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Abstract

The antisymmetric part of the photon polarization operator (∼ eijkkkΠ2) originated from
the parity violation in electroweak plasmas causes the appearance of the Chern-Simons (CS)
term in the effective lagrangian for electromagnetic fields LCS = Π2AB where B = ∇×A is
the magnetic field, A is the vector potential. The factor Π2 calculated at the one loop level
in an equilibrium medium determines the α-helicity parameter in the Faraday equation,
α = Π2/σcond, which governs the evolution of a large-scale magnetic field in plasma with

the electric conductivity σcond. In our work the CS term Π
(νl)
2 based on the neutrino

interactions with charged leptons was calculated. Basing on this calculations, the magnetic
field instability driven by neutrino asymmetries was revealed. This instability is implemented
in different media such as the hot plasma of the early universe and a supernova (SN) with
a seed magnetic field. The causal growth of the cosmological magnetic field governed by
this CS term allowed us to establish the lower bound on the neutrino asymmetry in the
hot plasma of early universe which is consistent with the well-known upper bound for relic
neutrinos coming from the Big Bang nucleosynthesis constraints on the helium abundance.
We suggest also a novel mechanism for generation of strongest magnetic fields in astrophysics
such as magnetic fields in magnetars (B ≥ 1015 G) based on the presence of a non-zero
electron neutrino asymmetry during a SN burst, ∆nνe

6= 0.

1 Introduction

The generation of the cosmological magnetic field (CMF) as a seed of observable galactic mag-
netic fields is still an open problem [1]. The two facts enhanced a new interest to such a problem.
The first observational indications of the presence of CMF in intergalactic medium which may
survive till the present epoch [2, 3] were as a new incitement to the conception of CMF and its
helicity. Secondly, there appeared some new models of the magnetic field instability leading to
the generation of CMF. In particular, in the hot universe plasma (T > 10MeV) the generation
of CMF having a maximum magnetic helicity was based on the quantum chiral (Adler) anomaly
in relativistic QED plasma for which the difference of right- and left-chiral electron chemical
potentials ∆µ = µR − µL is not equal to zero, ∆µ 6= 0 [4].

However, in Ref. [4] it was showed that such an asymmetry diminishes, ∆µ → 0, due to the
growth of the chirality flip rate in the cooling universe through electron-electron (ee) collisions,
Γf ∼ α2

em (me/3T )2, where αem = (137)−1 is the fine structure constant, me is the electron
mass, and T is the plasma temperature.
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This negative result encouraged the appearance of Ref. [5], where another mechanism for the
generation of magnetic fields was proposed. It is based on the parity violation in electroweak
plasma resulting in the nonzero Chern-Simons (CS) term Π2 that enters the antisymmetric
part of the photon polarization operator in plasma of massless particles. Such a term , in turn,
determines the α -helicity parameter, α = Π2/σcond, which governs the evolution of magnetic
fields through the Faraday equation for a plasma with electric conductivity σcond. Here we

adopt the notation for the CS term from Ref. [5]. The similar CS term Π
(νl)
2 entering the

photon self-energy (PSE) given by the neutrino interaction with charged leptons l in plasma
was calculated in paper [6] in frames of the real time perturbation theory. While in the present

work [7] we calculate Π
(νl)
2 using the Matsubara technics and taking into account the radiative

corrections to the electron mass in a hot and dense plasmas. Contrary to calculations in Refs. [5]
implied for massless particles only we obtain here results for a rare non-relativistic plasma too,
ne � m3

e, T � me. This allows us to control our approach versus the limiting case of a νν̄ -gas
embedded into vacuum, ne → 0, for which the Gell-Mann theorem [8] with vanishing PSE in

the one loop approximation, limk→0 Π
(ν)
2 (k2) = 0, is fulfilled.

Another motivation to calculate Π
(νe)
2 concerns the problem of strong magnetic fields existing

in neutron stars as remnants of supernovae (SN). In particular, we have been interesting here
how the strongest magnetic fields observed in magnetars [9] can be generated. To solve this
problem, it was recently suggested to use the chiral plasma instability [10, 11] caused by an
imbalance between right- and left-handed electrons µR−µL = 2µ5 6= 0 arising via the left-handed
electron capture by protons inside the SN core (Urca process). Obviously this mechanism is
similar to the generation of helical magnetic fields in a hot plasma [4]. The chirality flip in both
dense media (cases of a hot plasma T � [me,∆µ] and a degenerate ultrarelativistic electron
gas µ5 � [T,me]) leads to the damping ∆µ → 0, µ5 → 0 due to collisions that should be taken
into account for estimates of the magnetic field generation efficiency.

We shall describe the interaction between neutrinos and charged leptons in frames of the
Fermi theory which is a good approximation at low energies. Since we study a νν̄ gas embedded
into lepton plasma we can treat neutrinos (antineutrinos) as proper combinations of the external
neutrino hydrodynamic currents coming from the effective SM Lagrangian for the νl interaction
that is linear in the Fermi constant (∼ GF) being averaged over the neutrino ensemble. Thus,
our approach is analogous to the generalized Furry representation in quantum electrodynamics.

2 Photon polarization operator in a νν̄ gas

In this section we calculate the parity violating term in the polarization tensor in the presence
of a νν̄ gas. It should be noted that photons do not interact directly with neutrinos since latter
particles are neutral. Thus the νγ interaction should be mediated by charged leptons, denoted
as l, which are taken to be virtual particles in this section. We shall take into account the νl
interaction in propagators of l’s as the external mean fields f µ

L,R = (f0
L,R, fL,R).

We shall be mainly interested in the case of an isotropic νν̄ gas when fL = fR = 0 and
the nonzero f 0

L,R are given in eq. (4). In this situation the most general expression for the
polarization tensor reads [12]

Πµν(k) =

(

gµν − kµkν

k2

)

ΠT +
kµkν

k2
ΠL + iεµναβkα(fβ

L − fβ
R)ΠP, (1)

where kµ = (k0,k) is the photon momentum, gµν = diag(+1,−1,−1,−1) is the Minkowski
metric tensor, εµναβ is the absolute antisymmetric tensor having ε0123 = +1, and ΠT,L,P are the
form factors of a photon. Since we study parity violating effects, we should analyze the form
factor Π2 = (f0

L − f0
R)ΠP. Since only real particles, considered in this section, are neutrinos, we

add the superscript “ν” to photon form factors, e.g., Π2 → Π
(ν)
2 etc.
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Figure 1: The Feynman diagram for the one loop contribution to PSE given in eq. (2). The
lepton’s propagators are shown as broad straight lines and correspond to eq. (3).

The one loop contribution to PSE is schematically shown in figure 1.
The lepton propagators are represented as broad lines since we take into account f µ

L,R in our

calculations. Note that we shall consider only the contribution to Π
(ν)
µν linear in the external

fields fµ
L,R and proportional to γ5 -matrix to find the parity violation term Π

(ν)
2 . The expression

for Π
(ν)
µν , which leads to the nonzero Π

(ν)
P in eq. (1), reads

Π(ν)
µν = ie2

∫

d4p

(2π)4
tr {γµS0(p + k)γνS1(p) + γνS0(p)γµS1(p + k)} , (2)

where e is the electric charge of l and the propagators S0,1(p) are given by

S0 =
γµPµ + m

P 2 − m2
,

S1 =
1

P 2 − m2

[

iσαβγ5Pα(fβ
L − fβ

R)(γµPµ + m)

P 2 − m2
+

1

2
γµγ5(fµ

L − fµ
R)

]

. (3)

Here we should take into account that m2 → m2 − i0 in the denominators. Then for a νν̄ -gas
at rest, fL,R = 0, and temporal components given by

f0
L = 2

√
2GF

[

∆nνe + (sin2 θW − 1/2)
∑

α

∆nνα

]

, f0
R = 2

√
2GF sin2 θW

∑

α

∆nνα. (4)

one finds from Eq. (2) after separation of the factor εµναβkα the CS term for νn̄u gas in vacuum:

Π
(ν)
2 = −(f0

L − f0
R)

e2

4π2

k2

m2

∫ 1

0
dx

x(1 − x)

1 − k2

m2 x(1 − x)
. (5)

It should be noted that eq. (5) does not contain ultraviolet divergencies.

Basing on eq. (5) we find that Π
(ν)
2 = 0 at k2 = 0. We also note that Π

(ν)
2 in eq. (5)

coincides with the result of ref. [12], where the more fundamental Weinberg-Salam theory was

used. Moreover, the fact that Π
(ν)
2 vanishes at k2 = 0 also agrees with the finding of ref. [8],

where it was shown that the neutrino-photon interaction is absent in the lowest order in the
Fermi constant. Nevertheless, as demonstrated in ref. [13], the amplitude for νγ → νγ has the
nonzero value in the two loops approximation.

3 Plasma contribution to polarization tensor

In this section we obtain the general expression for Π2 taking into account both the temperature
and the chemical potential of the charged leptons. It means that these leptons now are not
virtual particles. On the basis of the general results we discuss the cases of low temperature
and low density classical plasma, as well as hot relativistic and degenerate relativistic plasmas.
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If we study the photon propagation in a plasma of charged leptons with nonzero temperature
and density, the photon’s dispersion relation differs from the vacuum one, k2 = (k2

0 − k2) 6= 0.

As seen in eq. (5), in this case Π
(ν)
2 6= 0. We can define it as Π

(νl)
2 analogously to the previous

section. The presence of ν’s and ν̄’s is essential since it is these particles which provide the
nonzero contribution to the parity violating form factor based on the νl interaction.

The expression for the contribution to PSE from the plasma consisting of real leptons can
be obtained if we make the following replacement in eq. (2):

i

∫

dp0

2π
→ T

∑

n

, p0 = (2n + 1)πT i + µ, n = 0,±1,±2, . . . , (6)

where T and µ are the temperature and the chemical potential of the l’s plasma. In principle,
we can discuss a general situation when T and µ are different from Tνα and µνα. However, in
section , where we study the application of our calculations, the system in the thermodynamic
equilibrium is considered. Thus, in the following we shall suppose that T = Tν , where Tν is the
νν̄ gas temperature equal for all neutrino flavors. However, we shall keep different µ and µνα.

Let us first discuss the case of a low density plasma of l’s, that corresponds to k2 � m2.
Using the general (cumbersome) eqs. (3.2) and (3.3) from our [7] in the limit max(k2

0 ,k
2) �

m2 we obtain that

Π
(νl)
2 = − 7

6
e2(f0

L − f0
R)

∫

d3p

(2π)3
1

E3
p

×
{

m2

E2
p

[

1

exp[β(Ep − µ)] + 1
+

1

exp[β(Ep + µ)] + 1

]

+
m2β

2Ep

[

1

cosh[β(Ep − µ)] + 1
+

1

cosh[β(Ep + µ)] + 1

]

− β2p2

6

[

tanh[β(Ep − µ)/2]

cosh[β(Ep − µ)] + 1
+

tanh[β(Ep + µ)/2]

cosh[β(Ep + µ)] + 1

] }

, (7)

where Ep =
√

p2 + m2, β = 1/T is the reciprocal temperature . Note that Π
(νl)
2 in eq. (7)

exactly accounts for T and µ.

To estimate the values of Π
(ν)
2 and Π

(νl)
2 , we shall consider the low temperature limit: T � m.

We will identify l with an electron and assume that the electron gas has a classical Maxwell
distribution. For this medium we get that k2 = 4παemne/m, where αem = e2/4π is the fine
structure constant and ne is the background electron density. Moreover for a classical electron

gas one has that µ = m + T ln
[

ne
gs

(

2π
mT

)3/2
]

, where gs = 2 is the number of spin degrees of

freedom of an electron. Using eqs. (5) and (7) , we get that

Π̃
(ν)
2 = −2α2

em

3
(f0

L − f0
R)

ne

m3
, Π̃

(νl)
2 = −7παem

3
(f0

L − f0
R)

ne

m3
, (8)

where we add a tilde over Π
(ν,νl)
2 to stress that these quantities correspond to real rather than

virtual photons. In the following we shall omit the tilde in order not to encumber notations.

One can see that Π
(νl)
2 in eq. (8) is 7π

2αem
∼ 103 times greater than Π

(ν)
2 . Note that for a classical

nonrelativistic plasma, corresponding to m � max(|p|, T ), the integrals in last two lines in

eq. (7) cancel each other while the integral in the first line leads to the term Π
(νl)
2 in eq. (8).

Now let us turn to the cases of ultrarelativistic plasmas with a plenty neutrinos (antineu-
trinos) such as the hot plasma of early universe and a supernova. It should be noted that the
electron’s mass in such plasmas can significantly differ from its vacuum value. The radiative
corrections to the electron’s mass were studied in ref. [14]. Thus, if we consider a dense and hot
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Figure 2: The function F versus k0. (a) Hot relativistic plasma. (b) Degenerate relativistic
plasma.

plasma, we should replace 1

m2 → m2
eff =

e2

8π2
(µ2 + π2T 2). (9)

Note that eq. (9) is valid for both T � µ and µ � T . Accounting for the dispersion relation
for the transverse long waves k2 = ω2

p, | k |� k0, and the expression for the plasma frequency
ωp =

√
4παemT/3, we get the important inequality k2 < 4m2

eff in a hot relativistic plasma
that saves us against a peculiarity in the denominator within the integral in eq. (5) when we
substitute the effective mass (9). Omitting very cumbersome calculations in the Matsubara
technics presented in our paper [7] we give here only the answer for the formfactor Π2(k0, 0)

Π2 =
αem

π
(f0

L − f0
R)F, (10)

where F is the dimensionless function which depends on k0/T . Note that Π2 in eq. (10) includes
the contribution from eq. (5). Accounting for eq. (9), we present the behaviour of F versus we
k0/T in figure 2(a).

One can see in figure 2(a) that for a hot relativistic plasma the CS term Π2 is nonvanishing
in the static limit: F (k0 → 0) ≈ −0.18. We should substitute such a limit to apply Π2 for
large-scale magnetic fields penetrating a plasma deeply, since the skin layer (penetration depth)
rises as λskin ∼ (k0)

−1/2 → ∞. This limit results in the constant α -helicity parameter we apply
below, α = Π2(0)/σcond.

4 Instability of magnetic fields in relativistic plasmas driven by

neutrino asymmetries

We consider below the two cases for which the CS term Π2 in the photon polarization operator
Πµν plays a crucial role. A nonzero Π2 leads to the α-dynamo amplification (instability) of a seed
magnetic field even without fluid vortices or any rotation Ω in plasma which are usually exploited
in the standard MHD approach for αΩ-dynamo [16]. The first case considered here concerns the
magnetic field growth in a degenerate ultrarelativistic electron plasma, µ � max(T,me), during
the collapse and deleptonization phases of a supernova burst. In the second case we consider
below a hot plasma of the early universe with the temperatures T � max(me, µ) before the

1Under intermediate conditions me ∼ meff in plasma with µ 6= 0 or T 6= 0 (or both) the effective mass of an
electron should be me/2 + (m2

e/4 + m2

eff)1/2, see in ref. [15].
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neutrino decoupling at T > Tdec ' 2 ÷ 3MeV. In both cases neutrinos are in equilibrium with
a plasma environment. For these applications we use our result in eq. (10).

First, we derive in subsection 4.1 the Faraday equation generalized in SM to find the key
parameters leading to the B-field instability. An excess of electron neutrinos during a first
second of a supernova explosion2 allow us to put nνe − nν̄e 6= 0 in the problem of the magnetic
field amplification considered in subsection 4.2. In subsection 4.3 we find the lower bound on
the neutrino asymmetry providing the growth of CMF field in our causal scenario. It would be
interesting to compare such limit with the upper bound on the electron neutrino-antineutrino
asymmetry |ξνe | ≤ 0.07 given by the Big Bang nucleosynthesis (BBN) constraint [17]. Thus,
we shall consider magnetic fields in media with a plenty of neutrinos (antineutrinos) where a
nonzero neutrino asymmetry exists. Finally, in section 5 we compare our issues with what other
authors found in similar problems and give some forecasting how to explain strongest magnetic
fields in magnetars.

4.1 Generalized Faraday equation in the Standard Model

The existence of a neutrino asymmetry accounting for the difference in eq. (4),

f0
L − f0

R = GF

√
2

[

∆nνe −
1

2

∑

α

∆nνα

]

, (11)

leads to a non-zero parity violation term in the photon polarization operator Πij(ω,k) =
iεijnknΠ2(ω, k), where Π2 is given by eq. (10) and ω ≡ k0.

The CS polarization term in eq. (10) corresponds to the induced pseudovector current in
the Fourier representation,

j5(ω,k) = Π2(ω, k)B(ω,k), (12)

entering the generalized Maxwell equation in the standard model (SM)

ik ×B(ω,k) + iωE(ω,k) = j(ω,k) + j5(ω,k). (13)

Expressing the ohmic current as j(ω,k) = σcondE(ω,k), then neglecting the displacement cur-
rent in the l.h.s. of eq. (13), that is a standard assumption in the MHD approach for which
ω � σcond

3, and finally using the Bianchi identity k × E = ωB, one gets the generalized
Faraday equation in SM in the coordinate representation,

∂B

∂t
= α∇×B + η∇2B, (14)

where α is the magnetic helicity parameter,

α =

(

Π2

σcond

)

, (15)

and η = (σcond)−1 is the magnetic diffusion coefficent.
Here we use the long-wave approximation for large-scale magnetic fields where the operator

Π2(k0, k = 0) is at least uniform, k → 0, and almost stationary since the function F (x) depends
on a small ratio x = k0/T � 1 or x = k0/µ � 1. For instance, in the long-wave limit k � ωt the
transversal plasmons (photons) have the spectrum k2

0 ≡ ω2
t = ω2

p + k2 ≈ ω2
p = 4παemT 2/9 in a

2Neutrino emission prevails over the antineutrino one during first milliseconds of a supernova burst due to the
reaction e− + p → n + νe (urca-process) before its equilibrium with beta-decays n → p + e− + ν̄e is settled in.

3The conductivity σcond = ω2
p/νcoll = 4παemT 2/9νcoll ∼ T/αem ∼ 100T depends on the Coulomb collision

frequency νcoll = σCoulne = [4πLα2
em/9T 2]ne ∼ α2

emT . Here we use the values for the electron density ne =
0.183T 3 in a hot plasma and L ∼ 10 for the Coulomb logarithm. Obviously the MHD condition ω = ωt � σcond

is fulfilled to obtain eq. (14).
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hot plasma (T � max[µ,me]) and k2
0 ≡ ω2

t = ω2
p +k2 ≈ ω2

p = 4αemµ2/3π in the ultrarelativistic
degenerate electron gas (µ � max[me, T ]) [15]. In a relativistic plasma this approximation
corresponds to the negligible spatial dispersion, k0 � k〈v〉 ∼ k, where we put v = 1 both in
hot and degenerate relativistic plasmas. Here k = |k| is the wave number. Thus, the ratio
k0/T ∼ 0.1 or k0/µ ∼ 0.06 allows us to consider Π2 ≈ const without temporal and spatial
dispersion as a function of the temperature T (a hot plasma in the early universe) or the
chemical potential µ (a degenerate electron gas in a supernova) only. Moreover, the skin layer
width (penetration depth) for a quasistatic magnetic field, λskin ∼ (k0)

−1/2, motivates us to
put limit k0 → 0.

4.2 Amplification of a seed magnetic field in a supernova

During the collapse (time t < 0.1 s after onset of collapse) one can neglect νµ,τ emission and Π2

reads

Π2(k0, 0) =

[√
2αemGF(nνe − nν̄e)

2π

]

F (k0/µ) , (16)

where the function F (x) is shown in figure 2(b) for a degenerate ultrarelativistic electron gas
with µ � max(T,me).

The magnetic diffusion time tdiff = Λ2/η seen from the Faraday eq. (14),

tdiff =
σcond

k2
=

σcond

Π2
2

, (17)

is given by the electrical conductivity for degenerate ultrarelativistic electrons and degenerate
nonrelativistic protons, σcond = ω2

p/νcoll. Note that the combined effects of the degeneracy and
the shielding reduce the collision frequency νcoll ∼ T 2. Thus collisions of charged particles are
blocked due to the Pauli principle since states p < pF are busy and νcoll → 0 at T → 0.

The electrical conductivity was found in ref. [18],

σcond =
1.6 × 1028

(T/108 K)2

( ne

1036 cm−3

)3/2
s−1. (18)

For typical pFe = 200MeV and the corresponding electron density ne = p3
Fe

/3π2 = 3.7 ×
1037 cm−3, as well as the temperature T = 10MeV ' 1011 K in the SN core eq. (18) gives
σcond = 2250MeV. This result leads to the estimate tdiff = 0.023 s. It means that any seed
magnetic field B0 existing in plasma does not dissipate ohmically during first milliseconds after
onset of collapse, t � tdiff , and evolves for a given wave number k through the α-dynamo driven
by neutrino asymmetries as

B(t, k) = B0 exp

[
∫ t

t0

(|α|k − ηk2)dt′
]

. (19)

If k < |α|/η = |Π2|, the seed magnetic field in eq. (19) will grow exponentially. The fastest
growth corresponds to the α2-dynamo with k = |α|/2η for which B(t) = B0×exp

{

∫ t
t0 [α

2(t′)/4η(t′)]dt′
}

.
Unfortunately, under the same conditions (for large nνe = 1.9 × 1037 cm−3) the scale of

the magnetic field occurs to be rather small, Λ = k−1 ' η/|α| = |Π2|−1 ∼ 0.25 × 10−2 cm.
Here we use the fact that |F | = 2, see figure 2(b). However, such a scale grows when the
neutrino asymmetry diminishes due to a significant involvement of antineutrinos somewhere
later at t ≤ 0.03 − 0.1 s, ∆nνe = nνe − nν̄e → 0 . It reaches the core radius Λ → R0 = 10 km,
k = |Π2| = R−1

0 , for the neutrino asymmetry density

nνe − nν̄e =
2π

R0αemGF

√
2|F |

' 1028 cm−3. (20)
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The suggested mechanism of the B-field growth in a supernova driven by the electron
neutrino asymmetry could lead to an additional amplification of a strong seed magnetic field
(B0 = 1010÷1012 G) during the first second of a SN explosion when the asymmetry nνe−nν̄e 6= 0
remains appreciable. Here a strong seed magnetic field can arise from a small magnetic field
of protostar, e.g., Bproto ∼ 1 ÷ 102 G, due to the conservation of the magnetic field flux,
B0 = Bproto(Rproto/R0)

2 , during the protostar collapse. The question whether this new mech-
anism can explain the strongest magnetic field of observed magnetars (B = 1014 ÷ 1015 G)
deserves a separate study (see also in section 5 ).

4.3 Growth of primordial magnetic fields provided by the lower bound on

neutrino asymmetries

In a hot plasma of the early universe the magnetic helicity parameter α in Faraday eq. (14)
reads as

α(T ) =
Π2(T )

σcond(T )
=

αemGF

√
2T 2F (k0/T )

12πσc

[

ξνe − ξνµ − ξντ

]

, (21)

where we substituted the dimensionless neutrino asymmetries ξνα = µνα/T for the asymmetry
densities ∆nνα = ξναT 3/6 and used the hot plasma conductivity σcond = σcT , with σc ' 100.
The magnetic field evolution with the parameter α in eq. (21) obeys the causal scenario, where
the magnetic field scale is less than the horizon, ΛB ' η/|α| < lH = H−1, if the sum of neutrino

asymmetries −2
∑

α c
(A)
α ξα = ξνe − ξνµ − ξντ satisfies the inequality

|ξνe − ξνµ − ξντ | >
2.2 × 10−6

√

g∗/106.75

(T/MeV)
. (22)

Here we take into account that c(A) = ∓0.5 (upper sign stays for electron neutrinos) is the SM
axial coupling constant for νe interaction corresponding to the difference f 0

L − f0
R in eq. (11).

In eq. (21) we use that |F | ' 0.2, which results from figure 2(a). Moreover we account for
that lH = M0/T

2, with M0 = MPl/1.66
√

g∗, where MPl = 1.2 × 1019 GeV is the Plank mass,
g∗ = 106.75 is the number of relativistic degrees of freedom above the QCD phase transition,
T > TQCD ' 150MeV. Let us remind that to get eq. (22) we applied the photon polarization
term in eq. (10) for ultrarelativistic leptons with T � max(me, µ).

One can see that the inequality in eq. (22) does not contradict to the well-known BBN
bounds on the neutrino asymmetries at the lepton stage of the universe expansion corresponding
to g∗ = 10.75, |ξνα | < 0.07, (see ref. [17]) and gives an additive (lower) bound on the neutrino
asymmetry which supports the growth of CMF in our causal scenario.. Here different flavors
equilibrate due to neutrino oscillations before BBN, ξνe ∼ ξνµ ∼ ξντ , somewhere at the neutrino
decoupling time T = 2 − 3MeV , accounting for all active neutrino flavors with the non-zero
mixing angles (including sin2 θ13 = 0.04), see in ref. [19].

We also obtain that the magnetic field diffusion time tdiff is bigger than the expansion time
∼ H−1, tdiff = σcond/Π2

2 > M0/T
2, or ohmic losses are not danger, if the opposite inequality

for neutrino asymmetries is valid,

|ξνe − ξνµ − ξντ | <
25.3 × (g∗/106.75)1/4

[T/GeV]3/2
. (23)

Here just after the electroweak phase transition T ≤ TEW = 100GeV the combined asymmetry
in eq. (23) seems to be resonable, |ξνe − ξνµ − ξντ | < 0.025, while at lower temperatures me �
T ≤ O(GeV) the condition in eq. (23) is obviously fulfilled and consistent with the BBN bound
obtained in ref. [17].
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5 Discussion

Let us give a comparison with the chiral magnetic mechanism in refs. [4, 10, 11]. In ref. [4], the
magnetic helicity coefficient analogous to that in eq. (21) in our work,

α(T ) =
αem∆µ(T )

πσcond(T )
, (24)

is proportional to the magnetic chiral parameter ∆µ = µeL
− µeR

where µeL
(µeR

) are the left
(right) electron chemical potentials. In QED plasma such a parameter arises due to the Adler
anomaly in external electromagnetic fields, ∂(jµ

L − jµ
R)/∂xµ = (2α/π)E · B, evolving in a self-

consistent way with the magnetic field B. However, it tends to a small value ∆µ/T ∼ 10−6−10−7

for a small wave number 10−10 ≤ k/T ≤ 3×10−9 at temperatures T ≥ 10MeV (see figure F.1 in
ref. [4]) and vanishes later at all due to the chirality flip with the increasing rate Γf ∼ (m2

e/T
2)

in cooling universe, neL
− neR

→ 0. This is not the case for the helicity parameter given
in eq. (21) based on neutrino asymmetries ξνα for which there are no triangle anomalies in
Maxwellian fields contrary to charged leptons 4. Moreover, after the neutrino decoupling and
relic neutrino oscillations before BBN, there are no ways to change the equivalent asymmetries
ξνα = const 6= 0, α = e, µ, τ .

In ref. [11] one suggests a new mechanism for the production of strong magnetic fields in
magnetars based on the chiral instability for electrons with the difference of chemical potentials
for right- and left-handed electrons, µ5 = µR − µL 6= 0. The chirality imbalance of electrons
is produced via the same electron capture inside a core we considered above (urca-process),
p + e−L → n + νe

L, where the subscript L stands for left-handedness.
In ref. [11] the typical scales of wave number k and vector potential A relevant to such

instability were obtained (see eq. (27) there):

k ∼ αemµ5, |A| ∼ µ5

α
, thus B ∼ k|A| ∼ µ2

5, (25)

where an estimate µ5 = 200MeV gives huge Bmax ∼ µ2
5 ∼ 1018 G. The authors also show that

instability proceeds faster than the danger chirality flip, Γinst = α2µ5 � Γflip ∼ α2(me/µ5)
2µ5,

or the process µ5 → 0 due to collisions is negligible because µ5 � me. In the proposed
mechanism of the magnetic field amplification it remains unclear how a large-scale magnetic
field is produced in this scenario since the magnetic field generated seems to be microscopic.
Indeed, the scale k−1 ∼ MeV−1 found in ref. [11] is much smaller than we obtained in section 4.2.

To resume we have shown here that weak interactions in SM are very important for gener-
ation of magnetic fields in dense electroweak plasmas.
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