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Summary: The first lecture is of a qualitative nature. We explain the concept and the uses of duality in
string theory and field theory. The prospects to understand QCD, the theory of the strong interactions,
via string theory are discussed and we mention the AdS/CFT correspondence. In the remaining three
lectures we introduce some of the tools which are necessary to understand many (but not all) of the
issues which were raised in the first lecture. In the second lecture we give an elementary introduction
to string theory, concentrating on those aspects which are necessary for understanding the AdS/CFT
correspondence. We present both open and closed strings, introduce D-branes and determine the
spectra of the type II string theories in ten dimensions. In lecture three we discuss brane solutions
of the low energy effective actions, the type II supergravity theories. In the final lecture we compare
the two brane pictures – D-branes and supergravity branes. This leads to the formulation of the
Maldacena conjecture, or the AdS/CFT correspondence. We also give a brief introduction to the
conformal group and AdS space.

1Based on lectures given in July 2001 at the Universidad Simon Bolivar and at the Summer School on ”Geometric

and Topological Methods for Quantum Field Theory” in Villa de Leyva, Colombia.



Lecture 1: Introduction

There are two central open problems in theoretical high energy physics:
• the search for a quantum theory of gravity and
• the solution of QCD at low energies.

The first problem is apparent if one considers the Einstein equations which couple the dynamics of
the gravitational field to that of matter and radiation. Since matter and radiation follow the laws of
quantum mechanics this must also be the case for the gravitational field. If one applies the methods of
perturbative quantum field theory, which have been very successful for the electromagnetic, the weak
and the strong interactions, to the theory of gravity as formulated by Einstein in his general theory of
relativity, one gets stuck at a problem which is often stated as the non-renormalizability of a quantum
field theory of gravity.

What is meant by the second problem is that we have no analytic tools to prove e.g. the existence
of a mass gap in QCD and the phenomenon of quark confinement, i.e. the fact that at low energies
there are neither massless gluons, the gauge particles of the strong interactions, nor free quarks, but
rather there are massive ‘colourless’ mesons and baryons; for a precise description of the problem, see
[1].

Solutions to both problems have been proposed which stay within the realm of theoretical concepts
which have proven successful in the past. There is e.g. the approach of Ashtekar to the canonical
quantization of gravity (see e.g. [2] for reviews) and there are lattice simulations of QCD [3]. We will
not say anything about these approaches. Instead we take the (unproven) point of view that in order
to solve these two problems, we have to go beyond known and established theoretical frameworks and
introduce new ones. This would be in line with the history of physics where apparent conflicts forced
completely new lines of thought upon us. As an example consider the special theory of relativity
which arose from reconciling discrepancies between the predictions from Newtonian mechanics and
electromagnetism, or quantum field theory which combines special relativity and quantum mechanics.
We consider this an optimistic point of view since, if true, it would eventually provide new and exciting
theories along with their ramifications and implications.

Our basic assumption for these lectures is that string theory is the solution to both problems. We
will, however, not discuss at any length why string theory is believed to be a consistent (perturbative)
theory of quantum gravity. Our goal is rather to provide the background for understanding the
evidence for a duality between
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a string theory a   QFT
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Duality means an exact quantum equivalence of the two theories, which thus really represent only one
theory, albeit in very different guises.

To establish such a duality, we must (1) identify the pair of theories which are proposed to be dual
to each other and (2) find the duality map ⇔.

A duality between two theories A and B is most useful if we can learn about the non-perturbative
behavior (strong coupling) of one theory from the computable perturbative behavior (weak coupling)
of the other. Schematically

B
A

"coupling constant space of A"

perturbative 
region of B

perturbative region of A

Of course, to establish such a duality is very difficult and one will be mostly, at least for the time
being, working at the level of conjectures. However, in concrete examples one has gathered compelling
evidence for the duality conjecture and one has performed non-trivial tests.

A well known example is the particle-wave duality of quantum mechanics: depending on the exper-
iment, either the particle or the wave aspect of light or matter gives the simpler description. An
example from (two-dimensional) quantum field theory is the duality between the sine-Gordon model
and the massive Thirring model [4]. More recent examples are the Olive-Montonen duality of N = 4
supersymmetric Yang-Mills theory [5] and various (perturbative and non-perturbative) string dualities
[6]. Except for the first example, the duality is between two theories of the same kind, e.g. a duality
between two string theories. The duality to be discussed in these lectures is not of this type but a
duality between a gauge field theory and a string theory:

2



(weakly coupled)
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(strongly coupled)
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This dual pair was first conjectured by Maldacena in 1997 [7]. For reasons that will be become
clear later, it is known as the AdS/CFT correspondence. The duality map was constructed by Gubser,
Klebanov and Polyakov [8] and by Witten [9]. Note that the gauge theory does not contain gravity
whereas the type IIB string does not contain gauge degrees of freedom in its (perturbative) spectrum.
Another feature of the AdS/CFT correspondence is the fact that the two theories which are dual
to each other are formulated in different numbers of dimensions: a four-dimensional gauge theory in
Minkowski space and a string theory compactified on AdS5 × S5. One implication of this duality
is that all information of the string theory is encoded in the lower-dimensional field theory. With
reference to a similar phenomenon in optics, this is called holography. We will return to it below.

A word of caution to prevent confusion: in these lectures we do not discuss gauge theory as a
low-energy effective field theory of, say, the heterotic string. The relation between string theory and
gauge theory which is implied by the AdS/CFT correspondence is more subtle.

The idea that a gauge theory has a description as a string theory is in fact an old one. At low
energies, QCD is a confining theory. This means that one sees neither free gluons nor quarks but
mesons (qq̄) and baryons (qqq). There is a linear – rather than Coulomb like – potential between a
quark and an anti-quark, V (L) = σL. The chromoelectric flux lines are confined to a flux tube or
string. σ is the tension of the QCD string.

..
q qï

chromoelectric flux line

L

The hope is now that this can be described by a string theory. That this hope is not completely futile
can be seen if one considers a gauge theory with gauge group SU(N) for large N . Rather than making
a perturbation series in a small coupling constant, which does not exist for QCD at low energies where
it is strongly coupled, one makes an expansion in powers of 1/N . This was first done by ‘t Hooft
[10] (for reviews, see [11, 12, 13]) who showed that all Feynman diagrams which contribute to a given
order in 1/N can be drawn (without any lines crossing) on a Riemann surface whose Euler number
χ = 2 − 2g (g being the genus) is precisely the power of N to which the diagram contributes.
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We will see in lecture 2 that this is very much like the perturbation series of string theory where the
expansion parameter is gs, the string coupling constant, rather than 1/N . The Riemann surface is the
world-sheet of the string. In the figure above we have shown only surfaces without boundary which
are the only ones occurring in a pure gauge theory without quarks in the fundamental representation.
In the string theory this correponds to a loop expansion of the vacuum amplitude.

One can indeed show that fundamental strings reproduce some of the features of the physics of
strong interactions. The excitations of the string satisfy a linear relation between their (mass)2 = M2

and their spin J : M2 = J/α′ + const, where α′ is related to the string tension which becomes
a fundamental dimensionful parameter in the theory. This was in qualitative agreement with the
Regge trajectories for hadronic resonances which were found in experiments, provided α′ was chosen
1/
√

α′ ∼ 100 MeV, which is the typical energy scale of strong interaction physics:

.. .
. .

.

.    .     ..
.
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Soon after these results were obtained it was realized that string theory could not correctly reproduce
the high energy behaviour of hadronic scattering amplitudes. In addition it was observed that the
spectrum of the string contains a massless spin two particle with many of the properties of the graviton,
the exchange particle which mediates the gravitational force. At around the same time, quantum-
chromodynamics (QCD) was developed as a gauge theory of the strong interaction, with gauge group
SU(3). For these, and other reasons, string theory was abandoned as a theory of the strong interactions
and was elevated to a candidate for a theory of quantum gravity. The natural energy scale is now
1/
√

α′ ∼ 1019 GeV, the Planck energy. This was around 1975.

If one attempts to quantize string theory in four-dimensional Minkowski space-time one finds a
dependence on the size of the world-sheet, and this dependence enters as a new field which can be
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interpreted as an additional space-time coordinate. This means that we need at least five dimensions
for a consistent quantization of string theory [14]. If we want all coordinates to span a d-dimensional
Minkowski space-time, we find d = 26 for the bosonic string and d = 10 for the fermionic string. These
are the critical dimensions.

We now return to the concept of holography. One interesting physical system where it is realized
is a black hole. The Schwarzschild solution of the vacuum Einstein equations, Rµν = 0, is the simplest
example. This solution depends on one parameter, the mass M of the black hole. Classically, black
holes are black, but due to quantum processes they emit so-called Hawking radiation. They radiate like
a black body with temperature TBH = 1

8πM

[
!c3

GNkB

]
. As radiating systems black holes are expected to

obey the laws of thermodynamics. If one defines the black hole entropy, as first proposed by Bekenstein
and Hawking, as S = 4πM2

[
kBGN

!c

]
, one indeed verifies e.g. the second law d(Mc2) = TBHdS. A

quantum theory of gravity should provide the framework for a microscopic computation of the black
hole entropy. In the search for such a theory one might turn the logic around and start from the
expression for the black hole entropy and try to deduce certain properties that the quantum theory of
gravity must possess in order to lead to such an entropy formula. The simple fact that S = 1

4A
[

kBc3

GN !

]
,

where A = 4π
(

2MGN
c2

)2
is the area of the black hole horizon, leads to the concept of holography. The

information contained inside the region enclosed by the horizon is represented as a hologram on the
horizon: all the information about the inside is stored on the holographic screen.2 This is in sharp
contrast with what we expect from statistical mechanics and local quantum field theory where the
entropy is an extensive quantity and thus should be proportional to the volume of the system. The
lesson we learn from this is that the nature of the degrees of freedom of quantum gravity is quite
different from that of a local quantum field theory. In fact, string theory provides a microscopic
account of the states and thus entropy of certain (extremal and near-extremal) black holes [17, 18].

Let us now suppose that a d-dimensional quantum field theory ‘lives’ on the horizon of a (d + 1)-
dimensional black hole with entropy SQFT ∼ Ad. One wonders how quantum gravity in (d + 1)
dimensions can be related to a local QFT in d dimensions. The AdSd+1/CFTd correspondence gives
an answer to this question. This correspondence goes far beyond the matching of entropies. It is
conjectured to be an exact duality in the sense described before.

In the remaining three lectures we provide the necessary background to understand the conjecture.
This requires a crash course in string theory and supergravity branes. Much more can be said about
any of the issues that we touch upon. Good referencs for string theory are [19, 20, 21, 22, 23]. D-branes
are reviewed in [24, 25, 26, 27], brane solutions of supergravity theories in [28, 29] and the AdS/CFT
correspondence in [30, 31, 32, 33, 34, 35]. It migth also be fun to brouse through the ‘official’ string

2More generally, the holographic principle asserts that the information contained in some region of space can be

represented as a ‘hologram’ - a theory which ‘lives’ on the boundary of that region. It furthermore asserts that the

theory on the boundary of the region of space in question should contain at most one degree of freedom per Planck area

!. The black hole precisely satisfies that bound. See [15, 16] for reviews of the holographic principle.
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theory web-site [37].

Lecture 2: Elementary introduction to string theory

In this lecture we provide some aspects of string theory needed to introduce the AdS/CFT corre-
spondence. We first discuss the bosonic string and then the fermionic string. There are many aspects
of string theory which we will not mention at all. Some of the major omissions are conformal field
theory, heterotic and type I strings, compactifications, string dualities, orientifolds, etc. For this we
have to refer to the literature [20, 23, 19, 21, 22, 27].

We start by comparing the classical mechanics of a zero-dimensional object – a relativistic point
particle – and a one-dimensional object – a string – moving in D-dimensional Minkowski space-time
with metric ηµν = diag(−, +, +, · · · , +), µ, ν = 0, . . . , D − 1.

As a particle moves through space-time it sweeps out a one-dimensional world-line C whose em-
bedding in space-time is specified by D functions Xµ(τ), τ being an arbitrary parameterization of the
world-line. The simplest Poincaré-invariant action that does not depend on the parameterization is

Spp = −mc

∫

C
dτ

√
−Ẋ · Ẋ , (1)

the integrand being the infinitesimal path length, Ẋµ ≡ ∂τXµ, X · X = XµXνηµν , c is the speed of
light and m is the particle’s mass as can be seen from the nonrelativistic limit.

Analogously, a one-dimensional object sweeps out a two-dimensional world-sheet Σ in space-time
and its embedding is described by D functions Xµ(σ, τ). Again, physics must depend only on the
embedding and not on the parameterization of the world-sheet. The simplest invariant action – the
Nambu-Goto action – is (X ′ = ∂σX)

SNG = −Tc

∫

Σ
dτdσ

√
−det hαβ = −Tc

∫

Σ
dτdσ

√
(Ẋ · X ′)2 − Ẋ2 · X ′2 . (2)

T is the string tension, a new fundamental constant of nature 3 of dimension mass/length and hαβ is
the induced metric on the world-sheet

hαβ =
∂Xµ

∂ξα

∂Xν

∂ξβ
ηµν , ξα = (τ, σ) . (3)

3There are three fundamental constants of nature which, in pre-string physics, are the speed of light c, the gravitational

constant GN (N for Newton) and Planck’s constant !. For a discussion about the number of fundamental constants,

see [38]. The limit ! → 0 is called the classical limit, c → ∞ the non-relativistic limit and GN → 0 the decoupling of

gravity. From these three constants one can construct the so-called Planck-units, namely three fundamental scales, for

length (lP =
√

GN!/c3), time (tP =
√

GN!/c5) and mass (mP =
√

c!/GN ). In string theory the tension replaces GN

as a fundamental constant with the relation (valid in four dimensions) GN ∼ c2/T . One also introduces the string scale

α′ = l2s via the relation T = !/(2πcα′). ls is the typical length scale in string theory instead of lP . The characteristic

energy scale is Es =
√

!c3T . At infinite tension, the extension of the string becomes zero. The limit T → ∞ or,

equivalently, α′ → 0 is called the point particle or field theory limit.

6



(2) is the straightforward generalization of (1) to an extended object. It is the area of its world-sheet.
One distinguishes between open and closed strings. The world-sheet of a free closed string has the
topology of a cylinder, that of a free open string the topology of a strip. Interactions are taken into
account by considering topologically non-trivial world-sheets. For instance, the decay of one closed
string into two, will correspond to the the following world-sheets, where we have indicated only the
first two terms in an infinite perturbation series (time runs from left to right):

. ..+ +

If we denote the strength of the basic closed string interaction, which is given by the left diagram, by
gs, we see that the second diagram has strength g3

s . In general, a given world-sheet is weighted by
g−χ+no/2
s where χ is its Euler number and no is the number of external open strings. gs is called the

string coupling constant. We will say a little more about it later.

Due to the √ , the Nambu-Goto action is difficult to deal with. One can remove the square
root at the expense of introducing an additional (auxiliary) field on the world-sheet which, however,
should not introduce new dynamical degrees of freedom. This field is the world-sheet metric γαβ (with
signature (−, +)). The resulting action – the Polyakov action – couples the D massless world-sheet
scalar fields Xµ to two-dimensional gravity γαβ

4

SP = −T

2

∫

Σ
dτdσ

√
−γγαβ∂αXµ∂βXνηµν . (4)

The Polyakov and Nambu-Goto actions are in fact classically equivalent. To see this one uses the
equation of motion for γαβ , i.e.5

δS =
∫

dτdσ
√
−γTαβ δγαβ = 0 → Tαβ =

T

2
(
1
2
γαβγρσ∂ρX · ∂σX − ∂αX · ∂βX) = 0 (5)

to eliminate γαβ from SP. One then obtains SNG back. Note that the equations Tαβ = 0 impose
constraints on the dynamical variables Xµ. In the following we will use the Polyakov action.

We now discuss the symmetries of the Polyakov action. In addition to global D-dimensional
Poincaré invariance (Xµ → Λµ

νXν + aµ, ΛηΛT = η), Λ, a constant, SP has the following local sym-
metries

(I) (world-sheet) diffeomorphism invariance:

X ′µ(τ ′, σ′) = Xµ(τ, σ) ,

∂ξ′γ

∂ξα

∂ξ′δ

∂ξβ
γ′

γδ(τ
′, σ′) = γαβ(τ, σ) ,

(6)

for new coordinates ξ′α = ξ′α(ξ).
4From here on we set c ≡ 1 and γ = det(γαβ)
5Tαβ is the energy-momentum tensor which measures the response of the action to a change of the metric.
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(II) 2-dimensional Weyl invariance:

X ′µ(τ, σ) = Xµ(τ, σ) ,

γ′
αβ(τ, σ) = exp

(
2ω(τ, σ)

)
γαβ(τ, σ) ,

(7)

for arbitrary ω(τ, σ).

The Weyl invariance, a local rescaling of the world-sheet metric is an extra redundancy of the Polyakov
formulation and has no analog in the Nambu-Goto form. Weyl invariance guarantees that γαβTαβ = 0,
which is easily checked.

The local symmetries can be used to simplify the action and the equations of motion. The diffeo-
morphism symmetry can be used to go to conformal gauge in which the metric has the form

γαβ = exp
(
2ω(τ, σ)

)
ηαβ , ηαβ =

(
−1 0

0 1

)
. (8)

Due to (classical) Weyl invariance ω(τ, σ) decouples from the action which is now

SP =
T

2

∫
dσdτ(∂τX · ∂τX − ∂σX · ∂σX) (9)

The equations of motion for the scalars Xµ are then obtained as usual

δSP = −T

∫
dτ

∫ L

0
dσ ∂αXµ∂αδXµ

= T

∫
dτ

∫ L

0
dσ ✷XµδXµ − T

∫
dτ

[
∂σXµδXµ

]∣∣L
0︸ ︷︷ ︸

boundary term

, (10)

where L is the length of the string. Thus, the equation of motion for Xµ is the two-dimensional wave
equation

✷Xµ =
(
−∂2

τ + ∂2
σ

)
Xµ = 0 , (11)

subject to the vanishing of the boundary term. Here we can distinguish two cases:

• closed string ⇒ no boundary term

but Xµ must be L-periodic in σ, i.e.

Xµ(τ, σ + L) = Xµ(τ, σ) (12)

and there is no boundary term. The general solution to the wave equation (11) with the periodicity
condition (12) is

Xµ(τ, σ) = qµ +
1

TL
pµτ +

i√
4πT

∑

n̸=0

1
n

{
αµ

ne−2πin(τ+σ)/L + α̃µ
ne−2πin(τ−σ)/L

}
. (13)
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The powers of T are required for dimensional reasons (X has dimension length). The numerical
coefficients have been chosen to make the canonical commutation relations which we will discuss
below free of numerical constants. The solution (13) is the sum of the center-of-mass motion (given by
the first two terms) and left– and right–moving waves with amplitudes αµ

n and α̃µ
n respectively. The

c.o.m. position is

qµ(τ) =
1
L

∫ L

0
dσXµ(τ, σ) = qµ +

1
LT

pµτ (14)

and the total momentum of the string is

pµ(τ) =
∫ L

0
Pµ(τ, σ) = T

∫ L

0
dσẊµ(τ, σ) ; (15)

the momentum density Pµ(σ, τ) = T∂τXµ(σ, τ) is the variable conjugate to Xµ(σ, τ). Reality of Xµ

requires that αµ
−n =

(
αµ

n
)∗ and analogously for α̃µ

n.

In the second case

• open string ⇒ boundary term

we have to impose boundary conditions

∂σXµδXµ = 0 , at σ = 0 and σ = L . (16)

There are two possibilities to satisfy the open string boundary conditions (b.c.)

(N) Neumann: ∂σXµ|bndy = 0 ,

(D) Dirichlet: δXµ|bndy = 0 .

These can be imposed independently for each space-time direction µ and each of the two ends of the
open string. It is important to understand the physical meaning of these different boundary conditions.
The total momentum pµ(τ) =

∫ L
0 dσ Pµ(τ, σ) is conserved for Neumann boundary conditions which

place no restriction on the position of the endpoint of the open string. On the other hand, it is easy
to see that the space-time momentum is not conserved for Dirichlet boundary conditions. This should
not come as a surprise since Dirichlet b.c. fix the endpoints of the open string to lie on hyper-surfaces
in space-time; these necessarily break translational invariance. The non-conservation of momentum
in directions with Dirichlet b.c. is thus to be expected. Where does the momentum flow to? The
only candidates are the hyper-surfaces on which the open strings end, so these themselves have to
be dynamical objects which absorb the open string momentum. These dynamical objects are called
Dirichlet-branes or D-branes.6 More specifically, if we have NN b.c. along (say) µ = 0, . . . , p and DD

6We will see later that they are not only the loci in space-time where open strings can end but they are also the

source for modes of the closed string.
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b.c. along µ = p + 1, . . . , D − 1 the end-point of the string lies on a Dp-brane. The two ends of an
open string can, of course, lie on two different D-branes, say one end on a Dp and the other end on a
Dp′ brane. This is illustrated in the figure below for p = p′ = 2. No end of an open string can end in
‘free space’. It must lie on a D-brane, which can move through space-time.

. . .
.

Notice that D-branes have appeared in two ways: (1) as hyper-surfaces in space-time on which open
strings end and (2) as dynamical objects with which open strings exchange momentum. This latter
fact is illustrated in the figure by the ‘wiggly’ shape of the branes.

Finally, we list the solutions to ✷X = 0 with the various possible boundary conditions. For
simplicity of notation and without loss of generality, we have set L = π (recall that we have defined
α′ = 1

2πT ):

(NN) ∂σX|σ=0,π = 0

X(τ, σ) = q + 2α′pτ + i
√

2α′
∑

n̸=0
n∈Z

1
n

αn cos(nσ)e−inτ ;

(DD) X|σ=0 = qi , X|σ=π = qf (the positions of two D-branes)

X(τ, σ) = qi +
1
π

(qf − qi)σ +
√

2α′
∑

n̸=0
n∈Z

1
n

αn sin(nσ)e−inτ ;

(ND) ∂σX|σ=0 = 0 , X|σ=π = qf

X(τ, σ) = qf + i
√

2α′
∑

r∈Z+ 1
2

1
r
αr cos(rσ)e−irτ .

Notice that only NN boundary conditions allow for a center-of-mass motion. In contrast to the closed
string the open string has only one set of oscillators; left- and right movers get tied up through the
boundary conditions: a left-moving wave is reflected and returns as a right-moving wave, and vice
versa. Depending on the type of boundary condition the wave is reflected with phase shift 0 (N) or π
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(D). We observe that for mixed b.c. the oscillators have half-integer moding. Factors of i are chosen
such that the reality condition on X translates to α−n = (αn)∗ and α−r = (αr)∗.

So far the discussion was entirely classical. This means that Planck’s constant ! has not appeared
yet. It will enter through quantization. There are various ways to subject a given classical system to
the laws of quantum mechanics, the most familiar one being canonical quantization. Here the Poisson
bracket {q, p} = 1 between a coordinate q and its canonically conjugate momentum p is replaced
by the commutator of the position and momentum operators (which we also denote by q and p)
[q, p] = i!. Part of the quantization procedure consists of specifying the Hilbert space on which the
operators act. The probabilistic interpretation of the Schrödinger wave-function, which is a vector
in the Hilbert space, requires that the Hilbert space be positive definite (this is the requirement of
unitarity of the quantum theory). Naive canonical quantization of the string leads, as a consequence of
the indefiniteness of the Minkowski metric, to the existence of negative norm states. One then has to
ensure that these unphysical states decouple from the theory. This can be shown to be a consequence
of the constraint equations Tαβ = 0. For our purposes the so-called light-cone quantization is most
appropriate. In this scheme only physical degrees of freedom appear and it offers the quickest route
to the excitation spectrum of the closed and open string. The disadvantage is that explicit space-time
Lorentz-covariance is lost. A treatment of covariant quantization procedures can be found in the
references on string theory.

In light-cone quantization the constraints Tαβ = 0 are taken care of by solving them explicitly.
This becomes possible by choosing the so-called light-cone gauge for the local symmetries of the
Polyakov action. In conformal gauge the constraints can be expressed as ∂+X · ∂+X = 0 and ∂−X ·
∂−X = 0 where ∂± are derivatives with respect to σ± ≡ σ ± τ . We observe that even after going to
conformal gauge, the diffeomorphism invariance is still not completely fixed. The easiest way to see
this is to express the metric in the coordinates σ±, in which ds2 = e2ωdσ+dσ−. Under coordinate
transformations σ+ → f+(σ+) and σ− → f−(σ−) the only change in the metric is a change of the
conformal factor e2ω, i.e. we are still in conformal gauge, provided f± are arbitrary (non-constant)
solutions of the wave equation which respect the b.c. or periodicity condition. We can now use
this freedom to identify τ with any one of the fields Xµ which solve the wave equation. We choose
X+ = 2α′p+τ + q+ where X± ≡ X0 ± XD−1 are called light-cone coordinates. The remaining D − 2
coordinates are the transverse coordinates. If we insert this into the action and perform a Legendre
transformation we find the light-cone Hamiltonian

Hl.c. =
1

4πα′

∫ π

0
dσ

D−2∑

i=1

{
(∂τX

i)2 + (∂σXi)2
}

. (17)

Hl.c. contains only the transverse coordinates Xi. The virtue of the choice X+ ∝ τ rather than,
say, X0 ∝ τ is that X− does not appear in Hl.c. and that it can be expressed, via the constraint
equations T±± = 0, up to an integration constant q−, in terms of the Xi. In particular one finds that
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p− = T
∫

dσ∂τX− = 1
α′p+ Hl.c.. The dynamical degrees of freedom are thus p+, q− and the complete

Xi (zero-mode and oscillator parts).

Once we are in light-cone gauge, we can go ahead with canonical quantization. Imposing standard
equal time commutators on the Xi and their momenta these become operators in the single-string
Hilbert space and so do the qi, pi, αi

n and α̃i
n. For these the commutation relations are (from now on

we set ! = 1)

[qi, pj ] = iδij , [αi
n, αj

m] = n δn+m,0 δij , [α̃i
n, α̃j

m] = n δn+m,0 δij . (18)

All other commutators vanish. Of course, for the open string we have only one kind of oscillators. They
satisfy the same commutation relation as, say, the αi

n, where n is now either integer or half-integer,
depending on the boundary conditions.

The mass spectrum of the vibrating string is obtained from the eigenvalues of the mass operator
which is defined in the usual way as m2 = p+p− −

∑D−2
i=1 (pi)2. With p+p− = Hl.c./α′ this is m2 =

1
α′ Hl.c. −

∑
(pi)2. This expression is correct for both, open and closed strings. In the case of open

strings the sum extends only over the directions with NN b.c.’s; in the other directions there is no
c.o.m. momentum.7 Straightforward calculation yields

α′m2 = 2(N + Ñ) + a + ã (closed strings) (19)

and
α′m2 = NNN+DD + NND+DN + a +

α′

(2πα′)2
(∆q)2 (open string) (20)

where

N =
∑

n>0

D−2∑

i=1

αi
−nαi

n (21)

measures the total occupation number of α excitations and likewise for Ñ , etc. Several explanations
are in order: (i) It is easy to verify, using the canonical commutation relations, that e.g. for the
left-movers of the closed string, m2αi

n = αi
n(m2 − 2

α′ n), which tells us that the αi
n for n > 0 lower the

mass of a state whereas the modes with n < 0 raise its mass. The Fock vacuum |0⟩ is defined to be the
state which is annihilated by all lowering operators. Although in the classical expressions the ordering
of the oscillators is irrelevant, this is not true in the quantized theory. In the expressions (19) and
(20) we have brought the operators to normal ordered form, i.e. we have moved all lowering operators
to the right of all raising operators (note that the raising and the lowering operators commute among
themselves). This means that the vacuum state |0⟩ is the state with the lowest mass which is in fact
given by the normal ordering constants a and ã, which we will determine below. (ii) The last term in
(20), (T∆q)2, is the contribution to the mass from the stretching of the open string whose endpoints
lie on two D-branes which are separated by the distance ∆q.

7Note that when going to the light-cone gauge we need to assume that we have NN b.c. in the X± directions.
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We now discuss the normal ordering constants. For each transverse directions they are proportional
to

∑
n≥0(n+ν) where ν = 0 for integer moded oscillators and ν = 1

2 for half-integer moded oscillators.
Clearly these are divergent sums which can, however, be given a precise mathematical meaning (see
e.g. [39]) as follows. For Re(s) > 1 the generalized Riemann zeta function ζ(s, ν) can be written as
the infinite sum ζ(s, ν) =

∑∞
n=0(n + ν)−s. For other values of s it is defined by analytic continuation.

We then define the normal ordering constant as the value of the ζ-function at s = −1 and thus obtain

∞∑

n=0

(n + ν) ≡ ζ(−1, ν) = − 1
12

(
1 − 6ν(1 − ν)

)
. (22)

This leads to the following normal ordering constants:

(closed string) : a = ã = −D − 2
12

(23)

(open string) : a = −D − 2
24

+
d

16
(24)

where d = #(ND+DN directions). The way we have fixed the normal ordering constant looks like a
mathematical trick. The procedure of making sense of infinities in a quantum field theory, such as
infinite zero-point energies, is called regularization. We can subtract the infinity by modifying the
Polyakov action through the addition of a ‘cosmological constant’ proportional to

∫
dσdτ

√
−γ. The

only choice which is consistent with Weyl invariance is the one which leads to the result above.

We are now ready to determine the mass spectrum of the string. First, consider the open string
with only NN b.c.’s. Then the ground state has mass m2 = − (D−2)

24α′ , i.e. it is tachyonic. The first
excited states are

αi
−1|0⟩ , with mass m2 =

1
α′

26 − D

24
. (25)

There are precisely (D − 2) of these states and they transform as a vector under SO(D − 2), the
rotation group in the transverse space, which is the little group for massless particles. What this
means is the following. Consider first a massive particle moving through D-dimensional Minkowski
space-time. Since any massive particle necessarily moves with a speed less than c, we can make a
Lorentz boost and go to its rest frame. In this frame the particle’s momentum is pµ = (m, 0, . . . , 0)
with −p2 = m2 whose invariance subgroup (isotropy group, little group) is SO(D − 1). This means
that massive particles can be classified by representations of SO(D − 1). For a massless particle the
situation is different. Since they necessarily move at the speed of light and satisfy p2 = 0, we can
choose a frame in which its momentum is p0 = (E, 0, . . . , 0, E). The invariance subgroup of this vector
is E(D−2), the group of motions in (D−2)-dimensional Euclidean space. Massless string states form,
however, finite dimensional representations of a SO(D − 2) subgroup.

Back to the string spectrum: since the first excited states form a vector of SO(D − 2) and since
there are no other states of the same mass, these states must form a massless vector. Otherwise
Lorentz invariance will be broken. Requiring the mass of these states to vanish fixes D = 26 which is

13



the so-called critical dimension of the bosonic string. We have thus shown that Lorentz invariance of
the quantized bosonic string theory requires that space-time has dimension 26. The classical theory
was Lorentz invariant for any D but this symmetry is not preserved by the quantization, i.e. there is
a Lorentz anomaly except in the critical dimension. This fact holds for general quantization schemes:
the absence of anomalies requires the critical dimension D = 26.

We have only considered the ground state and the first excited state of the open string with
all directions being NN. It is straightforward to consider higher excited states and with different
boundary conditions. Any state which can be reached by acting with an arbitrary number of creation
operators on the vacuum is allowed. Since these states will not be of interest to us, we will leave
their exploration as an exercise. We only want to make two remarks: (1) The masses of the massive
states are n/α′, n = 1, 2, . . . . In the field theory limit where α′ → 0 or, equivalently, T → ∞, they
become infinitely massive and decouple. (2) For, say, all directions NN, the states at each mass level
must arrange themselves into representations of SO(25). In the presence of a Dp-brane, for instance,
massless (massive) states must come in representations of SO(p−1) (SO(p)) since the Dp-brane breaks
SO(1, 25) to SO(1, p).

We have remarked that the end-points of open strings must lie on D-branes. In the presence
of several D-branes we must label the open string states by two additional labels to indicate on
which of the D-branes the two end-points of the open string lie. If the open string is oriented we
can distinguish its two end-points from each other and we denote the states by |N ; p; i, ȷ̄⟩, where N

denotes the oscillator numbers, p the c.o.m. momentum of the string and i and ȷ̄ are the so-called
Chan-Paton (CP) indices of the σ = 0 and σ = π endpoints, respectively.8 We write these states in
the form

|N ; p; i, ȷ̄⟩ =
∑

a

|N ; p; a⟩λa
ij . (26)

Later on we will be interested in the case of N parallel and coincident Dp-branes. In this case one
can show, by looking at the interactions9 of excited strings, that the allowed matrices λa

ij generate the

8We will not consider unoriented strings in these lectures, even though they are also of interest. The possible gauge

groups are then SO and USp. They require, in addition to D-branes, also so-called orientifold planes. For a recent

review, see [27].
9Roughly speaking, interactions are taken into account by looking at topologically non-trivial world-sheets, as we

have alluded to before. More concretely, there is a correspondence between states and operators, the so-called vertex

operators and one computes the interaction of strings with given excitation as correlation functions of the corresponding

vertex operators. The vertex operators for closed string states are inserted in the interior of the world-sheet, those for

open string states at the boundary. As long as the external momenta are small compared to the masses of the massive

string excitations, one can reproduce the scattering amplitudes of the massless states by a low-energy effective field

theory action. In the case of the gauge bosons, this action is, to lowest order in α′, the U(N) Yang-Mills action in p + 1

dimensions with gauge coupling g2
YM ∼ gs(α

′)(p−3)/2. In the same way the other massless modes that we will encounter

below are identified. The fields corresponding to excitation modes of the open string are confined to the world-volume of

the brane on which the string ends whereas those corresponding to the modes of the closed string can propagate anywhere

in the bulk, but also interact with the open string modes. Correspondingly the low-energy effective field theories are
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group U(N). The massless states |1; p; a⟩ =
∑N

i,j=1 αm
−1|0; p; iȷ̄⟩λa

ij are identified as the gauge bosons of
an U(N) gauge symmetry if m labels a direction along the brane and as massless scalars transforming
in the adjoint representation of the gauge group if m labels a direction transverse to the brane (we
use the normalization Tr(λaλb) = δab). If we separate the N D-branes (but keep them parallel) into
two stacks of N1 and N2 branes, the (T∆q)2 term in the mass formula (20) contributes to the mass
of the excitations of those strings whose endpoints lie on separated branes. The corresponding states
become massive and the gauge symmetry is broken to U(N1) × U(N2). This is a brane realization of
the familiar Higgs effect. The extra degrees of freedom needed to give mass to the gauge bosons which
lie in the coset U(N)/(U(N1) × U(N2)) are provided by the scalar fields. The figure illustrates the
situation for U(2). The massless excitations of the four possible oriented open strings represent the
four gauge bosons. If the two branes are separated, as in the figure, two gauge bosons are massive,
their mass being the string tension times the separation of the two branes. The unbroken gauge group
is U(1) × U(1).

We now discuss the closed string spectrum. It is very similar to the discussion of the open string
spectrum, without the complication of different boundary conditions and CP factors. However, there
is one further constraint we have to impose on the closed string states. This comes about as follows.
After going to conformal gauge we have used the remaining diffeomorphisms to go to light-cone gauge.
In the case of the open string this fixes the diffeomorphisms completely. However, in the closed string
we are still allowed to make constant shifts in σ → σ + σ0. Using the mode expansion and the
commutation relations it is not difficult to show that the operator Uσ0 = exp(iσ0(N − Ñ)) satisfies
Uσ0X(τ, σ)U−1

σ0
= X(τ, σ + σ0). We thus have to impose the following physical state condition (level

matching condition) on closed string states:

(N − Ñ)|state⟩ = 0 . (27)

We can now determine the spectrum of the closed bosonic string. Again, the ground state is tachyonic.
The first excited states are αi

−1α̃
j
−1|0⟩ of which there are (D− 2)2. They transform as reducible rank-

two tensor representation of SO(D − 2). Its irreducible components are the symmetric traceless,
the antisymmetric and the trace parts. The same group theoretical argument as for the open string

formulated on the branes and in the bulk, respectively.
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requires that these states are massless and hence we conclude that also for the closed bosonic string
D = 26. The irreducible components of the massless states can be identified, via their interactions as
the graviton Gij , an antisymmetric tensor particle Bij and the so-called dilaton Φ:

αi
−1α̃

j
−1|0⟩ =̂ Gij︸︷︷︸

symmetric
traceless

+ Bij︸︷︷︸
antisymmetric

+ Φ︸︷︷︸
trace

. (28)

As we argue below, Φ is related to the string coupling constant gs via gs = eΦ0 where Φ0 is the vacuum
expectation value of the dilaton. Again, we will not discuss the massive spectrum.

Notice that the space-time fields corresponding to the excitations of the open string are confined to
live on the world-volume of the D-branes on which the open strings end. There is no such restriction
for the excitations of the closed string. D-branes interact with each other via the exchange of closed
strings. The figure shows the emission of a closed string from a D-brane. In a time-reversed process
the closed string can be absorbed by another D-brane.

tim
e

The figure also illustrates that while open strings are attached to D-branes, closed strings can move
in 10-dimensional space-time.

One can easily generalize the Polyakov action in such a way that all the massless string modes
appear:10

S = − 1
4πα′

∫

Σ
dτdσ

√
−γ

{
γαβ∂αXµ∂βXνGµν(X) + ϵαβ∂αXµ∂βXνBµν(X) + α′R(γ)Φ(X)

}
. (29)

This describes the motion of the string through a space-time with metric Gµν and a background anti-
symmetric tensor and dilaton field. In the last term R(γ) is the Ricci scalar for the metric γ. If we
now separate Φ into a constant background value Φ0 and a fluctuating piece, Φ = Φ0 + φ, then the
contribution of Φ0 is proportional to Einstein action for the metric γ which, in two dimensions, is

10There is also a term over the boundary of the world-sheet which contains the massless gauge bosons of the open

string spectrum, but we will not write it.
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proportional to the Euler number of the world-sheet (for open strings there are additional boundary
terms).11 This means that in a path integral evaluation of string scattering amplitudes a world-sheet
with Euler number χ carries a weight e−χΦ0 ≡ g−χ

s .

Note that unless Gµν , Bµν and Φ are constant, i.e. independent on X, the world-sheet action is
that of an interacting field theory which can only be quantized perturbatively. In the quantum theory
we have to make sure that the local symmetries of (4), which allowed the elimination of the degrees
of freedom contained in γαβ , are still present. This requirement imposes severe restrictions on the
background fields Gµν , Bµν and φ. The conditions they have to satisfy are in fact equivalent to the
equations of motions of these fields which follow from the low energy effective action.

So far we have dealt with the bosonic string whose world-sheet description involves only bosonic
fields and whose excitations all transform in tensor representations of the little group (we have shown
this explicitly for the massless states, but this is also true for the massive states) and they are thus
space-time bosons. Clearly, for a realistic theory of nature we also need space-time fermions. They
will appear in the spectrum of the fermionic string which we will now discuss.

The world-sheet action of the fermionic string contains bosons and fermions.12 In light-cone gauge
the action is13

S = −1
2

∫
dτdσ

{
T∂αXi∂αXi − i

π
Ψ̄iρα∂αΨi

}
. (30)

The Ψi form, as the Xi, a vector of SO(D−2). ρα are 2-dimensional Dirac matrices obeying {ρα, ρβ} =
−2ηαβ . In the basis ρ0 =

(
0 −i
i 0

)
, ρ1 =

(
0 i
i 0

)
the components of ΨT = (ψ̃, ψ) can be chosen to be

real (Ψ is thus a Majorana spinor). Then Ψ̄ = Ψ†ρ0 = ΨT ρ0. The equations of motion are the wave
equation for the Xi and the massless Dirac equation for the Ψi:

✷Xi = 0 , ρα∂αΨi = 0 ↔

⎧
⎨

⎩
∂−ψi = 0 ,

∂+ψ̃i = 0 .
(31)

Again we have to distinguish between the open and the closed string. We start with the open string.

For the open string the fermions are subject to the boundary conditions

ΨT ρ0ρ1δΨ
∣∣
σ=0,π

= (ψ̃δψ̃ − ψδψ)
∣∣∣
σ=0,π

= 0 , (32)

11This makes sense if we perform a Wick rotation and change the signature of the world-sheet from (−, +) to (+, +).
12We are using the NSR (Neveu-Schwarz-Ramond) formulation. In the Green-Schwarz formulation, one introduces

additional world-sheet scalars which are, however, space-time spinors.
13One can derive this action by starting with a generalization of the Polyakov action. While in the bosonic case this is

a two-dimensional field theory coupled to gravity, we would now consider a two-dimensional field theory with bosons and

fermions which couples to supergravity. Ψµ is the supersymmetry partner of Xµ. The partner of the world-sheet metric

γ is a world-sheet vector-spinor, the gravitino. The gravitino can be gauged away via the local fermionic symmetries

(supersymmetry and super-Weyl). This defines the super-conformal gauge in which the equations of motion for the

gravitino are ψ · ∂+X = ψ̃ · ∂−X = 0 which have to be imposed as constraints. The remaining gauge freedom again

allows to go to light cone gauge which sets the components ψ+ and ψ̃+ to zero and the components ψ− and ψ̃− can be

expressed in terms of the ψi and ψ̃i, respectively. The resulting action is (30).
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which couple the left- and right moving fermions. The relative sign between ψ and ψ̃ is a matter of
convention, which we choose such that

ψi(τ, 0) = ψ̃i(τ, 0) ,

ψi(τ, π) = η ψ̃i(τ, π) , η = ±1 ,
(33)

which solves (32). The two choices η = ±1 define two sectors of the theory, the Neveu-Schwarz (NS)
sector for η = −1 and the Ramond (R) sector for η = +1. As we will see below, fields corresponding to
states having excitations in the NS–sector are space-time bosons, whereas excitations in the R–sector
lead to space-time fermions. The solution of the equations of motion which respect the b.c. is14

ψi =
∑

r

ψi
re

−ir(τ+σ) , ψ̃i =
∑

r

ψi
re

−ir(τ−σ) with

⎧
⎨

⎩
r ∈ Z + 1

2 NS sector,

r ∈ Z R sector.
(34)

The fact that there is only one set of fermionic oscillators is due to the boundary conditions. For the
contribution of the fermions to the light-cone Hamiltonian one finds

Hl.c. =
∑

r

rψi
−rψ

i
r (35)

with r integer (half-integer) in the R (NS) sector. The fermionic oscillators are quantized by imposing
anti-commutation relations:

{ψi
r, ψ

j
s} = δr+s,0 δij . (36)

They also contribute to the mass of a state. The mass operator for the open string in either sector is
now

α′m2 =
∞∑

n=1

αi
−nαi

n +
∑

r>0

rψi
−rψ

i
r +

⎧
⎨

⎩
−D−2

16 NS,

0 R.
(37)

The normal ordering constants arise from putting the fermionic oscillators in normal ordered form
(again, the positive modes are lowering and the negative modes are raising operators). They are (c.f.
(22)) aR = −(D − 2)ζ(−1, 0) = D−2

24 in the R–sector and aNS = −(D − 2)ζ(−1, 1/2) = −D−2
48 in the

NS–sector. Note that the total zero-point energy vanishes in the R–sector. Here we have assumed
that we have only NN or DD b.c.’s. If we have d ND plus DN b.c.’s, the normal ordering constant is
again zero in the R sector and −D−2

16 + d
8 in the NS sector.

The NS–sector has a unique ground state which is tachyonic. It is a space-time boson and so are all
excited states in the NS sector which can be reached by acting with creation operators ψi

−n+1/2, n ∈ Z+

on the NS ground state. The first excited states in the NS–sector is the SO(D − 2) vector

ψi
− 1

2
|0⟩ with mass α′m2 =

3(10 − D)
48

(38)

14When associating (half)integer moded fermionic oscillators for ψi with the (NS) R sectors, we have assumed that the

the bosonic field Xi has integer moded oscillators, i.e. satisfies NN or DD boundary conditions. The precise definition

is that in the R sector the moding of bosons and fermions is the same whereas in the NS sector they are different. This

means in particular that for ND and DN b.c.’s the (half) integer moded fermions belong to the NS (R) sector.
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and, therefore, the critical dimension of the fermionic string is D = 10. One can show that at each
positive mass level the states combine into (reducible) tensor representations of SO(9). Note that
when enumerating all states in the NS sector, one has to take into account that (ψi

r)2 = 0 for each i

and r. This is the Pauli exclusion principle for the world-sheet fermions. Note that even though we
are discussing world-sheet fermions here, the excited string states they create are space-time bosons.
This will be different in the R–sector which we discuss next.

In the R–sector we have the zero modes ψi
0 which require special treatment. They satisfy the

Clifford algebra
{ψi

0, ψ
j
0} = δij , i, j = 1, . . . , 8 . (39)

The representation of (39) is essentially unique15 and given in terms of Dirac matrices, i.e. ψi
0 = 1√

2
Γi,

Γi being the 16× 16 Dirac-matrices of SO(8). The ψi
0 commute with the mass operator which means

that the ground state in the R–sector is degenerate. In fact it has zero mass since the zero-point
energy vanishes in the R–sector. The different ground states are transformed into each other via the
action of ψi

0. But this means that the ground-state in the R–sector, which we will denote by |A⟩,
A = 1, . . . , 16, transforms as a spinor of SO(8) and that

ψi
0|A⟩ =

1√
2

(
Γi

)A

B
|B⟩ . (40)

We can reach excited states by acting on the ground states with oscillators ψi
−n with n ∈ Z+. Of course,

the Pauli exclusion principle (ψi
n)2 = 0, ∀n and i, has to be taken into account when enumerating

the states. Since the oscillators carry a SO(8) vector index, all states in the R–sector transform in a
spinor representation of SO(8) and are thus space-time fermions.

The 16-dimensional spinor representation of SO(8) is reducible, its irreducible components being
the eight-dimensional chiral spinors which span the subspaces with eigenvalue ±1 of the chirality
operator Γ9 ≡ Γ1 · · ·Γ8 which satisfies (Γ9)2 = 1. (Spinors with definite Γ9 eigenvalue are called Weyl
spinors.16) To distinguish the two irreducible components we split the spinor index as follows: A =
(a, ȧ) and thus |A⟩ = |a⟩ ⊕ |ȧ⟩ with Γ9|a⟩ = +|a⟩ and Γ9|ȧ⟩ = −|ȧ⟩. The two eight-dimensional spinor
representations are often denoted as 8s and 8c. SO(8) has a third eight-dimensional representation –
the vector on which SO(8) acts as a rotation – often denoted as 8v.

For the closed string we have to impose periodicity conditions. In the case of real fermions there

15In even dimensions the Clifford algebra has only one inequivalent irreducible representation whereas in odd dimensions

it has two. This representation is in terms of Dirac matrices of dimension 2[D/2] where [D/2] is the integer part of D/2.

The two representations for D odd differ by the sign of ΓD ∝ Γ1 · · ·ΓD−1. A proof of this statement and many other

useful properties of Dirac matrices in arbitrary dimensions can be found in [40].
16Weyl spinors exist in all even dimensions. For D = 2n we define Γ2n+1 = α

∏2n
i=1 Γi with the phase α chosen such

that (Γ2n+1)2 = 1. Then Weyl spinors are eigenspinors of Γ2n+1. In odd dimensions they do not exist since there
∏D

i=1 Γi ∝ 1.
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are two options: periodic or anti-periodic. Both options leave the action invariant.17 This leads to
the following options:18

ψi(τ, σ + π) = ηψi(τ, σ) and ψ̃i(τ, σ + π) = η̃ψi(τ, σ) with η, η̃ = ±1 . (41)

If we now make a mode expansion we need to introduce two sets of oscillators, ψi
r and ψ̃i

r, where,
depending on the choices for η and η̃, the mode number r is either integer (periodic) or half-integer
(anti-periodic). This gives four possible sectors

• (NS,NS) : η = η̃ = −1 , (R,R) : η = η̃ = 1 (space-time bosons),

• (NS,R) : η = −η̃ = −1 , (R,NS) : η = −η̃ = 1 (space-time fermions).

Quantization proceeds as for the open string only that we now have two sets of fermionic oscillators,
each contributing to the Hamiltonian as in (35) and each satisfying the anti-commutation relations
(36). Also each set of fermionic oscillators contributes to the zero point point energy and the level
matching condition (27) now involves the number operators for bosonic and fermionic oscillators. Note
that the level-matching condition forbids e.g. a tachyon in the (NS,R) sector.

(R,R)–sector ground states are bispinors

|A⟩L ⊗ |B⟩R = |a⟩L ⊗ |b⟩R ⊕ |a⟩L ⊗ |ḃ⟩R ⊕ |ȧ⟩L ⊗ |b⟩R ⊕ |ȧ⟩L ⊗ |ḃ⟩R. (42)

As for the open string the zero-point energy vanishes in the R–sectors and these states give rise to
massless bosonic fields in space-time (cf. below).

It turns out that the theory we have constructed is not consistent. One sign of the inconsistency is
the appearance of the tachyonic ground state in the (NS,NS)-sector. A more severe inconsistency is the
lack of modular invariance of the one-loop partition function. We do not intend to elaborate on this
very much but try to convey the main point of the argument and then simply state the consequences.

We had discussed diffeomorphism invariance of the Polyakov action. Together with Weyl invariance
it is necessary to ensure that with the introduction of the world-sheet metric no new degrees of
freedom are added, or in other words, that the three degrees of freedom of γαβ can be gauged away.
This is a non-trivial requirement for the quantized theory and, in fact, quantization often breaks
symmetries which the classical action possesses. One then speaks of anomalies. In string theory one
must ensure that diffeomorphism and Weyl invariance are still present after quantization. One can
show that this requirement also fixes the critical dimension to the values we found. However there
are additional restrictions which one encounters when one studies the diffeomorphism invariance of
correlation functions on world-sheets of higher genus, e.g. the closed string zero-point function at one

17The interpretation of Xi as space-time coordinates does not allow for more complicated periodicity conditions of the

bosons if we want to describe a string moving in Minkowski space-time, even though other possibilities are compatible

with the reality of X and the invariance of the action. When one considers compactifications of string theory such

possibilities are, however, considered.
18We have to impose the same conditions for all i if we want to preserve SO(D − 2) invariance.
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loop, i.e. with the world-sheet being a torus. This is also called the closed string partition function
and it can be shown to be Tr

(
e2πiτHl.c.e−2πiτ̄H̃l.c.

)
. The trace is over all states of the closed string,

not necessarily satisfying the physical state condition. We have split the contributions from left and
right movers to the Hamiltonian and have denoted the two contributions by Hl.c. and H̃l.c.. τ is the
modular parameter of the torus. We can define the torus as R/Λ, where Λ is a two-dimensional lattice.
This lattice can be specified by fixing a point τ = τ1 + iτ2, τ2 > 0 in the upper half of the complex
plane. The generators of the lattice are then the two vectors (1, 0) and (τ1, τ2), where we have used
Weyl invariance to scale the length of the first generator to one. One now uses the fact that not all
choices for τ in the upper half-plane lead to diffeomorphically different tori: if τ and τ ′ are related by
a PSL(2, Z) transformation, i.e. if τ ′ = aτ+b

cτ+d with a, b, c, d ∈ Z and ad − bc = 1, the two tori defined
by τ and τ ′ are diffeomorphic. In fact, the two lattices are the same, only the choice of generators
is different. The diffeomorphism cannot be smoothly deformed to the identity; it is a so-called large
diffeomorphism. Nevertheless, the partition function should be invariant under these diffeomorphisms
or, in other words, it must be modular invariant (PSL(2, Z) is the modular group).

This condition, namely that the one-loop partition function be invariant under modular trans-
formations, will not be satisfied if one sums over all states of the closed fermionic string. To get a
modular invariant expression, one has to truncate the spectrum, or, in other words, one has to intro-
duce a suitable projection operator P and compute Tr(Pe2πiτHl.c.e−2πiτ̄H̃l.c.). The necessity for such
a projection to arrive at a consistent string theory was first realized by Gliozzi-Scherk-Olive and is
called GSO-projection. For the closed fermionic string there are two possible GSO projections which
lead to a tachyon free spectrum. We will not describe them in any detail but simply state the resulting
massless spectra.

In both cases the (NS,NS)–sector contributes a graviton Gij , an anti-symmetric tensor Bij and a
dilaton Φ. In contrast to the bosonic theory these states are created from the (NS,NS) vacuum with
fermionic oscillators, i.e. ψi

−1/2ψ̃
j
−1/2|0⟩NS,NS.

The (R,R)–sectors of the two theories are different. The two consistent choices are:19

• type IIA with (R,R) ground state |a⟩L ⊗ |ḃ⟩R (not chiral),

• type IIB with (R,R) ground state |a⟩L ⊗ |b⟩R (chiral).

The statement about the chirality means the following: in the type IIA theory the part of the spectrum
with Γ9 eigenvalue +1 is identical to the part with eigenvalue −1. For the type IIB theory this is not
true. This is already obvious from looking at the (R,R)–ground states.

The (R,R) ground states transform under reducible components of SO(8), namely as 8s × 8c and
8s × 8s for type IIA and IIB, respectively. To extract the irreducible pieces we make a short aside and

19|ȧ⟩L ⊗ |b⟩R and |ȧ⟩L ⊗ |ḃ⟩R are equivalent to these two choices.
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discuss the index structure of Dirac matrices. An arbitrary Dirac matrix Γ can be decomposed into

block form:20 ΓAB =

(
Γab Γaḃ

Γȧb Γȧḃ

)
. We now define the anti-symmetrized products of Dirac matrices:

Γi1...ip = Γ[i1...ip] ≡ 1
p!(Γ

i1 · · ·Γip ± permutations). For p = 0 this is the charge-conjugation matrix
which is also used to raise and lower spinor indices. One can choose a basis in which either the two
diagonal or the two off-diagonal blocks of each of these matrices is zero. More concretely, one finds:
D = 4n: For p even the blocks with mixed indices vanish and for p odd the blocks with the same

indices vanish. D = 4n + 2: here the situation is opposite w.r.t. p. In this basis ΓD+1 =

(
1 0
0 −1

)
.

For D = 2n + 1 there is no chirality and hence no distinction between dotted and un-dotted indices.
Using these results, which can be proven by simple SO(n) group theory or by explicitly constructing
the Dirac matrices, we get the following decompositions into irreducible components:

Type IIA: |a⟩ ⊗ |ḃ⟩ = Γi
aḃ
|i⟩ ⊕ Γijk

aḃ
|ijk⟩

Type IIB: |a⟩ ⊗ |b⟩ = Cab|·⟩ ⊕ Γij
ab|ij⟩ ⊕ Γijkl

ab |ijkl⟩

Another way of writing this is 8s ⊗ 8c = 8v ⊕ 56 and 8s ⊗ 8s = 1 ⊕ 28 ⊕ 35+, where 35+ denotes
the self-dual fourth rank tensor representation of SO(8). In fact, one can show that Γijkl

ab is self-dual
whereas Γijkl

ȧḃ
is anti-self-dual.

To summarize: the massless bosonic excitation spectra of type II theories are

(NS,NS) IIA/IIB: Gµν , Bµν and Φ
(R,R) IIA: 1-form Aµ, 3-form Aµνρ

IIB: scalar χ, 2-form B′
µν , 4-form Aµνρσ with self-dual field strength F = dA

We have written the space-time fields in covariant form. The light-cone components are not directly
visible in the light-cone gauge, but in the critical dimension Lorentz-invariance is preserved and all
bosonic fields must transform as tensors of the full Lorentz group SO(1, 9). Nevertheless, the number
of physical degrees of freedom they present is given by the counting in light-cone gauge. The reduction
is due to gauge invariances and the equations of motion these space-time fields satisfy.

So far we have only discussed the bosonic degrees of freedom. The remaining two sectors, (R,NS)
and (NS,R) contain space-time fermions. In fact, one can show that the resulting spectrum has N = 2
space-time supersymmetry.

Supersymmetry (SUSY) is a generalization of Poincaré symmetry. In addition to having only
bosonic generators which transform in tensor representations of the Lorentz-group (Lorentz-transfor-
mations, rotations and translations) the supersymmetry algebra also has fermionic generators, called
supercharges. The algebra is a Z2 graded Lie-algebra, since the supercharges satisfy anti-commutation
relations.21 The corresponding transformation parameters ε are fermionic. They transform in spinor

20Properties of Dirac matrices are discussed in some detail in the lectures by J. Zanelli in these volume.
21More details on Supersymmetry and Supergravity and on the supersymmetry algebra can be found in the lectures

by J. Zanelli.
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representations and transform bosons into fermions and vice versa. Schematically δεB = εF and
δεF = ε∇B. Saying that we have N = 2 supersymmetry in D = 10 means that we have altogether 32
supercharges which form two Majorana-Weyl spinors of SO(1, 9) which we will call QL and QR, where
the subscript means that one originates from the left and the other from the right-moving sector of
the closed string theory. The distinction between type IIA and IIB is that in the former case the two
Majorana-Weyl spinors have opposite chirality whereas they have equal chirality in the latter case.
The same holds for the supersymmetry parameters which we will call εL and εR.

One of the hallmarks of linear representations of supersymmetry is that each of its irreducible
representations contains the same number of bosonic and fermionic degrees of freedom; see, however,
[41] and J. Zanelli’s contribution in this volume. Since we will not need the fermionic part of the
spectrum in the subsequent discussion, we will not discuss it. It can be reconstructed from the
bosonic part of the spectrum via the supersymmetry algebra.

Supersymmetric field theories possess a supersymmetric spectrum and the action is invariant under
the supersymmetry algebra. If the SUSY parameters are constants, one deals with global supersymme-
try. If they depend on space-time, the theory necessarily contains gravity and one has a supergravity
(SUGRA) theory. In the case of the type II string theories, one finds that their low-energy effective
actions are in fact the type IIA and type IIB N = 2 supergravity theories in ten dimensions.

One can show that the space-time supersymmetry of the type II string theories is a consequence of
a world-sheet supersymmetry of the Polyakov action for the fermionic string. This is the generalization
of the statement that the absence of anomalies of the local world-sheet symmetries in the bosonic string
leads to the critical dimension which also guarantees space-time Lorentz symmetry. Here anomaly
freedom of the world-sheet supersymmetry leads to space-time supersymmetry.

So far we have discussed the supersymmetry of the closed string sector. If we add D-branes we get
theories with open and closed strings. We have seen that in the closed string QL and QR are associated
with the left– and right–moving sectors of the world-sheet theory. Since they are coupled by the open
string boundary conditions, one gets a reduction of the number of independent supercharges from 32
to 16.

One can show that in the presence of a Dp-brane whose world-volume fills the x0, . . . , xp directions,
the surviving SUSY generators are ε̄LQL + ε̄RQR where εL,R are related as

εL = ±Γ0Γ1 · · ·ΓpεR . (43)

The sign choice distinguishes between a brane and an anti-brane. We multiply both sides of this
equation by the SO(1, 9) chirality matrix Γ = Γ0 · · ·Γ9 and commute Γ on the r.h.s. through the
(p + 1) Γi’s. This produces a factor (−1)p+1. If we now use that ΓεL = ΓεR for IIB and ΓεL = −ΓεR

for IIA, we find that SUSY preserving Dp-branes exist in type IIB for p odd and in type IIA for p

even. In the other cases one finds that the spectrum contains tachyons so that e.g. a D3 brane in type
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IIA is unstable.22 One can also work out the condition under which different species of branes, either
for different p and p′ and/or for different orientations in space-time, preserve some supersymmetry.
One finds e.g. that for non-parallel branes one can preserve at most eight SUSY charges.

SUSY preserving branes are so-called BPS 23 configurations. They can be characterized by the
representation theory of the SYSU algebra. We will illustrate this on a simple example, which is
relavant to supersymmetric quantum mechanics, but the idea generalizes to field theory. Consider
the algebra generated by two bosonic generators H and Z and two fermionic generators Q1 and Q2

(supercharges). The only non-zero (anti)commutators are {Q1, Q
†
1} = H + Z, {Q2, Q

†
2} = H − Z. In

particular, since [H, Z] = 0, they can be diagonalized simultaneously. Consider an eigenstate |ψ⟩. Its
eigenvalues h and z satisfy the inequality h ∓ z = ⟨ψ|[Q1,2, Q

†
1,2]|ψ⟩ = ||Q†

1,2|ψ⟩||2 + ||Q1,2|ψ⟩||2 ≥ 0,
i.e. h ≥ |z|. This is the BPS-bound. For h > |z|, an irreducible SUSY multiplet consists of four
states: the rescaled generators q1,2 = Q1,2/

√
h ± z satisfy the algebra of two fermionic oscillators, and

the multiplet consists of the following four states: |0⟩, q†1|0⟩, q†2|0⟩, q†1q
†
2|0⟩. The vacuum |0⟩ satisfies

q1,2|0⟩ = 0. If, however, h = |z|, one of the two supercharges decouples and we are left with just one
fermionic oscillator. The multiplet then consists of two rather than four states. The states of these
‘short multiplets’ are called BPS states. E.g. for h = z, Q2 decouples and both Q2 and Q†

2 annihilate
the eigenstate |ψ⟩. In the context of our discussion of branes in lecture 3, h is their mass and z their
(R,R)-charge.

Given a SUSY preserving brane, we can always add more branes of the same type without breaking
SUSY further. These branes do not have to be coincident. As long as they are parallel one also obtains
a BPS configuration. These configurations are, as a consequence of SUSY, stable, i.e. no net force acts
between the branes. However, a brane-anti-brane system breaks all supersymmetries and is unstable.
This is also true for generic configurations of Dp- and Dp′-branes. The equations (43) have no solution.

The low-energy effective actions of the massless excitations of the open string are, to lowest order
in α′, Super-Yang-Mills (SYM) theories on the world-volumes of the branes where the gauge group is
determined by the brane configuration. For instance, in the case of N parallel D3 branes one obtains
a four-dimensional N = 4 SYM theory with gauge group U(N).

At the end of our discussion of the bosonic string we briefly discussed the generalization of the
Polyakov action which incorporates background values for the massless space-time fields. The same
generalization also holds for the massless fields of the (NS,NS) sector of the type II string theories.
However, within the NSR formulation that we have been using, no such coupling to fields in the (R,R)
sector is known.

Lecture 3: Branes from supergravity
22The fate of tachyonic theories has been much discussed recently, see e.g. [42].
23Bogomolnyi-Prasad-Sommerfield
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In the previous lecture we have seen that Dirichlet boundary conditions of the open string ends
implies the existence of D-branes and we have argued that they are dynamical objects of the theory.
One might wonder whether they are a necessity. After all, one might decide to impose only Neumann
boundary conditions. This would correspond to the presence of space-time filling D9 branes which can
have no dynamics. There are, however, various ways to show that lower dimensional branes must also
be considered. One is based on T-duality, which we will not discuss here, except for saying that this
is a symmetry of string theory which changes the boundary conditions from Neumann to Dirichlet
and vice versa. Another argument is based on the low-energy effective action for the massless string
excitations where one finds brane solutions as solitonic solutions of the classical equations of motion.
This is the route we will follow.

The discussion in this section mainly involves the bosonic fields. For the type II theories they
were summarized above. Their low energy dynamics is governed by a low energy effective action
(leea). In the limit gs → 0, which suppresses string loop effects and α′ → 0, which renders all massive
string modes infinitely heavy and they thus decouple, the leea’s are the type IIA and IIB supergravity
theories. They involve only terms with at most two derivatives. Higher derivative terms, such as R2

would be multiplied by additional powers of α′. They are suppressed in the low energy limit where all
external momenta satisfy k ≪ 1/

√
α′. We will not write down the complete leea; the interested reader

may find it e.g. in [23]. We will write down the relevant terms which are needed for finding brane
solutions. But first we want to understand which fields such a solution will involve. For this purpose
we clarify the relevance of the anti-symmetric tensor fields which appear in the massless spectra.

Recall that a charged particle in four dimensions couples to a background vector (1-form) potential
Aµ via the term

qe

∫

C1

A (44)

in the action. Here qe is the (electric) charge of the particle and C1 its world-line through space-time.
The charged particle is also a source for the field. If F = dA is the total field strength (including the
one generated by the particle), qe can be determined by integrating the dual field strength ∗F over a
2-sphere surrounding the particle (but no other source for F )

qe =
∫

S2
∗F . (45)

One can modify Maxwell theory to allow magnetically charged objects. In 3 + 1 dimensions these are
also point particles (magnetic monopoles) and their magnetic charge is

qm =
∫

S2
F . (46)

The electric and magnetic charges are not independent from each other. They satisfy the Dirac
quantization condition

qeqm = 2πn , n ∈ Z . (47)
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This can be derived by requiring single-valuedness of the wave-function of an electrically charged
particle in the presence of a magnetic monopole.

There is a two-fold generalization to the above, namely going from four to D dimensions and
introducing higher-dimensional objects [43, 44]. A p-dimensional (electrically) charged object couples
to a (p + 1)-form potential via

qe

∫

Cp+1

A(p+1) , (48)

where Cp+1 is the object’s world-volume. As an example, consider the coupling of the fundamental
string to the (NS,NS) 2-form B-field

∫

Σ
B =

∫
dτdσ εαβ∂αXµ∂βXνBµν . (49)

Here Bαβ = ∂αXµ∂βXνBµν is the pull-back of the B-field from space-time to the string world-sheet.
We have encountered this coupling in eq.(29). The objects which couple to the (p+1)-form potentials
originating from the (R,R)-sector are called p-branes. The electric charge of a p-brane is

qe =
∫

SD−p−2
(∗F )(D−p−2)

Dp−brane

SD−p−2
(50)

The position of a p-brane is given by a point in the (D−p−1)-dimensional space transverse to it.
In this transverse space it can be surrounded by a (large) (D−p−2)-sphere. This expression for the
electric charge corresponds to an action of the form S = − 1

2(p+2)!

∫
F 2

(p+2) + qe
∫
Cp+1

A(p+1). It leads
to the equation of motion d ∗ F = qeδ∥, which, upon integration over the transverse space and use
of Stokes’s theorem gives (50); δ∥ is the delta function with support along the world-volume of the
brane.

Given the electrically charged branes, what are the dual magnetically charged objects? Their
charges should be given by

qm =
∫

Sp+2
F (p+2) . (51)

Since a (p+2)-sphere surrounds a (D−p−4)-dimensional object, we have an electric-magnetic duality
between p-branes and (D−p−4)-branes. Again, their charges must obey the Dirac quantization
condition. A brief comment: in four dimensions, in addition to electrically charged particles and
magnetically charged monopoles one can also have dyons, which carry electric and magnetic charge.
For higher dimensional objects this is in general not possible as the dual objects carrying electric
and magnetic charge generally have different dimensions. The same holds for self-dual objects which
couple to a potential with self-dual field strength. In D = 10 the three brane of type IIB string theory
is self-dual.
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From the above discussion we conclude that a p-brane solution of the equations of motion should
contain a non-trivial (R,R) A(p+1) background field configuration.24 In addition it must contain the
space-time metric which couples to the energy-momentum of the A(p+1). We now write those terms
of the leea which contain the metric and A(p+1):

S =
1

2κ2

∫
d10x

√
−g

(
R− 1

2
gµν∂µφ∂νφ − 1

2(p + 2)!
e

3−p
2 φF 2

(p+2)

)
(52)

where F 2
(p+2) = Fµ0...µp+1F

µ0...µp+1 and κ2 = 1
2(2π)7α′4g2

s . We have chosen the action in the Einstein

frame in which the metric gµν is related to the string-frame metric Gµν via Gµν = e
1
2φgµν . The

equation of motion for the dilaton, ∇2φ = 3−p
4(p+2)!e

3−p
2 φF 2

(p+2), implies that for non-vanishing F 2
(p+2)

the dilaton cannot be constant unless p = 3. This is in fact the case we will eventually be interested
in. However, for p = 3 the above action is not valid since F 2

(5) = 0 for self-dual F(5). Nevertheless, the
equations of motion are the same as those following from (52) if one multiplies the F 2 term by 1/2
and imposes the self-duality condition separately [45]. For p = 3 we give the solution in (62).

It is now easy to set up the complete system of equations of motion. To solve them is an entirely
different matter altogether. For this we have to make an ansatz which reflects the symmetries of the
solution we are looking for. We are interested in brane solutions which extend in say, the (x0, x1, . . . , xp)
directions, which we call xµ. The ansatz for the metric then has to respect Poincaré symmetry along
the brane or, in other words, the complete solution should not depend on xµ. In addition we assume
spherical symmetry in the transverse space with coordinates ym, m = 1, . . . , 9 − p. This leads to the
following ansatz for an electrically charged brane at y = 0:25

ds2 = A(r)ηµνdxµdxν + B(r)δmndymdyn , (53)

eφ = C(r) , (54)

Aµ0···µp = εµ0···µpD(r) , (55)

with r2 = δmnymyn. Inserting this ansatz into the equations of motion leads to a system of second
order ordinary non-linear differential equations. The simplest non-trivial solution which approaches
ten-dimensional empty Minkowski-space for r → ∞ and which is valid for all r > 0 is (details can be
found e.g. in [28, 29]):26,27

A(r) = f(r)
p−7
8 , B(r) = f(r)

p+1
8 , C(r) = f(r)

3−p
4 , D(r) = f(r)−1, (56)

24For the fundamental string and its dual object, the NS five-brane, we would need a non-trivial (NS,NS) B-field

background. We will not discuss them here.
25For the magnetic dual we would make an ansatz for ∗F and for p = 3 an ansatz which leads to a self-dual field

strength.
26Since we are looking for supersymmetry preserving solutions, it is in fact simpler to analyze the SUSY condition.

This amounts to requiring that the supersymmetry transformation of any fermionic field F vanishes, i.e. δϵF = 0. Here

ϵ parametrizes the unbroken supersymmetries. This leads to first oder differential equations from which the second order

equations derived from the effective SUGRA action can be recovered by iteration. The SUSY preserving solutions are

in fact the simplest ones; they have the highest symmetry.
27This solution is valid for p < 7. For p = 7, (f − 1) ∝ ln(r).

27



where
f(r) = 1 +

kpN

r7−p
, N ∈ Z (57)

is a solution to the Laplace equation in the transverse (9 − p)-dimensional space and

kp =
2κ2τp

(7 − p)Ω8−p
. (58)

Ω8−p is the volume of S8−p.28 τp is the tension (mass per unit volume) of the brane which is defined
via

Nτp =
∫

d9−pxΘ00 . (59)

The integral is over the transverse space. Here Θµν is energy-momentum pseudo-tensor of the system
which is defined as follows. Expand the metric which we found above around flat space as gµν =
ηµν + hµν and define Rµν = R(1)

µν + O(h2).29 Then Θµν is defined as R(1)
µν − 1

2ηµνR(1) ≡ κ2Θµν

(R(1) = ηµνR(1)
µν ). One can read this as the wave equation for a spin-two particle (the graviton)

with source given by the energy of the gravitational field and matter. For the metric (53) 2κ2Θ00 =
p✷A(r) + (8 − p)✷B(r) where ✷ = ∂2

r + 8−p
r ∂r. What we have computed here is the ADM (for

Arnowitt-Deser-Misner) tension of the brane. For further reading, see e.g. [46, 47]. If one computes
the electric charge density of the brane, c.f. eq.(50) one finds qe = N

√
2κτp. This follows most easily

from the following observation. A(p+1) satisfies ∂µ(√ge
3−p
2 φFµ01...p) = 2κ2τpNδ(9−p)(y), i.e. there is a

source for A(p+1), the brane.30 In fact, one can incorporate the source term into the action by adding

Sbrane = −Nτp

∫

C(p+1)

dp+1ξe
p−3
4 φ

√
−det ĝµν + Nτp

∫

C(p+1)

A(p+1) . (60)

where ĝµν is the induced metric on the brane which, in static gauge, where we identify ξµ = xµ, is
simply ĝµν = A(r)ηµν . The first term is the analogue of the Nambu-Goto action for the fundamental
string: it is the ‘area’ of the world-volume in string frame (expressed in the Einstein frame metric).

The crucial observation of Polchinski [54] was that the SUSY preserving p-brane solutions of the
SUGRA equations of motion are the same objects as the Dp-branes. Before we discuss the implications
(only closed strings in type II, no explicit gauge fields, etc) let us briefly review the arguments in favour
of this identification. D-branes are BPS states. One consequence is that a stack of parallel D-branes
is stable. The p-brane solution (56) can be easily generalized to a stack of parallel branes at y⃗i by
the substitution f → 1 +

∑N
i=1

kp

|y⃗−y⃗i|7−p . This is a static solution which can be shown to be stable.
From the results of the previous lecture it follows that the allowed dimensions of half SUSY preserving
D-branes are correlated with the massless (R,R) states. This is also true for the SUGRA branes which
carry (R,R) charge. It thus remains to be shown that D-branes also carry (R,R) charge and that the
ratio between their charge and tension is the same as for the p-brane. We do not give details of this

28Ωd = 2π(d+1)/2

Γ((d+1)/2) .
29Explicitly, this is R(1)

µν = 1
2 (∂ρ∂µhρ

ν + ∂ρ∂νhρ
µ − ∂ρ∂ρhµν − ∂µ∂νhρ

ρ) and R(1) = ∂µ∂νhµν − ∂ρ∂ρhµ
µ.

30The definition of electric charge that follows from (52) is qe = 1√
2κ

∫
S8−p e

3−p
2 φ ∗ F .
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calculation which was first performed by Polchinski but we will try to convey the idea. In order to
compute the tension of the brane we need to find the strength with which it couples to a graviton and
in order to find its charge we need the coupling to the (R,R) fields. The string diagrams which are
responsible for these couplings are a disk with a graviton or (R,R) p-form vertex operator inserted.

RR vertex operator into the
open string worldïsheet

insertion of graviton or

The boundary of the disc is stuck on the D-brane, as shown in the picture on the right. In the
type II string theories D-branes are incorporated as so-called boundary states. The subtlety with the
calculation is to fix the absolute normalization of the boundary states which is needed in order to get
the correct coupling. The way one does the calculation is to compute the interaction between two
parallel D-branes. They interact via exchange of closed strings. The relevant diagram is shown below.

two parallel Dïbranes
interaction between

In this closed string tree-level exchange diagram world-sheet time runs along the axis of the cylinder.
However, we may equally well consider this diagram as an open string one-loop diagram, with world-
sheet time running around the cylinder. This is just the open string partition function which can
be computed straightforwardly. One finds a zero result which can be understood from the fact that
this brane configuration preserves half of the supersymmetry. The attractive force mediated by the
exchange of dilatons and gravitons and the repulsive force due to anti-symmetric tensor exchange
cancel. This is the BPS or no-force property. One can separate these two contributions as they belong
to different sectors ((NS,NS), vs. (R,R)). Comparing these two contributions to the amplitude to a
field theoretic calculation one finds for the tension of a single Dp-brane

τp =
√

π

κ
(2πls)(3−p) =

1
(2π)pgsl

p+1
s

. (61)
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Furthermore, one finds the same ratio between charge and tension as for the SUGRA p-brane solutions.
Up to numerical factors the expression for the tension can be easily understood: the powers of ls =√

α′ are needed for dimensional reasons. In natural units, where ! = c = 1, the tension, which
is mass/volume has dimension (length)−(p+1). The dependence on the string coupling constant,
τp ∼ 1/gs follows from the fact that the tension is computed from a disk diagram with Euler number
+1. At weak coupling, gs → 0, the D-branes are very heavy and are not visible in the perturbative
excitation spectrum of the type II string theories.

Following Polchinski, we have argued that the D-branes, which have a microscopic description in
open string theory, are in fact the same objects as the classical p-brane solutions of the low energy
effective SUGRA theories which know nothing about open string modes. The two descriptions are
good in different regimes of the parameter space. The D-brane picture is good at weak string coupling
where the string is perturbative. In the presence of N D-branes, the effective coupling is Ngs, which
must stay small. Also, we have developed the D-brane picture in Minkowski space-time. This assumes
that we can neglect the back reaction of the brane on the background geometry. This is justified if the
number of branes which carry energy-momentum, is small. The SUGRA picture also requires weak
string coupling since that was assumed in the construction of the leea. In addition, the curvature of
space-time must stay small everywhere (in string units). This requires that gsN is large since this is
the condition that the characteristic length scale in the solution is bigger than the string scale.

An important difference of the two descriptions is that while the D-branes couple to open strings
and carry a gauge theory on their world-volume, there are no signs of open strings and gauge fields
in the p-brane picture. Nevertheless, if the two descriptions are ‘dual’ to each other, they should
describe the same physics. The AdS/CFT correspondence, which we will discuss in the final lecture,
establishes the relation between the two pictures.

The solutions we have discussed here are extremal p-brane solutions. In appropriately chosen units
they satisfy the equality mass = charge (i.e. the coefficients in front of the two terms in (60) are equal).
This equality is known as the Bogomolnyi bound and general solutions satisfy mass ≥ charge. The
solutions which do not satisfy the bound are called non-extremal. They break all 32 supercharges. The
nomenclature here is the same as for charged (Reissner-Nordstroem) black holes who are characterized
by two parameters, their mass and charge. The extremal solution has a degenerate horizon at r = 0,
gtt has a double zero there. The non-extremal solutions have an inner and an outer horizon. The
curvature blows up at the inner horizon but the singularity disappears in the extremal limit. The
construction of non-extremal solutions can be found in [28, 29].

Lecture 4: The AdS/CFT correspondence

In lectures two and three we have provided background material of string theory and classical
solutions of the supergravity equations of motion, which describe the dynamics of the massless string
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excitations at low energies. One of the main results was the identification of D-branes and brane
solutions in supergravity as two descriptions of the same objects. In this lecture we will, after providing
additional background material, formulate the AdS/CFT correspondence, also known as Maldacena
conjecture. This provides a precise identification between supergravity on the one side and gauge
theory (on the brane) on the other side. Of course, this assumes that we are in a particular corner of
parameter space, which we will specify. From now on we only consider the case p = 3, the self-dual
three-brane solution of type IIB supergravity with a four-dimensional world-volume. For N coincident
three-branes the solution is

ds2 = f(r)−1/2
(
−dt2 + dx2

)
+ f(r)1/2

(
dr2 + r2dΩ2

5

)
,

F5 = (1 + ∗)df−1 ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

Φ = φ0 = const.

f(r) = 1 +
R4

r4
, R4 ≡ 4πgsα

′2N .

(62)

dΩ2
5 is the length element on S5 and ∗ the Hodge star. The constant term in f(r) is an integration

constant and it was chosen such that
(
ds2

)
brane

−→
(
ds2

)
Mink.

(63)

as r → ∞. We can also look at the limit of the metric as r → 0 (i.e. the near-horizon limit). Then

f(r) = 1 +
R4

r4
−→ R4

r4
, (64)

and
(
ds2

)
brane

−→ r2

R2

(
−dt2 + dx2

)
+

R2

r2
dr2 + R2dΩ2

5 . (65)

After the change of variables ρ ≡ R2

r this metric is

ds2 =
R2

ρ2

(
−dt2 + dx2 + dρ2

)

︸ ︷︷ ︸(
ds2

)
AdS5

+ R2dΩ2
5

︸ ︷︷ ︸(
ds2

)
S5

(66)

which may be recognized as the metric on the product-space AdS5 × S5.

Before saying more about anti-de Sitter space we make some remarks. As shown above, the 3-
brane metric interpolates between 10-dimensional Minkowski space, being the asymptotic space-time
for r → ∞ and the near-horizon geometry AdS5×S5 at r → 0. The geometries in the extreme regions
have higher symmetries (bigger isometry groups and more supersymmetry) than the brane solution
has. Specifically, while (62) preserves 16 supercharges, both Minkowski space and AdS5 × S5 are
invariant under 32 supercharges. The Minkowski space is of course just the type IIB vacuum which is
an exact perturbative ground state of string theory, i.e. to all orders in α′ and gs. The same can be
shown to be true for AdS5 × S5, but it is not true for the interpolating solution (62) [48].
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Both AdSd and Sd are symmetric spaces with curvature tensors31

Rijkl = ± 1
R2

(
gikgjl − gilgjk

)
, Rij = ±d − 1

R2
gij , R = ±d(d − 1)

R2
. (67)

The upper (lower) sign is for anti-de Sitter space (the sphere). They are conformally flat, i.e. their
metrics are proportional to the flat Minkowski (Euclidean) metric.32 They thus have have vanishing
Weyl-tensor. They are solutions of the Einstein equations with cosmological constant derived from
the action

S =
∫

ddx
√
−g(R + Λ) , Λ = ∓(d − 2)(d − 1)

R2
. (68)

For the AdS/CFT correspondence both anti-de-Sitter space and the conformal group play a central
rôle. We will return to AdS space after the following brief introduction to the latter.

The Poincaré group is familiar from introductory physics courses as the invariance group of
(length)2 in Minkowski space, i.e. the invariance group of (ds)2 = ηµνdxµdxν , µ, ν = 0, 1, . . . , D −
1. The Poincaré transformations are xµ → Λµ

νxν + aµ where the constant matrix Λµ
ν satisfies

ηµνΛµ
ρΛν

σ = ηρσ and aµ is a constant vector. Λ generates Lorentz transformations and a transla-
tions. The conformal group is the invariance group of the light-cone, i.e. of all transformations which
leave (ds)2 = 0 invariant. Clearly this group contains the Poincaré group as a subgroup, but it is
strictly bigger. For instance, constant rescalings xµ → eλxµ and inversion xµ → xµ/x2 also leave the
light-cone invariant. If we follow an inversion by a translation by b and a second inversion, we arrive
at the special conformal transformations xµ → xµ+x2bµ

1+2b·x+b2x2 which, in contrast to the inversion, can be
expanded around the identity transformation.

We will now proceed as follows. We will show that infinitesimal translations Pµ, Lorentz transfor-
mations Lµν , rescalings (D) and special conformal transformations Kµ generate the 1

2(D + 1)(D + 2)
parameter conformal group in D-dimensional Minkowski space. We will then show that the conformal
group is isomorphic to SO(D, 2). It is clear from the form of the special conformal transformations
that the conformal group acts non-linearly on Minkowski-space. But being isomorphic to SO(D, 2) it
acts linearly on RD+2 endowed with a metric with signature ((+)D, (−)2). We will then define anti-de
Sitter space as a hypersurface in this space on which SO(D, 2) acts isometrically.

Under infinitesimal diffeomorphisms xµ → x′µ = xµ + ξµ(x) the Minkowski metric changes as
ηµν → ηµν + ∂µξν + ∂νξµ. This is proportional to the original metric if ∂µξν + ∂νξµ = fηµν for some
function f(x). Taking the trace of this equation gives f = 2

d(∂ ·ξ) which leads to the conformal Killing
equation

∂µξν + ∂νξµ =
2
d
(∂ · ξ)ηµν . (69)

31Our conventions for the curvature tensors are [∇m,∇n]Vp = −Rmnp
qVq, Rmn = Rp

mpn, R = gmnRmn.
32This is obvious for AdS from (66). For Sd, defined as

∑d+1
i=1 (xi)2 = R2 one sees this after defining the stereographic

coordinates (say, on the Northern hemisphere) xi = yi

v for i = 1, . . . , d and xd+1 = R(1− y2

2vR2 ) which solves the defining

equation for v = 1 + y2

4R2 . The metric is ds2 =
∑d+1

i=1 (dxi)2 = gijdyidyj with gij = 1
v2 δij .
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One may show that the most general solution to this equation is ξµ = aµ+ωµ
νxν+λxµ−2(b·x)xµ+x2bµ

where λ is a constant, aµ and bµ are constant vectors and ωµν = −ωνµ a constant antisymmetric matrix
(ωµ

ν = ηµρωρν).

aµ, ωµν , λ and bµ parametrize infinitesimal translations, Lorentz-transformations, rescalings and
special conformal transformations of xµ, respectively. They are generated by Pµ = ∂µ, Lµν = xµ∂ν −
xν∂µ, D = x · ∂ and Kµ = −2xµx · ∂ + x2∂µ whose algebra is easily worked out. The non-vanishing
commutators are

[D, Pµ] = −Pµ ,

[D, Kµ] = Kµ ,

[Pµ, Kν ] = −2ηµνD + 2Lµν ,

[Lµν , Pρ] = −ηµρPν + ηνρPµ ,

[Lµν , Kρ] = −ηµρKν + ηνρKµ ,

[Lµν , Lρσ] = −ηµρLνσ − ηνσLµρ + ηµσLνρ + ηνρLµσ . (70)

If one defines LD,D+1 = −D, LµD = 1
2(Pµ −Kµ) and Lµ,D+1 = −1

2(Pµ + Kµ) the above commutation
relations can be combined into the following single relation:

[LMN , LPQ] = −ηMP LNQ − ηNQLMP + ηMQLNP + ηNP LMQ (71)

where M, N, · · · = 0, 1, . . . , D + 1 and ηMN = diag(−1, +1, . . . ,+1,−1) is the invariant metric of
SO(D, 2). This establishes the isomorphism of the conformal algebra of D-dimensional Minkowski
space with so(D, 2), the Lie algebra of SO(D, 2).33 SO(D, 2) acts linearly on RD+2 with metric
(ds)2 = ηµνdyµdyν + (dyD)2 − (dyD+1)2.

We can now identify D-dimensional Minkowski space as a subspace of RD+2 and describe the
non-linear action of the conformal group on it. To this end, consider the subspace defined by the
constraint ηµνyµyν = uv where we have defined u = yD+1 + yD and v = yD+1 − yD. Note that this
is a D-dimensional cone inside RD+2. Firstly, this equation constitutes one constraint. Secondly, if
y is a solution of this constraint, then so is λy for any non-zero real λ. We can use this rescaling
freedom to set

∑D
i=1(y

i)2 = 1 = (y0)2 +(yD+1)2 which shows that this cone has the topology (SD−1 ×
S1)/Z2, where the Z2 accounts for the fact that rescaling by ±λ are equivalent. This is in fact the
conformal compactification of Minkowski space on which the conformal group acts properly (we need
to compactify since the inversion transformation maps the origin to infinity, which is not part of
Minkowski space).

33Here we assume D > 2. In D = 2 the conformal algebra is infinite dimensional. This is in fact very relevant for the

world-sheet aspects of string theory and two-dimensional conformal field theories in general. We did not encounter this

in the lecture on string theory since we fixed conformal transformations when going to light-cone gauge.
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We now solve the constraint locally (in a patch with u ̸= 0) by defining coordinates xµ via

yM =

⎛

⎜⎝
yµ

u

v

⎞

⎟⎠ =

⎛

⎜⎝
uxµ

u

ux2

⎞

⎟⎠ . (72)

The linear SO(D, 2) transformations on yM induce conformal transformations on xµ. Specifically,
we find the following relation between linearly acting SO(D, 2) transformations of y and conformal
transformations of x:

⎛

⎜⎝
δν
µ 0 0
0 1

Λ 0
0 0 Λ

⎞

⎟⎠ ←→ xµ → Λxµ ,

⎛

⎜⎝
δν
µ 0 bν

2bµ 1 b2

0 0 1

⎞

⎟⎠ ←→ xµ → xµ + x2bµ

1 + 2(b · x) + b2x2
,

⎛

⎜⎝
ωµ

ν aµ 0
0 1 0

2aρωρ
ν a2 1

⎞

⎟⎠ ←→ xµ → ωµ
νx

ν + aµ . (73)

Each of these matrices MM
N satisfies MM

P MN
QηPQ = ηMN . Consider now the following hypersurface

in RD+2:

−(y0)2 +
D∑

i=1

(yi)2 − (yD+1)2 = ηµνy
µyν − uv = −R2 . (74)

This (D + 1)-dimensional hypersurface, together with the induced metric, defines AdSD+1, (D + 1)-
dimensional anti-de Sitter space. This constraint can be solved for v. Doing this and introducing the
coordinates xµ = Ryµ

u we find for the induced metric

ds2 = ηµνdyµdyν − dudv =
R2

u2
du2 +

u2

R2
ηµνdxµdxν . (75)

u → ∞ corresponds to the boundary of AdS, which is just compactified Minkowski space as discussed
before. This can be seen by looking at the constraint equation (74) (after dividing by u2 the r.h.s.
vanishes for u → ∞ whereas the l.h.s. stays finite) or by looking at the AdS metric in the form (75).
If we introduce the coordinate ρ = R2/u the metric becomes

ds2 =
R2

ρ2
(dρ2 + ηµνdxµdxν) (76)

which coincides with the first part in (66). The boundary is now at ρ = 0. Simultaneously rescaling
u → u/λ and xµ → λxµ leaves the AdS metric invariant but induces a Weyl transformation of the
metric on the boudary: ηµν → λ2ηµν .

After having provided some background on AdS space and the conformal group, we will now return
to branes, gravity and gauge theory. Take a single D3-brane. The fields living on its world-volume arise
from the excitations of open strings ending on the brane. At low energies, lower than the string scale
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1/
√

α′, only the massless string states can be excited and their dynamics is governed by a low energy
effective action on the world-volume. The massless open string states are the NS gauge field AM and its
fermionic superpartner, the gaugino, a Majorana-Weyl spinor in ten dimensions. Together these fields
form the N = 1, d = 10 Yang-Mills supermultiplet. The brane breaks the ten-dimensional Lorentz
invariance SO(1, 9) → SO(1, 3) × SO(6) to Lorentz transformations along the brane and rotations
in the transverse space. The gauge field 10 decomposes as 10 = (4,1) + (1,6): AM = (Aµ, φi).
The six scalars describe the fluctuations of the brane in the directions transverse to it. (They are
the Goldstone bosons associated to the spontaneously broken translation symmetry.) The gaugino
decomposes into four Weyl spinors which transform as 4 of SO(6) and their complex conjugates. (They
are the Goldstinos of the sixteen, in the presence of the brane, spontaneously broken supercharges.)
Altogether we get one N = 4 U(1) vector multiplet on the four-dimensional world-volume of the
D3-brane. The generalization from one to N coincident D3 branes is straightforward leading to the
gauge group U(N) (c.f. the discussion in lecture 2). All fields are in the same supermultiplet and
hence they all transform in the adjoint representation. The meaning of the U(1) ⊂ U(N) factor is as
above. The scalar in the U(1) multiplet corresponds to the center-of-mass motion of the branes and
those in the adjoint of SU(N) to their relative motion.

The action of N = 4 SYM theory is highly restricted by the large amount of supersymmetry. In
particular there is only one coupling constant. Another important consequence of the large amount
of supersymmetry is that bosonic and fermionic contributions to divergences in Feynman diagram
calculations cancel and the quantization procedure does not require introducing a scale into the theory.
This in particular means that the beta function vanishes. This means that as a quantum theory,
N = 4 SYM is conformally invariant. In other words, the conformal symmetry exhibited by the
classical theory is not broken in the process of quantization. In fact, the theory is invariant under
local U(N) gauge transformation and under global super-conformal transformations which generate
the supergroup34

SU(2, 2|4) ⊃ SU(2, 2) × SU(4)R ≃ SO(4, 2) × SO(6)R . (77)

On the r.h.s. we have written the bosonic subgroup. The SO(4, 2) factor is the conformal group
in d = 4 while SO(6)R is called R-symmetry group. It can be understood from the brane picture
as the rotation group of the transverse space and we have seen how the various fields in the SYM
multiplet transform under it. The fermionic generators are the sixteen supercharges Q of the N = 4
supersymmetry algebra plus sixteen special supersymmetries S which arise in the commutator between
Q and the special conformal transformations K. The generators of the R symmetry appear in the
{Q, S} anti-commutators.

The dynamics of the massless fields can again be described by a low-energy effective action. For
34The corresponding superalgebra is discussed in the lectures by J. Zanelli.
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the gauge fields this is the Born-Infeld action [50]:

SB.I. = − 1
(2π)3α′2gs

Tr
∫

C4

d4ξ
√
−det

(
ĝαβ + e−φ/22πα′Fαβ

)
. (78)

The integral is over the brane world-volume, Tr the trace over group (Chan-Paton) indices35 and ĝαβ

the induced metric on the world-volume. We have omitted fermions, transverse scalars and Wess-
Zumino couplings, as they are not relevant for our discussion. If we extract the O(F 2) term and
compare with the usual gauge kinetic term − 1

4g2
YM

F a
µνF

aµν we are led to the identification

g2
YM = 2πgs . (79)

Of course we also have perturbative closed string excitations in the bulk and the closed string modes
interact with the open string modes which are localized on the brane. The complete effective action
for all massless modes has the form

S = Sbulk + Sbrane + Sint , (80)

where Sbulk contains only closed string modes, Sbrane only open string modes and Sint interaction
terms between them. The coupling constant is proportional to κ, c.f. below. In the decoupling limit
α′ → 0 all higher derivative corrections as well as the interactions between closed and open strings
can thus be neglected and we are left with pure four-dimensional N = 4 SYM on the world-volume
of the brane and free type IIB supergravity in the bulk (i.e. free gravitons and their SUSY partners)
with no coupling between these two theories.

In the previous lecture we have collected evidence that the D-branes of string theory and the p-
brane solutions of supergravity are complementary descriptions of one and the same object. We have
just seen that the α′ → 0 limit leads in the D-brane picture to two decoupled systems: SYM theory
on the branes and free supergravity in the bulk.

The next step will be to find the correct decoupling limit in the SUGRA picture and to compare
to the above. The following analysis, first performed in [51], will give an important clue.

If a dilaton hits the D-brane, it can be absorbed, thus exciting the D-brane. The quantum exci-
tations of the D-brane are the open string modes. Indeed, as we see from the Born-Infeld action, the
dilaton couples to the gauge bosons.

35This is unambiguous to O(F 2). At higher orders one has to be more specific about the prescription how to perform

the trace; see [50].
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dilaton hits Dïbrane
two 

gluons
and decays into

At lowest order, this is the cubic coupling (c.f. (78)) 1
gs

φF 2. To find the strength of this coupling
one should normalize the fields such that they have canonical kinetic energies. This means that we
have to rescale the gauge bosons by √

gs and the dilaton by κ. This leads to a coupling constant
∝ κ (which does vanish in the decoupling limit). The (tree level) cross-section for a dilaton is then
σ ∝ κ2E3N2 as we shall now explain. The κ2 is clear as the cross-section involves the square of the
amplitude which is ∝ κ; N2 because there are that many gluons into which the dilaton can decay.
The cross-section for the scattering of a point-particle from a three-dimensional object in nine space
dimensions has dimension (length)5; the only dimensionful quantity to fix the dimension is E, and
the factor E3 indeed arises from the kinematics of the scattering process. A careful calculation gives
for the absorption cross-section [51] of a dilaton incident at right angle (i.e. its momentum has no
component parallel to the D3-brane)

σD3 = 2π6g2
sα

′4E3N2 =
π4

8
E3R8 , R4 = 4πgsNα′2 . (81)

On the supergravity side one solves the wave equation for the dilaton in the s-channel in the brane
geometry. This exhibits at low energies E ≪ 1/R a potential barrier separating the two asymptotic
regions r ≪ R and r ≫ R, where r is the distance from the brane. One then obtains the absorp-
tion cross section from the tunneling probability through the barrier[52]. This calculation was also
performed in [51] with the result

σD3 = σSUGRA . (82)

This also works with other SUGRA particles, e.g. the graviton and anti-symmetric three-form tensor;
their absorption cross sections agree as well.

Eq.(82) is a very interesting result: in the D-brane picture a particle incident from infinity produces
excitations of the gauge theory on the brane; in the SUGRA description of the brane a particle tunnels
from the region r ≫ R to the region r ≪ R and produces an excitation there. The two à priori
unrelated processes occur at exactly the same rate. One is tempted to identify the N = 4 SYM theory
with gauge group U(N) with the excitations in the near horizon region, r ≪ R, of the brane geometry,
which we already know is AdS5 × S5. This gets further support from the following identification
of two types of low-energy excitations, as measured by an observer at infinity (for this observer the
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coordinate t appearing in (62) is the time coordinate as gtt(r = ∞) = −1). Due to the energy
dependence of the cross section, σ ∝ E3, low-energy SUGRA modes in the region r ≫ R decouple
from the near-horizon region. At r ≫ R we thus have a free36 SUGRA theory. On the other hand,
the energy of an excitation in the near horizon region appears redshifted for an observer at infinity,
E∞ = [gtt(r)/gtt(∞)]1/2Er = r

REr. They cannot penetrate the energy barrier which separates the two
asymptotic regions.

So, in the D3 and in the SUGRA picture we get two decoupled systems. In both cases the system
in the bulk is free type IIB SUGRA. But then, if the D-brane and the SUGRA brane describe the
same object, we should identify the two other systems: N = 4 SYM theory with gauge group U(N)
and type IIB string theory on AdS5 × S5.

Before pursuing this further, we need to clarify two points. Firstly, we still need to be more
specific about the precise form of the near horizon limit, which zooms into the region of the three-
brane SUGRA solution which we want to identify with the gauge theory of the D3 picture. This limit
should involve α′ → 0, as this was the decoupling limit for the D3-brane, and is defined as follows:

α′ → 0, r → 0 such that U ≡ r

α′ fixed . (83)

In this limit α′ scales out of the metric which becomes

ds2/α′ =
U2

√
4πgsN

(−dt2 + dx2) +
√

4πgsN

U2
dU2 +

√
4πgsNdΩ2

5 . (84)

The limit is taken such that for the observer at infinity the string excitations in the horizon region,
which have energies E0 ∼ 1/

√
α′ and which are redshifted to E∞ ∼ r√

α′ E0 ∼ U stay finite. This
observer sees two decoupled systems: free SUGRA in the asymptotic region and type IIB string
theory compactified on AdS5 × S5.

The second point we need to clarify is the region of validity of the two calculations of the absorption
cross section. In both pictures we have assumed that E ≪ /1

√
α′; otherwise massive string modes

can be excited and their effect has to be taken into account. On the supergravity side we also have to
require that (i) the typical length scale R of the geometry is large compared to the string scale, i.e.
R ≫

√
α′; otherwise we have to take higher derivative corrections ∼ (α′)nRn+1 to the supergravity

action into account, which we did not. (ii) We also need gs ≪ 1 since we have neglected string loop
effects. With the help of R4 ∼ gsNα′2 and g2

YM ∼ gs we can translate these restrictions to the following
conditions on the gauge theory parameters:

λ ≡ g2
YMN = 2πNgs =

R4

2α′2 ≫ 1 and, since gs ≪ 1, N → ∞ . (85)

This specifies a large N YM theory at strong ’t Hooft coupling λ. λ is the effective coupling constant
and loop counting parameter in the large N limit of YM theories.

36The gravitational interaction is negligible at low energies. The dimensionless coupling constant is κE4, where E is

the typical energy of the interaction. For E ≪ 1/
√

α′ and κ ∝ α′2 this is ≪ 1.
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We should thus identify the excitations in the near-horizon regions of the three-brane geometry,
which, as we have seen above, is AdS5 ×S5, with the excitations of N = 4 U(N) SYM theory at large
’t Hooft coupling and in the limit N → ∞.37 Based on the analysis presented above, this conclusion
was first drawn by Maldacena in his famous paper [7] and is called Maldacena conjecture, or, since
it involves AdS space on the one hand and a conformal field theory (N = 4 SYM) on the other, the
AdS/CFT correspondence.

In the weak form the conjecture states that N = 4 SYM with U(N) gauge group at large ’t
Hooft coupling and in the limit N → ∞ is equivalent (dual) to type IIB supergravity compactified on
AdS5 × S5.

Note that even in this weak form the conjecture has far reaching implications. It relates a classical
weakly coupled supergravity theory with a strongly coupled quantum field theory. This is a duality
pair of the type we discussed in the beginning. The perturbative regimes of the two theories, g2

YMN ∼
gsN ∼ R4/α′2 ≪ 1 for the gauge theory and R4/α′2 ≫ 1 for the supergravity theory, do not overlap.
The good news is that such a duality is very useful for exploring the strongly coupled gauge theory;
this is done by performing computations in a classical gravity theory. The bad news is that it is
extremely difficult to prove such a duality conjecture.

Further support for this conjecture comes from comparing the symmetries. The isometries of
AdS5 × S5 are SO(4, 2) × SO(6). But these are precisely the bosonic (non-gauge) symmetries of
N = 4 SYM theory (c.f. (77)). This discussion can be extended to the full supergroup SU(2, 2|4).
This is the maximally extended supersymmetry algebra on AdS5. It is realized as global symmetry
of gauged N = 8 supergravity on AdS5 which can be obtained as Kaluza-Klein reduction of type IIB
SUGRA on S5. What is gauged is the isometry group of S5. But SU(2, 2|4) is also the maximally
extended superconformal symmetry in four-dimensional Minkowski space, i.e. the invariance group
of N = 4 SYM. Furthermore, the boundary of AdS5 is four-dimensional Minkowski space on which
the isometries of AdS5 × S5 act as conformal and R-symmetry transformations. This leads to the
statement that the field theory which is dual to the string theory ‘lives’ on the boundary of AdS5.
Recall the observation made above that if we simultaneously rescale U → λU, (t,x) → λ−1(t,x) the
metric does not change. This leads to an interpretation of U as the energy scale in the field theory:
large U corresponds to the UV region and small U to the IR region (the boundary is at U = ∞).

The conjectured duality has several very remarkable features. First, it is a duality between a
gravity theory and a field theory. In addition, these theories live in different numbers of dimensions
and have completely different degrees of freedom: gravity vs. gauge degrees of freedom. There is the
notion of the master field for large N QCD (see e.g. [11, 12]). One can show that fluctuations of
gauge invariant observables vanish in the N → ∞ limit. This is then analoguous to the classical limit
! → 0 in which the functional integral is dominated by classical paths. In the same way, there should
be a master field such that all Green functions are given by their value at the master field. What the

37Earlier we had mentioned that in the presence of N D-branes the effective coupling constant is Ngs.
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Maldacena conjecture suggests is that this master field for N = 4 SYM is in fact a gravity theory
in ten dimensions. Also, the QCD string of these theories is simply the fundamental type IIB string
which lives, however, not in four-dimensional space-time, but in ten-dimensional AdS5 × S5. This is
most convincingly demonstrated by the SUGRA computation of the gauge theory Wilson loop [53]:
a static well separated qq̄ pair must be viewed as the endpoints of an open type IIB string at the
boundary of AdS5. In order to minimize its length (and hence it energy) the string follows a geodesic.
The geodesic does not lie in the boundary, which it would if the space were flat, but extends deep into
the AdS space. The qq̄ potential is then given by the (regularized) length of this geodesic.

One might wonder whether the duality only holds for the parameter region specified in (85), which
corresponds to neglecting all O(α′/R2) and all string loop effects or whether it can be extended.
Correlation functions of AdS5 × S5 type IIB string theory will have a double expansion in powers
of gs and α′/R2 ∼ λ−1/2. In the large N limit we can write this as an expansion in powers of
1/N ∼ gs(α′/R2)2 where each coefficient has an expansion in powers of λ−1/2. Clearly, a term at some
power in the gs expansion has the same power in the 1/N expansion. Since the type II string theory
includes only closed oriented strings, we find the same general structure as in the field theory where
each correlation function has an expansion in powers of 1/N2, each coefficient being some function of
λ. The functions of λ have different expansion from the point of view of string theory and of field
theory. A stronger version of the AdS/CFT correspondence states that both expansions give rise to
the same function of λ at each power of 1/N2. The fact that one expansion is in powers of λ whereas
the other is in powers of λ−1/2 reflects the fact that the AdS/CFT duality is a strong/weak coupling
duality.

In the strongest version of the conjecture the two theories are considered as exactly identical for
all values of N and gs. Here the corrections distort the space-time which is only required to be
asymptotically AdS5 × S5. The gauge theory then effectively sums over all such space-times.

As we have remarked in the first lecture, after identifying a pair of theories of which we have
indications that they are dual to each other, we still need to find the map between them. This
amounts to giving an explicit prescription of how to compute gauge theory correlation functions
in the dual supergravity theory. This was done in [8, 9]. We will not review the results of these
papers nor will we present any of the many applications. They can be found in the reviews on
the AdS/CFT correspondence. There the interested reader may also find extensions of Maldacena’s
conjecture to other theories – in dimensions different from four and to theories with other gauge
groups, less supersymmetry, not conformally invariant theories, theories at finite temperature (the
latter involve the non-extremal brane solutions38) and theories on non-commutative Minkowski space
(the latter require, in addition to the metric and (R,R) four-form potential, also a non-trivial (NS,NS)

38If one computes the Bekenstein-Hawking entropy and compares it to the entropy of N = 4 SYM at temperature

TBH, one finds that the field theory value is bigger by a factor 4/3. The fact that there is a discrepancy does not come

as a surprise, since the SUGRA calculation is valid for gsN → ∞ whereas the field theory calculation assumed weak

coupling, i.e. gsN → 0. One should thus view the SUGRA result as a prediction for the strongly coupled field theory.
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two-form).

Maldacena’s original paper has ignited a storm of activity.39 Hopes were high that extensions of
his conjecture would lead to new insight into realistic, i.e. non-supersymmetric QCD. However, all
attempts to find its supergravity dual (at large N) have been futile. More optimistically, the AdS/CFT
correspondence has pointed in a very interesting direction, namely the possible connection between
gauge theories and gravity (string) theories. In fact, this might also provide insight into string theory in
non-trivial backgrounds. The reason why the AdS/CFT correspondence has so far been mainly checked
in its weak form is our inability to quantize string theory in an AdS background. However, besides
flat Minkowski space-time and AdS5 × S5 there is one other maximally supersymmetric background,
which is the so-called pp-wave [56, 57]. In this background, which can be obtained from AdS5 × S5

by a limiting process, called Penrose contraction, the string can be quantized exactly (in the Green-
Schwarz light cone formulation) [58]. Recently a correspondence between the string theory in the
pp-wave background and supersymmetric Yang-Mills has been conjectured [59]. This is presently
being explored.
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