
Physics Letters B 765 (2017) 238–243
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Generalized uncertainty principle as a consequence of the effective 

field theory

Mir Faizal a,b,∗, Ahmed Farag Ali c,d, Ali Nassar e

a Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7, Canada
b Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
c Department of Physics, Faculty of Science, Benha University, Benha, 13518, Egypt
d Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam, Netherlands
e Department of Physics, Zewail City of Science and Technology, 12588, Giza, Egypt

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2016
Received in revised form 30 September 
2016
Accepted 4 November 2016
Available online 2 December 2016
Editor: B. Grinstein

We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion 
in the effective field theories. This is because in the framework of the effective field theories, the 
minimum measurable length scale has to be integrated away to obtain the low energy effective action. 
We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty 
principle, and demonstrate that the minimum measurable length scale corresponds to a second more 
massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to 
this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they 
are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly 
calculate the renormalized boundary action with counter terms for this scalar field theory deformed by 
generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the 
matter conformal anomaly.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

It is a universal prediction of almost all approaches to quantum 
gravity, that there is a minimum measurable length scale and it 
is not possible to make measurements below that scale. In pertur-
bative string theory, the string length scale acts as the minimum 
measurable length scale. This is because in perturbative string the-
ory, the smallest probe that can be used for analyzing any region 
of spacetime is the string, and so, spacetime not be probed at 
length scales below string length scale [1]. The existence of a mini-
mum length scale in loop quantum gravity turns the big bang into 
a big bounce [2]. The generalized uncertainty principle has also 
been obtained from quantum geometry [3]. This has been done 
by taking into account the existence of an upper bound on the 
acceleration of massive particles [4,5]. So, the generalized uncer-
tainty principle can also be motivated from a deformation of the 
geometry of spacetime by a constraint on the maximal accelera-
tion of massive particles. It may be noted that the deformation of 
spacetime has also been analyzed using conformal transformations 
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[6]. The energy needed to probe spacetime at length scales smaller 
than Planck length is more than the energy required to form a 
black hole in that region of spacetime. So, spacetime cannot be 
probed below the Planck scale, as this will lead to the formation 
of a mini black holes, which will in turn restrict the measurement 
of any phenomena below the Planck scale. Thus, the existence of a 
minimum measurable length scale can also be inferred from black 
hole physics [7,8]. On the other hand, the existence of a minimum 
measurable length scale is not consistent with the usual Heisen-
berg uncertainty principle. This is because according to the usual 
Heisenberg uncertainty principle, the length can be measured to 
arbitrary accuracy if the momentum is not measured. To incor-
porate the existence of a minimum measurable length scale in 
the Heisenberg uncertainty principle, one needs to modify it to 
a generalized uncertainty principle. However, as the Heisenberg 
uncertainty principle is related to the Heisenberg algebra, the de-
formation of the Heisenberg uncertainty principle also deforms the 
Heisenberg algebra [9–15].

The deformed Heisenberg algebra in turn deforms the coordi-
nate representation of the momentum operator [9–15]. This cor-
rects all quantum mechanical systems, including the first quantized 
equations of a field theory [16]. In fact, a covariant version of this 
deformed algebra is used to deform the field theories [17], and 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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this covariant deformation is consistent with the existence of a 
minimum measurable time [18], apart from being consistent with 
the existence of a minimum measurable length. The gauge theories 
corresponding to such a deformed field theory has also been stud-
ied [19–21]. In this paper, we will analyze some theoretical aspects 
of such a deformed field theory. We will also use the holographic 
principle to understand the boundary dual of such a deformed field 
theory. The holographic principle states that the gravitational de-
grees of freedom in a region are encoded in the boundary degrees 
of freedom of that region. One of the most successful realization of 
the holographic principle is the gauge/gravity duality also known 
as the AdS/CFT correspondence [22–24]. This duality relates type 
IIB string theory on AdS5 × S5 to N = 4 super-Yang–Mills theory 
on its conformal boundary. It may be noted that even though the 
full string theory on AdS5 × S5 is not understood, this duality can 
be used to map the weakly coupled limit of string theory to the 
strongly coupled gauge theory [25]. In fact, it can also be used to 
map a strongly coupled limit of the string theory to the weakly 
coupled limit of the gauge theory [26]. Thus, this duality can be 
used for analyzing the strongly coupled limit of the gauge the-
ory by analyzing weakly coupled limit of the string theory. Since 
the weak coupling limit of the string theory can be approximated 
by ten dimensional supergravity, this duality is usually used to 
map the ten dimensional supergravity on AdS5 × S5 to N = 4
super-Yang–Mills theory on its conformal boundary. Furthermore, 
to suppress the loop contributions of the ten dimensional super-
gravity one takes the large N limit of the gauge theory. It may 
be noted that the UV divergences of the correlation functions on 
the gauge theory side need to be renormalized. However, these UV 
divergences are related to the IR divergences on the gravitational 
side of the duality. The IR divergences on the gravitational side 
are the same as near-boundary effects, and so, they can be dealt 
with by using holographic renormalization [27–30]. This is because 
the cancellation of the UV divergences does not depend on the IR 
physics, and this in turn implies that the holographic renormaliza-
tion should only depend on the near-boundary analysis.

It may also be noted that even though the AdS/CFT conjecture 
has been mostly used in the context of string theory, this con-
jecture is actually a more general conjecture. In fact, the AdS/CFT
conjecture has also been used for analyzing Rehren duality also 
known as algebraic holography [31–59]. The Rehren duality estab-
lishes the correspondence between an ordinary scalar field theory 
on AdS and a suitable conformal field theory on its boundary. In 
Rehren duality a space like wedge in AdS is mapped to its inter-
section with the boundary [33]. This sets up a bijection between 
the set of all wedges in the bulk and the set of all double-cones 
on the boundary. In fact, this bijection maps spacelike related bulk 
wedges to spacelike related boundary double-cones. Now for a net 
of local algebras on the bulk the Rehren duality defines a net of 
local algebras on the boundary. This is done by identifying the 
algebra for a given boundary double-cone with the bulk wedge al-
gebra which restricts to it. In fact, another approach that relates a 
ordinary scalar field theory in the bulk to the conformal field the-
ory on its boundary is the boundary-limit holography [34]. Thus, 
the main idea behind AdS/CFT conjecture has wider applications 
than relating type IIB string theory on AdS5 × S5 to the N = 4
super-Yang–Mills theory on its boundary.

Using this as a motivation, we will analyze the boundary dual 
of a scalar field theory with higher derivative corrections in the 
bulk. Higher derivative corrections to the scalar field theory have 
been predicted from discrete spacetime [49], spontaneous sym-
metry breaking of Lorentz invariance in string field theory [36], 
spacetime foam models [37], spin-network in loop quantum grav-
ity [38], non-commutative geometry [39], Horava–Lifshitz gravity 
[40], and the existence of minimum length [9]. In fact, the exis-
tence of the string length scale also produces higher derivative cor-
rections to the low energy phenomena [10,11]. Aspects of higher 
derivative terms have been investigated in cosmological inflation in 
[12–41]. In fact, motivated by the existence of a minimum length 
in string theory, higher derivative corrections to the scalar field 
theory in AdS/CFT has been recently analyzed [42]. As we are an-
alyzing low energy effective phenomena, these higher derivative 
corrections are also expected to occur due to the derivative expan-
sion in the effective field theory [71–77]. In this paper, we will 
analyze a scalar field theory deformed by generalized uncertainty 
principle, and observe that it contains higher derivative correc-
tions. We will also analyze the physical meaning of these higher 
derivative terms. It has been suggested that the high energy exci-
tations in the bulk will correspond to the CFT operators scaling as 
�1 ∼ N2/3 in five dimensions, or � ∼ N1/4 in ten dimensions [24]. 
We observe that the deformation of the scalar field theory by the 
generalized uncertainty principle in the bulk produces CFT opera-
tors with this scaling property on the boundary. This implies that 
the deformation produced by the generalized uncertainty principle 
actually correspond to high energy excitation in the bulk, as was 
expected from effective field theory.

2. Deformed field theory

In this section, we will analyze the deformation of a massive 
scalar field theory on AdS by the generalized uncertain princi-
ple [19–21]. Furthermore, it will be demonstrated that the higher 
derivative corrections obtained from the generalized uncertainty 
principle will be exactly the same as the correction generated 
from a derivative expansion in the light of effective field theo-
ries [71–77]. The existence of minimum measurable length causes 
the following deformation of the uncertainty principle, and for 
a simple one dimensional system it can be written as �x�p =
[1 + β(�p)2]/2 [9–15]. Here β = β0�

2
Pl and β0 is a constant nor-

mally assumed to be of order one, and this corresponds to taking 
the Planck length �Pl ≈ 10−35 m as the minimum length scale. 
However, it is possible to take the minimum measurable length 
scale as an intermediate length scale �Inter , which is between the 
Planck length scale and electroweak length scale. In this case, the 
constant β0 will be given by β0 ≈ �2

Inter/�
2
Pl [9]. It may be noted 

that this will change the value of β , and as we will demonstrate 
that β acts as another mass scale in the theory, this will change 
the value of that mass scale. However, in this paper, we will fix the 
value of β0 ≈ 1 by taking the Planck scale as the minimum mea-
surable length scale. This deforms the Heisenberg algebra, as the 
Heisenberg algebra is closely related to the Heisenberg uncertainty 
principle. The deformed Heisenberg algebra in any dimension can 
be written as

[xi, p j] = i[δi
j + βp2δi

j + 2βpi p j]. (1)

The coordinate representation of the deformed momentum, which 
is consistent with this algebra is [19]

pμ = −i∂μ(1 − β∂ν∂ν). (2)

We will analyze such a deformation of a free scalar field theory 
on AdS. The AdS metric can be written as

ds2 = G MNdxMdxN = L2z−2[dz2 + δμνdxμdxν ]. (3)

The Laplacian on AdS is given by

� = zd+1∂z(z−d∂z) + �0, (4)

where �0 = δi j∂i∂ j . Thus, a covariant version of the deformed mo-
mentum on AdS can be written as [42]

pM = −i∇M(1 − β�). (5)
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It may be noted that the original momentum on AdS was p̃M =
−i∇M , so the effect of generalized uncertainty principle is that it 
deforms p̃M → pM and this deforms ∇M → ∇M(1 − β�), which in 
turn deforms (to the leading order in β) � → � − β�2. The action 
of the original free massive scalar field theory can be written as

S = 1

2

∫
dd+1x

√
g
[
G MN∇M�∇N� + m2�2]. (6)

The equation of motion for this free massive scalar field theory on 
AdS, can be written as,(� − m2

)
� = 0. (7)

This equation will get deformed by the generalized uncertain prin-
ciple as [42](� − m2 − β�2

)
� = 0. (8)

Now we can write the action for the deformed scalar field theory, 
which can produce Eq. (8) as its equation of motion,

S = 1

2

∫
dd+1x

√
g
[
G MN∇M�∇N� + 2β���� + m2�2]. (9)

It may be noted that such higher derivative terms will modify the 
propagator from 1/(p2 +m2) to 1/(p2 +m2 +βp4), and thus there 
will be additional poles. This propagator can be written as a sum 
of two propagators, A1/(p2 +m2

1) + A2/(p2 +m2), and as it is pos-
sible for one of these propagator to have a negative sign, such a 
theory can contain Ostrogradsky ghost [43,44]. In general, there are 
several problems with such higher derivative theories, and several 
different solutions have been proposed to deal with them. In fact, 
such theories can be non-unitary and contain negative norm states, 
which would produce negative probabilities. However, it is possi-
ble to use the Euclidean formalism, and trace over a certain field 
configuration in the final state [45,46]. The theory thus obtained is 
still non-unitary, but it does not contain negative norm states, and 
hence it does not produce negative probabilities. There are sev-
eral other ways to deal with such higher derivative terms. It may 
be noted that Lee–Wick theories are higher derivative field theory, 
which are unitary [47–50]. So, we could also use the Lee–Wick 
formalism to analyze this deformed field theory. Thus, we can in-
troduce an Lee–Wick field, and this Lee–Wick field will correspond 
to a more massive mode. Then this theory would be unitary, if 
the Lee–Wick field decays. This can occur by imposing suitable 
boundary condition, such that there are no outgoing exponentially 
growing modes. Even though such a boundary condition violates 
causality, in a Lee–Wick theory such a violation only occurs at 
microscopic scales. It has been argued that the macroscopic vio-
lation of causality does not occur in a Lee–Wick theory [47–50]. 
It may be noted that the a Lee–Wick scalar field theory, which 
had the same form as a scalar field theory deformed by the gener-
alized uncertainty principle, has been already analyzed using this 
formalism [51]. In fact, it has been argued that component field 
theories obtained from a nonanticommutative deformation of su-
persymmetric field theory are Lee–Wick field theories [52]. It has 
also been demonstrated that this nonanticommutative deformation 
of a supersymmetric field theory is similar to deformation pro-
duced by the generalized uncertainty principle [53]. So, it can be 
argued that the deformation of a scalar field theory by the gen-
eralized uncertainty principle can be analyzed using the Lee–Wick 
formalism.

It may be noted that such negative norm states even occur in 
the usual gauge theories, due to the gauge symmetry. However, 
due to the BRST symmetry, the Kugo–Ojima criterion can be used 
to remove these negative norm states from a usual gauge theory 
[54,55]. So, it is expected that even such negative norm states can 
be removed by using a subsidiary condition in higher derivative 
theories. It has been argued that it might be possible to develop 
such formalism to remove negative states from higher derivative 
theories [56–58]. In fact, such higher derivative terms can also be 
analyzed using various other approaches [59–70]. Most of these 
approaches are also based on some superselection rule or some 
subsidiary condition which are used to remove the undesirable 
ghost states. In this paper, we will not be analyzing the unitarity 
of the higher derivatives terms in this deformed field theory. We 
would be analyzing the relation between the generalized uncer-
tainty principle and effective field theories. However, it is impor-
tant to note that such higher derivative terms can be consistently 
handled using different approaches.

In the framework of effective field theories [71–77], for a given 
mass dimension, we have to include all terms, when performing 
the derivative expansion of the effective action. However, as we 
started from a free scalar field theory, the theory has to remain 
free at all scales. So, we cannot include higher powers of fields in 
the derivative expansion of the effective field theory. Thus, we can 
only include higher order derivative terms in the effective action of 
this theory. The requirement of the theory to be Lorentz invariant 
further restricts the form of these higher order terms that can be 
added to such an effective action. In fact, to the first order, the 
effective field theory action, satisfying these constraints, is given 
by

S = 1

2

∫
dd+1x

√
g
[
G MN∇M�∇N� + 2

M2
���� + m2�2], (10)

where M2 is the scale which has been integrated out, and for 
theories based on generalized uncertainty principle, this has to 
be equal to the minimum measurable length scale. In fact, if we 
identify M2 = β−1, we can observe that the action obtained from 
the derivative expansion in effective field theory is identical to the 
deformed action obtained from the generalized uncertainty princi-
ple. This is physically expected as generalized uncertainty principle 
is obtained by incorporating a minimum measurable length scale 
in the theory. In other words, the theory is not defined below a 
certain length scale. However, if we look at this situation using ef-
fective field theory, we will have to integrate the modes below 
that minimum length scale. Hence, both the effective field the-
ories and generalized uncertainty principle seem to be based on 
the same physical principle, i.e., not to make measurements below 
a certain length scale. This also suggests how we should handle 
the deformation of a field theory by generalized uncertainty prin-
ciple. So, the parameter β should be viewed as a perturbation 
parameter, and we should make a derivative expansion of the field 
theory. This will act as a new mass scale in the theory. However, 
as long as we are dealing with the infrared limit of the theory, 
and the energy used to probe the theory will be small compared 
to this mass of this mode, the theory will be well defined. This 
is the standard way to deal with such higher derivative terms in 
the framework of effective field theories [71–77], and this is the 
framework we will use in this paper. The main interesting result 
here is that the generalized uncertainty principle can be obtained 
as a consequence of the derivative expansion of a free scalar field 
theory. This is because if we started from Eq. (10), and made the 
identification, M2 = β−1, the equation of motion we would obtain 
would be the equation of motion deformed by the generalized un-
certainty principle. In this paper, we will analyze the consequence 
of this correspondence further. In fact, we will use the AdS/CFT
correspondence to analyze the boundary dual to such a deformed 
field theory in the bulk.

In order to analyze this theory using the AdS/CFT correspon-
dence, we need to find an explicit expression for the boundary 
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action. The boundary action corresponding to this deformation can 
also be written as

Sb = 1

2

∫
dd+1x

√
γ nμ

[
�∂μ� + β

(
∂μ��� − �∂μ��

)]
, (11)

where γ is the boundary metric. Now using the Fourier trans-
form of the scalar field φ(z, x) in xμ coordinates, and the ansatz 
fk(z) ≈ z� , for solutions close to the boundary, the solutions to 
this equation can be written as, [21],

β−1L2�(� − d) − m2β−1L4 − �4 + 2d�3 − d2�2 = 0. (12)

It may be noted that for the massless case, m = 0, the roots have 
a simple structure,

�1 = 0, �2 = d, �3,4 = 1

2
[d ±

√
d2 + 4β−1L2]. (13)

These roots are very similar to that of mass deformations (scalar 
field mass terms), if we replace m → β−1. In fact, we can write the 
solution for the general massive case as follows,

�1,2 = 1

2

[
d ±

√
d2 + 2β−1L2 + 2β−1/2L2

√
β−1 − 4m2

]
,

�3,4 = 1

2

[
d ±

√
d2 + 2β−1L2 − 2β−1/2L2

√
β−1 − 4m2

]
. (14)

For reasons that will be clear soon, let us call:

M+ = 1

2
[β−1 + β−1/2

√
β−1 − 4m2],

M− = 1

2
[β−1 − β−1/2

√
β−1 − 4m2], (15)

which will leave the four roots in even simpler form

�1,2 = 1

2

[
d ±

√
d2 + 4M2+L2

]
,

�3,4 = 1

2

[
d ±

√
d2 + 4M2−L2

]
. (16)

Now one has to notice that M+ = β−1/2 + O (β) and M− = m +
O (β), which say that effectively we have two usual mass scaling 
dimensions. Our solution in the bulk reads

�(x, z) ∼ z�2 A(x) + ..., (17)

where �2 = 1
2

[
d −

√
d2 + 4M2+L2

]
is the smallest root, which 

leads the behavior of the solution near the boundary (close to 
z = 0). The connection between � and the CFT operator is through 
the source term in the boundary action, which should be confor-
mally invariant. This leads to the relation between �1 and the 
scaling dimension of the operator O, dual to �̃, which reads:

d − �̃ = �2. (18)

One can check that �̃ = �1. As one can see this is an irrelevant 
operator i.e., it corresponds to a deformations which is irrelevant 
in the IR but important in the UV. This is consistent with fact that 
the bulk deformation is a higher derivative term suppressed by the 
string length scale.

It may be noted that these CFT operators scale as �1 ∼ N2/3 in 
five dimensions, or � ∼ N1/4 in ten dimensions. It has been sug-
gested that the high energy excitation in the bulk will correspond 
to the CFT operators scaling as �1 ∼ N2/3 in five dimensions, or 
� ∼ N1/4 in ten dimensions [24]. Thus, the corrections generated 
from the generalized uncertainty principle actually correspond to 
high energy excitations in the bulk. This is also what is expected 
from a effective field theory perspective, as we are studding low 
energy effective phenomena. The low energy effective field theory 
equations are obtained by integrating the high energy excitations 
away. Thus, next to the leading order corrections to classical action 
for the low energy effective field theory are obtained by integrating 
the minimum measurable length scale out. Thus, we have identi-
fied the deformations of the CFT operators scaling as �1 ∼ N2/3 in 
five dimensions, or � ∼ N1/4 in ten dimensions with corrections 
in the bulk theory which were generated from the generalized un-
certainty principle.

3. Holographic renormalization

In this section, we will calculate correlation functions in this 
field theory deformed by generalized uncertainty principle. In fact, 
just from the conformal invariance, we can predict the form of 
these functions,

〈O (x)O (0)〉 = C

|x|2�̃
. (19)

However, to derive an explicit form for these functions, we need 
to apply the techniques of holographic renormalization [27–30] to 
the massive scalar in AdS with Planck scale deformation. We write 
the boundary value of any bulk field �(z, x) as,

�0(x) = �(z = 0, x) = �|∂AdS(x), (20)

where �0(x) is a source of a dual operator O in the CFT side. The 
generating functional of this CFT can be written as

ZCFT[�0] =
〈

exp
[∫

�0O
]〉

= Zgravity[� → �0], (21)

where the path integral in Zgravity[� → �0] is over all fields whose 
boundary value is �0. In the limit, where classical gravity domi-
nates the partition function Zgravity[� → �0], can be approximated 
by

Zgravity[� → �0] ≈ eSon-shell . (22)

The on-shell gravity action in AdS suffers from divergences due to 
the infinite volume of AdS and one needs to replace the action by 
a renormalized version Sren

on-shell. The two-point function (19) will 
be given by

〈O (x)O (0)〉 = δ2 Sren
on-shell[� → �0]
δϕ(x)δϕ(0)

, (23)

where

ϕ(x) = lim
z 
→0

z�−d�(z, x). (24)

We follow the methods used in [25], and use the following form 
for the metric of AdSd+1

ds2 = G MNdxMdxN = dρ2

4ρ2
+ 1

ρ
dxidxi, (25)

where the AdS radius has been set equal to one. The Laplacian in 
this metric is given by

� = (−2d + 4)ρ∂ρ + 4ρ2∂2
ρ + ρ�0, (26)

where �0 = δi j∂i∂ j . In the metric given by Eq. (25), we have

nμ = (nρ,0,0,0), γi j = δi j

ρ
,

√
γ = ρ− d

2 ,

nρ = 1√
G

= 2ρ. (27)

ρρ
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The equation of motion of the deformed scalar in AdS is(� − m2 − 1

M2
P

�2
)
� = 0. (28)

We look for solutions of this equation of the form

�(ρ, x) = ρ(�−d)/2φ(ρ, x),

φ(ρ, x) = φ(0)(x) + ρφ(2)(x) + ρ2φ(4)(x) + · · · . (29)

Now we use this form of �(ρ, x), and recursively solve the equa-
tion at each order of ρ . So, at order ρ0, one gets

�(d − �)(�(d − �) + M) + m2M = 0 (30)

which is the relation between the mass and conformal dimension 
given in Eq. (12). At higher orders one gets

φ(2) = �0φ(0)

2(2� − d − 2)
,

φ(4) = �0
(�0φ(0)− (2d(�− 3)−2((�− 6)�+ 10)+ M)φ(2)

)
2(d − 2� + 4)(2d(� − 2) − 2((� − 4)� + 8) + M)

,

φ(6) = �0
(
2�0φ(2) − (

2d(� − 5) − 2�2 + 20� + M − 52
)
φ(4)

)
2(d − 2� + 6)(2d(� − 3) − 2((� − 6)� + 18) + M)

.... (31)

If we write everything in terms of φ(0) , we get

φ(2N) = �N
0 φ(0)∏N

n=1 2n(2� − d − 2n)
. (32)

This is the same form one gets in the undeformed case.
Now we evaluate the on-shell action on the classical solution to 

read off the counter terms. First, we consider operators for which 
� �= d/2 + k

Sb = 1

2

∫
ddx

√
γ nμ

[
�∂μ� + β

(
∂μ��� − �∂μ��

)]

= 1

2

∫
ddx

√
γ nρ

[
�∂ρ� + β

(
∂ρ��� − �∂ρ��

)]
.

=
∫

ρ=ε

ddx
(
ε

d
2 −�a(0) + ε

d
2 −�+1a(2) + ε

d
2 −�+2a(3) · · ·

)
. (33)

where

a(0) = 1

2
(d − �)φ2

0 ,

a(2) = −βφ0�0φ0 +
(
d − � + 1 + β(4 − 4� + 2d)

)
φ0�0φ0

2(2� − d − 2)
,

a(2) = (d − � + 1)

2(2� − d − 2)
φ0�0φ0,

a(3) = (d − � + 3)(d − 2� + 5)

12(d − 2� + 2)2(d − 2� + 4)(d − 2� + 6)
φ0�3

0φ0. (34)

These coefficients are of the same form like in the undeformed 
case, i.e., the higher derivative terms in the boundary action do 
not introduce new divergences, and so, we do not need any new 
counter terms. Now up to second order, we can write [25]

φ(0) = ε−(d−�)/2
(

�(x, ε) − 1

2(2� − d − 2)
�γ �(x, ε)

)

φ(2) = ε−(d−�)/2−1 1 �γ �(x, ε). (35)

2(2� − d − 2)
From the above expansions one can write down the counter term 
action for operators with � �= d/2 + 1

Sct = −
∫

ddx
√

γ

(
d − �

2
�2 + 1

2(2� − d − 2)
��γ �

)
(36)

The complete regularized action is now given by

S = 1

2

∫
ddx

√
γ nμ

[
�∂μ� + β

(
∂μ��� − �∂μ��

)

− d − �

2
�2 − 1

2(2� − d − 2)
��γ �

]
. (37)

For � = d/2 + k, we will need to introduce logarithmic term 
in the expansion of �(ρ, x). We consider � = d/2 + 1, where the 
expansion takes the form

�(ρ, x) = φ(0) + ρ
(
φ(2) + logρψ(2)) + · · · . (38)

By plugging this into Eq. (28), we find

ψ(2) = −2 + β(d2 − 4)

8 + β(d2 − 4)
�0φ(0). (39)

Since the coefficient of the logarithmic term gives the matter con-
formal anomaly for the usual case, the higher derivative deforma-
tion of the scalar field theory is expected to contributes to the 
matter conformal anomaly. Thus, the matter conformal anomaly 
is generated by deforming the scalar field theory in the bulk by 
generalized uncertainty principle. The new contribution is of order 
1/N1/2.

For an operator with � = d/2 +1, the counter term action takes 
the form

Sct = −
∫

ddx
√

γ

(
d − �

2
�2 − 2 + β(d2 − 4)

8 + β(d2 − 4)
logε��γ �

)
.

(40)

The renormalized on-shell regularized action with counter terms is 
now given by

S =
∫

ddx
√

γ nμ
[
�∂μ� + β

(
∂μ��� − �∂μ��

)

− d − �

2
�2 − 2 + β(d2 − 4)

8 + β(d2 − 4)
logε��γ �

)
. (41)

The above actions can be easily used to compute correlation func-
tions [25]. For example, the one-point function can be written as

〈O �〉 = lim
ε 
→0

(
1

ε�/2

1√
γ

δS

δ�(x, ε)

)
. (42)

Thus, we are able to find any correlation functions using this on-
shell regularized action. It may be noted that by using holographic 
renormalization, it was demonstrated that the deformation of the 
scalar field theory based on the generalized uncertainty principle 
contributes to the matter conformal anomaly.

4. Conclusion

In this paper, we deformed a free massive scalar field theory on 
AdS by generalized uncertainty principle. It was demonstrated that 
the higher derivative terms produced from derivative expansion in 
effective field theory exactly matches the deformation produced 
by the generalized uncertainty principle. This was because the 
derivative expansion of the effective field theory was obtained by 
integrating out the scale corresponding to the minimum measur-
able length. We also explicitly calculated the boundary field theory 
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dual to this scalar field theory with higher derivative corrections. 
Furthermore, it was demonstrated that higher derivatives corre-
spond to the existence of two massive scaling dimensions. Finally, 
we calculated the correlation functions using holographic renor-
malization. Thus, the UV divergences of the correlation functions 
on the boundary were renormalized. These UV divergences were 
related to the IR divergences on the bulk. In fact, the IR diver-
gences on the bulk are the same as near-boundary effects, and so, 
they were dealt by using holographic renormalization. Using holo-
graphic renormalization, it was shown that the deformation of the 
scalar field theory by the generalized uncertainty principle con-
tributes to the matter conformal anomaly. It was also found that 
the new CFT operators scaled as �1 ∼ N2/3 in five dimensions, or 
� ∼ N1/4 in ten dimensions. As it had been suggested that the 
purely stringy excitation in the bulk will correspond to the CFT 
operators scaling as �1 ∼ N2/3 in five dimensions, or � ∼ N1/4

in ten dimensions [24], we concluded that these higher derivative 
corrections may actually correspond to high energy excitation in 
the bulk. In fact, we also argued that this is what is expected to 
occur from an effective field theory perspective, because we were 
studding low energy effective phenomena. As the low energy effec-
tive field theory equations were obtained by integrating the high 
energy excitation away, the next to the lead order corrections to 
classical action for the low energy effective field theory would 
appear as a higher derivative correction. Thus, we identified the 
deformations of the CFT operators scaling as �1 ∼ N2/3 in five di-
mensions, or � ∼ N1/4 in ten dimensions, with higher derivative 
corrections in the bulk theory.

It may be noted that we only analyzed the higher derivative 
corrections for an ordinary scalar field theory on AdS and related 
it to the conformal field theory on its boundary. The precise cor-
respondence between a ordinary scalar field theory on AdS and 
a suitable conformal field theory on its boundary is given by the 
Rehren duality [31–59]. It would thus be interesting to analyze the
boundary dual to the scalar field theory on the bulk in the frame-
work of algebraic holography. It may also be interesting to analyze 
the bulk action of various supergravity theories in the framework 
of effective field theories. We will expect that the bulk action will 
receive higher derivative corrections from purely stringy excita-
tions. Then it will be possible to relate these higher derivative 
corrections for the bulk supergravity action to the superconfor-
mal field theories on the boundary. As the full string theory is 
dual to boundary superconformal field theory, we expect that the 
conformal dimension of marginal operators will not receive any 
correction from these purely stringy excitations. However, confor-
mal dimensions of both the relevant and the irrelevant operators 
are expected to receive corrections. It would be interesting to per-
form this analysis explicitly, and demonstrate this to be the case.
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