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CORRIGENDUM

Corrigendum: Dual electromagnetism: helicity, spin, momentum,
and angular momentum (2013New J. Phys.15 033026)

KonstantinYBliokh1,2, AleksandrYBekshaev3 and FrancoNori1,4

1 CEMS, RIKEN,Wako-shi, Saitama 351-0198, Japan
2 Nonlinear Physics Centre, RSPE, TheAustralianNational University, Canberra, ACT 0200, Australia
3 I. I.MechnikovNational University, Dvorianska 2, Odessa, 65082, Ukraine
4 PhysicsDepartment, University ofMichigan, AnnArbor,MI 48109-1040, USA

In this corrigendumwepoint out two inaccuracies.
1. The inequalities in equations (2.47) and (3.36) in [1] should be equalities. The integral (over thewhole free

space) values of the dual-symmetric and dual-asymmetric spin and orbital angularmomenta are equal to each
other, as it follows from the results of [2]. Thus, these equations should read

ò ò ò ò= = = =˜ ˜ ( )V V V VL L S Sd d const, d d const. 1

We thankRobert PCameron for pointing this out. At the same time, the inequalities (3.37) for the integral values
of the dual-symmetric and asymmetric energy and helicity hold true.

We emphasize that the local spin and orbital angularmomentumdensities remain different in the dual-
symmetric and asymmetric approaches, ¹ ˜S S, ¹ ˜L L, and represent properties observable in optical
experiments [3].Moreover, even the integral values of the dual-symmetric and asymmetric spin angular
momentum are essentially different for: (i) evanescent waves with half-space integration and (ii) for surface
modes ofMaxwell equations at interfaces between twomedia [4]

/ /ò ò¹ ˜ ( )V VS Sd d . 2evan surf evan surf

Thus, the equations (1) shown above are valid only for confined states integrated over thewhole free space.
2. The boostmomentum in the standard (dual-asymmetric) formalism should involve the proper dual-

symmetric energy density, i.e.,W rather than W̃ .Thus, expressions (2.24) and (2.25) in [1] should read
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O
i
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The corresponding statements in the text below (2.25) and in other places should bemodified accordingly. Also,
equations (2.42) and (3.35) should be

ò ò ò- = - = - =˜( ) ( ) ( ) ( )t W V t W V t W VP r P r P rd d d const. 5O O

Here the second equality is fulfilled in view of the second equation in (2.39). Therefore, equations (2.43) do not
take place, and should be omitted.

Finally, the dual-asymmetric boostmomentum should bemodified accordingly in the table infigure 1. The
corrected figure 1 is as follows
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The above corrections do not affect themain results and conclusions of our paper regarding the principal
differences between the standard (dual-asymmetric) and dual-symmetric formulations of electromagnetism,
and the self-consistency of dual electromagnetism.
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Abstract. The dual symmetry between electric and magnetic fields is an
important intrinsic property of Maxwell equations in free space. This symmetry
underlies the conservation of optical helicity and, as we show here, is closely
related to the separation of spin and orbital degrees of freedom of light (the
helicity flux coincides with the spin angular momentum). However, in the
standard field-theory formulation of electromagnetism, the field Lagrangian
is not dual symmetric. This leads to problematic dual-asymmetric forms of
the canonical energy–momentum, spin and orbital angular-momentum tensors.
Moreover, we show that the components of these tensors conflict with the
helicity and energy conservation laws. To resolve this discrepancy between the
symmetries of the Lagrangian and Maxwell equations, we put forward a dual-
symmetric Lagrangian formulation of classical electromagnetism. This dual
electromagnetism preserves the form of Maxwell equations, yields meaningful
canonical energy–momentum and angular-momentum tensors, and ensures a
self-consistent separation of the spin and orbital degrees of freedom. This
provides a rigorous derivation of the results suggested in other recent approaches.
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We make the Noether analysis of the dual symmetry and all the Poincaré
symmetries, examine both local and integral conserved quantities and show that
only the dual electromagnetism naturally produces a complete self-consistent set
of conservation laws. We also discuss the observability of physical quantities
distinguishing the standard and dual theories, as well as relations to quantum
weak measurements and various optical experiments.
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1. Introduction

The symmetry between electric and magnetic fields in Maxwell’s electromagnetism has
attracted considerable attention since the end of the 19th century [1, 2]. It was then noticed
that Maxwell equations in free space are symmetric with respect to the following exchange of
the electric and magnetic fields:

E → B, B → −E. (1.1)

This discrete symmetry is a particular case of the continuous dual symmetry with respect to the
electric–magnetic rotation:

E → E cos θ + B sin θ,

B → B cos θ − E sin θ,
(1.2)

where θ is an arbitrary pseudo-scalar. One of the manifestations of this symmetry is that
all fundamental properties of free electromagnetic field (such as energy, momentum, angular
momentum, etc) are symmetric with respect to the transformation (1.2), which is referred to by
Berry as ‘electric–magnetic democracy’ [3].

Interest in the symmetry between the electric and magnetic properties of nature caught
its second wind after seminal papers by Dirac that examined the possibility of the existence
of magnetic charges (monopoles) [4]. Starting from the 1960s, this stimulated a series
of works discussing the dual-symmetric formulation of electromagnetism and light–matter
interactions [5–21]. Simultaneously, in 1964 Lipkin discovered a series of novel conservation
laws (sometimes called ‘Lipkin’s zilches’) in Maxwell equations, which were remarkably
symmetric with respect to the electric and magnetic fields [22]. The Lipkin zilches include
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a pseudo-scalar, a pseudo-vector and higher-rank tensors. Analysis of these conserved
quantities revealed that the pseudo-scalar integrated over space is related to the difference
between the numbers of right-hand and left-hand circularly polarized photons, i.e. the optical
helicity [23–28]. It was pointed out by Zwanziger [8] and also considered by Deser and
Teitelboim [12] that it is the symmetry (1.2) that leads to the conservation of the helicity of light.
However, in most other works the dual symmetry and helicity conservation were considered
within different contexts.

Recently, the interest in helicity conservation arose again in connection with optical
chirality, i.e. interaction of light with chiral structures [29–32]. Tang and Cohen [29, 30]
argued that Lipkin’s pseudo-scalar and pseudo-vector characterize the optical chirality density
and its flux unrelated to the polarization of light. However, it was soon recovered in [33, 34]
that for monochromatic fields these quantities should be associated with the helicity density
and its flux. Moreover, it was shown that the helicity flux represents the dual-symmetric spin
angular momentum of light [33]. Thus, importantly, the dual symmetry and conservation of
helicity are closely related to the definition of the spin density in the electromagnetic field—a
long-standing problem in itself. Finally, this year, the fundamental relations between the dual
symmetry, helicity conservation law, spin and Lipkin’s zilches were examined in detail in
papers by Cameron et al [35]. Furthermore, Fernandez-Corbaton et al [36] first considered the
electric–magnetic symmetry and helicity conservation as a practical tool describing a number
of experimentally observed features in light–matter interactions.

Despite such extensive discussions about the dual symmetry (1.2) and helicity
conservation, the standard electromagnetic field theory still has a significant drawback. Namely,
the Lagrangian of the electromagnetic field, L̃= (E2

− B2)/2, is not dual-invariant with respect
to (1.2). This results in dual-asymmetric Noether currents and conservation laws [37, 38].
In particular, the canonical energy–momentum and angular-momentum tensors are dual-
asymmetric [37], which results in the known asymmetric definition of the spin and orbital
angular momenta for the electromagnetic field [39]. (The usual symmetric energy–momentum
tensor is obtained via an additional Belinfante symmetrization procedure, which is related to
the separation of the spin and orbital degrees of freedom of the field [37, 40].) Therefore,
the helicity and spin densities become inconsistent with each other in the standard Lagrangian
electromagnetic theory: the helicity flux does not coincide with the spin. Sometimes, this evokes
a false dual-asymmetric helicity (a partner of the asymmetric spin), which is not conserved in
Maxwell equations [25, 27, 28, 34] (see also [20, section 1.6]). Thus, there is a fundamental
discrepancy in the symmetries of the free-space Lagrangian and field equations, which manifests
itself in inconsistent definitions of the helicity, spin and orbital angular-momentum densities.
Deser and Teitelboim [12] showed that even for the asymmetric Lagrangian, the integral action
is dual-invariant, and the proper conserved helicity can be derived from it. However, this does
not resolve the dual asymmetry of the spin and orbital quantities, and below we argue that
the symmetry of the Lagrangian and the corresponding canonical Noether currents still makes
an important difference. It is worth noting that there were several attempts to restore the dual
symmetry in the field Lagrangian [13–19] but all these have difficulties and do not result in a
clear, manifestly dual-symmetric formulation of electromagnetism.

In this paper we put forward a dual-symmetric modification of the free-space classical
Maxwell electromagnetism. Our theory is based on a dual-symmetric Lagrangian which is
invariant with respect to the transformation (1.2). Therefore, the straightforward application of
the Noether theorem to this Lagrangian immediately yields the proper helicity conservation law.
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The field equations, the symmetric energy–momentum tensor and the corresponding angular-
momentum tensor remain the same as in standard electromagnetic theory. At the same time,
the canonical versions of these tensors (which directly follow from the Noether theorem but
are usually considered as auxiliary quantities [37, 38]) become meaningful physical quantities
in our approach. They provide a dual-symmetric separation of the spin and orbital degrees of
freedom, i.e. the spin and orbital parts of the momentum density (the Poynting vector) and
the corresponding spin and orbital angular momenta of light. We show that only the dual-
symmetric Lagrangian results in the canonical Noether currents—momentum, spin and orbital
angular momenta, and boost momentum—fully consistent with each other and with the helicity
conservation law. Thus, all the discrepancies present in the standard electromagnetism are
removed in our dual-symmetric theory. Note that the separation of spin and orbital parts of
the angular momentum of light is a long-standing and controversial problem; it was recently
re-examined by several authors [41–44]. In particular, the importance of the electric–magnetic
symmetry was emphasized in [3, 42, 43]. Remarkably, the spin and orbital characteristics of
the electromagnetic field, which were suggested in [3, 42–44] using various arguments, now
become intrinsic in the dual formulation of electromagnetism, and are derived in a rigorous
way.

This paper is organized as follows. In section 2 we summarize the standard Lagrangian
formulation of classical electromagnetism, emphasizing its inherent difficulties related to its
lack of duality. We present a complete Noether analysis of the dual symmetry and all Poincaré
symmetries, and examine both local and integral conserved quantities. Afterwards, in section 3
we formulate the dual-symmetric modification of electromagnetic field theory, with its step-by-
step comparison with section 2 and other relevant results. To facilitate the comparison of the
Noether currents in the standard and dual theories, we summarize them in figure 1. Section 3.3
also contains a quantum-like operator representation of the conserved physical characteristics
for monochromatic fields [3, 42, 44]; such a self-consistent representation is impossible within
standard electromagnetism. In section 4 we discuss the issues of observability of spin and orbital
angular momenta and local currents, which distinguish standard and dual theories. A number of
known results and experiments are discussed from the viewpoint of dual symmetry. We argue
that the suggested optical experiments are related to the concept of quantum weak measurements
and unavoidably involve light–matter interactions. The remarks in section 5 conclude the paper.

2. Standard electromagnetism

2.1. Field Lagrangian, Maxwell equations and basic currents

The electromagnetic field is described by the four-potential Aα(rα)= (A0,A) and
antisymmetric field tensor

Fαβ
= ∂α ∧ Aβ = (E,B) . (2.1)

Here and in what follows, we use the Minkowski space–time rα = (t, r) with signature
(−,+,+,+) and assume natural units ε0 = µ0 = c = 1. We will adopt the transverse Coulomb
gauge, A0

= 0, ∇ · A = 0 (A = A⊥), because it is the transverse part of the potential which is
gauge-invariant and can determine physically meaningful quantities for the transverse radiation
fields [39, 41, 43]. Also, all fields are assumed to be decaying sufficiently fast when |r| → ∞,
to make all spatial integrals converging.
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The standard Lagrangian of the free electromagnetic field is

L̃= −
1
4 FαβFαβ =

1
2(E

2
− B2). (2.2)

Here and in what follows, emphasizing the dual asymmetry of some important quantities,
we will mark them with a tilde; their dual-symmetric counterparts will be marked by the
same letters without a tilde. The field Hamiltonian, following from (2.2), is known to be [39]
H=

1
2(E

2 + B2)= W , where W is the dual-symmetric energy density of the electromagnetic
field.

The free-space Maxwell equations can be written as

∂βFαβ
= 0, ∂β*Fαβ

= 0, (2.3)

or

∇ · B = ∇ · E = 0, ∂tE = ∇ × B, ∂tB = −∇ × E. (2.3′)

Here we introduced the dual field tensor:

*Fαβ
≡

1
2ε
αβγ δFγ δ = (B,−E) , (2.4)

where εαβγ δ is the Levi–Civita symbol. Note that only the first Maxwell equation in (2.3)
represents the Euler–Lagrange equation of motion when varying the Lagrangian (2.2) with
respect to Aα. At the same time, the second equation in (2.3) is the Bianchi identity, which
follows automatically from the form of the field tensor (2.1).

As compared to the field tensor (2.1), the dual field tensor (2.4) consists of the electric
and magnetic fields E and B exchanged with each other via (1.1). Evidently, the Maxwell
equations (2.3) are symmetric with respect to the dual exchange (1.1) Fαβ

→ *Fαβ , because
** Fαβ

= −Fαβ . It is easy to show that equations (2.3′) are also invariant with respect to the
continuous dual transformations (1.2).

Note that the coupling with matter (which consists of electric charges and currents) breaks
the dual symmetry of the free field. The Lagrangian (2.2) acquires the coupling part L̃C = Aα jEα,
where jαE is the electric four-current, and the first equation of motion (2.3) becomes ∂βFαβ

= jαE .
It is seen from this that the presence of both electric and magnetic charges is problematic in this
picture, because it requires a modification of the second equation (2.3) with the magnetic current
jαM: ∂β* Fαβ

= jαM [4–20]. However, this would contradict the Bianchi identity for the field tensor
(2.1), and the relation between the field and potential should be modified.

In contrast to Maxwell equations, the field Lagrangian (2.2) is not invariant with respect
to the duality transformations (1.1) and (1.2). To illustrate its transformation properties, we
introduce the complex Riemann–Silberstein vector D = E + iB [45]. The Lorentz transforma-
tions represent complex-angle rotations of this vector [38], and its square, D · D = (E2

− B2)+
2 i E · B ≡ I1 + i I2, provides the two Lorentz invariants of the electromagnetic field:

I1 = −
1
2 FαβFαβ = (E2

− B2),

I2 = −
1
2*FαβFαβ = 2E · B. (2.5)

In terms of the Riemann–Silberstein vector, the dual transformation (1.2) becomes the U (1)
gauge transformation D → e−iθ D, whereas the field Lagrangian (2.2) takes the form L̃=
1
2Re(D · D)=

1
2 I1. From these equations, we immediately see that the dual transformation (1.2)

induces a rotation of the field invariants
I1 → I1 cos 2θ + I2 sin 2θ,

I2 → I2 cos 2θ − I1 sin 2θ,
(2.6)
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and the Lagrangian is transformed as

L̃→
1
2 (I1 cos 2θ + I2 sin 2θ)= L̃ cos 2θ −

1
4*FαβFαβ sin 2θ. (2.7)

The transformation (2.7) changes the Lagrangian, but does not affect the Maxwell equations
of motion. Indeed, *FαβFαβ = 2∂α(*Fαβ Aβ) (we can use here ∂α* Fαβ

= 0, because this is the
Bianchi identity rather than the equation of motion), and the transformation (2.7) adds a total
divergence alongside with a multiplication by the constant cos2θ .

Considering an infinitesimal version of (2.7) with θ → 0, we have

L̃→ L̃− θ ∂α
(
*Fαβ Aβ

)
. (2.8)

From here it is speculated in [20, section 1.6] that the dual symmetry of Maxwell equations
implies the conservation of the dual current

J̃ α = *Fαβ Aβ, i.e. J̃ 0
≡ H̃ = A · B, J̃ ≡ S̃ = E × A. (2.9)

The components of the current (2.9) are often considered as the helicity density H̃ and the
spin angular momentum density S̃ (coinciding here with the helicity flux density) of the
field [25, 34, 39, 41]. However, this is not the case, and this false helicity is not conserved
[25–28]:

∂α J̃ α = −I2 6= 0,
∫

H̃ dV 6= const, (2.10)

where dV ≡ d3r and ‘const’ denotes constancy in time. It was shown in a number of works
[27, 28, 35, 43] that the dual-asymmetric definitions for the helicity and spin densities (2.9) are
not satisfactory in the general case. Instead, the dual-symmetric modifications of equations (2.9)
and (2.10) form the true helicity–spin current providing the helicity conservation [8, 12, 16, 27,
28, 35]:

J 0
≡ H =

1
2 (A · B − C · E) , J ≡ S =

1
2 (E × A + B × C) , (2.11)

∂α J α = 0,
∫

H dV = const. (2.12)

Here A and C are the magnetic and electric vector-potentials: ∇ × C = −E and ∇ × A = B
(see equations (3.6)). The second quantity in (2.11) was recently identified as the physically
meaningful spin angular-momentum density [42–44].

Let us make one more observation, the meaning of which will be clarified below.
Akin to the infinitesimal dual transformation, we consider an infinitesimal time-translation
transformation t → t + τ , τ → 0. In a way similar to equation (2.8), using the Maxwell
equation ∂αFαβ

= 0, one can show that the value of the Lagrangian (2.2) on the minimal-action
trajectories is transformed as

L̃→ L̃− τ ∂α
(
Fαβ∂t Aβ

)
. (2.13)

Then, akin to equations (2.9) and (2.10), this evokes a false energy–momentum current:

P̃α
= −Fαβ∂t Aβ, i.e. P̃0

≡ W̃ = E2, P̃ = P = E × B, (2.14)

where the energy is not conserved:

∂α P̃α
=

1
2∂t I1 6= 0,

∫
W̃ dV 6= const. (2.15)
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The current (2.14) and (2.15) contains the proper Poynting vector (= energy flux density =

momentum density) P = E × B, but also contains the dual-asymmetric energy density W̃ = E2,
which would appear if the energy were concentrated solely in the electric field. Of course, the
true conserved energy–momentum current, associated with the time-translation invariance, is
dual-symmetric and reads

P0
≡ W =

1
2(E

2 + B2), P = E × B, (2.16)

∂αPα
= 0,

∫
W dV = const. (2.17)

The proper energy conservation (2.16) and (2.17) follows from the Noether-theorem
analysis, which is considered in section 2.2. Also, Deser and Teitelboim [12] showed that
the proper helicity conservation (2.11) and (2.12) can be obtained from the dual-asymmetric
Lagrangian (2.2). However, we will also see that the false spin density (2.9) S̃ = E × A and
the false energy density (2.14) W̃ = E2 appear in the components of the canonical angular-
momentum tensor following from the Lagrangian (2.2). This is an important discrepancy of the
standard dual-asymmetric Lagrangian formulation of electromagnetism which fails to produce
conservation laws consistent with each other.

2.2. Energy–momentum and angular-momentum tensors

In this section we summarize the main conservation laws for the free electromagnetic field,
which are associated with the Poincaré group of symmetries, i.e. translations and rotations of the
Minkowski space–time. We will obtain the corresponding conserved quantities by applying the
Noether theorem to the Lagrangian (2.2), and will emphasize their specific features which are
important for our theory. This section mostly follows the standard textbook approach [37, 38].

2.2.1. Canonical tensors. The invariance with respect to translations in space and time
generates the conservation of momentum and energy. The application of the Noether
theorem [46] yields the following dual-asymmetric but conserved energy–momentum tensor
from the Lagrangian (2.2):

T̃ αβ
= (∂αAγ ) Fβ

γ −
1
4 gαβFγ δFγ δ, ∂β T̃ αβ

= 0, (2.18)

where gαβ is the metric tensor. Tensor (2.18) is non-symmetric, T̃ αβ
6= T̃ βα, and is known as the

canonical energy–momentum tensor. The corresponding four-momentum density of the field is
given by P̃α

O = T̃ α0 (the indices ‘O’ and ‘S’ indicate ‘orbital’ and ‘spin’ quantities, see below).
Its temporal component (in the chosen Coulomb gauge) reads

P̃0
O = −E · ∂tA + 1

2(B
2
− E2)=

1
2(E

2 + B2)= W, (2.19)

which is the proper dual-symmetric energy density (2.16). At the same time, the spatial
components of the canonical momentum density form the dual-asymmetric vector

P̃O = E · (∇)A. (2.20)

(Here and in what follows, we use the notations of Berry [3], for which the scalar product links
the vectors E and A, whereas the gradient is external: P̃Oi = E j∇i A j ; the Latin indices i, j, k
take on values 1, 2, 3.) As we will see, the canonical momentum density P̃O represents the
orbital part of the energy flux density. The total energy flux density (Poynting vector) P is given
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by the spatial components of T̃ 0α
= Pα, which form the proper conserved energy–momentum

current (2.16) in the chosen Coulomb gauge.
Next, the symmetry with respect to Lorentz transformations (rotations of the Minkowski

space–time) results in the conservation of the relativistic angular momentum. Recall that the
angular momentum is described in relativistic field theory by a rank-3 tensor Mαβγ , where
the anti-symmetric rank-2 tensor Mαβ0 can be represented by a pair of three-vectors: Mαβ0

=

(N,M). Here the pseudo-vector Mi =
1
2εi jk M jk0 is the usual angular momentum, which has the

form of M = r × P for point particles and is related to the symmetry with respect to spatial
rotations. At the same time, the vector Ni = M0i0 could be referred to as the boost momentum.
It is related to the symmetry with respect to Lorentz boosts and has the form N = t P − r W
for point particles. Conservation of the boost momentum ensures the rectilinear motion of the
energy centroid in free space [38, 47]. The application of the Noether theorem to the Lagrangian
(2.2) results in the following dual-asymmetric but conserved canonical angular-momentum
tensor:

M̃αβγ
= rα T̃ βγ

− rβ T̃ αγ + S̃αβγ ≡ L̃αβγ + S̃αβγ , ∂γ M̃αβγ
= 0. (2.21)

Here S̃αβγ is the spin tensor, which has the form

S̃αβγ = FγαAβ − Fγβ Aα, ∂γ S̃αβγ = T̃ αβ
− T̃ βα

6= 0. (2.22)

Importantly, the canonical angular-momentum tensor (2.21) suggests a natural separation
into orbital and spin parts, L̃αβγ and S̃αβγ . Calculating the angular-momentum vector M̃ from
equations (2.18)–(2.22), we arrive at

M̃ = E · (r × ∇)A + E × A ≡ L̃ + S̃. (2.23)

Equation (2.23) describes the canonical angular-momentum density, where the orbital angular
momentum can be written in ‘mechanical’ form L̃ = r × P̃O, consistent with the canonical
momentum density (2.20). At the same time, the expression for the spin angular-momentum
density S̃ = E × A here coincides with the false (non-conserved) dual-asymmetric helicity flux
density (2.9) rather than with the proper (conserved) dual-symmetric quantity (2.11) S! This is
the first important discrepancy in the standard Lagrangian formulation of electromagnetism.

Next, the canonical boost momentum density Ñ derived from tensor (2.21) can also be
separated into orbital and spin parts, which yields

Ñ = E · (t∇ + r∂t)A − A0E ≡ ÑO + ÑS. (2.24)

In the chosen Coulomb gauge, this results in

ÑO = t P̃O − r W̃ , ÑS = 0. (2.25)

Thus, the spin part of the boost momentum vanishes [43] (apparently, this reflects the truly
intrinsic nature of spin, which does not involve energy transport [42, 48–53]). At the same time,
the orbital boost momentum ÑO = Ñ takes a clear mechanical-like form in (2.25). It involves
the canonical momentum density (2.20) P̃O and false (non-conserved) dual-asymmetric energy
density (2.14) W̃ = −E · ∂tA = E2 rather than the proper conserved quantity (2.16) and (2.19)
W ! And this is the second important discrepancy in the standard Lagrangian formulation of
electromagnetism.
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2.2.2. Symmetrized tensors. Although the canonical energy–momentum tensor (2.18) and
momentum density (2.20) directly follow from the Noether theorem and Lagrangian (2.2), they
are usually considered as auxiliary quantities. Instead the symmetric energy–momentum tensor
T αβ = T βα is obtained via the Belinfante symmetrization procedure [40], i.e. the addition of a
suitable total divergence to the canonical energy–momentum tensor. As applied to the tensor
T̃ αβ , this procedure results in

T αβ = T̃ αβ + ∂γ K̃ αβγ
= Fαγ Fβ

γ −
1

4
gαβFγ δFγ δ, ∂βT αβ = 0, (2.26)

where the tensor K̃ αβγ is constructed from the spin tensor (2.22):

K̃ αβγ
=

1
2(S̃

βγα + S̃αγβ − S̃αβγ )= −AαFβγ . (2.27)

When integrated over the whole space, both tensors (2.18) and (2.26) yield the same momentum
of the field (see section 2.2.3). The symmetric tensor (2.26) is manifestly gauge-invariant,
and its components contain: the proper energy density W , the momentum density coincident
with the total energy flux (Poynting vector) P and also the Maxwell stress tensor σi j for the
electromagnetic field:

T 00
= W =

1
2(E

2 + B2), T i0
= Pi = (E × B)i , (2.28)

T i j
= −σi j = −(Ei E j + Bi B j − δi j W ). (2.29)

Importantly, the quantities (2.26), (2.28) and (2.29) are dual-invariant with respect to the
transformation (1.2), in contrast to the canonical quantities (2.18) and (2.20).

The symmetrization procedure (2.26) has an important physical meaning [37, 48–51].
Let us consider the tensor ∂γ K̃ αβγ

= −Fβγ ∂γ Aα, which is added to the canonical
energy–momentum tensor. Its contribution to the field momentum is P̃Si = ∂γ K̃ i0γ :

P̃S = − (E · ∇)A. (2.30)

This is the spin current, i.e. the spin part of the energy flux density. Indeed, the Poynting vector
(2.28) is the sum of the orbital part (2.20) and the spin part (2.30):

P = P̃O + P̃S. (2.31)

Although the spin current makes no contribution to the integral momentum of the field,∫
P̃S dV = 0, (2.32)

circulations of the orbital and spin energy fluxes produce, respectively, orbital and spin angular
momenta (2.23):

L̃ = r × P̃O,

∫
S̃ dV =

∫
r × P̃S dV . (2.33)

Here the second equation is obtained using integration by parts with ∇ · E = 0, and it displays a
‘non-local’ action of the spin current. (This peculiar current does not transport energy and flows
along the boundary resembling the magnetization current or topological quantum-Hall states in
condensed-matter systems.) A detailed description and analysis of the spin and orbital energy
fluxes can be found in [3, 37, 42, 48–53]. Note also that an analogue of the second equation
(2.33) for the spin part of the boost momentum ÑS reads

∫
ÑS dV =

∫
t P̃S dV = 0, and does

not give new information.
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A symmetrized angular-momentum tensor can be constructed from the symmetric
energy–momentum tensor (2.26). Since the latter includes both orbital and spin parts of the
momentum density, the angular-momentum tensor becomes

Mαβγ
= rαT βγ − rβT αγ , ∂γMαβγ

= 0. (2.34)

This tensor is dual symmetric, and differs from the canonical angular-momentum tensor (2.21):
Mαβγ

6= M̃αβγ . Nonetheless, when integrated over space, both tensors M̃αβγ and Mαβγ yield
the same total angular momentum of the field [37] (see section 2.2.3). The angular momentum
and boost momentum densities following from the tensor (2.34) are expressed through the
symmetrized energy–momentum components (2.28) (cf equations (2.23)–(2.25)):

M= r × P, N = t P − r W. (2.35)

We emphasize that M describes the total angular-momentum density of the field, without
separation of the orbital and spin parts.

Thus, the symmetrized energy–momentum and angular-momentum tensors (2.26) and
(2.34) are convenient characteristics for the calculations of the integral (non-local) dynamical
properties of the field. However, it is impossible to separate spin and orbital angular-momentum
degrees of freedom in T αβ andMαβγ without involving the canonical tensors.

2.2.3. Integral conserved quantities. Above we considered local conservation laws associated
with the dual and Poincaré symmetries. It is also interesting to discuss the corresponding
conserved integral (i.e. non-local) quantities.

First, equations (2.9)–(2.12) and (2.14)–(2.17) involving true and false helicity, spin and
energy densities can be formulated in the following integral form:

const 6=

∫
H̃ dV 6=

∫
H dV = const, (2.36)

const 6=

∫
W̃ dV 6=

∫
W dV = const. (2.37)

Next, from equations (2.18) and (2.26), the integral energy–momentum following from the
canonical and symmetric energy–momentum tensors are both conserved in time and equal to
each other: ∫

T̃ α0 dV =

∫
T α0 dV = const, (2.38)

i.e. ∫
W dV = const,

∫
P̃O dV =

∫
P dV = const. (2.39)

The second equality here is consistent with the vanishing of the integral spin momentum,
equations (2.31) and (2.32).

Similar equalities take place for the angular momenta following from canonical and
symmetrized angular-momentum tensors (2.21) and (2.34):∫

M̃αβ0 dV =

∫
Mαβ0 dV = const. (2.40)
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In components, this yields∫
M̃ dV =

∫
M dV = const,

∫
Ñ dV =

∫
ÑO dV =

∫
N dV = const, (2.40′)

i.e. ∫
(r × P̃O + S̃) dV =

∫
(r × P) dV = const, (2.41)∫

(t P̃O − rW̃ ) dV =

∫
(t P − rW ) dV = const. (2.42)

An interesting new equality follows from equations (2.42) and (2.39):∫
r W̃ dV =

∫
r W dV, i.e.

∫
r E2 dV =

∫
r B2 dV, (2.43)

although
∫

W̃ dV 6=
∫

W dV and
∫

E2 dV 6=
∫

B2 dV .
Equation (2.42) results in the equation of the rectilinear motion of the centroid of the energy

density W . Indeed, using ∂t(
∫

rW dV −
∫

t P dV )= 0 and the energy–momentum conservation
(2.39), we obtain

∂tRW =

∫
P dV∫
W dV

= const, RW ≡

∫
rW dV∫
W dV

. (2.44)

At the same time, we note that the centroid of the false energy density W̃ = E2 entering the
canonical boost-momentum density Ñ does not move rectilinearly, because W̃ is not conserved,
equation (2.37):

const 6= ∂tR̃W 6=

∫
P̃O dV∫
W̃ dV

6= const, R̃W ≡

∫
rW̃ dV∫
W̃ dV

. (2.45)

Thus, the equation of motion of the energy centroid does not follow from the form of the
canonical boost momentum (2.24) and (2.25) Ñ in standard electromagnetism.

Equations (2.36)–(2.44) summarize all non-local conserved quantities following from the
differential conservation laws. In addition, there are also important integral conserved quantities
which have no differential counterparts. Namely, despite the fact that the spin and orbital parts
of the angular-momentum density (2.21) do not form conserved Noether currents, see equation
(2.22), their integral values are conserved in time [41]:∫

L̃αβ0 dV = const,
∫

S̃αβ0 dV = const, (2.46)

i.e. ∫
L̃ dV = const,

∫
S̃ dV = const. (2.46′)

This can be verified by substituting here the spin and orbital angular-momentum densities
(2.23) and performing differentiation with respect to time. Equations (2.46′) agree with the
approach of modern optics, where the spin and orbital angular momenta of light are regarded as
separately observable and conserved (in free space) quantities [41, 54] (for reviews, see [55]).
Note, however, that the integral values of the spin and orbital angular momenta L̃ and S̃ are
not dual-symmetric. Moreover, their dual-symmetric versions are also conserved quantities. For
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instance, the dual-symmetric spin S, entering the proper helicity conservation (2.11) and (2.12),
also obeys ∫

S dV = const, but
∫

S dV 6=

∫
S̃ dV . (2.47)

Equations (2.36), (2.37), (2.45) and (2.47) demonstrate that the spin and orbital
angular momenta following from the canonical angular-momentum tensor (2.21) and standard
Lagrangian (2.2) conflict with the helicity and energy conservations not only locally but also in
their integral values.

2.2.4. Summary of the problems. The above picture shows that the canonical
energy–momentum and angular-momentum tensors are intimately related to the separa-
tion of the spin and orbital degrees of freedom of the electromagnetic field. In turn, the properly
defined spin is a crucial part of the helicity conservation (2.11) and (2.12). Therefore, it is
important that these canonical tensors T̃ αβ and M̃αβγ should be physically meaningful and
consistent with each other and the helicity conservation. However, in the standard formulation,
they lack the dual invariance with respect to the transformation (1.2). As a result of this, the
Lagrangian (2.2) leads to the false spin density (2.9) S̃ and false energy density (2.14) W̃ ,
which appear in the components of M̃αβγ ; while the proper dual-symmetric spin and energy
densities, S and W , are given by equations (2.11) and (2.16) or (2.28). In turn, the definition
of the spin is closely related to the definitions of other quantities: orbital angular-momentum
density L̃, spin and orbital parts of the energy flux (momentum) density, P̃O and P̃S. Recent
investigations suggested that all these dual-asymmetric quantities should be substituted by their
dual-symmetric modifications [3, 42–44, 51, 53]. Thus, we observe a number of inconsistencies
in the canonical conservation laws of standard electromagnetic theory; these are all summarized
in figure 1. We have also shown that the discrepancies between the dual-symmetric and
asymmetric versions of the helicity, energy, spin and orbital angular momenta appear in both
local and integral values of these quantities.

It should be emphasized that the above discrepancies involve measurable quantities. There
are no doubts that the integral helicity and energy are observable. Modern optics regards the
spin and orbital parts of the angular momentum as separately measurable quantities [41, 54, 55].
Remarkably, even local densities of energy, spin and orbital energy flow can be retrieved from
optical experiments [51, 54, 56]. We further discuss the observability issues in section 4.

3. Dual electromagnetism

3.1. Dual-symmetric Lagrangian and basic currents

To construct the Lagrangian formalism which would contain the dual symmetry (1.2), we first
consider the field tensor Fαβ and its dual pseudo-tensor *Fαβ

= Gαβ as independent quantities
based on two different four-potentials Aα and Cα:

Fαβ
= ∂α ∧ Aβ = (E,B) , Gαβ

= ∂α ∧ Cβ
= (B,−E) , (3.1)

Such a two-potential representation is extensively used in studies on magnetic monopoles and
optical helicity [5–21, 23–28, 35]. Next, we suggest a dual-symmetric Lagrangian, which is the
symmetrization of the standard Lagrangian (2.2) with respect to Fαβ and Gαβ :

L= −
1
8(F

αβFαβ + GαβGαβ). (3.2)
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Figure 1. Summary of the main Noether currents which appear in the standard
(section 2) and dual (section 3) versions of electromagnetism. The helicity
current and symmetrized Poincaré currents (energy–momentum and angular
momentum tensors, T αβ and Mαβγ ) are common and dual-symmetric. At the
same time the canonical energy–momentum and angular-momentum tensors,
T αβ and Mαβγ , conflict with the helicity and energy conservation laws in
the standard electromagnetic theory. These discrepancies disappear in the dual
electromagnetism. Inconsistent quantities are shown in red, as opposed to the
consistent ones, shown in green. The fields are characterized by the magnetic
four-potential Aα, field tensor Fαβ , their dual counterparts: electric four-potential
Cα and dual field tensor Gαβ , and combined complex quantities Xα

= Aα + i Cα

and Dαβ
= Fαβ + i Gαβ .

Here the two fields are considered independently, but since they actually describe the same
electromagnetic field, we should impose an additional duality constraint:

*Fαβ
= Gαβ or *(∂α ∧ Aβ)= (∂α ∧ Cβ). (3.3)

The value of the Lagrangian vanishes with this constraint: L= 0. Nonetheless, by varying
the Lagrangian (3.2) with respect to the potentials Aα and Cα independently, we obtain two
Euler–Lagrange equations of motion:

∂βFαβ
= 0, ∂βGαβ

= 0. (3.4)

At the same time, the Bianchi identity for the fields (3.1) yields

∂β*Fαβ
= 0, ∂β*Gαβ

= 0. (3.5)
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Applying now the constraint (3.3), we see that the two pairs of equations (3.4) and (3.5) result in
the same pair of free-space Maxwell equations (2.3). This derivation of the equations of motion
is equivalent to the use of a Lagrange multiplier with the constraint (3.3) in the Lagrangian.

Thus, the Maxwell equations are recovered from the symmetrized Lagrangian (3.2). It
should be noted, however, that this formalism describes only free radiation transverse fields.
As was pointed out in section 2.1, a coupling with matter brings about currents in the right-
hand side of equations (3.4), which would contradict equations (3.5). In this case, one has to
modify the relation (3.1) between the potentials and fields to include the longitudinal parts of
the fields [4–20].

As in section 2, we now consider only the transverse radiation fields, and adopt the
transverse Coulomb gauge for the potentials: A0

= C0
= 0 and ∇ · A = ∇ · C = 0 (A = A⊥,

C = C⊥) [35, 43]. Note that the Coulomb gauge and constraint (3.3) are equivalent to ‘Maxwell
equations’ for the vector-potentials [35]:

∇ · A = ∇ · C = 0, ∂tA = ∇ × C (= −E) , ∂tC = −∇ × A (= −B) . (3.6)

Therefore, the duality rotation (1.2) generates the same rotation of the vector-potentials
[8, 10, 13, 17, 18, 35]:

A → A cos θ + C sin θ,

C → C cos θ − A sin θ.
(3.7)

The dual-symmetric formalism acquires a particularly laconic form if we introduce the
complex Riemann–Silberstein-like four-potential Xα and the corresponding field tensor Dαβ :

Xα
= Aα + i Cα, Dαβ

= Fαβ + i Gαβ
= ∂α ∧ Xβ

= (D,−iD) . (3.8)

In this manner, the Lagrangian (3.2) becomes

L= −
1
8 DαβD∗

αβ, (3.9)

whereas the duality constraint (3.3) is

*Dαβ
= −iDαβ . (3.10)

The Euler–Lagrange equations for the Lagrangian (3.9) with respect to Xα or X∗α, or the Bianchi
identity for the field (3.8), yield the Maxwell equations reduced now, by virtue of (3.10), to a
single equation:

∂βDαβ
= 0. (3.11)

The proper Hamiltonian of the field is readily recovered from the Lagrangian (3.9) using the
Lagrangian formalism for complex fields (see [39, section II.A.2]) and also the connection
between the potentials and fields (3.6): ∂tX = −i∇ × X = −D. This yields H=

1
2D · D∗

=
1
2(E

2 + B2)= W .
The dual transformations (1.2) and (3.7) become a simple U (1) gauge transformation in

this complex formalism:

Xα
→ e−iθXα, Dαβ

→ e−iθ Dαβ . (3.12)

The Lagrangian (3.9) is obviously invariant with respect to (3.12). The corresponding conserved
Noether current is easily obtained and equals

J α =
1
2 Im(DαβX∗

β), ∂α J α = 0. (3.13)
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This conservation law represents the true helicity conservation in Maxwell equations and
coincides with equations (2.11) and (2.12) including the proper helicity and spin densities:

J 0
≡ H =

1
2 (A · B − C · E) , J ≡ S =

1
2 (E × A + B × C) . (3.14)

The same expressions for the helicity and spin densities were obtained in [8, 12, 16, 27, 28,
35, 43]. In the case of monochromatic fields, they are proportional to the components of Lipkin’s
zilch current [22, 23, 29, 33, 35] and coincide with spin angular momentum in [42, 44] (see
section 3.3). It is worth emphasizing that the derivation of the helicity current (3.13) and (3.14)
from the standard Lagrangian (2.2) requires a sophisticated procedure described by Deser
and Teitelboim [12], while with the dual-symmetric Lagrangian (3.2) or (3.9) it arises in a
straightforward manner.

Furthermore, considering an infinitesimal time-translation transformation, t → t + τ ,
τ → 0, in a manner similar to (2.13)–(2.17), one can show that the Lagrangian (3.2) and
(3.9) is transformed on the minimal-action trajectories (without taking into account the duality
constraint) as

L→ L− τ ∂α

[
1

2
Re(Dαβ∂tX

∗

β)

]
. (3.15)

In contrast to (2.13)–(2.15), this immediately evokes the true conserved energy–momentum
current (2.16) and (2.17):

Pα
= −

1
2Re(Dαβ∂tX∗

β), ∂αPα
= 0, (3.16)

P0
≡ W =

1
2(E

2 + B2), P = E × B. (3.17)

Thus, our dual-symmetric Lagrangian formalism generates the same Maxwell equations,
but also naturally reveals the proper helicity and energy conserved currents, containing the
physically meaningful dual-symmetric helicity, spin and energy densities. Below, we provide
a complete Noether analysis of conservation laws associated with the Poincaré symmetries and
show that the choice of dual-symmetric Lagrangian (3.2) or (3.9) makes an important difference
in the canonical form of the conservation laws.

3.2. Energy–momentum and angular-momentum tensors

In this section, we follow the plan of section 2.2, but now using the dual-symmetric Lagrangian
(3.2) and its representation (3.9) via the complex Riemann–Silberstein fields Xα

= Aα + i Cα

and Dαβ
= Fαβ + i Gαβ . We will consider canonical and symmetrized energy–momentum and

angular-momentum Noether currents and compare them with their counterparts obtained
previously within standard electromagnetism.

3.2.1. Canonical tensors. Firstly, the canonical energy–momentum tensor following from
Lagrangian (3.9) is

T αβ
=

1
2Re

[
(∂αXγ ) D∗β

γ

]
, ∂βT αβ

= 0. (3.18)

This tensor is non-symmetric, T αβ
6= T βα, and the corresponding four-momentum

density is given by Pα
O = T α0

=
1
2Re [R∗

· (∂α)X]. This yields the proper energy density
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P0
O = W =

1
2(E

2 + B2), and also the following orbital energy flux density, the dual-symmetric
modification of (2.20):

PO =
1
2 [E · (∇)A + B · (∇)C] . (3.19)

In turn, the total energy flux density is given by Pα
= T 0α

= (W,P), in agreement with (3.16)
and (3.17).

Secondly, akin to equation (2.21), the canonical angular-momentum tensor takes on the
form

Mαβγ
= rαT βγ

− rβT αγ + Sαβγ , ∂γ Mαβγ
= 0, (3.20)

where the spin tensor is

Sαβγ =
1
2Re(XβD∗γα

− XαD∗γβ), ∂γ Sαβγ = T αβ
− T βα

6= 0. (3.21)

Calculating the pseudo-vector of the angular-momentum density, Mi =
1
2εi jk M jk0, we arrive at

the following orbital and spin parts, M = L + S (cf (2.23)):

L =
1
2 [E · (r × ∇)A + B · (r × ∇)C] = r × PO, (3.22)

S =
1
2 (E × A + B × C) . (3.23)

In turn, the boost-momentum components in the tensor (3.20), Ni = M0i0, yield (cf (2.24) and
(2.25))

N = NO =
1
2 [E · (t∇ + r∂t)A + B · (t∇ + r∂t)C] = t PO − r W, NS = 0. (3.24)

Thus, the components (3.19), (3.22)–(3.24) of the canonical energy–momentum and
angular-momentum tensors contain now the proper conserved energy density W , spin density
S coinciding with the conserved helicity flux density (2.11) or (3.14), and the corresponding
orbital momentum density PO. Therefore, the dual electromagnetism fixes all the discrepancies
in the canonical Noether currents of the standard electromagnetic theory. This approach
naturally contains a meaningful dual-symmetric separation of the spin and orbital degrees
of freedom [3, 42, 43], consistent with the helicity and energy conservation laws (see also
figure 1).

3.2.2. Symmetrized tensors. Belinfante’s symmetrization procedure can be applied to
the canonical energy–momentum tensor (3.18), which results in the same symmetric
energy–momentum tensor T αβ as in equations (2.26) (but now simplified in the dual-complex
form):

T αβ = T αβ + ∂γ K αβγ
=

1

2
Dαγ D∗β

γ , (3.25)

where K αβγ
= −

1
2Re(XαD∗βγ ). The components of T αβ are displayed in equations (2.28) and

(2.29). The spin current is obtained as PSi = ∂γ K i0γ , which yields the dual-symmetric version
of equation (2.30):

PS = −
1
2 [(E · ∇)A + (B · ∇)C] . (3.26)

Akin to equations (2.31)–(2.33), the Poynting vector is the sum of the orbital and spin energy
flux densities (3.19) and (3.26):

P = PO + PS, (3.27)
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where the spin current makes no contribution to the integral momentum:∫
PS dV = 0. (3.28)

The circulations of the orbital and spin currents produce, respectively, the orbital and spin
angular momenta (3.22) and (3.23):

L = r × PO,

∫
S dV =

∫
r × PS dV . (3.29)

The dual-symmetric spin and orbital parts of the energy flux density (3.19) and (3.26) coincide
with those suggested recently in [3, 42, 51].

Evidently, the symmetrized angular-momentum tensor also coincides in the standard- and
dual-electromagnetism approaches:

Mαβγ
= rαT βγ − rβT αγ . (3.30)

Its components are described by equations (2.35). This suggests that the symmetrized
energy–momentum and angular-momentum tensors are independent of the choice of the
Lagrangian. The price of this independence is the impossibility to separate the spin and orbital
degrees of freedom and to trace the connection with the helicity conservation.

3.2.3. Integral conserved quantities. As usual, differential conservation laws can be written in
the form of integral conserved quantities. In dual electromagnetism, they are similar to their
standard counterparts and, furthermore, a number of them coincide in the two formalisms. In a
way entirely analogous to the derivation of equations (2.38)–(2.42), we obtain∫

T α0 dV =

∫
T̃ α0 dV =

∫
T α0 dV = const, (3.31)∫

W dV = const,
∫

PO dV =

∫
P̃O dV =

∫
P dV = const, (3.32)∫

Mαβ0 dV =

∫
M̃αβ0 dV =

∫
Mαβ0 dV = const, (3.33)∫

(r × PO + S) dV =

∫
(r × P̃O + S̃) dV =

∫
(r × P) dV = const, (3.34)∫

(t PO − rW ) dV =

∫
(t P̃O − rW̃ ) dV =

∫
(t P − rW ) dV = const. (3.35)

Note that equation (2.44) for the rectilinear motion of the energy centroid immediately follows
from the canonical dual-symmetric boost momentum (3.24) N and equation (3.32), in contrast
to the canonical (2.25) Ñ in the standard approach.

At the same time, the integral spin and orbital angular momenta are different in the standard
and dual approaches, although they are all conserved quantities (see (2.46) and (2.47)):

const =

∫
L dV 6=

∫
L̃ dV = const, const =

∫
S dV 6=

∫
S̃ dV = const. (3.36)
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And, again, for the sake of completeness, we repeat here equations (2.36) and (2.37) involving
integral forms of the true and false helicity and energy that appear in the standard and dual
formalisms:

const =

∫
H dV 6=

∫
H̃ dV 6= const, const =

∫
W dV 6=

∫
W̃ dV 6= const. (3.37)

From a complete set of equations (3.31)–(3.37), augmented by relations (2.31), (2.33),
(3.27) and (3.29), one can see that the integral conserved quantities of the dual electromagnetism
(i.e. those without ‘tilde’) form a perfectly consistent system, as opposed to those of the standard
electromagnetic theory. In section 3.3 we show that the dual-symmetric approach is also in
agreement with the quantum-like operator formalism [3, 42, 44].

3.3. Monochromatic fields and operator representation

In a vast majority of optical problems, monochromatic electromagnetic fields and their time-
averaged characteristics are considered. In this case, all linear field characteristics (O =

A,C,E,B) have the form O (r, t)= Re[O (r) e−iωt ], where ω is the frequency and O(r) is
the complex field amplitude. Substituting this into equations (3.6), we find that the complex
amplitudes of the potentials and fields become proportional to each other:

iωA = E, iωC = B. (3.38)

Next, the time average (over one period of oscillations) of any real quadratic field form
F = O f̂ O becomes

F̄ =
1
2Re(O∗ f̂ O). (3.39)

The dynamical characteristics of the field (helicity, energy, momentum, etc) considered
in previous sections represent quadratic forms with respect to the fields and potentials. Then,
applying the time averaging (3.39) with relations (3.38) to the densities of energy–momentum
(2.28), helicity (2.11) or (3.14), spin and orbital momenta (3.19), (3.26) and angular momenta
(3.22), (3.23) and boost momentum (3.24), we obtain

W̄ =
1
4(|E|

2 + |B|
2), P̄ =

1
2Re(E∗

× B), (3.40)

H̄ = −
1

2ω
Im (E∗

· B) , (3.41)

P̄O =
1

4ω
Im

[
E∗

· (∇)E + B∗
· (∇)B

]
, (3.42)

P̄S =
1

8ω
∇ × Im

[
E∗

× E + B∗
× B

]
, (3.43)

L̄ =
1

4ω
Im

[
E∗

· (r × ∇)E + B∗
· (r × ∇)B

]
, (3.44)

S̄ =
1

4ω
Im (E∗

× E + B∗
× B) , (3.45)

When deriving (3.43) we used Maxwell equations ∇ · E = ∇ · B = 0. Note that the time-
averaged boost momentum N̄ does not give a meaningful result for the monochromatic
field, because N in equation (3.24) explicitly contains time t . In addition, a monochromatic
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field cannot be localized in three dimensions, and the energy centroid (related to the boost-
momentum conservation) becomes ill-defined. At the same time, the averaged total angular-
momentum density (2.35) from the symmetrized angular-momentum tensorMαβγ is naturally
expressed via the energy and momentum (3.40):

M̄= r × P̄. (3.46)

The dual-symmetric and gauge-invariant expressions (3.40)–(3.45) coincide with results
obtained in different contexts in recent works [3, 33, 42, 44, 51, 53]. In particular, equations
(3.41) and (3.45) demonstrate the proportionality of the helicity and spin densities to Lipkin’s
zilch pseudo-scalar and pseudo-vector [33–35]. Remarkably, for a monochromatic field, the
time averages of the dual-asymmetric helicity (2.9) and the true helicity (2.11) or (3.14) coincide
with each other:

H̄ =
¯̃H . (3.47)

At the same time, all other quantities—energy, spin and orbital energy fluxes and angular
momenta—remain essentially different in their dual-symmetric and asymmetric ‘tilded’
versions:

W̄ 6=
¯̃W , P̄O 6=

¯̃PO, P̄S 6=
¯̃PS, L̄ 6=

¯̃L, S̄ 6=
¯̃S. (3.48)

Equation (3.47) explains why the false dual-asymmetric helicity H̃ is associated with the dual-
symmetric conserved Lipkin’s zilch in [34]: monochromatic fields and integral quantities are
considered there. Rigorously speaking, the integral characteristics diverge for monochromatic
fields, as it cannot be localized and contains an infinite number of photons. Note also that the
spin energy flux density (3.43) represents the curl of the spin density (3.45): P̄S =

1
2∇ × S̄.

This reveals the divergence-less character of the spin current. According to (3.28) and (3.29)
this current makes no contribution to the integral momentum of the field, and only generates a
purely intrinsic spin angular momentum [42, 48–53]. An entirely similar spin current generates
the spin of the relativistic quantum electron [48–50, 57].

Importantly, equations (3.40)–(3.45) reveal profound quantum-mechanical analogies and
can be reduced to the following simple forms:

W̄ = (ψ |ŵ|ψ), (3.40′)

H̄ = (ψ |
p̂ · Ŝ

p
|ψ), (3.41′)

P̄O = (ψ |p̂|ψ), (3.42′)

P̄S = (ψ |i p̂ × Ŝ|ψ), (3.43′)

L̄ = (ψ |r̂ × p̂|ψ), (3.44′)

S̄ = (ψ |Ŝ|ψ). (3.45′)

Here we used the dual-symmetric state vector |ψ)=
1

2
√
ω

|E,B), the inner product assumes
the real part of the scalar product (without volume integration, since here we calculate local
densities), whereas the operators are

ŵ = ω, p̂ = −i∇, r̂ = r,
(

Ŝa

)
i j

= −iεi ja. (3.49)
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The spin-1 matrix operator Ŝ acts as O∗
· (Ŝ)O = Im

[
O∗

× O
]
, and we also used

Maxwell equations and the dispersion relation p2
= ω2. Importantly, within the standard

electromagnetism of section 2, the dual-asymmetric ‘tilded’ quantities (3.40′)–(3.45′) would
be given by the same equations, with the same operators, but with the dual-asymmetric state
vector |ψ̃)=

1
√

2ω
|E). But some of these quantities (e.g. the false energy W̃ ) are not conserved,

and even the standard electromagnetism operates with the proper energy W which requires
the use of the dual-symmetric state vector |ψ)=

1
2
√
ω

|E,B) (see, e.g., [44, 45], where the
Riemann–Silberstein vector is considered as a natural choice for the photon wave function).
Therefore, within the standard electromagnetism, it is impossible to write all the characteristics
of the field in a consistent quantum-like operator form (3.40′)–(3.45′). Here we do not consider
quantization of the fields, but even the first-quantization formalism for classical fields shows
that only the dual-symmetric formulation of electromagnetism yields meaningful and mutually
consistent expectation values of quantum spin and orbital operators with a suitable state
vector.

Equations (3.40′)–(3.45′) allow a straightforward transition to the Fourier (momentum)

representation [23, 27, 28, 33, 42, 44, 51, 52]: |ψ(r))→ |
_

ψ(k)). In doing so, one merely has
to change the momentum and coordinate operators (3.49) as p̂ = k and r̂ = i∇k. In the Fourier
representation, it becomes clear that the helicity represents the difference in number of the
right-hand and left-hand circularly polarized plane waves [23, 27, 28, 33–35]. If the field has a
well-defined quantum helicity σ = ±1 (i.e. the Fourier spectrum of the field contains only plane
waves with one circular polarization σ ), then the complex electric and magnetic amplitudes are
related as Ê = iσB. In this case, the helicity (3.41), spin (3.45), energy and momentum (3.40)
become simply related as

H̄ = σ
W̄

ω
, S̄ = σ

P̄
ω
. (3.50)

Then, the helicity conservation (2.11), (2.12) or (3.13), (3.14) becomes equivalent to the
energy conservation (Poynting theorem) (2.16), (2.17) or (3.16), (3.17) [33]. Furthermore, in
such a pure helicity state, the electric and magnetic contributions are equal in all quantities
(3.40)–(3.46), so that the standard calculations of section 2 and the dual-symmetric formalism
are equivalent. However, for a generic field containing different helicity states in the Fourier
spectrum, the helicity conservation represents a truly independent conservation law, whereas the
dual-symmetric quantities (3.40), (3.42)–(3.45) differ from their ‘tilded’ counterparts obtained
within the standard approach.

4. Observability and relation to quantum weak measurements

Here, we briefly discuss observable consequences of the dual symmetry and quantities that make
a difference between the standard and dual formulations of electromagnetism. It is important
to emphasize that although we discuss the properties of the free electromagnetic field, they
are experimentally observed only via various light–matter interactions (any detector involves
matter).

Firstly, we note that the dual symmetry and conservation of helicity H are not abstract
properties, but they have immediately observable consequences. In particular, it follows
that any perturbation which does not break the electric–magnetic symmetry will keep the
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electromagnetic helicity as an exact invariant of the problem. This explains the conservation
of the helicity of photons in an arbitrary gravitational field [45]. Furthermore, the helicity
turns out to be exactly conserved in any optical scattering on macroscopic objects with equal
electric and magnetic constants ε = µ [36, 45, 58], which is usually interpreted as matching of
optical impedances ε/µ= const. At the same time, any coupling with matter having asymmetric
electric and magnetic properties will in general produce a conversion between the two helicity
states of photons. As the helicity conservation involves the spin angular momentum, the
conversion of the helicity is usually accompanied by a conversion between the spin and orbital
angular momenta [36, 59], although the opposite is not generally true. Thus, the dual symmetry
and helicity conservation offer an additional integral of motion which can be used in the analysis
of various optical interactions.

Secondly, let us consider physical quantities which appear to be essentially different in the
standard and dual versions of electromagnetism—the spin and orbital angular momenta of light,
S and L. Although quantum electrodynamics sometimes concerns the separation of the spin and
orbital parts of the photon angular momentum as physically meaningless, modern optics points
to the independent observability of these quantities [41, 54, 55]. Indeed, locally the orbital and
spin parts of the angular momenta of light cause qualitatively different motions (orbiting and
spinning) of probe particles immersed in the field [54]. In quantum electrodynamics, the photon
interaction with an atom also causes changes in the extrinsic and intrinsic angular momentum
of the atom, quite similar to the orbital and spinning motion of the classical probe particle [41].
In addition, the integral value of the intrinsic orbital angular momentum is closely related to
the spatial distribution of the field intensity and its localizability [42, 60]. Thus, if we regard
the spin and orbital angular momenta of the electromagnetic field as separately measurable
quantities (either in their local or integral values), this allows us to discriminate between the
standard and dual electromagnetic theories.

The spin and orbital angular momenta of the field are generated, respectively, by spin
and orbital energy fluxes PS and PO [3, 37, 42, 48–53], see equations (2.33) and (3.29),
which together form the Poynting vector P = PO + PS. These local quantities are different in the
standard and dual theories. Remarkably, although the Poynting vector P is usually considered
as a physically meaningful quantity, it turns out that the local orbital energy flux PO (i.e. the
canonical momentum density) can be measured more easily and in a more straightforward
way via the motion of a probe particle [51, 54, 56]. Indeed, it is the orbital energy flux
that transports energy, represents the local expectation value of the momentum operator (see
equations (3.42) and (3.42′)), and can be associated with the standard quantum-mechanical
probability current [3, 48–50]. (In contrast, the spin energy flux, PS, is sometimes regarded
as a virtual divergence-less current which cannot be observed per se [48–50].) Thus, measuring
the canonical momentum density PO, one can also discriminate between the standard and dual
theories.

The observability of the local densities and currents is an important problem by itself.
In standard field theories, all local densities are usually interpreted as unobservable auxiliary
quantities, whereas only the integral energy, momentum and angular momentum of the field
make physical sense. However, classical optics naturally regard the local energy density W ,
momentum density P and other currents as meaningful and observable characteristics of the
field [3, 51]. Moreover, it seems that quantum measurements also allow the detection of
local currents [3, 61]. This is related to the concept of quantum weak measurements [62–64].
Both classical-optics and quantum weak-measurement approaches are based here on a natural
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idea: a straightforward way to measure a current of any flow is to place a small probe particle
in the flow and to trace its motion.

In classical optical fields, a small particle experiences the action of the radiation pressure
force and moves proportional to the local momentum density of the field [54, 56]. For small
Rayleigh particles this force is proportional to the canonical (orbital) momentum density PO

rather than to the Poynting vector P [3, 56]. Furthermore, the particle spins proportionally to the
local spin density of the field [54]. Thus, by measuring the velocity of the linear motion of the
particle and the angular velocity of its spinning motion, one can determine the local momentum
density PO (hence, also the orbital angular-momentum density L = r × PO) and the spin
density S.

The same experiments can be interpreted within the quantum weak-measurement
picture [3, 61–64]. Let us represent the field distribution as a quantum photon state |ψ(r)〉 with
indeterminate coordinate (i.e. the spread is much larger than the size of the probe particle). If
this photon interacts with the particle located at r = r0, this fixes the coordinate of the photon,
i.e. the particle post-selects the photon in the state with well-defined coordinate, |r0〉. Although
the photon–particle interaction has a very low probability 〈r0|ψ〉 � 1, averaging over many
events (as happens with classical multi-photon fields) provides simultaneous information about
the position of the photon and its local momentum (current). This is expressed via the following
quantum weak-measurement equation [3, 61]:

〈p〉weak = Re
〈r0| p̂ |ψ〉

〈r0|ψ〉
= Re

〈ψ |r0〉 〈r0| p̂ |ψ〉

〈ψ |r0〉〈r0|ψ〉
=

j (r0)

ρ (r0)
. (4.1)

Here ρ(r)= (ψ(r)|ψ(r)) and j(r)= (ψ(r)| p̂ |ψ(r)) are the local probability density and
current in the field. As described in section 3.3, we have ρ = W̄/ω and j = P̄O for a
monochromatic electromagnetic field, so that the quantum weak measurement of the field
momentum is essentially the local measurements of the orbital current PO. Recently, the
same weak-measurement scheme (4.1) (but employing another, non-particle, detector) was
successfully used to detect the local photon ‘trajectories’ in the double-slit experiment [65].
These Bohmian trajectories are nothing but the streamlines of the orbital energy flux PO.
Furthermore, the momentum exchange in the resonant interaction between a moving atom
and an electromagnetic wave also reveals the local value of the canonical momentum. This
is seen, e.g., in the Doppler-shift experiments with evanescent waves, where 〈p〉weak > ω [66],
in agreement with a superluminal character of the orbital energy flux discussed in [53]. For
the local measurements of the spin angular-momentum density via a spinning particle, one can
write a weak-measurement equation similar to (4.1):

〈S〉weak = Re
〈r0|Ŝ |ψ〉

〈r0|ψ〉
= Re

〈ψ|r0〉 〈r0| Ŝ |ψ〉

〈ψ|r0〉 〈r0|ψ〉
=

S (r0)

ρ (r0)
. (4.2)

It might seem that the above local measurements of optical currents and angular momenta
solve the problem and result in unambiguous and objective determination of the field properties.
However, this is not so. The problem is that the results of the measurements based on a
probe particle (i.e. involving light–matter interaction) crucially depend on the properties of
the particle. For instance, the light scattering on a small dielectric particle can be considered in
the electric-dipole (Rayleigh) approximation, and then it turns out that the radiation force that
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pushes the particle is proportional to the electric orbital momentum density [3, 56] (cf equation
(3.42)):

Frad ∝ P̄electric
O =

1

2ω
Im

[
E∗

· (∇)E
]
. (4.3)

This is clearly a dual-asymmetric expression consistent with the standard electromagnetism and
momentum density P̃O defined in equation (2.20). However, if the same measurement is made
by a small magnetic particle [56, 67] and the interaction has a magnetic-dipole character, the
radiation force will be proportional to a similar magnetic expression for the orbital momentum
density:

Frad ∝ P̄magnetic
O =

1

2ω
Im

[
B∗

· (∇)B
]
. (4.4)

Finally, only a particle with equivalent electric and magnetic properties will measure the dual-
symmetric orbital momentum density PO, equations (3.19) and (3.42):

Frad ∝ P̄O =
1

4ω
Im[E∗

· (∇)E + B∗
· (∇)B]. (4.5)

Similar observations can be made for measurements of the spin and orbital angular momenta.
For instance, in the paper [41] the authors point to the separate observability of the spin
and orbital angular momenta of light, and analyze the photon interaction with an atom. This
interaction is approximated by the electric-dipole coupling, and, due to this, the changes in the
atomic states would measure the dual-asymmetric angular momenta L̃ and S̃ following from the
standard approach.

Hence, the results of measurements of the dynamical characteristics of the electromagnetic
field depend critically on the properties of the measuring device. They can naturally be dual-
asymmetric as a consequence of the electric–magnetic asymmetry in matter (the absence
of magnetic charges). However, this does not mean that we should ascribe dual-asymmetric
features to the free electromagnetic field. Indeed, in practice, it is difficult even to measure the
energy density W̄ = (|E|

2 + |B|
2)/4 or the Poynting vector P̄ =

1
2Re (E∗

× B), which are natural
dual-symmetric conserved characteristics of the field. Typically, only the electric energy density,

i.e. ¯̃W = |E|
2 /2, can be measured. Obviously, such an asymmetry of measuring interactions

does not suggest that we should associate the non-conserved dual-asymmetric quantity W̃ =

E2 with the energy density of the electromagnetic field! Thus, in spite of such difficulties
with measurements, if we would like to ascribe fundamental dynamical characteristics to
the electromagnetic field per se, we have to maintain the electric–magnetic symmetry which
is inherent in the free field. Naturally, only the dual electromagnetic theory suggested here
provides such characteristics of the fields. Formally, they can be thought of as a result of
measurements made by an electromagnetically neutral (e.g. gravitational or macroscopic with
ε = µ) detector.

To conclude this section and support our arguments, let us mention two recent examples
where an improper dual-asymmetric interpretation of the field and measurement properties
brought about confusing results.

Firstly, Tang and Cohen [29, 30] introduced a novel concept of ‘superchiral light’, i.e. light
that shows optical chirality (helicity) higher than that of a circularly polarized plane wave. They
observed that the so-called dissymmetry factor in local light interaction with a chiral particle can
be anomalously large in such ‘superchiral’ field configurations. In fact, it was shown in [33, 34]
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that this enhanced chiral response arises not from extraordinary properties of the optical chirality
or helicity density—it can never exceed the limit

∣∣H̄/W̄
∣∣
max

= 1/ω of a circularly polarized
plane wave. Instead, this is a property of the particle involving the electric-dipole interaction

which is sensitive only to the electric energy density, i.e. ¯̃W = |E|
2 /2. This electric energy

density appears in the denominator of the dissymmetry factor and causes its enhancement in the
vicinity of the electric-field nodes. If a magnetic-dipole coupling of equal strength were also
present, the dissymmetry factor would have never been larger than that of a circularly polarized
plane wave [68].

Secondly, some of us described an unusual transverse spin angular momentum of linearly
polarized evanescent (e.g. surface plasmon–polariton) electromagnetic waves [53]. This was
followed by the paper [69] which claims that such a spin is present only in transverse-magnetic
modes and absent in transverse-electric waves, and even that ‘the rotation of the magnetic
field cannot generate spin’. Such misleading conclusions appeared because of the use of the

dual-asymmetric definition of the spin density S̃, ¯̃S =
1

2ω Im (E∗
× E), appearing in standard

electromagnetism. Obviously, the presence of the angular momentum of the free field should
not be attributed solely to the electric rather than magnetic field. The use of the proper dual-
symmetric spin density S and equation (3.45) removes this problem, so that both transverse-
electric and transverse-magnetic evanescent modes carry the same spin angular momentum [53].

5. Concluding remarks

To summarize, we have constructed a classical Lagrangian electromagnetism possessing dual
symmetry with respect to the electric and magnetic fields. This symmetry is a fundamental
property of Maxwell equations which corresponds to the helicity conservation law, where the
helicity flux density coincides with the spin angular-momentum density. Therefore, we conclude
that the dual symmetry is also closely related to the separation of the spin and orbital degrees
of freedom in the electromagnetic field. It is important to note that such a separation can
only be made using canonical Noether currents corresponding to the Poincaré symmetries (i.e.
canonical energy–momentum and angular-momentum tensors).

The standard Lagrangian formulation of electromagnetism lacks the dual symmetry, and
the helicity conservation is derived in a non-trivial way [12]. Components of the canonical
energy–momentum and angular-momentum tensors also lack dual symmetry and contain
important discrepancies. In particular, spin density differs from the helicity flux density, a false
(non-conserved) energy density appears in the boost momentum, etc. In addition, both local and
integral values of the spin and orbital angular momenta are not dual symmetric, which is bizarre
for the free electromagnetic field.

In contrast, the dual electromagnetism suggested in this paper is free of all these drawbacks.
The helicity conservation naturally appears here as the basic current from the U (1) gauge
transformation. The canonical energy–momentum and angular-momentum tensors provide a
meaningful and dual-symmetric separation of the spin and orbital degrees of freedom of the
field. In particular, the spin density coincides with the helicity flux density, the true energy
density appears in the boost momentum, and so on. The spin and orbital momentum and
angular-momentum densities following from the dual electromagnetism are in agreement with
the expressions suggested recently within several other approaches [3, 42–44]. Thus, the
dual electromagnetic theory inherently contains straightforward and physically meaningful
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descriptions of the helicity, spin and orbital characteristics of light. A comparative summary
of the main conserved quantities in the standard and dual electromagnetic theories is shown in
figure 1.

In addition to the formal consideration of the characteristics of the free electromagnetic
field, we have discussed their measurability and possible observable consequences of the two
theories. It should be taken into account that any measurement of the field characteristics
involves light–matter interactions and can critically depend on the properties of the measuring
device. Therefore, the dual symmetry can be broken by the measuring device, which is typically
sensitive to the electric rather than magnetic parts of the optical fields. Understanding the
inherent dual symmetry of the free field and asymmetry of matter offers a powerful tool for
the analysis of light–matter interactions and suggests clarifications and deeper interpretations
of a number of experimental and theoretical results [29, 30, 36, 41, 53–56, 58, 59, 67–69].
At the same time, the dual asymmetry of measuring devices does not mean that one should
ascribe dual-asymmetric non-conserved characteristics (e.g. the false energy density W̃ = E2)
to the electromagnetic field. Therefore, all fundamental characteristics of the free field must be
dual-symmetric, as they appear only within the dual electromagnetism.

Importantly, the spin and orbital angular momenta and local energy fluxes are regarded
as separably observable quantities in optics. Probe particles move and spin, experiencing the
local action of orbital and spin degrees of freedom of the field. If such particles have equivalent
electric and magnetic properties, their evolution corresponds to the spin density and orbital
energy flux which appear in the dual electromagnetism. Furthermore, the spatial distribution of
the field energy density (including both electric and magnetic parts) is directly related to the
orbital angular momentum of the field [42, 60]. This distribution is consistent with the dual-
symmetric orbital angular momentum obtained in our theory rather than with that following
from the standard electromagnetic theory.

Thus, it seems that there are grounds to discriminate between the two formulations of
electromagnetism in favor of the dual version. This raises a provocative question on classical
field theory: can we discriminate between different field Lagrangians leading to the same
equations of motion? The usually assumed answer is ‘no’. However, from our consideration
it follows that if the spin and orbital angular momenta and local currents are measurable,
then the answer is ‘yes’. (Different Lagrangians yield different Noether currents and different
spin and orbital angular momenta.) A similar question was considered in a recent paper [61],
discussing non-relativistic quantum mechanics and ways to discriminate between different
possible definitions of the local probability current. It is argued there that quantum weak
measurements of the field momentum allow measurements of the local current and enable
the singling out one particular definition of the current. Indeed, this was experimentally
implemented for an electromagnetic field in [65]. Thus, it seems that modern concepts of
quantum measurements and classical field theories are in contradiction with each other. The
probable resolution of this contradiction lies in the separation of the ‘measured’ and ‘measuring’
systems. Light and matter are considered as a single macro-system in field theory, while ‘matter
measures light’ in the quantum weak-measurement approach. Apparently, both points of view
make physical sense in their corresponding areas of validity.

Finally, we have considered only classical electromagnetism. Field quantization and
possible manifestations of the dual electromagnetism in quantum electrodynamics raise
intriguing and non-trivial questions. Interaction with matter must be included in such a theory
even if it only appears via virtual particles. Should the matter include magnetic monopoles or
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should there be a dual-symmetry breaking mechanism? Will this affect observable quantities in
quantum electrodynamics, such as atomic-level shifts, particle-scattering cross-section, etc? We
hope that this paper motivates the analysis of quantum aspects of dual electromagnetism.
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Note added. After posting the first version of this paper in arXiv, another paper by
Cameron and Barnett discussing dual-symmetric electromagnetism based on the Lagrangian
(3.2) was submitted to the New J. Phys. [70]. This also brought some previous relevant
works [71–73] to our attention. Papers [70–73] examine a number of additional conservation
laws: Lipkin’s zilches and those corresponding to special conformal symmetries. However,
they do not treat canonical Noether currents corresponding to the Poincaré symmetries, which
provide a separation of the spin and orbital degrees of freedom. Therefore, while Cameron and
Barnett consider the dual-symmetric formalism as ‘an alternative rather than a replacement’
to the standard approach, we argue that the choice of the Lagrangian makes a difference
and has important physical consequences. Note also that our complex Riemann–Silberstein-
like formalism sheds light on the appearance of the ‘trivial partners’ in the conservation laws
discussed in [70]. Using the complex potential Xα

= Aα + i Cα, one can see that the partner
conformal transformations (6.18) in [70] represent regular conformal transformations (6.11) but
with imaginary parameters. In particular, this explains the partner relations between the spin
rotation and boost symmetries—a Lorentz boost is a rotation of the Riemann–Silberstein vector
by an imaginary angle [38]. Correspondingly, the partner Noether currents are given by the real
and imaginary parts of the same complex tensors in our formalism.
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