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Introduction

The TOTEM experiment at the LHC has been designed to measure the total proton-
proton cross-section with a luminosity independent method and to study elastic and
diffractive scattering at energy up to 14 TeV in the center of mass.

TOTEM detector system allows an optimum forward coverage for charged particles
emitted by the proton-proton interactions. Indeed, two telescopes, T1 and T2, are installed
on both sides of the interaction point and together allow the detection of at least one
charged particle in 99% of the diffractive and non-diffractive events with diffractive masses
above ∼ 3.4 GeV

c2 [1]. On the other hand, elastic scattered protons are detected by Roman
Pot stations, placed at 147 m and 220 m along the two exiting beams. These detectors
can be moved very close to the beam and, thanks to dedicated runs with special optics
configurations (high beta∗), it is possible to extrapolate the elastic cross-section for values
of the four-momentum transfer down to 0 with only 9% of non-visible zone [2]. TOTEM
physic program and the detector system will be described in more detail in chapter 1.

At the present time, data acquired by the detectors are stored on disk without any data
reduction by the data acquisition chain. Given the computational capability of the already
installed read-out electronics, it should be possible to implement some zero-suppression or
event filtering algorithms, based on track recognition, to improve the efficiency of the data
acquisition and to optimize the disk usage. To achieve this goal, fast and smart algorithms
have to be developed, implemented and tested.

In chapter 2 a fast algorithm for cluster searching will be proposed. This algorithm
is able to find clusters in the hit maps of the detectors, stored in the TOTEM data frame.
Moreover, it is also possible to use the number of clusters to filter data acquired by Roman
Pot detectors. At first, the algorithm has been implemented using the C++ programming
language to test its capabilities and performance. Then, an hardware implementation
has been designed and implemented in the firmware of the FPGA present in one of the
front-end cards.

In chapter 3 two algorithms for track recognition will be proposed. In the Roman Pot
detectors a track can be seen as a line in the detector’s hit map. Hence, a track recognition
algorithm has to search for clusters in the detector hit map and then search for aligned
patterns of clusters. Two different approaches have been implemented: the first uses less

IX



INTRODUCTION

computational resources than the second one that is, instead, more accurate.
Finally, to test these algorithms, a data set has been carefully chosen to be representative

of all data acquired by the TOTEM experiment during 2011 and 2012 data taking periods.
In chapter 4, the results of the TOTEM off-line reconstruction software on this data set will
be used to test the performance of the proposed algorithms.
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Chapter 1

The TOTEM Experiment at LHC

The LHC (Large Hadron Collider) is the world’s largest and highest-energy particle
accelerator, hosted at CERN (European Organization for Nuclear Research), the world’s
largest particle physics laboratory. TOTEM (TOTal cross section, Elastic scattering and
diffraction dissociation Measurement at the LHC) is the experiment at the LHC spanning
the largest distance. Indeed, TOTEM detectors are positioned more than 400 m far from
each other.

The TOTEM experiment will measure the total proton-proton cross section and it will
study elastic scattering and diffractive dissociation. These studies are usually referred to
as forward physics because of their topology; precise measurements in this field are crucial
for both high energy and cosmic ray physics.

The detectors and electronics used by the TOTEM collaboration will be introduced in
this chapter.

1.1 The Large Hadron Collider

The LHC at CERN is a two-ring superconducting hadron accelerator and collider
installed in a 26.7 km long tunnel buried between 45 m and 170 m below the surface near
Geneva.

Nowadays the LHC is the most powerful particles accelerator; scientists and engineers
from the 20 European Member States and from many non-Member Countries, representing
608 Universities and Institutes and 113 nationalities, are working on the LHC and other
experiments at CERN. Using this amazing machine it is possible to accelerate protons or
ions to speeds very close to the one of light, and to collide them in special locations, called
IP (Interaction Point)s. Very active international collaborations designed, built and run
their detectors placed close to these Impact Points to study the products of the collision.
Among these there are CMS, ATLAS, ALICE, and LHCb.

1



1.2. THE TOTEM EXPERIMENT

Figure 1.1: CERN’s accelerator complex.

CMS (Compact Muon Solenoid) and ATLAS (A Toroidal LHC Apparatus) are general
pourpose detectors. A huge part of their resources is focused on the Higgs boson hunting,
the last missing particle forseen by the Standard Model. Recently, the two collaborations
announced the discovery of a new boson [3][4] and its behavior is compatible with the
Higgs particle. Moreover, CMS and ATLAS detectors are used also to look for signs of
new physics, including extra dimensions and exotics interactions. ALICE (A Large Ion
Collider Experiment) has been designed to study heavy ions interactions and to investigate
a form of matter called quark–gluon plasma that is supposed to have existed shortly after
the Big Bang. Finally, LHCb (Large Hadron Collider beauty) research is focused on the
asymmetry between matter and anti-matter to answer open questions about the origin of
our Universe.

1.2 The TOTEM Experiment

TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measure-
ment at the LHC) is an experiment whose detectors are located in the forward region of
the IP (Interaction Point) shared with CMS and its main purpose is to measure the total

2



CHAPTER 1. THE TOTEM EXPERIMENT AT LHC

proton-proton cross-section using a luminosity-independent method.

The total cross section σtot can be thought as the effective area seen by two particles
involved in a scattering process. Unfortunately, it is not possible to theoretically describe
the behavior of σtot up to the LHC energy: some phenomenological models have been
proposed, but a direct measurement is needed to confirm or reject them. Before the TOTEM
experiment, direct measurement at these energies were performed only by observing the
interactions of cosmic rays [5], as shown in Fig. 1.2; unfortunately, their uncertainties are
too large to discriminate among the different models [6]. One more element underlining
the importance of TOTEM results is that all LHC experiments need σtot to normalize the
physical processes involved in their measurements.

Figure 1.2: Compilation of total (σtot), inelastic (σinel) and elastic (σel) cross-section
measurements [5].

In detail, the TOTEM measurement technique is based on the simultaneous estimate
of the σtot and the luminosity L. Thanks to the Optical Theorem it is possible to write:

Lσ2
tot =

16π
1 + ρ2

dNel

dt

∣∣∣∣∣
t=0

Lσtot = Nel + Ninel

(1.1)

where:

• Ninel: the inelastic rate;

• Nel: the total nuclear elastic rate;

3



1.2. THE TOTEM EXPERIMENT

• t: momentum transfer1;

• dNel
dt

∣∣∣
t=0

: the nuclear part of the elastic cross section;

• ρ =
R[ fel(0)]
I[ fel(0)] ;

• fel(0) is the forward nuclear elastic amplitude.

ρ can be estimated theoretically: ρ ∼ 0.14, so the impact on 1 + ρ2 is small. The two
equations set can be solved to find L and σtot:

σtot =
16π

1 + ρ2

dNel
dt

∣∣∣
t=0

Nel + Ninel
L =

1 + ρ2

16π
(Nel + Ninel)2

dNel
dt

∣∣∣
t=0

(1.3)

This method does not need a direct measurement of the luminosity L; however, this
will only be possible if all needed quantities can be computed.

To understand how to measure these quantities, in Fig. 1.3 the main event topologies
for a proton-proton interaction are shown. The number of inelastic interactions Ninel

includes all diffractive dissociation and, more generally, it includes all processes where
a part of protons’ kinetic energy “creates” new particles. These events can be detected
in low rapidity regions. Nel is the number of elastic interactions, when kinetic energy is
conserved. Usually, elastically scattered protons can be detected at very high rapidity (low
t). Moreover, the elastic cross section can not be exactly calculated at t = 0. TOTEM will
measure it down to |t| = 10−3 GeV2 thanks to special runs with dedicated accelerator optics
and it will be extrapolated to t = 0.

To perform these measurements TOTEM requires a unique coverage in pseudo-rapidity
2 on both sides of the interaction point to cover elastic and diffractive processes. To achieve
this coverage, three different detectors have been chosen; all of them are tracking telescopes.
A first telescope, close to the interaction point, is named T1 and it is made of CSC (Cathode

1 In a two body scattering a + b→ a + b, defining the 4-momentums of in-going (p1, p2)
and out-going (p3, p4) particles, the kinematics can be described using the Lorenz invariant
Mandelstam Variables (s, t,u), that are defined as:

s = (p1 − p2)2 = (p3 − p4)2

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2

(1.2)

s represents the square of the cent re of mass energy, while t is the 4-momentum transfer
squared.

2The pseudorapidity η is defined as η = −ln(tan(θ2 )). Additionally, the rapidity y is
defined as y = 1

2 ln( E+pz

E−pz
) where E is the total energy and pz is the momentum component

parallel to the beam. For particle momentum p� m, the rapidity and pseudorapidity are
approximately equal: y ∼ −ln(tan(θ2 )) ≡ η, where m is the rest mass of the particle and θ is
the angle between the beam and the scattered particle.

4



CHAPTER 1. THE TOTEM EXPERIMENT AT LHC

Figure 1.3: Graphical representation of the most common event types in p − p
collisions. The leftmost pictures are graphical representations of the processes and
in the middle typical angular and pseudorapidity distributions are shown.

Strip Chambers). T2 is a second telescope a little further from the impact point and made
of GEM (Gas Electron Multipliers). These telescopes are used to study charged particles
produced inelastically. RP (Roman Pot)s are placed along the exiting beams, at 147 m and
220 m far from the interaction point. These detectors are based on silicon devices designed
ad hoc for TOTEM.

The pseudo-rapidity coverage of the TOTEM apparatus is shown in Fig. 1.5.
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1.2. THE TOTEM EXPERIMENT

RP 220m
RP 147m

RP 147m
RP 220m

T2

T1

T1
T2

CMS

Figure 1.4: The LHC beam line, the TOTEM forward trackers T1 and T2 embedded
in the CMS detector and the Roman Pots at 147 m (RP147) and 220 m (RP220).

Figure 1.5: Left: Detector coverage in the pseudorapidity-azimuth plane. Right:
pseudorapidity distribution of charged particle multiplicity and energy flow for
generic inelastic collisions at

√
s = 14TeV.

1.2.1 Latest results

Using data taken during the year 2011 at the LHC energy of
√

s = 7 TeV, TOTEM has
measured the differential cross-section for proton-proton elastic scattering as a function of
the four-momentum transfer t. Various measurements have been done under different
beam and background conditions and, thanks to dedicated runs, |t|-values down to
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CHAPTER 1. THE TOTEM EXPERIMENT AT LHC

5 × 10−3 GeV2 were reached. Thanks to these measurements, it was possible to extrapolate
the value of the elastic cross-section to t = 0 with a non-visible region of only 9%.

The elastic cross-section has been determined to be (25.4 ± 1.1) mb and, using the
luminosity probed by CMS in a first approximation, the total pp cross-section was indirectly
estimated to be (98.6 ± 2.2) mb [2].

Moreover, during the same data taking, the proton-proton inelastic scattering cross-
section was determined. Combined data from T1 and T2 allowed the measurement of the
cross-section for inelastic events with at least one particle with a pseudo-rapidity |η| ≤ 6.5
in the final state. This cross-section includes more than 99% of the non-diffractive and
diffractive events with diffractive masses larger than ∼ 3.4 GeV.

On the base of these measurements, the total inelastic cross-section was deduced to be
σinel = (73.7 ± 3.4) mb, compatible with the previous indirect TOTEM measurements and
with the direct measurement by the other LHC collaborations [1].

1.3 General overview of the TOTEM detector sys-
tem

The TOTEM detectors are tracking devices that can be grouped in two families: gas
and silicon detectors. All detectors are placed on both sides (arms) of the Impact Point.

T1 and T2 are dedicated to the measurement of the inelastic rate and are positioned to
detect particles from almost all interactions.

T1 is made of 5 planes, each consisting of 6 trapezoidal CSC (Cathode Strip Chambers),
and is installed inside the CMS End Caps. It is 3 m long and its closer edge is 7.5 far from
the Impact Point.

The much smaller T2, instead, is made up of 20 half circular sectors of GEM detectors
per arm and it is installed at a distance of 13.5 m from the Impact Point.

These detectors have to:

• provide a fully inclusive trigger for minimum bias and diffractive events;

• make possible to reconstruct the primary vertex of an event to reject tracks not
crossing the Impact Point;

• be perfectly left-right symmetric with respect to the Impact Point, in order to have a
better control on the systematic uncertainties.

Elastic events are, on the other hand, selected by RP (Roman Pot)s, that are movable
enclosures for silicon detectors expressly designed for TOTEM; they are capable of tracking
protons a few millimeters far from the beam. As for T1 and T2, also RPs have to provide
both triggering and tracking capabilities.

7



1.3. GENERAL OVERVIEW OF THE TOTEM DETECTOR SYSTEM

1.3.1 T1 telescope

Figure 1.6: T1 telescope at the test beam facility. The five CSC planes are visible.

The closest telescope to the CMS impact point (7.5 m) is T1. This telescope covers
a pseudorapidity range of 3.1 ≤ |η| ≤ 4.7 and it is extremely important in the inelastic
cross section estimate. The expected trigger rate for this detector is 1 kHz for a luminosity
L = 1028cm−2s−1 and for each event ∼ 40 charged particles are expected to be detected
[7]. Moreover, T1 has to be able to provide a minimum bias trigger with a very high and
well known efficiency and has to allow background (i.e. beam-beam or beam-beampipe)
suppression after track reconstruction. These reasons led to the choice of CSC detectors, a
widely used technology fast enough for TOTEM pourposes and lightweight enough to be
positioned in front of the CMS forward calorimeters.

CSC chambers used in TOTEM are gas detectors with arrays of anode wires crossed
with cathode strips on both sides. Anode wires are spaced 3 mm, while the cathode strips’
pitch is 5 mm. Strips are ±60 ◦ tilted with respect to wires: on one side the angle is positive
and on the other side it is negative. This design allows the detection of charged particles
in three dimensions minimizing ghosts occurrence.

Each telescope (one per side) consists of five equally spaced CSC planes (Fig. 1.6). All
planes are composed of six wire chambers, grouped in 2 halves, covering roughly one
sixth of a circumference (60 ◦) each. Moreover, planes are not perfectly aligned: this allows
a better efficiency along the circular region and helps track reconstruction. The precision
of the reconstructed position is of the order of 1 mm for the three coordinates [7], good

8



CHAPTER 1. THE TOTEM EXPERIMENT AT LHC

enough to reconstruct the primary collision vertex in the transverse plane within a few
mm and to discriminate between beam-beam and beam-gas events.

Signals from the chambers are collected by a custom-designed ROC (Read-Out Card)
module through AFEC (Anode Front-End Card)s and CFEC (Cathode Front-End Card)s.
The ROC serializes and sends data to the DAQ (Data AcQuisition) system through an
optical fiber, using a GOH (Gigabit Optical Hybrid) optical link developed by CMS.
AFECs and CFECs are both based on VFAT (Very Forward Atlas and Totem) chips that
provide the trigger capability (See section 1.4.1).

1.3.2 T2 telescope

Figure 1.7: Picture of T2 during construction.

The T2 telescope is located at 13.5 m on both sides of impact point. It detects particles
within the pseudorapidity range of 5.3 ≤ |η| ≤ 6.5. As for T1, T2 has to provide a fully
inclusive trigger for inelastic (mainly diffractive) events. Moreover, even if T2 is further
from the interaction point than T1, it has to allow track reconstruction with almost the
same rejection power of T1 to discriminate background.

These resolution requirements (∼ 110µm and ∼ 1◦ on the radial and azimuthal
coordinates), together with the high rate capabilities, drove the choice on GEM detectors.
These detectors were proposed for the first time in 1997 by Fabio Sauli [8]; thanks to their
relatively easy and cheap design and to their diffusion in high energy physics, GEM can
be considered a mature technology for the LHC environment.

9



1.3. GENERAL OVERVIEW OF THE TOTEM DETECTOR SYSTEM

The idea behind the GEM is to multiply electrons produced by ionizing particles inside
small holes, where an high electrical potential is applied (∼ 3 kV/cm). This is achieved
using tiny resistive foils (the thickness of T2 GEM is 50µm) with metal cladding (∼5µm)
on both sides. This sandwich is etched to create holes from one side to the other (Fig: 1.8).

Figure 1.8: In T2’s GEM, holes are conical and their diameter goes from 55µm to
70µm.

The hole dimensions are important for the quality of the electrical field inside them,
avoiding the use of too high potentials between the two metal claddings. Usually, GEM
foils can be cascaded: T2 has been made with the triple GEM configuration, based on the
COMPASS detector [9] design.

Amplifier

Drift Cathode

GEM Foil

GEM Foil

GEM Foil

Read-out PCB

Ionizing Particle H.V. ~-4.2kV

1M

0.55M

0.5M

0.45M

1M

10M

10M

10M

2.4 kV/cm

3.6 kV/cm

3.6 kV/cm

4.5 kV/cm

Drift Zone

Transfer Zone

Transfer Zone

Induction Zone

Figure 1.9: Schematic view of the triple GEM detector used in TOTEM experiment.
Electric fields inside T2 chambers are provided by a resistive divider, useful to
maintain the right voltage proportions between all the electrodes during power
on/off operations. Each foil is also connected with a series resistor to the divider to
limit the current in case of discharge.

The structure of this detector is schematized in Fig. 1.9. Charged particles ionize gas
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CHAPTER 1. THE TOTEM EXPERIMENT AT LHC

molecules in the drift zone; ionization electrons drift towards the GEM foil stack where
they are multiplied (multiplication and transfer zones) and finally they reach the induction
zone where an electrical signal is induced on the readout foil. The main advantage of this
design is that a large gain can be achieved without using extremely high voltages on the
single GEM foil, decreasing the probability to have discharges inside the detector.

Moreover, the charge collection process, on the read-out PCB, is totally decoupled by
the multiplication process, near GEM foils, simplifying the design the read-out pads.

Without GEM foils it would be impossible to design and build detectors with the
geometry and the low density of T2. Indeed, GEM foils allow to build high space and time
resolution detector with huge sensitive areas that are, at the same time, relatively cheap
and easy to build.

The T2 detector uses this triple GEM design to achieve a gain of about 8000. The gas
mixture used is Ar(70%) and CO2(30%) and the applied voltages are shown in Fig. 1.9 [10].

The front-end chip is the VFAT, as for all other TOTEM detectors; furthermore, the
readout and control systems are the same for all the experiment (See section 1.4.1).

1.3.3 Roman Pots

RP (Roman Pot) usually names movable box-shaped detectors used for detecting
particles very close to the beam. They were used for the first time at the ISR [11] in early 70’s.
Indeed, the name “Roman” comes from the group of scientist from Rome that developed
their main principles. These detectors are placed inside a secondary vacuum vessels
(where the primary one is that of the beam pipe), called “Pots” because of their shape; the
vessel is moved into the primary vacuum of the machine through vacuum bellows: the
detectors are physically separated from the beam to prevent an uncontrolled out-gassing
from the detector’s materials. The challenging constraints of the LHC environment, such
as the high luminosity and the UHV (Ultra High Vacuum), led to a massive improvement
over the ISR prototypes.

TOTEM RPs are grouped in units. Each unit is made of three RPs, one approaching
the beam from above, one from below and one from the side. Only one horizontal RP is
needed because the LHC magnetic field deviates protons according to their momenta, and
basic conservation rules imply that scattered protons can only have lower momentum with
respect to the original one of the beam 3. Pairs of these units, called stations, are placed at
149.6 m and 217.3 m far from the interaction point. The TOTEM’s RP system is symmetric
with respect to the interaction point allowing to tag surviving protons in elastic, single
and double diffractive events.

A single RP is equipped with a stack of 10 tracking planes. These planes are silicon

3Considering the LHC lattice, to detect protons which have lost momentum, horizontal
RPs are positioned on the external side of the ring.
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1.3. GENERAL OVERVIEW OF THE TOTEM DETECTOR SYSTEM

Figure 1.10: Position of RP detectors with respect to the impact point.

microstrip detectors and, in order to maximize the acceptance, Roman Pot systems have to
detect particles as close as possible to the beam. A specific research project has been done
to reduce the non active zone at the edge facing the beam.

The working principle of a silicon microstrip detector is that inside the silicon, when a
depletion region4 has been created by an applied electric field, an ionizing particle crossing
it releases energy generating electron-hole pairs. Holes are collected by p+ strips inducing
a signal in the readout strips (Fig. 1.11). The sensitivity of these detector depends on the
biasing voltage. Indeed, the width of the depletion layer is proportional to the square
root of the biasing voltage and also the efficiency of strips at collecting holes is strongly
correlated with the biasing voltage.

TOTEM Roman Pots are equipped with 300µm thick silicon planes, with a strip pitch
of 66µm and each plane has 512 parallel strips.

In fact, silicon devices are cutted out from big silicon disks (wafers) and this procedure
affects the behavior of the devices on the edge. The most common technique to cope with
the distortion of the electric field in the vicinity of the cut edge is called Voltage Terminating
Structure and it consists of a sequence of floating guardrings surrounding the sensitive
part of the device. However this technique does not permit an insensible zone less than
1 mm wide. A new design, called Current Terminating Structure, has been developed to
reach full sensitivity within ∼50µm from the edge [12].

The planes inside the RPs have been arranged in such a way that strips are oriented at
an angle of +45◦ and −45◦ with respect to the edge facing the beam. These two orientations
are called u and v projections. Planes are coupled back to back. A picture of the planes
inside each RP is shown in Fig. 1.12.

The advantage of this arrangement is that u and v planes can be analyzed independently:
a particle detected by all the planes will have aligned hits in both orientations. On the
other hand, a big disadvantage is that it is not possible to reconstruct particle tracks in
high multiplicity events because of wrongly reconstructed tracks, named ghosts (Fig. 1.13).

The VFAT is used as front-end chip and the rest of the DAQ chain is the same of the
other detectors.

4A region (or layer) is said to be depleted when there are no free charges inside it.
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Figure 1.11: Cross section of a strip detector. Ionizing particles generate electron-
hole pairs that drift to the strips thanks to the applied bias voltage. Strips are AC
coupled to the readout electronics by the thin insulating silicon dioxide layer.

Figure 1.12: Silicon detectors inside each Roman Pot.

1.4 TOTEM Electronics System

As described in the previous sections, TOTEM has three separate and distinct detectors
that use completely different technologies. Despite this, a big effort has been done by the

13
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u

v

Figure 1.13: When two (or more) hits have been recorded for each projections, it is
not possible to uniquely reconstruct the tracks. Indeed, there is no way to choose
which pair of circles (empty or full) corresponds to the correct pair of tracks.

collaboration to have a common electronics architecture. A milestone in this direction has
been the design of a common front-end chip, the VFAT, capable of providing common
data format and common control and readout chains.

Figure 1.14: Block diagram of the TOTEM electronics system [7].

The TTC (Timing, Trigger and Control) signals provide the necessary reference LHC
machine clock, TOTEM standalone trigger and control commands to the VFAT chips
through the control path, as shown in Fig. 1.14. The configuration of the VFATs is done
using a low speed protocol (I2C) to encode commands broadcasted by the control system
(FEC).

Furthermore, the data readout chain ensures data to be read and stored. Its main
component is the TOTFed hostboard that allows readout PCs to access data sent by the
front-end electronics. The VFAT electronics transmit trigger primitives and tracking data.
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Figure 1.15: Schema of the TOTEM data readout chain.

The trigger primitives are processed as fast as possible by the trigger electronics to generate
the TOTEM LV1A (LeVel One trigger Accept) trigger signal. Upon LV1A assertion, tracking
data are collected and stored by the DAQ system. A deep knowledge of the data acquisition
system was required for this thesis. The next sections will be focused on the description of
the overall structure of the data acquisition system and of its main components.

1.4.1 VFAT: a common front-end chip

TOTEM collaboration decided to develop a common front end chip to simplify the
design of the detectors’ front-end: all detectors will use identical control, trigger and
readout systems. This chip, named VFAT [13], has to store detector hit maps and to provide
fast regional information to aid the creation of a first level trigger.

Figure 1.16: Block diagram of the VFAT chip. [13]

The VFAT chip is driven by the LHC clock frequency (40.08 MHz) and has 128 channels.
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Each of these consists of a preamplifier followed by a shaper and an asynchronous
comparator and with a programmable threshold. If a signal exceeds a given threshold, a
monostable produces a logic 1 for n clock cycles, where n is programmable and can be
in the range 1, . . . , 8. All monostable outputs are buffered to a circular SRAM and, at the
same time, are used to set a trigger flag using a fast OR. These flags are collected and
processed by the trigger system to generate the LV1A signal that is broadcasted back to
the VFATs. Upon the receiving the LV1A signal, data are transferred to a second SRAM
that can be read-out by a DAQ chain. Otherwise, data not corresponding to a LV1A are
overwritten in the first circular SRAM (Static Random Acess Memory).

1010 BC <11:0>
1100 EC <7:0> Flags <3:0>
1110 ID <11:0>

Channel Data <127:0>

CRC 16 checksum <15:0>

Table 1.1: Format of the VFAT data, which are serialized and streamed without
any compression. [13]

Every detected hit is stored as a logic 1 in the so called “Channel Data” of the VFAT data
frame. The first three words of this data frame are used to identify the VFAT producing
the data and to synchronize events. Indeed, these words contain:

• BC (Bunch Crossing), a counter that is incremented on every clock cycle;

• EN (Event Number), a counter incremented on every LV1A;

• ChipID, an unique identification number.

Using this format, shown in Table 1.1, data are streamed to the counting room using
optcal fibers; up to 16 VFAT can share the same fiber.

1.4.2 TOTFed

The TOTFed hostboard is the main part of the on-line Data Acquisition System of
TOTEM.

All the devices work synchronously with the 40.08 MHz clock provided by the TTCrx
QPLL; this ASIC (Application Specific Integrated Circuit) makes sure that the system
is latched to the main LHC clock and allows also the decoding of commands from the
TTC (Timing, Trigger and Control) system [14].
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Figure 1.17: Picture of the TOTFed hostboard with three OptoRxs.
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Figure 1.18: Schema of the TOTFed hostboard architecture.

Data from detectors are acquired through Optical Receivers, named OptoRxs. Up to
three of them are plugged onto the TOTFed. Each OptoRx is connected via two buses to an
FPGA (Field Programmable Gate Array), named Main: one bus is 192 bits wide and the
other 16. The first one is used for data, while the other is used to configure the devices and
to read their status. Data read-out is allowed by a VME (VERSABUS Module Eurocard)
bus, interfaced to a dedicated FPGA, that provides also I2C and JTag interfaces to control
the TTCrx and to program devices plugged on the board. The architecture of the TOTFed
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is shown in Fig. 1.18.

1.4.3 OptoRx

Figure 1.19: Picture of the OptoRx card.

Data from detector electronics are transmitted to the counting room (Fig. 1.14) via
optical fibers that are connected to optical receivers plugged into the TOTFed. These
receivers are called OptoRx; they are equipped with the most powerfull FPGA5 used in the
TOTEM electronics: EP2SGX60EF1152C5. Indeed, this FPGA, manufactured by Altera,
belongs to Stratix II GX family and it is equipped with 12 high-speed serial transceivers
used to receive data from the front-end electronics. This allows the connection of up to 12
optical fibers. Once data are received, the OptoRx has to synchronize data coming from
different fibers and to buffer them. Furthermore, it is also possible to simulate a data flow
to test and debug the DAQ chain that follows the OptoRx.

The OptoRx is connected to the TOTFed via a 64 bits bus to read buffered data and
via a 16 bit bus to control and configure the card. Also TTC and TTS (Trigger Throttling
System) signals are respectively received and sent by the OptoRx through dedicated lines.
The first are used to synchronize acquired events, while TTS signals are used to suspend
LV1A generation when internal buffer is approaching a full condition.

Moreover, the possibility is forseen to read data directly from the OptoRx connecting it
directly to the CMS DAQ chain using an S-link bus.

5The name OptoRx is used for both the FPGA that equips the optical receiver and the
receiver itself.
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1.4.4 Firmware and data frame

The OptoRx architecture can be divided in two main blocks: the Synchronization block
and the Packet preparation block, as schematized in Fig. 1.20.

Figure 1.20: Schema of the Optical Receiver (OptoRx) architecture.

Data collected by up to twelve fibers are synchronized by the Synchronization block.
After all acquired fibers have been synchronized, data has to be associated to the LV1A
that triggered their acquisition, and independently collected by the TTCrx receiver.

In the Packet preparation block, data are organized in the frame shown in Fig. 1.4.3,
compatible with the CMS data format. It is possible to highlight three main frames and,
as for the VFAT, each data frame has an header, a trailer and a payload to store the data
themselves:

• OptoRx frame, made of 64 bit words. Fig. 1.4.3 shows header and trailer in blue;

• 12 GOH frames, made of 16 bit words, highlighted in yellow;

• 192 VFAT frames, made of a single bitstream, colored in green.

OptoRx frame is organized in up to three subframes that contain four GOH frames. When
less than twelve fibers are connected to the OptoRx, the data frame will be modified
accordingly. If all fibers that belong to a subframe are not present, the subframe itself will
not be present. Otherwise, if at least one fiber is connected, missing GOH frames will be
filled in with zeros.
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Figure 1.21: Data format used in TOTEM raw data.

In the RP system, four planes are grouped in each fiber in such a way that their VFATs
are consecutive in the bitstream, as shown in Fig. 1.22. Furthermore, each OptoRx is
connected to one unit. A RP detector consists of ten planes and all data acquired by a
single detector are stored in forty consecutive VFAT frames. These frames are grouped in
three GOH frames; hence, only nine consecutive GOH frames are used for each OptoRx of
the TOTEM RP system, as shown in Fig. 1.23.
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Figure 1.22: Schema of the arrangement of the VFAT frames in the TOTEM RP
system.
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Figure 1.23: Schema of the arrangement of the GOH frames in the TOTEM RP
system.

1.5 The off-line software

Once data have been acquired and stored, an off-line software takes care of recon-
structing the physical processes occurred to the scattered protons at the IP. To accomplish
this task, the off-line software [15] checks the data integrity and synchronization. Then, it
transforms the data using calibration and alignment parameters that are computed using
Monte Carlo simulations and preliminary analysis on real data. Indeed, an important part
of the software implements Monte Carlo simulations.

Briefly, a Monte Carlo simulation consists of using random number generator to
simulate a process that involves a large number of elements, i.e. particles, that are too
complicated to be studied analytically. In the TOTEM off-line software they are used to
simulate the transport of particles that exit the interaction point through the LHC lattice
till their detection. Every step of the simulation is regulated using probability distributions

When a particle reaches the detector, also the interaction with the detector’s materials
and the response of the electronics have to be simulated. This process can be iterated
millions of times to produce data similar to that expected from the real detector. Such data
are useful to align and calibrate the detector and - by comparison to real data - to check if
there are some unexpected phenomena that where not taken into account.

The TOTEM data offline software is both capable of generating these simulated events
and of transforming simulated and real data into a common data format so that they can
be analyzed in the same way. This common data format has been called DIGI: since the
VFAT chips are digital, their output is a boolean hitmap of the detector.

The off-line software can be subdivided in some main blocks, as shown in Fig. 1.24. In
this work the attention will be focused on the RP’s reconstruction block.
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Figure 1.24: The structure of the RP simulation and reconstruction software [16].

The first step of the track reconstruction is clusterization. Indeed, when a charged
particle goes through a detector, it could fire a group of neighboring strips, but these
strips have to be viewed as a single block of information: the cluster. After clusterization,
clusters are converted into positions in a defined reference system, i.e. their center of
mass is expressed using the distance from the center of the detector. This is done by the
RECO block in Fig. 1.24. In the next step, the pattern recognition, hits from each projection
(see section 1.3.3) that doesn’t belong to a track are rejected and, if possible, a track is
reconstructed.

Two method have been proposed to recognize tracks: a quicker method and a more
precise one. The first [17] is based on the fact that elastically scattered protons have
longitudinal angles lower than 1 mrad, while tilted tracks are probably due to noise or
interaction in the beam pipe and should be disregarded. In these conditions, a particle
hits consecutive detector planes at about the same position: if the hit positions are
histogrammed, the number of entries in the bins corresponding to a straight track will be
higher with respect to bins filled with hits due to a non parallel track (see Fig. 1.25).

However, during an alignment procedure or for efficiency measurements it can be
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Figure 1.25: For a track parallel to the beam, and so perpendicular to the detector,
hits through the 5 silicon planes fall in the same bin of the positions’ histogram.

important to consider also tracks that are not parallel to the beam. To select these tracks,
a second algorithm, based on a Hough transform, has been implemented [16]. Both
algorithms will be described in more detail in section 3.

If tracks have been found in both projections, they are merged in the one-RP track fit
block.

Finally, a correlation between tracks found in different RP is used to classify events, i.e.
an ideal elastic scattering event needs left and right scattering angles to be identical. This
process needs to carefully consider the effect of all LHC magnets between the impact point
and each RP that can be up to 220 m far.
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Chapter 2

Cluster searching algorithm

When protons interact with a silicon plane in the Roman Pot system, because of
charge-sharing effects, it is possible that more than one strip is fired. In this case, adjacent
hits have to be considered as belonging to a single track. For this reason the very first step
for any kind of track reconstruction is to search for clusters. The goal of the algorithm
proposed here is to find clusters in the VFAT frames (see 1.4.1). However, the modularity
and the generality of the algorithm make possible to easily adapt it to different data frames
that contain several bitstreams with an hitmap.

The algorithm has been developed using the C++ programming language, to test its
capabilities and performance. In this way it is possible to use it in applications capable
of working on real data using the framework implemented by the DAQ team to both
simulate and read data in the TOTEM format.

Eventually, the algorithm has been revised and implemented on an FPGA and it has
been tested using simulation, RP (Roman Pot) test setup in the laboratory and using the
real TOTEM Roman Pot system installed at the Impact Point.

2.1 The cluster searching Algorithm

Being the VFAT frame a bitstream, the algorithm consists of searching for consecutive
“1”s in a bitstream. The problem we face is to efficiently extract the bitstream from the
OptoRx frame (see 1.4.4 and Fig. 1.21). The idea is to use an highly specialized class for
each step of the algorithm. In particular, a class will find clusters in a bitstream, an other
one will manage a bytestream and finally, the last class will work on streams of words of
arbitrary size. Such an architecture will allow the algorithm to work not only with the
TOTEM data frame, but with any bitstream holding an hit map.
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2.1.1 cluster: the main brick

The first step is to provide a precise definition of cluster: a group of consecutive hits in
an hitmap. In the VFAT stream, this is equivalent to a set of consecutive “1”s.

VFAT Payload

... 000000001100000000 ...

VFAT Header VFAT Trailer

... ...
cluster of size 2

Figure 2.1: Example of a cluster of size 2 in the VFAT payload.

A cluster is fully defined by two properties: the position of its appearance and the
number of consecutive “1”s (its size). This definition has been used to implement a class,
cluster, which stores the position and the size of the cluster and has a method to increment
its size.

2.1.2 bitStat: clusters in a bitstream

Using the definition of cluster, a class called bitStat has been designed to create and
manage them. This class creates a collection of clusters and has methods to access this
collection. It is possible to assign an identifier to correlate each bitStat object with a
bitstream, or a VFAT in the TOTEM case, where the clusters have been found. To fill the
collection of clusters the class has two methods:

• FoundZero: enables the creation of a new cluster;

• FoundOne: if the creation is enabled, creates a new cluster and stores it in the
collection, else it increments the size of the last cluster in the collection.

These methods will be called according to the value found in each bit read from a
bitstream. In addition this class has methods to read, print and clear the collection of
clusters.

It is important to stress that FoundOne and FoundZero have the same interface: they
return /emphvoid and take no parameters; hence, it is possible to create a pointer to both
methods using the same function pointer type. This property will be used in the next
proposed class, byteStat.

2.1.3 byteStat: from byte to clusters using a LUT

The purpose of the byteStat class is to manage 8 bitStats and call their appropriate
FoundOne or FoundZero methods according to the bit pattern in a given byte.
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The simplest way to do this task is to read each bit of the byte and call the corresponding
bitStat’s method. However, this approach requires 8 bit shifts for each read byte: a more
efficient way is to create a Look Up Table (LUT).

Thanks to the fact that the pointer to both FoundOne and FoundZero has the same type,
it is possible to create a collection of these pointers. Thus, in the LUT each byte pattern
corresponds to the address of a list of the above mentioned pointers. For each byte the list
of pointers corresponding to the bit pattern is retrieved from the LUT and applied to the
bitStats managed by the class. This approach is faster because all the 8 bits are computed
at the same time, without using any bit shift.

0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

LUT

FoundZero
FoundZero
FoundZero
FoundZero
FoundZero
FoundZero
FoundZero
FoundZero

FoundZero
FoundZero
FoundZero
FoundZero
FoundOne
FoundZero
FoundZero
FoundZero

FoundZero
FoundZero
FoundZero
FoundZero
FoundZero
FoundZero
FoundZero
FoundZero

Figure 2.2: Working principle of the Look Up Table.

As an example, if the input byte is 1000 0001 (129), byteStat will point in LUT location
129 and find a collection of pointers. This collection will contain a pointer to FoundOne,
followed by 6 FoundZero and one FoundOne.

The LUT has been implemented as a singleton1; this ensures that all byteStat objects
access the same LUT which is initialized only once.

2.1.4 wordStat: clusters in a buffer of words of arbitrary
length

As said before, the algorithm has to be able to find clusters in an arbitrary buffer of
words and not be linked to any particular architecture. To achieve this goal a class was
designed which, given a buffer of a certain type and a stream of words of a different type
in a fixed position in the buffer, searches for clusters using the right number of byteStats,
according to the word size. Every word of the stream is in the same position of each word
of the buffer.

1A singleton is a creational pattern that guarantees the existence of one and only one
instance of a class and provides an access point to it (pointer or reference) [18].
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Figure 2.3: Data format used in TOTEM raw data (See section 1.4.3).

As an example, it is possible to consider the data frame shown in Fig. 2.3 (See section
1.4.3). The GOH’s frame is a stream of 16 bit words stored in the OptoRx frame, a buffer of
64 bit words. It is worth noting that every GOH word has the same position in the OptoRx
word; so, to jump from a GOH’s word to its next, it is only necessary to know this position.
Two byteStat objects can search for clusters in the GOH frame: it is necessary to design
a class which creates 2 byteStats and gives to each one the corresponding 8 bit word to
analyze.

This class has been called wordStat. To achieve the proposed goal, wordStat is a template
class with 2 parameters: the type of the buffer’s words (B-words) and the type of the words
of the stream (T-words). Moreover, wordStat has to be initialized also with the number of
words to be read from the buffer and has methods to read, print and clear the collected
clusters.

It is useful at this point to introduce two additional classes.

bytePointer, which allows to access single bytes of the given stream words (T-words)
and knows how to jump to the next corresponding byte in the buffer (B-words).

word2byte is a class that takes a pointer to a T-word and the position of the stream in
this word and returns the opportune bytePointer.

2.1.5 Usage in the TOTEM framework

A steering class has been designed to specialize the algorithm to the TOTEM data
format. This class, optoRxStat, knows the data frame structure and initializes the algorithm.
Its main task is to read an OptoRx frame from a buffer and create the appropriate wordStat
objects, passing to them the corresponding pointers and the size of the buffer.

To read the OptoRx frame, optoRxStat uses an object from the DAQ library, OptoRx-
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DataFrame, which has a method that, for each GOH frame (Fig. 1.4.3), returns a pointer
to the beginning of the buffer which contains VFAT data. This pointer is used, together
with the size of the buffer, to initialize the corresponding wordStat, managed by optoRxStat.
After the initialization, each wordStat (one per GOH) does its analysis independently.

2.2 Cluster per plane filter

After the design of an algorithm to search clusters inside the TOTEM data frame, it is
useful to implement a data filter to reduce disk usage and, most importantly, improving
the data acquisition rate. On the base of the knowledge achieved by the off-line software
developers (section 1.5) we can safely exclude from the analysis all planes with more then
4 clusters, or less then 1; in addition, if more than 2 planes per projection are excluded, the
whole RP will be rejected. Excluding these parts of the data from the analysis will lead to
performance improvements without penalties in the results.

For this reason, counting the number of clusters per plane could be a very powerful
tool to select track candidates and to reduce data to be written on disk, improving DAQ
efficiency. In some of the data taking runs the occurrence of empty frames is very high; as
an example, if the event has been triggered by T1, the probability to have hits in Roman
Pots is very low. Moreover, if a detector registered too many hits, it would be very likely
rejected by the reconstruction algorithm, so recorded data will be useless.

However, by filtering information with an on-line analysis, rejected data will not
be available for future investigation with improved techniques. Therefore, it is of great
relevance to design a filter which rejects only data that contains useless information and
nothing else.

This is the case of an algorithm which rejects empty RPs. An empty RP is a RP with at
least 4 planes with no clusters for each projections. It should be noted that a single plane
is useless for any reconstruction, so this kind of filter does not reject any data suitable for
the reconstruction.

A more aggressive approach is to reject also RP detectors with a number of clusters
above a certain threshold.

The performance of these filters will be studied in the chapter 4.

2.3 Implementation in the OptoRx firmware

The proposed algorithm can be very powerful to reduce data size at hardware
level, rejecting useless events or applying data reduction. However, to fully exploit its
capability, it needs to be implemented as close as possible to the front-end electronics.
It has been chosen to implement the filter inside the OptoRx. Indeed, the FPGA of the
OptoRx has enough resources to implement a cluster finding algorithm; moreover, this
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card communicates with both VME and S-link bus, making it the perfect location for
implementing selection algorithms.

The FPGA version of this algorithm has been slightly modified. In fact, inside an
FPGA is possible to access a single bit; the use of a LUT to access 8 bits at the same time
can be avoided. Hence, each VFAT bitstream is analyzed by an independent bitStat block.
Then, sixteen bitStat blocks are managed by a gohStat block and, finally, twelve gohStat
blocks are managed by one optoRxStat module that can be inserted in the OptoRx firmware.

All these blocks will be described in details in the following sections.

2.3.1 bitStat: clusters in a bitstream

The bitStat block corresponds to the hardware implementation of the bitStat class: it
searches for cluster in a bitstream and stores them in an internal memory, i.e. a FIFO.

Moreover, to debug the implementation, a special effort has been done to read all
the information stored in the FIFOs. For these reasons an interface has been designed to
transfer all the information collected by the module to the VME bus. To avoid interferences
with data streams, it has been chosen to read FIFOs via the 16 bit bus that connects the
OptoRx to the TOTFed (see section 1.4.3). This approach will allow to have an independent
read-out block for cluster analysis that can be added or removed from the OptoRx firmware.
To synchronize FIFO’s content with event’s data, at the occurrence of every new event an
event counter is stored in each FIFO.

The bitStat architecture is implemented with several components as shown in Fig. 2.4.

The inputs to the bitStat block are:

• newEvent: it goes high for one clock cycle when a new VFAT payload is beginning;

• vfat: it is the VFAT bitstream;

• vfatPayload: it is high when VFAT payload data is streaming;

• evCounter: it is an 8 bit signal used for data synchronization;

• clock: the main 40.08 MHz TOTFed clock that drives all previous signals;

• clockFifo: 80.16 MHz clock signal to read the FIFO;

• rdAck: read acknowledge signal.

The outputs are:

• beginOfCluster: it goes high for one clock cycle when a new cluster begins. It is
synchronyzed with clock;

• data: the 16 bit output from the FIFO. It is synchronyzed with clockFifo.
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Figure 2.4: Block diagram of bitStat module.

A clusterFind block analyzes vfat when vfatPayload is high and assert beginOfCluster
and endOfCluster. These signals are asserted respectively when a cluster begins and when
it ends. Their duration is one clock cycle. To generate beginOfCluster and endOfCluster
signals, this module uses a Mealy FSM (Finite State Machine) with two states:

• IDLE: when no cluster have been found in the input bitstream;

• CLUSTER: while a cluster is streaming.

The transitions are:

• from IDLE to CLUSTER: when both vfat and vfatPayload are high; on this transition
beginOfCluster is set to high;

• from CLUSTER to IDLE: when at least one of vfat and vfatPayload is low; on this
transition endOfCluster is set to high.

In all other cases, the state stays the same and both beginOfCluster and endOfCluster are set
to low. The newEvent signal resets the FSM to the IDLE state.

The FSM transition chart is shown in Fig. 2.5.
A positionCounter block counts the number of clock cycles, starting from 0, every time

a new VFAT payload begins (newEvent goes high for one clock cycle).
When clusterFind asserts a beginOfCluster, the value of the positionCounter is latched

into the positionBuffer register. Meanwhile, sizeCounter starts counting from 1. When
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Figure 2.5: State transition chart of the FSM that generates beginOfCluster and
endOfCluster signals.

endOfCluster goes high, sizeCounter outputs size informations that are merged in a 16 bit
word with the cluster position stored in positionBuffer. This word is stored into the FIFO:
the most significant 8 bits are used for the size of the cluster, while the remaining 8 bits for
the position.

Moreover, every time a newEvent is asserted, evCounter is stored into the FIFO, marking
the beginning of a new event.

A FIFOManager block handles the FIFO read and write procedures. During the writing
procedures, it transfers the evCounter in the FIFO when newEvent is asserted and transfers
clusterData when a endOfCluster is received. Read-out procedures are more complex,
indeed some control word has to be added:

• an header with an identification number for the bitStat;

• a fifoSize with the number of word written into the FIFO;

• a trailer to end the read-out process.

It is worth noting that the cluster size can be a positive value different from 0 and less
than 128 (the VFAT payload is 128 bit long) and cluster position can be from 0 to 127. All
words beginning with 0xF or 0x0 can be used as control words:

• 0xFF has been chosen as the most significant part of the header, the remaining 8 bits
are used to identify the bitStat;

• 0xFE has been chosen as the most significant part of the fifoSize, the remaining 8 bits
are used to say how many words are stored in the FIFO;

• 0xFFFF is the trailer.

Moreover, as mentioned before, the evCounter is an 8 bit word. The fact that FIFO words
have 16 bits allows to set the 8 most significant bits to 0. In this way, it is possible to
discriminate between the evCounter and the cluster information. At the same time, it will
be possible to interpret evCounter either as a 8 bit or a 16 bit word without issues.
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To handle this read-out procedure a four states Mealy FSM has been implemented; its
states are:

• HEADER: data output is the header;

• SIZE: data output is the fifoSize;

• PAYLOAD: data output is a word popped from the FIFO;

• TRAILER: data output is the trailer.

The transitions are:

• from HEADER to SIZE: when the rdAck signal is high; on the transition the header
with the bitStat identification is set to the data output;

• from SIZE to PAYLOAD: when the rdAck signal is high and the FIFO is not empty;
on the transition the fifoSize is set to the data output;

• from SIZE to TRAILER: when the rdAck signal is high and the FIFO is empty; on the
transition the trailer is set to the data output;

• from PAYLOAD to PAYLOAD: when the rdAck signal is high and the FIFO is not
empty; on the transition a word is popped from the FIFO and set to the data output;

• from PAYLOAD to TRAILER: when the rdAck signal is high and the FIFO is empty;
on the transition the trailer is set to the data output;

• from TRAILER to HEADER: when the rdAck signal is high; on the transition the
header with the bitStat identification is set to the data output.

When the rdAck signal is low, the state remains the same and, in case the state is PAYLOAD,
no word is popped from the FIFO. The newEvent signal resets the FSM to the HEADER
state. It should be noted that if the FIFO is empty, i.e. read-out is done without acquiring
any event, the output data frame will contain only header, fifoSize (0xFE00) and trailer.

The FSM transition chart is shown in Fig. 2.6.

2.3.2 gohStat: cluster analysis for a single fiber

OptoRx receives VFAT data from up to twelve optical fibers and each fiber has sixteen
independent data sources (see section 1.4.3). It is usefull to create a block that analyzes
VFATs’ data carried by one fibers: if a fiber is not present or not enabled, the correspondent
block can be easily disabled.

The architecture of this block is shown in Fig. 2.7.
The inputs to the gohStat block are:

• vfat: it holds 16 VFAT bitstream;
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Figure 2.6: State transition chart of the FSM that manages reading procedure of
FIFOs.
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Figure 2.7: Block diagram of GohStat module.

• vfatPayload: it is high when VFAT payload data is streaming;

• newEvent: it goes high for one clock cycle when a new VFAT payload is beginning;

• enable: it enables planeStat block;

• clock: the main 40.08 MHz TOTFed clock that drives all previous signals;

• clockFifo: 80.16 MHz clock signal to read the FIFO;

• rdAck: read acknowledge signal;

• address: it is the address used by the multiplexer to read data from a bitStat.
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The outputs are:

• gohAccepted: it goes high when at least one plane has a number of cluster compatible
with the chosen range. It is synchronyzed with clock;

• data: the 16 bit signal controlled by the read-out FSM. It is synchronyzed with
clockFifo.

Each VFAT bitstream in the fiber is sent to a bitStat block, together with the vfatPayload
and newEvent signals.

To synchronize collected data, the eventCounter block counts the number of newEvent
signals received since the reset of the gohStat. The output of this block, evCounter, is used
by the bitStat block (see section 2.3.1).

The pourpose of the algorithm is to count the number of clusters per plane. Hence,
data from VFATs that belong to the same plane are analyzed by dedicated blocks, called
planeStat. Each plane has four VFATs and these are consecutive bitstreams inside the GOH
data frame (see section 1.4.4). Each fiber can transmit data from up to 4 planes. Indeed,
four planeStat blocks count clusters found in planes and assert an planeAccepted signal if
the number of cluster per plane is included in a given interval.

The architecture of planeStat block is shown in Fig. 2.8.

3

enable

planeStat

clock

newEvent
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It counts clusters 

how many '1' there 
are in the 4 input

LUT

4
planeAccepted

The output is the sum 
of all input values from 
newEvent; accepted is 
high when the sum is 
included between min 

and max

adder

enable
clock

newEvent

min max

Figure 2.8: Block diagram of planeStat module.

The inputs to the planeStat block are:

• beginOfCluster: beginOfCluster collected from four VFATs of the same plane;

• newEvent: it is high for one clock cycle when a new VFAT payload begins;

• enable: it enables planeStat block;

• clock: the main 40.08 MHz TOTFed clock that drives all previous signals;

Moreover, this block needs two parameters that define the acceptance interval for the
number of cluster per plane: min and max.

Its outputs is:
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• planeAccepted: it is high while the number of cluster found in the plane is greater or
equal than min and less or equal than max.

In more details, the planeStat block counts how many clusters have been found in the
four inputs using a LUT. Every clock cycle this value is added to the previous one and it is
compared with the given parameters. The planeAccepted is asserted accordingly to this last
operation.

The outputs of these four planeStat blocks are merged in one gohAccepted signal. In the
proposed implementation this signal is the logic OR of the planeAccepted signals, but more
advanced criteria can be implemented.

The sixteen bitStat outputs can not be read using separate outputs; to handle the
read-out procedure using a single 16 bit output, data, a multiplexer block has been designed.
When an address is written on the address input, the multiplexer internal logic connects
the rdAck input of the gohStat to the rdAck input of the corresponding bitStat block. Then,
also the data output of the appropriate bitStat block is connected to the data output of the
gohStat.

2.3.3 optoRxStat: cluster analysis for all the OptoRx

optoRxStat is the top level block that, once in the OptoRx firmware, manages the cluster
analysis for all the the OptoRx.

The architecture of the optoRxStat block is shown in Fig. 2.9.

The inputs to the optoRxStat block are:

• vfat: it holds 12 fibers streams;

• dataValid: it holds 12 data valid signal: one for each fiber;

• enable: it enables planeStat block;

• clear: it resets planeStat block;

• clock: the main 40.08 MHz TOTFed clock that drives all previous signals;

• clockFifo: 80.16 MHz clock signal to read the FIFO;

• rdAck: read acknowledge signal;

• address: it is the address used by the multiplexer to read data.

The output is:

• data: the 16 bit signal controlled by the read-out FSM. It is synchronyzed with
clockFifo.
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Figure 2.9: Block diagram of OptoRxStat module.

The optoRxStat block groups 12 gohStat objects, each one with a 16 bit output to read
the internal FIFO. The access to all these outputs would require 12 memory addresses
on the local bus of the TOTFed. To limit the memory space usage, optoRxStat has been
designed to use an indirect addressing memory access using an internal multiplexer that
manages the reading process, as seen for the gohStat block. When an address is written in
the address input, the requested data will be available in the data output.

The available addresses have been paged: the page with the most significant 8 bits
set to 0x00 is used to address gohStat and bitStat. The remaining 8 bits of the address are
divided into two 4 bit words: the most significant is used for the gohStat address (from 0x0
to 0xA) and the other one for the bitStat address inside the gohStat (from 0x0 to 0xB). As
an example, to read the FIFO of the third bitStat of the second gohStat the address to use
is: 0x0023. It is worth to note that the first word read by the bitStat data output contains
the bitStat identification, see section 2.3.1. This will allow a cross check of the reading
procedure.

An internal 16 bit register, called accepted GOHs, is used to merge all gohAccepted
signals to allow their simultaneous read-out. Each bit of this register will correspond to a
gohStat and the most significant 4 bits (gohStats are twelve) are set to 0. This register will
be readable from the data output when the address is set to 0xACFF.

Thanks to the indirect addressing schema used, data and address are using only two

37



2.3. IMPLEMENTATION IN THE OPTORX FIRMWARE

registers connected to the local bus of the TOTFed.
Inside the optoRxStat block, twelve gohStat blocks are instantiated. These blocks need

newEvent and vfatPayload signals that are generated by twelve independent Mealy FSMs.
The states of the FSMs are based on the VFAT data frame, see section 1.4.1:

• IDLE: the VFAT data are not streaming;

• HEADER: the VFAT header is streaming;

• PAYLOAD: the VFAT payload is streaming;

• TRAILER: the VFAT trailer is streaming.

The transitions are:

• from IDLE to HEADER: when the dv signal is high; on the transition an internal
counter is set to 0;

• from HEADER to HEADER: when the dv signal is high and the internal counter is
different from 46; on the transition the internal counter is incremented;

• from HEADER to PAYLOAD: when the dv signal is high and the internal counter
equals 46; on the transition the vfatPayload is set to high;

• from PAYLOAD to PAYLOAD: when the dv signal is high and the internal counter is
different from 174; on the transition the internal counter is incremented;

• from PAYLOAD to TRAILER: when the dv signal is high and the internal counter
equals 174; on the transition the vfatPayload is set to low;

When the dv signal is low, the state remains the same and the internal counter is not
incremented. The newEvent signal resets the FSM to the IDLE state. It should be noted that
the values of the counter that trigger the state transition are computed according to the
VFAT data frame.

The FSM transition chart is shown in Fig. 2.10.

dv = 1dv = 0

dv = 1 dv = 1 AND
count = 46

newEvent

dv = 0

IDLE PAYLOAD TRAILERHEADER
dv = 1 AND
count != 46

dv = 1 AND
count = 174

dv = 1 AND
count != 174

dv = 0

dv = 0

Figure 2.10: State transition chart of the FSM that generates newEvent and vfatPayload
signals.
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Chapter 3

Track recognition algorithms

When a charged particle interacts with the silicon planes of a Roman Pot detector it
creates a signal that is collected by the front-end electronics and is stored by the DAQ
system. Since the signal is subject to fluctuations, even for the same detector in the same
conditions, the stochastic nature of this process makes the recognition of the trail of signals,
called track, a complex task.

In this chapter two different approaches in recognizing tracks will be presented. The
first is fast and can work on a stream of data, but it can be applied only to a particular
typology of tracks (see section 3.2). The second proposal is based on a simplified Hough
transform and allows the detection of all tracks, but its computational complexity is higher
(see section 3.3).

The performance of these algorithms will be studied in chapter 4.

3.1 Tracks in Roman Pot detectors

In the TOTEM Roman Pot detectors, a track is a series of aligned hits in the silicon
planes. The planes are grouped into two projections, named u and v, that have to be
treated separately.

Thanks to the geometry of the experimental setup and to the LHC magnets configu-
ration, tracks of elastically scattered protons have longitudinal angles lower than 1µrad,
while strongly tilted tracks are probably due to noise or close-by beam-pipe interactions
and should be discarded. These good tracks will be called elastic tracks. It is possible to
choose a coordinate system in which an elastic track in the RP is seen as a vertical line in a
histogram. A possibility is to use the plane number, on both u and v projections, on the Y
axes and the strip number per plane as X coordinate, as shown in Fig. 3.1.

Because of the charge-sharing effects, the track recognition should consider clusters,
instead of hits, produced by the charged particle in RP detectors. Hence, the proposed
methods will start finding clusters with the algorithm described in chapter 2.
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Figure 3.1: Coordinate system for rod search algorithm

Furthermore, track recognition algorithms should work on a single projections: in any
case, tracks will be treated separately for u and v. A filtering algorithm based on track
reconstruction can be configured to be as inclusive as possible, to avoid loss of useful data;
for instance, an event could be accepted when a track is found either in u or v projections.
However, to compute the position of the track, it is necessary to have only one track in
both u and v projections, see section 1.3.3.

3.2 Histogram of the hits

It is possible to note that an elastic track is almost straight, and therefore made by a
collection of hits on different planes with almost the same strip number, as shown in Fig.
3.1. However, the planes inside the RP detector can be not perfectly aligned and the whole
detector can be not perfectly aligned with the beam. This misalignment explains the small
“displacement” in the strip hit by the particle from a plane to the next.

To highlight the difference between an elastic track and a non-elastic one, an histogram
of the total number of hits for all five planes in the same projection can be filled. Each bin
of the histogram corresponds to a strip (x axis) and its number of entries is the number of
planes with an hit in that strip (y axis).

A preliminary analysis of real data confirmed that, in the case of an elastic track,
the histogram has a large part of the entries in one single bin. In the opposite case, the
histogram corresponding to an oblique track has no bins filled with more than a single
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entry. Some examples are shown in Fig. 3.2(b) and Fig. 3.3(b).
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Figure 3.2: Example of an elastic track. In Fig. 3.2(a) is shown the hit distributions
for the five planes; In Fig. 3.2(b) is shown the histogram filled with hits acquired
by all five planes together. The histogram has a bin with 4 entries.
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Figure 3.3: Example of an non-elastic track. In Fig. 3.3(a) is shown the hit
distributions for the five planes; In Fig. 3.3(b) is shown the histogram filled with
hits acquired by all five planes together. The histogram has no bin with more than
one entry.

This analysis suggests that elastic tracks can be quickly found building such an
histogram and searching for bin entries above a threshold. As mentioned before, because
of the charge-sharing effects, the histogram should be filled with the position of the center
of mass of the clusters, instead of simple hit positions.
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It is also possible to account for the above mentioned misalignment problems by
re-binning the histogram. However, this introduces a further problem: a track could be
exactly on the edge between two consecutive bins; this case will result in two half filled
bins and maybe none of them will be above the threshold.

This problem can be avoided using a sort of dynamic binning. The histogram does
not have a fixed number of bins and their positions are not known a priori. All positions
without clusters will be skipped, while, if a cluster is found, a bin that begins in that
position will be created. The width of the bins can be configured, depending on the
misalignment between planes.

As well as in the previous case, if a bin has entries over a threshold, it is an indication
of an elastic track.

Some minor improvement can be also implemented. Instead of using the cluster size
to compute the cluster center of mass, it is possible to use the begin of the cluster to fill
the histogram. An additional modification might consist of using the total number of
hits per planes to assign a weight to the clusters. In this way the effects of noisy planes
are reduced. However, in a future hardware implementation, this last modification will
lead to a large usage of memory resources. Indeed, the computation has to wait until all
cluster have been found and - moreover - they need memory to be stored. In chapter 4 all
these algorithms will be tested on real data to understand if their recognition performance
justifies their resource cost.

3.2.1 The DynamicHistogram class

In more detail, the histogram is implemented as a struct, called SingleBinHisto, that
stores a vector1 of integer values. The struct constructor requires only one parameter:
the number of bins of the histogram2. It has been kept as simple as possible to achieve
the maximum speed performance. It should be noted that we have chosen to have an
histogram with bins only corresponding to positive values. The increment of the entries
corresponding to a given bin can be done using a method of SingleBinHisto.

A struct, called DynamicBin, is used to manage a single dynamic bin of the histogram.
Cycling through SingleBinHisto’s bins, when an entry is found, the corresponding strip
number and the number of entries are stored in a DynamicBin object. This object is
initialized with a parameter, called binWidth, that indicates the maximum width the
DynamicBin can have, or, in other words, the minimum separation between a DynamicBin
and the next. Moreover, DynamicBin has a method, called add, to increment its entries. It

1A vector is one of the container class templates in the standard library of the C++
programming language that implement storage of data elements.

2In TOTEM RP system, the number of bins is fixed and corresponds to the number of
strips in each silicon plane, that is 512.
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checks whether the bin includes a given position3 or not: if yes it increments entries and
returns true, otherwise it returns false.

A DynamicHistogram class takes care of collecting DynamicBin objects and to manage
them. It is initialized with two parameters and it has an internal counter. One parameter
is the binWidth and it is used to initialize DynamicBins. The other is used as a threshold
to say if a DynamicBin is filled enough to indicate a track. When a bin is filled above this
threshold, the internal counter is incremented.

The class has a method, called insert, that calls the above mentioned add method of the
last created DynamicBin to increment its entries if the bin position is compatible. Indeed,
if the add method returns true, the number of entries of the DynamicBin is incremented.
Otherwise, the number of entries of the DynamicBin is compared with the threshold; if it is
above the threshold, the internal counter is incremented.

Hence, the internal counter is incremented every time a track candidate is found.
This algorithm is showed in Fig. 3.4.

3.2.2 Track recognition

A steering class, TrackRecognition, is needed to start the cluster search, using the
algorithm described in chapter 2, and to compute the track recognition. This class uses an
OptoRxDataFrame class form the TOTEM DAQ library to access OptoRx data, as already
explained for the optoRxStat class in section 2.1.5. The TrackRecognition class manages
both SingleBinHisto and DynamicHistogram and, after the cluster research, takes care of
extracting cluster positions from corresponding bitStats to fill the SingleBinHisto and to
compute the number of track candidates using DynamicHistogram.

An important task of the TrackRecognition class is to associate bitStat objects to planes
using their position in the OptoRx frame (see section 1.4.3). Indeed, a method, named
setPlanes, creates a collection of pointers to bitStat objects grouped by planes of the same
projection and the same RP detector. This method needs two parameters to choose the RP
detector and the projection, u or v, on which to run the track recognition:

• configuration: the position of the chosen detector in the OptoRx frame;

• uProjection: true to choose the u projection; false to chose the v projection.

The track recognition itself is performed by the Compute method. It checks if the
collection created using setPlanes is not empty and, if it has not been already done, it runs
the cluster research for the whole OptoRx data frame. Then it starts the track recognition
in the indicated detector and returns how many tracks have been found. This method fills
the above described histogram using an object, a functor, implemented with an operator ()
that reads the information stored in the collection created by setPlanes.

3A position is included in a DynamicBin if posbin − posDynamicBin ≤ binWidth
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Figure 3.4: Flow chart of the dynamic binning algorithm.

In this way, the TrackRecognition class can be generalized using a template to choose
the functor object that fills the histogram.

TrackRecognition class has been implemented as a template and the parameter must
have an operator (). For the purpose of the track recognition, the template will be
specialized to the functor that will be used to fill the SingleBinHisto. This implementation
will allow to easily change the algorithm to fill the histogram, without modification of the
steering class.

To implement the described track recognition algorithm, the functor has to scan the
collection of bitStats and fill the histogram using the information in each bitStat.
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TrackRecognition needs two parameters for the configuration, that can be set directly at
the creation of the class:

• the DynamicBin maximum width;

• the threshold on the DynamicBin entries.

Performance and tuning of algorithm’s parameters will be discussed in chapter 4.

3.3 Simplified Hough transform

The Hough transform is a smart method first proposed by Hough in 1962 [19] to
improve and speed up track recognition in a bubble chambers. The Hough transform is
at the base of many rod-searching algorithms, very useful in image analysis, computer
vision and digital image processing.

The idea is to transform each point in the data, the source space with coordinate x and
y, in a line in a parameter space, with coordinate m and q. If the points of the source space lay
on a line, all lines in the parameter space will intersect in a point. The coordinates of this
point corresponds to the parameters of the line.

In more details, the equation which describes a straight line in the source space is:

y = mx + q (3.1)

This can be written in the parameter space as:

q = −xm + y (3.2)

Hence, there is a correspondence between points in the source space and lines in the
parameter space.

If two points (x1, y1) and (x2, y2) belong to the same line

y = Mx + Q (3.3)

the two Hough-transformed lines will intersect in the point (M,Q): Q = −x1M + y1

Q = −x2M + y2 M = −
y2−y1

x2−x1

Q = −
x2 y1−x1 y2

x2−x1

If different points of the same line are used, all the Hough-transformed lines will
intersect in the same point. All other points, e.g. due to noise, will be transformed in lines
which do not intersect in the same point, as shown in Fig. 3.5.
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(a) Source space. Blue points satisfy y = 1 + 3x; red triangles are random.
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Figure 3.5: If the points in the source space lay on a straight line (blue points in Fig.
3.5(a)), their Hough transform in the parameter space will show intersecting lines
(solid blue lines in Fig. 3.5(b)). If the points in the source space are randomly chosen
(red triangles in Fig. 3.5(a)), their Hough transform in the parameter space will show
lines that do not intersect in the same point (dashed red lines in Fig. 3.5(b)).
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If all the source points belong to the same line, a bi-dimensional histogram filled with
M and Q computed for each pair of intersecting lines in the parameter space will have
entries in only one bin. If some of the source points are due to noise, or the line is not
perfectly sharp, the histogram will show a cluster around a certain bin. The coordinates of
this cluster will give the parameters of a line; the smaller the cluster size the smaller the
errors on the parameters.

In a simplified way, it is possible to consider only pairs of points belonging to two
successive planes of the same projection. In the proposed coordinate system (Fig. 3.1), the
difference y2 − y1 always equals to 1. Defining

m̄ = |
1
M
| (3.4)

for each pair of points in the source space, m̄ = x2−x1
y2−y1

= x2 − x1 can be computed and an
histogram of m̄ can be easily filled. A peak in this histogram will suggest the presence of a
track.

Finally, it is possible to further simplify the algorithm. For some applications it could
be useless to know both parameters of the line. Indeed, avoiding the computation of q and
using only a mono-dimensional histogram of m it is possible to understand if there is at
least one track without knowing the exact number of tracks.

An improvement could be to consider not only adjacent planes but also interleaved
planes of the same projection; indeed, their distance y2 − y1 is 2 and the division by two is
easily done in an FPGA. However, this approach will increase the number of hit pairs to
be analyzed.

The complexity of this algorithm is o(n2) instead of o(n) like the method proposed in
section 3.2, where n is the number of clusters found.

3.3.1 Track recognition with a simplified Hough transform

The track recognition using the Hough transform is based on the searching of a peak
in an histogram. This is exactly the same procedure of the algorithm seen in section 3.2.
Thanks to the fact that the TrackRecognition class has been implemented as a template, see
section 3.2.2, it is possible to use the same template class, specialized to a custom functor
that implements the Hough transform.

This functor will cycle trough all pairs of clusters found in consecutive or interleaved
planes and will fill the histogram with the calculated m̄.

It should be noted that m̄ values are positive numbers included between 0 and 511; so,
the range of the histogram is exactly the same as the one used in the previous method.
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Chapter 4

Data Analysis

In chapter 2 an algorithm for cluster analysis has been proposed. This algorithm
has been implemented both via software, using C++, and in firmware, using the VHDL
language. Both implementations need to be tested to be sure that all and only actual
clusters are found.

In chapter 3, two different approach to the track recognition were proposed. Also these
algorithms have been implemented and their performances have to be benchmarked.

In this chapter these algorithms will be tested using real data and their results will be
compared with the off-line reconstructing software.

To investigate the possibility to reduce acquired data, the performance of the algorithms
for data reduction will be computed filtering at the level of a single RP detector, a single
OptoRx and for whole events.

4.1 Data set

To benchmark the performances of the proposed algorithms, a sub-set of the data
acquired by TOTEM during the year 2011 will be analyzed. The chosen sub-set is
representative of different run typologies; these typologies differ mainly for the luminosity
and for the optics used before near the Interaction Point.

A parameter to quickly understand the behavior of the optics is the β∗ that can be
seen as the focal length of an optical lens. Most of the time the LHC is configured to run
with a low β∗ optics, to achieve the highest luminosity possible; however, high β∗ runs are
important for TOTEM to study the elastic scattering. During TOTEM dedicated runs, an
high β∗ optics is used and, to have a lower pileup, the luminosity is lower than usual. From
the point of view of track recognition for the RP detectors, have a lower pileup means that
is easier to distinguish single tracks.

An other important parameter that drove the choice of the data set is the trigger
schema. In fact, TOTEM trigger system foresees the possibility to trigger on both T2 and
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RP detectors. Often, due to the topology of the detectors, an event triggered by T2 has no
tracks in RP detectors. Moreover, if the pileup is low, it is very likely that only a part of the
RP detectors will record tracks. For these reason data acquired with two different trigger
configuration have been included in the data set.

These remarks will be highlighted in section 4.2.
Some useful information about the chosen data set are available in table 4.1.

Run Date-time RP distance Trigger schema Energy per beam β∗

5608 18.05.2011 5.0 σ RP45 AND RP56 3.5 TeV 1.5m20 : 22 : 40

5657 29.06.2011 10.0 σ T2 AND 3.5 TeV 90.0m04 : 44 : 45 (RP45 OR RP56)

6945 20.10.2011 4.8 σ T2 AND BX AND 3.5 TeV 90.0m21 : 48 : 55 (RP45 AND RP56)

Table 4.1: Data sample used for tests and benchmarks.

4.2 Data analysis using the off-line software

The TOTEM off-line software, described in section 1.5, is used for track recognition
in RP detectors and for event reconstruction. For this reason, it is useful to compare the
performances of the proposed algorithms with the results of the off-line analysis.

The off-line software has been modified to extract, for each RP detector, the number of
found clusters and the angle of the recognized track, if any, in both u and v projections.
The selected data set has been analyzed using the customized version of the software.
Moreover, the percentage of RP detectors, OptoRxs and events with at least one track have
been computed.

The results of this analysis are summarized in table 4.2.

Run
Number of Total Percentage of Percentage of Percentage of
candidate number of RPs OptoRxs events

events tracks with tracks with tracks with tracks

5608 17646 38657 18.3 48.6 78.2
5657 17646 15929 7.5 22.2 36.6
6945 17604 15366 7.3 21.3 29.1

Table 4.2: Performance of the off-line software.

As expected, not all acquired events contains recognized tracks and the percentage of
events without tracks (in RP detectors) is lower for runs where the trigger includes T2
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(runs 5657 and 6945). Furthermore, it should be noted that, on average, tracks are found in
one quarter of the RP detectors.

It should be noted that, especially for runs with the trigger configured to include T2,
the percentage of the data from RPs that contains at least one usable track is very low. This
suggest that a good data reduction algorithm could produce a great improvement on the
DAQ performances (up to 10 times).

4.3 Cluster algorithm performance

To check the accuracy of the software cluster searching algorithm proposed in chapter
2, the first step has been a one to one comparison between found clusters and a small
subset of the raw data. Then, the results of the algorithm has been automatically compared
with the number of cluster found by the off-line software for all the above mentioned data
set. A 100% correspondence has been found.

After that the accuracy of the software implementation of the cluster searching
algorithm has been proved, the hardware implementation (see section 2.3) can be tested
comparing the results with the software implementation, without using the off-line
software.

4.3.1 Firmware place and route

The hardware oriented algorithm has been implemented in the firmware of the OptoRx.
Before to test the firmware on the OptoRx FPGA, the design has been simulated using

an ad hoc simulation library developed by the TOTEM DAQ group. This library provides
some powerful tools, developed in VHDL and System Verilog [20], to simulate the OptoRx
firmware as a black box. Indeed, it is possible to inject fibers signal and to use a simulated
local bus to configure the firmware and to read status register. Thanks to these tools, a sub
set of raw data has been used to inject data and simulate the cluster analysis. Then the
content of the FIFOs has been read using the simulated local bus and it has been compared
with the results of the software implementation, with a full correspondence.

After the preliminary test using the simulation, the firmware has been programmed
into the FPGA and tested using the RP test setup in the TOTEM laboratory. The data
acquisition software has been modified to collect, together with the acquired raw data, the
information stored into the bitStats’ FIFO. These information, after the acquisition, have
been used to check the consistency of the found clusters.

Finally, following the same procedure, the firmware has been tested using the RP
detectors installed at the Interaction Point during a dedicated data taking. Particular
attention was given to the trigger configuration. Indeed, the generation of a LV1A signal
concurrent with the reading process of the FIFOs could lead to a corruption of read data.
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Hence, the trigger has been prescaled to have a very slow (∼ 10 Hz) trigger rate. Also
in this case, a 100% correspondence has been found between the cluster found by the
firmware and that found by the software.

4.3.2 Cluster per plane filter performance

In section 2.2, a filter on the number of cluster per plane has been proposed. Its
performances have been benchmarked using the off-line software.

The filter can be configured with two parameters: the min and the max number of
cluster can have to be accepted. If more than two planes per RP are accepted, the whole
RP is accepted. A first stage is to set the max to a virtually infinite value 1 to reject only
empty RPs, i.e. RPs with at least four planes with no clusters for each projections.

Given the DAQ architecture, it is worth considering the percentage of empty RPs as
well as the percentage of empty OptoRxs and empty events. An empty OptoRx is an OptoRx
where all connected RPs are empty. In the same way, an empty event is an event where all
RPs are empty.

The performances of this filter are summarized in table 4.3.2.

Run
Number of Percentage of Percentage of Percentage of
candidate RPs OptoRxs events

events with clusters with clusters with clusters

5608 17646 50.0 89.2 100
5657 17646 10.1 25.1 40.8
6945 17604 9.7 24.9 32.0

Table 4.3: Performance of the filtering on Pots with at least 4 planes with no clusters
for each projections.

The run 5608 is a collection of events triggered only by the Roman Pot detectors; so, it
is very unlikely to find an event without clusters, but still it is possible to reject a relevant
percentage of OptoRxs. In the other two runs, for almost all events triggered by T2, Roman
Pot detectors have no clusters. Thus, the use of this filter could led to a clear optimization
of DAQ bandwidth and disk usage.

The other proposal was to reject also RP detectors with a number of clusters above a
certain threshold. In more details, a RP will be accepted if 0 < cl ≤ thcl for at least 2 planes
per projection, where cl is the number of cluster. For values of thcl greater than 4, the filter
is more conservative than the off-line software, in the sense that a detectors with 0 < cl ≤ 4
for at least 3 planes per projection is rejected by the off-line software.

1Virtually infinite, in this case, means bigger than 256 that is the maximum number of
clusters that can be found in a single plane (512 strips.
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The choice of thcl can be inferred from the histograms shown in Figs. 4.1, 4.2, 4.3, where
the percentage of accepted RP, OptoRxs and events is shown for different values of the
threshold. The results are compared with the one found by the off-line software. It is worth
noting that the off-line software has only one value corresponding to the configuration
currently used for the TOTEM data analysis.
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Figure 4.1: Percentage of accepted RP, OptoRxs and events. Red lines shows the
percentage of RP, OptoRxs and events where the off-line software found a track.
Data-set: run 5608.

On the base of the results shown in table 4.3.2 and in Figs. 4.1, 4.2, 4.3, it is possible to
state that such filter on the number of clusters per plane found is a very powerful tool to
reduce data and to improve the DAQ efficiency. Furthermore, this filter should be seen
as a zero suppression algorithm. Indeed, it doesn’t involves any patter recognition and,
depending only on two threshold, it is relatively easy to configure and debug. Finally, it
should be noted that, especially for low luminosity and high β∗ runs, only a few percent of
data is not filtered by the proposed method and rejected by the off-line track recognition.
For example, analyzing data from run 6945, only ∼ 2.5% of the RPs that have not been
filtered, have been rejected by the off-line track recognition. Because of the high luminosity,
for some typology of runs, a bigger percentage of RP, that do not contain reconstructible
tracks, is accepted.

This means that, for low luminosity runs, using more complex algorithms for track
recognition will not lead to a data reduction more than few percent better. However, it
would be interesting to investigate the performance of the proposed track recognition
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Figure 4.2: Percentage of accepted RP, OptoRxs and events. Red lines shows the
percentage of RP, OptoRxs and events where the off-line software found a track.
Data-set: run 5657.
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Figure 4.3: Percentage of accepted RP, OptoRxs and events. Red lines shows the
percentage of RP, OptoRxs and events where the off-line software found a track.
Data-set: run 6945.
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algorithms for future development of some high level trigger algorithms and for data
reduction during high luminosity runs.

4.4 Performances of the track recognition algo-
rithms

The configuration of the track recognition algorithms proposed in chapter 3 needs two
parameters. These parameters change the behavior of the track recognition and depends
on the application. Indeed, the algorithms can be tuned either to be more accurate, rejecting
a RP where a tracks is not perfectly recognizable, or to be more inclusive, rejecting only
data where is not possible to reconstruct a track.

In particular, these parameters are:

• Bin Width: the maximum width a dynamic bin can have;

• Threshold: the minimum number of entries in the same dynamic bin that indicates
the presence of a track.

A simplified view of the impact of the parameters on the algorithms is shown in Fig.
4.4.
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Figure 4.4: Simplified view of the impact of the parameters on the algorithms.
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To produce the following data analysis, both algorithms have been set to work using
the beginning of the cluster, ignoring their size, to search for tracks. Then, the same
algorithms have been tested using the center of mass of the clusters. Furthermore, the
off-line software is set to ignore all planes that have more than 4 clusters. Hence, this
choice has been adopted in the proposed algorithms too.

Track recognition algorithms have been run independently on each projection of each
RP detector. To benchmark them, some counter were used:

• True Positive: tracks recognized by the off-line and recognized by the algorithm;

• True Negative: tracks not recognized by the off-line and not recognized by the
algorithm;

• False Positive: tracks not recognized by the off-line, but recognized by the algorithm;

• False Negative: tracks recognized by the off-line, but not recognized by the algorithm.

To understand the filtering capability of the algorithm, the important parameter is
False Positive. If it is small, it means that only real2 tracks have been accepted. On the
other hand, to understand the efficiency of the algorithm, the important parameter is False
Negative. Indeed, False Negative counts real tracks that are not recognized.

False Positive and False Negative are shown in the following histograms, varying the
above discussed parameters.

4.4.1 Performances of the histogram based transform algo-
rithm

Comparing the following histograms, for instance between Fig. 4.6 with Fig. 4.7, it is
clear that the performances of track recognition are not affected by the choice of using the
begin of clusters or their centroid. This results can be explained by the fact that almost all
clusters that belongs to recognized tracks are small, as shown in Fig. 4.5.

2Recognized by the off-line software.
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Figure 4.5: Size of clusters found in all data set (red) and only in detectors where a
track has been recognized by the off-line software (blue). Data-set: run 5608.
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Figure 4.6: Performances of the histogram based track recognition algorithm, using
only the position of the begin of the clusters. Data-set: run 5608.
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Figure 4.7: Performances of the histogram based track recognition algorithm, using
the position of the centroid of the clusters. Data-set: run 5608.
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Figure 4.8: Performances of the histogram based track recognition algorithm, using
only the position of the begin of the clusters. Data-set: run 5657.
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Figure 4.9: Performances of the histogram based track recognition algorithm, using
the position of the centroid of the clusters. Data-set: run 5657.
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Figure 4.10: Performances of the histogram based track recognition algorithm,
using only the position of the begin of the clusters. Data-set: run 6945.
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Figure 4.11: Performances of the histogram based track recognition algorithm,
using the position of the centroid of the clusters. Data-set: run 6945.
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This algorithm is very powerful when tracks have small angles with the beam. Hence,
can be useful to benchmark the algorithm ignoring all tracks recognized by the off-line
software that have an angle bigger than 1 mrad in both u and v projections. This limit is big
enough to include all tracks due to elastic scattered protons (∼ 1µrad) even considering
alignment problems (∼ 1 mrad). At the same time, the limit of 1 mrad is small enough to
make tracks appear as hits with the same position in all RP planes.

With this limitation the number of False Negative is drastically lowered. This can be
seen comparing the histogram in Fig. 4.7(a), made using all tracks,.with the one in Fig.
4.12, made using only tracks with an angle lower than 1 mrad.
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Figure 4.12: Percentage of False Negatives using the histogram based track recogni-
tion algorithm, using the position of the centroid of the clusters. Only tracks with
angles less than 1 mrad in both u and v projections have been considered. Data-set:
run 5608.

4.4.2 Performances of the Hough transform algorithm

The Hough based algorithm is more inclusive than the histogram based one, i.e. a
lower number of False Negative. For instance this can be seen comparing the histogram in
Fig. 4.15(a) with the one in Fig. 4.8(a) or the histogram in Fig. 4.13(a) with the one in Fig.
4.6(a). Indeed, it is possible (parameters Bin Width = 5 and Threshold = 3, in the histogram
shown in Fig. 4.12) to not reject any track having only a ∼ 15% of False Positives.
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Figure 4.13: Performances of the Hough transform track recognition algorithm,
using only the position of the begin of the clusters. Data-set: run 5608.
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Figure 4.14: Performances of the Hough transform track recognition algorithm,
using the position of the centroid of the clusters. Data-set: run 5608.
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Figure 4.15: Performances of the Hough transform track recognition algorithm,
using only the position of the begin of the clusters. Data-set: run 5657.
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Figure 4.16: Performances of the Hough transform track recognition algorithm,
using the position of the centroid of the clusters. Data-set: run 5657.
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Figure 4.17: Performances of the Hough transform track recognition algorithm,
using only the position of the begin of the clusters. Data-set: run 6945.
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Figure 4.18: Performances of the Hough transform track recognition algorithm,
using the position of the centroid of the clusters. Data-set: run 6945.
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Conclusion

The TOTEM experiment at the LHC, thanks to the Roman Pot system, has measured the
elastic proton-proton cross-section at the energy of 7 TeV in the center of mass. Dedicated
runs with a custom developed optics allowed the measure of the elastic cross-section for
|t|-values down to 5 × 10−3 GeV2.

The current DAQ configuration transmits and stores on disk all data acquired by the
detectors without any compression or zero suppression. An analysis on real data showed
that a huge percentage (up to ∼ 93%) of the data transmitted by Roman Pot detectors is
rejected by the off-line track recognition software.

In chapter 2 a fast cluster searching algorithm has been proposed. This has been
also used to implement a filter on the number of cluster per RP plane. Indeed, a plane
without clusters is useless as well as a plane with too many clusters. This filter has been
proved to be able to reject up to the ∼ 97% of the RPs that will be rejected by the off-line
reconstruction, without rejecting any reconstructable data.

The proposed filter has been implemented in one of the FPGA of the front-end
electronics and it has been tested during a dedicated data taking. Its results have
been compared with the software implementation with a 100% correspondence. This
implementation can be used in the next future for an on-line data reduction without the
risk of rejecting reconstructable data.

In chapter 3, two track recognition algorithms were proposed. The first is based on
the fact that protons exiting from the Interaction Point have a small angle with the beam.
Hence, a track is a series of clusters with the same position for all planes of the same RP
detector, of the same projection. A peak in the histogram of the position of the cluster
for all the planes is a clear hint for the presence of a track. This method is fast and, in a
future hardware implementation, can be implemented to fill the histogram while data are
streaming.

The second track recognition algorithm is based on Hough transform, a powerful tool
widely used in pattern recognition. This algorithm is more accurate than the previous
one and it can be used also to detect track due to protons that are not exiting from the
Interaction Point, for instance to estimate the background. However, this method needs to
correlate the position of the cluster beetween planes and so, it is compulsory to search for
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clusters, store them and, finally, start the track recognition.
The implementation of a filter based on these track recognition algorithms could be a

good way to improve the DAQ efficiency for low β∗ runs, where the filter on the number
of cluster per plane is not enough. It should be noted, anyway, that the use of these
algorithms will require a systematic evaluation of their recognition efficiency. This is not
required for the filter on the number of clusters, because the cluster counting has been
proved to be 100% efficient.
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Appendix A

Real-time application for cluster
analysis

An useful application of the cluster searching algorithm is in the DQM (Data Quality
Monitor). During data taking it is important to have a real-time application capable
of monitoring data quality. Using the designed algorithm is possible to monitor the
distribution of the number of clusters per plane for each bunch crossing. Indeed, when
the number of clusters per plane is too high, bunch can be noisy and could be excluded
from the trigger scheme. In a different way, an high occurence of empty planes could be a
sympthom of some problem.

A standalone application has been developed using ROOT framework. This application
consists of two threads, one for the cluster analysis and the other to display the results. It is
possible to use the application connected to the stream of data while it is being acquired to
plot the distribution of empty and high multiplicity planes, as shown in Fig. A.1. Moreover,
it is possible to chose the threshold above which a plane is considered of high multiplicity
and the refresh interval.
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Figure A.1: The application uses the presented cluster analysis algorithm to
monitor in real-time the distribution of number of clusters.
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