a goodness of fit,
we expect Dn → 0 when n→∞. Thus, χ2 test makes the comparison using the two pdfs where
as Dn test is done using cdfs.

Table 2. The table for χ2 test using TRandom3 of ROOT package, N = 100 is the number
of data points and n is the sample size. The parameters of the Gaussian are x0 = y0 = 5 and
σ2 = 4.

α χ2/N, n = 102K χ2/N, n = 103K χ2/N, n = 104K

0.0 0.1449 0.0328 0.0032
1.0 0.512 0.112 0.034
2.0 0.38 0.418 0.108
3.0 1.453 0.266 0.491
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Table 3. The table for Dn test using TRandom3 of ROOT package, N = 100 is the number
of data points and n is the sample size. The parameters of the Gaussian are x0 = y0 = 5 and
σ2 = 4.

α Dn, n = 102K Dn, n = 103K Dn, n = 104K

0.0 1.8E-3 6.5E-4 4.0E-4
1.0 1.6E-3 1.2E-3 3.0E-4
2.0 2.0E-3 7.0E-4 2.5E-4
3.0 1.0E-3 7.4E-4 2.9E-4

The tables 2 and 3 show the χ2 and Dn values for several α with different sample size n. The
decreasing values of χ2 and Dn with increasing sample size indicate that the method is working
well. Please note that for a given sample size n, the dependence of both χ2 and Dn on α is bit
erratic. This should not be interpreted as the failure of the method as with increasing α, the
tail of the distribution decreases sharply and the sample size needs to be increased accordingly
for meaningfull comparison. For example, the ratio of the lowest to highest probability becomes
as low as 10−5 when α = 0 and 10−12 when α = 3. Therefore, for statistical comparisons as a
function of α, the sample size should be at least 1012 and more. Table 4 shows the co-variance
test of the actual inputs versus the sampled outputs. The second and third columns show the
input variance and co-variance whereas the fourth and fifth columns show the corresponding
sampled variances which are in good agreement.

Table 4. The table for co-variance test using TRandom3 of ROOT package, N = 100 is the
number of data points and n is the sample size which is fixed at 100K. The parameters of the
Gaussian are x0 = y0 = 5 and σ2 = 4.

α σ2 σ2xy σ2 σ2xy

0.0 1.985 -3.32E-17 1.977 -0.0008
1.0 2.579 -1.264 2.569 -1.255
2.0 6.856 -5.968 6.845 -5.978
3.0 16.30 -15.94 16.31 -15.94

3. Conclusion
In conclusion, we have carried out alias sampling from a discrete data set generated using a
two dimensional correlated Gaussian distribution. In case of multivariate correlated Gaussian
distribution, principal component analysis is a well known technique quite often used for Monte-
Carlo samplings, although the method fails when distribution is strongly non-Gaussian. The
present alias sampling is definitely not a superior method as compared to PCA, but quite robust
and convenient for numerical implementation. It may be mentioned here that unlike PCA
method, this alias technique is quite general and can be applied to any data set irrespective
of whether the distribution is Gaussian or non-Gaussian. At present, our approach is confined
only to two dimensional discrete sampling. Work is in progress to extend this method to higher
dimensions and also to generate continuous distributions using linear alias principle.
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Appendix
For the computer implementation, consider the following probability distribution (for N=6):

{p/i} = {0.24/1, .08/2, 0.28/3, 0.12/4, 0.12/5, 0.16/6}

Consider any two events having probability greater and smaller than 1/N = 0.1667 (say events
1 and 2). Event 2 is less by an amount .0867 from the average which can be subtracted from
event 1 (.24− .0867 = 0.1533). Thus, in the step 1, the original distribution is updated to:

{p/i} = {0.1533/1, 0/2, 0.28/3, 0.12/4, 0.12/5, 0.16/6}

with alias representation,

{Π/Λ} = {−, 0.48/1,−,−,−,−}

In the above, the alias probability Π has been estimated by multiplying N to the original
non alias probability 0.08 and the alias outcome Λ is the donor event 1 whose probability is
reduced to 0.1533. Next, we can consider events 1 and 3. Since event 1 is less by an amount
of 0.0134 from the average which can be subtracted from event 3. Thus, in step 2 the updated
distributions become

{p/i} = {0/1, 0/2, 0.2667/3, 0.12/4, 0.12/5, 0.16/6}

with alias representation,

{Π/Λ} = {0.92/3, 0.48/1,−,−,−,−}

Like before, the alias probability is N times 0.1533 with alias outcome 3. w
Next consider events 3 and 4. The updated distributions in step 3 now becomes

{p/i} = {0/1, 0/2, 0.22/3, 0/4, 0.12/5, 0.16/6}

with alias representation,

{Π/Λ} = {0.92/3, 0.48/1,−, 0.72/3,−,−}

Next consider events 3 and 5. The updated distributions in step 4 now becomes

{p/i} = {0/1, 0/2, 0.1733/3, 0/4, 0/5, 0.16/6}

with alias representation,

{Π/Λ} = {0.92/3, 0.48/1,−, 0.72/3, 0.72/3,−}

Next consider events 3 and 6. The updated distributions in step 5 now becomes

{p/i} = {0/1, 0/2, 0.1667/3, 0/4, 0/5, 0/6}

with alias representation,
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{Π/Λ} = {0.92/3, 0.48/1,−, 0.72/3, 0.72/3, 0.96/3}

Finally, in the 6th step, the updated distribution becomes

{p/i} = {0/1, 0/2, 0/3, 0/4, 0/5, 0/6}

with alias representation,

{Π/Λ} = {0.92/3, 0.48/1, 1.0/3, 0.72/3, 0.72/3, 0.96/3}

Note that the above representation is not unique, there can be different non-alias/alias
representation Π/Λ depending on how the iteration is carried out.
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