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I .  Introduction 

We present recent results /1 /  concerning the classif icat ion of the f ini te-dimensional 

representations and of the Polsson bracket (PB) real izat ions of the real compact forms for al l  

classical semisJmple Lie algebras which satisfy second-degree polynomial identit ies. The 

expressions of these ident i t ies are presented in Section 2. 

For the same algebras, a closely related problem, namely the classif ication of all pairs 

~,',' ~I,4,~ of finite-dimensional representations the Kronecker product ~ ~Mof which 

decomposes into two irreducible components has aiso been solved: in each such pair, ~^ is a 

representation the highest weight of which is a minuscule weight/x and ~M is a representation 

for which the adjoint orbit of the maximal weight vector is a Hermitian symmetric space. 

A classical analogue of the Hannabuss operator /2 /  associated wi th  these Kronecker 

products can also be defined for any pair ( f , ~ )  in which f is a PB real izat ion and ~ a f in i te 

dimensional representation. This analogue - which is a mathemat ica l  object defined on a 

symplectic manifold wi th values operators on the representation space /1,3/ - satisfies in our 

case second-degree polynomial equations which can be obtained as a classical l im i t  of the 

equations satisf ied by the Hannabuss opera to r /1 / .  

Al l  these results are in t imate ly  related to the structure of completely integrable 

classical or quantum systems. For instance, the f ini te-dimensional representations on which 

the second-degree irreducible tensors in the envoloping algebra vanish are exact ly the 

representations which can be extended to the representations of the Yangians obtained by 

Dr infeld /4 /  in connection wi th the problem of solving the quantum Yang-Baxter equations; the 

representations ~,~ associated wi th Hermit ian symmetr ic  spaces are those used by Reshetikhin 

/5 /  in his construction of the elementary real izat ions of Yang-Baxter-Zamolodchikov-Faddaev 

(YBZF) algebras [6 / .  For the elementary classical real izat ions defined by Reshetikhin /5 /  a 

complete classif icat ion has been obtained ]6 / .  

2. Tensorial identities associated with realizations of Lie algebras 

The homogeneous identi t ies for l inear representations (for PB real izat ions) of a Lie 

algebra L result /1,7/ by equating to zero the irreducible tensors in the enveloping algebra 

U(L) (in the symmetr ic algebra 5(L)). We list in the fol lowing the second-degree "tensoria| 

identi t ies" for the representations of the" semisimple Lie algebras: 

An(n>3) , Bn(n>_2) , Cn(n>2) , Dn(n>5) (2.1) 

The second-degree tensors in U(L) have been d e r i v e d / 1 / b y  reducing the symmetr ic  part  of the 

Kronecker square (ad~)ad) s of the adjoint representation. For the Lie algebras (1.1) the 
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Clebsch-Gordan series of (ad ~)ad) s is mul t ip l ic i ty- f ree and contains four terms /8~9/. To each 

irreducible tensor TL,z) " in U(L), transforming under the representation (-¢~)C (ad(~ ad) s of 

highest, w e i g h t ~  a tensorial ident i ty is associated, by equating T L , ~ . t o  zero in a 

representation to be determined. 

Let us denote by A I~A2~--'~An the highest weights of the fundamental representations. 

The conventions adopted in t I 0 t  have been used. 

I) Alqebras of type An. The generators Aij (i,j = i~2~...~n+l) ( . ,  Ai i=  13) of the algebra 

sl(n+l~C) satisfy the structure relations [Aij ~ Akl] = ~-jkAil - ~ilAkj. Denoting representations 

by their highest weights we have ad = (AI+  An) and (ad (i~ad)s = ( 1 3 ) o ( A l + A n ) ® ( A 2 + A n - 1 ) @  

(2 A 1+2 A n). Defining 

..tZt, o, d~) ~- E CAI,~-,A,I.J+ E-:><~. 2 A~/Aj, 
~=+ ~/q ~j=+ (z.z) 

(where [a~b]+ = ab + ba) we obtain the tensorial identit ies 

{ f.,.. ¢. :~, .~ .: ,/, .z , . . . , "~  +- + ) 

~.~+.,.2A, c.r,,~.,~,~.J = CA: , : ,  A,,..7. -,- E Ap,,A,,.~..7, 

II) Algebras of types Bn~C n and D n, Let us adopt a unifying notation for these series and 

denote their generators by Xij (i~j = l~2~...,Ni N = 2n+l for B n and hi = 2n for C n and D n) with 

the Lie relations [Xij ,  Xkl ]  = gkj×i l  - gi1×kj - gikXjl + gljXki. For Cn~ ×i j  = Xji, gij = ~'i,j+n 

"~i+n~j and ad = (2AI )  I for B n and Dn, Xij = -X j i ,  gij = ~ i j  and ad = ( A  2) (for B n, n > 3 and 

Dn n > 5) for B2, ad = (2A 2). We have 
C2A,) (A,,) B,~ o', ~sj, 2>,, ~ ,~ )  

(<~  ® a,~)s = (o,) 0 CA.) ~ (~,~,) ® (2: . j  #o. C,, C ~ n )  (z.6) 
Here and in the following~ for B2 replace (Ati) by (A I) and (2A 2) by (4A2)I for B 3 replace 

(A4) by (2 A3). Denoting A, 

~...d= + 

the tensoriai identit ies associated with the nontrivial terms in (2,6) are 

(A~) 

[%,x,.,J+ 
<¢%) ( # , < 7 . , ~ . s  = ~, 2,...,tv) 

-q< ,,,, ) < ,', , ", : = D : : ,% , 7 + -5 x /:, , :< , z - [ x,>, , x, _7+ } 
(z.lo) 

+<---,< -,o f < '<"""? : ° 
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where ~c = +1 for so(N) and E = -1 for sp(N). 

3. T h e  f i n i t e - d i m e n s i o n a l  r e p r e s e n t a t i o n a  on w h i c h  t h e  t e r e m r i a l  i d e n t i t i e s  vanish 

Theorem 1. Let L be one of the semisimple Lie algebras (2.1); let 

TLo.(Xl,...,XdimL) E U(L) (xi = generators of L) be the second-degree tensor operator which 

transforms under the subrepresentation of (ad® ad) s of L with highest weight E)_ and let ~>~(x i) 

(i = 1,. . ,dimL) be the generators of the representation ~,~ of L of highest weight A .  The 

finite-dimensional irreducible representations ~^ and the tensors T L i l  of L for which 

TL~(~],) = TLO (S~A(xl),..., ~^(XdimL)) = 0 43.1) 

are those listed in columns 4, G and in columns 5, 7 of Table 1, respectively. 

The proof /1/ results by writ ing the identit ies in a Cartan-Weyl basis and by observing 

that a suff icient condition for a tensor operator to vanish on a f inite-dimensional 

representation is its vanishing i f  applied on the highest-weight vector of the representation. 

The tensorial identit ies transform into equations for the highest weights, which can be solved. 

The solutions of the tensorial identit ies have also been obtained by another proof which 

makes use of the Wigner-Eckart theorem. 

The highest weights F,. of the solutions +~, of the equations TLi)_(~/,) = 0 can be 

characterized in a synthetic way using the coeff icients c b d i ,  e~, ~ of the highest long root 
r= " v v 

(°<hl ~i), of the highest short root (~hs = ~.< di ~i) and of their duals (C(h] = ~, c i ~(i) 

and ~., ~ v ) ,  respectively. (By =(1,~2,... ,~n we denoted the simple roots of L.) In 

column/4 of Table 1 we have separated the solutions with the highest weights m A  i where i are 

the labels for which c i = 1 and m = 1,2, .... These representations have also been obtained in 

/ l l / f r o m  the condition that the orbits of their highest-weight vectors are Hermit ian 

symmetric spaces and hence are in one-to-one correspondents with the non-semisimple Lie 

subalgebras of maximal rank of L /12/. The Lie algebras of type A n present an exceptiony 

indeed, for these algebras TAn ( A l+  A2)( ~mA k) = 0 only for k = (n+l)/2 because 

i.e. ~mA k is the solution of a non-homogeneous tensorial equation of degree two. In column 6 

we have separated the solutions with highest weights /~k where k are the labels for which Ck = 

~t k = (°(hl,~'hl)/(°Zk, OZk). We remark that all the minuscule weights /13/ given in column 3 

(and characterized by the condition ,,A[ is a minuscule weight i f  d~ = l " )  belong to this last 

class of solutions but do not exhaust it. 

For the exceptional semisimple Lie algebras we do not have solutions of the f irst type 

(i.e. with highest weights mAj )  in spite of the fact that for the Lie algebras E 6 and E 7 there 

exist representations (m AI )  ~ (m A 6) and (m/\7) ~ respectively with the property that the orbits 

of their highest-weight vectors are symmetric spaces. For the exceptional Lie algebras there 

exist only solutions of the second type~ which are precisely representations the highest weights 

of which are minuscule weights~ for E 6 and E7~ or fundamental representations with highest 

weights given by the highest short roots, for F" 4 and G2. 
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The representations given in columns 4 and 6 coincide with the representations obtained 

by Drinfeld / /4/from the condition that a set of third-degree polynomials vanish (this vanishing 

being the condition that these representations generate representations of the )'Yangian"). 

Identities obtained using the Hannabuss operator method 

Let ~,, be a f inite-dimensional representation of highest weight A of a semisJmple Lie 

algebra L acting on the vector space V A ; Let c2(/k) be the second-degree Casimir operator 

associated with representation d/mL 

L = ¢  

tn Eq.(4.1){ei  , i = 1, . . . ,d imL} is a basis in L and {e i, i = 1 ..... d imL)  is the basis of L dual to 

{ e l l  w i th  respect to the Car=an-Kil l ing bil inear form: (ei,ej) = ~ i j .  

Def ini t ion. We call Hannabuss operator associated with the pair of representations ~ 

and ~>H of the semisimple Lie algebra L the operator ~)^ a;,,L ,M defined by 

= Z ® 
-~, ~ ~ =4 (4.2) 

The Hannabuss operator ~),%M commutes with ~^ ~) 1 + 1 (~ ~M and can be expressed as a 

function of the Casimir operators c2( ~^ ~)~M )) c2(~ A )) C2(~M )" The expression of the 

minimal polynomial satisfied by ~)g~Mis 

roe CCTC,L ) ~ (4.3) 
where CG(/~ ,M) is the set of dist inct highest weights in the Clebsch-Gordan series of the 

Product ~A (~ ~M ' 2Z is the sum of the positive roots of L and the expression 

e2(6 )=(A +2E ) A) for the Casimir operator of representation ~A has been used/2/.  

The Hannabuss operator method for the determination of the polynomial relations 

satisfied by a representation ~ of L consists in taking the matr ix elements of the polynomial 

l'elation obtained by equating (/4.5) to zero, between basis vectors of the representation ~M 

12,14,15/. Thus, in order to obtain the second-degree polynomial relations satisfied by ~,~ i t  is 

ne~eessary to determine the representations ~M for which the Kronecker product ~^Q~) gm 

decomposes into precisely two terms) i.e. the set of weights CG(A,M) contains only two 

elements. 

Theorem 2. For the semisimple Lie algebras (2.1) the pairs ~ ~>.~, ~M~of representations 
whose Kronecker product decomposes into a direct sum of two inequivalent irreducible 

representations are those listed in column 8 of Table 1. 

It may be observed that a pair {A~ M t is always composed of a minuscule we ight /k  and a 

Weight M for which the adjoint orbit of the highest-weight vector of ~ M  is a Hermit ian 

SYmmetric space /11/. This result exp|ains the one-to-ne correspondents between the 

elementary realizations given by Reshetikhin /5/  for the YBZF algebras and the Hermit ian 

SYmmetric spaces for the Lie algebras of types An) Bn, Cn) Dn. Reshetikhin's L and R 

OPerators are constructed in fact as l inear combinations of the ident i ty operator I and the 
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Hannabuss operator (~JmA. Aacting on m .~A~)~'= where the pairs ~ A£ mA:~ared, those given in the 
d" " ~' " A are last column of Table 1. Hence, the highest weights of the auxi l iar representations i i n / 5 /  

always defined by minuscule weights and the highest weights of the physical state space V m Aj 

is the corresponding highest weight from the pair to which A i belongs. 

Curiously enough, some of the representations which appear in column 6 of Table 1 and 

satisfy second-degree polynomial identit ies do net have companions with which to form pairs 

in the sense of theorem 2. These are the representations A2, A3, ...,An_ 1 of the Lie algebras 

of type C n and the representations A1, A 6 for the Lie algebra E6, A 7 for E7, A 4 for F 4 and A ]  

for G 2. 

We remark also that the representations (m A1) , (mA6) and (mA 7) of the Lie algebras 

E 6 and E7, respectively, - which possess Hermit ien symmetric highest weight orbits - do not 

satisfy any second-degree tensorial identity. 

Finally, as already remarked, (cfo eq.(3o2)), for the Lie algebras of type An, a number of 

pairs of representations in column B of Table 1 lead to inhomogeneous tensorial identit ies 

which are ab ini t io excluded by the procedure outlined in section 2 (cf. columns 4, 5 of 

Table 1). 

5. Classical analogue of  the Hannabuss operator  

Let R/, (RM) be irreducible representations of the Lie group (3 defined by the highest 

weights A (M) and acting on the linear spaces V (W). Let ~ (~M) be the corresponding 

representations of the Lie algebra L of G, assumed to posess the property 

with gl,g2 irreducible representation. 

It  is known / 17 / t ha t  to any f inite-dimensional representation RA of a compact group (3 

we can associate a PB real izat ion of its Lie algebra L defined on the eoadjoint orbit T/~Athrough 

the highest weight A E L*  of R A in the fol lowing way 

(5.2) 
where ~ - Ad(g)*AE ~ and PA is the projection operator on the one-dimensional subspace 

spanned by the highest-weight vector of R A , From the def ini t ion (5.2) we have 

From the properties of the Hannabuss operator we get 

(54) 
whence a.i.~I- 

• ~ '~L 

~ = 4  " t = ~  =~  M (5.5) 
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The mapping J~ : T/C^ -~ End W defined by Eq.(5.5) is the classical analogue of the Hannabuss 

aperator ~)~., M" 

In fact ,  such an object can be defined for any pair ( f , fM) in which f is an equivariant  PB 

real izat ion of a Lie algebra L defined on a symplect ie  manifold ~3"~and f is a representa t ion  

of L, by the expression 
d2~L 

; = # ' ( 5 . 6 )  

for any p ~ ' f ~ .  The equivariance property 

(5.7) 

is an immediate consequence of the definiton (5.5). From the equivariance property i t  folows 

that if, for a f ixed point p e ~  , a polynomial ident i ty/ j  ) (~(p)) = 0 is valid, then it is valid for 

any point of the G-orbit through p. 

In order to obtain from the equation satisfied by the Hannabuss operator (~LY.4,M the 

corresponding equation for the ~'-mapping (5.6), we must take a classical l imi t  /16/. To do 

that, let us consider the representations ~mt, with highest weights mA with m = 1,2,... and the 

corresponding Jet-mappings. From the definit ion, i t  fol lows that 

(~.8) 

for any m = 1,2, .... We have /16/ 

_, -m < %^ ) 40' - '  = ( R ^ ¢ t ) ®  t )   5.9) 
Whence from the equation satisfied by OA ~ M 

We obtain 

(5.11) 

With b = -lim(1/m)(Iq+l~2) and c = lim(i/m2)(l~lP2 ). 

The validity of property (5.1) for all the pairs of representa t ions  (~mA,~t*l) (m = 1,2,...) 

With M fixed is essential for the derivation for the second-degree classical l im i t  (5.11) for the 

equation satisfied by the Hannabuss operator. 

By taking the classical l imi t  considered above, we obtain the equations satisfied by PB 

realizations which can be obtained also in a direct way. Applying this procedure to al l  pairs 

from the last column of Table i we obtain the classif ication of all pairs formed with a PB 

realization of L and a representation of L, with the property that the corresponding ~ -  

operator satisfies a second-degree polynomial equation. Using this property of the ~{-operator 

a Simple proof results /6/ for the existence of the elementary classical realizations of YBZF 

algebras given by Reshetikhin /5/ for any such PB real izat ion of L. Hence, the last column of 

Table 1 classifies also these elementary realizations. 
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TABLE i 

Lie 
algebra 

L 

A ~  

Dynkin diagrams 
and coefficients of the Minus- 
highest long roots (ei) cule 
highest short roots(di) weightsi 
and the i r  duals(cVi,d~) (d i : l )  i v  I 
Non-semisimple sub- 
algebras of maximal rank 

Representations (A) 
on which 
second-degree tensors 
TL~ vanish 
(m=l,Z,...) 
(ci=~) (~=~ 

A _O_ A _O_ 

0 0 "--'."..0"""--0 

A.O.~ A~ ~ ' A  n 

: "~"  , 

r n  A n_.~, 

~? (Z) A p  @ A , . . , _p  

(F  = ¢, 2, ... ~ )  x._ ,  &_, ~ , , ~  

cL ,4 ~. . . .  ~_ z A~ 2 A 2 
~: . ,  "~ 4 . . .  4 4 

a.~" 2_ ~z .,. ~ ,~ .P_ A ~ 
A,, 

... -'--~ , < o A.~ 

& ~  4 2. , , .  z ,  2 A n _  

@) ,a,,_, A .  

Z, 4 " 4  n ~ m A~ Aa t A,, O' ' 4 "  CL' 4 ~. 1" ,~ 
.2),, ( c, = &~ = cr~ -- a~ ) ~ 2&_ 

~. t 3 4 5" 6 
cL OI -~0 ~ ~  

O 
E6 (~:a-,'. :='g :a..~) ~ 

L 4 a 4 5" 6 7 

~ 3  P.. 4 

~Fy ~.v- AY~ 2. 

# B E  6 

A4 

A n -  4 

An 

A~ 

A 6 

noah_ 

m An 2AI  A"IA, 

.L, A "3 4 5" 6 7 g 

G. 

A 6 -- /16 

A 7 r~ A 7 --  A7  2-A/ 

- -  A 4 2A~ 

A¢ 2.A~ 

Pairs  of 
r e p r e s e n t a t i o n s  
the  Kroneeker  
) roduct  of which 
decomposes  in 
two i r reducib le  
components 
(m=l~2...) 

~ A , ,  ,.,,/W] 

t , 4~ , , . , ,A , }  

t A , , ,  ,~A, ,_ ,÷ ,  } 

{ A n ,  *hA,,} 

- - 4  

[ A,,_, ,.,A,} 
{ A . ,  , , , z , t  
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