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ABSTRACT 

In this talk I discuss the question wha.t is the maximal symx:netry one can find in a string 

theory. I report on work together with Cederwa.11 and Preitschopf in 'Yhieh we study the 

superconformal invariance of superstring theory. We show that in D =3, 4 and 6 it is invariant 

under an N = D-2 superconformal algebra based on sD-3• There is a direct relationship 

between this(world-sheet) symmetry and the super-Poincare (target space) symmetry. This 

relationship is established using the light-cone gauge. We then show how the statement 

generalizes to D = 10 a.nd examine t.he properties of the N = 8 superconformal algebra and 

the possible implications of it.s exist.ence. I give some discussion on why this question is 

important in string theory. 
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St.ring t.lH'ory is t.hc most. promising n111dida.t.e for a. 11nificd model of a.ll intcrn.dions an<l 

for a t.hcory of quantum gra.vit.y. :rviuch work has been done over t.hc years to check string 

theory and we are slowly learning t.hc dy1rnmics of it. Much work rc1rn1ins though and we 

have now pushed it to the borderlines of existing ma.thematics. If it is really a fundamental 

theory, it should have unique properties in some sense, and it is this issue that I will have in 

mind. 

In order to understand the physics of a certain model and to classify it, we need to 

find its symmetries. The crucial step in the Veneziano model [1] was the discovery of the 

Virasoro algebra (2], the infinite-dimensional conformal symmetry. It led to the no-ghost 

theorem, and in the modern era it has been used e.g. to construct string field theory. It 

was also the extension of this symmetry to the superconformal one by Ramond [3] that 

led to the Ramoncl-Neveu-Schwarz model (3,4] we use today. However, in this formalism 

global supersynunetry is somewhat hidden and appears only after the GSO-projection [5]. 

To remedy this fact, Green and Schwarz proposed their formulation [6], where space-time 

supersymmetry is manifest. The superconformal symmetry, however, is unconventional [7], 

and leads to difficulties when one tries to quantize the theory covariantly [8]. It is not directly 

related to the conventional extended superconfonnal structures [9]. 

A string theory could either be regarded as a cl-dimensional theory or as a 2-dimensional 

one. Both formulations should be fundamental and there should be a very close relation 

between them. In the formulations of the superstring mentioned above the target space 

symmetries are divorced from the world-sheet ones. This is really not satisfactory. If there 

is a "fundamental string theory", we expect the two sets of synunetries to have a common 

origin. There should be two equivalent principles for formulating the theory. On the one 

hand, starting with enough physical requirements on the space-time theory, the world-sheet 

symmetries should follow, while on the other hand the correct assumptions about the two­

dimensional physics on the world-sheet should give the right target space behaviour. 

In this talk I will report on work done by Martin Ce<lerwall, Christian Preitschopf and 

myself [10] in which we are searching for the maximal (2-dimensional) superconformal sym­

metry and how it is related to a maximal (cl-dimensional) target space symmetry. The 

discussion will be somewhat technical which cannot be avoided. To make progress in string 

theory one has to use advanced mathematics. Before going into these details let me first ask 

what we could ga.in by understanding the full symmetry? After the technical discussion I 

will so come ba.ck to these questions. 
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(i) It could give us wa.ys to understand non-perturbative issues in string theory. This is 

certainly the most important. question now and any way that will help us here will be 

instrumental. 

(ii) It could help us understand perturbative finitenss better. There are very strong argu­

ments that the perturbation theory for superstrings is finite order by order [11,12]. A 

mor~ economic formulation using the full symmetry would most certainly be helpful 

in establishing an alternative proof. 

(iii) It could alSo help us understand the early universe. It is obvious that non-perturbative 

quantum gravity is very important for this understanding and it has been argued 

that string theory indicates that there was a phase transition at Planck times [13, 

14]. vVe have so far gained no information about "the early phase". It would be of 

great importance if one could gain insight here and a ne\\r formulation might help us 

understand the relevant. order parameters. 

(iv) It could give us ways to screen between d=4 models. With the knowledge we have 

today there is a lnige number of d=4 superstring models that are candidates and we 

need more constraints to be able to argue that one model is better than the other. An 

identification and an understanding of the maximal symmetry could help us here. It 

will then be important to understand how this maximal symmetry is reflected in the 

d=4 theories and what the physical implications of it are. 

In our work we have found that in the light-cone gauge formulation of string theory 

there is indeed a correlation between the superconformal symmetry and the target space 

one so it is a very natural formalism for this discussion. The light-cone formulation can in 

fact be obtained by using either of two principles alluded to above. The resulting theory is 

described by the transverse coordinates and is explicitely unitary. The difficulties arise in 

the (super-)Poinca.re algebra which is non-linearly implemented (15]. In the quantum case 

anomalies occur, unless the critical dimension is chosen. 

The Green-Schwarz string (6] in the light-cone gauge is described by an action (in a 

heterotic form) 

s = ~ JdZ<lZ(8c/Dcp1 + saasa) (1) 

The index I = 0, ... , D - 3 is vectorial, while a= 0, ... , D-3 is spinorial. The action (1) 

is classically super-Poincare invariant for D == 3, 4, 6 and 10 [15]. Quantum mechanically 
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matter has to be added for D=3,4 and 6 in order to avoid anomalies. Already at this point 

we would like to remark that the potential occurrence of an anomaly in the super-Poincare 

algebra points towards a close connection between some of its generators and the world-sheet 

symmetry that carries the anomaly in a covariant formulation. 

Before going into details on the super-Poincare and superconformal algebras, we would 

like to introduce some division algebra formalism, by now well known to be related to the 

space-times with D = 3, 4, 6 and 10 and to the supersymmetric structures appearing in these 

dimensionalities (16-20]. We denote by K,., the division algebra of dimension v: Ki =R, the 

reals, Kz = C, the complex numbers, K4 = H, the quaternions, and Ks= 0, the octonions. In 

the following, v and D-2 are exchangeable. Conjugation of an element x EK,., is denoted x•, 

not to confuse with the complex structure of the world-sheet. Division algebra multiplication 

encodes the Clifford algebra of transverse space-time. So for example, is the equation c• =vs 

equivalent to Cj, = v1 ,.'f!"sc" where t1 E Sv, s E Ss and cE Sc of SO(S), and analogously for lower 

dimensiona.lities. Vve also use the notation [x] = !(x+x•) and {x} = !(x-x•). Structure 

constants and associator coefficients a.re defined by [e;, ej] = 2u;jkek, [e;, e;, ek] = 2pi;k1e1, 

where { e;, i = 1, ... , 7} are the imaginary units. 

The action (1) can trivially be rewritten in this notation as 

s = t j <Lz<lz [ fJc;/7Jcp + s•as] (2) 

In D = 3, 4 and 6, the light-corie superstring action is invariant under an N = D-2 

extended superconformal algebra (20]. We only consider the part of the generators containing 

holomorphic fields, with 

The generators of the algebras are [20] 

.J = ~s·s 

Q = oi.pS 
c = ! [ oi.p• fJcp - s• as] 
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with the operator product expansions 

cf . ? 
..1a(z).Ja1(() ,...., (z - 3()2 [aa'] + z: (.Jcrcr' 

..1a(z)Qn(() 
1 ,...., ---Qoa 

z-( 

9o(z)901(() 

2cf3 · I 2 1 I ,...., ( z _ ()3 (n*n 1 + ( z _ 02 ..10·01 
( () + z _ ( ( 8..10·01 + 2 [n*n ].C) 

(5) 
(z ~ 02 ..1(() + z ~ (a.J .C( z )..1( () ,...., 

.C(z)Q(() 
3f2 1 ,...., 

(z-()29(()+ z-(ag 

.C(z).C(() * 2 1 ,...., 
(z - ()4 + (z - 0 2 .C(() + z - (8.C 

where fields in 11- or ( 11- 1 )-dimensional representations are given indices by contractions 

Xa = [a• X], and where the anomaly c with these minimal field contents take the value -3v /2. The Kac-Moody part of this algebra is S 11 - 1• A similar statement applies to D = 10, 

as we will soon describe. By examining the gauge-fixing procedure of the Green-Schwarz 

superstring [6] to the light-cone gauge, and in particular the non-linear realization of the 

super-Poincare algebra, we will give an interpretation of the world-sheet superconformal 

algebra in terms of space-time supersymmetry. 

Consider the constraints derived from the Green-Schwarz action for the left-moving vari­

ables of a heterotic string (in S L(2; K 11 )-notation)[S]: 

1 
Da = 11"& - J2I1o-a0a + i(OoOt - aoot)a:aOa ~ 0 

(6) 
L = l II · nan- ,..., 0 - 4 . O'O' ,..., 

where 11 = Bc.p + -J2(0aot - aoot) and 11' is the conjugate momentum of o. The special 

property of the spinorial constraint is that it contains an equal number of first and second 

class constraints (7,SJ. vVhen a light-cone gauge is chosen, the separation comes about 

naturally, splitting the SO(l, D - 1) spinor into two spinors of the transverse group. The 

light-cone gauge a.mounts to choosing 

: <p + ( z) = a+ In z 

01 =0 
(7) 

The remaining part of the spinorial constraint reads 71'2 + az+ 02 ~ 0 and is obviously second 

class. When we eliminate it and define S = j¥.e2, the spinor correlator in eq.(3) is 
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recovered. Then, 011c can ::;oh'i:~ for c.p- ancl rr 1 llirough cq.(G) to obtain 

~1 - Z ( ~1 * n 5'* !IS') uc.p = - uc.p ucp - u 
20.+ . 

1 lff.p 11" = - -fJcpS 2 at 

(8) 

When we now go back to the ·supe~·co1~formal generators of eq. {4), we. notice that the 

variables eliminated by the gauge choices a're exactly the superconformal generators C and 

9. From the light-cone variables, we can cmistruct the now non-linearly realized super­

Poincare genera.tors. The crncial part, i.e. the part wh~re anomalies may appear, contains 

p-, J+-, J- and Q-, the generators that take i1s out of the quantization surface. The 

complete set of generators is [I.5) 

p- _1_ f :!!_ [ ~l •·a· - C'•as.J = Co - 2 + 9 .zv<p cp .~. + 
0: w11"Z • . O: . 

p - p 

J+- - x+- ~z [ocp*ocp- s•as) + o:+- = -. (Co - 1) + o:+-
1 f d- . . a' x+ a 

20:+ 27rz ao:+ o:+ 2 ao:+ 
J+ - x+p- a+x 

J- · a 
1 f <lz ( - r a •a · s• as 1 ] 1 (a s)s•) (9) - -p-r· -. - - -. Z <{> <p <.p - - -, - 2 <.p = aa+ 2a+ 27ri ' z2 

- a 1 f dz ( - 1 1 • ) -p-;:-:-- - - -. . z c.p(C - -) - -98 ao:+ a+ 2n 2z2 4 

JIJ - 2:r.l1 pJ] + f ;~i ( ,P1 aipJ + tf S*ei(.e1S))) 

Q+ - 2I/4 J;;+ f dz ....... 112 S 
21ri"' 

Q- - 1 J dz z1/2f) S = 1 Qo 
2 1/4,f;+ . 211"i c.p ' 21/4.j;;+ 

(transverse indices are again suppressed, so that J- contain& the components J-1 etc.). For 

convenience, we have separated out the logarithmic mode of c.pµ according to cpµ(z) = c.pµ(z)­

ln z J~ 8c.p1'((), and defined x'' . f2~:z<Pµ(i). The important point is that knowledge 

of the super-Poincare generators provides us with information about the superconformal 

generators, and vice versa. Explicit calculation of the anomaly in [J-1, J-1] of course gives 

the result 11=8. 
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Compactifica.tion to D = () yields the following changes: 

.c + t:,i11t p- _ o n 
a:+ 

x+ ' a 
(.c .c111t 1 ) + + = a+ 0 + 0 - 2 a aa+ 

_ 1 (9 + gint) 
21/4..f«+ 0 Cl • 

{) 1 f dz (-(.C .cint 1 ) I (.Q 2gint)S* 
- -p aa+ - a+ 2Jri z cp + - 2z2 - 4 + + 

+ !.Jintacp) 

JIJ = 2xf1p1l + f dz. (cp1 ar:p1 + i(S* ej( e1S)] + ![eje1.Jint]) 
2Jrz 

(10) 

where .Jint, gint and t:,int is an N = 4 superconformal algebra for the internal degrees of 

freedom, and we are working with quaternions instead of octonions. An anomaly-free theory 

arises if cint = 6 and if the nullmode condition 

f dz z ( ;rint.Jint 1 c .Jint ;rint) __ 0 
-2 · '-'I /( - 3° JI( L '-' L 

Jf'Z 
(11) 

is satisfied. We note that while .J = ~S*S contains the antiselfdual combination of spinors, 

we find in J1 J the self dual combination. Hence the internal algebra has the structure cor­

responding to an antiselfdual multiplet, while the transverse spacetime algebra corresponds 

to a selfdual multiplet. These two N = 4 algebras are independent, and when one goes 

about constructing sigma-models, one will have to consider two independent hyperkahler 

structures, one in the internal sector and one in the iloncompact sector. 

If we compactify clown to D=4, we obtain the same operators as in (10), except for J-, 

which now reads 

{12) 

Now the internal algebra is more complicated. It contains the N = 2, c = 9 superconformal 

algebra .Jint, girit and t:,int a.s well as a complex chiral multiplet (A, 'R) of conformal weights 
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(2, 3f2) with the following opera.tor products: 

g~nt (;; )Qint ( () 
6e11 . + 2ea c,int _ ea ? (..Jint(z) + 3int(()) ,....., 

(z - 03 ;; - ( (z - ()-

3int( Z )Qint( () ,....., __ i_gint 

z-( 
3int( Z )..Jint( () 1 ,....., 

(z - ()2 

3 • • 
g~11. t( z )A(() e" R(() ea 8R ,...., 

(z - ()2 + z - ( 

g~nt(z)R(() ,....., ~A 
z....:... ( 

3i11t(z)A(() 
i ,....., --· A 

z-( 

3i11t( z )R( () 2i ,....., ---n (13) z .-( 

Rci(z)R(() ,..., _ (;; ~'() 3 + (z ~'() 2 (.Jint(z) + .Jint(()) 

3? 
_ Z ~'( : (..Jint)2 : 

Aj( z )R( () ,...., 2e.i , gint( () + 2e; : gint .Jint : 
(z - ()2 z - ( 

Aj(z)A(() ,...., 12e; + 4ej . (.Jint(z) + .Jint(()) 
(z - ()4 (z - ()3 . 

- (z ~ ()2 ((: (..1int)2(z) : +.cint(z)) + (z +-+ ()) 

• + ~ (3fJ2 .Jfot _ 4 : .cint .Jint : _ : (gint)2 : ) 
z-~ 

Expressions like : (gint) 2 : in the above expressions are normal ordered with respect to the 

modes of the currents. This prescription differs from the normal ordering with respect to 

the modes of, say,,.free component fields. The operator algebra in (13) replaces the nullmode 

condition (11 ). V\Te do not know whether it is peculiar to some compactifications to D = 4 

or a more general property of the internal sector of D = 4 superstrings. We have here an 

algebraic structure on the internal space without explicit appearance of coordinates. We 

have not checked, but it ma.y well be possible to do so, whether this algebra, or ~oril.e algebra 

of this type /~as to appear for J- to be non-anomalous. If that is the case, one will have an 

instrument for treating the internal manifold in an abstract algebraic manner, that might be 
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useful for cxt.racl.i11g t.lw physical co11s1'quenccs of specific choic<~s for internal manifolds, a.n<l 

possibly for demoust.ra.ting "cquivalC'ncc" between different manifolds with respect to their 

properties concerning st.ring propagation. 

What we still have' not shown is that the interpretation of the super-Poincare generators 

in terms of superconformal generators is valid also for the case D = 10. That will be the 

subject of the rest of this talk. 

Let us now turn to the generalization to N = 8. We will give an intuitive step by step 

construction leading to the final form of the N = 8 superconformal generators and their 

algebra. Since on the light cone the spacetime supersymmetry algebra for D = 10 has the 

same structute as for D == 6 without a compact sector, one feels compelled to simply replace 

quaternions with octonions. The operator product of the imaginary currents J = !s•s is 

then given by 

J ;( )Ji(t") 4 cii · 2 ( Jk sasP) z ~ = - (z _ ()2 o + z _ ( <1ijk + Pijap (14) 

Hence this current algebra does not close, and we may attribute this fact to the nonassocia­

tivity of the octonions, or equivalently to the fact that S7 is not a group manifold. Using 

octonions, the 7-sphere is economically described by S7 ={XE 0 I IXI = 1}, with tangent 

vectors Xe; and normal X [21]. This defines a connection without curvature and torsion 

T;;k(X) = [(X e;,)*(X e; )ek]· Note that 

T;;k(X)lx=1 = u;;k (15) 

Hence we may niove from the north pole X = 1 and form J by multiplication in a basis 

corresponding to another point on 5'7 , J = !(XSt(XS), to obtain 

(16) 

Tl,ie rest of the algebra has a similar structure: for G = (Xip)+(XS) ~ u!6(X)S6ip1, with 

u!6(X) -:--- [e1(eaX•)(X et)], we obtain an algebra that closes modulo infinitesimal shifts on 

8 7
, i.e. besides the ''expected" terms there are terms containing yri. By considering finite 

transformations generated by J, we see that we transform X ea -+ Y(X ea) for another unit 

octonion Y, i.e. we obtain a rotated basis of tangent vedors at Y X E 87• Clearly we can 

also generate the basis (X•Y•)(Y(Xe;)) at the northpole Z = 1. This basis is rotated with 

respect to the Xe;. Vle couclude that the ~hifts operate not on the 7-sphere, but on an 
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S0(7)-bundle over Si, i.e. on SO(S). The operator product of, sa.y, Jx = !(XS)*(XS) and 

Jy x = t(Y(X S))*(Y(X S')), does not fit into the simple scheme displayed above. But then, 

we would expect it to cont.a.in terms with an infinite number of S7-dei'ivatives. We will call 

the structure we found a current algebra that is "local on 8 7
". 

Up to this point we ha.ve treated X as a number. For the algebra to close, we need a 

mechanisrn that takes care of the infinitesimal shifts on 81. This is accomplished by letting 

the 8 7 coordinate X be an operatol', and adding an 8 7 translation generator to J. More 

precisely, we introduce a pair of octonionic bosons (>., w) with conformal weights (1/2, 1/2) 

and their superpart.ners (0,11') of weights (0,1), set X = >./l>.I and define 

..1 = {w* >.} + ~(XS)*(XS) 
g = 11'.). - ao*w + (X 8cp)*(X S) + t(X S)*(AS) - t(A8)*(X 8) (17) 

C = ![8>.*w - >.*8w] - [11'*80] + !f8cp*8cp] - t[S*8SJ 

where .A= l>.1-1(80-X[X*DO]) ·is the tangential part of fJO. The algebra of these operators 

is soft [22], i.e. it closes with field dependent structure "constants" and anomaly terms. The 

classical algebra is 

• 2 ' ' 
"' Z _ (..1(aX 0)(Xa') 

..1a(z)9n(() ,..., - z ~ ( (9cnx•)(Xa) + ..1..\-1 (caon)a-ao((oX•)(Xa)))) (18) 

"' (z ~ 023'cn•.\' .. )(Xo) + z: ( (!a(.Jco·x•)(xn,>) + [n*n'J.C) 

(Note that we still discuss the classical algebra).. We note that only ,.\ and 8 enter into 

the field dependen~e, so that the structure functions (anti)commute. They have a natural 

interpretation in terms of the torsion tensor and its superpartner on S7• The reduction to 

the N < 8 algebras of eq.(5) is obvious: just remove all associator terms. If one replaces the 

term !(X S')*(X S) in ..1 by {(Xw')*(X >.')}, where (>.' ,w') is .a conjugate pair of bosons of 

weights (1/2,1/2), and makes the corresponding replacements in g and .C, one finds the soft 

algebra Berkovits describe~ in the context of the twistor formulation of the superstring [24). 

Thus we have found a natural generalization of the N=4 free field constructions. 

We want to emphasize that we are working with explicit generators, and therefore au­

tomatically have the Jacobi identities fulfilled. If we on the right hand side of eq. (18) set 

X = 1, {){} = 0, we get a non-associative algebra like the ones in [22,23,25]. The present 
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formulation is stronger. A non-trivia.I feature is that, unlike what could be expected from 

a naive consideration of the properties of the octonions, the Kac-Moody part S't actually 

commutes with the S'O(S) of space rot.a.tions, and that our seven-sphere is therefore not the 

quotient of this group wil.!1 a.n 5'0(7) subgroup, but an additional symmetry. The N = 8 

generators of eq. (17) as they stand are not the ones that enter in the super-Poincare gen­

erators (9). First the "parameter fields" (..\,w) and (0,11') must be removed - they are not 

physical fields. With our present understanding of the role of these fields we cannot make 

any certain statements about their physical interpretation in a covariant theory. We do not 

for example know what the constraints are that eliminate the parameter fields. A possible 

interpretation is that they are a remnant of a set of super-twistor variables from a combined 

space-time/twistorial formulation. For the moment ~e take a very pragmatic point of view 

and note that in order to reduce the field content to that of the light-cone superstring, we 

need some quantum mechanically consistent set of constraints (note that the superconformal 

generators cannot be set to zero with a quantum-mechanically nilpotent BRST charge). We 

may state w ~ 0 and 71' ~ 0, allowing for the gauge choices X = 1, () = 0, which of course 

takes us back to the situation in eqs. (14) a.nd (16). The closure of the algebra is obstructed 

by the gauge choices. However, the role of the generators of the superconformal algebra in 

the super-Poincare algebra is identical to t.ha.t in the lower dimensionalities. 

One may speculate in the ultimate role of the superconformal algebra in some kind of 

"covariant" formulation. \Ve have a strong belief that the N =D-2 superconformal algebras 

have a fundamental significance, yet their generators enter very asymmetrically e.g. in the 

super-Poincare generators, where .J is not seen at all. It is tempting to think that the 

relation between space-time and worlclsheet symmetrie~ established in this paper gives a 

glimpse of the structure of an everi bigger symmetry. 

What is now the lesson so far? If we rea.lly insist on having the maximal superconformal 

symmetry we are led to a 10-dimensiona.l string theory. We know since long that this 

theory is essentially unique while there are many seemingly consistent superstrings in lower 

dimensions. It is tempting to believe that the 10-dimensional symmetry is broken down to 4 

dimensions in a way which keeps a maximal subsymmetry of the original one and that this 

could lead to a unique 4-dimeusional model hence giving us the wanted screening among 

the 4-dimensional models. How this comes about and what· physical principal that would 

lead to this result. I do not. know, but I find it a very intriguing question. With respect to 

the other questions ra.ised in the beginning of the talk it is still too early to say how helpful 
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our new insights a.re. It. does remain to better understand the symmetry to find a way of 

implementing it covaria.ntly a.nd to get a physical insight into its origin. I hope to be able to 

find answers to all these que.stions at least before the Gold Jubilee of the Indian Association 

for General Relativity and Gravitation! 
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