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Abstract We extend one of the Hawking–Penrose singu-
larity theorems in general relativity to the case of some scalar-
tensor gravity theories in which the scalar field has a geomet-
rical character and space-time has the mathematical structure
of a Weyl integrable space-time. We adopt an invariant for-
malism, so that the extended version of the theorem does not
depend on a particular frame.

1 Introduction

Until the mid-1960s it was argued by some cosmologists
that the presence of space-time singularities in general rel-
ativistic cosmological models was not an essential prop-
erty of the model, being, in fact, a consequence of the high
degree of symmetries of the distribution of matter assumed
in these models [1]. Accordingly, it was believed that in
more realistic situations these singularities would disappear.
However, this scenario was to change drastically after a
series of general mathematical results, namely, the so-called
Hawking–Penrose singularity theorems, were proved [2–5].
As is widely known, these theorems use methods of global
analysis to show that, under the assumption of the validity of
general relativity and a reasonable physical behavior of mat-
ter, space-time singularities are general phenomena which
occur in gravitational collapse and cosmology (such as the
big bang) irrespective of the symmetry of the models.

The investigation of space-time singularities has touched
on some deep philosophical issues and it is the view taken by
many scientists that these issues seem to call for a concep-
tual revision of general relativity that at least take quantum
mechanics into account. As far as cosmological singularities
are concerned it seems that the current view held by most
cosmologists is that general relativity must break down at
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times less than the Planck time. In fact, there has been a fair
deal of work on classical and quantum new approaches to
gravity in which mechanisms that naturally prevent the for-
mation of a cosmological singularity are present. In fact, from
the standpoint of quantum mechanics the mere existence of
a cosmological singularity would be in contradiction with
Heisenberg’s uncertainty principle. In connection with this
point, many efforts have been made to understand what could
be called the quantum structure of space-time. Among the
numerous attempts to make progress in this rather difficult
issue, we would like to call attention for a recent proposal
which argues that the quantum structure of space-time may
even be related to the possibility of the space-time geome-
try possessing a non-Riemannian character [6]. On the other
hand, non-Riemannian geometries have appeared in physics
mainly as a way to modify Einstein’s gravity while keep-
ing the idea that the gravitational field is a manifestation of
the space-time geometry [7,8]. As is well known, one of the
earlier attempts in this direction was the Weyl unified field
theory [9–16].

Concerning space-time singularities, we know that modi-
fied theories of gravity call for a new mathematical treatment
of the problem, as the approach provided by Hawking and
Penrose is suitable only for general relativity. It is our pur-
pose here to pursue this question further in the light of some
modified gravity theories formulated in a particular kind of
space-time geometry, namely, the so-called Weyl integrable
space-time (WIST) [17–29].

The present article is organized as follows. In Sect. 2, we
outline the fundamental ideas of the geometry developed by
Weyl, which underlies his unified field theory. We then pro-
ceed to briefly review the main features of Weyl’s attempt
to unify gravity and electrodynamics in a single geometric
framework. In Sect. 3, we consider the extension of Ray-
chaudhuri equation from a Riemannian setting to the case
of a Weyl integrable space-time. This extension is invariant
under Weyl transformations. In Sect. 4, we work out a gen-
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eralization of one of the Hawking–Penrose singularity theo-
rems. Some applications of the formalism are given in Sect. 5.
These correspond to cosmological solutions of scalar-tensor
theories framed in a Weylian space-time. We conclude with
some remarks in Sect. 6.

2 Weyl geometry

Weyl geometry arises from the weakening of one of the postu-
lates of the Riemannian geometry, similarly as non-Euclidean
geometry was conveived after the fifth postulate of Euclidean
geometry was relaxed. The postulate we are referring to is
the so-called the Riemannian compatibility condition, which
states the following.

Postulate 2.1 Let M be a differentiable manifold endowed
with an affine connection ∇ and a metric tensor g. For any
vector fields U, V, W ∈ T (M), it is required that

V [g(U,W )] = g(∇VU,W ) + g(U,∇VW ). (1)

As is well known, this condition is equivalent to the
requirement that the covariant derivative of the metric vanish,
thereby implying that the length of a vector remain unaltered
by parallel transport.

On the other hand, in Riemannian geometry, it will also be
assumed that the connection ∇ be torsionless (or symmetric),
i.e., that for anyU, V ∈ T (M) the following condition holds:

∇VU − ∇UV = [V,U ]. (2)

From these two postulates we are led to the important Levi-
Civita theorem, which states that the affine connection is
entirely determined from the metric [30]. In a certain sense,
this theorem characterizes a Riemannian manifold.

In 1918 the mathematician Hermann Weyl generalized
the geometry of Riemann by introducing the possibility of
change in the length of a vector through parallel transport.
To implement this idea Weyl conceived the following new
compatibility condition.

Postulate 2.2 (Weyl) Let M be a differentiable manifold
endowedwith an affine connection∇, a metric tensor g and a
one-form field σ , called a Weyl field. It is said that ∇ is com-
patible (W-compatible) with g if for any vector fields U, V,

W ∈ T (M), we have

V [g(U,W )] = g(∇VU,W )+g(U,∇VW )+σ(V )g(U,W ).

(3)

Clearly, this represents a generalization of the Rieman-
nian compatibility condition. Naturally, if the one-form σ

vanishes, we reobtain (1). In this way, we have a generalized
version of the Levi-Civita theorem given by the following
proposition (see Ref. [31] for a proof):

Theorem 2.1 (Levi-Civita extended) Let M be a differen-
tiable manifold endowed with a metric g and a differentiable
one-form field σ defined on M, then there exists one and only
one affine connection ∇ such that: (i) ∇ is torsionless; (i i)
∇ is W-compatible with g.

It follows that in a coordinate basis {xa} one can express
the components of the affine connection completely in terms
of the components of g and σ :

�a
bc = {abc} − 1

2
gad [gdbσc + gdcσb − gbcσd ] (4)

where {abc} = 1
2g

ad [gdb,c + gdc,b − gbc,d ] denotes the
Christoffel symbols of second kind. The next proposition
gives a helpful insight on the geometrical meaning of the
Weyl parallel transport.

Corollary 2.1 Let M be a differentiable manifold with an
affine connection∇, a metric g and a Weyl field of one-forms
σ . If∇ is W-compatible, then for any smooth curve α = α(λ)

and any pair of two parallel vector fields V and U along α,

we have

d

dλ
g(V,U ) = σ

(
d

dλ

)
g(V,U ) (5)

where d
dλ

denotes the vector tangent to α.

By integrating the above equation along the curve α from
a point p0 = α(λ0), we get

g(V (λ),U (λ)) = g(V (λ0),U (λ0))e
∫ λ
λ0

σ( d
dρ

)dρ
. (6)

Let us setU = V and denote by L(λ) the length of the vector
V (λ) at an arbitrary point p = α(λ) of the curve. It is easy to
check that in a local coordinate system {xa} Eq. (5) reduces
to

dL

dλ
= σa

2

dxa

dλ
L . (7)

Consider now the set of all closed curves α : [a, b] ∈ R →
M , i.e., with α(a) = α(b). The equation

g(V (b),U (b)) = g(V (a),U (a))e
∫ b
a σ( d

dλ
)dλ (8)

defines a holonomy group. If we want the elements of this
group to correspond to an isometry, then we must require that

∮
σ

(
d

dλ

)
dλ = 0 (9)
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for any loop. From Stokes’ theorem it follows that σ must be
an exact form, that is, there exists a scalar function φ, such
that σ = dφ. In this case we have aWeyl integrable manifold.

Weyl manifolds are completely characterized by the set
(M, g, σ ), which will be called a Weyl frame. Let us remark
that the Weyl compatibility condition (5) remains unchanged
when we go to another Weyl frame (M, g, σ ) by carrying out
the following simultaneous transformations in g and σ :

ḡ = e f g, (10)

σ̄ = σ + d f, (11)

where f is an arbitrary scalar function defined on M . The
conformal map ( 10) and thegauge transformation (11) define
classes of equivalences in the set of Weyl frames. It is impor-
tant to mention that the discovery that the compatibility con-
dition (5) is invariant under this group of transformations was
essential to Weyl’s attempt at unifying gravity and electro-
magnetism, extending the concept of space-time to that of
a collection of manifolds equipped with a conformal struc-
ture, leading to the notion that space-time might be viewed
as a class [g] of conformally equivalent Lorentzian metrics
[9–13,15,16].

3 Weyl integrable space-time

We now consider the particular case of a WIST, where σ =
dφ. As already mentioned, the set (M, g, φ) consisting of a
differentiable manifold M endowed with a metric g and a
Weyl scalar field φ will be referred to as a Weyl frame. In this
case (11) becomes

φ = φ + f. (12)

If we set f = −φ in the above equation, we get φ = 0. We
refer to the set (M, g = e− f g, φ = 0) as the Riemann frame,
because in this frame the manifold becomes Riemannian. On
the other hand, it can easily be verified that Eq. (4) follows
directly from ∇αgμν = 0. This result has interesting and use-
ful consequences. In fact, the metric γ = e−φg, defined for
any frame (M, g, φ), is invariant under the Weyl transforma-
tions (10) and (11) any geometric quantity built exclusively
with γ is invariant. More generally, geometric objects such
as the components of the curvature tensor Rα

βμν , the compo-

nents of the Ricci tensor Rμν , the scalar eφR are invariant
under the Weyl transformations (10) and (11).

It is important to note that because the Weyl transforma-
tions (10) and (11) define an equivalence relation between
frames (M, g, φ) it seems more appropriate to look into the
equivalence class of such frames rather than on a particular
frame. In other words, a Weyl manifold should be regarded

as a frame (M, g, φ) that is only defined “up to a Weyl trans-
formation”. In this way, when dealing with a certain Weyl
manifold we choose a particular frame in the equivalence
class and consider that only geometric entities defined in
that frame which are invariant are of interest, since they can
be regarded as representative of the whole class. From this
point of view, it is more natural to redefine some Riemannian
concepts to meet the requirements of invariance. This proce-
dure is analogous to the one adopted in conformal geometry,
a branch of geometry, in which the geometric objects of inter-
est are those invariant under conformal transformation, such
as, say, the angle between two directions [32]. Accordingly,
one should naturally generalize the definition of all invari-
ant integrals when dealing with the integration of exterior
forms. For example, the Riemannian q-dimensional volume
form defined as � = √−gdx1 ∧ · · · ∧ dxq is not invariant
under Weyl transformations, hence it should be replaced by
� = √−γ e− q

2 φdx1 ∧ · · · ∧ dxq , and so on.1 Likewise, in a
Weyl integrable manifold it is more natural to define the con-
cept of “length of a curve” in an invariant way. It follows that
our familiar notion of proper time as the arc length of world-
lines in four-dimensional Lorentzian space-time should be
modified. Because of this, we shall redefine the proper time
�τ measured by a clock moving along a parametrized time-
like curve xμ = xμ(λ) between xμ(a) and xμ(b), in such
a way, that �τ is the same in all frames. This suggests the
following definition:

�τ =
∫ b

a

(
gμν

dxμ

dλ

dxν

dλ

) 1
2

dλ

=
∫ b

a
e− φ

2

(
gμν

dxμ

dλ

dxν

dλ

) 1
2

dλ. (13)

It must be noted that the above expression can also be
obtained from the special relativistic definition of proper time
if we adopt the prescription ημν → e−φgμν. It is clear that
the right-hand side of this equation is invariant under Weyl
transformations and that, in the Riemann frame, it reduces to
the definition of proper time in general relativity. We, there-
fore, take �τ , as given above, as the extension to an arbitrary
Weyl frame of general relativistic clock hypothesis, i.e., the
assumption that �τ measures the proper time measured by
a clock attached to the particle.

It is now easy to see that the extremization of the functional
(13) leads to the equations

d2xμ

dλ2 +
({

μ
αβ

}
− 1

2
gμν(gανφ,β + gβνφ,α − gαβφ ,ν)

)

×dxα

dλ

dxβ

dλ
= 0, (14)

1 Note that g in the expression
√−g denotes the determinant of gμν .
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where
{

μ
αβ

}
designates the Christoffel symbols calculated

with gμν . Recall that in the derivation of the above equations
the parameter λ must be chosen such that

e−φgαβ

dxα

dλ

dxβ

dλ
= K = const (15)

along the curve, which, up to an affine transformation, per-
mits us to identify λ with the proper time τ . Surely, these
equations are exactly those that yield the affine geodesics in
a Weyl integrable space-time, since they can be rewritten as

d2xμ

dτ 2 + �
μ
αβ

dxα

dτ

dxβ

dτ
= 0, (16)

where �
μ
αβ =

{
μ
αβ

}
− 1

2g
μν(gανφ,β + gβνφ,α − gαβφ ,ν),

according to (4), are identified with the components of the
Weyl connection. Thus the extension of the geodesic postu-
late by requiring that the functional (13) be an extremum is
equivalent to assuming that the particle motion must follow
affine geodesics defined by the Weyl connection �

μ
αβ . Let us

note that, as a consequence of the Weyl compatibility condi-
tion (3) between the connection and the metric, Eq. (15) holds
automatically along any affine geodesic determined by (16).
Since both the connection components �

μ
αβ and the proper

time τ are invariant when we switch from one Weyl frame to
the other, Eq. (16) are invariant under Weyl transformations.

As is well known, the geodesic postulate is not only con-
cerned with the motion of particles, but it also determines
the propagation of light rays in space-time. On the other
hand, since the paths of light rays are null curves, one cannot
use the proper time as a parameter to describe these curves.
Thus light rays are supposed to follow null affine geodesics,
which cannot be defined in terms of the functional (13), but,
instead, they must be characterized by their behavior with
respect to parallel transport. We naturally extend this pos-
tulate by simply assuming that light rays follow Weyl null
affine geodesics.

4 The Raychaudhuri equation

The Raychaudhuri equation played a fundamental role in the
derivation of the Hawking–Penrose singularity theorems. In
the derivation, however, it is assumed right from the begin-
ning that the geometry underlying the space-time is Rieman-
nian. In this section, we investigate the extension of this equa-
tion to the case of a Weyl integrable space-time.

Let us first remark that the extension of the geodesic pos-
tulate to WIST assumes that the particle motion must follow
Weyl time-like geodesics. In the following we shall consider
a smooth congruence � of time-like geodesics corresponding
to the worldlines of a class of observers, parametrized by the

invariant proper time τ defined in (13). Hence, the tangents to
the congruence generate a tangent vector field V normalized
to unit length. In order to keep the formalism invariant under
Weyl transformations we shall choose the affine parameter of
the congruence as the Weyl invariant arc length, i.e., we nor-
malize V with respect to the invariant metric γμν = e−φgμν ,

γ (V (τ ), V (τ )) = 1. (17)

Therefore, in a local coordinate system, a geodesic curve
described by xμ(τ) satisfiesVμ∇μV α = 0, whereV α = dxα

dτ

and we have the affine geodesics in a Weyl integrable space-
time shown in (16). Furthermore, once we have normalized
the tangent vector field with the invariant metric γμν , we
obtain

Vμ∇αV
μ = 0 = V ν∇αVν, (18)

since ∇αγμν = 0.
Let us now consider, at some point p of M , the hypersur-

face � orthogonal to the vector field V . As in the standard
procedure, we define the operator of projection � onto the
hypersurface � as

�μν = γμν − VμVν . (19)

As is well known, �μν represents to the first fundamental
form of the hypersurface induced by the metric γ and its role
is to project any vector of TpM at p onto Tp�, the tangent
space to the submanifold �.2

We proceed with the derivation of the Raychaudhuri equa-
tion in this new setting. We first need to consider a smooth
one-parameter subfamily αs(τ ) of geodesics in the congru-
ence of V and then define a deviation vector η that represents
an infinitesimal spatial displacement from a given geodesic
αo(τ ) to a neighboring geodesic in this subfamily. Once we
have been given η in �, we define the vector field η along this
subfamily by Lie dragging it along V , that is, by requiring
that

ŁV (η) = 0. (20)

From the definition of Lie derivative and the fact that the
connection ∇ is assumed to be torsionless we are led to the
following equation:

Vμ∇μηα = ημ∇μV
α, (21)

2 Note that we are using the invariant metric γ in order to ensure
a invariant projection tensor. Accordingly, the operation of raising and
lowering tensorial indices must be always carried out with γ . This guar-
antees that the duality between covariant and contravariant vectors is
not modified by Weyl transformations.
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which shows how the deviation vector changes along the
congruence. An important role played in the investigation of
the behavior of neighboring geodesics as we go along the
congruence � is played by the so-called deformation tensor
Qμν , defined as

Qμν = ∇νVμ. (22)

In terms of Qμν we can rewrite (21) as

Vμ∇μηα ≡ Qα
μημ, (23)

which clearly means that the deformation tensor measures the
failure of ημ to be parallel transported [33]. Furthermore, it is
easy to see that this tensor is purely spatial, since QμνVμ =
0 = QμνV ν . Thus, Qμν is a tensor defined in the subspace
of the tangent space perpendicular to V . Finally, in order to
have a physical interpretation of some kinematical aspects of
the congruence �, we can decompose Qμν in its irreducible
parts:

Qμν ≡ 1

3
��μν + σμν + ωμν, (24)

where the parameters �, σμν , and ωμν are known, respec-
tively, as the expansion, shear and vorticity of the congruence
(for instance, Ref. [33]). From the above equation we have

� = �μνQμν, (25)

σμν = Q(μν) − 1

3
��μν, (26)

ωμν = Q[μν]. (27)

It is easy to see that in the case where the congruence is
locally orthogonal to the hypersurface �, we have ωμν = 0.

We are now particularly interested in the behavior of �,
which measures the expansion of the congruence and can tell
us about the existence of conjugated points. Thus, in order
to obtain the Raychaudhuri equation, we need to know the
rate of change of � along the congruence. Therefore, since,
by definition, � = ∇αV α , we must compute Vμ∇μ� =
Vμ∇μ[∇αV α]. On the other hand, from the definition of the
curvature tensor, we have

∇β∇νV
μ − ∇ν∇βV

μ = Rμ
λνβV

λ (28)

where

Rμ
λνβ = ∂β�

μ
λν − ∂ν�

μ
λβ + �

ρ
λν�

μ
ρβ − �

ρ
λβ�μ

ρν, (29)

one can readily obtain

Vμ∇μ� = −1

3
�2 − 2(σ 2 − ω2) + RμνV

μV ν, (30)

where we denote σ 2 = σμνσ
μν , ω2 = ωμνω

μν , and the term
RμνVμV ν is usually referred to as the Raychaudhuri scalar.
Setting �̇ = Vμ∇μ�, we can write (30) in the following
form, known as the Raychaudhuri equation:

�̇ + 1

3
�2 + 2(σ 2 − ω2) = RμνV

μV ν . (31)

It is worth noting that (31) has the same form as in the case of
a Riemannian space-time, although it must be recalled that
the Ricci tensor is built with the Weylian connection. In fact,
this is not surprising as we have redefined the proper time in
an invariant way, using the invariant metric γμν = e−φgμν .
In the next section, we shall analyze the conditions that lead
to singularities in the space-time.

5 Extending the singularity theorem

Because of the form of the Raychaudhuri equation takes in
a Weyl integrable space-time, the description of conjugate
points is the same as in Riemannian geometry. Thus, we
have the following statement: if θ0 = θ(τ0) < 0 for some
τ = τ0, RμνVμV ν ≤ 0, then in a finite invariant proper time
τ ≤ 3/|θ0|, the congruence will develop a conjugate point
θ → −∞. As a matter of fact, the extension of any the-
orem from Riemannian geometry to a Weyl integrable can
be trivially carried out by simpling considering the invariant
metric γ = e−φg. For instance, as we have already men-
tioned the extremization of the functional (13) leads directly
to the Weylian geodesics. On the other hand, results coming
from differential topology and concerning the causal struc-
ture of space-time that are valid in a Riemannian space-time
are also valid in a Weyl integrable space-time since conformal
transformations do not affect the light-cone structure nor the
manifold orientability. Indeed, the proof of one of the most
important results we are going to enunciate now, namely, the
generalized Jacobi theorem, proceeds along the same lines
of reasoning employed in the Riemannian case, where we
merely replace g by the invariant metric γ = e−φg [33].

Theorem 5.1 (Jacobi) Let γ : [0, 1] → M a differential
time-like curve connecting points p, q ∈ M. Then a nec-
essary and sufficient condition for γ to locally maximize the
invariant arc length between p and q is that γ be a Weyl
geodesic without conjugate points between p and q.

Note the relation between the Raychaudhuri scalar �

and the extrinsic curvature of the submanifold orthogonal
to geodesic congruence, which is represented by the mixed
tensor Qμ

ν = �
μ
α�

β
ν∇βV α . For the case of a congruence of

geodesics orthogonal to hypersurface � and parameterized
by the invariant arc length we have Qμ

ν = ∇νVμ. Thus, the
trace of Qμ

ν is equal to �, i.e., Q = Qα
α = �. Now we are

ready to prove the following proposition.
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Theorem 5.2 Let (M, g, φ) be a globally hyperbolic
Weylian space-time with RμνVμV ν ≤ 0 for all time-like
vectors V . Suppose there exists a space-like Cauchy sur-
face � such that the trace of its extrinsic curvature (for the
orthonormal congruence of past directed geodesics) satisfies
B ≤ C < 0 over thewhole surface, B andC being constants.
Then no past directed time-like curve coming from � can
have an invariant arc length greater than 3/|C |. In particular,
all past directed time-like geodesics are incomplete.

Proof Let us prove this theorem by contradiction. Suppose
there exists a time-like curve λ = λ(τ) coming from �

whose value of the invariant arc length τ at some point p
∈ λ is greater than 3/|C |. It is well known that as the set
of curves joining two points in a globally hyperbolic mani-
fold is compact, the invariant arc length function must have a
maximum value for a given curve. Then this curve must be a
Weyl geodesic. Therefore, there must be a geodesic γ (with
invariant arc length greater than 3/|C |) joining p to �. This
means there are no conjugated points between p and �. But,
from Raychaudhuri’s inequality, we know that γ must have
conjugated points between p and �, which is a contradiction.
We then conclude that the original curve λ cannot exist. 
�

In the case of general relativity where the space-time math-
ematical structure is that of Riemannian geometry, which is
a special case of Weyl geometry when φ is a constant of
motion, the geometric condition

RμνV
μV ν ≤ 0 (32)

is equivalent to the so-called strong energy condition

TμνV
μν − T/2 ≥ 0, (33)

and requiring that Q < 0 is equivalent to assuming that in
the course of the cosmic evolution the Universe underwent
an expansion period, which seems to be a rather reasonable
assumption. In view of the above, this leads to the conclusion
that the Universe, as modeled by GR, must necessarily have
had a beginning starting from a singular state. Let us now
consider some different scenarios offered by two alternative
gravitational theories, namely, the Novello–Oliveira–Salim–
Elbaz’s theory (N) [17,34] and a recent geometrical approach
to scalar-tensor theory (GST), both inspired by the idea that
space-time can be described by Weyl integrable geometry
[35].

5.1 Novello’s theory

Novello’s theory starts with the action

S =
∫

d4x
√−g{R − 2ξφ,μφ,μ + e−2φLm}, (34)

where R denotes the Weylian scalar curvature, φ represents
the Weyl scalar field, ξ is a dimensionless parameter, while
Lm stands for the Lagrangian of the matter fields. The form of
Lm is determined from the corresponding Lagrangian in spe-
cial relativity by replacing the ordinary derivatives by covari-
ant derivatives with respect to the Weyl connection. The field
equations are given by

Rμν − 1

2
gμν = −∇μφ,ν

+(2ξ − 1)φ,μφ,ν − ξφ,αφ,αgμν − e−φTμν, (35)

∇αφ,α + 2φ,αφ,α = − 1

2λ
e−φT, (36)

where we have set λ = 3
2 − 2ξ.

From the above equations it is not difficult to verify that

RμνV
μV ν = −d2φ

ds̄2 + (2ξ − 1)

(
dφ

ds̄

)2

−e−φ

(
TμνV

μV ν − 1

2
|V |2T + 1

4λ
|V |2T

)
.

(37)

Clearly, in this theory (32) does not imply the violation of the
strong energy condition (33), but rather we have the following
situation. Consider the conditions below:

d2φ

ds̄2 ≡ φ̈ ≥ 0, (38)

2ξ − 1 ≤ 0, (39)

TμνV
μV ν − 1

2
|V |2T + 1

4λ
|V |2T ≥ 0. (40)

If any one of these conditions is violated, then the solution
may correspond to a non-singular space-time. Consider, as
an example, the vacuum solution of the field equations (35)
and (36) obtained in Ref. [34]. By assuming homogeneity
and isotropy we can write

ds2 = dt2 − a2(t)

(
dr2

1 − κr2 + r2d�2
)

, (41)

φ,α = φ,0δ
0
α

.= φ̇δ0
α. (42)

This leads to the equations

ȧ2 + κ + (4ξ − 3)

6
(φ̇a)2 = 0, (43)

2aä + ȧ2 + κ − 4ξ − 3

4
(φ̇a)2 = 0, (44)

(a3φ̇),0 = 0. (45)

By integrating the last of these equations we get φ̇ = ζa−3,
where ζ is a constant. Now, if 4ξ − 3 > 0, it follows that

ȧ2(t) = 1 −
[

a0

a(t)

]4

, (46)
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with (a0)
4 = (

4ξ−3
12 )ζ 2, thus implying that a(t) ≥ a0. The

model describes a non-singular bouncing universe, a scenario
in which after undergoing a period of contraction, dominated
by the scalar field, the universe reaches a minimum value,
and then starts to expand, at an inflationary rate, until the
radiation dominates over the scalar field and the scale factor
begins to follow the standard cosmic evolution [34]. Clearly,
the non-singular behavior of the model is a consequence of
the fact that the condition ξ ≤ 1/2 is violated. In order to
display the bouncing character of this model, it is convenient
to solve (46) in terms of the conformal time η, defined as
dη = dt/a(t). It can be shown that the scale factor and the
scalar field are given, respectively, by

a(η) = a0
√

cosh 2(η − η0), (47)

φ(η) = ζ

2a2
0

arccos [cosh 2(η − η0)]
−1 . (48)

5.2 Geometrical scalar-tensor theory

The geometrical approach to scalar-tensor theory starts with
the Brans–Dicke action

S =
∫

d4x
√−ge−φ[R + ωφ,αφ,α + k∗e−φLm(e−φg)],

(49)

where φ is assumed a priori to be a geometrical field, i.e.,
an intrinsic part of the space-time geometry, ω is a dimen-
sionless parameter and k∗ = 8π

c4 . By applying the Palatini
variational method, one obtains the Weyl integral compati-
bility condition [35],

∇αgμν = gμνφ,α. (50)

Naturally, the action (49) can easily be extended to accom-
modate a scalar potential V(φ) and to allow for a functional
dependence of ω on φ, thus leading to [36]

S =
∫

d4x
√−g{e−φ[R + ω(φ)gμνφ,μφ,ν]

−V(φ) + κ∗e−2φLm}. (51)

The field equations obtained from (49) are given by

Rμν − 1

2
gμνR = ω(φ)

(
1

2
gμνφ,αφ,α − φ,μφ,ν

)

−1

2
eφgμνV(φ) − κ∗Tμν, (52)

�φ = −
(

1 + 1

2ω

dω

dφ

)
φ,αφ,α − eφ

ω

(
1

2

dV
dφ

+ V
)

, (53)

where � denotes the d’Alembertian operator calculated with
the Weyl connection.

By taking into account (52) one easily obtains

RμνV
μV ν ≡ −κ∗

(
TμνV

μV ν − 1

2
|V |2T

)

−ω(φ)φ̇2 + |V |2eφV(φ). (54)

As we can see, here again the (32) does not require the viola-
tion of the strong energy condition (33). Thus, if we assume
that (33) holds, then any space-time described by these equa-
tions will satisfy RμνVμV ν ≤ 0, as long as

ω(φ)φ̇2 − eφ |V |2V(φ) ≥ 0. (55)

We conclude that in this case the singularity theorem applies.
On the other hand, if (55) is violated, then the solution may
correspond to a non-singular space-time.

In the following let us consider some solutions to (52, 53),
for some choices of the potential V(φ) in the case ω(φ) =
constant and Tμν = 0. These solutions correspond to homo-
geneous and isotropic models in GST theory and are obtained
in the Riemann frame (M, g = e− f g, φ = 0), in which case
|V |2 = eφ . If we take the line element written as in (42), then
the field equations (52) reduce to

3
ȧ2

a2 + 3
ε

a2 = ω

2
φ̇2 + e2φ

2
V(φ), (56)

2
ä

a
+

(
ȧ

a

)2

+ ε

a2 = −ω

2
φ̇2 + e2φ

2
V(φ), (57)

while (53) gives

φ̈ + 3
ȧ

a
φ̇ = −e2φ

ω

(
V(φ) + 1

2

dV
dφ

)
, (58)

where ε = 0,±1, according to the curvature of the spatial
section.3

Solutions to Eqs. (56)–(58) with flat spatial section ε = 0
were obtained for the following choices of the scalar poten-
tial: e−2φ�, e−(2+λ)φVo, e−2φ(mφ2 +�), and 2λe−2φ(φ2 +
2ω/3)2, where �, Vo, λ, and m are constants. These, in the
Riemann frame, correspond to the cosmological constant,
the dilaton field, the massive scalar field, and a field with
a quartic interaction. These three cases are displayed in the
tables below, where the presence of a singular behavior is
determined according to whether or not (55) holds (Table 1).

3 It is interesting to note here that from the above we can obtain the
following equation:

Ḣ = −ω

2
φ̇2 + ε

a2 . (59)

This equation might be useful to set the possible values of ω.
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Table 1 The other parameters
{Vo, λ,m,�, and φo} are
constants

Potential Solution to φ(t) Where

e−2φ� φ(t) = φo ±
√

2
3|ω| arctan

[
sinh

(√
6�
2 (t − t0)

)]
ω < 0 and � > 0

e−(λ+2)φVo φ(t) = 2
λ

ln
(
Hoλ

2

2ω
t + e

λ
2 φo

)
Ho = ±

√
ωVo

6ω−λ2

e−2φ(mφ2 + �) φ(t) = φo − 2α
ω
t α = ±

√
−ω�

4

e−2φ2λ(φ2 − 2/3ω)2 φ(t) = φo exp
(− 4A

ω
t
)

A = ±
√

λ
3

Table 2 The parameters are the
same as in Table 1 and ao is also
a constant

Potential Solution to a(t) Singularity in finite time

e−2φ� a(t) = a0 cosh
[√

6�
2 (t − t0)

]1/3
None

e−(λ+2)φVo a(t) = ao
[

λ2Ho
2ω

e− λ
2 φo t + 1

]2ω/λ2

Singular if ω > λ2/6

e−2φ(mφ2 + �) a(t) = ao exp
[
αt

(
φo − α

ω
t
)]

Non-singular if ω < 0

e−2φ2λ
(
φ2 − 2

3ω

)2
a(t) = ao exp

[
−ωφ2

o
8 exp

(− 8A
ω
t − 1

) + 2
3ω

At
]

Singular if ω > 0

6 Final remarks

The Hawking–Penrose singularity theorems are a direct con-
sequence of Einstein’s theory of gravity. Given the important
role they have played in our understanding of the Universe, as
modeled by general relativity, it is also of interest to find the
analogous of these theorems in alternative gravity theories.
Singularity theorems and energy conditions have been stud-
ied in connection with Brans–Dicke theory, perhaps the most
popular scalar-tensor gravity theories. However, their mean-
ing remains still controversial due to the question of whether
or not the Einstein frame and the Jordan frame are physically
equivalent [37,38]. In the present geometrical approach, this
controversy does not arise, as the physical entities defined
in the theory are naturally invariant under frame transforma-
tions [39–42] (Table 2).

Finally, it has been shown that Weyl integral space-time
seems to be the natural geometrical scenario that arises in
the context of scalar-tensor theories, at least, whenever one
has a theory that assumes a non-minimal coupling of the
scalar field to the Ricci curvature [35]. The basic principle
which underlies the determination of the space-time geom-
etry would be, in this case, the adoption of the Palatini
variational principle, which has played an important role
in recently proposed modified theories of gravity [43]. The
investigation of the behavior of space-time singularities in
this new framework was one of our main motivations to write
the present paper.

Acknowledgments The authors thanks CNPq/CAPES for financial
support. I. P. Lobo is supported by the CAPES-ICRANet Program (BEX
14632/13-6).

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. E.M. Lifshitz, V.V. Sudakov, I.M. Khalatinikov, Sov. Phys. JETP
13, 1298 (1961)

2. R. Penrose, Phys. Rev. Lett. 14, 57–59 (1965)
3. S.W. Hawking, R. Penrose, Proc. R. Soc. Lond. A 314, 529 (1970)
4. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-

Time (Cambridge University Press, Cambridge, 1973)
5. J.M.M. Senovilla, D. Garfinkle, Class. Quantum Gravity 32,

124008 (2015)
6. M. Novello, J.M. Salim, F.T. Falciano, Int. J. Geom. Methods Mod.

Phys. 8, 87–98 (2011)
7. H.F.M. Gönner, Living Rev. Relativ. 7, 2 (2004)
8. H.F.M. Gönner, Living Rev. Relativ. 17, 5 (2014)
9. H. Weyl, Sitzungesber Deutsch. Akad. Wiss. Berl. 465 (1918)

10. H. Weyl, Space, Time, Matter (Dover, New York, 1952)
11. A nice account of Weyl’s ideas as well as the refutation of his

gravitational theory may be found in W. Pauli, Theory of Relativity
(Dover, New York, 1981)

12. L. O’Raiefeartaigh, N. Straumann, Rev. Mod. Phys. 72, 1 (2000)
13. N. Rosen, Found. Phys.12 , 213 (1982)
14. For a more formal mathematical treatment, see G.B. Folland, J.

Differ. Geom. 4, 145 (1970)
15. For a comprehensive review on Weyl geometry see E. Scholz.

arXiv:1111.3220 [math.HO]
16. E. Scholz. arXiv:1206.1559
17. M. Novello, H. Heintzmann, Phys. Lett. A 98, 10 (1983)
18. For gravitational theories in general formulated in WIST and

related topics, see K.A. Bronnikov, Yu.M. Konstantinov, V.N. Mel-
nikov, Graviy. Cosmol. 1, 60 (1995)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1111.3220
http://arxiv.org/abs/1206.1559


Eur. Phys. J. C (2015) 75 :448 Page 9 of 9 448

19. J.M. Salim, S.L. Sautï, Class. Quantum Graity 13, 353 (1996)
20. H.P. de Oliveira, J.M. Salim, S.L. Sautï, Class. Quantum Gravity

14, 2833 (1997)
21. V. Melnikov, Classical Solutions in Multidimensional Cosmology

in Proceedings of the VIII Brazilian School of Cosmology and
Gravitation II, ed. by M. Novello (Editions Frontiïres, 1995), p.
542

22. R.G. Gannouji, H. Nandan, N. Dadhich, JCAP 11, 51 (2011)
23. O. Arias, R. Cardenas, I. Quiros. Nucl. Phys. B 643, 187 (2002)
24. J. Miritzis, Class. Quantum Gravity 21, 3043 (2004)
25. J. Miritzis, J. Phys. Conf. Ser. 8, 131 (2005)
26. M. Israelit, Found. Phys. 35, 1725 (2005)
27. J.E. Madriz Aguilar, C. Romero, Found. Phys. 39, 1205 (2009)
28. T. Moon, J. Lee, P. Oh, Mod. Phys. Lett. A 25, 3129 (2010).

arXiv:0912.0432 [gr-qc]
29. C. Romero, J.B. Fonseca-Neto, M.L. Pucheu, Class. Quantum

Gravity 29, 155015 (2012)
30. M.P. do Carmo,RiemannianGeometry ( Birkhauser, Boston, 1991)
31. F. Dahia, G.A.T. Gomez, C. Romero, J. Math. Phys. 49, 102501

(2008)
32. S. Kobayashi, Transformation Groups in Differential Geometry

(Springer, New York, 1972)
33. R.M. Wald, General Relativity (The University of Chicago Press,

Chicago, 1984)

34. M. Novello, L.A.R. Oliveira, J.M. Salim, E. Elbas, Int. J. Mod.
Phys. D 1, 641 (1992)

35. T.S. Almeida, M.L. Pucheu, C. Romero, J.B. Formiga, Phys. Rev.
D 89, 064047 (2014)

36. M.L. Pucheu, F.A.P. Alves Júnior, C. Romero, Cosmological Mod-
els in Geometrical Scalar-Tensor Theories (in preparation)

37. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Aca-
demic Publishers, Dordrecht, 2004)

38. A. Bhadra, K. Sarkar, D.P. Datta, K.K. Nandi, Mod. Phys. Lett. A
22, 367 (2007)

39. For other frame-invariant approaches to scalar-tensor theories, see
R. Catena, M. Pietroni, L. Scaralbello, Phys. Rev. D 76, 084039
(2007)

40. L. Jïrv, P. Kuusk, M. Saal, O. Vilson, Phys. Rev. D 91, 024041
(2015)

41. I. Quiros, R. Garcia-Salcedo, J.E.M. Aguilar, T. Matos, Gen. Rel-
ativ. Gravit. 45, 489 (2013)

42. E. Scholz. arXiv:1111.3220
43. V. Faraoni, S. Capozziello, A Survey of Gravitational Theories for

Cosmology and Astrophysics (Springer, New York, 2010)

123

http://arxiv.org/abs/0912.0432
http://arxiv.org/abs/1111.3220

	Space-time singularities in Weyl manifolds
	Abstract 
	1 Introduction
	2 Weyl geometry
	3 Weyl integrable space-time
	4 The Raychaudhuri equation
	5 Extending the singularity theorem
	5.1 Novello's theory
	5.2 Geometrical scalar-tensor theory

	6 Final remarks
	Acknowledgments
	References




