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BEAM LOADING IN PLASMA ACCELERATORS
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We address the issue of beam loading in the plasma beat-wave and plasma wake-field accelerator
schemes. We find the total number of particles which can be accelerated and the resulting efficiency
subject to constraints on emittance growth and energy spread. The analytic predictions are compared
to I-D computer simulations.

1. INTRODUCTION

Acceleration of particles in high-phase-velocity plasma waves is attractive because
of the extremely high accelerating gradients that can be obtained. 1

-
3 However, a

high gradient is only one important benchmark for an accelerator. It is also
important to know how many particles can be accelerated (i.e., luminosity), what
will be the beam quality (i.e., emittance), and what will be the overall efficiency
of the device. In this paper, we address these issues for plasma-wave accelerators.
The results apply to both the beat-wave2

,4 and wake-field3
,s,6 accelerator schemes.

Previous work by R. Ruth et al. 5 has addressed emittance matching in plasma
wake fields driven by unshaped electron bunches. S. Van der Meer? has
considered specialized shaping of an accelerated beam to reduce its energy
spread. Here we consider simultaneously the constraints on emittance and energy
spread. These lead to quantitative estimates of the maximum number of particles
that can be accelerated in plasma waves and the resulting efficiency. We augment
the analysis with self-consistent particle-in-cell computer simulations.

In order to find the maximum number of particles that can be accelerated by a
plasma wave, we first review the wake field generated by a relativistic charged­
particle bunch of arbitrary shape (Section 2). The beam-loading problem can then
be analyzed by applying linear superposition of the bunch wake field and the
accelerating plasma-wave field. This is done for a one-dimensional approximation
in Section 3 and for three dimensions in Section 4.

2. THE WAKE-FIELD RESPONSE IN A 3-D COLD PLASMA

In this section, we find the electric field response of a cold plasma to a bunch of
arbitrary charge moving at approximately c. This can be found from the Green's

t University of California, Los Angeles, and Stanford Linear Accelerator Center, Stanford, CA
94305.
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function response to a single test charge. Such a wake (or Green's) function has
been found previously using potentials (l/J, A).3,S The derivation is simplified by
solving directly for the fields,9 as in the following.

Consider a charge q of velocity Vb moving through a plasma. It represents an
external charge density

Po = q6(X - Vbt) = q6(r)6(z - Vbt), (1)

where the z axis is chosen to correspond to the direction of Vb' r is the radial
polar coordinate, and 6(r) = 1/(2nr)6(r). The response of the cold plasma can be
found from the linearized equations of motion, continuity, and Maxwell's
equations:

dV
(2)-= -eE/m

dt '

anl
(3)-+noV·V=O

at '

v ·E = -4nenl + 4npo (4)

laB
(5)VXE= ---

c at'

vx B = (4n /c)j +~ ~~ , (6)

where no, nl are the background and perturbed plasma density; V and E are the
perturbed velocity and electric field of the plasma.

Taking the first derivative of Eq. (3) and substituting from Eq. (2) gives

Substituting for V • E from Poisson's equation [Eq. (4)] gives the wave equation
for the plasma density response:

where w; = 4nnoe2/m, and where we have used Eq. (1) and the fact that
<5(z - Vbt) = <5(t - z/Vb)/Vb. The solution to Eq. (7) is just the Green's function
for a harmonic oscillator namely,

(8)

where (J is the step function which is 1 or 0 for positive or negative values of its
argument.

Using this expression for the density in Eqs. (5) and (6), we can obtain the
fields. Taking the curl of Eq. (5) and substituting the time derivative of Eq. (6) in
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the usual way gives the wave equation for E:

( a2 2 2) aj 2 ( )- - c V E = -4.71- - C V V · E .
at2 at

Now,
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(9)

aj av 2
at = -noeat = noe Elm

[from Eq. (2)], and V· E is given by Eqs. (4) and (8). Thus, Eq. (9) becomes

(Vi - k~)E = (-4.71wpqlc)V[~(r)f)(t - zlc) sin wp(t - zlc)],

where we have separated V2 into vi + a2Iaz2 and assumed that the z, t
dependence of the wake fields is a function only of the combination (z - Vbt) ==
(z - ct) [i.e., a21at2 = c2(a21az2

)]; k~ == W~/C2.

For the longitudinal wake field Ez , this gives

(Vi - k~)Ez = 4.71qk;~(r)f)(t - zlc) cos wp(t - zlc). (10)

The radial dependence of Ez is simply the Green's function response to the
Kelvin-Helmholtz equation; that is,

Ez= -2qk~Ko(kpr)f)(t - zlc) cos wp(t - z/c), (11)

where Ko is the zeroth-order modified Bessel function of the second kind.
The transverse wake function is easily obtained from Eq. (11) and the

Panofsky-Wenzel theorem1o for wake fields which are a function of z - ct. The
theorem follows directly from the f) component of Eq. (5) and gives

aWII aWl-
a;:-=a;-'

where

(
VXB)WII,l-= E+--

c z,r

are the longitudinal and transverse wake functions (V = cz). Since W II is Ez and

d
dx Ko(x) = -K1(x),

we have

W-L = (E, - Be) = Jdz a:" = -2qki,K1(kpr)O(t - z/c) sin wp(t - z/c). (12)

Equations (11) and (12) describe the wake fields produced behind a single
charge. The wake fields produced by an arbitrary beam of relativistic particles of
charge density Pb(r, f), z - ct) can be found by integrating over Eq. (12) as
follows: ~ 00 2

EAr, 0, C) = (- 2ki,) ( dC'l r' dr'L ndO'Pb(r', 0', C') (13)
J+oo 0 0

X Ko(kp Ir - r' f) cos kp(' - "),



84 T. KATSOULEAS ET AL.

where ~ == z - ct and the perpendicular distance Ir - r'l is given by [r2+ r,2­
2rr' cos (() - 0')]1/2.

If the charge density Pb is separable [Le., Pb = P II (~) • P.L(r, 0)], then the
response can be expressed as

WI! = Ez(r, ~) = Z'(~)R(r),

where

Z'( C) = -4JrfdC'PU(C') cos kp(C - C'),

R(r) = k; f21fd8fOOr' dr'p.l-(r', 8)Ko(kp Ir-r'I).
2Jr 0 0

Similarly, the transverse wake fields are

W.L = Z(~)R'(r),

where

az , aR
Z' == oC and R == or'

3. WIDE, UNIFORM BEAMS (I-D ANALYSIS)

(14a)

(14b)

When the particle beam and the accelerating wave have nearly uniform transverse
profiles and are much larger than c/wp , the beam-loading problem is approxim­
atelyone-dimensional. In this section, we examine this simplified case analytically
and with I-D computer simulations.

The I-D Green's function wake field produced by a test charge is easily
obtained from Eq. (10) by replacing £5(r.L) by 1 and vi by 0.5 Then, in one
dimension for an infinitesimally thin sheet of charge per unit area q /A,

Ez = (-41Cq /A)O(t - z/c) cos wp(t - z/c).

For a volume charge density Pb(Z),

Ez == Z'(C) = -4Jr fdC'Pb(C') cos kp(C - C').

Note that one would obtain the same result from Eq. (14) with P1- = 1.

3.1. Short, Unshaped Beams

(15)

(16)

In a cold plasma, the wake function, Eq. (15), is a simple sinusoid, just as is the
accelerating wave field,!,ll (whether created by beat wave, wake field, or other
means):

E;ave = Eo cos (wpt - kpz + ep) = (-4Jrenl/kp) cos (wpt - kpz + l/», (17)
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FIGURE 1 Total electric field in a 1-D simulation loaded with short bunches of (a) 0, (b) 0.5No' and
(c) No (positively charged) electrons on the third peak of an accelerating wave. Simulation consisted
of 14,000 partricles on 19024 grids; system length = 170c/wp, particle size = O.11c/wp == bunch width,
wave amplitude nt == 0. 16no (produced by wake-field mechanism), time step =0.04w;1, wpt =40,
ybeam = ywave = 60.

where nl is the perturbed plasma density associated with the wave « no) and </J is
a constant phase factor. Thus, one could exactly cancel the accelerating wave field
by placing a short «< c/wp ) beam of electrons at a minimum of the accelerating
wave (</J = 0, see Fig. 1). Comparison of Eqs. (17) and (15) shows that behind the
beam, the total field (Ewave + E beam

) equals zero if q = -Ne and the number of
electrons N is given by

(19)Eo nl s(n1)"~No =-4 .A=-k A=5xl0 - vnoA,
ne p no

where no is in cm-3 and A is in cm2 in the last expression. For a wave of l-cm2
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cross section in a plasma of density 1016 cm-3 and n1/nO == 0.2, No is approxim­
ately 1013

•

Figure 1 illustrates the total electric field in 1-D electrostatic particle-in-cell
computer simulations. Typically, in the simulations, 104 particles are followed on
a simulation grid 100 c/ wp long consisting of 500 cells. The charge density
represented by these particles is evaluated in each cell and used to find the
electric field (from Poisson's equation) at each particle. The Lorentz force is then
used to leapfrog the particles through one time step (typically 0.1 W;1). The new
charge density can be computed, and the process repeated. Short beams of 0, 0.5
No, and No (positively charged) electrons were placed at the third peak of an
accelerating wave. As expected, the electric field is nearly perfectly canceled in
the last case. Simulation parameters are given in the figure caption.

Equation (19) represents the maximum number of electrons that can be
accelerated in an ultrashort, unshaped bunch. Since all of the wave energy is
absorbed, this idealized case corresponds to 100% beam-loading efficiency. We
note that such an idealized case is not possible (even theoretically) in conven­
tional accelerating cavities. In conventional structures, the wake function of a
single charge (or a short bunch) is nonsinusoidal12 because a structure typically
has many modes which can be excited by a short bunch. So a short bunch cannot
exactly cancel the accelerating waveform, which is generally sinusoidal (although
the higher modes are less excited by long bunches). This disadvantage is
compensated by the fact that the energy not removed from a high-Q cavity is not
wasted but is stored while the accelerating wave is replenished for the next bunch.
In a plasma, recovering unused energy is more difficult, because any remaining
wave energy may couple to competing plasma instabilities before it can be
replenished.

Unfortunately, in our idealized beam-loading model, 100% efficiency is
achieved only at the expense of 100% spread in the energy gain of the beam. This
is because an electron at the front of this infinitesimally short beam feels the full
accelerating field Ewave

, while the last electron feels the superposed field
Ewave + E beam = 0 (see Fig. 1). Since the reduction in accelerating field for the last
particle is linear in the number of particles loaded, N, the fractional energy
spread will be

~Ymax - ~Ymin E; - Ef N
~Ymax =~= No'

(20)

(21)

where Ei,f are the field amplitudes in front of and behind the accelerated bunch,
and ~Ymax,min refer to the maximum and minimum energy gain by a particle in the
bunch. On the other hand, the fraction of wave energy absorbed by the particles
is 1- E}IE;. Since Ef = E;(1- NINo), the beam-loading efficiency is

'fib = N(2- N).
No No

Equations (20) and (21) illustrate the tradeoff between energy spread and
efficiency for short, unshaped beams. The beam-loading efficiency measured in
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FIGURE 2 (a) Beam-loading efficiency in 1-D simulations vs number of particles in beam [solid
curve is from Eq. (21)]; and (b) average energy gain per particle vs number in beam.

the 1-D computer simulations vs particle number is plotted in Fig. 2 and
compared with Eq. (21).

3.2. Tailoring the Beam Distribution

In order to reduce the energy spread of the beam without lowering the
beam-loading efficiency, two methods of tailoring the beam distribution have
been suggested. The first ideal3 is to divide the desired number of particles, N,
into m bunches, positioned, as in Fig. 3, such that the last bunch is at a phase
corresponding to a peak of the accelerating wave and each preceding bunch is
advanced in phase by one wavelength plus D¢m, so that it feels the same value of

.......-...-~--+--~--+-------+----+------'---~

FIGURE 3 Scheme to reduce energy spread by varying the phases of several bunches; each feels the
same accelerating field.



88 T. KATSOULEAS ET AL.

(22e)

(22d)

(22a)

(22b)

(22c)

Ez • Since there are only N 1m particles in each bunch, the fractional energy
spread in the wide beam might be reduced by the factor m.

A variation of this scheme appears to be well-suited to the beat-wave
accelerator. Since the wave amplitude increases downstream in the growth
portion of the beat-wave accelerator, it is possible to place each bunch at the
same phase (Le., Dc/>m = 0). By choosing the proper number of particles in each
bunch, one can compensate for growth of the wave so that each bunch is
accelerated at the same rate.

A more effective way of reducing the energy spread which allows for the finite
length of realistic beams has been suggested by S. Van der Meer.? Here, the
accelerated beam is ramped down in density in much the same way that the
driving beam of the plasma wake-field accelerator is ramped Up.6 The appropriate
shape of the beam, Pb(~)' can be found from Eqs. (16) and (17), and from the
requirement that the superposition of the wake and wave fields be constant inside
the beam. That is,

Ea = Eo cos kp~ - 4.7rl!;d~' p(~') cos kp(~ - ~'),
{;o

where Ea is the constant accelerating field and ~o is the location of the head of the
bunch. Assuming that the bunch density Pb(~) is of the form a~ + b, beginning at
~ = Co ahead of the wave minimum, and solving for a and b gives

and -kp Eo/4.7re = nt, the density perturbation associated with the wave.
This corresponds to a triangular bunch shape with the peak density at the head

of the bunch, as in Fig. 4a (the back of the bunch could be truncated at any point
to give a trapezoidal shape, as in Fig. 4c). The maximum allowable bunch length
is determined by the condition that Pb does not change sign. The corresponding
peak bunch density, maximum bunch length, accelerating field, and number of
particles are

Pb( ~o) = Pl:ax = -en! sin kp~o,

t max = (tan kp~o)k;l,

Ea = Eo cos kp~o,

_ 1t.T sin 2kp Co
N - 1 Yo ----"---

2 cos kp'o'

where No is nlA/kp , as defined in Eq. (19), with A the cross-sectional area of the
waves and beams (assumed much wider than c/wp ). The beam-loading efficiency
is given by 1 - E~/(Ewave)2 = 1 - cos 2kp '0, or

'YJb = sin2 kp'o

for the specially shaped beams.
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FIGURE 4 Total electric field for various beam shapes: (a) triangle [Eq. (22), N = 3No/4,
kpr,o = Jr/3), (b) half-Gaussian of same number of particles, (c) truncated triangle (N = 9No/16), and
(d) Gaussian of same number as (c).

Although such shaped bunches suffer no energy spread, Eqs. (22) show the
tradeoff between accelerating gradient on the one hand, Eq. (22c), and efficiency
(22e) or total particle number on the other, Eq. (22d). For example, if one places
the front of a triangular bunch ahead of the wave-field minimum by an amount'0 = Jr/3kp , with N = 3No/4 particles over a length v'3/kp , then the predicted
gradient is 50% of the peak accelerating wave amplitude and the beam-loading
efficiency is 75%, without energy spread.

In Fig. 5, the results of a I-D simulation corresponding to this example are
shown.

3.3. Gaussian Bunches

Since shaping of bunches on a scale as small as k;l may prove difficult, we
consider the consequences of Gaussian bunch shapes. We compare them to a
triangular bunch truncated at length t = t max/2 [thus containing three fourths of
the number of particles given in Eq. (22d)]. The Gaussian bunch density is of the
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FIGURE 5 One-dimensional simulations of (a) triangular beam loading [Eq. (22), N = 3No/4,
kpt = V3] and (b) same number in a Gaussian of width kpo = V3/2 located at the weighted center of
the triangle (wp ' = 20).

form
Pb(C) = (-enl sin kpCo) exp [-(C - Co + t/2)2/2a2],

where a is 3t/sVfir, so that the total number is that of the half triangle. The
resulting total field is shown in Fig. 4d (for kpCo = Jt/3). For particles within 1a of
the center, the accelerating field is approximately one third of the wave amplitude
and varies by ~ ±10%. For the same number of particles in an ultrashort bunch
(at Co = 0), Eq. (20) predicts an energy spread of 56%. Thus, a well-placed
Gaussian may suffer less energy spread than an ultrashort bunch, but more than
the ideally shaped bunch. One-dimensional simulations of the fields and particle
energies for Gaussian bunches are shown in Figs. 5 and 6.

3.4. Phase Slippage

Thus far, we have neglected the phase slippage of the accelerated bunch in the
plasma wave. Since the energy gain of particles in the wave frame is analogous to
the energy gain of a marble rolling down a potential hill, energy gain then
necessarily entails phase slippage. For either the beat-wave or wake-field
schemes, the total phase slippage can be expressed in terms of the energy gain ~ l'
as roughly tl l' n

~ep =-2 -.2, (23)
21' 4> nl
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FIGURE 6 Energy gain of beams in simulation of Fig. 5 (wpt = 40).

where y</> is the Lorentz factor associated with the wave velocity and ~ 'Y » 'Yq, »
1. For the wake-field accelerator, 'Yq, = 'Yb of the driving electron beam; for the
beat-wave accelerator, 'Y</> == roo/rop , where roo is the laser frequency. For the
wake-field accelerator, the phase slippage can be kept quite small by using very
relativistic driving beams.5 Moreover, it has been shown in the last of Refs. 6 that
phase slippage can be avoided altogether by tailoring the plasma density
appropriately. For the beat-wave accelerator, it is more difficult to avoid phase
slippage, but this may be accomplished by the Surfatron phase-locking scheme,
which employs a transverse magnetic field (see the second of Refs. 4).

To eliminate energy spread, Eqs. (22) specify the beam shape as a function of
the beam placement (~o). Since phase slippage alters this placement, it makes the
accelerating field nonuniform and hence causes energy spread. When the bunch
slips in phase from its ideal location by an amount ~ep, the total electric field
within the bunch becomes

E = Ewave + Ebeam

=Eo cos kp~ + Eo[cos (kp~o + ~ep) - cos (kp~ + ~ep)].

When ~ep = 0, E = Eo cos kp~o = Ea , as we expect. For ~ep« 1, the energy
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(24)

spread induced by the electric field variation over the length of the bunch is
approximately

~E 1 dep .
-E == 2- k t; <5 (smkp t;),

cos p 0

where the factor of ! arises because the average phase of the accelerated particles
is one half their maximum phase slippage, and where D(sin kpC) represents the
maximum variation of sin kpC over the length of the bunch (Le., as Cvaries from
Co to Co - t). For bunch lengths kpt« 1 or kpt =. kptmax = tan kpCo (but kpt not
necessarily small), the above expression is approximately

~E 1E = 2d ep · kpt.

For our previous example, kptmax was equal to 2 so that a O.I-radian phase error
gives a maximum 10% energy spread. Smaller energy spread can be obtained by
truncating the bunches.

Energy spread may also be caused by bunch placement errors. In that case, the
energy spread expression analogous to Eq. (24) is DElE =. depkpt, where dep is
the phase of the front of the bunch relative to its ideal phase kp~o,

4. TRANSVERSE BEAM-LOADING CONSIDERATIONS

The beam loading described in the previous section is valid when the beams and
the accelerating waves have the same transverse profile and are wide compared to
clOJp • In this section, we consider beams of arbitrary width. We find the limits on
beam radius, beam number, and efficiency imposed by emittance and energy
spread constraints.

We begin by considering the wake-field response to uniform beams cut off at
arbitrary radius a: Pb(r, 8, C) == Pb(C)8(a - r). (For narrow beams, the conclu­
sions we draw will be largely independent of the exact form of the radial profile.)
From Eq. (14), the wake field is separable into longitudinal and transverse
factors: Ez = Z'(~)R(r). To evaluate R(r), we use the identity14

00

Ko[kp(r2+ r,2 - 2rr' cos 8)1/2] = Io(kpr<)Ko(kpr» + 2 L cos m8Im(kp r<)Km(kpr»,
m=l

where r>,< denote the larger or smaller of rand r'. Noting that the integral of the
last term over 8 vanishes, we obtain15

R(r) = {l-kpaKl(kpa)Io(kpr) (r<a), (25)
kpall(kpa)Ko(kpr) (r > a).

This radial function is plotted in Fig. 7 (normalized to 1 at r = 0) for values of
kpa from 0.001 to 1. Although the beam radii differ by orders of magnitude,
their radial wake profiles do not. Physically, this means that even very narrow
beams can absorb plasma wave energy out to a skin depth cIwp '
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FIGURE 7 Radial profiles of longitudinal wake fields for uniform beams of various radii.

For wide beams (kpa» 1), Eq. (25) gives R(r) == 1 inside the beam and
R(r) == 0 outside. The radial factor on axis is Ra(O) = 1- kp aK1(kp a), which can
be much less than unity (see Fig. 8) for narrow beams. To produce the same size
wake field on axis as does a wide beam, a narrow beam must have a beam density
which is l/Ra (O) times higher. Thus, the 3-D beam shaping counterpart to Eq.
(22) is

(22')

where Eo is the plasma wave amplitude on axis. The corresponding number of
particles in the accelerated beam, given by Eq. (22d) for the ideal triangular
beams and Eq. (19) for short beams, is

N =No sin
2
kp~o (22d)

2 cos kpCo'

where

10

No = (Eo/4.7le)A eff

to-6"'----:::--__.-...~_-_~~---...L-...-------J
10-3 10-2 10-1

kpo

FIGURE 8 The factor Ra(O) in Eqs. (25), (22') and (19').

(19')
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and A eff is the effective area of the beam defined by

Jra 2

Aeff=. (19a')
1- kp aK1(kp a)

For kpa«l, A eff3t=Jra2=A, and for kpa«l, Aeff==(Jrc2/w~)[-2/(0.577+

In kpa/2)] = O(C2/W~). For a wide range of kpa« 1, the effective area remains of
order C2/W~ (Aeff =0.6 to 2 times c2/w; for kpa = 10-4 to 10-1). Thus, in the
small-beam limit, the exact form of the radial beam profile is unimportant. For
such narrow beams, it is the beam number (Eq. 19') rather than the beam density
that is relevant. In fact, the beam density may become even larger than the
plasma density without violating the assumptions of our linear analysis (as long as
the resulting wake fields do not approach the wave-breaking amplitude E =
mcwp/e). A qualitative statement of these effects was given previously by R.
Evans. 16

4.1. Emittance

Constraints on emittance limit the allowable radius of the accelerated beam. The
transverse emittance of the beam is proportional to the area in transverse phase
space, E == rVr/c. If the beam is subject to a transverse focusing force,S,11 it will
undergo betatron oscillations of wavelength 2Jr{3. The beam radius is related to
the emittance and the {3 function by

a2 = E{3.

To estimate {3, consider a plasma wave of parabolic profile, "WII = E z = Eo
(1- r2/w2) cos kpC(r < w). Then from the Panofsky-Wenzel theorem,

J
d~ .

WL = or" dr == E r = (-2r/kp w2)Eo8m k/;,

and Cis the position of the particle relative to the point of maximum acceleration.
This gives a betatron function for a particle of energy y

{3 == w(ymcwp/2eEosin kpC)1I2, (26)

Thus, the beam radius is given by

(27)

To keep the emittance small, Eq. (27) suggests the use of either wide waves or
very narrow beams. The width of the wave is governed by the driving source. For
laser-driven waves, self-focusing may cause the laser to contract asymptotically to
a beam waist of order C/Wp.17 For electron beam-driven waves, the waves may
need to be kept at least this wide to avoid radiative losses due to betatron motion
of the driving beam. 18

As an example, consider the (nonoptimized) beam requirements suggested by
B. Richter19 for a future 5-TeV collider. To achieve a luminosity of 1034 cm-2

S-l,
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he assumes bunches of 2.5 x 109 particles at a rate of ;;:::1 kHz and a disruption
factor of 5. The bunches are to be focused to $10-2 f..lm at the interaction point,
requiring an emittance of order 10-12 cm-rad (assuming final f3 == 1 cm). Taking
this emittance requirement and the plasma and wave parameters as no =
1016 cm-3

, w==c/wp=50f..lm, eEo/mwpc==n1/nO=0.5 (---5 GeV/m) , and
sin kpCo $ 0.2,20 we find from Eq. (27) that a must be less than 0.2 f..lm
(kpa < 0.004). Although it is not clear how one could load such a large number of
particles in such a narrow beam, the physics limitation suggested by Eq. (19') is
of order No == 0.6 X 109

• This is within a factor of four of the number specified by
Richter.

The focusing force produced by waves excited by square transverse beam
profiles is less than the focusing force from waves excited by parabolic beam
profiles.21 From Eqs. (14) and (25), the focusing field resulting from a square
driving-beam profile is W-L = [-k;wK1(kpw)Eor sin kpC]/[2(1- kpwK1(kpw)] (for
kpr« 1), and the inequality corresponding to Eq. (27) is

{
2ymc2[1- k wK1(k W)]}1/4

a~YE 2 p P •

kpwK1(kpw)Eosin kpCo

Since K 1 decreases exponentially with kp w, this inequality is easily satisfied for
moderately wide waves. For our previous example, the inequality is satisfied for
a==w;;:::0.3cm (kpw:=::::70).

For dense accelerated beams, the wave field is not the only focusing force. In
addition, there is a contribution to the betatron focusing force due to the
transverse wake field of the beam itself [Eqs. (12) and (14)]. This force is zero at
the head of the bunch and increases toward the tail, while the wave's focusing
force (ex: sin 4» increases toward the head.

The maximum self-focusing force is of order8 2nne2r sin kp(C- Co), where n is
the smaller of the beam density or plasma density. This force is dominant (for
parabolic wave profiles) when

4nen sin kp(C- Co) (kpW)2 > 1
kpEo sin kpCo 2 '

as in the case of dense, narrow beams in wide waves. For dense, narrow beams in
waves c/wp wide, the wave focusing and self-focusing are of the same order, so
the correction to Eq. (27) is only a factor of order 21/4.

For waves and beams of equal width, shaped as in Section 3, it can be shown
that the total focusing force never exceeds the focusing force of the wave at the
head of the bunch.

4.2. Efficiency'

In the previous example, the requirement of low emittance restricted the beam
cross section to only 2 x 10-5 of the wave cross section. Fortunately, the efficiency
depends on the overlap of the beam and wave fields and not the actual beam size.
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FIGURE 9 The beam-loading efficiency vs beam radius in a wave of diameter c/wp ' The upper
curve corresponds to an ultrashort beam with N = No electrons [see Eq. (19')]; the lower curve
corresponds to a short beam with No/2 electrons or a shaped beam [Eq. (22')] with 3No/4 ecectrons.

Denoting the longitudinal field as Eo and the wake field produced behind the
beam as Eb , the efficiency is

L""[Eo(r) - Eb(r)fr dr

'Y/b = 1 - 00 ,

L E~(r)rdr

where the radial dependences are given by Eq. (25) with the appropriate values
of a for each case. In Fig. 9, this efficiency is plotted as a function of beam radius
for a wave of diameter c/wp (Le., a wake field produced by a driving beam of
radius 0.5 c/ wp ). The top curve assumes that Eb(O) = Eo(O) (corresponding to
100% efficiency in one dimension), so that the fields behind the beam exactly
cancel on axis. The lower curve corresponds to Eb(O) = !Eo(O), as would be the
case for beam loading according to Eq. (22') with cos kpCo =!. Applying the
lower curve to our previous example (kpa == 0.004), we predict the acceleration of
N = (sin2 kpCo/2 cos kpCo)N~ == 0.3 x 109 electrons with 20% beam-loading
efficiency. Of course, the overall efficiency of the accelerator is given by the
product of this times the efficiency of the free energy source times the efficiency
from source to plasma waves (> 80% in 1-D computer simulations we have
performed previously).

4.3. Energy Spread

Assuming that the beam can be properly shaped [Eq. (22')] so that the energy
spread is made negligible for particles on axis, we now consider the contribution
to energy spread due to the transverse variations of the longitudinal fields.
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For light beam loading (N «N~), energy spread arises because the particles off
axis feel a reduced wave field. This contributes a fractional energy spread of order

AE< 1 _ Eo(a) = a
2

(29)
E - Eo(O) - w2 '

for beams of radius a and waves of radius w. This is very small (-10-5
) for the

narrow beam we considered in our example.
A more significant contribution to the energy spread arises for dense, narrow

beams due to the variation of the beam wake field across the beam itself. If the
beam is narrower than the wave and shaped so that the total field is uniform on
axis (within the beam), then off axis the total field is nonuniform, because the
beam wake amplitude falls off more quickly than the wave amplitude. This gives
rise to an energy spread

~E~ 1- cos kpCo [1- Ra(a)] ,
E cos kp~o Ra(O) (30)

where Ra(r) is given by Eq. (25) and kpCo by Eqs. (22). For kpa much
less than both unity and kpw, the factor (1- Ra(a)/Ra(O)) is approximately
-[0.154 + 2ln (kpa/2)]-I. For our previous example of kpa = 0.004 and
cos kpCo = 1, this gives an energy spread of 8%.

5~. SUMMARY

In summary, we have found the total number of particles that can be accelerated
in a relativistic plasma wave. For ultrashort beams, the maximum particle number
is

(19')

where A eff is the effective area of the beam [Eq. (19a')] and nl/nO is the
normalized wave amplitude «1). For ultrashort unshaped bunches, the energy
spread increases with the number of particles as N /No [Eq. (20)] while the
maximum efficiency scales as N /No(2 - N /No) [Eq. (21)].

By employing specialized bunch shaping [Eqs. (22) and (22')], this energy
spread can be eliminated, leaving only contributions due to phase slippage [Eq.
(24)], shaping errors, and transverse field variation [Eq. (29) and (30)]. The
maximum number of particles in the shaped bunch is No sin2 kpCo/2 cos kpCo. [Eq.
(22d')], giving rise to a maximum efficiency of sin2 kpCo [Eq. (22e)], and gradient
Eo cos kp'o [Eq. (22c)]. Emittance requirements may restrict the radius of the
accelerated beam [Eq. (27)]. To meet this requirement while keeping the
efficiency from becoming very low, we consider waves of width c/ wp and narrow
beams. In this case, kpa may be «1 and A eff becomes of order c2

/ w;. The
efficiency that results for mismatched beam and wave cross sections is illustrated
for two cases in Fig. 9.
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Based on these results, a nonoptimized set of parameters has been calculated
that suggests a very low emittance beam of 3 x 108 electrons or positrons could be
accelerated with greater than 20% beam-loading efficiency with a total energy
spread as small as 8% (for negligible phase slippage). Optimization may improve
these figures. The overall efficiency of the accelerator depends also on the
efficiency of the free energy source and the efficiency of converting the source
energy to plasma waves (;;':::80% in previous l-D simulations).

The analytic results are consistent with l-D simulations. Longer runs which
follow the beam to more realistic energies, as well as 2-D simulations, are
required. These are necessary to take into account simultaneously the effects of
self-focusing, bunch distortion, and phase slippage.
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