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ABSTRACT 

We examine the matrix element of a current with arbitrary 

number s of four vector indices between one particle states of 

definite helicity. The conservation of the angular momentum in the 

brick wall reference frame was used to derive a set of linear rela- 

tions between the matrix elements. Requiring the helicities of the 

particles to be conserved asymptotically, we derive a restriction 

on the spins of the particles. Specifically we show that the helicity 

cannot be conserved if the larger of the spins of the initial and the 

final particles are greater than s for massive particles. For the 

vector current, this means that the matrix element can conserve 

the helicity asymptotically only between the states of spin less than 

or equal to 1. 
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I. INTRODUCTION 

It is of some theoretical interest to classify a general particle-current- 

particle vertex in terms of the conservation of the helicity of the particles 

because of the following: 

(1) Minimality Principle. The standard formulation of the principle of 

the minimal interactions, which one often quotes in deriving the vertex of the 

spinor electrodynamics, is ambiguous for the case of ppin 1 boson. 1 Require- 

ment of the helicity conservation across the vertex at high energies, 2 however, 

fixes the coupling uniquely either for the spinor electrodynamics yielding the 

usual yp vertex or for the spin 1 particle, in which case we obtain the coupling 

of the Yang-Mills type occurring in the unified theory of weak and electro- 

magnetic interaction. 3 

(2) Helicity Conserving Diffraction Scattering. It was recently conjectured4 

and confirmed in the elastic scatterings involving particles with low spins within 

some uncertainties5 that the helicity is conserved in all the diffraction scattering 

at high energy in the strong interaction. If the Pomeron exchange can be con- 

sidered similar to the usual Regge exchanges with their factorization properties 

and the particle contents, then the particle-current-particle vertex is again 

relevant here. 

Can one generalize the above features to the particles with arbitrarily 

higher spins ? It is with this question in mind that we study the matrix element 

of the current operator P 
Pl’ - 4, 

(0) between one particle states of arbitrary 

spin and definite helicity . Of course, the conservation of the angular momentum 

forbids the helicity to be conserved at large scattering angles, therefore we 

must restrict ourselves to the case where the initial and the final particles 

have large energy and are almost parallel to each other. The problem is then 
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whether the conservation of the angular momentum would also impose any 

conditions for this restricted situation. By going to the brick wall reference 

frame, where it is especially simple to impose the conservation of the angular 

momentum, we find that the vertex for the particles of higher spins can not in 

general conserve the helicity. Specifically, we shall show that the helicity can 

not be conserved if the larger of the spins of the initial and the final particles 

are greater than s for the massive particles. 6 This c%idition is different for 

massless particles because of their different properties under the Lorentz 

transformations. 

In Section II, we write down the relation between our matrix elements 

defined in the laboratory reference frame and those defined in the brick wall 

reference frame. Conservation of the angular momentum in the brick wall 

reference frame then makes these relations into a set of linear equations relating 

the matrix elements in the laboratory system among themselves. If the larger 

of the spins of the initial and the final particles is greater than s, these equations 

can be solved to express all the matrix elements diagonal in the helicity in terms 

of off diagonal elements. In Section III, we first define the precise meaning of 

our asymptotic helicity conservation. The results of Section II is then applied 

to get the condition mentioned above. For current with only one Lore& index, 

s=l, all the vertex which conserve the helicity are given. The differences 

between massive and massless cases are discussed. Finally, Section IV contains 

some concluding remarks. 

II. RELATIONS BETWEEN LABORATORY AND BRICK WALL FRAME 

We consider the matrix element 

McjA = <x’j%’ II’(O) 12, j, A> , (1) 
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where j, A and j’, A’ are the spin and the helicity of the initial and the final 

particles respectively and 

and 

P = (E, -Q, 0, P) 

p’ = (E’, Q’, 0, P’) 

(2) 

are the corresponding momenta (see Fig. 1). In this section, we shall assume 

that the masses m and m’ do not vanish and choose Q 57 and Q’ > 0. Also, we 

shall assume that j’ 2 j without loss of generality. To avoid lengthy writings, 

the tensor indices of the operator F, as well as of the matrix element Mc’jl are 

suppressed: 

r-r 
c11”4J, ’ 

Mj’j 
A’ A 4 M{‘jAC 

1 4,) 

and 

With the Lorentz transformation U(A) = e iwK3 .-i6J2 , where 

tan 8 =(g -g)/(s+$) , 

(3) 

(4 

and 

1 cash w = - 
a’ 

P= 
Pcos 6 + Q sin 6 =P’ cos 8 - Q’ sin 8 

E E’ , (5) 

we obtain the brick wall reference frame: 

where 

P’ (rl, -4 0, 0) 

P’ - (rl’, A’, 0, 0) 

-A=-Qcos 8 +Psine , 

A’ = Q1 cos 0 +P’ sin 0 , 
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and 

Equation (1) can therefore be written as follows: 

Mc,jX = <gfjfhf IV-l(A) U(A) I’U-‘(A) U(A) Ip_jjh> 

= c D{fn,(Rf-l) <gjfnf I (NT)1 -Bn> Dk(R) , (6) 
n,nf 

- 
where the D’s are the rotation matrix and R and Rf are given by 

R = e-iiJ2R R 
w$ ’ Rw = B-‘(A) U(A) B@ 

and (7) 

Rf = e’iJ2 Rf R 
wfi’ ’ Rd, = B-l(@) U(A) B&‘) . 

Here Rw denotes the Wigner rotation, B(p) = e -iL’s boosts the p article at rest 

to a state with momentum g, and R, 
P 

rotates the z-axis to the direction of gO It 

can be shown that Rw and Rw are of the form 

iJ2a! -iJ Q’ 
Rw=e , Rw=e 2 . 63) 

In general, (Y and of are complicated functions of momenta and masses. But 

in the limit P, Pf -co and Q, Qf finite they are simple: 

o! = tan %/m) , ~2’ = tan -‘(Al/m’) . 

From (7) and (8), we have 

i$J 
R=e 2 , 

-i$‘J 
Rf=e 2 , 

where 

(9) 

gl = -; -I- a-e 
P ’ 

BP = sin-l(Q/P) , 
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and 

(p’= 2+ a’-(J 
P’ ’ 

e 
P’ 

= sin -ltQ’P’) . 

Therefore one can replace the rotation matrices D’s in Eq. (6) by the d-functions. 

Inverting these equations, we get our desired relation: 

Now the 1. h. s. of Eq. (11) is the helicity amplitude incthe brick wall reference 

frame. Since the largest angular momentum carried by I’ is s, this must vanish 

if in+nf I > s, in which case 

$‘,jA d$J~‘) c&.J$) , ln+n’l> s . (12) 

Let us consider a set of pairs (n,n’) for which (12) is satisfied. Consider the 

case 

jf>s . (13) 

Then we choose ni=i and ni=j’ for i,O and x$=-j’ for i <O with i=j, j-l,. . . , -j, 

Eq. (12) now becomes a set of 2j+l linear equations which expresses the 2j+1 

diagonal elements MAh in terms of the off-diagonal elements M hfh, Wh. We 

write 

i,k= j,j-l,..., -j , (14) 

where 

Aik = dLi(@) d!:k(@‘) for i ) 0 

= c&(4) dj-‘jrk($f) for i < 0 , 
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and 

for i 1 0 

fori< . 

It is easy to convince oneself that the determinant of the matrix A does not 

vanish for arbitrary Cp and @I, therefore Eq. (14) has a=olution. Thus we have 

expressed all the diagonal elements Mhh in terms of the off-diagonal elements 

MA1 A when the condition, Eq. (14), is met. We observe that the discrete 
, 

symmetries, i.e. , P, C, or T invariances were not used in our derivation. 

If these symmetries exist, then not all of the Mhh are independent, which should 

of course be consistent with Eq. (14). 

III. CONDITION FOR THE HELICITY CONSERVATION 

We now use the results of the previous section to derive the condition for 

the helicity conservation for the vertex (1). As was noticed earlier, the helicity 

can not in general always be conserved in view of the angular momentum con- 

servation (e. g. , the scattering by 180 degrees). Accordingly, we must define 

the precise meaning of our asymptotic helicity conservation. For this purpose, 

we first consider the high energy behavior of the matrix element (1). From the 

Lorentz invariance, i. e. , Eq. (6)) we have8 

Mc,$OO.. .O, 33.. .3) - (&,” L$ + 0 (Ps-l) 

as 

P -*, P-P’, Q, Q’ finite , 

where 

(15) 

(16) 
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In (15)) the number of 0 or 3 indices is arbitrary (their sum is, of course, s). 

Notice that when there are I transverse indices ti=l or 2 in the current, then 

the leading behavior of the matrix element will be P S-Q . We shall say that the 

helicity is conserved asymptotically if 

.j’j 
A’h K $A l (17) 

Notice that (17) is always true when Q=Q’=O, so we mm consider QfO, Qf#O 

cases to obtain nontrivial restriction. The cases with massive and massless 

particles will now be considered separately. 

A. Massive Particles (mf0, mf#O). 

For this case, the results of the previous section tells us that when j’>s, 

we can express all the diagonal elements Mhh in terms of the off-diagonal 

elements M A’ A and the d-functions d$$) and $&@l). Furthermore the angles 

CJ~ and qf are finite in the above limit in view of Eq. (9). Therefore if we 

require (17), L!‘/;, must identically vanish, which in turn means that 

<Afjfnf IF, . , .+I-Gjn> = 0 for all n andn’. From the rotational properties 

of F , it then follows that F=O. Excluding this as the trivial case, we have 

therefore shown that if j’> s, where j’ is the larger of the two spins j and jr, 

then the helicity can not be conserved asymptotically. 

When j’ls, the helicity conservation is in general possible. As an 

important example, we consider the case s=l. The only possible combinations 

of (j, jf) which satisfy the helicity conservation are ($=, i) (0,l) and (1.1) (the 

case (0,O) is trivial). When BpFp=O, the corresponding vertices are: 

&, 8) : +p=;“Yp$ , 

(GO) : vpa = -q2gpa + qpqa , 

and 

(191) : vpap = (pt-P’), gap - @+q),! gpcl+ (q-p$glycl l (153) 
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In (18), the indices a and p are to be contracted with the polarization vectors 

of the particle p and pf respectively. We emphasize that the case listed and 

the vertices given in (18) are complete. As mentioned in the introduction, we 

have obtained the usual yp coupling for (9, i) and the Weinberg coupling for (1,l). 

B. The Case with Massless Particle 

When one or both of the particles in (1) are massless, our treatment should 

be modified because they belong to different little grouTand also because there 

are only two helicity states j and -j for massless particle of spin j. 9 Under 

the Lorentz transformation one particle state of a massless particle changes 

simply as 

U(L) Ip,A> = e -ih+tL) lLp,A> , h=&j 

where CI, (L) is a number determined by L. Therefore derivation for the present 

case is simpler but different from the massive case. We shall state only the 

results here: When one or both of the particles in (1) are massless, the helicity 

can not be conserved if j+jt > s. Notice that this is more stringent than the 

case A. For example when s=l, the helicity conservation for the present case 

is possible only when both of the initial and the final particles have spins equal 

to 0 or i. It should be pointed out that V 
l-w 

in (18) does not give the correct 

coupling in the limit m -+ 0 because the gauge invariance is not satisfied, i. e. , 

VPaPQ 
#O. When both particles are massless, we must of course require j=jf 

in order to have the helicity conservation. 

IV. CONCLUDING REMARKS 

We have shown that the requirement of the asymptotic conservation of the 

helicity on the vertex functions puts a strict condition on the spins of the particles. 

One can also study the consequences of the asymptotic helicity conservation of 
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the four point functions in the diffraction scattering to get restrictions on the 

t-channel exchanges. 10 With the absence of the experiment which measures 

the cross sections involving particles with spin greater than 1, and also. with 

our present ignorance on the nature of the Pomeron coupling, the implication 

of these studies seem uncertain. 

For our discussions of the vertex functions, one might consider that the 

current with s=l, e.g. , the electromagnetic or the GelcMann currents, are 

more fundamental than those with larger spins. The requirement of the asymp- 

totic helicity conservation then limits the spins of the particles to be 0, 4 or 1. 

For this case, it is known 11 that the vertices also satisfies the Drell-Hearn 

sum rule. 12 Since the latter sum rule is essentially the statement of a good 

high energy behavior of the cross sections, our restriction might well be 

related to the well known fact that the field theories of higher spins are not 

renormalizable. 

Finally it is amusing to note that the theories with spin greater than 1 

encounter difficulties even in the free field level due to the mass instability. La 

It seems therefore that our work puts more pessimism on the already troubled 

theories of higher spin. 
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FIGURE CAPTIONS 

1. Diagram for Eq. (1). 
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