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We study a new mechanism to discover dark photon fields by resonantly triggering two-photon
transitions in cold gas preparations. Using coherently prepared cold parahydrogen, the coupling sensitivity
for sub-meV mass dark photon fields can be advanced by orders of magnitude with a modified light-
shining-through-wall setup. We calculate the effect of a background dark photon field on the dipole
moment and corresponding transition rate of cold parahydrogen pumped into its first vibrational excited
state by counter-propagating laser beams. The nonlinear amplification of two-photon emission triggered by
dark photons in a cold parahydrogen sample is numerically simulated to obtain the expected dark photon
coupling sensitivity.
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I. INTRODUCTION

The first glimmer of physics beyond the Standard Model
may come from a new massive U(1) gauge boson weakly
mixedwith the photon, sometimes called a darkphoton [1–3].
Dark photons are a predicted feature in supersymmetric
theories, string theories, and hidden portal models of dark
matter [4–9]. Many searches are underway to detect dark
photons, produced either by a star [10–15], a laser [16–18], at
colliders [19–22], or in the primordial Universe [23–27]. If
they are produced in the early Universe, sub-MeV mass dark
photons are a candidate model for dark matter [28–35].
Using two-stage atomic transitions, this paper proposes

a new method to enhance the detection of dark photons
produced by lasers shining through walls. This proposal
involves a dark photon field produced in a laser cavity, and
then passed through a sample of quasistable coherently
excited atoms whose E1 dipole transitions are parity for-
bidden.Under these conditions, during the brief time that the
excited atoms are coherent, the diminutive field of the dark
photon can resonantly trigger two-photon electronic tran-
sitions. As compared to traditional light-shining-through-
wall experiments, we project a large gain in sensitivity to
dark photonswith μeV-meVmasses. These sensitivity gains
appear within reach using preparations of parahydrogen
(pH2) coherently excited by counter-propagating nanosec-
ond laser pulses [36,37].

The use of two-stage superradiant atomic transitions for
the production and detection of weakly coupled particles
was proposed and studied extensively by Yoshimura et al.
[36–44]. These authors along with Refs. [45–48] have
studied how macroscopic quantities of coherently excited
atoms may be employed to measure neutrino properties.
The use of atomic transitions for the discovery of axion and
dark photon dark matter was also recently considered in
Refs. [49–53]. In contrast, the experiment we propose is
sensitive to any U(1) vector bosons kinetically mixed with
the Standard Model photon, whether or not dark matter is
comprised of a dark photon.
Coherent superradiant emission by atomic systems was

formalized by Dicke in Ref. [54]. However, the possibility
that superradiance might be observed in macroscopic amal-
gams of materials has received increased attention in the last
decade after being proposed as a method to measure certain
neutrino properties [39,40]. Before proceeding further, we
will develop some physical intuition about classic (a.k.a.
Dicke) versus macro (a.k.a. Yoshimura) superradiance.
A formal derivation can be found in Appendix A. Let us
consider a group of atomic emitters with number density n
occupying a volume V, which have been prepared in excited
states, such that each excited atomic emitter is indistinguish-
able from the next (we want them to have the same phase).
Let us suppose that some atom in thevolumeV deexcites and
emits a photonwithmomentumk1. Then, if a single, isolated
atom has a photon emission rate Γ0 and for the moment
we neglect superradiant effects (superradiant effects would
indeed be negligible if the spacing between atomic emitters
is much greater than the wavelength of photons emitted,
n−1=3 ≫ k−11 ), the emission rate of photons from the volume
V follows trivially: Γtot ¼ nVΓ0.
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However, if the wavelength of the emitted photon is
larger than the interatomic spacing, there will be a super-
radiant enhancement of the rate of photon emission. In fact,
in the case that the emitted photon’s wavelength is much
greater than the volume itself (k−31 ≫ V) the total rate of
photon emission will be Γtot ¼ n2V2Γ0, because of super-
radiance. This superradiant enhancement can be under-
stood from basic quantum principles as follows. First,
momentum conservation tells us that an emitting atom in
its final state will have a momentum of size ∼k1. The
uncertainty principle tells us that the atom is only localized
over a distance ∼ 1

k1
. Altogether, these imply that it is not

possible to determine which atom in the volume k−31
emitted the photon. But we know that quantum mechanics
tells us that the probability for an event to occur is the
squared sum of all ways for the event to occur, and if we
cannot distinguish between atoms, then we must sum over
all atoms in the coherence volume k−31 and square that sum
to obtain the probability for emission. From this we obtain
an extra factor of nV in our superradiantly enhanced
emission rate. This is illustrated in Fig. 1.
In the preceding heuristic argument, it is crucial to realize

that it is the final-statemomentum and corresponding spatial
uncertainty of the emitting atoms that determines thevolume
over which superradiant emission can occur. Therefore, a
process that somehow reduces the final-state momentum of
atomic emitters can potentially result in superradiant emis-
sion over volumes larger than the wavelength of emitted
photons. Perhaps the simplest such process is two-photon
emission. In two-photon emission, the final-state momen-
tum of the emitting atom will be the sum of emitted
momenta, −Δk ¼ k1 þ k2. For back-to-back two-photon
emission where k1 ≈ −k2, the superradiant emission vol-
ume Δk−3 can in principle be arbitrarily large; it is only
limited by the difference in momentum of the emitted
photons. This is illustrated in Fig. 1. In practice, the

dephasing of atoms, the related decoherence time of the
atomic medium, and the linewidth of lasers used to excited
the atoms will also limit the superradiant emission volume.
It is interesting to note that much of the preceding logic
about the cooperative emission of photons could be equally
applied to cooperative absorption.
In this paper we show how two-photon superradiant

emission by a large number of atoms can be used to detect
dark photons. First, a sample of cold parahydrogen (or
another suitable atomic target) is excited into a metastable
state by back-to-back photons provided by counter-
propagating lasers with frequency ω1. This excited state
will preferentially decay through two-photon emission, in
part because of the macroscopic superradiant enhancement
detailed above. Next, dark photons produced in an adjacent
cavity by a laser with frequency ω1 are passed through the
excited parahydrogen sample. The dark photon field,
through its mixing with the visible photon, would act as
a “trigger laser,” resonantly deexciting the excited para-
hydrogen through a two-photon transition. This altogether
provides a new, very sensitive method to search for dark
photons.
The rest of this paper proceeds as follows. In Sec. II we

calculate coherence in two-stage electronic transitions, and
study howmuch coherence is attained in cold preparations of
parahydrogen excited by counter-propagating lasers.We find
that the coherence necessary to begin realizing this proposal
has been obtained in a number of experiments. The inter-
action of a dark photon with coherently excited two-stage
atomic systems is derived in Sec. III. Enthusiastic readers
may wish to skip to Sec. IV, which includes a schematic
description of the experiment, along with its sensitivity to a
kineticallymixed dark photon. Determining this dark photon
sensitivity requires numerically integrating the dark and
visible photon field equations in a background of coherently
excited atoms. Conclusions are presented in Sec. V.
Throughout, we use natural units where ℏ ¼ c ¼ kB ¼ 1.

II. COHERENCE IN TWO-STAGE
ATOMIC TRANSITIONS

Pulses from high-power lasers allow for the preparation
of atoms in coherent excited states, from which they can
be cooperatively deexcited. Before investigating how the
weak electromagnetic field sourced by a dark photon can be
detected by cooperatively deexciting coherently prepared
atoms, it will be useful to examine under what conditions
counter-propagating lasers excite highly coherent atoms in
the first place. After deriving the coherence of atomic states
excited by counter-propagating pairs of photons, we
examine how laser power, atomic density, and temperature
alter this coherence. The derivation given below can be
found in many prior references [55,56]. Our aim here is to
quantify the experimental capability—in terms of coher-
ently excited atoms—that will be needed to detect dark
photons.

Dicke Superradiance Macro Superradiance

k1 k2

- k = k1+k2 =

k1

- k = k1

FIG. 1. Illustration of single-photon emission (a.k.a. Dicke
superradiance) and two-photon emission (a.k.a. Yoshimura
superradiance). Crucially, the volume for superradiant emission
is determined by the final-state momentum Δk of the atomic
emitters. For classic Dicke superradiance this is just the mo-
mentum of the emitted photons, Δk ¼ jk1j. For two photons
emitted back to back, the final-state momentum can be tiny,
Δk ≈ jk1 − k2j → 0. Of course, superradiant emission will also
depend on the linewidth of the lasers used to excite the atoms,
material dephasing effects, and other factors; see Sec. II.
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A. Quasistable excited states

We first consider an atomic system with ground state jgi
and excited state jei. For the atomic systemswe are interested
in—for example, vibrational modes of parahydrogen, and
electronic states of ytterbium or xenon [45]—both states jgi
and jei will have even parity, meaning that E1 dipole
transitions between the two states are forbidden. However,
it will be possible to excite state jgi to state jei through
multiple E1 dipole transitions, and similarly deexcite jei to
jgi. So besides states jgi and jei, we consider intermediate
states, jjþi and jj−i, whereþð−Þwill indicate excitation into
a positive (negative) angular momentum state by a circularly
polarized photon. Figure 2 illustrates the basic setup. In
physical realizations, there will be many j states to transition
through, such as, e.g., thel ¼ 0; 1; 2; 3…. electronic angular
momentum states of hydrogen. Since by design these excited
states will lie at energies beyond those provided by the input
lasers, transitions through these states will be virtual. We
define our atomic Hamiltonian as

H ¼ H0 þHI; ð1Þ
where HI is the interaction Hamiltonian and H0 is defined
by H0jgi ¼ ωgjgi, H0jei ¼ ωejei, H0jj�i ¼ ωjjj�i. With
our states specified, we define the wave function for this
simplified atomic system as

jψi ¼ cge−iωgtjgi þ cee−iðωeþδÞtjei þ cjþe−iωjtjjþi
þ cj−e−iωjtjj−i: ð2Þ

Wehave added a phase δ to account for detuning of the lasers;
in other words, the laser beams exciting the atoms will be off
resonance by a factor ∼δ.
The laser-atom interaction Hamiltonian will depend on

the orientation and quality of the impinging laser beams.
Experimental setups similar to the one we are outlining
(e.g., Ref. [37]) employ counter-propagating beams which

have been circularly polarized. Therefore, we will consider
two counter-propagating laser beams propagating along the
z direction with electric fields given as

Ẽ1 ¼
1

2
E1ðz; tÞϵl expf−iω1ðtþ zÞg

þ 1

2
E�
1ðz; tÞϵr expfiω1ðtþ zÞg; ð3Þ

Ẽ2 ¼
1

2
E2ðz; tÞϵl expf−iω2ðt − zÞg

þ 1

2
E�
2ðz; tÞϵr expfiω2ðt − zÞg; ð4Þ

where ϵr and ϵl are unit-normalized right- and left-handed
polarization vectors for the laser beams. Then the laser-
atom interaction Hamiltonian is

HI ¼ −d · ðẼ1 þ Ẽ2Þ; ð5Þ

where d is the polarization of the atom. The actual dipole
coupling and transition rate are experimental inputs in these
formulas. Here we define the expectation value of the
dipole transitions, with the assumption that both counter-
propagating pump lasers will have left-handed circular
polarization, using the convention that left-handedness is
defined along the direction of the beam propagation. More
explicitly, since Ẽ2 is the electric field of a laser beam
propagating in the þz direction,

djg ≡ hjþj − d · ϵrjgi ¼ hj−j − d · ϵljgi;
dje ≡ hjþj − d · ϵrjei ¼ hj−j − d · ϵljei; ð6Þ

while for Ẽ2

hjþj − d · ϵljgi ¼ hj−j − d · ϵrjgi ¼ 0;

hjþj − d · ϵljei ¼ hj−j − d · ϵrjei ¼ 0: ð7Þ
The same relations hold for Ẽ1, except with ϵl ↔ ϵr, since
Ẽ1 is the electric field of the laser beam propagating in the
−z direction. Finally, assuming that the two lasers will
carry the same frequency (up to a detuning factor δ), we
define ω≡ ω1 ¼ ω2 ¼ ωeg=2, and throughout this paper
we use the convention that ωik for any states i, k is defined
as ωik ¼ ωi − ωk. Thus, we arrive at the following
Schrödinger equations for this multistate atomic system:

i∂tcjþ ¼ 1

2
ðdjgcgeiωjgtþdjeceeiðωje−δÞtÞðĒ1e−iωtþ Ē�

2e
iωtÞ;
ð8Þ

i∂tcj− ¼ 1

2
ðdjgcgeiωjgt þ djeceeiðωje−δÞtÞðĒ�

1e
iωt þ Ē2e−iωtÞ;

ð9Þ

FIG. 2. Illustration of the energy levels of an atomic system,
with ground state jgi and excited state jei. E1 dipole transitions
between jgi and jei are forbidden; the two-step process of
transitioning from jgi to jei through a virtual state jj�i is shown.
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i∂tcg ¼
1

2
dgje−iωjgt½cjþðĒ�

1e
iωt þ Ē2e−iωtÞ

þ cj−ðĒ1e−iωt þ Ē�
2e

iωtÞ�; ð10Þ

i∂tce ¼
1

2
deje−iðωje−δÞt½cjþðĒ�

1e
iωt þ Ē2e−iωtÞ

þ cj−ðĒ1e−iωt þ Ē�
2e

iωtÞ�; ð11Þ

where we have incorporated the spatial part of the electric
fields into “barred” quantities, Ē1¼E1e−iωz and Ē2¼E2eiωz.
The sum over all intermediate states j is implicit in
Eqs. (8)–(11).
To find the time evolution of this system, we first

integrate Eqs. (8) and (9) over t. We will be using the
so-called Markov approximation, treating cg and ce as
constants in the resulting integral. This standard approxi-
mation is justified, so long as we expect virtual transitions
through cjþ and cj− to be sufficiently rapid compared to
changes in cg and ce, which should be satisfied so long as
the frequency of the jgi → jei transition is substantially
smaller than the frequency of higher-energy atomic states,
ωeg ≪ ωje, ωjg. For example, in the case of pH2 the
frequency of the first vibrational state, ωeg ∼ 0.5 eV, can
be compared to the lowest-lying electronic excitations, ωje

ωjg ∼ 10 eV, from which we conclude that the Markov
approximation is justified. Using similar logic, we approxi-
mate the electric fields of the laser beams as being constant
in this integral, since the laser frequency is also small
compared to the transition frequencies to intermediate j
states. Setting the initial condition cj�;0 ¼ 0, we find the
time evolution of cjþ and cj−,

cjþ ¼−
1

2

�
djgcg

eiðωjg−ωÞt − 1

ωjg−ω
Ē1þdjgcg

eiðωjgþωÞt− 1

ωjgþω
Ē�
2

þdjece
eiðωje−δ−ωÞt− 1

ωje− δ−ω
Ē1þdjece

eiðωje−δþωÞt− 1

ωje− δþω
Ē�
2

�
;

ð12Þ

cj− ¼−
1

2

�
djgcg

eiðωjg−ωÞt − 1

ωjg −ω
Ē2þdjgcg

eiðωjgþωÞt− 1

ωjgþω
Ē�
1

þdjece
eiðωje−δ−ωÞt− 1

ωje − δ−ω
Ē2þdjece

eiðωje−δþωÞt − 1

ωje − δþω
Ē�
1

�
:

ð13Þ

Substituting these solutions for cjþ and cj− into the
Schrödinger equations for cg and ce, we invoke the slowly
varying envelope approximation, i.e., we assume that since
the development of the electric fields around the atoms is
slow compared to the frequencies of all transitions, all time-
dependent exponentials of the form

eiðωje−δþωÞt ≈ eiðωjgþωÞt ≈ eiðωje−δ−ωÞt ≈ eiðωjg−ωÞt ≈ 0 ð14Þ

can be set to zero. With the slowly varying envelope
approximation, the two-state system can be compactly
expressed as

i∂t

�
ce
cg

�
¼ Heff

�
ce
cg

�
; ð15Þ

with the effective Hamiltonian

−Heff ¼
�Ωee Ωeg

Ωge Ωee

�
; ð16Þ

where Ωge is the Rabi frequency of the system,

Ωee ¼
aee
4

ðjĒ1j2 þ jĒ2j2Þ; ð17Þ

Ωgg ¼
agg
4

ðjĒ1j2 þ jĒ2j2Þ; ð18Þ

Ωeg ¼ Ω�
ge ¼

age
2

Ē1Ē2; ð19Þ

and we have defined interstate dipole couplings as in
Ref. [56],

aee ¼
X
j

jdjej2
�

1

ωje − δ − ω
þ 1

ωje − δþ ω

�
; ð20Þ

agg ¼
X
j

jdjgj2
�

1

ωjg − ω
þ 1

ωjg þ ω

�
; ð21Þ

aeg ¼ a�ge ¼
X
j

djedgj
ωje − δþ ω

: ð22Þ

Applying the density matrix of the atomic system

ρ ¼
� jeihej jeihgj
jgihej jgihgj

�
¼

�
ρee ρeg

ρge ρgg

�
ð23Þ

to the von Neumann equation i∂tρ ¼ ½Heff ; ρ� leads to the
Maxwell-Bloch equations

∂tρee ¼ iðΩegρge −ΩgeρegÞ −
ρee
T1

; ð24Þ

∂tρge¼ iðΩgg−Ωee−δÞρgeþ iΩgeðρee−ρggÞ−
ρge
T2

; ð25Þ

∂tρgg ¼ iðΩgeρeg −ΩegρgeÞ þ
ρee
T1

: ð26Þ

The final terms in Eqs. (24)–(26) have been added to
account for spontaneous jei → jgi transitions and the
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decoherence time of the mixed state. As such, T1 is the
excited-state lifetime and T2 is the decoherence time.
To better quantify the coherence of this system, we

define the Bloch vector r ¼ TrðσρÞ where σ are the Pauli
matrices. This implies

r1 ¼ ρge þ ρeg; ð27Þ

r2 ¼ iðρeg − ρgeÞ; ð28Þ

r3 ¼ ρee − ρgg: ð29Þ

By construction, r1 and r2 quantify the degree to which the
atoms are coherently excited in the system, with maximum
coherence attained when r1 ¼ 1 and r3 ¼ 0. The Bloch
vector direction r3 indicates the population difference
between the excitation and the ground states. Note that
r1, r2, and r3 are all real numbers. Applying the Bloch
vector basis to Eqs. (24)–(26), we obtain

∂tr1 ¼
�
−
agg − aee

4
ðjĒ1j2 þ jĒ2j2Þ þ δ

�
r2

þ aegImðĒ1Ē2Þr3 −
r1
T2

; ð30Þ

∂tr2 ¼
�
agg − aee

4
ðjE1j2 þ jE2j2Þ − δ

�
r1

þ aegReðĒ1Ē2Þr3 −
r2
T2

; ð31Þ

∂tr3 ¼ −aeg½ImðĒ1Ē2Þr1 þ ReðĒ1Ē2Þr2� −
1þ r3
T1

; ð32Þ

where we note that aeg is assumed to be real.

B. Quantifying coherence in quasistable
excited states

Using theBloch vector time evolution given byEqs. (30)–
(32), we can now determine the degree and duration of
coherence in cold atomic preparations excited by two
counter-propagating lasers with electric fields Ẽ1 and Ẽ2.
We consider an excited set of atoms with an expected
spontaneous deexcitation time (not including superradiant
enhancement) of T1 and a decoherence time T2. In the case
of the first vibrationally excited state of pH2, the total
lifetime has been observed to be T1 ∼ 10 μs at ∼10 K
temperatures [57–59], which will be appreciably longer
than the decoherence time of the first pH2 vibrational
excitation at these temperatures, where this decoherence
time will be of order ∼1–100 ns [60].
In more detail, the decoherence time (T2) of pH2 has

been studied extensively for a variety of temperatures and
densities [37,40,44,60]. In some regimes, it is accurate to
use the mean interaction time of hydrogen atoms as an

estimate of the decoherence time resulting from pH2

collisions at number density n,

tdc ¼
1

nHσH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=mH

p
≈ 3 ns

�
3 × 1019 cm−3

n

��
9 × 10−17 cm2

σH

�

×

�
80 K
T

�
1=2

�
mH

0.94 GeV

�
1=2

; ð33Þ

where this expression has approximated the velocity of pH2

using the temperature (T) and mass (mH) of hydrogen, and
the cross section using the Bohr radius, σH ≈ πr2Bohr.
While Eq. (33) is remarkably close to the measured

decoherence time for a sample of pH2 prepared at T ∼ 80 K
and with a density n ∼ 3 × 1019 cm−3, this approximation
will break down for sufficiently cold and dense pH2, which
will not behave like an ideal gas. In addition, we should
note that the Raman linewidth, or the full width at half
maximum of pH2 ’s first vibrational emission line, is often
used to determine the decoherence time. However, this
linewidth also has a contribution from Doppler broadening
of pH2,

ΔνðDopplerÞdec ≈ ω0

ffiffiffiffiffiffiffi
T
mH

s
; ð34Þ

where hereω0 is the first vibrationalmode frequency. A total
decoherence determination for the first vibrational mode of
pH2, for temperatures ranging from 77–500K, was approxi-
mated by fitting the phenomenological formula [60]

Δνdec ¼
A
n
þ Bn; ð35Þ

where, for example, it was found that for T ¼ 80 K the
collisional term A ≈ 100 MHz cm3, and the broadening
term B ≈ 20 MHz cm3, which implies a 10 ns decoherence
time for n ∼ 1019 cm−3, as previously noted.
Given the theoretical expectations and experimental

results detailed above, it is safe to assume that T2 ≈
10 ns is an achievable decoherence time for cold

TABLE I. A number of parahydrogen experiments with long
decoherence times are listed for comparison, along with their
temperatures and number densities. For pH2 Raman linewidth
measurements Δνdec, the decoherence times are estimated as
T2 ∼ 1

Δνdec
. In the case of Refs. [37,42], the decoherence time is an

estimate using results from Ref. [60].

pH2

Reference
Density
(cm−3)

Temperature
(K)

Decoherence Time
(ns)

[60] 1019–1020 80–500 ∼10
[42] 5.6 × 1019 78 ∼8 (est)
[37] 1019–5 × 1020 78 ∼10 (est)
[63] 2.6 × 1022 4.2 ≳140
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parahydrogen. In terms of the Bloch vector r1, the largest
coherence reported in a similar setup was r1 ≃ 0.07 for
parahydrogen at a density n ∼ 5 × 1019 cm−3 [36]. In the
remainder of this paper, we will find that advancing the
coupling sensitivity to dark photons (assuming a roughly
30 cm cylindrical chamber and 1 cm laser beam diameter)
requires parahydrogen number densities closer to
n ∼ 1021 cm−3. As noted in Fig. 3, a higher-power laser
than that used in Ref. [36] is also required. In Fig. 3 we
show how the coherence of pH2 can be expected to develop
in time for n ∼ 1021 cm−3 by solving Eqs. (30)–(32),
assuming a ∼10 ns decoherence time and intrinsic detun-
ings by experimental effects like Doppler broadening of
both δ ¼ 10 and δ ¼ 100 MHz. We will see that in this
∼10 ns time frame a dark photon field applied to the cold
atoms can greatly enhance the two-photon transition rate.

III. DARK PHOTONS IN TWO-STAGE
ATOMIC TRANSITIONS

We have found that substantial coherence can be estab-
lished in atomsexcited by counter-propagating lasers, through
a two-photon excitationprocess. Similarly, in the presenceof a
dark photon field, the rate for two-photon deexcitation can be
resonantly enhanced. Suitably applied to coherently excited
atoms, we will find that very weakly coupled dark photon
fields can trigger two-photon transitions, during the ∼10 ns
window of time that the atoms are coherently excited.

A. Two-photon transitions with kinetic mixing

We begin with the dark photon. The dark photon field
is a new massive U(1) gauge field that kinetically mixes
with the Standard Model photon. Its Lagrangian has the
general form

L ¼ −
1

4
ðFμνFμν − 2χFμνF0μν þ F0

μνF0μνÞ

þm2
A0

2
A0
μA0μ − eJμemAμ; ð36Þ

where Aμ and A0μ are the four-vector potentials of the
ordinary photon and dark photon field, and Fμν and F0μν

describe their field strength, respectively. Additionally, the
dark photon is characterized by a mass mA0 and the kinetic
mixing is suppressed by a constant χ. Here Jμem ¼ ψ̄γμψ
corresponds to the electromagnetic charged current with
charged fermions ψ .
There is no direct coupling between the dark photon and

charged fermions in Eq. (36). Rather, an effective inter-
action is introduced through kinetic mixing between the
photon and dark photon, so long as mA0 > 0. Equivalently,
one can diagonalize the kinetic mixing term by redefinition
of the photon field Aμ → Aμ þ χA0

μ. To first order in χ, we
obtain the Lagrangian

L ¼ −
1

4
ðFμνFμν þ F0

μνF0μνÞ þm2
A0

2
A0
μA0μ

− eðAμ þ χA0
μÞJμem: ð37Þ

To find the dark photon absorption and emission ampli-
tudes in atomic transitions, it will be convenient to work
with the effective Hamiltonian for electrons in the non-
relativistic limit in the presence of the dark photon field.
Substituting the interaction terms in Eq. (37) into the Dirac
Lagrangian,

L ¼ iψ̄γμ∂μψ −meψ̄ψ − eðAμ þ χA0
μÞJμem; ð38Þ

we arrive at the Dirac equation for the electron

FIG. 3. The development of coherence in parahydrogen pumped by two counter-propagating lasers tuned to half the frequency of the first
vibrational state of parahydrogen,ω ¼ 0.26 eV, with an assumed parahydrogen number density of n ¼ 1021 cm−3. Results were obtained
by solving Eqs. (30)–(32), where we take agg ¼ 0.90 × 10−24, aee ¼ 0.87 × 10−24, and aeg ¼ 0.0275 × 10−24 cm3 [40]. The intensity of
the pump lasers is indicated. For comparison, we note that a coherence of r1 ≃ 0.07 has been achieved for parahydrogen at a density of
5 × 1019 cm−3 using lasers less powerful than those assumed here [36]. However, the nanosecond-pulse gigawatt-power lasers required are
commercially available [61]. (Indeed, even continuous gigawatt lasers as powerful as we require have been demonstrated in recent years
[62].) The left panel assumes an experimental detuning δ ¼ 100 MHz, as achieved in recent counter-propagating pulsed laser experiments
[37]. The right panel assumes δ ¼ 10 MHz, a linewidth that has been achieved in solid parahydrogen [63].
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½i=∂ − eð=Aþ χ=A0Þ −me�ψ ¼ 0; ð39Þ

where me is the electron mass.
It will be convenient to work in the Dirac basis and divide

the spinor into a dominant componentψd and a subdominant
component ψ s, i.e., ψ ¼ ðψd;ψ sÞT . Separating out the time
derivative from the Dirac equation, we find the Hamiltonian
for the system

i∂t

�
ψd

ψ s

�
¼ H

�
ψd

ψ s

�
; ð40Þ

where

H¼
�

eðΦþχA0
0Þþme −iσ ·∇−eσ · ðAþχA0Þ

−iσ ·∇−eσ · ðAþχA0Þ eðΦþχA0
0Þ−me

�
:

ð41Þ

Here σ are the Pauli spin matrices and the electric poten-
tial Φ ¼ A0.
The nonrelativistic Hamiltonian for this system is

obtained by subtracting me from both sides of Eq. (40),
which yields

Hnrψd ¼ −½iσ ·∇þ eσ · ðAþ χA0Þ�ψ s þ eðΦþ χA0
0Þψd;

ð42Þ

Hnrψ s ¼ −½iσ ·∇þ eσ · ðAþ χA0Þ�ψd þ eðΦþ χA0
0Þψ s

− 2meψ s: ð43Þ

The subdominant component ψ s can be solved in the non-
relativistic limit where jHnrj ≪ me and jeðΦþ A0

0Þj ≪ me.
It is then substituted into Eq. (42) to obtain

Hnr¼H−me

¼ 1

2me
½iσ ·∇þeσ · ðAþχA0Þ�2þeðΦþχA0

0Þ; ð44Þ

where this expression is valid in the nonrelativistic limit
where Eq. (44) gives the effectiveHamiltonian for an electron
in the presence of electromagnetic and dark photon fields.
Subtracting from it the standardQEDHamiltonian, we single
out the components introduced by the new dark photon field,

HA0 ¼ eχ
2me

½ið∇ ·A0 þA0 ·∇Þ� − eχ
2me

σ · ð∇ ×A0Þ þ eχA0
0

þ e2χ
me

A ·A0 þ e2χ2

2me
A02: ð45Þ

The first line of Eq. (45) reminds us of the standard QED

Hamiltonian, with an additional gauge field. The e2χ
me

A ·A0

term arises from the expansion of the bracket in Eq. (44),

meaning that even if the kinetic mixing is explicitly removed
by a specific gauge choice in Eq. (37), dark photon and
photon fields can still act on electrons in a collective way.
With the effective Hamiltonian in hand, we are now

prepared to compute the transition amplitude from an initial
atomic state jii to a final state jfi with the absorption or
emission of a dark photon. This transition has the general
form

M ¼ hfjHA0 jii: ð46Þ
We start with the first term in Eq. (45), which describes

an E1 (electric-dipole) type transition. Using the relation
∂μA0μ ¼ 0, which can be readily obtained from the Euler-
Lagrange equation (38) for the dark photon, we find

HE1
A0 ¼ i

eχ
2me

ð∇ ·A0 þA0 ·∇Þ

¼ −
eχ
2me

ði∂tA0
0 þ 2A0 · peÞ; ð47Þ

where pe is the momentum operator for the electron. Using
the relation pe ¼ −ime½r; H0�, where H0 ¼ p2

e=2me is the
unperturbed atomic Hamiltonian, we obtain

ME1 ¼ −
eχ
2me

hfj∂tA0
0jii þ iωifeχhfjA0 · rjii; ð48Þ

where again we note that ωik ≡ ωi − ωk is the energy
difference between the initial and final atomic states. The
first term in Eq. (48) is suppressed by a factor ∼ω=me and
is therefore negligible compared to the second term. Hence,
we drop this first term for simplicity.
To evaluate the second term, we define the

vector component of the dark photon field as A0 ¼
jA0jϵ0 expðiωt − ik · rÞ, which will have energy ω ¼ ωif.
Because we will be considering dipole moments substan-
tially smaller than the wavelength of the applied laser (or
the wavelength of the dark photon), the dipole approxi-
mation expð−ik · rÞ ≃ 1 applies. With this approximation,

ME1 ≃ ieχωifjA0jhfjϵ · djii; ð49Þ

where the d ¼ er is the dipole operator. Following standard
electromagnetic conventions, we define the dark electric
field as

E0 ¼ −∇V 0 − ∂tA0; ð50Þ
where

V 0ðr; tÞ ¼ i
ω
∇ ·A0: ð51Þ

Assuming jA0j varies slowly in space and time, we obtain

E0 ¼ i
ω
½ðk ·A0Þk − ω2A0�: ð52Þ
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We decompose the dark electric field into a transverse
component E0

T and longitudinal component E0
L,

E0
T ¼ −iωA0

T; ð53Þ

E0
L ¼ −i

m2
A0

ω
A0

L: ð54Þ

If jA0
T j ≃ jA0

Lj, we have jE0
Lj=jE0

T j ≃m2
A0=ω2. Note that our

proposed experiment is only sensitive to dark photons with
sub-meV masses, since this is a necessary condition for
coherent excitation of two-stage atomic transitions in the
target sample (see Sec. IV). While the dark photon masses
will be mA0 ≲meV, the transition energy ω ∼ eV,
and therefore we expect the effect of the longitudinal
component of the dark electric field to be subdominant
since jE0

Lj=jE0
T j ≃m2

A0=ω2. Therefore, we only focus on
the transverse component when computing the transition
amplitude,

ME1 ≃ −χhfjd ·E0
Tjii: ð55Þ

We could also evaluate the transition amplitude induced by
other terms in Eq. (45). However, we note that the second
term is characterized by M1 (magnetic-dipole) type tran-
sition which is suppressed by 1=me compared toME1. The
third term vanishes in the leading-order expansion of
expð−ik · rÞ. The fourth and last terms are also suppressed
by 1=me, and the last term is further suppressed by χ, and so
we also drop these terms.

B. Dark-photon-induced superradiance

Now that we have obtained the dark photon dipole
transition amplitude, we are ready to study dark-photon-
induced superradiance. We will focus on the transition
between the excitation state jei and ground state jgi of a
pH2 target. As previously noted, jgi and jei will denote the
zeroth and first vibrational state for pH2, where both of
these have J ¼ 0. Since jei and jgi share the same parity, an
E1 dipole transition is forbidden, but the transition between
them can take place via two E1 transitions by transitioning
through an intermediate virtual state jji. Hence, we will
compute E1 × E1 transitions for which two particles are
emitted, as shown in Figs. 4(a) and 4(b). As we mentioned
in the previous section, the interaction between the dark
photon and electron allows for this E1 × E1 transition to
occur via the emission of a dark photon and Standard
Model photon jei → jgi þ γ0 þ γ, along with the standard
two-photon emission process jei → jgi þ γ þ γ, illustrated
in Figs. 4(a) and 4(b). These two processes will reinforce
each other in a coherently excited atomic medium, since the
emission of a dark photon can trigger and amplify the two-
photon emission process, and vice versa. To demonstrate
this mutual reinforcement, we shall derive the evolution

equations of the dark photon and photon fields during
deexcitation.

1. Maxwell-Bloch equations

First, we reformulate the Maxwell-Bloch equations as
they were derived in Sec. II, now including the dark
photon’s effect on the electric dipole. As before, we denote
the spin mJ ¼ �1 states as jj�i. In addition to the two
photon fields E1 and E2, we define a dark photon E0
propagating in the positive z direction,

Ẽ0 ¼ 1

2
E0ðz; tÞϵ0 expf−iω0tþ ikzg þ c:c: ð56Þ

Because we are only considering the transverse component
of the dark photon field, we take ϵ0 ¼ ϵ0T . We expect that
to good approximation ω1 ¼ ω2 ¼ ω0 ¼ ω ¼ ωeg=2, since
this is already required for coherence of the excited atomic
state. We again write the pH2 wave function as the
superposition of atomic states,

jψi ¼ cge−iωgtjgi þ cee−iðωeþδÞtjei þ cjþe−iωjtjjþi
þ cj−e−iωjtjj−i: ð57Þ

For the sake of simplicity, we will keep δ in the derivation,
but set δ ¼ 0 in the numerical simulations, which amounts
to assuming that the atoms, lasers, and dark photon field are
in phase over the target volume for time scales shorter than
the decoherence time, T2 ∼ 10 ns. For a full discussion of
the physical requirements for ∼10 ns decoherence times,
and the loss of coherence as δ is increased, see Sec. II. For
discussions of the detuning effect on the output photon flux
and the experimental sensitivity, see Appendix C. The full
interaction Hamiltonian is then

HI ¼ −d · ðẼ1 þ Ẽ2 þ χẼ0Þ: ð58Þ

The Schrödinger equations will now include terms propor-
tional to the dark photon field,

(a) (b)

FIG. 4. Illustration of the two deexcitation processes. Panel (a)
The transition from jei to jgi with the emission of a photon and a
dark photon. Panel (b) The transition from jei to jgi with the
emission of two photons.
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i∂tcjþ ¼ 1

2
ðdjgcgeiωjgt þ djeceeiðωje−δÞtÞðĒ1e−iωt þ Ē�

2e
iωtÞ þ χ

2
ðd0jgcgeiωjgt þ d0jecee

iðωje−δÞtÞðĒ0e−iωt þ Ē0�eiωtÞ; ð59Þ

i∂tcj−¼
1

2
ðdjgcgeiωjgtþdjeceeiðωje−δÞtÞðĒ�

1e
iωtþ Ē2e−iωtÞþ

χ

2
ðd0jgcgeiωjgtþd0jecee

iðωje−δÞtÞðĒ0�eiωtþ Ē0e−iωtÞ; ð60Þ

i∂tcg ¼
1

2
dgje−iωjgt½cjþðĒ�

1e
iωt þ Ē2e−iωtÞ þ cj−ðĒ1e−iωt þ Ē�

2e
iωtÞ�

þ χ

2
d0gje

−iωjgt½cjþðĒ0�eiωt þ Ē0e−iωtÞ þ cj−ðĒ0e−iωt þ Ē0�eiωtÞ�; ð61Þ

i∂tce ¼
1

2
deje−iðωje−δÞt½cjþðĒ�

1e
iωt þ Ē2e−iωtÞ þ cj−ðĒ1e−iωt þ Ē�

2e
iωtÞ�

þ χ

2
d0eje

−iðωje−δÞt½cjþðĒ0�eiωt þ Ē0e−iωtÞ þ cj−ðĒ0e−iωt þ Ē0�eiωtÞ�; ð62Þ

where (as in Sec. II) we absorb spatial dependence into the overbarred fields Ē1 ¼ E1e−iωz, Ē2 ¼ E2eiωz, and Ē0 ¼ E0eikz.
Note also that we have left implicit the sum over all intermediate states j in Eqs. (61) and (62). Integrating Eqs. (59) and (60)
over t, using the Markovian approximation, and imposing the initial condition cj�;0 ¼ 0, we obtain

cjþ ¼ −
1

2

X
s¼g;e

�
cs

ωjs − ω − Δseδ
ðdjsĒ1 þ χd0jsĒ

0Þðeiðωjs−ω−ΔseδÞt − 1Þ

þ cs
ωjs þ ω − Δseδ

ðdjsĒ�
2 þ χd0jsĒ

0�Þðeiðωjsþω−ΔseδÞt − 1Þ
�
; ð63Þ

cj− ¼ −
1

2

X
s¼g;e

�
cs

ωjs − ω − Δseδ
ðdjsĒ2 þ χd0jsĒ

0Þðeiðωjs−ω−ΔseδÞt − 1Þ

þ cs
ωjs þ ω − Δseδ

ðdjsĒ�
1 þ χd0jsĒ

0�ÞðeiðωjsþωÞt−Δseδ − 1Þ
�
; ð64Þ

where Δse ¼ 0 if s ¼ g and Δse ¼ 1 if s ¼ e. Inserting
Eqs. (63) and (64) into Eqs. (61) and (62) and using the
slowly varying envelope approximation, we obtain the
equation for the two-state system in the presence of a
dark photon,

i∂t

�
ce
cg

�
¼ −

�Ωee Ωeg

Ωge Ωee

��
ce
cg

�
; ð65Þ

where the 2 × 2 matrix is the effective Hamiltonian (Heff ),
and its components are

Ωee ¼
aee
4

ðjĒ1 þ χηĒ0j2 þ jĒ2 þ χηĒ0j2Þ; ð66Þ

Ωgg ¼
agg
4

ðjĒ1 þ χηĒ0j2 þ jĒ2 þ χηĒ0j2Þ; ð67Þ

Ωeg ¼ Ω�
ge ¼

age
2

ðĒ1 þ χηĒ0ÞðĒ2 þ χηĒ0Þ; ð68Þ

where we have defined the dipole couplings aee; agg, and
age as before. In contrast to Sec. II, we now also define

η≡ d0jg
djg

¼ d0je
dje

; ð69Þ

which quantifies the relative phase between the polarization
of the photon field and the dark photon field.
As before, we introduce the density matrix and add

relaxation terms to obtain the Maxwell-Bloch equations,

∂tρee ¼ iðΩegρge −ΩgeρegÞ −
ρee
T1

; ð70Þ

∂tρge¼ iðΩgg−Ωee−δÞρgeþ iΩgeðρee−ρggÞ−
ρge
T2

; ð71Þ

where T1 and T2 are the relaxation and decoherence time,
respectively.
We can expand Eq. (68) to make manifest oscillations

in Ωeg,

Ωeg ¼
aeg
2

½ðE1E2 þ χηE1E0Þ þ χηðE0E2 þ χηE02Þe2iωz�;
ð72Þ
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where we assume that ω ≃ k. From Eq. (71) we also need to
decompose ρge correspondingly,

ρge ¼ ρ0ge þ ρ−gee−2iωz: ð73Þ

We note that ρ−ge only comes from the atomic excitation due
to the absorption of E2 and E0 or two dark photons, and the
coherence developed in these processes is small. Thus, to
leading order we can drop the second term in Eq. (73) and
assume no spatial phase in ρge.

2. Field equations

The Bloch equations we have derived in the previous
section show the evolution of the population of the ground
state and excitation state in the presence of electric and dark
electric fields. Now we would like to see how these fields
evolve as the population changes. It is straightforward to
obtain from Eq. (37) the field equations

ð∂2
t − ∂2

zÞAμ ¼ eJμem; ð74Þ

ð∂2
t − ∂2

z þm2
A0 ÞA0μ ¼ eχJμem: ð75Þ

There is no free electric charge in the target and Jem can be
identified as the polarization current density determined by
the polarization field

eJem ¼ n
∂P̃
∂t ; ð76Þ

where n is the number density of pH2. We recall the
definition of E0 in Eq. (50) and take the time derivative of
both sides of Eqs. (74) and (75) to obtain

ð∂2
t − ∂2

zÞẼi ¼ −n∂2
t P̃i; ð77Þ

ð∂2
t − ∂2

z þm2
A0 ÞẼ0 ¼ −χn∂2

t P̃0; ð78Þ

where i ¼ 1, 2 represent different electric fields. The
polarization field arises from the dipole moment in the
atomic transition, where

P̃ ¼ hψ jdjψi: ð79Þ
Note that Ẽ1 and Ẽ2 propagate in opposite directions with
opposite spin angular momenta, as the microscopic polari-
zation that sources these fields is also different. Accounting
for the conservation of angular momentum, we have

−P̃1 ¼
X
s¼g;e

ðdsjc�scjþe−iðωjs−ω−ΔseδÞt þ djsc�j−cse
iðωjs−ω−ΔseδÞtÞϵl þ c:c:; ð80Þ

−P̃2 ¼
X
s¼g;e

ðdsjc�scjþe−iðωjs−ω−ΔseδÞt þ djsc�j−cse
iðωjs−ω−ΔseδÞtÞϵr þ c:c:; ð81Þ

−P̃0 ¼
X
s¼g;e

½d0sjc�sðcjþ þ cj−Þe−iðωjs−ω−ΔseδÞt þ d0jscsðc�jþ þ c�j−Þeiðωjs−ω−ΔseδÞt�ϵ0 þ c:c: ð82Þ

We work in the limit where mA0 ≪ ω, so approximately ω ≃ k. We can substitute cj� as given in Eqs. (63) and (64) into
Eqs. (80) to (82) and keep only the terms containing e�iωt [to match the left-hand sides of Eqs. (77) and (78)] to obtain

2P̃1ð2Þ ¼ f½ðaeeρee þ aggρggÞE1 þ 2aegρ�geðE�
2 þ χηE0�Þ�e−iωðtþzÞ þ ½ðaeeρee þ aggρggÞðE�

2 þ χηE0�Þ þ 2a�egρgeE1�eiωðt−zÞ
þ ½ðaeeρee þ aggρggÞe−iωðt−zÞ þ 2a�egρgeeiωðtþzÞ�χηE0gϵlðrÞ þ c:c:; ð83Þ

2P̃0 ¼ f½ðaeeρee þ aggρggÞE1 þ 2aegρ�geðE�
2 þ 2χηE0�Þ�e−iωðtþzÞ þ ½ðaeeρee þ aggρggÞð2χηE0 þ E2Þ þ 2aegρgeE�

1�e−iωðt−zÞ
þ ½ðaeeρee þ aggρggÞE�

1 þ 2a�egρgeðE2 þ 2χηE0Þ�eiωðtþzÞ þ ½ðaeeρee þ aggρggÞð2χηE0� þ E�
2Þ þ 2a�egρgeE1�eiωðt−zÞgϵ0

þ c:c: ð84Þ
By matching the oscillation phases of the electric fields and the microscopic polarization and using the slowly varying
envelope approximation, we arrive at the field equations for E1, E2, and E0

ð∂t − ∂zÞE1 ¼
iωn
2

½ðaeeρee þ aggρggÞE1 þ 2aegρ�geðE�
2 þ χηE0�Þ�; ð85Þ

ð∂t þ ∂zÞE2 ¼
iωn
2

½ðaeeρee þ aggρggÞðE2 þ χηE0Þ þ 2aegρ�geE�
1�; ð86Þ

ð∂t þ ∂zÞE0 ¼ iω2n
ωþ k

½ðaeeρee þ aggρggÞð2χ2ηE0 þ χE2Þ þ 2aegρ�geχE�
1�: ð87Þ
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The first terms on the right-hand sides of these equations,
which are proportional to aee and agg, do not affect the
transition from excited to ground states, but rather describe
absorption and reemission of photons or dark photons
propagating in the medium. More importantly, the second
terms on the right-hand sides of the above equations,
proportional to aeg, describe the production of electromag-
netic fields via excited to ground state transitions of the
atoms. Altogether, E1 can be amplified by seed E2 and E0
fields, and correspondingly, E2 and E0 are amplified by the
E1 field through transitions. For our purposes, we are most
interested in the fact that E0 will amplify E1 and E2 in these
equations, which forms the basis of our dark photon
detection proposal.

3. Bloch vector

Defining the Bloch vector as in Sec. II, from Eqs. (70)
and (71) we obtain

∂tr1 ¼
�
−
agg − aee

4
ðjĒ0

1j2 þ jĒ0
2j2Þ þ δ

�
r2

þ aegImðĒ0
1Ē

0
2Þr3 −

r1
T2

; ð88Þ

∂tr2 ¼
�
agg − aee

4
ðjE0

1j2 þ jE0
2j2Þ − δ

�
r1

þ aegReðĒ0
1Ē

0
2Þr3 −

r2
T2

; ð89Þ

∂tr3 ¼ −aeg½ImðĒ0
1Ē

0
2Þr1 þ ReðĒ0

1Ē
0
2Þr2� −

1þ r3
T1

; ð90Þ

where the spatially averaged visible and dark photon fields
are together defined as

Ē0
1 ¼ Ē1 þ χηĒ0; Ē0

2 ¼ Ē2 þ χηĒ0;

and we assume that aeg is real. Note that in the expression
above we assumed that Ē1 and Ē2 are in phase, which is
appropriate for atoms pumped by phase-matched lasers.
Due to the smallness of the mixing parameter χ, the dark
photon field itself will not drive the evolution of the state
population in the system. However, the dark photon can
trigger the production of E1 and E2, which in turn trigger
additional photon production. Therefore, while it would be
safe to drop the dark photon component in Eqs. (88)–(90),
we retain it in numeric computations for the sake of rigor.
Of course, because it is essential to the development

of electromagnetic fields in pH2, we must retain the
dark photon component in the field equations. Using
Eqs. (85)–(87), we obtain

ð∂t − ∂zÞE1 ¼
iωn
2

��
aee þ agg

2
þ aee − agg

2
r3

�
E1

þ aegðr1 − ir2ÞðE�
2 þ χηE0�Þ

�
; ð91Þ

ð∂tþ∂zÞE2¼
iωn
2

��
aeeþagg

2
þaee−agg

2
r3

�
ðE2þχηE0Þ

þaegðr1− ir2ÞE�
1

�
; ð92Þ

ð∂tþ∂zÞE0 ¼ iωn
2

��
aeeþagg

2
þaee−agg

2
r3

�
ð2χ2ηE0þχE2Þ

þaegðr1−ir2ÞχηE�
1Þ
�
: ð93Þ

In the experimental setup described below, after the atoms
are pumped into their excited states, the laser fields will be
shut off so that jẼ1j ¼ jẼ2j ≈ 0. It is clear from Eq. (91) that
in this circumstance, a nonzero dark electric field E0 will be
essential to develop the E1 field, which will in turn trigger
additional two-photon emission.

IV. DETECTING DARK-PHOTON-INDUCED
TWO-PHOTON TRANSITIONS

A. Experimental setup

Our proposed experimental setup is schematically illus-
trated in Fig. 5. A continuous laser beam is injected into a
resonant cavity, which enhances the laser’s probability to
oscillate into dark photons. After hitting the wall, photons
are stopped and only dark photons are allowed through.
The target (pH2, for example) is pumped into a coherently
excited state, as detailed in Sec. II. As it propagates through
the target, the dark photon field triggers atomic deexcitation.
The electric fields generated from the first deexcitation
subsequently trigger two-photon emission, producing back-
to-back photons with the same frequency. These photons
trigger further deexcitations, detected at both ends of the
target vessel.
There are two primary advantages to conducting the

experiment in the manner described above. First, the pH2

sample’s response to a dark photon field can be precisely
determined by passing a very weak laser field through the
sample, where low-power lasers can directly test the
response to weakly coupled dark photons. Then, in dis-
covery mode, where visible photons are prevented from
passing through the wall, the two-photon emission process
would presumably only occur if triggered by a dark photon
over the ∼10 ns coherence time, because the spontaneous
deexcitation process is negligibly slow, as detailed in
Sec. IV. D. Photons produced by dark-photon-induced
transitions would be emitted back to back and at the
frequency ω ¼ ωeg=2. Altogether, this provides a powerful
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background rejection method, since the rate for sponta-
neous two-photon emission is very small. This can be
contrasted with more ambitious experiments utilizing two-
photon emission processes [40,45,49,50]. In these experi-
ments, the signal (one photon and either two neutrinos or an
axion) will need to be distinguished from a sizable two-
photon emission background, since both processes are
triggered. Therefore, it is plausible that the experiment
we have outlined is an intermediate step that could be
reached while working towards the proposals laid out in
Refs. [40,45,49,50].

B. Dark-photon-induced transition rate

To begin with, let us quote the estimated rate for the
emission of γ1 and γ2 in our proposed experiment. First, we
note that without both coherent enhancement and expo-
nential amplification of photon fields by the atomic
medium (which will be discussed shortly), the jei → jgi þ
γ þ γ0 transition rate depicted in Fig. 4(a) is rather slow. To
satisfy the coherent amplification condition, we require

ðω − kÞL≲ 1; ð94Þ

where L is the length of the target, which is the longest
dimension of the target volume.
Under these conditions (see Appendix B for a full

derivation), the naive rate for dark-photon-induced two-
stage transitions is

Γγ0γ ¼
1

4π
ðNpass þ 1Þχ4sin2

�
m2

A0

4ω0 l
�

× PLjηj2jaegj2jρgej2n2V2ω3
1; ð95Þ

where ω1 is the cavity laser frequency, equal to the
dark photon frequency ω0, Npass is the number of cavity
reflections, PL is the cavity laser power, l is the cavity
length, A is the area of the excited atomic target (limited by
the pump lasers’ beam width), and n is the target number
density. In Table II we give the parameters for the laser
cavity and parahydrogen sample in our benchmark setup.
Using this naive estimate results in an unobservably

small rate, because it does not account for the development
of electromagnetic fields in the atomic medium [cf. the field
equations given in Eqs. (91)–(93)]. The predicted rate for
our benchmark experimental and model parameters given
in Table II, for a dark photon mixing χ ¼ 10−9 and mass
mA0 ¼ 10−4 eV, and for parahydrogen dipole coupling
aeg ¼ 0.0275 × 10−24 cm3, is Γ ≈ 10−5 s−1. This emission
rate is unobservably low considering that each experimen-
tal run is expected to last about 10 ns.
However, even a small production rate for E1 can be

exponentially enhanced in coherently prepared atoms. As
detailed in Appendix A, the transition rate for producing
two photon pairs is exponentially enhanced as the electro-
magnetic field strength grows,

Γsup ¼
1

16π
jaegj2jρgej2N2Vω2

1jE1j2jE2j2: ð96Þ

FIG. 5. Schematic view of the proposed experiment. First, the pH2 sample is coherently excited to energy ωeg by back-to-back pump
lasers (pump lasers not shown). The excited atoms’ E1 dipole transitions are parity forbidden, meaning the atoms are metastable over the
∼10 ns integration time of the experiment. On the other hand, the emission of two ωeg=2 energy photons in an E1 × E1 transition is
allowed. As in light-shining-through-wall experiments, a laser is fed into a resonant cavity to increase the dark photon conversion
probability. In this case, the laser will operate at energy ωeg=2, so that after passing through the wall, dark photons act as a trigger field
for the emission of back-to-back photons which are then observed by detectors labeled D1 and D2.

TABLE II. Parameters for our benchmark experimental setup. For the dark-photon-generating laser cavity, we
take parameters matching those of the ALPS experiment [17]. For the pH2 sample, we quote values necessary to
obtain maximum coherence, as investigated in Sec. II.

Dark Photon Generating Cavity Superradiant Parahydrogen Target

Cavity Length l ¼ 50 cm Sample Length L ¼ 30 cm
Cavity Reflections Npass ¼ 2 × 104 pH2 Density n ¼ 1021 cm−3

Cavity Laser Frequency ω0 ¼ 0.26 eV Pump Laser Frequency ω1 ¼ 0.26 eV
Cavity Laser Power PL ¼ 1 Wmm−2 Pump Laser Power ≈ 109 W mm−2
� � � pH2 Sample Area A ¼ 1 cm2
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The dependence on E2
1E

2
2 in Eq. (96) shows that the growth

of signal fields will be exponential after the dark photon
establishes a small E1 seed field. A similar amplification
has been observed to be as large as 1018 compared with
spontaneous emission [36]. We expect an even larger
amplification factor to be achieved in our benchmark
experimental setup.

C. Numerically simulating field development

When simulating the development of electric fields in
coherently prepared atoms, it will be convenient to rescale
the spacetime coordinates and the electric fields to be
dimensionless. We define

β ¼ 2

nωegaeg
; ζ ¼ z

β
; τ ¼ t

β
;

je1ð2Þj2 ¼
jE1ð2Þj2
ωegn

; je0j2 ¼ jE0j2
ωegn

; ð97Þ

where β represents the typical length and time scale for the
evolution of the system and ωegn is the energy stored in
excited atoms. The Bloch equations and field equations can
be written in terms of these new variables:

∂τr1 ¼
�
−
agg − aee
2aeg

ðje1j2 þ je2j2Þ þ βδ

�
r2

þ 2Imðe1e2Þr3 −
r1
τ2
; ð98Þ

∂τr2 ¼
�
agg − aee
2aeg

ðje1j2 þ je2j2Þ − βδ

�
r1

þ 2Reðe1e2Þr3 −
r2
τ2
; ð99Þ

∂τr3 ¼ −2½Imðe1e2Þr1 þ Reðe1e2Þr2� −
1þ r3
τ1

; ð100Þ

ð∂τ − ∂ζÞe1 ¼
i
2

��
aee þ agg
2aeg

þ aee − agg
2aeg

r3

�
e1

þ ðr1 − ir2Þðe�2 þ χηe0�Þ
�
; ð101Þ

ð∂τ þ ∂ζÞe2 ¼
i
2

��
aee þ agg
2aeg

þ aee − agg
2aeg

r3

�
ðe2 þ χηe0Þ

þ ðr1 − ir2Þe�1
�
; ð102Þ

ð∂τþ∂ζÞe0 ¼
i
2

��
aeeþagg
2aeg

þaee−agg
2aeg

r3

�
ð2χ2ηe0 þχe2Þ

þðr1− ir2Þχηe�1Þ
�
: ð103Þ

As mentioned before, the dipole couplings of parahydro-
gen have been measured to be agg ¼ 0.90 × 10−24,
aee ¼ 0.87 × 10−24, and aeg ¼ 0.0275 × 10−24 cm3 [41].
For the relaxation and decoherence times, we take T1 ¼
103 andT2 ¼ 10 ns, respectively; for an extended discussion
of coherence in preparations of pH2, see Sec. II. The photon
and dark photon energies are ω ¼ ωeg=2 ≈ 0.26 eV.
Altogether, this gives

β ¼ 0.092

�
1021 cm−3

n

�
ns ¼ 2.8

�
1021 cm−3

n

�
cm;

ωegn ¼ 2.5 × 1010
�

n
1021 cm−3

�
W=mm2: ð104Þ

Atypical target vessel is 10 to 100 cm long.Hereweassume a
vessel that is 30 cm long, which is smaller than the expected
length scale overwhich the pH2 is coherent. Ifwe assume that
all atoms are initially prepared in the coherent state, then
r1 ¼ 1 across the target. We also consider smaller values of
r1 ¼ 0.1, 0.5, 0.9, which correspond to fewer atoms in the
coherent state. With the aid of a resonant cavity, the trans-
mission probability for a dark photon to shine through the
wall is given by [64,65]

ptrans ¼ 2ðNpass þ 1Þχ2 sin2
�
m2

A0

4ω
l

�
; ð105Þ

where l is the size of the cavity and Npass is the number of
reflections the laser undergoes in the dark-photon-generating
cavity. We assume that the laser cavity has the parameters
given in Table II; these values are in line with what has been
attained at the ALPS II experiment [17]. The initial dark
photon field power in the target volume is estimated to be

jE0ðt ¼ 0Þj2 ¼ PLptrans; ð106Þ

where for our benchmark setup we assume a laser power
PL ¼ 1 Wmm−2. As mentioned in Sec. III. B. 1, η is
determined by the relative phase between the polarization
of the photon and dark photon fields. Without loss of
generality we set it to unity.
In Figs. 6–8 we show the time evolution of the system.

In these figures we assume that all of the pH2 atoms are
initially prepared in the coherent state, i.e., r1 ¼ 1, r2 ¼ 0,
and r3 ¼ 0, across the target. We also assume a dark photon
mass mA0 ¼ 0.1 meV.
As shown in Fig. 6, r1 and r3 decay exponentially when

no laser is present. In this case no initial dark photon field is
pumped through the wall and so spontaneous deexcitation
dominates the evolution of the system. We note that Fig. 7,
which shows no substantial E1, E2, or E0 field developing
when PL ¼ 0, does not include the effect of spontaneous
two-photon deexcitations, which are expected to be neg-
ligibly small; see Sec. IV. D.
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FIG. 7. Time evolution of the (dark) electric fields at the ends of the parahydrogen target. Left panel: The electric fields at each end of
the target, jE1j2 and jE2j2, as a function of time. Right panel: The dark photon field jE0j2 as a function of time. As in Fig. 6, the cavity
laser is turned off (PL ¼ 0) for the dotted lines and a PL ¼ 1 Wmm−2 cavity laser with dark photon mixing χ ¼ 10−3 is assumed for the
dashed lines. We also assume the same initial Bloch vectors as in Fig. 6. jE1j2 (red) is taken at the left end of the target with z ¼ 0 cm,
while jE2j2 (blue) and jE0j2 (black) are taken at the right end of the target with z ¼ 30 cm.

FIG. 6. Time evolution of Bloch vectors at the center of the target. Left panel: r1 as a function of time. Right panel: r3 as a function of
time. Dotted lines show the case where no initial cavity laser is present to create a dark photon (PL ¼ 0). The dashed and solid lines
correspond to dark photon mixing parameters χ ¼ 10−3 and 10−9, respectively, for a cavity laser generating dark photons with power
PL ¼ 1Wmm−2. A maximally coherent parahydrogen sample, r1ðt ¼ 0Þ ¼ 1, r2ðt ¼ 0Þ ¼ 0, r3ðt ¼ 0Þ ¼ 0, and a dark photon mass
mA0 ¼ 0.1 meV are assumed.

FIG. 8. Time evolution of the (dark) electric fields at the ends of the target. Other features are the same as in Fig. 7, except that a
smaller dark photon mixing χ ¼ 10−9 is used and jE1j2, jE2j2, and jE0j2 are shown with solid lines.
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This scenario changes dramatically in the presence of
dark photons produced by a laser. Assuming the laser
power PL ¼ 1 Wmm−2 and the mixing χ ¼ 10−3, a sudden
drop takes place in r1 and r3 around 10 ns. This drop
corresponds to decay and release of the target’s energy
through the production of E1 and E2 as well as a minor
enhancement of the dark photon field E0. The dynamics can
be explained as follows. The initial dark photon field
induces a deexcitation via E1 and E0 [Fig. 4(a) illustrates
this process], and then this E1 field triggers additional two-
photon deexcitation producing E1 and E2 symmetrically
[see Fig. 4(b)]. The growing E1 and E2, when large enough,
cause abrupt decoherence and deexcitation, which in turn
gives rise to additional energy release in the form of E1

and E2. As can be identified from Eq. (87), E0 will also be
generated by E1-induced transitions, at a rate suppressed
by χ.
The transitions are less explosive when χ ¼ 10−9, as

illustrated in Figs. 6 and 8. The deviations of r1 and r3 from
spontaneous decay are barely observed and the peak
intensity of E1 and E2 are relatively low compared to
χ ¼ 10−3. In this case, the dark photon has induced the
generation of an observable but small quantity of E1 and E2

photons. The dark photon field remains essentially constant
since E0 regenerated from E1 is too small to be observed.

D. Spontaneous two-photon emission background

We now consider a possible background from sponta-
neous deexcitation and emission of photons from cold
atoms over the runtime of the proposed experiment (around
10 ns). We will find that this background is negligible.
Since the transition from the excitation state jei to the
ground state jgi is E1 forbidden, single-photon deexcitation
is only viable through higher-order transitions. Note that
we are only looking for signal photons with energy around
ω ¼ 1

2
ωeg, because our signal photons are expected at this

frequency. The background from spontaneous two-photon
emission has a rate given by (see Appendix A)

dΓsp

dz
¼ ω7

eg

ð2πÞ3Njaegj2z3ð1− zÞ3¼ 1.27×10−14 s−1; ð107Þ

where z ¼ ω1=ωeg is the fraction of the energy for one of
the two photons in the transition. We assume an uncertainty
Δν ¼ 100 MHz in the frequency measurement, which
translates to Δz ¼ 8.0 × 10−7. For a sample target with
length L ¼ 30 cm and cross section area A ¼ 1 cm2, the
uncertainty in the emission solid angle is ΔΩ=4π ¼
A=4πðL=2Þ2 ¼ 3.5 × 10−4. These two photons from the
spontaneous decay process can be emitted in any direction.
Since we only detect photons at the ends of the atomic
sample, the fraction of background photons that reach the
detector is 2ΔΩ=4π. Given the target number density n ¼
1021 cm−3 and complete coherence (ρeg ¼ 0.5), the total

number of pH2 atoms in the excitation state for our
benchmark setup is N ¼ 1.5 × 1022. Even given a gener-
ously long measurement time Δt ¼ 40 ns, the spontaneous
two-photon emission background is estimated to be

Nbackground ¼ 2N
dΓsp

dz
ΔzΔt

ΔΩ
4π

¼ 4.3 × 10−9: ð108Þ

We see that over the course of any reasonable number of
experimental repetitions, we should not expect a single
background event from spontaneous two-photon deexcita-
tion processes.

E. Results and sensitivity

The signature of the proposed dark photon search is the
symmetric emission of photons with frequency ω ¼ ωeg=2
at both ends of the target. The number of signal photons
emitted during one experimental trial run (of ∼10 ns) is

N1
s ¼

A
ω

Z
t

0

jE1ðt0Þj2dt0 ¼
A
ω

Z
t

0

jE2ðt0Þj2dt0; ð109Þ

where A is the area of the target and t is the time duration
of the experiment. The experiment can be repeated many
times to accumulate signal photons. The Bloch equations
and field equations derived in Sec. III are highly nonlinear,
but we see from Eq. (91) that E1 ∝ χE0, and therefore the
number of photons emitted is

Ns ∝ PLNrepχ
4ðNpass þ 1Þ sin2

�
m2

A0

4ω
l

�
; ð110Þ

where Nrep is the number of repetitions of the experiment.
To see in what regime this scaling holds, we show in Fig. 9
the number of photons produced as a function of the mixing
χ assuming different laser powers. Note that in the limit that
m2

A0 ≪ 4ω
l , the expected number of signal photons scales

like Ns ∝ χ4m4
A0 , as is evident in Fig. 9. There is an upper

bound on the number of signal photons, which is saturated
if all of the excited atoms are deexcited. It is clear from
the figure that before saturation Ns is proportional to PL

and χ4. As χ becomes large enough, a significant amount of
energy stored in the target is released and one gains very
little by increasing the mixing or laser power. We also note
that Nrep, Npass þ 1, and sin2ðm2

A0 l=ωÞ will have the same
scaling as PL when determining the number of signal
photons emitted.
To estimate the sensitivity of our proposed experiment, we

require the emission of at least ten photon pairs after a certain
number of excitation/deexcitation repetitions. As a bench-
mark we take the laser power PL ¼ 1 Wmm−2, target area
A ¼ 1 cm2, target chamber length L ¼ 30 am, number of
dark-photon-generating cavity reflections Npass ¼ 2 × 104,
cavity size l ¼ 50 cm, and number of experimental
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repetitions Nrep ¼ 103. In the regime where a fraction of
the pH2 deexcites, the number of emitted photons can be
estimated as

Ns ¼ 5 × 103
PL

1 Wmm−2

�
χ

10−9

�
4 Npass þ 1

2 × 104 þ 1

× sin2
�
1.27

m2
A0

meV2

eV
ω

l
m

�
; ð111Þ

where this expression has been normalized assuming
n ¼ 1021 cm−3.
We show the sensitivity of our proposed experiment in

Fig. 10. Also shown in the figure are the light-shining-
through-wall experiments, and cosmological and astro-
physical bounds reviewed in Ref. [66]. The coherent
amplification condition we have assumed throughout given
by Eq. (94) requires that our dark photon mass not be too
large. This restricts mA0 ≲ 0.6 meV. As a consequence, we
have truncated the mass sensitivity at 1 meV. As seen from
the figure, over the mass range 10−5–10−3 eV our proposed
experiment appears rather sensitive to dark photon kinetic
mixing. Note that so far we have assumed that the detuning
δ ¼ 0. A nonzero detuning has a mild effect on the
expected sensitivity. We refer the reader to Appendix C
for a quantitative discussion.

Looking at Fig. 10, it is apparent that the number of
signal photons depends on the number density of the target
n and the coherence factor r1 in a nonlinear and nontrivial
manner. To examine this behavior, we can combine
Eqs. (91)–(93) and for the moment neglect the propagation
terms, r2, and the position and time dependence of r1 to
obtain

ð∂2
t − ∂2

zÞE1 − n2Ω2
rE1 ¼ 0; ð112Þ

where we define Ω2
r ≡ ω2jaegr1j2ð1þ χ2jηj2Þ=4. The tem-

poral part of E1 can be solved from Eq. (112), which
indicates that E1 ∝ enΩrt. This gives the total photon yield

FIG. 9. Number of photons emitted as a function of χ at the ends
of the target volume, for different PL, where this is the power of
the laser producing dark photons in the reflection cavity. The
dashed, solid, and dash-dotted lines correspond to dark photon
cavity laser powers PL ¼ 10−3, 1, and 103 Wmm−2, respectively.
Otherwise, we take the benchmark parameters shown in Table II:
the number of cavity reflections Npass ¼ 2 × 104, the cavity
length l ¼ 50 cm, the dark photon mass mA0 ¼ 0.1 meV, the
laser frequency ω ¼ 0.26 eV, the area of the parahydrogen target
A ¼ 1 cm2, and the number of experimental repetitions (each
around 10 ns) is Nrep ¼ 103. The initial Bloch vectors are the
same as in Fig. 6.

FIG. 10. The sensitivity of our proposed experiment assuming
the benchmark parameters given in Table II, except for the pH2

target number density n and Bloch vector r1ðt ¼ 0Þ as indicated.
We also assume r2ðt ¼ 0Þ ¼ r3ðt ¼ 0Þ ¼ 0. The experiment is
repeatedNrep ¼ 103 times by coherently exciting the pH2 sample,
where each coherent excitation lasts ∼10 ns. The constraints
from other dark photon experiments, astrophysics, and cosmol-
ogy are shown for comparison: Coulomb [67,68], CMB [69,70],
CROWS [71], GammeV [72], ALPS [16,17], and stellar con-
straints [10,11,15,17]; see Ref. [66] for a summary of these
bounds. The black lines show the sensitivity of our proposed
experiment for the pH2 number densities indicated and coherence
factors (r1) as indicated to the right of each sensitivity. Section II
and particularly Table I provide a discussion of the coherence
that has been achieved in ongoing pH2 experiments [37]: the
maximum coherence factor obtained so far is r1 ∼ 0.06. The
experimental sensitivities shown are obtained by numerically
solving Eqs. (88)–(93), which determine the nonlinear develop-
ment of coherence induced by counter-propagating lasers in pH2.
As has been noted in previous literature, the pH2 transition rate
and resulting experimental sensitivity exhibit dramatic nonlinear
sensitivity to the pH2 coherence [36–40,43]. This accounts for the
dramatic increase in sensitivity between the bottom three sensi-
tivity curves for coherence values r1 ¼ 0.5–0.8. The sensitivity
curves have been truncated at a dark photon mass mA0 ¼ meV,
beyond which the coherent amplification condition (94) is no
longer valid.
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Ns ∝
Z

jE1j2dt ∼
1

nΩ
e2nΩrΔt; ð113Þ

where Δt is denotes the time duration of the experiment.
The χ2jηj2 term in Ωr shows the dependence on the dark
photon mixing parameter and relative polarization, since it
is the dark photon that triggers the collective deexcitation of
the target molecules. We should also keep in mind that
coherence (r1) dies off quickly after Δt ∼ T2 ∼ 10 ns,
which causes the drop in field intensity at t≳ T2 depicted
in Figs. 7 and 8. Therefore, Eq. (113) is in no way close to
an exact solution, but it does show that the signal intensity
is enhanced by a factor of ∼enΩrt even for a moderate
increase in the number density n, coherence r1, and
coherence time T2. A related discussion can be found in
Ref. [73]. This exponential evolution behavior can also be
understood qualitatively. As mentioned in Sec. IV C, the
initial dark photon field triggers the emission of E1 and E2,
which will subsequently trigger more two-photon transi-
tions. The number of photons to be triggered is proportional
to the number density of the target, which appears in the
exponent of the cascade deexcitation rate.

V. CONCLUSIONS

We have studied a newmethod to detect dark photon fields
using resonant two-photon deexcitation of coherently excited
atoms. Our proposed experiment combines dark photon
production techniques demonstrated by light-shining-
through-wall experiments with a new detection method: dark
photons triggering two-photon transitions in a gas of para-
hydrogen coherently excited into its first vibrational state. The
potential coupling sensitivity to dark photons we project in
our benchmark setup is orders of magnitude beyond present
limits for μeV-meV mass dark photon fields.
A major technical hurdle to realizing this proposal will

be the preparation of suitably coherent samples of cold
parahydrogen using counter-propagating laser beams. As
we examined in Sec. II, the coherence times and pH2

densities necessary have already been achieved in labo-
ratory conditions. It remains to suitably increase the
fraction of coherently excited pH2 by using more powerful
lasers and colder parahydrogen, as explored in Sec. II.
However, even if complete parahydrogen sample coherence
is not attained, it would still be possible to realize this
proposal by increasing the density of parahydrogen, as
explored in Sec. IV. Indeed, although we have not shown it
in Fig. 10, the setup we proposed with an increased pH2

number density (2 × 1021), assuming completely coherent
atoms (r1 ¼ 1), can probe kinetic mixings χ ≪ 10−15. It
may also be possible to realize a proposal similar to the
one laid out here using two-photon nuclear transitions and
free electron lasers. This might permit detecting dark
photons at masses greater than an eV.
Our setup relies on the nonlinear development of electro-

magnetic fields in coherent atoms, and so our sensitivity

estimates have relied on numerical simulations of dark
photon and photon cascades in pH2. However, as explained
in Sec. IV, the proposed experiment will allow for dark
photon detection to be directly calibrated using a low-power
trigger laser as an equivalent stand-in for the dark photon
field itself. For this reason, although we have focused on the
detection of dark photons in this paper, very similar methods
could be used to detect axions and other light, electromag-
netically coupled particles. We leave this and other uses of
multistage atomic transitions to future work.
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APPENDIX A: COHERENCE AND
NONLINEARITY IN TWO-PHOTON EMISSION

Let us estimate the transition rate of the two-photon
emission process, as illustrated in Fig. 4(b). The transition
matrix for the jei → jgi transition is

hgjiTjei ≃ T
ð−iÞ2
2

Z þ∞

−∞
dt

Z þ∞

−∞
dt0hgj − d · Ẽ2ðtÞjjihjj

− d · Ẽ1ðt0Þjei

¼ ð−iÞ2
Z þ∞

−∞
dt

Z
t

−∞
dt0hgj − d · Ẽ2ðtÞjjihjj

− d · Ẽ1ðt0Þjei; ðA1Þ

where T is the time-ordering operator and we write the
electric fields as

Ẽm¼ 1

2
Emϵe−iωmtþik·rþ1

2
E�
mϵ

�eiωmt−ik·r; m¼ 1;2; ðA2Þ

where ωm and km are the energy and momentum of the
emitted photons. Integrating over t0 yields

hgjiTjei ≃ i
djedgj

ω1 − ωej

E1E2

4
e−iðk1þk2−ka

ejÞ·ðr−raÞ

×
Z þ∞

−∞
dteiðω1þω2−ωegÞt; ðA3Þ

where as before we have defined ωik ¼ ωi − ωk and
dik ¼ hij − d · ϵð�Þjki. ka

ej is the change in the momentum
of a specific pH2 after the transition and ra is the spatial
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position of the pH2. We can perform the second time
integral and obtain

hgjiTjei ¼ i2πδðωeg − ω1 − ω2ÞMa; ðA4Þ

with

Ma ¼
dgjdje

ωje þ ω1

E1E2

4
e−iðk1þk2−ka

egÞ·ðr−raÞ

¼ aeg
4

E1E2e−iðk1þk2−ka
egÞðr−raÞ: ðA5Þ

First we consider the case that the pH2 is not emitting
coherently, which we will call spontaneous two-photon
deexcitation. In the case of spontaneous two-photon deex-
citation, each pH2 emits two photons with frequencies that
are not necessarily ∼ωeg=2, in contrast with two-photon
emission induced by a trigger laser (where the trigger laser
frequency used in earlier sections of this paper matched the
pump laser frequencies, all of these being ωeg=2). In the
spontaneous emission case we sum up the contribution
from all pH2 molecules, which gives the emission rate

Γsp ¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

×

����
Z

d3r
XN
a¼1

aeg
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω1ω2

V2

r
e−iðk1þk2−ka

egÞðr−raÞ
����

2

× 2πδðωeg − ω1 − ω2Þ; ðA6Þ

where we have explicitly replaced Em by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωm=V

p
for

m ¼ 1, 2, and N is the number of spontaneous emitters.
Since the exponential phase is random for each molecule,
the product of the phases from different molecules will
sum up to zero in the expansion of the square in Eq. (A6).
This gives

Γsp¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3Njaegj2

ω1ω2

4
2πδðωeg−ω1−ω2Þ: ðA7Þ

Carrying out the integral, we find

dΓsp

dω1

¼ 1

ð2πÞ3Njaegj2ω3
1ω

3
2: ðA8Þ

If we define z≡ ω1=ωeg, Eq. (A8) can be written as

dΓsp

dz
¼ ω7

eg

ð2πÞ3 Njaegj2z3ð1 − zÞ3: ðA9Þ

We use this equation to estimate the two-photon sponta-
neous emission background in Sec. IV. D.

Next we will estimate the rate for two-photon emission
for pH2 pumped and triggered in a manner that allows
for macro superradiance. In the presence of appropriately
applied background fields, pH2 molecules will tend to emit
photons collectively with the same momenta. If the phase
kaeg is random for every molecule, the product of the phases
would still cancel (as we have derived before) and the rate
would be proportional to N; however, if the molecules are
pumped into the excitation state coherently (by counter-
propagating lasers, in the setup we have considered), we
can drop the superscript a in kaeg and turn the sum into a
spatial integral, i.e.,

Γsup ¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

×

����
Z

d3r
Z

d3ra
aeg
4

ρgenE1E2e−iðk1þk2−kegÞðr−raÞ
����2

× 2πδðωeg − ω1 − ω2Þ; ðA10Þ

where n is the number density of the target and ρge is the
fraction of molecules in the coherent state. In the special
case we use two counter-propagating lasers with the same
frequency to pump the molecules, keg ≈ 0, although of
course this can be spoiled by the lasers’ linewidth and other
experimental factors, as discussed in Sec. II. For a dense
and large enough target, the spatial integral in ra turns into
a delta function, which gives

Γsup ¼
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

×
��� aeg
4

ρgeNE1E2ð2πÞ3δ3ðk1 þ k2 − kegÞ
���2

× 2πδðωeg − ω1 − ω2Þ; ðA11Þ

where N is the total number of pH2 molecules in the target.
In the case where keg ≈ 0, the delta function forces
k1 þ k2 ¼ 0, meaning that the two photons emitted super-
radiantly have to be back to back and have equal frequency.
Since the delta function is squared we replace one by the
target volume V. Evaluating the integrals yields

Γsup ¼
1

16π
jaegj2jρgej2N2Vω2

1jE1j2jE2j2: ðA12Þ

Equation (A12) shows that the transition rate in two-photon
superradiance is proportional to N2 if coherence conditions
are met. This can be compared with (out-of-phase) sponta-
neous two-photon emission described in Eq. (A9), where
the rate is instead proportional to N. We also see that the
rate grows nonlinearly with E1 and E2, the strength of
the background fields. At the onset of superradiance, the
emission rate is determined by the power of the trigger laser
fields. As the photons from the deexcitation increase the
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strength of the electric fields, the deexcitation rate becomes
larger and larger. This exponential growth is clearly seen
in Fig. 7.

APPENDIX B: ESTIMATE OF DARK-PHOTON-
TRIGGERED TWO-STAGE TRANSITIONS

Let us now move on to estimate the emission rates of γ1
and γ2 in our proposed experiment, as depicted in Fig. 5.
Consider the process illustrated in Fig. 4(a). First, the
transition matrix for the deexcitation from jei to jgi via the
emission of a dark photon and a photon in the dark photon
background is given by

hgjiTjei ≃ T
ð−iÞ2
2

Z þ∞

−∞
dt

Z þ∞

−∞
dt0hgj − d · Ẽ0ðtÞjjihjj

− d · Ẽ1ðt0Þjei

¼ ð−iÞ2
Z þ∞

−∞
dt

Z
t

−∞
dt0hgj − d · Ẽ0ðtÞjjihjj

− d · Ẽ1ðt0Þjei; ðB1Þ

where Ẽ0 and E1 are given in a similar form as in Eq. (A2).
With the same algebra as in Appendix A, we obtain

hgjiTjei ¼ i2πδðωeg − ω1 − ω0ÞMa; ðB2Þ

with

Ma ¼
d0gjdje

ωje þ ω1

E0

2

ffiffiffiffiffiffi
ω1

2V

r
e−iðk1þk0−kegÞ·ðr−raÞ: ðB3Þ

Note that we have replaced E1 by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω1=V

p
for one photon

state. After introducing aeg and η as defined in Eqs. (22)
and (69), we find

Ma ¼ aegη
E0

2

ffiffiffiffiffiffi
ω1

2V

r
e−iðk1þk0−kegÞ·ra : ðB4Þ

Summing up all coherent atoms, the transition rate is now

Γγ0γ ¼
Z

d3k1
ð2πÞ3

d3k0

ð2πÞ3

×

����
Z

d3r
Z

d3raaegηρgen
E0

2

ffiffiffiffiffiffi
ω1

2V

r
e−iðk1þk0−kegÞ·ðr−raÞ

����2
×2πδðωeg−ω1−ω0Þ: ðB5Þ

After some algebra, we arrive at the transition rate

Γγ0γ ¼
1

8π
jηj2jaegj2jρgej2N2ω3

1jE0j2: ðB6Þ

With the dark photon field power given in Eq. (106), we
obtain

Γγ0γ ¼
1

4π
ðNpass þ 1Þχ4sin2

�
m2

A0

4ω0 l
�

× PLjηj2jaegj2jρgej2n2V2ω3
1: ðB7Þ

For χ ¼ 10−9, mA0 ¼ 10−4 eV, ω0 ¼ ω1 ¼ 0.26 eV,
Npass ¼ 2 × 104, l ¼ 0.5 m, η ¼ 1, pH2 number density
n ¼ 1021 cm−3, target area A ¼ 1 cm2, length L ¼ 30 cm,
laser power PL ¼ 1 W=mm2, and aeg¼0.0275×10−24cm3,
we obtain

Γγ0γ ¼ 1.2 × 10−5 s−1: ðB8Þ

This emission rate is relatively low considering the exper-
imental trial time of about 10 ns, which is determined by
the decoherence time. Signal photon production, on the
other hand, is enhanced when the dark photon triggers two-
photon superradiant transitions. This is discussed in
Sec. IV. B.

APPENDIX C: LASER DETUNING

In this Appendix we study how the development of
signal photons is altered if the counter-propagating lasers
used to excite the cold parahydrogen sample are substan-
tially detuned. This amounts to varying the detuning
parameter δ. The primary effect of δ is to induce the
oscillations in the coherence factor ρge (and hence the
Bloch vectors r1 and r2), as indicated by Eq. (71). We show
the effect of δ in Fig. 11. As δ increases, the coherence of
pH2 is suppressed, and the output photon flux when pH2

deexcites is correspondingly suppressed. However, as
shown, there is no suppression for δ < 100 MHz. We note
that detuning δ < 100 MHz has already been achieved in
existing experiments [37]. After increasing the detuning to
a value as large as δ ¼ 104 MHz there is a notable decrease
in the expected experimental sensitivity, since the resulting
pH2 sample will be less coherent. We note that, as before,
the experimental sensitivity and pH2 coherence are
obtained by numerically solving the differential equations
given in Eqs. (88)–(93), which determines the nonlinear
development of coherence in pH2.
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