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Abstract. We perform a non-perturbative analysis of the strong interaction
between gapless nodal fermions and the nematic order parameter in two-
dimensional dx2−y2 superconductors. We predict that the critical nematic
fluctuation can generate a dynamical nodal gap if the fermion flavor N is smaller
than a threshold Nc. Such gap generation leads to an additional is-wave Cooper
pairing instability, which induces a fully gapped dx2−y2+ is superconducting
dome in the vicinity of the nematic quantum critical point. The opening of a
dynamical gap has important consequences, including the saturation of fermion
velocity renormalization, a weak confinement of fermions and the suppression
of observable quantities.
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1. Introduction

One of the most prominent properties of high-Tc copper-oxide superconductors is that
they exhibit a number of long-range orders upon changing the chemical doping, such as
antiferromagnetism, superconductivity, stripe, nematic state and so on. The competition and
coexistence between the superconductivity and other long-range orders are believed to be
fundamental issues in the study of high-Tc superconductors. Among the orders that are in
competition with the superconductivity, the nematic order, which spontaneously breaks C4

symmetry down to C2 symmetry, has attracted special theoretical and experimental interest in
the past decade [1–5].

In recent years, strong anisotropy in the electronic properties has been observed in
various experiments performed on YBa2Cu3O6+δ [6–8] and Bi2Sr2CaCu2O8+δ [9]. Such strong
anisotropy is universally attributed to the formation of an electronic nematic state [3, 4] in
these two high-Tc superconductors. It is very interesting to notice that similar nematic states
have also been observed in a list of other correlated electron systems, including an iron-based
superconductor [10], a heavy fermion superconductor [11], an Sr3Ru2O7 superconductor [12]
and even in the semiconductor heterostructure [13].

Motivated by the observed strong electronic anisotropy in high-Tc superconductors,
many researchers anticipate the existence of a nematic quantum phase transition in these
systems [14–20]. Such nematic transitions and the associated nematic critical behaviors have
been investigated extensively recently [14–20]. It is well-known that high-Tc superconductors
have a dx2−y2 energy gap, which vanishes linearly at four nodal points (± π

2a ,±
π

2a ). Due to
this special property, gapless nodal quasiparticles (qps) exist in the superconducting state
even in the low-energy regime. If a nematic phase transition occurs in the superconducting
dome, the fluctuation of the nematic order parameter couples to the gapless nodal qps. This
coupling becomes singular at the nematic quantum critical point (QCP) and can lead to unusual
behaviors [14–20].

Vojta et al [21, 22] first analyzed the effective field theory of the coupling between the
nematic order and nodal qps by means of a ε = 3 − d expansion and found runaway behavior.
Later, perturbative expansion in powers of 1/N with N being the fermion flavor has been
extensively applied to address this issue [14–20]. For instance, Kim et al [14] revealed a second-
order nematic phase transition after performing a large-N analysis. More recent renormalization
group calculations of Huh and Sachdev [15] found a novel fixed point that exhibits extreme
fermion velocity anisotropy. Subsequent studies showed that such extreme anisotropy can lead
to a variety of non-trivial properties, such as non-Fermi liquid behavior [16], enhancement of
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the thermal conductivity [17] and a suppression of the superconductivity [19]. The influence of
weak quenched disorders on the nematic QCP was also addressed [18].

We should note that all previous field-theoretic analyses were based on conventional
perturbative expansions [14–19, 21, 22]. The non-perturbative effects have not been seriously
addressed. To illustrate this issue, we now consider the d-wave superconducting state, which has

low-lying elementary excitations with spectrum [23] Ek =

√
(εk −µ)2 +12

k, where the electron

dispersion εk = 2t f

(
cos kxa + cos kya

)
and the d-wave gap 1k =

1
210

(
cos kxa − cos kya

)
. In

the vicinity of the gap node
(
π

2a ,
π

2a

)
, one can linearize the spectrum and obtain Ek =√

v2
Fk2

1 + v2
1k2

2 , where k1 =
(
kx + ky −π/a

)
/
√

2 and k2 =
(
kx − ky

)
/
√

2. The fermion velocity
of nodal qps is defined as v1 = ∂1k/∂k and the gap velocity vF = ∂εk/∂k. For the other three
nodes, the linearization can be performed analogously. In this formalism, one starts from the
following free fermion propagator:

G0(ω,k)=
1

−iω + vFk1τ z + v1k2τ x
, (1)

where τ x,z are two standard Pauli matrices, and then one perturbatively calculates the fermion
self-energy 6(ω,k) induced by the interaction with nematic fluctuation. Generically, 6(ω,k)
can be expanded as

6(ω,k)= −i60ω +61vFk1τ
z +62v1k2τ

x , (2)

where the functions 60 and 61,2 are the temporal and spatial components respectively. The
fermion damping effect is encoded in 60 [14], whereas the velocity renormalization can be
obtained from 60,1,2 [15]. However, in principle there could be a fourth term, mτ y , which is
defined by the third Pauli matrix τ y and corresponds to a non-zero mass gap term of the nodal
qps. This mass term can never be obtained to any finite order of the perturbative expansion
of fermion self-energy, but may be dynamically generated if one performs non-perturbative
calculations.

Another motivation for studying the non-perturbative effects is to examine the validity of
the 1/N expansion. When performing the standard perturbative expansion in powers of 1/N ,
the flavor N is usually supposed to be quite large [14–19]. However, in this nematic problem, the
physical flavor of nodal qps is N = 2, determined by the spin degeneracy. It is very interesting,
and even necessary, to go beyond the perturbative 1/N expansion and testify whether the non-
perturbative effects give rise to any non-trivial phenomena that cannot be captured by the usual
perturbative calculations.

In this paper, we study dynamical gap generation of originally gapless nodal qps
due to nematic fluctuation by means of non-perturbative expansion. With the help of the
Dyson–Schwinger (DS) equation that connects the free and complete propagators of nodal qps,
we obtain a nonlinear gap equation of the fermion mass m in the vicinity of the nematic QCP.
After solving this equation, we find that a non-zero mass gap, mτ y , is dynamically generated
when the fermion flavor N is below certain critical value Nc, i.e. N < Nc. We demonstrate
that the dynamical gap m induced by the nematic order corresponds to a secondary is-wave
Cooper pairing formation; so the critical nematic fluctuation drives a transition from a pure
dx2−y2 superconducting state to a dx2−y2+ is superconducting state in the vicinity of the nematic
critical point. As a consequence, the superconducting state is fully gapped and the massive
nodal qps are weakly confined by a logarithmic potential. Moreover, the dynamical gap leads to
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the saturation of the fermion velocity renormalization and a strong suppression of some of the
observable quantities.

The rest of the paper is organized as follows. In section 2, we perform a non-perturbative
analysis by means of the DS equation method and examine whether a dynamical gap can be
generated by the critical nematic fluctuation. In section 3, we discuss the physical implications
of dynamical gap generation. In section 4, we briefly summarize our results and comment on
two interesting issues concerning the validity of 1/N expansion and disorder effects.

2. Non-perturbative calculations and gap generation

The effective low-energy model describing the coupling between the nematic order and
the gapless nodal qps has already been derived and extensively studied in previous
publications [14–19]. This effective model is composed of the following three parts [14–19]:

S = Sψ + Sφ + Sψφ. (3)

The free action for the nodal qps is

Sψ =

∫
d2k
(2π)2

dω

2π
9

†
1σ (−iω + vFk1τ

z + v1k2τ
x)91σ

+
∫

d2k
(2π)2

dω

2π
9

†
2σ (−iω + vFk2τ

z + v1k1τ
x)92σ . (4)

Here, the nodal qps are described by Nambu spinors 91,2, defined as 91σ = ( f1σ , εσ,−σ f †
3−σ )

T

and 92σ = ( f2σ , εσ,−σ f †
4−σ )

T, where εσ,−σ = −ε−σ,σ with spin indices σ,−σ . The four fermion
operators f1, f2, f3 and f4 represent gapless nodal qps excited from four nodal points

(
π

2a ,
π

2a

)
,(

−
π

2a ,
π

2a

)
,
(
−

π

2a ,−
π

2a

)
and

(
π

2a ,−
π

2a

)
, respectively. The fermion flavor is determined by the spin

degeneracy, so apparently N = 2.
The action for the nematic order parameter φ takes the standard form,

Sφ =

∫
d2x dτ

[
1

2
(∂τφ)

2 +
c2

2
(∇φ)2 +

r

2
φ2 +

u

4!
φ4

]
, (5)

where φ is a real scalar field since the nematic transition is accompanied by a discrete symmetry
breaking (i.e. Ising-type). The interaction between the gapless nodal qps and the nematic order
parameter is described by a Yukawa coupling term [21, 22]

Sψφ =

∫
d2x dτ {λφ(9†

1στ
x91σ +9†

2στ
x92σ )}, (6)

where λ is the coupling constant.
According to the standard perturbation theory, one would make a perturbative expansion

in the powers of the coupling constant λ. However, as revealed by the renormalization group
analysis of [21, 22], λ tends to diverge in the low-energy region and there is no stable fixed
point. It turns out that λ is not an appropriate expanding parameter in this interacting system.
It was later realized that a reasonable route to access such model is to fix the parameter λ at a
certain finite value [14, 15, 24] and then to perform a perturbative expansion in powers of 1/N .

In order to carry out analytical calculations, it is convenient to assume a general fermion
flavor N . The free propagator of the nodal qps is

G0
91σ
(ω,k)=

1

−iω + vFk1τ z + v1k2τ x
(7)
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Figure 1. (a) Dynamical screening of the propagator of the nematic order
parameter; (b) DS equation of the fermion propagator. For simplicity, the vertex
corrections are not included.

for 91σ and

G0
92σ
(ω,k)=

1

−iω + vFk2τ z + v1k1τ x
(8)

for 92σ , respectively. The free propagator of the nematic order parameter is

D0(�,q)=
1

�2 + q2 + r
. (9)

Due to the coupling between the nematic fluctuation and the nodal qps, the nematic propagator
can be dynamically screened, as shown in figure 1(a) and becomes

D(�,q)=
1

D−1
0 (�,q)+5(�,q)

=
1

�2 + q2 + r +5(�,q)
, (10)

where 5(�,q) is the polarization function. To the leading order of the 1/N expansion, the
polarization function is given by

5(�,q)= λ2
N∑
σ=1

∑
i=1,2

∫
d2k
(2π)2

dω

2π
Tr
[
τ x G0

9iσ
(ω,k)τ x G0

9iσ
(ω +�,k + q)

]
. (11)

After straightforward calculations, it is easy to get

5(�,q)=
Nλ2

16vFv1

�2 + v2
Fq2

1

Q1
+ (q1 ↔ q2), (12)

where Q1 =
√
�2 + v2

Fq2
1 + v2

1q2
2 . This polarization is linear in |q| and dominates over the kinetic

term q2 at low energies. We can drop the q2 term and write the effective nematic propagator as

D(�,q)=
1

r +5(�,q)
. (13)

The free fermion propagator also receives corrections due to its coupling with the
nematic fluctuation. After including these corrections, the complete propagator of 91σ takes
the following general form:

G91σ (ω,k)=
1

−iωA0 + vFk1 A1τ z + v1k2 A2τ x + mτ y
, (14)

where A0,1,2 are wave-function renormalizations and m ≡ m(ω, k1, k2) is a fermion gap.
The mass gap term cannot be generated so long as the fermion self-energy is calculated
perturbatively using the free fermion propagator G0(ω,k). To examine the possibility of
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dynamical gap generation, we should go beyond the perturbative level and instead utilize the
following self-consistent DS equation:

G−1
91σ
(ε,p)=

[
G0
91σ
(ε,p)

]−1
−61σ (ε,p), (15)

where the self-energy is computed as follows:

61σ (ε,p)= λ2

∫
dω

2π

d2k
(2π)2

τ x G91σ (ω,k)τ x 1

r +5(ε−ω,p − k)
. (16)

Notice that the non-perturbative feature of this approach is reflected in the fact that the
complete fermion propagator is used in the right-hand side of equation (16). After substituting
equation (14) into the DS equation, one can derive four self-consistently coupled equations
of A0,1,2 and m. Generically, the equations of A0,1,2 can be expanded in the form: A0,1,2 =

1 +O(1/N ). To the leading order of 1/N expansion, we assume that A0 = A1 = A2 = 1 and
ignore all higher order corrections. To the leading order, the gap equation is given by

m(ε, p1, p2)= λ2

∫
dω

2π

d2k
(2π)2

m(ω, k1, k2)

ω2 + v2
Fk2

1 + v2
1k2

2 + m2(ω, k1, k2)

1

r +5(ε−ω,p − k)
. (17)

If this equation has only the vanishing solution, m = 0, then the nematic fluctuation cannot
open any gap. A fermion gap is dynamically generated once this equation develops a non-
trivial solution, i.e. m 6= 0. In contrast, if the free fermion propagator G0

91σ
(ε,p) is substituted

into equation (16), one would obtain the usual perturbative results of the fermion self-energy.
In such a case, no dynamical fermion gap can be generated even after including higher order
corrections, i.e. m ≡ 0.

We now attempt to solve the complicated nonlinear equation (17). Due to the anisotropic
nature of nematic fluctuation, the integrations over ω, k1 and k2 have to be performed separately,
which greatly increases the difficulty of the numerical computations. For simplicity, here we
consider the isotropic limit, vF = v1. In this case, the dynamical gap becomes m(ε, |p|) and the
polarization is simplified to

5(�,q)=
Nλ2

16v2
F

2�2 + v2
F|q|

2√
�2 + v2

F|q|2
. (18)

We first consider the nematic QCP and take r = 0. In this special case, the pre-factor λ2 on
the right-hand side of equation (17) cancels exactly the factor λ2 appearing in the polarization
function, 5(ε−ω,p − k), so the gap equation becomes

m(ε, |p|)=
1

N

∫
dω

2π

d2k
(2π)2

m(ω, |k|)

ω2 + v2
F|k|2 + m2(ω, |k|)

16v2
F

√
(ε−ω)2 + v2

F|p − k|2

2(ε−ω)2 + v2
F|p − k|2

. (19)

This gap equation is independent of λ and the critical point of dynamical gap generation is
therefore solely determined by the flavor N . After numerical computations, we find a critical
fermion flavor Nc ≈ 2.4 at r = 0. The nodal qps remain gapless, m = 0, when N > Nc, but
acquire a non-zero dynamical gap, m 6= 0 when N < Nc. Figure 2(a) presents the dependence
of the static gap m(ω = 0,k = 0) on flavor N . It is clear that the dynamical gap decreases very
rapidly as flavor N grows and vanishes continuously as N → Nc.

It is also interesting to examine how the tuning parameter r of the nematic transition affects
the dynamical gap generation. Actually, if we move away from the nematic QCP, r becomes
finite and the nematic fluctuation is no longer critical. For r 6= 0, the coupling parameter λ
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Figure 2. (a) Relationship between dynamical gap m(0, 0) and fermion flavor
N at nematic QCP, r = 0; (b) dependence of m(0, 0) on tuning parameter r for
N = 2. The dynamical gap is destroyed once r exceeds a certain critical value rc.

cannot be exactly canceled, but one can absorb it into r by taking r → r/λ2. We find that the
dynamical gap is significantly suppressed by a growing r and completely destroyed once r
exceeds a certain critical value rc, which is shown in figure 2(b). We therefore conclude that the
dynamical gap generation is mediated by the critical fluctuation of the nematic order parameter
and exists only in the vicinity of the nematic QCP.

3. Physical implications of the dynamical gap

The dynamically generated gap for gapless nodal qps can result in a series of non-trivial physical
consequences. In this section, we will discuss the physical implications of the dynamical gap.

Once a non-zero dynamical gap m is generated for the originally gapless nodal qps, there
will be an extra term that should be added to the Hamiltonian:

Hm =

∫
d2k
(2π)2

{m(9†
1στ

y91σ +9†
2στ

y92σ )}

=

∫
d2k
(2π)2

{
im
[(

f †
3↓

f †
1↑

+ f3↓ f1↑

)
+
(

f †
1↓

f †
3↑

+ f1↓ f3↑

)
+ (1 ↔ 2, 3 ↔ 4)

]}
.

(20)

One can immediately identify that such a dynamically generated term corresponds to the
formation of singlet Cooper pairs between the gapless nodal qps excited from opposite nodes.
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AFM

Nematic

d−SC

(d+is)−SC

Tc

xxcx0

T

Figure 3. Schematic phase diagram. xc denotes the nematic QCP. The
shadowed region around xc represents the emergent fully-gapped dx2−y2+ is
superconducting dome within a much larger, pure dx2−y2 superconducting dome.

We therefore have obtained a secondary, nematic-order driven, is-wave superconducting
instability on top of the pure dx2−y2 superconductivity.

As already pointed out, this dynamical gap is opened only when r is zero or very small and
is rapidly destroyed as r increases, which implies that the secondary is-wave superconductivity
is achieved only in the close vicinity of the nematic QCP. Upon approaching the nematic QCP,
there is a zero-temperature phase transition from a pure dx2−y2 superconducting state to a fully
gapped dx2−y2+ is superconducting state. At finite temperature, T 6= 0, the critical nematic
fluctuation is weakened strongly due to the thermal screening effects, hence the dynamical
nodal gap cannot survive at high temperatures. According to these analyses, we now can
infer that a small dx2−y2+ is superconducting dome emerges around the nematic QCP, which
is schematically shown in figure 3. It is interesting to notice that such a nematic fluctuation-
driven superconducting dome is analogous to the fact that it is formed on the border of an
antiferromagnetic QCP in the contexts of some heavy fermion compounds [25, 26]. We also
notice that the non-perturbative effects of coupling between the nodal qps and the fluctuating
order parameter have been investigated in a physically different context [27].

We next discuss the effects of a non-zero dynamical gap on a number of quantities. First
of all, we consider the classical potential between the nodal qps. For simplicity, let us assume a
constant gap m, which yields a new polarization

5(q, �)=
Nλ2

2πvFv1

�2 + v2
Fq2

1

Q1

[
1

2

m

Q1
+

(
1

4
−

m2

Q2
1

)
arcsin

(
Q1√

4m2 + Q2
1

)]
+ (q1 ↔ q2). (21)

In the low energy limit, it takes the simplified form

5(q, �)≈
Nλ2

12πvFv1m
(2�2 + v2

F|q|
2). (22)
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Figure 4. Momentum dependence of fermion velocities vF,1(k) and velocity
ratio δ(k)= v1(k)/vF(k). Here, vF,1 and δ are bare values of the corresponding
quantities. Blue solid line: δ = 1 and m = 0; red Solid line: δ = 0.1 and m =

0; blue dashed line: δ = 1 and m/vF3= 10−6; red dashed line: δ = 0.1 and
m/vF3= 10−6.

Using this simplified polarization, it is easy to obtain an effective potential

V (R)∝

∫
d2q
(2π)2

eiq·R

5(q)

∝
6v1

Nλ2vF
m ln(m R) (23)

between two massive fermions [28]. This potential grows logarithmically as the distance
R increases, so the gapped fermions are weakly confined. Such a gap-induced fermion
confinement is similar to that in the physically analogous theory of QED3 [28].

When the nodal qps are massless, their velocities are renormalized by the nematic
fluctuation and thus become strongly momentum-dependent,

vF,1 → vF,1(k). (24)

The expressions of the renormalized velocities vF,1(k) are quite complicated and therefore
are not shown here, but can be easily found in [15, 18]. Both vF(k) and v1(k) vanish as
k → 0. However, v1(k) vanishes much more rapidly than vF(k), leading to the so-called extreme
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velocity anisotropy [15–19]

δ(k)=
v1(k)

vF(k)
→ 0. (25)

Nevertheless, once a finite fermion gap m is opened, there is no longer a strong renormalization
of velocities. As shown in figure 4, the velocities vF,1 are still k-dependent and decrease with
decreasing k at high energies, but saturate to finite values once k is smaller than the scale set
by m. Therefore, the singular velocity renormalization and the extreme anisotropy are both
prevented by the fermion gap m.

The dynamical fermion gap has an important impact on a number of observable quantities.
For example, the density of state of the nodal qps is linear in energy, ρ(ω)∝ |ω|, when m = 0,
but becomes ρ(ω)∝ |ω|θ (|ω| − m) when m 6= 0, which vanishes for |ω|< m. Accordingly,
the specific heat of the nodal qps is strongly suppressed as CV (T )∝ m4 exp(−m/T )/T 2 in
the low-temperature region of T � m. Furthermore, the low temperature dc thermal con-

ductivity at finite m is known to have the form [29], κ

T =
k2

B
3

(
vF
v1

+ v1
vF

)
02

02+m2 , where 0 is the

impurity scattering rate. In the massless limit, m = 0, the thermal conductivity is a constant,
κ

T =
k2

B
3

(
vF
v1

+ v1
vF

)
, which is finite and impurity independent [23]. In contrast, once a fermion

gap is generated, the thermal conductivity is suppressed by the finite m.
Finally, notice that the nematic state is indeed equivalent to a superconducting state with

dx2−y2 + s gap, which was pointed out in [21, 22]. Therefore, in the vicinity of a QCP between a
pure dx2−y2 superconducting state and a dx2−y2 + s superconducting state, the singular fluctuation
of the s-wave order parameter can also lead to a fully gapped dx2−y2+ is superconducting state,
provided that the flavor N of the nodal qps is smaller than the corresponding critical value Nc.

4. Summary and discussions

In summary, we performed non-perturbative analyses within an effective field theory of the
strong interaction between the critical nematic fluctuation and the nodal qps in the context of
d-wave HTSCs. We propose that a dynamical gap may be generated for the originally gapless
nodal qps in the vicinity of the nematic QCP. Such gap generation is driven by the critical
fluctuation of the nematic order parameter and corresponds to an additional is-wave Cooper
pairing instability. In the vicinity of the nematic QCP, there will be a small emergent dx2−y2+ is
superconducting dome. We also discuss the physical implications of the dynamically generated
gap and show that such a gap leads to the weak confinement of the nodal qps, the saturation of
velocity renormalization and the strong suppression of several observable quantities.

According to our results, it turns out that the fermion flavor N is a crucial parameter that
determines the low-energy behaviors caused by the nematic order. A critical value Nc is found to
exist. When N > Nc, the non-perturbative effects of the nematic fluctuation are unimportant, so
one can trust the results obtained by perturbative calculations, such as extreme anisotropy [15]
and other unusual properties [14, 16–20]. However, if N < Nc, the non-perturbative effects
become significant and can drive an additional is-wave superconducting pairing between the
originally gapless nodal qps.

Our leading-order calculations found that Nc ≈ 2.4, which is larger than the physical
flavor N = 2. It would be interesting to study how Nc is quantitatively affected by high order
corrections. In principle, it is straightforward to address this issue by coupling the equations of

New Journal of Physics 15 (2013) 063007 (http://www.njp.org/)

http://www.njp.org/


11

wave function renormalizations A0,1,2 and vertex corrections to the gap equation. Unfortunately,
solving these coupled equations is a highly challenging task because the integrations over three
components of momentum, ω, k1, k2, have to be performed separately due to the non-relativistic
and spatially anisotropic feature of this system. It is quite difficult to get reliable numerical
solutions. We expect that large scale Monte Carlo simulations would be utilized to investigate
this problem and help to determine the precise value of Nc.

Irrespective of whether our Nc is precise or not, a general trend can be deduced from our
results: the conventional perturbative 1/N expansion should be reliable for large N , but it may
fail to capture some of the fundamental features of the strongly interacting model for small N ;
a non-perturbative analysis should be utilized instead. In addition, our prediction of a nematic
order-induced dx2−y2+ is superconducting dome is novel and sheds light on the investigation of
nematic order in correlated electron systems.

In our analysis, we have considered only clean d-wave superconductors and ignored the
disorder effects. The influence of various quenched disorders on the stability of nematic QCP
has been investigated in a recent paper [18]. As shown in this paper [18], the strong coupling
between the critical nematic fluctuation and the gapless nodal qps is actually not affected by
the weak random gauge potential and weak random mass [18]. On the contrary, a random
chemical potential is able to destroy nematic QCP and thus can fundamentally change the
whole picture. However, both these conclusions and the analytical methods used in [18] are
valid only in the particular case that the non-perturbative effects of nematic fluctuation are
unimportant and all the nodal qps are strictly gapless. Once the non-perturbative effect becomes
strong enough to generate a dynamical fermion gap, the influence of disorders might be quite
different. Generically, the dynamical gap generation and disorder scattering can affect each
other [30], so they should be investigated self-consistently, as we have done in a physically
similar context [30]. Nevertheless, this issue is beyond the scope of this paper and should be
addressed in the future. In any case, we believe the results presented in this paper are reliable in
clean d-wave superconductors and have pointed out an interesting new possibility regarding the
exotic effects of the nematic order.
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[26] Stockert O, Kirchner S, Steglich F and Si Q 2012 J. Phys. Soc. Japan 81 011001
[27] Khveshchenko D V and Paaske J 2001 Phys. Rev. Lett. 86 4672
[28] Maris P 1995 Phys. Rev. D 52 6087
[29] Gusynin V P and Miransky V A 2004 Eur. Phys. J. B 37 363
[30] Liu G-Z and Wang J-R 2011 New J. Phys. 13 033022

New Journal of Physics 15 (2013) 063007 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.1152309
http://dx.doi.org/10.1038/nature08716
http://dx.doi.org/10.1038/nature09169
http://dx.doi.org/10.1126/science.1181083
http://dx.doi.org/10.1126/science.1197358
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1103/PhysRevB.65.241313
http://dx.doi.org/10.1103/PhysRevB.77.184514
http://dx.doi.org/10.1103/PhysRevB.78.064512
http://dx.doi.org/10.1103/PhysRevB.78.134507
http://dx.doi.org/10.1103/PhysRevB.80.144503
http://dx.doi.org/10.1103/PhysRevB.83.214503
http://dx.doi.org/10.1103/PhysRevB.85.174525
http://arxiv.org/abs/1205.6164
http://dx.doi.org/10.1103/PhysRevB.62.6721
http://dx.doi.org/10.1142/S0217979200004271
http://dx.doi.org/10.1103/PhysRevB.62.1270
http://dx.doi.org/10.1103/RevModPhys.79.1015
http://dx.doi.org/10.1143/JPSJ.81.011001
http://dx.doi.org/10.1103/PhysRevLett.86.4672
http://dx.doi.org/10.1103/PhysRevD.52.6087
http://dx.doi.org/10.1140/epjb/e2004-00067-3
http://dx.doi.org/10.1088/1367-2630/13/3/033022
http://www.njp.org/

	1. Introduction
	2. Non-perturbative calculations and gap generation
	3. Physical implications of the dynamical gap
	4. Summary and discussions
	Acknowledgments
	References

