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1. Introduction

We present recent results /1/ concerning the classification of the finite-dimensional
representations and of the Poisson bracket (PB) realizations of the real compact forms for all
classical semisimple Lie algebras which satisfy second-degree polynomial identities. The
expressians of these identities are presented in Section 2.

For the same algebras, a closely related prablem, namely the classification of all pairs
{gA) QM} of finite-dimensional representations the Kronecker product gA® gMof which
decomposes into two irreducible components has also been solved: in each such pair, 5’,\ is a
representation the highest weight of which is a minuscule weight A and SJM is a representation
for which the adjoint orbit of the maximal weight vector is a Hermitian symmetric space.

A classical analogue of the Hannabuss operator /2/ associated with these Kronecker
praducts can also be defined for any pair (f,?) in which f is a PB realization and ¢ a finite
dimensional representation. This analogue - which is a mathematical object defined on a
symplectic manifold with values operators on the representation space /1,3/ - satisfies in our
case second-degree polynomial equations which can be obtained as a classical limit of the
equations satisfied by the Hannabuss operator /1/.

All these results are intimately related to the structure of completely integrable
classical or quantum systems. For instance, the finite-dimensional representations on which
the second-degree irreducible tensors in the envoloping algebra vanish are exactly the
representations which can be extended to the representations of the Yangians obtained by
Drinfeld /4/ in connection with the problem of solving the quantum Yang-Baxter equations; the
representations S, associated with Hermitian symmetric spaces are those used by Reshetikhin
/5 in his construction of the elementary realizations of Yang-Baxter-Zamolodchikov-F addeev
(YBZF) algebras /6/. For the elementary classical realizations defined by Reshetikhin /5/ &
complete classification has been obtained /6/.

2. Tensorial identities associated with realizations of Lie algebras

The homogenecus identities for linear representations {for PB realizations) of a Lie
algebra L result /1,7/ by equating to zero the irreducible tensors in the enveloping algebra
U(L) (in the symmetric algebra S(L)). We list in the following the second-degree "tensorial
identities" for the representations of the semisimple Lie algebras:

Ann>3), Bplnz2), Cpin22), Dp(n>5) (2.1}

The second-degree tensors in L(L) have been derived /1/ by reducing the symmetric part of the
Kronecker square (ad@ad)g of the adjoint representation. For the Lie algebras (1.1) the
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Clebsch-Gardan series of (ad ® ad)g is multiplicity-free and contains four terms /8,9/. To each
irreducible tensor Tp o in U(L), transforming under the representation (") C (ad @ ad)g of
highest weight £2. a tensorial identity is associated, by equating T, to zero in a
representation to be determined.

Let us denote by Ay, Ng,...,”A, the highest weights of the fundamental representations.
The conventions adopted in /10/ have been used.

1) Algebras of type An. The generators Ajj (i, = 1,2,000yn+1) ( 2:‘ Ajj = 0) of the algebra
sl(n+1,C) satisfy the structure relations [Ajj, Ayl = JkA” - SuAk, Denotmg representations
by their highest weights we have ad = (+ ) and (ad @ad)s = (D) @ (A1+Ap) (N +A D@
(2A 142 Ap). Defining

e+ rna
A = A < A . PQ/ A
Af“i/( ) 2:4 _[ pe “LJ* L;Zq ¥ A (2.2)
(where [a,b]; = ab + ba) we obtain the tensorial identities
Tajeng (193) = Apg (nea) =0 (pug = 12,0001 @2

7:\2*-/1”_.,4(?1'1'1;"’)4) = [ A”"?’ A/Ls]+ - [A’f"s’ A/L?/].,.

" {_%k J/{Mczn) -,5;‘5 A,y 2m) +5;7/J4_ms(2n) & a@M/(en)} =0 (2.8
(p,g b4 = 4, 2,.-, et )

—GA +-2'/'aﬂ 1% ?)’?’)"U = [Afi’ Aﬂ_s],_ * [Aps’Ak?/J.,.

{ a%s(zf’n-rz)) + é;s.;4”1(2(111-297‘-57;2;@&6{2(?2*2‘?+5';.;g?,(2(n+22}

= o
(2.5)

1I) Algebras of types Bp,Cp, and Dy Let us adopt a unifying notation for these series and
denote their generators by Xij (i) = 1,25e.)N; N = 2n+1 for B and N = 2n for Cp, and D) with
the Lie relations [Xij, Xk1] = gkjXit = QilXkj - GikXjl + 91jX¥ki- For Cn, Xij = Xji, @jj = 5i,j+n
‘51+n’j and ad = (2/1); for By, and Dp, Xij = -Xji» gij = SU and ad = (“A3) (for Bpy n > 3 and
Dnn > 5) for By, ad = (2A 2). We have

(2,1,) 4} B, »3), D, (n>&7
(ad @ ad) = (o) & () (4 ) @ (o) for C, (r22) (2.6)
Mere and in the following, for Bz replace {A4) by (A1) and (2A2) by (4A2); for B3 replace
(AR by 2 As). Denoting ~
Fry

% o) = Z 9. [x:,x ] - & L;, 2y 9, Ke -
the tensornal identities associated with the nontrivnai terms in (2.6) are
7;2/143 (1‘1,?,) = fff‘ (N) =0 (ﬁ,i.—./f,z,..')/‘f) (2.8)

Az)

Tengy (1 3088) = [Kpg, Xea] L Xpoy Xu] + L%, %]*»_‘a 2.9)
(4/‘) (7:.:;4.5-_—12.,./\4

7;2/1)({&,9,,4 4) = {2[ Pq > fzs] —[X/os; Z;] '“[Xp't.,xs ]}'

] 4 X (2020041 %, (22 - 1% %, o)+ g & (v20)] = 0 (2.10
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where € = +1 for so{N) and €= -1 for sp(N).

3. The finite-dimensional representationa on which the tensorial identities vanish

Theorem 1. lLet L be one of the semisimple Lie algebras (2.1); let
T (X1yeensXdiml) € U(L) (xj = generators of L) be the second-degree tensor operator which
transforms under the subrepresentation of (ad®@ ad)s of L with highest weight {1 and let ¢, (xj)
(i = 1,...,dimL) be the generators of the representation S of L of highest weight A. The
finite-dimensional irreducible representations ¢, and the tensors T|_n of L for which

TLn@)=To (QA(xl),...,gA(xdiml_)) =0 (3.1

are those listed in columns 4, 6 and in columns 5, 7 of Table 1, respectively.

The proof /1/ results by writing the identities in a Cartan-Weyl basis and by observing
that a sufficient condition for a tensor operator to vanish on a finite-dimensional
representation is its vanishing if applied on the highest-weight vector of the representation.
The tensorial identities transform into equations for the highest weights, which can be solved.

The solutions of the tensorial identities have also been obtained by another proof which
makes use of the Wigner-Eckart theorem.

The highest weights A of the solutions ¢ of the equations T;_g_(g } = 0 can be
charactetized in a synthetic way using the coeffxcxents cj, dj, c;, d’ of the hxghest long root
(%p = Z ¢ ,) of the highest short root (&g = Z di #;) and of their duals (“hl = Z cf oY)
and ("’(hs = ; df ‘), respectively. (By j,%2,... ,°<n we denoted the simple roots of L) In
column 4 of Table 1 we have separated the solutions with the highest weights mA; where i are
the iabels for which ¢; = 1 and m = 1,2,.... These representations have also been obtained in
/11/from the condition that the orbits of their highest-weight vectors are Hermitian
symmetric spaces and hence are in one-to-one correspondents with the non-semisimple Lie
subalgebras of maximal rank of L. /12/. The Lie algebras of type Ap present an exception;

indeed, for these algebras TAn( A+ /\2)( ?m,\k) = 0 only for k = (n+1)/2 because

+d 2mk
7;,_,(/«;/\,»)(?,,‘,\&) 2(m-k + 5 “«.":‘) Ay G2

i.e. -?m/‘k is the solution of a non-homogeneous tensorial equation of degree two. In cojumn 6
we have separated the solutions with highest weights Ak where k are the labels for which ci =
A= (%, @ a)/ (¥, ¥ ). We remark that all the minuscule weights /13/ given in column 3
(and characterized by the condition "A; is a minuscule weight if dT = 1") belong to this last
class of solutions but do not exhaust it.

For the exceptional semisimple Lie algebras we do not have solutions of the first type
(i.e. with highest weights mAj) in spite of the fact that for the Lie algebras E¢ and E7 there
exist representations {m A7), (mAg) and (mA7), respectively with the property that the orbits
of their highest-weight vectors are symmetric spaces. For the exceptional Lie algebras there
exist only solutions of the second type, which are precisely representations the highest weights
of which are minuscule weights, for Eg and E7, or fundamental representations with highest

weights given by the highest short roots, for Fy and Go.
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The representations given in columns & and 6 coincide with the representations obtained
by Drinfeld /4/ from the condition that a set of third-degree polynomials vanish (this vanishing

being the condition that these representations generate representations of the "Yangian').

4. Identities obtained using the Hannabuss operator method
Let % be a finite-dimensional representation of highest weight A of a semisimple Lie
algebra L acting on the vector space Vi3 Let c2{A) be the second-degree Casimir operator

associated with representation .
diml

e, (A) = 2 ¢0e) g () (4.1

Lwd
In Eq.(4.1) {ei, i= l,...,dimL} is a basis in L and {ei, i= l,...,dimL} is the basis of L dual to
{e;} with respect to the Cartan-Killing bilinear form: (ei,ej) = Sij-
Definition. We call Hannabuss operator associated with the pair of representations 9/\

and g of the semisimple Lie algebra L the operatar @A w defined by
diml. >

O = LZ=4 5000 @ 5,09 (4.2)

The Hannabuss operator (9 v commutes with g—‘ @1+1¢, and can be expressed as a
function of the Casimir operators cz( 9 ® 9, 3 cz(g bR cz(? ). The expression of the
Minimal polynomial satisfied by @

[& - 7 ((w+2£}w) ~(Ar28 ) — (M +28,Mm)) ]
wecgeam) N E (4.3)

where CG(A,M) is the set of distinct highest weights in the Clebsch-Gordan series of the
Product ?A ®¢,; 28 is the sum of the positive roots of L and the expression
c2(A)=(A+25,A) for the Casimir operator of representation g, has been used /24,

The Hannabuss operator method for the determination of the polynomial relations
Satisfied by a representation ?,'/\ of L consists in taking the matrix elements of the polynomial
Telation obtained by equating (4.3) to zero, between basis vectors of the representation ?
12,14 ,15/. Thus, in order to obtain the second-degree polynomial relations satisfied by e. it is
Necessary to determine the representations )\ for which the Kroneeker product g’,\® g
decomposes into precisely two terms, i.e. the set of weights CG(A,M) contains only two
lements,

Theorem 2. For the semisimple Lie algebras (2.1) the pairs { ¢ s }of representations
Whose Kronecker product decomposes into a direct sum of two mequwaient irreducible
Tepresentations are those listed in column 8 of Table 1.

It may be observed that a pair {,/\J M} is always composed of a minuscule weight A and a
Weight M for which the adjoint orbit of the highest-weight vector of € is a Hermitian
SYmmetric space /11/. This result explains the one-to-ne correspondents between the
ele“nentary realizations given by Reshetikhin /5/ for the YBZF algebras and the Hermitian
Symmetric spaces for the Lie algebras of types Ap, Bp, Cp, Dp- Reshetikhin's L and R

OPerators are constructed in fact as linear combinations of the identity operator I and the
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Hannabuss operator Q,,,AJI/(iacting an \{’MQ&Q& where the pairs {/\L >m/\a{}r:u‘e those given in the
last column of Table 1. Hence, the highest weights of the auxiliar representations Aj in /5/ are
always defined by minuscule weights and the highest weights of the physical state space Vi Aj
is the corresponding highest weight from the pair to which /\; belongs.

Curiously enough, some of the representations which appear in column 6 of Table 1 and
satisfy second-degree polynomial identities do not have companions with which to form pairs
in the sense of theorem 2. These are the representations Ag, A3, ...,An_1 of the Lie algebras
of type Cp, and the representations Ay, Ag for the Lie algebra Eg, A7 for £7, A4 for Fgq and™;
for Ga.

We remark also that the representations (m A1), (mAg) and (m A7) of the Lie algebras
Eg and E7, respectively, - which possess Hermitian symmetric highest weight orbits - do not
satisfy any second-degree tensorial identity.

Finally, as already remarked, (cf. eq.(3.2)), for the Lie algebras of type A, a number of
pairs of representations in column B of Table 1 lead to inhomogeneous tensorial identities
which are ab initio excluded by the procedure outlined in section 2 (cf. columns 4, 5 of
Table 1).

5. Classical analogue of the Hannabuss operator

Let Ra (RMm) be irreducible representations of the Lie group G defined by the highest
weights A (M) and acting on the linear spaces V (W). Let S ( $m) be the corresponding
representations of the Lie algebra L. of G, assumed to posess the property

$.® ¢, =86, @ 6 (5.1)
with 81,087 irreducible representation.

It is known /17/ that to any finite-dimensional representation RA of a compact group G
we can associate a PB realization of its Lie algebra L defined on the coadjoint orbit mA through
the highest weight A € L.* of R, in the following way

zxel — £3&) = T P g (Adg)=)eC (M)
(5.2)
where &= Ad(g)” € ¥ and P, is the projection aperator on the one-dimensional subspace
spanned by the highest-weight vector of R, . From the definition (5.2) we have

AL (PTA) = A
£« $) N ) 4Ai(?)x< ) 5.5
From the properties of the Hannabuss operator we get

(RA(?)®I)Q\,M(QA(3~J)® I) =(1le QM(?—4))0/\M(I ® QM(%» (5.4)

whence

diml ‘
Hig) = e R(R(IBI) @\,M( R, (§I®1) = ;2; {zAd(?)&(,\) ¢ )
dim Ll . y ey ' 8
- % £,¢ =) =R GUL ﬁf’\)?f‘ JR, @)= R () HA) R“(%)(m
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The mapping X : F)?ZA—’End W defined by Eq.(5.5) is the classical analogue of the Hannabuss
aperator @A)M.

In fact, such an object can be defined for any pair (f,$Mm) in which f is an equivariant PB
realization of a Lie algebra L defined on a symplectic manifold 7L and ¢ is a representation
of L, by the expression

dinb
X = “
) Z £1) g(x) 5
for any pe& 99 . The equivariance property
4
. = R(g)
Kcg-r) = R(qg7) Hip)R(g 5.7)

is an immediate consequence of the definiton (5.5). From the equivariance property it folows
that if, for a fixed point pe 73y , a polynomial identity':() (X (p)) = 0 is valid, then it is valid for
any point of the G-orbit through p.

In order to obtain from the equation satisfied by the Hannabuss operator QA,M the
Corresponding equation for the ¥ -mapping (5.6), we must take a classical limit /16/. To do
that, let us consider the representations f‘mA with highest weights mA with m = 1,2,... and the

corresponding X -mappings. From the definition, it follows that

- 4 N
K(g) = o Ta P A (RA9I® 1O (Run (@ 1) 5.8)
for any m = 1,2,.... We have /16/

2 _ o, 1 2 -4
K8y = tm = T P (R, 3@ I)DM,M(QM(% ®I) 6.9

1T -y OO
Whence from the equation satisfied by @A ™
H
(@/\,M ‘f”*I)C@A)M'"f’LzI)"O (5.10)
We obtaijn

H () +& H(g)vecl =0

(5.11)
With b = _lim(1/m)(uy +p2) and € = lim(1/m2)(u1pp)

The validity of property (5.1) for all the pairs of representations (g’m/\,g’” Y (m = 1,2,...)
With M fixed is essential for the derivation for the second-degree classical limit (5.11) for the
®quation satisfied by the Hannabuss operator.

By taking the classical limit considered above, we obtain the equations satisfied by PB
®alizations which can be obtained also in a direct way. Applying this procedure to all pairs
from the last column of Table 1 we obtain the classification of all pairs formed with a PB
™alization of L and a representation of L, with the property that the corresponding X -
OPerator satisfies s second-degree polynomial equation. Using this property of the H-operator
& simple proof results /6/ for the existence of the elementary classical realizations of YBZF
®lgebrag given by Reshetikhin /5/ for any such PB realization of L. Hence, the last column of

T s
sble 1 classifies also these elementary realizations.
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TABLE 1

Dynkin diagrams Representations (A) Pairs of
and coefficients of the Minus- | on which representations
Lie highest long roots (c;) cule second-degree tensors the Kronecker
algebra] highest short roots(d ) weights) T n vanish product of which
L and their duals(c},d l) (di=1) (m=1,2,...) decomposes in
Non-semisimple sub- (ci=1) (cij=1 two irreducible
algebras of maximal rank components
A 0 A | 0 |(m=1,2,.0)
Lo %__ e A, mA (AR A, |24224
e, 4 1 4 4 A, rn.Az ~ Aa 24424, IR
v v ; :
A (Cé=d‘¢=c‘;=d";) MA'%! - i/\h)m/lff
'y mAnes | A vA
oy ] n
R @ A, ® A mA,.a — { Nn—k+1 > m/\,,}
p nrt-p B A : y 1 An, MAp ksl
nes| Moy, —_ 24, +2A
(n=12,-,n) An | mAp | AxtA /‘:l 2/'I,+?/1: k=t2...,n
H A 2 N—-A n
- S—— S
o4 2 2 2 A, | 242
di 4 ] 4 4 A 2 A {/\ A }
cy’ 2 2 4 >
B?L ay 2 2 2 4 O I 4 A 24, " !
R & B, "] 242
“ [l 2 n-4 n A
o—0— - —OXD 1
AR SOV A2
di 4 e :
ke 1 ... 4 : Ay, mA
Gldi b g A | e e
Aney
@ @ An-( Aﬂ —
4
A mA, Ay Al A, mAn-d
o——-o-——- 1
L < , Ay mARY
'Dn. (ci=di=cy = dY) 1 n-t | MAn, A, 2N, fAns s mAY
24
R®Dp., 5 RDAM, An | mA, " A {Aa,y MA'},_
¢ 1 2 4 5 8
co RS R T A, m A - A,
A —
Es (cizdo =l =41)® 2%
R & Ds Ao | mhs | ‘6
L A E 5 6 7
2 3 24 3 2 9
Co=d —_ 2A —_—
E7 (..bc‘-"/_.: z) 2 A7 m/\, A7 '/
R @& Eg
AA 3B 4 5 & 7 8
E eS8 F 7 232 —|— |—|—|— -
)y (ci=dy, =CY=
L4 23 4 (o> 1)
O X0 — — — | A 24 —
B 1S F2—% (4i>n S
v L4 2 v
G, o CFE?L (Co15d )| — — — | A, | 24 —
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