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DEUTSCHE ZUSAMMENFASSUNG

Nach dem neuesten Stand der Wissenschaft ist das Standatel Blie erfolgreichste Theorie, die die Wech-
selwirkungen zwischen der Elementarteilchen genau besthr kann. Es umfasst alle fundamentalen Wech-
selwirkungen der Natur auf3er der Gravitation. Seine Vadgen wurden zu einer hohen Genauigkeit geprift.
Dennoch wird es nicht als die fundamentale Theorie der Edselwirkungen betrachtet. Es hat zu viele unbes-
timmte Parameter. Es kann die Fermionenmassen nicht \&atpen, und es gelingt ihm auch nicht, die geringen
Neutrinomassen zu erklaren, welche in der letzten Zeitlllrxperimente bestatigt wurden. Es verfugt tber
keine Eichbosonen, die Nukleonzerfalle verursachemkanwas fur die Erklarung der Baryonenasymetrie des
Universums erforderlich ist. Auch musséfP-verletzende Phasen kunstlich in dig{ M oder M N S Matrizen
eingefuihrt werden.

Die Nachteile des Standard Models kann man im Rahmen deegre&einheitlichten Theorien beseitigen
welche groliere Freiheitsgrade besitzen. GroRRe verdich&a Theorien, welche nur eine Eichkopplung besitzen,
basieren auf Eichgruppen, die die Standardmodeleichgrbpmhalten. Es gibt eine limitierte Anzahl solcher
Gruppen. SO(10) ist eine voll symmetrische Eichgruppe, die Uber zwei Mealerverfiigt: Es vereinigt alle
bekannten Wechselwirkungen unter einer Kopplung und #izisst alle bekannten Fermionen einer Familie in
einem einzigen Spinor.

In dieser Arbeit untersuchen wir die grof3e vereinheitéc$i®©(10) Theorie durch Anwendung verschiedener
Matrizendarstellungen, welche die Struktur ¢&8P(10) klar zum Ausdruck bringen. Unsere Methode basiert
auf zwei Schritten: Wir werden die expliziten Ausdriicke dasseneigenwerte und Masseneigenzustande der
physikalischen Eichbosonen von einer sogenannten quesriglassenmatrix ableiten, die Uber alle Informatio-
nen der Mischungsparametern zwischen Eichfeldern, undPti@sen die zur Quelle détP-Verletzung dienen,
verfugt. Mit Hilfe dieser Analyse werden wir die explizitédusdriicke der Wechselwirkungslagrangedichte der
geladenen Strome, ungeladenen Strome und farbgela®riame derSO(10) ableiten. Wir werden explizite
Ausdriicke der Vektor- und Axialvektorkopplungen der uadenen zwei Strome defO(10) darstellen. Wir
werden die Baryonen-, Leptonen- und Baryonen- minus Leptpahl verletzenden Prozesse und deéréhver-
letzenden Phasen, die auf d&P(10) beruhen, prasentieren.

Das Higgs Potenzial, das in den Higgs Mechanismus eingefiind, werden wir durch eine Bearbeitung
derSO(10) Higgsfelder im allgemeinsten Fall konstruieren, wobei wgbesondere die ausdriickliche Matrizen-
darstellung der Higgsfelder veranschaulichen werden. @o¢znzielle Teil der Higgs Lagrangedichte wird uns
die Eigenschaften des Minimums des Vakuums, und der katetiJeil wird uns die quadrierte Massenmatrix
der Eichbosonen durch eine spontane Symmetriebrechdagliedie Higgsfelder werden an den Fermionen mit
Hilfe einer demokratischen Yukawakopplung gekoppelt. al werden wir explizite Ausdriicke der Fermionen-
massen der dritten Generation erhalten, einschlie3licMa@rana und Dirac Massen der Neutrinos. Wir werden
eine Flavour-Eigenbasis fur die Neutrinos einfiihren diedMasseneigenwerte und die Masseneigenzustande der
Neutrinos finden. Explizite Ausdriicke fur dieP-Verletzung im Neutrinosektor werden angegeben.

In dem zweiten Schritt dieser Arbeit, werden wir samtlictieen genannten Grof3en auswerten. Wir werden
unsere Auswertungen mit bekannten Grof3en aus dem Staktiatel wie deniW und Z Bosonenmassen, der
Vektor- und Axialvektorkopplung des ungeladenen Stromes den Fermionenmassen der dritten Generation
vergleichen. Zusatlich werden wir Grof3en wie Massen n&ighbosonen, Vektor- und Axialvektorkopplungen
eines neuen ungeladenen Stromes, leichte Massen derdimdigien und schwere Massen der rechtshandigen
Neutrinos, Werte verschiedener Mischungsparameterngerletzende Phasen usw. die jeweils nicht aus dem
Standard Model bekannt sind, prasentieren.

Die zu obigen Auswertungen benotigten Eingabewerte wehdiptsachlich durch zwei Quellen erworben:
Zuerst werden wir die Vakuumerwartungswerte und die Eippkangen deSO(10) Wechselwirkungen im Rah-
men der Vereinigung der Kopplungen durch UntersuchungSde{10) Massenskalen so gut wie moglich bes-
timmen. Erganzend, werden wir die Vakuumerwartungswentd deren Phasen durch Justierung an die genau
gemessenen Massen der bekannten Eichbosonen und Ferpdanjenveils unter der Fermiskala liegen, bestim-
men. Es wird uns gelingen, Ub&T Parameter mit Hilfe vorr Erwartungswerteriy Winkeln, einer Eichkopplung
und einer Yukawakopplung vorherzusagen.
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ABSTRACT

In the state of the art the Standard Model is the best gaugeyttdescribing interactions among elementary
particles. It comprises all of the fundamental interactiomnature except gravitation. Its predictions have been
experimentally tested to a high level of accuracy. Howeités, not considered to be the fundamental theory of
gauge interactions. It contains a lot of arbitrary paramsetdt can not predict the fermion masses and fails to
explain the smallness of neutrino masses which have beeama@ukby recent experiments. It contains no gauge
bosons that can mediate nucleon decays via baryon and leptaber violating process, which are needed to
explain the baryon asymmetry in our universe. Furtherm@i®,violation has to be introduced into thieK M
andM N S matrices by hand.

The shortcomings of the Standard Model can be solved in #madwork of grand unified gauge theories
(GUTSs) which have greater degrees of freedom. GUT’s whiefe vaily one coupling constant are based on gauge
groups that contain the Standard Model as a subgroup. Theeelenited number of such gauge grougg)(10)
is a fully symmetric gauge group that has two outstandingufea: It unifies all the known gauge interactions
under a single coupling strength and classifies all the krfevmions of a family under a single spinor.

In this work, we will studySO(10) grand unification in its full extent by using different exgtimatrix rep-
resentations which exhibit the structure $®(10) in a very transparent way. Our approach consists mainly of
two stages: We will derive the explicit expressions of thessag@igenvalues and mass-eigenstates of the physical
gauge bosons from a mass squared-matrix that containseaihfibrmation about the mixing parameters among
the gauge fields and the phases which are sourc&sfoviolation. In the light of this analysis, we will derive the
explicit expressions for the interaction Lagrangians @f ¢harged currents, the neutral currents and the charged
and colored currents iIfO(10). We will present explicit expressions of the vector and lexéctor couplings
of the two neutral currents iIFO(10). We will show how the baryon, lepton and baryon minus leptamber
violating processes and their expli¢itP violating phases are accommodated in $(10) theory.

The Higgs potential that we use to implement in the Higgs raaidm will be constructed in a most general
fashion through a careful study of the Higgs fieldsS@¥(10), where we give special emphasis on illustrating the
explicit matrix representation of these Higgs fields. Thé&eptal part of the Higgs Lagrangian will give us the
properties of the minimum of the vacuum, and the kinetic palftgive us the mass-squared matrix of the gauge
bosons via spontaneous symmetry breakdown. The same Higjtiplets will be coupled to fermions through a
democratic Yukawa matrix. Thereby, we will derive expliExpressions for the fermion masses of the third family
including Majorana and Dirac masses for neutrinos. We wtlidduce a flavor-eigenbasis for neutrinos and find
the mass-eigenstates and mass-eigenvalues of the nsutxplicit expressions faf’ P violation in the neutrino
sector will be obtained.

In the second stage of our work, we will evaluate all the abhoeationed quantities. We will compare our
results with those of the Standard Model like tlieandZ masses and the vector and axial-vector coupling of the
NC current and the fermion masses of the third family. In additive will present the values of the physical
guantities that are not present in the Standard Model likentasses of new gauge bosons, the vector and axial-
vector couplings of a new C' current, the masses of a light left-handed and a heaviernightrino, the values of
various mixing parameters addP phases etc.

The input values required for these evaluations will be aegumainly from two sources: First, we will
determine the vacuum expectation values and the coupliaggths of gauge interactions given by th€(10)
theory in so far as possible through studying the mass stal#®(10) in the framework of coupling unification.
Complementarily, we will determine the vacuum expectatialues and their phases by adjusting them to the
masses of the known gauge bosons and fermions below the §eataiwhich are accurately measured and known.
We will be able to predict more tha&¥ parameters with an input Gfvacuum expectation value€sangles,l gauge
coupling andl Yukawa coupling.
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1. INTRODUCTION

Unification is presumably one of the most central claims ofigie@ physics/[1]. It furnishes the basis of the great
achievement of the Glashow-Weinberg-Salam theory of elegtak gauge interactions commonly known as the
electroweak theory [2][3][4][5][6]. The electroweak gaudpeory is based on th#l/ (2), x U(1)y direct product
gauge group and allows us to study the electromagnetic an#l interactions which have been regarded for long
as separate interactions, in a single framework. Strigiga&ing their theory is not a true unification. Since
every gauge group requires its own gauge coupling, we dréadtling with two interactions having no common
source. A pleasing situation could have been achieved ¥f there able to relate the separate gauge couplings
in the electroweak theory through simple relations thdbfelfrom the properties of the involved gauge groups.
Unfortunately the two gauge couplingandg’ assigned to th&U (2), x U(1)y direct product respectively are

just related over a mixing angle [7]. We have
!

< = tan Oy (1.1)
g

wheredyy is a free parameter of the theory [8][9]. In this brief inttmtion, we do not attempt to give a concise
historical evolution of particle physics but rather aim anbing important facts together that underlie some of
the major steps leading to the idea of grand unified theoti@k [Let us continue with another widely accepted
claim of particle physics: In the state of the art all inte¢i@as among elementary particles are described by gauge
theories [11][12][13][14]. Indeed the electromagnetiedty has been the forerunner of gauge theories [15]. The
strong interaction has been successfully described asgegateraction as well, particularly based on #1é(3)..
gauge group [16][17][18]. The strong interaction togethéh the electroweak interaction give the so called
standard model based on tK&(3). x SU(2);, x U(1)y direct product gauge group [14]. To date there is no
known discrepancy between the standard model and expgemen

Due to the two claims highlighted above and the failure ofdleetroweak model being a true unification it
turned out to be most natural to consider a gauge theory psiggea single gauge coupling and containing the
standard model gauge group as a subgroup, to be a candidatewgrifying theory of all fundamental interactions
as reviewed in ref| [19]. The pioneering grand unified galgety satisfying the above requirements has been
proposed by S. L. Glashow and H. Georgi to be #i&(5) theory [20]. This theory has the same rank as the
standard model but contains more degrees of freedom. ligtsetie existence of additional gauge bosons which
reside in the coset of the respective gauge groups. Acttlalyis always the faith of grand unified theories that
every gauge group with a rank higher or equal to 4 will bringnegr interactions. Consequently we are compelled
to seek for new physics beyond the standard model in one widneather. In th&SU (5) theory, these hypothetical
gauge bosons do mediate the proton to decay into a positba aautral pion [21][22]. We have the reaction

p—et 47 (1.2)

Unfortunately theSU (5) theory predicts the proton to decaydnx 10217 years/[23] which is faster than the
recently measured lower bound [24] and therefore the thisoiry serious trouble [25]. The proton life time is
sensitive to the gauge boson masses that mediate the dexmgspi{26][27][28][29]. In general, gauge bosons
mediating nucleon decays get masses at the order of thdled-geand unification mass scale at which the spon-
taneous breakdown of the symmetry occurs. One can alsoringpiea chain of spontaneous symmetry breaking
which is usually the case. The grand unification mass scaleeignergy scale at which coupling unification
is achieved: The coupling strengths of separate interaetssociated with the various subgroups of the single
gauge group are subject to renormalization as we evolve tbhemards higher energies [30][31]. The behavior
of the couplings strengths of Abelian and non-Abelian gathgeries at short distances are different. The latter
type gauge theories for which the coupling strength at sfisthnces decreases are referred to as asymptotically
free [32][33][34], whereas in the former type theories, teipling strength at short distances increases. The
energy scale at which the strength of the couplings becomal elgtermines the grand unification mass scale and
should lie considerably high to avoid any unwanted effdat fproton decay [35][36]. This requirement sounds
tricky but the non-observation of the proton decay impligghat grand unified theories should deal with extremely
high energies. The grand unification mass scale obtti€5) theory lies roughly a3.1 x 1014+0-3 GeV which is
relatively low [23].



From the other side, on rather aesthetical grounds one fiighit unpleasant to observe that the fermions of a
single family can not be assigned to a single fermion mugtijpl theSU (5) theory which is another shortcoming of
the theory [23]. This means that it does not satisfactorigdict the family structure of fermions. It also excludes
the existence of a right handed neutrino which might seenm aglaantage in the first place because this particle
fails to exist, but recent findings suggesting that neugrinave tiny masses have turned the existence of a right-
handed neutrino into an attractive and interesting prolj&#{j38][39]. Finally we find it appropriate to mention
that theSU (5) theory does not explain why nature favéfs- A currents ovel” + A. This is commonly known as
the left-right asymmetry observed in nature and requir@sliropinion further explanation by any candidate grand
unified theory|[40][41][42][43][44].

Of course the quest for grand unification does not end hereath®&n candidate gauge group for grand uni-
fication has been proposed by H. Fritzsch and P. Minkowsketthie SO(10) theory [45][46]. This theory has
rank 5 and provides more degrees of freedom which makes itgrhenologically very attractive. It provides a
rich framework and addresses many problems remnant of dlor@lveak theory and even cosmology [47]. Some
immediate features of the theory will be instantly sumnmedin the following:

One of the most striking feature special $6)(10) is that it accommodates all the observed fermions of a
family including the missing right handed neutrino withisiagle fermion representation. Through the eigenvalue
operators ofSO(10) one can fix various known charges of elementary particleg Sfinorial representation of
S0(10) and the related eigenvalue operators which make this dessilh be given in§ 2/ and§ (3 respectively.
Through this feature, it successfully classifies our knopectrum of elementary particles [46]. But unfortunately
it fails to give any hint why families repeat.

Furthermore it suggests an initially left-right symmetuitiverse prior to any spontaneous symmetry break-
down. The left-right symmetry imposed by th€)(10) theory becomes obvious when its structure is studied. This
will mainly be done in§[3. This feature serves us a framework to study physics close to the Fermi scale, best
described by the electroweak theory favors left-handeckats over right handed ones.

Another interesting feature is that it allows us to endowtniras both with Majorana and Dirac masses [10].
This feature can give rise to the existence of very massijlg-tianded neutrinos and almost massless left-handed
neutrinos. The formal framework for studying the asymnedighavior of neutrino masses is commonly called the
see-saw mechanism and is naturally suggested by the thHEeyeby theSO(10) theory indirectly accounts for
the non-observation of the right-handed neutrino belowettierimentally accessible Fermi scale. In the SO(10)
theory the masses of the leptons and quarks will be achiéwedgh the Yukawa couplings in conjunction with
the Higgs mechanism [48][49][50][51]. The Yukawa sectorSé¥(10) will be mainly studied ir§[12. But before
that a detailed knowledge of th®0(10) Higgs sector is essentially required [52][53]. The varibliggs fields
that are physically most relevant will be studied;if,[ 7,8/ 9 and 10. As will be shown later §fL0, the observed
left-right asymmetry of nature can closely be linked to thet that left-handed neutrinos are almost massless and
right-handed neutrinos are so heavy that they may only béuymed in extremely energetic processes.

We will also show in§[11.2 that the minimization of the Higgs potential can ddmea left-right asymmetric
vacuum under a specific condition. This condition will latedp us to estimate the values of various quantities
in SO(10). We are unfortunately faced with the fact that our ignoraatoeut the Higgs couplings in the Higgs
potential makes it impossible to evaluate the vevs from thémum of the Higgs potential despite of the fact that
we can solve the minimum for each of the vevs separately.eFoer we have to find the values of the vevs in that
we make use of the standard model and the electroweak thatayneters like th&l” andZ masses as well as the
strong and the electromagnetic interaction couplingsEtese procedure is mainly studied§id4 and§/15.

Furthermore in the&§O(10) theory,C P violation can be induced by assigning certain Higgs fields trans-
form under theSO(10) gauge group with non-trivial complex phases. The HiggsosemftSO(10) is extremely
rich and offers great amount of freedom to std¥ violation. The complex phases which induce violation
are collectively introduced if[11 and will be evaluated i§15.

An additional feature of th&O(10) theory is that it accommodates new gauge bosons apart frose tive
know from theSU (5) theory which can mediate baryon and separately lepton numdlating processes. These
gauge bosons however conserve loBal L number at the vertices. Indeed the— L number appears as the
charge of a local/ (1) 5, gauge symmetry which naturally embeds itself into #@(10) gauge group when
a certain isomorphism between unitary and orthogonal ggaue considered. This isomorphism and additional
features of orthogonal groups are studied @. The properties of thesB — L carrying gauge bosons and the
various interactions mediated by them will be studied iragdetail in§[3 and§ /5 respectively.

A novel feature ofSO(10) is that it also allows locaB — L wviolating gauge interactions to occur. These
mechanisms rest on the transitions of quarks into leptorerevthe quarks and leptons sit in the same multiplet
leading to the so called lepton-quark unification [54][95pton-quark unification is based on t&&(4). gauge
group which also embeds itself in®0(10) via an isomorphism [56]. These aspects are also studié@iand
§/5.

The SO(10) theory predicts a relatively high grand unification masdestfaat prohibits the undesired fast
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decay of the proton [36]. Some estimates of the grand unicahass scales and the intermediate mass scales
which are decisive on the masses of heavy gauge bosons wjivée in§/14 where we mainly study the coupling
unification in the realm o£0(10).

The SO(10) theory contains the electroweak theory as a sub-theoryeTtre it should be possible to recover
various predictions and expressions of the physical ob&éesg of the electroweak theory [57][36]. From the other
side, e.g. the expressions for the masses of the gauge bimstresSO(10) theory, will not be as simple as
those in the electroweak theory. We expect that the formpressions reduce to the latter origs/e switch off
some of the relevant parameters. These parameters areyiestlacuum expectation values pertaining to the
intermediate mass scales governing the overall Higgs nmésina The determination of the expressions for the
gauge boson masses requires a detailed study of the Higgs peesent in thesO(10) theory. We will give a
special emphasis on finding exact expressions for gaugenbasasses. In this respect, a mass-squared matrix of
the gauge bosons will be given §111.3. As will be seen later, the Higgs scalars can give risgettain mixing
among the gauge fields as they become massive. Consequentijiiinave to reexpress the various interaction
Lagrangians in terms of the physical gauge fields and theigdlysurrents which can be classified into 3 types.
These will be the charged currents, the neutral currentstencharged currents which simultaneously carry color.
These currents will be studied §13. Such an analysis also allows us to see howtiieviolating phases come
into the Lagrangians.

Another feature o50(10) grand unification is that it has the necessary ingredientddyce a net excess of
matter over anti-matter. This will be studied§ii3.

The overall symmetry breaking pattern and various vacuupeetation values and their phases as well as the
mixing among gauge fields and the resulting mass eigenstatethe expressions for the mixing parameters and
more will be all studied ir§[11. Finally numerical estimates of the quark and lepton emaad the gauge boson
masses as well as their mixing parameters and ti&iphases will be presented §i5.

The above mentioned features and few more related witls @@ 0) theory will be elaborated in great detail
through out this work. In the remaining part of this briefoduction, we find it appropriate to deal with some of the
fundamental aspects of gauge theories which are believanderlie all elementary particle physics. In particular
we will continue our excursion by briefly introducing the rfiwel basis of the5O(10) gauge theory [58] [47].

The gauge principle is understood as the invariance of adragjan with respect to certain types of transfor-
mations which enable interactions to occur. Essentially @emanded that these transformations are local, i.e.,
the rotation specifying parameters, sayare co-ordinate dependent. In other words, we are ingigtiat a global
invariance holds locally as well. Such theories are knowioeal gauge theories [59]. The set of matrices which
induce transformations are chosen to form a group whichlledtc#éhe gauge group and the rotation specifying
parameters give rise to the existence of a new vector fieldcctiie gauge field. This vector field naturally requires
its own free Lagrangian which will be introduced in the nerek. If the vector field should not spoil the local
invariance of the Lagrangian, we have to demand the gaugis fielbe initially massless. The massless gauge
fields acquire mass through the Higgs mechanism which willipdemented in our model i§{11. In order to give
a self contained and short transition to the gauge theatdtiomulation of theSO(10) theory, we highlight some
basics steps in the procedure. These steps constitute th@pmoach, no matter what particular gauge group one
deals with. Let: be the representation matrices for the fermions. The sgiltoansformation of a spinor can be
formally stated as

U, — (7)), Vs =Uanp ¥y (1.3)

The indiceszd indicate entries of the matrix representation of the expon& more conventional approach is to
use the notation on the right hand side in the above expresgierel is a unitary matrix and denotes the matrix
representation of the exponential term alndis a spinor accommodating the fermions of a complete famiiicty
is achievable if5O(10). The entries and the size of the spinor will be studied pripar §(4. For the moment
the explicit form of the representation matricgs, of SO(10) are not interesting to us. They will be explicitly
introduced ir§ 2. As it is well known from local gauge theories, the transfation of kinetic terms which involve
partial derivatives generate non-invariant terms. Letarssider the transformation of the partial derivative of the
spinor. We have

Vv —-U9¥+(0,U) ¥ (1.4)

where the last term in the expression becomes an undesirad &nce we insist on imposing local gauge in-
variance, it would be trivial to séf to a constant value. The well known remedy is rather to repthe partial
derivative with a so-called covariant derivative. In thiaywthe Lagrangian can be made locally gauge invariant.
This is the general technique adopted in local gauge theoFitee covariant derivative is defined as

Dy=08,+igW, % (1.5)

Here W, are real valuedV(N — 1)/2 vector gauge fields witlu,b = 1,...,N; N = 10 andX,;, are the
antisymmetric representation matrices grid the coupling strength. The above inner product impliesma ever
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the group indicegb. Note that ifg vanishes not only the interactions but the terms definingllgauge invariance
also disappear in the theory. Furthermérgis a matrix in the space of group indices. The second termaajye

in the covariant derivative is usually known as the gaugm teatrix. We will give special attention to the gauge
term matrix and present its physical conten§ i using different representations Bf The physical gauge fields
of the theory are always complex valued linear combinatairi¥’,,. The number of independent physical gauge
fields is determined by the degrees of freedom possessechntfication gauge group. F&O(10), we have
45 gauge fields. The expressions of the physical gauge fielgsrns of théV,;’s will be studied mainly ir§ 3.
Under a gauge transformation, the vector figlds should transforms in such a way that the téipl/ disappears.
This is equivalent to expect the transformation of the ciavaderivative of the spinor to be of the following form

D,V — U D,V (1.6)

This condition yields the desired transformation rule @ ¢fauge ternv’,, - 3. We have

W, %W, S=U(W,- %) U_1+§(8#U) Ut (1.7)

A further step is to find the transformation Bf,,. This can be derived from the above equatibnand> do not
commute in general. For the sake of simplicity, we can exfdarsdtound the identity by neglecting second order
terms in the expansion. We have

U2 | —igw-Y, U'2 1 +igw'%, 0,U=%-igiw- ¥ (1.8)

The transformation rule of the gauge fi¢ld, can be approximately obtained by substituting the abovarsipns
into eq. [(1.7). By neglecting higher order terms during titeimediate steps, we obtain

W, 2=W, - S+iglw-X, W, - X]+ w-% (1.9)

The above commutator can be handled by using the commutatidranti-commutation relations among e
matrices and their generatifigbasis respectively which will be introduced§i@. The commutator simplifies and
we get the infinitesimal transformation rule of the gaugelfieWe have

Wap w— Wab o + gWae Wep n + gwpe Wea n + ap,wab (110>

Trough comparing the last two equations, it is seen that we peojected out th&'’s in the latter one. Finally we
may add to the Lagrangian a gauge invariant kinetic energy ter each of theWMab fields. The gauge invariant

kinetic energy term is build from the field strengih, “* which is defined as

Fﬂyab — auwyab o ayW#ab —g (WMaCWbe o WyacW#cb)
(1.11)
Fﬂyab N Fﬂyab +g (w“CFlf,lj o wacFyucb)
In the second line above, we have shown how the field stremgtisforms under a local gauge transformation.
The final Lagrangian will be composed of the Lagrangian ofrttassless spinor field, and the Lagrangian of
the massless vector fieldg,, **. We have

_ 1 - - 1
E:\I/ify“D#\I/fZF“"“bFW‘“’: Wi ¥ — g (W, ) W— - F".Fy, (1.12)

————
Kinetic energy of W’s

Kinetic energy of& Interaction

where the first term produces the Dirac equation and the segom is the kinetic energy of the gauge fields.
The second term on the right hand side above contains alhtheaiction terms contained in ti$(10) theory.
These are the fermion currents coupling to the various géelgis through the coupling strenggh These will be
presented if§[5.

We also need to define a suitable Higgs Lagrangian that wencpiement into the Higgs mechanism of our
S0O(10) model. This will be done i[11.



2. SOME FEATURES OF ORTHOGONAL GROUPS

2.1 Real Representation of SO(N)

Since the standard model is based on unitary groups, we feqgpitopriate to recall few elementary features of
orthogonal groups before we start exploring the physiaiddient of a physically viabl§O(10) model.

In m dimensions one can defime(m — 1)/2 linearly independent and antisymmetric matrices to formsid
such that any real antisymmetric x m matrix, sayX, can be expanded in terms of this basis witfrn — 1)/2
coefficients ofv,, where(a,b = 1,2, ..., m). Orthogonal rotations in m dimension can be obtained by egpt-
ating such antisymmetric real x m matrices. The coefficients,; in the former expansion will determine finite
angles of rotations. Rotationsin dimension can be expressed as

R, = e " Favwar (2.1)

whereY,;, are the basis and,;, are rotation specifying real valued parameters which aggoeas expansion
coefficients. If the above rotation, acting on vectors, melpreserved length than this rotation will satisfy the
conditionR,,R,,” = 1. A suitable generating expression for the ba&js where(a, b, ¢,d = 1,2, ..., m) can be
stated as

(Eab)cd = 5ac5bd - 5bc5ad (22)

where the indicesd are showing the entries of the matbi;, and the indiceab are the labels of the element in
the basis [56]. Note that the number of degrees of freedemthie independent ways of possible rotations in three
dimensions is three, that's why commoriy)(3) generators or th€O(3) basis is labelled with a single index
running from1 to 3. But for higher dimension this is no good convention any mdris seen that in this basis for

a # b, Y. Will have zeros everywhere except at positiofie, b) and (b, a). These entries are occupied by
and—1 respectively and additionally we ha¥g,;, = —¥;,. The Lie algebra of,; is given through

[Eabv Ecd] = 5ad2bc + 5b52ad - 5ac2bd - 5bd2ac (23)

This expression can be constructed using the represemf@j® X ;, X;] = ¢,;, which yields the angular momen-
tum generators used in quantum mechanicg#for = 1, 2, 3). We have

0 0

Sab = Xamom — 7= Xa
b 0X, 00X,

a,b=1,2,...m (2.4)

Itis seen from the Lie algebra 60 (m) that(a) two generators will commute when they do not hawg common
index and(b) a non-zero commutation arises when they hasé one common index and no more. It is useful to
note that any non-zero commutation yields on the right hahel & single generator although the right hand side
of the expression is crowded in terms. The mutually comngugenerators can be found using the property stated
in (a); They areX;a, X34, Y56, ... These generators form atbelian subgroup i.e., th€artan Subalgebra of
SO(m). The rank of the algebra is equal to the number of mutuallyrootng generators.

2.2 Spinorial Representation of SO(N)

The spinorial representation of orthogonal groups appréssimplest and clearest form in ti5€(3) case [56].
SinceSU (2) is locally isomorphic taSO(3), a spinorial representation 610(3) and hence spinorial finite trans-
formations can be constructed using the basis obti¢2) algebra through straightforward exponentiation

Ry = e " Tebwar (2.5)

oqp are the Pauli matrices and,;, are rotation specifying parameters. Note that in this odritee Pauli matrices
are labelled with two indices. The isomorphism betwé#n(2) and SO(3) is equal to the fact that the Pauli
matricess, also satisfy the Lie algebra ¢fO(3) if they are expressed as

i[aa,ab] a,b=1,2,3 (2.6)

Oab =



[0ab, Ocd] =i (Jad Obe + Obe Tad — dac Tbd — Obd Tac ) (2.7)

It is seen that the Lie algebra above is similar to the realaglone ofSO(3) given in eq.[(2.3) except for the
factor —i appearing on the right hand side. This can be met by puttirg & front of the right hand side in
eq. (2.2) so that the algebra is complexified [56]. But in fdi$ modification yields only imaginary valued
antisymmetric matrices. To see the nature of the spinaaisformation ofSO(3), it is good to look at the
following example [60]. It also serves as key point in gelieireg the SO(3) spinorial representations to higher
dimensions. Consider a complex valugck 2 matrix M. The expansion of/ in terms ofo, yields ; M =
xo1 + yog + zos. A unitary transformation acting ol such that\/’ = UM U induces orthogonal rotation on
the coordinates (i.e., the coefficients in the expansion) andz or equivalently orvy, o2, 03. We have

' = x cos(20) +y sin(20) o1’ = o1 cos(28) + o1 sin(20)
y = —y sin(20) + x cos(25) oo’ = —oy1 sin(20) + o2 cos(20) (2.8)
2! = Z 0'3/ = 03

whereU is chosen to beiag (¢’?,e=%%). It is seen that the unitary transformatidhinduces a double valued
orthogonal transformation due to the argunihin the sines and the cosines. Furthermore the following tifyan
is left invariant

P24y + 2= (v oy +y02+zag)2 (2.9)

The generalization fror@ dimensions to higher dimensions is straightforward andbeaachieved through intro-
ducingm traceless unitary matrices such that the length of ancomponent vector is left invariant:

1'12 + IQ2 + ...+ Im2 = (xlfl + IQFQ + ...+ :cmFm)2 (210)

The requirement that the sum of the squares is equal to tteresgfithe sums will restrict the gamma matrices to
satisfy the Clifford Algebra which is obviously fulfilled lthe Pauli matrices for th8O(3) case as well [58]. We
have

{Fa I'y + T Fa} =20, 1 (2.11)

Hered,; carries Euclidean signature athds a unit matrix with appropriate size. The&,;, basis of the spinorial
SO(m) representation will be generated by th&smatrices. These matrices will also satisfy thie Algebra of
SO(m) with the property:,;, = —%,. We have

Sab = 7[Cas T4) (2.12)
[(Zab; Xed] = @ (ad e + Obe Lad — ac Zvd — Obd Zac ) (2.13)

wherea,b = (1,2,...,m). Using theX,, basis, the spinorial transformation is finally obtained ansimilar to
the one in eq/(2.5). We have _
Ry, = g7 Pav e (2.14)

Note thatR,, R, = 1 andX,, = .. This can be verified by looking at infinitesimal transforioat i.e, X,
are either real valued symmetric matrices or imaginaryegkntisymmetric matrices.

2.3 An Explicit Basis for the Spinorial Representation

There is nogeneral way to write down a basis that can produce the generatorseadginorial representation of
SO(N). A conventionally useful way is to iterate the Pauli matsicsing the tensor product while keeping at each
step of iteration theClifford Algebra satisfied [61]. In this technique each tensor product irsgedhe rank of
the subsequently resulting representatiorohy. The size of the matrix representation doubles itself as W
should have in mind that the rank 8£(2m) andSO(2m + 1) are equal. A basis produced throughterations
will be a spinorial basis for each of one them. Bl®(2m + 1) requires one morE matrix as an element in the
basis. The Spinorial representationd#(2m) is reducible anddO(2m + 1) is irreducible. The irreducible spinor
of SO(2m + 1) will transform under a matrix representation with siZe , and is self conjugate and real. The
spinor of SO(2m) is for all m reducible into two pieces, each with dimensiti—*. These two pieces afe) real
and self conjugate when is even andii) complex whenn is odd. The complex spinors {fii) are conjugate to
each other and are callediiral or Weyl spinors. It should be noted that although the spinors are reducdsle f
SO(2m), the representation with the dimensiii may or may not be always block wise reducible into a size of
2m=1 j.e., the reducible spinors may transform under a matgixasentation with siz&™. A chirality operator
can be defined to illuminate this fact:

Tive = (—i)™?01 Ty Ty (2.15)
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This will be a matrix of dimensiof™ and in some cases is block wise reducible depending oh thatrices. In
this case the chirality operator assumes the form

1 0
Tfive = ( 0 -1 ) (2.16)

The entryl is a2™~! x 2m~! identity matrix. The reduced spinors and the represemtatiwler which they
transform is obtained throudhy;,.. We have

1
YE = (14T ) X, U=

5 (14T fine) U (2.17)

N =

Here the+ signs ianb simply indicate that they only transform the spinb# with the respective sign¥+
correspond to the chiral components of the spiionf I'y;,. derived from a particular basis assumes the above
form then¥ andX: might be taken a$6 and16 x 16 dimensional objects respectively and can be suitably espi

as
o (V)5 (%0 a9

If a block wise reducible representation can not be achi¢hred the chiral entries of the spinor are distributed
over 32 dimensions and the generators are in $ize< 32. Then we writel = ¢ + U~ and®X = ¥ + X~
respectively. In the remaining part we introducdifferently obtained base4,B,C.

2.3.1 Basis A

The following one is a good example for a block wise reducibfgesentation [61]. It is obtained by successively
multiplying the second and third lines dyfrom the right wherel is a2 x 2 unit matrix. The multiplication is
understood to be a tensor product. The ider(tdy x B1) - (A2 X Ba) = (41 - A2) x (By - By) can be used to
verify that the Clifford algebra given in eq. (2.11) is sfitid at each step of iteration. We have

Fl = 01 X071 X01 X ... X 01 X 01 X 01
FQ = 01 X071 X071 X ... X 01 X 01 X 09
Fg = 01 X071 X001 X ... X 01 X 01 X 03
Iy = 01 X01 X071 X ... X 01 X 09 X 1
F5 = 01 X01 X01 X ... X0'1><0'3><1
T = 01 X01X01 X ... Xog X 1 x 1
F7 = 01 X071 X071 X ... XO’3X].X].
(2.19)
Toj—s = o1 Xoax1x ... x1 x1x1
Fmel = O'1XO'3X1X ..... x1 x1x1
Tom = 09 X1 x1x ... x1 x1x1
Tom+1r = o3 x1 x1x ... x1 x1 x1

Here o, are the usual Pauli matrices whete= 1,2,3. The first2m I" matrices will produce the spinorial
representation afO(2m). If the lastl'y,, 41 is included, we obtain the spinorial representatios 6f(2m + 1).
Itis seen thal'f;,e = 03 x 1 x 1 x 1 x --- x 1. The diagonal generators 80(10) for iterations up tan = 5
are implicitly

Yo = 1 x1x1x1xo;3

234 = 1 x1x1 X 03 X 03

Y6 = 1 X1 X003 X03Xo03 (220)
278 = 1 x 03 X 03 X 03 X 03

291() = (03 X 03 X 03 X03 X 03

Looking at any of theé's as well as the non-diagonals, it is seen that in the firgdeproduct they evolve along
the diagonals such that all off diagonal entries@re. AsT s;,. is in the form given in eq| (2.16) we may conclude
that the representation transforming the chiral spinoelse2™1.i.e, for SO(10) they are of sizd 6.
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2.3.2 Basis B

This basis is in particular not block wise reducible. It iseofused in the literature [52]. The iteratively obtained
basis is generated from the following set of equations:

Top = 1x1 x... X 1 Xog9X 03X03X ... X 03
—— ——
k—1 times m — k times (2.21)
o1 = 1x1 x... X 1 Xo1 X 03X03X ... X 03
——— ——
k—1 times m — k times

Herek starts with 1. There are— 1 tensor products of multiplying o» from the left andn — k tensor products of
o3 multiplying o5 from the left. The convention for the Pauli matrices are agaiusual. The diagonal generators
following from eq. [(2.12) appear to B, >34, - - - and are

Yogok—1 = —1x1 x... X 1x 1 xo3x 1x1x1x... x 1

(2.22)
k —1 times m — k times

There arek — 1 tensor products of acting onos from the left andn — k tensor products of 1 acting on from the
right. Note that the tensor product is associative but nairoatative.I'¢;,c = 03 X 03 X o3 --- Itis seen that
during the iterationl'y;, for £ = 1 evolves not along the diagonal B, ;. This spoils somehow the possibility of
having16 dimensional matrices. It should be from now on expectedrttaaty gauge fields will lie in off diagonal
blocks of sizel6 in the adjoint representation. We have

Fl = 01 X 03 X 03 X03 X03 FQ = 09 X 03 X 03 X 03 X 03
Fg = 1XO’1XO’3XO’3X0’3 F4 = 1><O'2XO'3XO'3X0'3
I's = 1 x1xo01x03%x03 I'g = 1XxX1X09X03Xo03 (2.23)
I'n = 1 x1x1xo0,x03 I's = 1x1x1Xo09Xo0j3
I'g = 1 x1x1x1 Xo0; I'o = 1 x1x1x1Xoy

It is also possible to do it the other way around. Indeed, vedeprto re-label thé" basis;I'y, I's, I's, I'y will be

labelled ad"7, I's, I'g, I'1o respectively and's, . . ., ' will be calledI'y, . .., '¢c.The new assignment is
F7 = 01 X 03 X 03 X03 X 03 Fg = 09 X 03 X 03 X 03 X 03
Fg = 1XO’1XO’3XO’3X0’3 FIO = 1><O'2XO'3XO'3X0'3
Fl = 1X1><0'1><0’3><0’3 FQ = 1><1XO'2XO'3XO'3 (224)
I's = 1 x1x1xo0yx03 I'y = 1x1x1Xo09Xo03
I's = 1 x1x1x1 Xo0; I'se = 1 x1x1x1Xoy

Both assignments satisfy the generalized form of $li&10) basis that will be introduced i§3. There is no
strict requirement behind this re-labelling. The differerarises mainly in the appearance of the gauge term matrix
which amounts to a redistribution of the physical fields. Tatter is more convenient and will be usedid. We
have

278 = O'3X1X].X].X]_
2910 = 1XO’3X1 x1x1
Y12 = 1 x1xo03 x1x1 (2.25)
Y3u = 1 x1 x1 xo3x1
Y56 = 1 x1 x1 x1 Xo3
2.3.3 Basis C

A third basis that we introduce has a non-iterative stricaind is rather hand made 86 (10) [62]. Its obvious
advantage becomes clear when the gauge field structuresgrgoted and various embedding are done. This basis
is block wise reducible and contains t5¢/(4) and SU(3) subgroups in its fundamental representation, i.e. a
repetitiveSU (4) and SU (3) structure along the diagonal, which is not achieved in tlewipus introduced ones.
TheT basis is defined as

Fl = O'1XO'1X].X].XO’2 FG = O'1XO'2X].XO’1XO’2
Fg = O'1XO'2X1><0’3><0’2 F7 = O'1XO'3XO'1X1><1
F3 = 01 X071 X 1 X 09 X 03 Fg = 01 X 03 X092 X 1 x1 (226)
F4 = O'1XO'2X].XO'2X]. Fg = O'1XO'3XO'3X].X].
F5 = O'1XO'1X].XO'2XO’1 Fl() = O'2X].X].X1X].
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HereT' s, is as in eq. [(2.16) and given &%;,e = 03 x 1 x 1 x 1 x 1. The Abelian subgroup of diagonal
generators is given by:

212 = 1 ><0'3><1 X0'3><1
234 = 1 ><0'3><1 x 1 X 03
Y56 = 1 Xo3XxX1 Xo03Xo03 (227)
278 =1 X].XO'3X].X1
2910 = O'3XO'3XO'3X]. x 1

2.4 The Maximal Subgroup SO(6) x SO(4) and U(5)

A maximal subgroup of a groug@ is by definition a subgroup a¥ which has not a lower rank than the grotip
itself. The generators of this maximal subgroup can be sslenut of the45 generators 0o60(10) through the
following choice.

((l) ESO(G) = {V Eij | i,j = 172a374a576}
(2.28)
(b) 230(4) = {V Eij | i,j = 7, 8, 97 10}

The groups entering the direct product or theerators of each group ifa) and(b) do mutually commute. The
above maximal subgroup can also be obtained from the Dynkigram of SO(10) [56]. This can be formally
stated as

[Eso(6): Xso)] = 0 (2.29)

and can be verified using the Lie algebra given in eq. (2.13hduld be noted that it is not always the case to
assign the first six and the last four indiceS1go ) and¥so(4) respectively. The choice can be inverted, which
induces a redistribution of the fields within various mat@presentations of the Higgs fields and gauge fields.
However the physical content will be left unaltered. ThekrahSO(10) is 5, and it is seen thafO(6) x SO(4)
has the same rank amounting to a maximal subgroup.

Another maximal subgroup ¢fO(10) is theU (5). One can equivalently transform a 10-componentreal vector
as a five component complex vector [47]. The conterif ¢f) in terms of theSO(10) generators will postponed
to a further section, because the correspondence betweegetierators ot/ (5) and SO(10) follow from an
embedding procedure.

2.5 Some Isomorphisms in SO(10)

As we deal with spinors so the unitary representations weiltduired. This means that we will not use e
of SO(6) as single objects but consider certain combinations whicHyce the isomorphically equivalent unitary
groupSU (4). Note that they have the same number of generators. We have

Uy = (345 + X36)/2 Ug = (23 +214)/2

Uy = (X53+ X46)/2 U = (31 +224)/2

Us = (Zes + Xa3)/2 Unn = (Bas + Z61)/2

Ui = (E52+ X61)/2 Ui = (51 + X62)/2 (2.30)
Us = (X15+ Xe2)/2 Uiz = (X5 + Xe3) /2 '
Us = (X23+ %41)/2 Uiy = (Es53 + Xes)/2

Ur = (a1 + 242)/2 Us = (321 + Zu3 + X56)/(V6)

Us = (201 + Y34 + Z65)/(2V3)

These generato, satisfy the Lie algebra a$U (4), where the right hand side is subject to the Lie algebra of
SO(6). We have
[Uk7 Uu] = Z'fkuzl U, (231)

There is summation over, wherek, 1, v = (1, ..., 15). The structure constants are summarized in Table (2.1) [63]
Another possible isomorphism $i0(10) applies to theSO(4) part of the maximal subgroup. The generators of
the SO(4) group can be organized in the following form

Li =379+ X108)/2 Ry = (379 + Zs10)/2
Ly = (¥os + X107)/2 Ry = (Y98 + X710)/2 (2.32)
L3 = (287 + 21()9)/2 R3 = (287 + 2910)/2
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TherebySO(4) becomes isomorphic t6U (2)1, x SU(2) g [56]. The above embeddings fulfill the following Lie
algebras:

Uk, Lj] = [Ur, Rj] =0, [Ry, Rj] = iejjuRy, [Li, Lj] = i€y, [Lj, Ri]=0 (2.33)

The subscriptd. and R differentiate theSU(2) groups in theSU(2);, x SU(2)g product and have no physi-
cal meaning unless one considers a definite assignment eleheentary particles to spinors under which they
transform.

| k Hov | fk,uu | k K v | fk;w | k K v | fk,uu | k M v | fk,uu |

1 2 3 114 9 14| 4 T8 L8 9 10|

1 4 7 304 10 13| =41 9 12 3|8 11 12| ==

1 5 6| -3|5 9 13 31 10 11| —5 |8 13 14| -5
2 4 6 305 10 14 312 9 11 319 100 15 2
2 5 7 316 11 14 302 10 12 $ 111 12 15 @
304 5| 4|6 12 13 -3 9 10| 1|13 14 15| /2
36 7| -3|7 11 13 313 11 12| —3

4 5 8| ¥l7 12 14| 4

Tab. 2.1: Non-zero structure constants fx,, of SU(4), the fru, is antisymmetric under permutation of any two
indices. These structure constants match exactly with those of the Fundamental representation con-
structed as in the Gell-Man way.
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3. THE STRUCTURE OF50(10)

3.1 The Fields and Generators

In this section, we shortly introduce the general form oftladl fields and generators, namely thethat will be
used in the remaining parts of this work. The analysis is hasetheSO(6) x SO(4) maximal subgroup [46].
The general form we introduce is not unique but conveniehts Work contains three separai®(10) models
which are physically equivalent and are derived from déférbases found in literature. Therefore a common
prescription might be necessary, elg, in any of the three models is set equal(té, + ¢ Us)/2. The gauge
fields related to this generator carry the same quantum nigibany of the models (bases). On the other side
theX,;, content of, for exampld/; is the same in all models, but the entrie}, is representation dependent.
We mainly adapted this procedure to reduce the size of thedes to develop a unique perspective through out
this work. An important property of this general structus¢hat it applies to all models in our work and obeys the
same Lie algebra of the fundamental representation giveqsn(2.31) and (2.33). Our definitions are as follows:
we define forSU (4), 15 real valuedV; fields andl5 U; generators. All generators a3 x 32 in size. They act
on a32 component spinor which contains the right and left handefitrmions. The assignment of the fermions
are representation dependent and will be given for each hsegarately. Th& gauge fields7; of the subgroup
SU(3). and their8 raising and lowering generatots are :

Gy = G4 = (Vi +1iVa)/V2 Uc, = UL, = (U —ilh)/2

Go =G5 = (Vy +iV5)/V2 Ug, = UL = (Us — iUs5) /2

Gy =Go = (Vs +1iV7)/V2 Ug, = Ul = (Us — iUs) /2 (3.1)
Gr = Gr = (VsV3+15)/2 Us, = (Us/V3+Us)/V2

Gs = Gs = (—V3V3+1&)/2 Ugy = (—Us/V3+Us)/V2

6 of the remaining fields are grouped into two parts which argugated to each other. These are the lepto-quark
fields.

X1:X4:(V§+'ﬂ/10)/\/§ UXIZU;(4:(U9*1U1())/2
Xo = X5 = (Vi1 +iVi2)/V2 Ux, = U, = (Ui — iU12) /2 (3.2)
X5 = Xo = (Vi3 +iV1a)/V2 Ux fUXG (Urs —iU14)/2

We denote théB — L eigenvalue generator wittiz_ ;. The corresponding B-L gauge field will be denoted with
Xp_r. We have

B*L:UB,LZQ\/2/3U15, XBfL:‘/IS (33)

The gauge fields and generatorsSad(4) = SU(2);, x SU(2)r in any model are defined as

W/ = (WL +iWi)/V2 Ly =(Ly—iL2)/2
W, = (W} —iW?)/V2 L_=(Li1+il2)/2

HereW: andW} fori = (1,2, 3) are real valued scalar fields, are R; are theSU (2),, andSU (2) r generators
respectively. The physical gauge fields™" andiv;:° are defined as

Wi = (W +iWg)/V2 Ry = (R — iRy)/2
Wiz =W Ro = Rs (3.5)
Wy = (Wi —iWp)/V2 R_ = (Ry +iRy)/2



The elements of the two groups are by definition always cormguihe above fields make th##(6) x SO(4)
part of SO(10). There are24 more gauge fields which belong #0(10) and lie outside the maximal subgroup
SO(6) x SO(4). We denote their generators wify which are as befor82 x 32 matrices. The raising and
lowering generators of thesel gauge fields can be constructed from the_ 24 generators. These raising and
lowering generators will be denoted with;. The first12 can be grouped into two mutually hermitian conjugate
parts. We have

Dy = (Sk—1iSkye) /2 (3.6)

Divs = (Sp+1iSkts)/2 '
wherek = 1,...,6. D1,...,Dg andDy,. .., D12 are coupling to new bosons which we denote with ..., Ag

and their conjugates with, ..., Ag respectively. The next 12 generators are grouped similarly as

Dry12 = (Sky12 —iSky18) /2 (3.7)

Dir1s = (Skt12 + iSky18) /2 '
wherek = 1,...,6. TheseDss, ..., Dis and D1y, ..., D24 couple to bosons which we denote with, ..., Ys
and their conjugates with, ..., Ys respectively. These gauge bosons historically emergedtfithe SU(5)

context of grand unification. The former ones are speciaf@,. To make things look more tidy, we adapt
here a further convention: The first three bosondjn. . ., A¢ will be denoted withA,., 4,, A, and the last three
with A/, A’ ,A;. The indices showsUs color. Also the first three bosons 1, ..., Ys will be denoted with

Y., Yy, and the last three with’, Y, Y. This convention is not arbitrary and will be shown to holcerthe
charges of these gauge fields are recovered. The detgenerators should be handled correspondingly. We let
{Dl,Dg,Dg} = DAQ, {D37D4,D5} = DA; , {D13,D14,D15} = Dya and finally{Dlg,D17,D18} = Dy;,
wherea denotes color i.ez, g, b in each triplet. Furthermore we introdu2¢ real scalar field¥/; that make the
Ay, Al andY, , Y. gauge fields. We have

Ar=A = (V1 +iV7)/V2 Y, =Y, = (Vig + V1) /V2

Ag=Ay = (Vo +iVg)/V2 Yy =Yo= (Vig+iVs)/V2
Ay = As = (V3 +iVy)/V2 Yy =Ys = (Vis +iVa1)/V2

A:ﬂ = A4 = (V4 + ZVlQ)/\/E YV/ = Y4 = (Vlﬁ + ZVQQ)/\/E
Al =As = (Vs +iV11)/V2 Y] =Y5 = (Vir +iVa3)/V2
Al =Ag= (Vo +iV1a)/V2 ¥} = Yo = (Vis +iVa1)/V2

The generator#/; for i = (1,...,15) of SU(4) and L, fori = 1,2,3 of SU(2)r andR; for (i = 1,2,3) of
SU(2)g in terms of¥’s are collectively defined as

U Yus + 2 2

1 =25 36)/ Li = (279 + X108)/2
Uy = (353 + S46)/2 Ly = (3gs+3

[ : oo 2 = (Yos + X107)/2
Us = (Y65 + 2a3)/ Ly = (g7 + L109)/2
Up = (Es2+ X61)/2 oo
U Y51+ Ye2)/2

5 ( 51 62)/ Rl = (279 + E810)/2
Us = (8234 %41)/2 =

Ry = (Y98 + X710)/2
Uz = (831 + X24)/2 Ry = (37 + 2910)/2
Us = (2321 + X34 + X65)/(2 \/3) ’ v "
(3.9)

Uy = (Za3+ E14)/2
Uqo (231 2)/2
U = (325 + Ye1)/2
Uiz = (351 + X62)/2
Uiz = (B45 + X63)/2
Uiy = (Zs3 + X64)/2

U15 = (221 + E43 - 205)/(\/6)

The normalization of the basis is such that(U;U;) = Tr(L;L;) = Tr(R;R;) = 46;;. The Lie algebra of
the above set of/; basis is given in Table (2.1). The generators satifify.,;U,,] = ik, U, where there is a
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summation ovev for k, u,v = 1,...,15. TheS; basis related with the gauge fields lying outside the maximal
subgroup for = 1,...24 will be defined in terms of,;, as

S = (Brs+Xes)/2 Sz = (Xos+ Xe10)/2

So = (B3r+248)/2 S = (X394 2410)/2

Sz = (Y71 +3s2)/2 S5 = (Xo1+ Xi102)/2

Sy = (Zs0+X610)/2 Si6 = (X75+Xs6)/2

S5 = (Yoz+X410)/2 Sir = (Xz7+3s4)/2

Se = (B19+X102)/2 Sis = (B +X)/2 (3.10)
S; = (Bre+Xs5)/2 SS9 = (Xo6+ Xio0s5)/2 '
Sg = (Bra+X38)/2 S = (Xos+ X310)/2

So = (Bor+%81)/2 Sa1 = (X294 X101)/2

S0 = (Zeo +X105) /2 So2 = (X76+ Xss) /2

Si1 = (Xa9+X310)/2 Soz = (Xra+s3)/2

Si2 = (Bo2+%101)/2 S = (Bor+Xi1g)/2

HereT'r(S;S;) = 44;;. The gauge fields entering the covariant derivafiyeare collected in the so called gauge
term which was introduced in eq. (1.5). The above given cotiwes satisfy the following expansion

vidlwat s, = il (V- U+ W, L+ Wr-R+V-S
Z\/§ b Z\/ﬁ( I R )
(3.11)
:Jrii A A
V2 | Ao A

where the real vector fieldd,, are the 45 gauge fields 61O (10) with a,b = (1,...,10). HereA;; arel6 x 16
entries. The values of these entries in the above matrix wéty the representation that is used ©or Some
examples will be given i§/4. The gauge fields are antisymmetric with respect to theigindices. i.e.W,;, =
—W, and they carry a 4-vector indgx which is not explicitly shown. Using the above definitiottse gauge
term can also be expressed in terms of the physical gaugs.fi&lel have

V3 iz

wp w3 , , }
2L po 4+ MRRy 4 (Da. - Aa + Dar - A + Dy, - Yo+ Dy - Y + hec.
Lot 5t (Da, Al % ! )

3Xp_r Usp_
+i%W‘“’Eab=+ig\/§{G-Ug—f—(Xa-UXa—i-h.c)—i—\/; BQL- Bl L WELL+WERy

(3.12)

The organization of thé5 real vector fielddV,,;, as described in the above gauge term into complex vectosfield
yield the following equations. Th&gluons fields in terms df’,;,'s are expressed as

Ga=Gr= (Wis+Wsg+iWss+1i Wig)/2

(_;5:G2: (W52+W61 +iW62+iW15)/2

Ge=G3= (Wag+ Wy +iWs1 +iWya)/2 (3.13)
Gr=Gr= (Way + Wiz +2 Wss)/V6

Gs=Gs= (War —2 Wiz — We5)/V6

HereG', G? andG® are conjugated t6'4, G° andG® respectively.G” andG® are made of diagonal elements.
The lepto-quark gauge fields,,, the X5, field and theWLi’O ande;f’O fields in terms ofiV,;’s are given as

W= = (Wos + Wigr = iWrg £ iWigs)/2 X, =X1 = (Waz+ Wiy +iWsy +iWoy)/2
WL = (Wsr + Wige)/V2 Xg=Xo = (Was + Wer + iWs1 +iWs2)/2 (3.14)
Wrt = (Wos + Wrio £ iWrg £ iWsi0)/2 Xy =Xs = (Wis +Wes +iWs3 +iWes)/2
Wr? = (Wsr 4+ Woio)/V2 Xp-r = (War+ Wiz = Wes)/V3
The A,, AL, Y, andY, gauge fields of thd5 in terms of théi¥/,;'s are given as
Ay = (Wi + Wes + iWee + i1Wss) /2 Y, = (Wos+ Weio + iWoe + iWi1p5)/2
Ay = (Wi +Wig +iWry +iWss)/2 Yy = (Wag + Wyro +iWos + iW310)/2
Ay = (Won + Wea +iWor +iWs1)/2 Yy = (Wor + Wige +iWag + iWi01)/2
(3.15)
AL = (Wso + Weio +iWeo +iWies)/2 Y, = (Wi + Wse +iWee +iWss)/2
A, = (Woz + Waio +iWag +iW3s10)/2 Yy = (War + Waa +iWzq +iWs3)/2

Ay = (Wi + Wioz +iWes +iWi01)/2 Y] = (Wry + Was + iWay + iWig)/2
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3.2 The Charges of the 45 Fields

It can be shown that the raising and lowering generators effim terms of%,,;, in the former section satisfy a
series of commutation relations by using again the Lie algehX,,. These commutation relations reveal the
charges of the related gauge fields. First we consideAthand theA!, gauge fields together with 1€, and the
Y. gauge fields. We have

Ay [D;,Ls] = +31D;, [Di,R3] = +2D;

Al [Diys, L3] = ~3 Diys [Diys, R3] = +¥ D3 (3.16)
Yo: [Diyi2,L3] = +? D12, [Dit12, R3] = —35 Dij12 '
Y.: [Ditis,L3] = —35 Dijis , [Diy15, R3] = —35 Dijis

These equations hold fér= (1, 2, 3). It is seen that these gauge fields carry simultaneouslpfeftright isospin
charges and decompose into a bi-doublet. Indeed we havegaddheS; basis such that the well ordered output
is obtained. The color charges of thg, and theA/, gauge fields follow as:

A, [Dy,Us] = +1/2D, [D1,Us] = +1/2V3 Dy
Ag: [D27U3] = —1/2D2 [DQ,Ug] = +1/2\/§D2
Ab : [1)37 U3] = 0 D3 [Dd, Ug] = 71/\/5 D3
(3.17)
Al: [Dy,Us)] = +1/2Dy [Dy,Us] = +1/2v/3 Dy
Ay: [Ds,Us] = —1/2D; [Ds,Us] = +1/2v/3 D5
A;): [D67U3] = 0Ds [D@,Ug] = —1/\/§D6

From the above commutators, it is seen thatAheand theA!, gauge fields decompose into color triplets in the
Us — Ug space. The color charges of thig and theY,, gauge fields follow as:

Y;n : [Dlded] = +1/2 D13 [D13;U8] = +1/2\/§D13
Yg : [D14,U3] = —1/2 D1y [D14,Ug] = +1/2\/§ D1y
Yo : [D15,Us] = 0Dss [D15,Us] = —1/v3 D5
(3.18)
Y;/ : [D167U3] = +1/2 D16 [D16,Ug] = +1/2\/§D16
Yg/ : [D177U3] - 71/2 D7 [D17,Ug] = +1/2\/§ D17
}/bl : [D187U3] = 0Ds [Dlg,Ug] = —1/\/§ Dqg

whereY,, andY, also decompose into color triplets. The electric-chargemalue operator is given through
Q = /2/3U15 + Ls + R3 and applies to all known matter fields #0(10). The electric charges of the above
gauge fields are found as

Ao [Di,Q] = +§ D; [Di,(B—L)] = *% D;

A:l [Di+37 Q] = 7% D’L+3 [ 1+35 (B L)] = 75 D'L+3 (3 19)
Yo: [Dit12,Q] = ~3 Dji12 [Dit12,(B—-L)] = ~3 D12 '
Yo [Dit15,Q] = —3 Diyis [Diy15,(B—L)] = =35 Dit1s

wherei = (1,2, 3). Let us proceed with the gauge fields$# (3) by investigating the following commutators.
We have

[Ug,,Us] = +1 Ug, [Uc,,Us] = 0 Ug,

[ UGQ; 5] = +1/2 UG2 [ UG27 8] = +3/2\/§UG2

[Ucs,Us] = —1/2 Ug, [Ugs,Us] = +3/2v3Uc,

[ Uc,, 3] = -1 Ug, [ UG47 8] = Uc, (3 20)
[Ug,,Us] = —1/2 Ug, [Uc,,Us] = —3/2v3Uqg, '
[UGGa 5] = +1/2 UG6 [UGG, 8] = *3/2\/§UG6

[ UG7; 5] = 0 UG7 [ [](;77 8] = 0 UG7

[ UGsa US] = 0 UGS [ [](;87 U8] = 0 UvG8

It is seen that the gluons decompose into a color octet inkhe Us space. It can be shown that all of the
Uq generators commute witf, L3, Rs and(B — L). Consequently, gluons carry ondglor charge. Thd/x
generators commute withs and R3 and carry neither left nor right isospin. But they carry colle have

X,: [Ux,,Us] = +1/2Ux, [Ux,,Us] = +1/2V3Ux,
X, [Ux,,Us] = —1/2Ux, [Ux,,Us] = +1/2V3Ux, (3.21)
Xy [Uxy,Us] = 0 Ux, [Ux,,Us] = —1/v3 Ux,
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The X, gauge fields decompose into a color triplet isospin singlete electric and3 — L charges of theX,, are
found as

X [UXUQ] = % UXI X [UXU(BfL)] = % UXI
Xg : [ Uxs» Q] = g Ux, Xg : [ Uxs» (B - L)] = g Ux, (3'22)
Xp [UXsa Q] = 3 UX3 X : [UXsa (B - L)] = 3 UX3

where@ andB — L are defined as before. The gluons, fig's and theX 5 _ 1, fields form the(15, 1, 1) multiplet
with respect to the maximal subgroup®i/ (4) x SU(2)1, x SU(2) . Finally we deal with théV;=* and W
gauge fields. They commute with all generator$$6f(4), thereby withSU (3) and B — L as well and carry no
color and B-L charge. Their electric charges follow through

Wi [Ly,Q] = +1Ly Wi [Ry,Q] = +1Ry
W, : [L-,Q] = —-1L_ Wg: [R-,Q] = —-1R_

From the other side the”;>° and thelV="* gauge fields decompose into isospin triplet vectors. We have

Wr: [LT,Ls] = +1L% Wk [RY,R)] = +1R*
Wz : [L3,L3] = 0 L3 WI3? : [R3,R3] = 0 R3 (324)
W, : [L,Ls] = —-1L- Wg: [R,Ry] = —1R-

They are singlets with respect to each other. All the aboviveld charges of the gauge fields $0(10) are
summarized in Table 3.1.

Charges of the 45 Gauge Bosons

Q | B-L| Iz I3 Y Q |BL | g || Y
A | 2/3 1 -2/3 | +1/2 | +1/2 | 1/3 || G; 0 0 0 0 0
Ay | 2/3 |-2/3| +1/2 | +1/2 | 1/3 [ X5 | O | 0 | 0 | 0 | O
Ay | 2/3 | -2/3 | +1/2 | +1/2 | 1/3 |[ X, 2/314/31 0 | 0 |2/3
AV -1/3 1 -2/3 | +1/2 | -1/2 | 1/3 || X, 2/314/3 | 0 0 |2/3
AL | -1/3 | -2/3 | +1/2 | -1/2 | 1/3 || X, 2/314/3 | 0 0 |2/3
Ay | -1/3 | -2/3 | +1/2 | -1/2 | 1/3 [ W] +1] 0 0 |+1] 0
Y, [ -1/3-2/3] -1/2 | +1/2 [ -5/3 || W? 0 0 0 0 0
Yy | -1/3 | -2/3 | -1/2 | +1/2 | -5/3 || W, -1 0 0 -1 0
Y, |-1/3|-2/3| -1/2 | +1/2 | -5/3 || W4 +1 0 +1 0 | +1
Y] [ -4/31-2/3 1 -1/2 | -1/2 [ -5/3 || W} 0 0 0 0 0
Y] | -4/3 | -2/3 | -1/2 | -1/2 | -5/3 || Wy A0 |10 |
Y, | -4/3|-2/3| -1/2 | -1/2 | -5/3

Tab. 3.1: Charges of the 45 Gauge Bosons
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3.3 Weight Diagrams

The decompositions of the 45 gauge fields with respedty x SUs; x SUsp x Uy _ 1, can be found using the
former commutation relations §1(3.2) and can also be directly read off from Table (3.1). WetbatA,,, A, Y,
andY, are all color triplets forming a bi-doublet. Their charg@pmates are color anti-triplets being a bi-doublet
as well. The triplet and the anti-triplet is shown in the lowart of Fig. [(3.1). These pairs are distinguished by
their B — L charges. From the other side, thg fields form a triplet and the charge conjugatéd fields form an
anti-triplet. These are also distinguished by thgir- L charges and are shown in the upper part of Fig. (3.1). In
the same figur&(z_ 1, and the gluons are corresponding to the singlet and the fositiz.

us

u15

(1,1,15) (1,11 (1,13 (1,1,3) (1,1,8)
= V + i i
(2,2,6) (2,2,3) (2,2,3)

Fig. 3.1: The decomposition of 45 with respect to SUs x SUsp x SUsr X Uig_r. The L, R isospin weights are
suppressed. Ujs points out of page.

3.4 Decompositions of the 45

The 45 gauge fields decompose unféy x SUs; x SUsp , SU3 x SUsp, X SUsp x Uy g_ 1, andSUsz x SUs, X
U,y respectively as

45 = (15,1,1) + (6,2,2) + (1,3,1) + (1,1,3)
45 = (8,1,1)0 + (1,3,1)0 + (1,1,3)0 + (3,2,2)72/3 + (3,2,2)2/3
! ! ! ! L
G w0 Wil AYa VI A,
) ALY! A
(15171)0 + (35171)2/3 + (35171)—2/3
1 1 !
XB—L Xa Xa
45 = (&1)0 + (173)0 + (171)0 + (372)—5/3 + (372)5/3 (3'25)
! ! ! ! )
GL WLi’O XB—L Yo” YOI( }/OI‘7 Ya
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3.5 The SU(5) x U(1) content of SO(10)

3.5.1 Fields

In this section, we will not go into a formulation of the wethéwn SU (5) theory. But we will project out the
SU(5) theory from theSO(10) theory for completeness and practical interest. At the dnithie section, we
will show which generators ifO(10) make theU (5) maximal subgroup. This procedure can be particularly
useful when one considers to break the ini§&)(10) symmetry spontaneously down to the intermed&t&5)
symmetry.

The24 gauge field analysis in terms of ti$e basis given in eq[. (3.10) is particularly fruitful becauseointains
some of theSU (5) fields that are als6§O(10) fields. In any of our bases (Basis A, B or C), thig, . . ., So4 basis
corresponds td2 generators of the4 dimensionalSU (5) group. These span also the gauge fields which lie
exterior with respect to the maximal subgroupsdf (5) which is theSUs x SUs;, x Uyy direct product gauge
group. This maximal subgroup contains thgluons, theWLi’0 gauge fields and finally the hypercharge gauge
field Xy. The eigenvalue operator for hypercharge is given throbgtinear combinatio” = Rs + Up_1/2.

From Table((3.1), it is seen that thé, andY;, gauge fields of the&§U (5) theory when embedded in a richer
SO(10) theory appear to decompose into right isospin doublets disawdeft. It is obvious at this point that
the SU(5) theory doesn'’t provide a full left-right symmetry. In thisspect thed,, and theA!, gauge fields are
complementary to th¥, and theY, gauge fields and these appear as doublets under the dectoposkthe 45
with respect taSU (3) x SU(2) x U(1)y with a different hypercharge, respectivaly3 and—1/3 as shown in
eq. (3.25). Let use analyze the 24 fieldssiti (5) whose known decomposition follows as

24 = 1), + (1,3), + (L1 + B2 _55 + (325,
1 l 1 |
Y 2
G, w0 Xy Ya, Y. Y. Y, (8:26)
mixing

Here theXy is a mixture of the twd1, 1), singlets which are th&% and Xz, given in eql(3.25). Th&U (5)
generators will be useful. They are given in Table (3.2) [AHe gauge term of th8U (5) theory reads

0

SU, 0

U, = 0

0

0 0 0 0]0
000 01 000 0 —i 00000
00 000 0000 O 000 01
Ug=2| 0 0 0 0 0 U7z=3| 00 0 0 0 Us=1]10 0 0 0 0
00000 0000 O 00000
1 00 00 i 00 0 0 01000
0000 O 00000 0000 O
000 0 —i 00000 0000 O
Up=1[ 0 0 0 0 0 Up=3|0 0 0 0 1 U= 0 0 0 0 —i
0000 O 00000 0000 O
0 i 00 0 00100 00 i 0 O
00000 0000 O 1 000 O
00000 0000 O 0100 0
Ux=3[0 00 00 Ups=2| 00 00 0 Uy=3525]00 1 0 0
00001 000 0 —i 000 1 0
000 10 000 i O 000 0 —4

Tab. 3.2: The SU(5) generators in the fundamental form. The representation is normalized to Tr(U;U;) = 14,
and the generators obey [Ug, U,] = i fru Uy , there is summation over v, where k, p,v =1,...,24 and
1 =1,...,15. The SU(4) part of these structure constants are tabulated in Table (2.1

22



M Gy Gs Y
G, X Gs Y/
UV=—"| G G5 A Y/
V2lv v oy o Wy

Y, Yg Yy WZ_ As

ks
5'@ \;<j\

(3.27)

where we have defineZb real vector fieIdsVL to get the adjoint representation of the gauge boson mattie.
SU(3) gauge fields are

Gy =Gy = (Vi+iVa)/V2 Ug, = U}, = (U; —iUs)/2
Go =G5 = (V4+iVs)/V2 Ug, = U}, = (Uy —iU;)/2
Gs=Gs = (Ve +1iVy)/V2 Ug, = U}, = (Us —iUy)/2 (3.28)
Gr = Gr = (V3V3+ Vy)/2 Ug, = (Us/V3+Us)/V2
Gsiési(*V:s\/ngVs)/Z Ug, = (—Ug/\/g-i-Ug)/\/i
The diagonal entries in the gauge term matrix above are
L 207 2y N TR 3%y
V6 VB0 V2 V30
2G8 2Xy WL 3XY
2 \/6 \/% 5 \/5 \/@ ( )
N = 267 2Gs 22Xy
V6 V6 V30
The SU(2)., generators are
1 . 1 1
Li=Uy , Ly=Uy , L= @U24 — \/TgUm = dlag(O, 0,0, +§, —5) (330)

and theSU (2), gauge fields are

1 ] ) 3 5
Wi = \/;(Vgg +iVay) , Wi= \/;Vw + \/%VM (3.31)

TheU(1)y hypercharge generator and the- hypercharge gauge field is

3 (V10 5v6 \/§ 1 1 111 \/E \/§
Y =- g(TUzzﬁr?Uw) gdlag(*?*g,*gaiag)a Xy =— §V15* §V24 (3.32)

The charge generat@ is by definition made to fit thd as below. If it is applied to the conjugate i% @ should

reverse sign.
5 2 1 1 1
= L: =Y = —-24/=Uy5 = diag(—=,—=,—=,1 )
Q 5+\/g \/; 15 Zag( 30 30 g 70> (333>

TheY, andY_ gauge bosons are
Y, = (Vg + iVlo)/\/i Dyg = D§2 = Uy, = (Ug —iUyg)/2
Y, = (Vi1 +iVi2)/V2 Di7 = D}y = Uy, = (Uyy — iUy)/2
Yy = (Viz +iV1ia)/V?2 Dys = D}, = Uy, = (Uys — iU14)/2

(3.34)
Y] = (Vig+iVi7)/v2  Diz = D]y = Uy, = (Ui — iUiy)/2
V)= (Vis+iVig)/V2 Dis = D}y = Uy, = (Uys — iUy) /2
Yy = (Vao +iVa1)/V2 D5 =D}, = Uy, = (Ugg —iU21)/2
HereDss, ..., Doy are the raising/lowering generators of th€(10) theory which correctly match th€y,, and

Uy, of theSU(5) subgroup. Note that thi, andY,; gauge bosons above form a color triplet and posses the same

charges as given in Table (3.1). From the other sideU@? andV; from above match those in eq. (B.1). This
matching also holds for the isospin and hypercharge sectors
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3.5.2 Generators

Owing to the correspondence among the fields achieved oa b&#ieir charges and decompositions in the pre-
vious section, it becomes possible to sort out the folloviagof generators on the left hand side which exist in
S0(10). These generators can be matched withtthef SU(5) for i = (1,...,24) given in Table 3.2 as shown
on the right hand side below. Note that all generators armatized toZ'r(U;U;) = 44,;. The correspondence
established between the two sets exhibits the propertyttiegtboth satisfy the same Lie algebra given through
[Uk7 Uu] = ifk;wa-

U, = (245+236>/2 U= U
Uy = (¥s3+ X46)/2 U= 0
Us = (¥e5 + X43)/2 Us= Us
Uy = (E52+ X61)/2 Us= Uy
Us = (351 + Ze2)/2 Us= Us
Us = (Y23 + %41)/2 Us= Us
U; = (251 + 224)/2 U= Uy
Us = (2521 + Zs4 + S¢5)/(2V3) Us= Us
Ug = 516
Si3 = (295 + Xe10) /2 Uio = 52
S1a = (X309 + X410) /2 Un = Sir
S5 = (o1 + X102) /2 Uiz = Sz
Si6 = (75 + Xgs) /2 Uis = Sis
Si7 = (Xa7 + Xs4) /2 = U= 52 , (3.35)
Sig = (X714 Xas) /2 U= —/3(L+,/31)
S19 = (Y96 + X105) /2 Uig= Si3
Soo = (Loa + X310) /2 U= Sio
So1 = (329 + X101) /2 Uis= Su
Soy = (876 + Xsg) /2 U= Soo
Sz = (¥7a + Xs3) /2 Uy = Sis
Saa = (Zo7 + Xig) /2 Uy = So
U22 = L1
L1 = (X79 + X108)/2 Uy = Lo

Ly = (398 + X107)/2

Ly = (Zg7 + X109)/2 Uas =

Il
5§
o

—
ol
|
o
m|’<\
N—

Y = %\/%(Em + Yo10 + %221 + %243 - %EGS)

The hypercharge generatbt follows from the hypercharge eigenvalue operd®gr+ (B — L)/2 and is above
normalized tal'r[Y’.Y’] = 4. A technical detail that one encounters here is to propabglithe direct product of
SU(2) x SU(2), since the one that exists BT (5), should be labelled witli, and consequently the other with
The maximal subgroup o$O(10) was identified ag/(5) = SU(5) x U(1), therefore the5!" generator of the
U(1) part should commute with all the above generators and is teaislentify from the charges summarized in
Table [3.1). We have

Uss = \/il—o(% - 155 (3.36)
whereT'r[ Uss - Uss] = 4. We close this section with the following remark: It is alszspible to study th6U (5)
theory by using the above selecté®(10) representation. In this case the gener&igs will be related with the
global conservation aB — L [64]. Furthermore thé&?; component olU,; should be omitted. Because #1/(5)
there exists no right-isospin. Also note that in the fundaralkrepresentation U (5) there is no way to define a
tracelessB — L generator whereas i$i0(10) this is possible. It is remarkable to see how the global coasien
of B — Lin SU(5) can be recovered when it is studied through$ti&(10) representation.
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4. THE GAUGE TERM:(45)

In contrast to the electroweak theory, it is a rather sopsittd and an exhausting task to illustrate the content of
the SO(10) gauge term. In this section, we make use of the definitionsandentions of the general scheme that
we adapted i§3/in order to depict the gauge term by means of the followirgpesion

. g ab . \/g + WI?
+Z—2W Yab = +igV2 G -Ug+ (X Ux, +he)+ TXB—L Up_r +WiLi+—=Lg

V2 V2
W()
+WiERy + TSRO + (Da, - Aa+Das, - A, + Dy, - Yo+ Dy, - Y, + h.c.)} (4.1)
_ 9 | A A
B +z\/§ [ A21 Ax ]

The expansion holds universally. However the enthies A12, A2; andAss being matrices each of sidé x 16
explicitly depend on the basis. In the next 3 sections, westigate their explicit form by applying the previously
introduced.” bases ir§ 2.3 to the above expansion.

4.1 Basis A

In this basis,A;2 and Ay; are occupied by zeros. The;; and Ay, parts of the gauge term in eq. (4.1) are
respectively given as below. The empty spots in these neatetso correspond to single zero entries and are left
blank for a clear appearance. The resulting fermion assgmof theW ; and ¥, determined by these set of
generators are

Uy Uy
14 14
Ug Ug
Up Up
[y [y
—ug —ug
—u —u
_ 711,(67 _ 7ug _ \I/L
‘IIL - dr 9 \I/R - dr Y ‘II - ( \IJR (4 2)
e &
dg dg
db db
e’ e
de de
% y
L db Jdr L db R

and can be obtained through the electric-charge eigeneglesatorQ = (1/2)Up_1, + L3 + R3 whose com-
ponents are given in ed. (3.3) and €q. (3.9). The spidgrand¥ ; couple to the below matrices;; and Ay
respectively. This is indicated by the indicksind R which are attached to these matrices above. The total spinor
V¥ is given in the last term in the above expression. It shoulddted that every single fermion i, is understood

to be a left handed spinor and every single fermio jpnis understood to be a right handed spinor.
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Ar
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Ap
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Yy

Ar

Ap
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’
— AL

’
—Ap

’
,Ag

—Gy

Xg

A3

A21

—Xr

— Xy

T

i
,Ab

’
,Ag

Yé -vy
A, Ay
Y, 0
0 Y/
Xy —Xg
-Gy -Gy
A7 —Gg
—G3 g
Yy Yy
Alg Aly
—Yr 0
0 —Yy
Wr
Wr
Yé -Yy
Ap Ag
Y, 0
0 Y,
X, —Xg
-Gy -Gy
A23 —Gg
—-G3  —A2q
A; —Ag
Y Yg
Al 0
0 Al
wr
wr

—Yr
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L
wp
0 —A;
Al Yy
A} —Y,
A; 0
—X,. -Gy
Ao Xg
Xg A11
-Xp —Gg
0 —Yé
Y/ Ay
Yy — A
yg/ 0
Wi
Wi
0 Yy
Yy A’/b
-Y — Al
—Yy 0
—Xr -Gy
Aog Xg
Xg Aoz
-Xp —Gg
0 7Yé
Y, Ay
Yy — Ay
Yé 0

—Xy

—Xg

—Yy

7A/

,y/b

A

’
—Al




°G; Xp.p WP
A=+ + +—k
' V6 2v3 V2
3
N = _V3XpoL WP
2
°Gs  Xp_p WP
A3 = +—= + ZL
’ V6 2v3 V2
s~ 2(Gr+Gs)  Xpoi
! NG 2/3
Xp_ 3
N V3B Wi
2 V2
\oo 2Gr Xp Wi
° V6 2v3 V2
2(Gr+Gs) Xp-1L
A=+ -
’ NG 23
Voo 2Gs Xpi Wy
® V6 2v3 V2

2G7 Xp_p W]%
Air =+ + +—2
PTG T 2B 2
3Xp_ w3
g = _Y3XBoL | Wi
2 V2
2Gg XB_1, W]%
Ao =+ + —k
RV AN RN
Ny = 2(G1+Gs) | Xp-r
20 7 Ve
3Xp_ w3
Ny = L Y3XB-L W
2 V2
ny o 2Gr Xp W
- V6 2v3 V2
2(G7+G8) XB_L
Aog = + —
23 76 W
W 26 Xp WP
- V6 2v3 V2

w

Wi

IR

The diagonal terms in the last block are explicitly

W3
4+ B

V2

SIS

The diagonal terms in the first block are explicitly

27

2G; Xp-p W}

Ao =+ + - L

TV 2B 2
Ny — V3Xp. W}
w=—-——--—"F
SR

2Gs  Xp-p W}

A1 = +—— - —=

VB 2v3 V2

\ :_2(G7+G8) XB-L

12 NG 23
3Xp_ w3
)\13—+\/_ L TR
2 V2

2Gr XB_1 W}%

Ay = ——= — + —

V6 2v3 V2

\ :+2(G7+G8) ~ XB-1L

15 NG 23

2 Gy XB_1 W]%

Ag = ———= — +—=

V6 2v3 V2

2Gr XB_1, W]%

Ao = +—— + — ZE

* V6 2v3 V2
V3Xp_p W}
Mg =——F7—"— —=
2 V2

2 Gy XB_1, W]%

A7 = + 2 — ZE

T T w2

N = 2G4 Gs) | Xp-r

28 76 23
3Xp_ w3
N — 4 V3XBL WP
2 V2

by ,2_G17f XB_L +ﬁ

30 76 23 NG

\ :+2(G7+G8) 7XBfL

31 76 23

o 2Gy Xpy W}

* V6 2v3 V2

Wi

Sl

(4.3)



4.2 Basis B

The matrices\i1, A2, Ao andAs, are given respectively as below. It is seen that the gaugeisespread over a
32 x 32 matrix. The spinor that this gauge term acts on can be founditfh the eigenvalue operators in &q. (3.3)
and eq.[(3.9). We have

Up Uy
e’ 0 ¢
d; 0 dy
Ug Ug
d¢ 0 d¢
9 g
Up Up 0
v v 0
d;, 0 s
Uy 0 Uy
e‘ e’ 0
dg d; 0
Ug 0 Ug
d; d; 0
Up 0 Up
v 0 v
d¢ d¢ 0
U = di Uy = 0’” Ur = 0 (4.5)
—v¢ —v¢ 0
—ug —ug 0
dg 0 dyg
fug fu; 0
dp 0 dp
e 0 e
—ug —ug 0
dr d'r 0
—v€ 0 —v°
—ug 0 —ug
dg dg 0 .
—ug 0 —u;
dp dp 0
e e 0
| —us | L 0 ], L —ur |

Herein the first one is the total spinor andlis= ¥, + ¥ and the other chiral components are reduced through
I five. We have

1

V=35 (1+Tive) ¥ (4.6)
1

Vp =g (1 =Trie) ¥ (4.7)

The chiral components have the following feature that egargle fermion subject to the Dirac equationim, is
understood to be a left handed spinor and every single fermid y is understood to be a right handed spinor, so
that the indexX. and R perform a double duty both for the Dirac representation dahgle fermion and th&'O(10)
representation of a chiral family spinor.
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A1
A2
— Xy
Gy
—-Xg
—Go
Xr
X
Al
vy
Ay
2
,Ag
— A
-y,
Ar
,Yé
-v!
Yy
v
,Wzr
,WZr

Yy

’
-v)

Ag

Gy
—Xg
Aq
A5
-G3
Xg
G1
-Yy
Yy
,A/T
-y,
,A;
— A
Ag
v/
ks
—Ap
v/
g
vy
,Wzr
,WZ’

-Gs Xr
Xy —Ap
Gs Yy
—Gg Xy
Gy Y
Ao —Xp
- Xy A7
A8
A9
-Yy
-Yy
-Y Gy
e
—Yy —Go
A:. Xr
7A; Y,
—Ay
—Ay
—Ay
v/ —Ag
—Ag
-/
v/ A,
,Wz’
,Wzr
’WL+
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— Xy

—-Xg

Ay

—G3

ER

@l

—Ag

Ap

—Gg

Ap

Ap

Ap

Ag

—Ap

3~




— A, yg’
-4y Y/
Ap
Ap
Wr
Wr
A7
A18
—Xy
Gy
—Xg
—Go
Xr
Xr
A7
e
Ay
A
— A}
-4

Yy

’
-v/

—v/

b
-y
Ay
,y"/.
Ag
Ag
Wr
Wr
Gy
—Xg
—Gg
A20
A21
—Gg
Xg
G1
-Yy
Yy
,A;
-v,
,A;
,Ag

—v/

— Xy

-Yy

-Yy

’
,yg

-Yy

-w
’
—v/
Ag
Xr —Ap
Gs Yy
Gy Y
A24
A25
-Yy Gy
-Yy —Ga
Al X

30

A26

— Xy

—-Xg

,WIT
-wp
,WE
,yé Yb/
,ygf Yy
_A,
_ A,
vy
—Ag
—Ay —Ag
,A; . A?]
—A; Ag
—v/,
Ap
Y/
Ar
Y Yg
Yy Yg
Gy —Gs
- Xy —Xg
A7 —Ge
A28 —Gg
-G3 A29
—G3 A30
Xg - Xy
Go G1

’
-v/

A32




The diagonal entries are found as

2G; Xp_p WP
M=t + L
! V6 2v3 V2
X B 3
N = 4 V3XEL  WE
NG
\ :+2(G7+G8) _ XB-1L
’ NG 23
2 Gy XB_1 VVL5
M=+ + L
! V6 2v3 V2
A __2Gs Xpi Wi
TUVE 23 R
\ :_2(G7+G8) XB-1L
° NG 2/3
3Xp_ w3
A= V3Xpo W
2 V2
2Gr XB_1 Wz
Ag = ——— — + —£L
V6 2v3 V2
2G7 Xp_p1 W]%
A7 =+ + ~ R
. V6 2v3 V2
3Xp_ w3
\ :+2(G7+G8)_XB—L
19 \/6 2\/§
2Gg Xp_1 W]%
Aao =+ + —- =&
20 \/6 2\/§ \/5
v = 2Cs Xp1 Wi
2 V6 2v3 V2
Ny — 2(Gr+Gs)  Xp-rL
22 \/6 2\/§
V3Xp_p W3
Aoz = 5 ;]
Ny o 2G7 Xp1 Wi
YT 23 2

Wi
_l’__
V2

W
V2

31

2G; Xp_p W}
Ag = +% + Wi + NG
Ao = +7\/§X37L + %
2 V2
Ay — +2(G7 +Gs) Xp-p
V6 23
2 Gy XB_1 W}%
>\12=+%+ 23 +%
A3 = 26y Xp- | Wi
V6 2v3 V2
Ay = _2(G7+G8) XB_1
V6 23
)\15 — _% + @
2 V2
2G7; Xp_1 WI%
A = ——= — +—F=
V6 2v3 V2
2G7; Xp_p1 Wz
)\25 - +W + 2\/§ - ﬁ
A2 = +% - @
V2
gy = +2 (G7+Gs) Xp-1
V6 23
2Gg XB_1 Wz
Aog = Jr% + 2\/§ — ﬁ
Agg = _2Gs Xpi W
V6 2v3 V2
Ay = 2(G7+Gg) Xp_op
V6 23
V3Xp_ W}
A3l = 5 - ﬁ
Azg = (261 Xpp Wi
V6 2v3 V2

(4.8)



4.3 Basis C

For this basisA12 and A,y are blocks of zeros and the below matrices are respectiel¥t; and Ay, parts of
the gauge termin ed. (4.1).

r 2 Gy G5 Xr wr 0 -4y qu Yr 0 Yy 7yg’ Ar 7
Gy Ao Gg Xg wp Ay 0 —AlL Yy -vy 0 ped Ag
Go G3 A3 Xy W —Ay Al 0 v Y/} -v/ 0 Ay,
X Xg Xy, A4 WL - -V, T, 0 —Ay, —Ag -4, 0
wi X5 Gy Gs X, 0 A,  —Ag 0 -, Yg al

wi e X6 Ge Xy —A, 0 Ay v, Y, 0 -y A
wi Go Gy A7 X, Ag  —Ap 0 vy ~Yyg Y 0 Al
wh o x. Xg Xy, P (A SN 0 A, -AL, A 0
0 Ay -4, =Yy 0 -4, Ay v/ g -G -Gy —Xp Wg
—Ay 0 Al —Yy A, 0 -Ar  -Yj —-G4 X0 —G3 —Xg Wg
Ay - Al 0 -y, Ay A 0 Yy -Gs —G¢ Au —Xb YR
Yy Yq Yy 0 Y, Y, Yy 0 —Xr —Xg —Xp A2 We
0 —vy v, —Ap 0 v, Y, —AL wj A3  —-Gi1 -Gy —Xp
et o —Ag -V, 0 v, Al w -Gy Mg -Gz —Xg
-v; v, 0 —Ay, Yy —Yr 0 —AL wit —G5 -Gg A5 —X,

L Ar Ag Ay 0 Al Al A} 0 wi o -Xr Xy -X, e

[ A7 Gy G5 Xr We 0 Yy, —Yy — Al 0 Yb’ 7Y£; Ay ]
et 218 Gg X4 We -y 0 Y 7A’g -y 0 Y, Ag
Go Gg A1g Xy We Yy —Yp 0 —Ay Yy -y, 0 Ay
X Xg Xy 20 W Al AL Ay 0 —A, Ay A, 0
Wi Aa1 Gy Gs X, 0 Ay —Ag v, 0 Al —AlL Y

wit G Aoo Gg Xg  —Ay 0 Ay v —A 0 Al —Yg
W e G3 gz Xy Ag —Ap 0 vy Al —a 0 -,
wit o x, Xg Xy Aa -V -V, -¥ 0 v, Vg 7 0
0 -Y, Yy Al 0 -4, Ag  —Yl X35 -Gi1 -Gy —Xp, W
v 0 — Yy Ay Ay, 0 -Ar  -Y, -0y X2g -Gz —Xg4 Wi
Yy 0 AL —Ag Ay 0 ~Yy -G —Gg Aar  —X W
—Al —A;] 7A;> 0 Y, Y/ Yb’ 0 —-Xr —Xg —Xy Aog W
0 v/ vy —Ap 0 -4, A Yo wi Xog  —G1  —Go —Xp
v 0 v, Ay A 0 —AlL vy wi —G4  Azg -Gz —Xg
-y, v 0 A, -Ay, A 0 Yy wi —Gs  —Gg Azl —Xp
L A, Ag Ay 0 —Yr  —Yg  —Y, 0 wi  —X, —Xg X, Az Ir

The empty spots again correspond to single zero entriesranidfablank for a better appearance. The resulting
fermion assignment of the spinor in basis C determined byitpenvalue operators in ef. (3.3) and €q.1(3.9) turn
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out to be

Ur

C
7ub

_1,C
L~V 1L

Ur

c
—ug
—Vv

C

IR

(4.10)

whereV is the total spinor. It should be noted that the single femantries in®;, and¥ r are understood to be
left and right handed spinors respectively. The diagomaiseare explicitly

2Gr XB_1 Wz
M=+t +—L
! V6 2v3 V2
°Gs Xp_p W3
do=+2 4 +—L
? V6 2v3 V2
s = 2(Gr+Gs) | X1
V6 23

V3 w3

Ay = *TXBfL + %
°G; Xp_p W3
As = +—— - =
V6 2v3 V2
°Gs Xp_p W3
Ao =+—— -—=
V6 2v3 V2
Ny = 2(Gr+Gs) | X1
V6 2/3

V3 w3

Ag = *TXBfL ;]
°G; Xp.p W3
My =+ + A
" V6 2v3 V2
2Gg Xp_1 W]%
Mg =+ + + L
' V6 2v3 V2
Ao = 2(Gr+Gs) | Xp-i
’ NG 23

V3 w3

=YX _E

A20 5 XB-L + )
2G7; Xp_r1 W]%
Aot =+ + - &
2! V6 2v3 V2
2Gg XB_1 W]%
Aoy = +—2 4 - &
- V6 2v3 V2

g3 = 2(Gr+Gs) | Xp-1r

V6 2v3

V3 w3

=Y X, ;R

A24 5 XB-L NG

LW
V2

SIS

W3
A i3
V2

=
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2G7; Xp_1 WI%
o= - s::
V6 2v3 V2
2Gs  Xp_p Wi
Ao = ——= — +—
V6 2v3 V2
\ :+2(G7+G8) ~ Xp-1
11 \/6 2\/3
V3 w3
A2 = +7X37L+%
N.— 2CG1 Xp W
v V6 2v3 V2
N~ 2Cs Xpo Wi
YTV 28 2
N = 1 2(Gr+Gs)  Xpor
15 7 W
V3 w3
A16 +7X37L*%
26 Xp W)
- V6 2v3 V2
Aog = _2_G8 _ Xb-1 + ﬁ
0 V6 2v3 V2
2(Gr+Gs) Xp_1
Aot = + -
27 \/6 2\/§
V3 w}
=4+ X5 L
Aog = + 5 XB-L+ 7
N = 2Gr Xp W
TV B R
N = 2Gs Xp Wi
. V6 2v3 V2
2(Gr+Gs) Xp_1
g =+
31 7 Wi
V3 w}
-4+ Xy - L
A3z =+ 5 XB-L T g

W3
4+ L

V2

(4.11)
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4.3.1 The Family Spinor: Decompositions of the 16

From the Lie algebra ofO(10), we showed thafO(6) x SO(4) is a maximal subgroup a$O(10). This was
stated in eq/ (2.28). The isomorphism betw&&h(4) x SU(2) 1, x SU(2) g and this maximal subgroup was shown
in §/2.5. From these considerations, it is possible to constheogenerators U (4) x SU(2), x SU(2)g. This
helps us to elaborate the various decompositions of thedarmultiplet undetSU (4) x SU(2)r x SU(2)r and
under its subgroups. The size of the matrix representafi6éit/g4) x SU (2) 1, x SU(2) r is 32 which is determined
from the clifford algebrain eq. (2.11). Since the genemtdiSU (2), andSU (2) g should mutually commute we
divide the32 x 32 matrix into two16 x 16 blocks and place along the diagonal the respective grouergtars

as shown in Table (4.1) whereare unit matrices oft x 4 size. Indeed the above matrices are astonishingly

I 0 000O0O0 O 000 0 0 0 00
0 -I 00000 O 000 0 0 0 00
00 00O0O0O0 O 00I 0 0 0 00
[._1]0 0 00000 0 Ro_1][0 00 T 0 0 00
537210 0 000O0O0 O/ ™ 21000 0 I 0 00
00 00 O0O0O0 O 000 0 0 —I 00
00 00O0O0TI O 000 0 0 0 00
(00 0000 0 —T | (000 0 0 0 0 0]
[0 =T 00 0 0 0 0 ] 000 0 0 0 0 0]
I 0 000O0O0 O 000 0 0 0 00
0 0 00O0O0O0 O 000 —I 0 0 00
L _i|0 0 00000 0 Ro—i| 00T 0 0 0 00
=210 0o o00000 01> ™20 00 0 0 —-I 00
00 00O0O0O0 O 000 0 I 0 00
0 0 00000 —I 000 0 0 0 00
(00 00001 0| (000 0 0 0 0 0]
[0 I 00 0 0 0 0] [0 00000 0 0]
I 00000O0O 000O0UO0UO0TU 0O
000O00O0O0O 0O 00071 0000
LQZloooooooo RQZlOOIOOOOO
210 000000 0] 210 00007 00
000O00O0O0O0 000O0T 000
000O00O0O0 I 0000O0O0O0O
0000000 I 0] (0000000 0|

Tab. 4.1: Matrix representations of the SU(2)r and SU(2)r groups in SO(10)

interesting while the size of the representation is equ#éihéonumber of states that one can build from a single
fermion family. i.e.,fr + ff + fr + f produce32 fields wheref denotes fermions. The above representation
dictates us to reserve the fifspositions tof, and the subsequedipositions forf; . Similarly the third8 positions
and the lasB positions should be reserved g + fF respectively. This is in perfect harmony with fact that the
SU(4) representation in its fundamental form arelix 4 size. So one can place tl5¢/(4) representation along
the diagonal respecting the above assignment. Sincé #re unit matrices, all th€U (4) generators will also
commute with theSU (2), x SU(2)r generators.

The appropriate form of th6U (4) generators are given in Table (4.2) where the embe@fiegenerators are
givenin Table[(3.2). Thes# x 32 matrices are normalized r[(U;)?] = 4 like the isospin generators and satisfy
the SU (4) Lie algebra in eq/ (2.31) with the structure constants indé®.1). The fermion assignment that suits
this reducibly constructed representation is summariaetable (4.3). The left-right and up-down arrows, |
which are placed adjacent to the gauge groups in Table (@d®)dte how the gauge group acts on the multiplet.
Indeed the orientation of the multiplet has no strict sigiifice and follows from our lingual habits. As we usually
reserve the word up and down for the eigenvalues of isospithesmultiplet is oriented vertically with respect to
SU(2)r,r- TheSU(4) symmetry acts then horizontally.

The indices, g, b, 4 stand for color where the fourth color is denoteddbyThis assignment is both' and P
invariant. The conjugated fermions transform untlef SU (4). In Table (4.3) it is seen that we haven't put a bar
onlinthe lower part of the table. Actually it is unnecessanygsil denotes a singlet. In a#lU (n) representation ,
sayn or 7, which are for fermions and their conjugates respectitkrepresentation matricesiofire obtainable
from those ofn. —\* and) are the representation matricesioéindn respectively. FoSU (2) the2 and the2 are
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indeed equivalent. Therefore one can wetmstead of2. The price we have to pay is to flip the fermions in the
multiplet, because only the third component is differenabyverall minus sign. To account for the usual spig-
coupling it is then good to put a minus sign in front of any d&f ttvo fermions in the doublet. This is illustrated in
Table [(4.4). We have consulted to this trick while we wantge anly the2 or the usual pauli matrices.

U, 0 0 0 0 O 0 0

0 U 0 0 0 O 0 0

O 0 -Usr 0 0 0 0 0 32888888
) 00400000
I IR R R R
o 0 o0 0 U 0 0 0 00000400

0 0 0 0o 0 U 0 0 _88888832_

Tab. 4.2: Matrix representation of the SU(4) group in SO(10)

The same fermion assignment can be vertically written ag|i{410). The assignment automatically produces
B — L numbers and the correct electric charges. The decompositib respect to the maximal subgroups should
be considered in the first place [46]. F8¥t/ (4) x SU(2), x SU(2)g, we obtain

16 = (47 2; 1) + (Zlv ) 2)
165 = (41.2)+ (421 (4.13)
The16 will have a decomposition with respect$d/(3) x SU(2)r x SU(2)r x U(1)p_r as

160 = (3,2,1),y5+ (1,2,1) 1 +(3,1,2)_, 5+ (1,1,2),
16 = (3,1,2),,5+ 1,12 +(3,2,1)_ 5+ (1,2,1),

—~ o~

(4.14)

DisregardingSU (2) g the above decomposition can be done urflé(3) x SU(2), x U(1)r x U(1) p—r, Where
U (1) stands for the diagonal generator&i¥ (2) z. For practical reasons it is not excluded.

16L == (3 2)(0 1)4’(1 2)(0_1)+(3 ) 57_1)+( ,1) _%7_%)+EI,1>(%71)+(1 1)(__ 1) (4 15)
162 = By + 6Dy +0 s b T LDy B2 p +(1,2) 0, '

Consequently th&U (2) r doublets appear assinglets. Thé/ (1) and thel (1) 51, local gauge symmetries at
this point can be swallowed Ky (1)y where obviously the rank is lowered by one. So that the fensizan be
cast into the standard model assignment. Utlé(3) x SU(2); x U(1)y both16 decompose as

16, = (3, 2)1/6 + (172)71/2 + (37 1)1 3t (37 ) 2/3 + (1 1 (4.16)
) .

/ + (1,
16r = (3a1)2/3+(Sal)—1/3+(171>0+(1a 1

1
S+ (3,2) 1/6+(7 )1/2

where the’g values are indicated explicitly as subscripts. The fermions are then decomposed into the following
multiplets

d; e” . ¢ ¢
() () (o Gy () (), (1)
The minus signs are remnant from Table (4.4). Thg fermions are decomposed as
_ ds et
(o () (o (e (f) (5 ) (119

It is seen thatl6,, is the CP transform of16z. In general theSO(10) gauge interactions are botfi and P
invariant. Finally, if the electroweak symmetry breaksmsaaeously down t&U(3)c x U(1)q by means of a

35



SU(4) 4 4o
SU2)1 2] 1]
SU@)r 1] 2]
() | (4 5 )
di dg dy e§ )|\ di dg o df ef ),
SU(4) 1 ie
SU2)1 2] 1]
SU©2)r 1] 2]

Tab. 4.3: Transformation of fermions under SU(4)c x SU(2)r x SU(2)r

Higgs doublet, as done in the electroweak theory, the fermi@iblets in eq[ (4.17) will transform as singlets under
the relic symmetry. These singlets are to us interestingumeethd 6 can also be utilized as a Higgs representation.
Assigning a Higgs field to thé6 is formally similar to what one does in the electroweak tlgdny assigning a
Higgs field to the2, but this is mainly considered #10. Under theSU (3)¢ x U(1)g symmetry the electrically
neutral singlets of thé6;, and16y are respectively

(=ve ), (v), (4.19)

and
(v)p (- )g (4.20)

4.3.2 Charge Conjugation and Parity Transformation in SO(10)

The charge conjugation operator is denoted withWe are looking for a suitabla2 x 32 dimensional matrix
representation that fulfils the conditions :
clu,c=-Uut
ctrL,c=-Lt (4.21)
C'R,C=—-RT
The operatiorC can be easily guessed if we considertheenerators ofU (4) in eq. [(4.2) withi = (1,...,15).
Then under charge conjugation tiie along the diagonal in ed. (4.2) should be transformedimimthe4’s and

vice versa. SO that the conjugate representation is obtained. Thécedpkm of C' depends on the representation.
Let us consider th€ basis in§2.3.3 and construct a product of the complex valued onesizgave obtain

C =il TsT5TsTyg (4.22)
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dp dg dy  ef > < d: dy di e >
—up —ug —up —vgp ), —up  —ug —uy —vf ),
SU(4) 4 4
SUQ)L 21 1]
SU2)r 17 21

Tab. 4.4: The signs are flipped to get rid of the 2.

The explicit form of this particular charge conjugation mac€ is found as

). a-

Here thel’s are4 x 4 unit matrices. Note thal operates similar te, which is used in case of 2 component Weyl
spinors. But here we havela component Weyl spinor. For both of the other basis give§i28.1 and;[2.3.2 the
charge conjugation matrix reads= i I'; 'y I'¢ I'sT"19. Furthermore The Parity operator is denoted withWe
are looking for a suitablg2 x 32 dimensional matrix representation Bfthat fulfils the conditions :

—I
(4.23)

o O O

0 4
C_(AO

O ~NO O
O O ~NO

0
0
-1 0

P'L,P=R;
P'R,P=1I; (4.24)
P'U P =1,

wherei = (1,2,3). Here P exchanges the left and right handed states. In other woreldook for a transfor-
mation that exchanges the generator§$'df(2);, with those ofSU(2) z andvice versa. The operatiorP can be
guessed from the generators of $%€(2) , andSU (2) g groups given in eq. (4.1). Again the explicit form Bfis
representation dependent. If we considerltHmsis in§[2.3.3 then a suitable choice is found as

P:JH0:<% é) (4.25)
under the combined'P transformation, we have
(cpP)"'U; (CP) = -UF,
(cP)™' L; (CP)=—RT, (4.26)
(CP)"" R; (CP) = —LT,
The P operator flips the chiral parts of the total spinor. We have
_ _ Ve \ _ [ Yr
powpp () () )

As a result the? transformed spino® p correctly transforms under tHe transformed representation in €q. (4.24).
AVr ) (4.28)

Similarly we have
U\
Ur )\ —AYp

so that¥ - transforms correctly under th@ transformed representation in €q. (4.21). Under the coedaihP
transformation, we have
AT )

cmzwczc(

(4.29)

Cpmzmmﬂ:(A@R
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Finally ¥ p correctly transforms under thé P transformed representation in eg. (4.26). Note that@te
transform of any fermion state ih6;, (or 16z) is again in16; (or 16z), whereas the” or P transform of a
fermionin16y (or 16z) isin 16z (or 16.). TheSO(10) interactions ar€' P and separatelg’ and P invariant.
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5. NEW INTERACTIONS INSO(10)

5.1 The (2,2,6) Fields

The complete spectrum of gauge bosons residing inSth¢€10) gauge group and their various properties have
been elaborated in the previous parts. In this section, vileideintify and sort out all the interactions within
the SO(10) theory. Since gauge interactions are meditated by gaugmbpi is necessary to know the various
vertices between fermions and gauge bosons. But once thaatyias are spontaneously broken, the gauge fields
and thereby the currents undergo certain mixing. Theseigadysurrents will be studied later i§113 and also in
§[15.3. Here we study the currents prior to any SSB. We staranalysis by investigating the currents that couple
to the(2, 2, 6) fields. The relevant interaction Lagrangian reads

Lot = +igV2 > Ty ayWhay = +i% 3 U SaWal v,
(226) (226)
= +igV2 (J,i‘ AR A A Yy Yy h.c.) 5-1)
= +igV2Ury, (A" Do+ A" Do +Y" Dy +Y"™. Dy: 4+ h.c.) ¥y,
Since the(2, 2, 6) gauge fields lie in the coset, the above summation should he deera,b = (1,...,10).

This can be verified from the gauge fields presented in eg5)X3But in the above summation we select only the
(2,2, 6) fields. From our previous expressions in egs. (3.6) and,(®B5¢comes convenient to define the physical
currents appearing in the second line in the above summasion

JA = (I —idkye) /V2 JYo = (Jpgr2 — idkg1s) /V2

: ‘ , ‘ 5.2
JA = (Jhys — iJko) /V2 Ve = (Jppis — iJkya) /V2 (52)

wherek = (1,2,3). Here the currentg 4« Jj4a, Y~ and.JY« are color triplets with respect t8U/(3) with
a = r,g,b. Looking at thelV,, compositions of th€2, 2, 6) gauge fields in eq. (3.15), we can find out thg
basis satisfying the above summation. We have

Jy (Jzs + Jos) /2 Jiz = (Jos + Jo10) /V2

Jo = (Jar+Jus) /V2 Jiu = (Jso+ Jao) /V2

J3 (Jr1 + Js2) /\/5 Jis = (Jo +J102)/\/§

Ji = (Jso+ Jor0) /V2 Jis = (Jrs+ Jss) /V2

Js (Jos + Ja10) /V2 Jiz = (Jar+Jsa) /V2

Jo = (Jig+ Jio2) /V2 Jis = (Jnn+Jas) /V2 (5.3)

J7 (J76 + Jgs) /\/i Jig = (J96+J1()5)/\/§ '

Js = (Juu+Jss) /V2 Joo = (Joa+ J310) /V2

Jo = (Jor+Js1) /V2 Jor = (Jag + J1o1) /V2

J1o (Joo + J105) /V2 Joo = (Jre+Jss) /V2

Jiu = (Jag + J310) /V2 Joz = (Jra+ Js3) /V2

Jio (Joz2 + J101) / V2 Jou = (Jor+ J1s) /V2

The third line inﬁfggﬁ) above produces the desired currents
JAr = L (G s — dy dt 4 i
woo= ﬁ (+ g LY@y 1, — Qb LYulg [, + VL YplUrL — U rL'Y;LVL)

1 7 c 7 c — —.

Jff’ = 7 (=dy Lyudg 1+ dp LyudS L + VLY UL — UCqLYuVL) (5.4)
1 _ _ _ _

T = NG (+dr Lyudy 1 — dg LYuds [ + Ve LuubL — UL YuVL)



Al 1 _ i _ . _ _

Jpr = 7 (=g Lyuds 1 + o Lypd 1 + Ve LYudrr — uCrry€L)
Al 1 _ . _ . -, -

Ju? = E (41t LYudy = Up L'Yud; L+ veLvudgr — uch’)/HeL) (5.5)
Al 1 _ . _ . - -

Ju b= _2 (_u’!‘ L’Y;Ld; L + Ug L’Y;Ldf,cn L + VCL,)/udbL - quL’YﬂeL)

(7d_g L'y#ui L+ d_b L’yuu; L+ éCL’YMUrL — d_CTLfyMl/L)
(+dp Lypug L — dy LUl + €€ Lyuugn — dgryuve) (5.6)

7%
1
V2
1
V2
1 - - _ _
JZ” = ﬁ (—d, LYty 1+ dg LYty 1 + €Ly UpL — dbrYuL)
1
V2
1
V2
1

Jum = (""ag LYuUh [ — Ub LVl [, — de, LYpeL + € LVudr L)
Y{; _ = c = c Jc c

Jut = (=t LYuuG 1+ b LYuuy 1 — d° Lyper + € Lyudy 1) (5.7)
Y/ _ . _ . _ _

Jub = 7 (+1r LYy 1, — Ug LYply [, — d% Lyper + €L yudp L)

All the above currents couple through the strengtfihe four components in each current are shown as vertices in
Fig. (5.1) where:, 5., = —¢qa,,3 = 1 and the indicega, 3, v) denote the coloré-, g, b) respectively. The same
vertices are also shown in Fig. (5.2) where both quarks fléavtime vertices or an antiquark and an antilepton flows
into the vertex. These vertices can mediate various nudeoays where the underlying mechanism is "quark +
guark— antiquark + antilepton”. This results in nucleen meson + antilepton type processes which conserve
(B — L) at the vertex. ThéB — L) conserving processes that belong to these mechanism areigifig. (5.3).

The conserved charges at the vertices in these diagrarofistdm Table[(3.1). Adding an appropriate third quark
(fermion) line to each of the diagrams in Fig. (5.3) genevataucleon decay process. Some examples are given in
Fig. (5.4) where for each of the gauge bosons in(the, 6) multiplet, one proton and one neutron decay process
is generated. Note that at the vertices in Fig.|(5.1) the @aryumber and the Lepton numbers are separately
violated. Indeed thé€2, 2, 6) gauge fields carry the combinatiéh— L a way which is conserved [65][66].

5.2 The (1,1,15) Fields

The(1, 1,15) gauge fields reside in th&l/ (4) part of theSO(10) group. We select out these fields and work out
the currents coupling them. The interaction Lagrangiadsea

(1h15) = +ig V2 Z Jab Wap = *i% Z VL7 Zas Wa V1
(1,1,15) (1,1,15)

X5
NG, {(J;XQX“Q the)+Jb “\% Lt Je- G} (5.8)

- 3
= +igV2Vy, {G Ug+ (Xo-Ux, +hec)+ %XB—L . UB—L} 53

Note that in the above expression we do not differentiaterentioe separate couplings and use a commaorhe
proper treatment of the couplings is postponed®@5. The summation is done overb = (1,...,6). These
indices can be be read off from the egs. (3.13) and (3.14) eviher gluon field<7, the X, fields and theXp_ 1,
field are expressed in terms of tHé,, basis. For the physical currents in the second line in e§) (&e introduce
the following definitions

JX = J,,XT = (Jo —iJ10)/V2

JX = X = (Fn —iT) V2 (5.9)

JX = J;,XT = (J13 — iJ14)/V2
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dg ~ 1% o
ds dj da
ug Uy v° uc
u’CY ’U/% U 14
dg d, e’ de
Yo/‘ >\/\{ﬂs~ Yo/‘ >vsyxz~
ug Uy ds, e

Fig. 5.1: A, , A, , Y, and Y, gauge bosons coupling to fermions.

Here J§T andJXare charged raised and lowered currents respectively fer (r, g,b) and form color triplets
with respect toSU (3). J; fori = (9,. .., 14) in terms of the basid,; reads

J9 = (J23+J14)/\/§ Ji2 = (J51+J62)/\/§
Jio = (Ja1 + Jag) /V2 Tz = (Jus + Je3)/V2 (5.10)
jll = (J25+J61)/\/§ j14 = (J53+J64)/\/§

Single interaction terms ig%?* can be explicitly found in that we adt;, given in eq.(4.10) on the corresponding
gauge term matrix of basis C. This yields

Lot = 44 % {-X~ (d_ca LYpef + utq L"}/Ml/z) + X* (d_aL'y#eL + ’l_l,aL’)/#l/L) + h.c.}

In these expressions we have elg= d1° and similarlydc = (d¢)T+° by definition wherey, belongs to the dirac
representation. Th&,., X, and.X, bosons couple to the following currents respectively

1

Ji(p, = ﬁ (7d_cr L7u€% - dcr L’YM/E + éL'y,uer + DLV#“TL)
1 = , - . _
Iy, = 7 (=d® Lyues — uC LyuVi + eLvudor + VLuuse) (5.11)
Iy :L(*d_c LVues, — Uy LYuVE + eLVudgr + VL YutgL)
TN 9 LVner 9 LWnVL pdg plg

All the above currents couple through the strengtiThe single components in the above currents are shown in
Fig. (5.5). TheX,, bosons are often called lepto-quarks because they melétensition of a quark into a lepton.
At the vertex of these transitiori$ — L is conserved. The general form of these vertices is leptanti+qaiark—
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Fig. 5.2: Ao , AL, , Y, and Y, gauge bosons where lower fermions are lefthanded and upper are righthanded or
vice versa

X. From the vertices in Fig. (5.5), it is seen that fkig bosons can not mediate nucleon decays alone. We know
that A, has the same electric chargeXs. Consequently through mixing th&é, and X, fields one can generate
nucleon decay processes. But these will b&oef L violating character, becausk, and X, have different3 — L
numbers. Such processes are shown in Fig. (5.6) where ttdidgsam indicates # — L violating proton decay
throughp — 7t + v. The first two diagrams are neutron decays given throaugh 7+ + e andn — 7% + v
respectively [67][68]. We proceed with the current cougltn the singlet field in the coset ¢f, 1,15) which is

the neutralX z_, field. In conformity with our previous conventions the ptoadicurrent will be defined as

I =T = (Jo1 + Jug — Jos)/ (2V6) (5.12)

If we act¥, given in eq.[(4.10 ) on the gauge term matrix of basis C, thercthirent coupling toXz_;, can be
found. We have

_ 3,1 1-
f L= \/g( 3uaL7ﬂuaL VL'Y;LVL + § « L'Y;Lda L — eL'Y;LeL

<

) (5.13)
- gd_ca L’Yudg L+ éCL7ue% )

This current couples through the strengthThe remaining physical currents that we will elaborateptedo the
fields in the(1, 1, 8) part of the(1, 1, 15) multiplet which are the gluon fields. The physical curreftsn eq. (5.8)

T c T C
~ Ul Yular T VLML

can conveniently be expressed throygtori = (1,...,8) as
Ggr = (Gy r)T = (Was + Wez + i Wz + 1 Wag) /2 Jrg = (Jrg)t = (1 —iT2)/ V2
Gy, = (Gor)T = (Wsa + We1 + i Wea + 1 Wis)/2 Jy =Tt = (T —iT5)/V2
Gy, = (G )T = (Waz + Wiy + i Wag +i Wyz)/2 T = Igp)t = (T6 —iT7) /2 (5.14)
Grroy = (Grepp)' = War + Waz +2Wes) V6 Ty = (Jorip) = (VB + Ts)/2
Gogin = (Gyguip)t = War =2 Wiz = Wes) V6 Ty = (Tt = (~TV3 + Ts) /2
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ug dg dg Ua ug da dg Ua
Usy s, uy s,  dy ul  dy ug,
ug € dg v ug (& dg v
ug uy  dg uy o ug i, dg d;
dea e’ Ua e’ da v U v
ug uy  dg uy o up i dg d5
e e, v ds e uf, v us,

Fig. 5.3: Processes that give rise to nucleon decay through A, , A, , Y, and Y, gauge bosons.

In order to reflect the color nature of the gluon fields, we halabelled the physical fields and the physical
currents/g with the color states of the octet in Fig. (8.1) [69]; fori = (1,...,8) in terms of the basid,;, reads

Ti=(Jus+J36)/V2  Ts = (Js1 + Je2)/V2

Jo = (Jsz + Jag)/V2 T = (Jaz + Ju1)/V2 (5.15)
Tz = (Jos +Ju3) V2 To = (Ja1 + Joa) /V2

To=(Jsa+ J61)/V2 Tz = (2Jo1 + Jaa + Jo5)/V6

Note that the dot product ifi; - G sums over the internal octet space. The real figldssed in eq. (3.1) for say,

i =1 andi = 2 are then equal t6Gy, + Gr)/ V2 = Ggrygr aNd—i(Gyr — G i) /2 = —iGy,— 4 TESPECLiVEly.
These are the elements of the 3 = 8 1 decomposition whergis the color triple{r, g, b). Other color states of
the octet can be found from above. However the color sirighetist be separately given 68, + G5 +Gpp)/V3

= Gy gg+55 Which is not part of theSU (3) interactions. This ninth element might be taken as the strgbelian
part inU(3) = SU(3) ® U(1) which promotes the color singlet to a massless boson mediéiing ranged
interactions. Such a singlet gluon is not very consistetit thie current status of physics, and may not exist at all.
This problem is not special to th®0(10) theory as known. If we ac¥, given in eq.[(4.10) on the gauge term
matrix of basis C, then the currents couplingpwhich are very well known from QCD, are recovered. We have

1 = 7 . c 7 c

Jrg :E(UT LVulUg L+ dr LYpdg L — g LYy [+ d% Lpdy )
1 - _ _

Jrp :E(ﬁr LYpts L+ dr pyudy L — uCy Ly p + d% pyudy ) (5.16)
1 - _ _

Jgb —%(ﬁg LYt L+ dg Lyuds 1 — U LYy 1+ d% Lyudy 1)
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Fig. 5.4: Possible proton and neutron decay channels.

The color neutral currents take the form

1 _ . )
Jrr_p :% (r LYuUr L+ dr LYudr L — Wp LYuUs £ — db LYudb L

_ c - - - c T c
— Ul LYy g+ A% Lyudy = uC Ly — A% Lyudy 1)

(5.17)
J59—bb :%(ﬁg LYpuUg L +dg LYudg 1 — Up LYuUs £ — db LYudb 1)
—UCq LVl + dcg LYudg [ — U LYy, — % ryudy 1)

All of the currents above couple through the strength

e’ Ve dq Uq

s, uf, e v

Fig. 5.5: X bosons
dy Ao — X, e dy Ao — X, v dg ds
>VW\< >’V\N\< A, — X,

dﬁ dg dﬁ ug Uq v
" /’\ " . /’\ . u’y /—N\ u’y

Fig. 5.6: B — L violating processes
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5.3 The (1,3,1) and (3,1,1) Fields

In the following we investigate the currents coupling to gaige fields of th&U (2), andSU(2) r gauge sym-
metries. The relevant interaction Lagrangian reads

10 10

Lt + Lt = +igv2 > JabWab:Jri% 3 VS Wals
(a,b=T) (a,b=T)

W WP
= +iV2g (J§W§+J%—§+JfW§+J27§) (5.18)

_ wo wo
=+iV2gV WiRy + —ERy+WiL +—LL)\1/
g¥YrLYu ( Rr A+ \/5 0 L L+ \/§ 0 L
where we do not differentiate among the couplings of separderactions and use a commgragain. The
coupling strengthg;, andgr will be introduced later ir§/5.5. The summation is done over the indices that belong
to the SO(4) multiplet. These indices can also be read off from the gaddsfipresented in eq. (3/14). From the
second line above it becomes convenient to define the physicants as

JE=(JhFiJE) /N2, JE=Lxid)/NV2, Jh=Jh, JL=J} (5.19)

Here the(J}, J3, J3) and the(J}, JZ, J3) currents formSU (2) g and SU (2), triplets respectively. Using our
former expressions for the gauge fields in term3$1Qf, we can find the components of the physical currents in
terms of theJ,;,. We have

Jh = (Jro + Js10)/V2, T} = (Jrg + Ji0s)/V2
Jg = (Jos + Jr0)/V2,  Ji = (Jos + Jror)/V2 (5.20)
I3 = (Jer 4+ Jor0)/V2, T3 = (Js7 + Jioe)/V?2

The neutral and charged currents® and.J7° respectively coupling to the/:"° and ;=" gauge fields given
in eq. (5.18) are explicitly found as

JZF - %(Ja LYo L + ELVuVL)
_ Lo 7
JL — E(ua L'Yuda L+ VL'V;LeL)
B 1 _ i - :
RV
1 (5.21)
JE = %(—cha L'yudg L V_CL,y“e%)
1 - - g ‘ o i
Jh = 5(—u°a LYple 1, — VLYV + d% yudy [ + €“Lyuer)
1 _
Tt = 5( Ta yptia o +70%we = do LYuda 1 = ELpeL)

All the above currents couple with the strength The vertices described by the above currents are shown in
Fig. (5.7). It is seen from the expressions of these isogpireats that the fermions coupling toWW;, are purely
left-handed, and the fermions couplingié; are purely right-handed, where it is appropriate to replg¢e.,

with (fr)€ in the currents for]ﬁ’o. As it will become clear later, certain Higgs scalars présg¢im§(6.2 ands[7.2

can spontaneously giveot only masses to thWLjE ande%E bosons, but caniso lead them to mix. The resulting
WLﬂE — Wﬁf mixing is indeed a mass eigenstate. The details about th@gmbepend on our specific choice of the
Higgs sector which is presented§iil.1 . The resulting mixing will be presented lategih1.3.2.

5.4 The Electromagnetic Current

Let us consider thd neutral currents/?, J% and Jg_r, which couple to the neutral gauge fields?, W} and

Xp_ 1 respectively. These currents were given in €gs. (5.21) &riB). They add up to the electromagnetic
currentJg. We have

2 2 _ 1- _
Jo =Jp + Jp+ \/;JB—L = (=3 Lt L+ 3% Luda L+ €rer 52
2 1- '
+ gaaL')/uuaL - gda LYuda L — €LYueL)
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da, €

Fig. 5.7: WLi’0 and W;O bosons coupling to fermions. In the upper half all fermions are left handed and in the
lower half all fermions are right handed.

We know that the electromagnetic currefat couples to the photon. The physical photon however can aaly b
product of a spontaneous symmetry breakdown which coyretittes thel?, W3 and X 5_ 1, gauge fields into

a massless eigenstate. Something similar happens in tbieogleak theory. Let us write for the moment the
following Lagrangian of electromagnetic interactions:

) _ 8 A
nt — 1i\2e® \/j—Q- o 2
[:Q +Z\/_€ L’y#< 3\/5 UQ L (5 3)

whereA is the electromagnetic gauge field alig is the normalized electric charge generator stated as

Ug = \/g(Ls + Rs + \/%Uw) = \/gQ (5.24)

Here( is the eigenvalue operator for the electric charge. For &tlysorepresentations af given in§/2/together
with the correspondin@ 1, the above interaction Lagrangiai‘.rg” delivers exactly the same electromagnetic cur-
rent given in eq.[(5.22) which was straightforwardly fouhdough adding up the neutral currents. This is no
surprise, because tli&, generator defines an Abelian subgrdiifl),, that can be embedded into th€(10)
gauge group. In any spontaneous symmetry breakdown the¢mpes thd/ (1) symmetry, thed field will
appear as a massless mixing of #¢, W9 and X z_, fields, which should be identified with the photon of the
electroweak theory. This will be elaborated in great de@rafe implement the spontaneous symmetry breakdown
in the SO(10) theory. The same also applies to the hypercharge gauge fiditha hypercharge current.

5.5 Defining Separate Couplings Strengths in SO(10)

In this part we will restate the gauge term in eg. (4.1) in sasly that it expresses all of the separate coupling
strengths of interactions in th&0(10) theory. This is important, because the mixing of separabggdields are
given through expression that depend on the separate ngugiiengths as well as the vacuum expectation values.
In this respect, we move the single coupling strengtti SO(10) into the gauge term. We have

Xp_ wy
+i%W“b Sap =+ V2 {QG'UG+ 9 (Xo - Ux, +he)+g %L 'U15+9W£tLi+gT;LO
+gWiRs +g TSRO +9(Da, - Aa+Dar, - A, + Dy, - Yo + Dy, - Y, + h.c.)}

The diagonal generatof%, , Ly andU;5 and all other generators 6f0(10) were normalized ta@'r|(...)?] = 4.

In the above expression, we have to replége with the corresponding eigenvalue opera%ji. Because the
latter one is physical. From the other side the gauge termldlmemain unaffected by this replacement. Therefor a
constant should be introduced to compensate the mismateprbduct of this constant with the coupling strength
g will be defined as the respective coupling strength oftiii¢) 5 ;, interaction. Basically this procedure will be
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applied to all the other Abelian parts as well. Note that R, are already equal to their eigenvalue operators and
are simultaneously normalized 4o We introduce some coefficients and the new coupling sthanag follows

Tr[(ROCR)Q}zél — Cr=1, gr =9 CRr
e =1~ cm
Us—1\’] B /3
Tr <CBL 5 ) =4 — Cp_L = 30 951 =g Cr1 (5.26)
T {(YO )2_ =4 — (Cy = §
" YT Y= Vs gy =g Cy
1[(QCo?] <4 — Co 2
E 8’ €:gCQ

Now we must replace the diagonal generat®ss Lo andU;5 with the equivalent expressions 6%; Ry, Cr, Lo
andCB,L% respectively. Each time we absorb the coeffici€ntsCr, Cp_ 1, into the coupling strength of
S0O(10) and define the corresponding new coupling strength, sqjthét the coupling strength for th8U (2) p
interaction andyy, is the coupling strength of th&U (2);, weak isospin interaction. Also thg;_;, coupling is for
theU (1) 51, interaction. Through these definitions the above gauge tambe restated as

.9 < ab . Xp-r Up_1 n wy
=W Y =4+iV2<9G -Us+ g (X -Ux. +hc)+gp_f ——== - + gL WELy + g, —2L
\/5 b {9 GQ(aXQ )gBL\/E 5 gLLigL\/EO
W()
+9r Wi Rs + gr 751%0 +9(Da, - Aa+Das, - A, + Dy, - Yo+ Dy, - Y, + h.c.)}
(5.27)

This is the gauge term that we will use as we implement the tspeous symmetry breakdown in t§&(10)
theory. For further use, it is also necessary to knowheand theC, coefficient related with the hyper charge
and the electric charge respectively. These are given i(6e26) wheree is the coupling strength of the(1),
interaction angyy is the coupling strength of th€(1)y interaction. The eigenvalue operator for hypercharge is
defined a8 = R3 + % Some useful relations among the coupling strengths cambeediately derived. We

have 1 1 1 1 1 1 1 1 1 1
=5ts, S=ot5— - =gt 5t (5.28)
9. 9y 9y 9r 9B-L € g 9r 9B-L

These relations are valid independently of how the gener&tO(10) are normalized.

e2
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6. THE HIGGS MULTIPLETS: THE(10)-REPRESENTATION

6.1 The Structure

The 10 is the collection of th&"; basis withi = (1, ..., 10) which also generates ti#0(10) generator&. The
I'; basis satisfies the anti-commutation relation ineq.(2.Ihese arg2 x 32 hermitian matrices normalized to
Tr(I'?) = 32. Let us definel 0 real scalar fields; and construct a linear sum over thgbasis. We have

Lig; 1 0 O
2 - (- 4T @f 122 —T 6.1
V32 4 ( * )= ( Qo1 Qo )7 32 rl Z¢ (6.1)

where( )2 = ()()T. TheQ's are again 6 x 16 blocks. The explicit content of these blocks depend on tipdiek
matrix representation of thg;’s. The charge raised fields as well as Ihbasis is defined in advance as

O; = (¢oj1 +ido;)/V2, Tj= g1 —iT9)/2€(2,2,1), j=45 62)
. .

(I)j = (¢2j +i¢2j71>/\/§a FQ] - Z‘F2j71>/2 € (17 1a6) ) ] = 1a273

The fields defined in the upper line i.e., for= (4,5) above fall into the(2,2, 1) multiplet and the fields in
the lower line i.e., forj = (1,2,3) fall into the (1,1,6) multiplet of the 10, |f decomposed with respect to
SU(2)r, x SU(R) x SU(4). [53]. This splitting of the indices intg = (4,5) andj = (1,2,3) is a direct
consequence of the choice that we had previously adapteql if2&8). By using our former definitions of the
generatord.; and Rz which are indeed expressionsXfs and thereby also expressible through It one can
arrive at the following commutation relations.

1 1

[[s, Ls] =+3 I's [F5aR3]:*§ Is
1 1

[F4,L3] = +§ Iy [F4,R3] = +§ Iy

(6.3)

i Lot [pt 1

Tl Ls] = 5T} vl Ry = +5 I
1 1

Fa = [rn =g

We can directly also use the explicit basis CTorwhere ( = 1, ..., 10). Beneath the above bi-doublet structure,

I'y andT'; commute with all the generatot§ of SU(4) which is actually assured by the splitting of the indices.
Therefore thesd scalar fields above decompose as a bi-doublet and four-swiglet. i.e.,(2,2,1) under the
SU(2)r x SU(2)r x SU(4). group and are explicitly

(¢9+i¢10)/\/§:@5(+§7_%a07050) (o — i ¢10)/V2 = 5(— ;-i—; 0,0,0) 6.4)
6.4
(67 +16)/VE = @ulhg, +3,0,0,0) (97— i¢s)/VE = Ba(~3,~5,0,0,0)

The values in parenthesis indicate always weightSié{2);, x SU(2)r x SU(4).. These weights are given in the
order ofLs, R3, Us , Us, Uy respectivelyI’; for j = (1,2,3) commute withLs and Rs, which is again assured
by the splitting of the indices. Consequently the Higgs Sajdnerated withi = (1,2, 3) above are left and right
isospin singlets but they form in thé, — Us — U5 space d1, 1, 6) sextet. We have

[FLUii} = 0 I‘J{a [F;UB} = Jr% I‘g’ [Ff];vU3} = Jr% I‘er
thus] = +& 0 [thus] = 55 T [rho] = 4l (69)

[FJ{,UE)] = Jr% I‘L [F;Uls} = +% FE, [F;Uls] = *\/Lg I‘;T;



[F17U3] = 0 1—‘1) [F27U3] = 7% I‘27 [I‘3’U3] = _% F3
[ F17 U8] = _% ]-‘1; [ F27 U8] = +ﬁ F27 [ ]'-‘3’ US] = 7% ]'-‘5 (66)
[Ty, U15] = *% IN [T2,Us5] = *% Iy, [T5,U15] = +% I‘;

The Higgs fields of the sextet carry eithief3 or —1/3 of (fractional) electric charge. They carry neither lefrno
right isospin and are explicitly defined as

(62 +i0)[VE=B10.0. 0.~ ——). (62 =i60)/V2 = B1(0.0, 0.+ +—)

(<Z>4+i¢>3)/\/§:@2(0,0,—%,4—21—\/5,—%), (¢4—¢¢3)/ﬁ=é2(0,0,+%,—%,+%) (6.7)
, 11 1 1 1

(¢6+2¢5)/\/§=‘1)3(0,07—57—%,4'%)7 (6 — i¢ps)/V2 = ‘1)3(00‘1‘2"'\/— \/—)

where the numbers in the parenthesis are weights as befoeesl@ctric charge of the Higgs fields can be obtained
fromQ@Q = L3+ R3 + 5 (B L) where theB — L number equals t@/2/3 times thelU;; weight.i.e., the last

entry in the parentheS|s Various charges of the Higgs fiasisling in thelO are summarized in TabIEG 1) and
the sextet is illustrated in Fig. (6.2). We highlight the tmnt of Q2,5 by using the basis C. We obtain

a1 i —®; —®o — 3
a1 i £ &, £
ail a4 Dy £ —&,
@lT a@él =% —®2 —®3
! —al! £ B — &,
3! —al! Dy — &, S
T —all By £ —&,
@ P2 &3 —al! —3it
—®1 —®3 @ —alt it
—B, By . —3; . . . . . . —alt . . . -3t
— &g —®gy P . . . . . . . . a@él . . . aiil
3, £ £ —a]T 347
—3; —®3 Py —a]T alt
— By Py —®oy 7¢1T 5%‘(
—®3 —®3 @1 —a]T ai1

where the dots simply denote zerés., = Qo5 and are null blocks. BuRs; is the Hermitian conjugate 6t;-. In
the above Higgs matrix the superscripts T/, | T and] | are also highlighted and denote the left and right isospin
states respectively.

In a spontaneous symmetry breaking which bresil$2), x SU(2) g x SU(4) down toSU (2), x SU(2) g X
SU(3). x U(1)p—1, the sextet of the0 would decompose into &+ 3. i.e., a(1,1, 3) and a(1, 1, 3) multiplet.
These triplets are differentiated by théiis weights, namely through the&1/1/6 value. They carry not only
electric charge but also color. The gluons of $%(3) color group should remain massless and in addition the
electric charge conservation should not be violated. Thezeone of theb fields in the(1, 1, 6) sextet should ever
be allowed to receive any vacuum expectation value (veviircalculations. As a result the sextet is physically
uninteresting.

The physically interesting and useful part of theis however thg2, 2, 1) multiplet. Despite of the fact that
the @, field and its conjugate ar6U(4) and thereby als&'U (3) singlets, they carry non-zero electric charge
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as was shown in Table 6.1. Therefabg and its conjugate are no suitable Higgs fields because treaklhe
U(1)g symmetry. From their charges, it is seen that oblyand its conjugate may be allowed to receive some
vev, because they do not violate the conservation of etectrarge andbU (3) color, or even theSU (4) color
symmetry. The gauge fields lying in the cosetSdf (4)/SU(3) will receive from the vev ofb; no mass. Certain
features of this vev are summarizedsib.2. By using the Higgs fields of thi) which were constructed from the
product®;T’;, we choose in the light of our analysis a suitable Higgs terbbetemployed in the Higgs mechanism.
We have 1

(1)221 = \/ﬁ (@51—‘5 + q)LI)F5T) 3 Tr [(@221)2] = (1)5@;% (68)
here both Higgs fields belong to tti2, 2,1). From now on, we will always refer to the above two Higgs fields
with the (2,2, 1) or equivalently with®,5,. This term does break the following initial symmetries te giated
final symmetries

(1) SU(4)x SU(2)L x SU(2)r downtoSU(4) x U(1)+r- To be explicit, thé/ (1) ;4 r is an Abelian group
whose single generator is tig + Rs. TheU(1)+r Symmetry, operating on this,, (or 16z) spinor of
fermions is understood to yield tham of the left and right isospin numbers of the correspondimgyfens.

(1) SUB)xSU(2)LxSU(2)gxU(1)p_r symmetry downtedU (3)xU(1)+rxU(1)p_r whereU(1)p_y,
is the gauge group faB — L interactions with generator proportionallies. Exactly speaking th&s_, /2.

(19i) SU(3) x SU(2)r x U(1)y down toSU (3) x U(1)g whereU (1) is the electromagnetic gauge group with
the generato€ = L; + Rs + (B — L)/2 andU(1)y is the hypercharge gauge group with the eigenvalue
operato®y = R; + (B — L)/2.

(iv) SU@B)xSU((2)rxU(1)y downtoSU (3)xU(1)q where thdJ(1)y- is an Abelian group whose eigenvalue
operator isL3 + (B — L)/2. TheU(1)y. symmetry operating on th&s;, (or 16z) spinor of fermions is
understood to yield theum of the Lz and(B — L)/2 eigenvalues.

In all the above symmetry breaking, electric charge corsem is respected. We have

1 1
| (+§,f§,0,0,0)HALJrAR:O:AQ, Ap-L =0 — Ay =Ap
2’2 (6.9)

I‘g(i +§70a070>HAL+AR:0:AQ, AB,LEO HAY:AR

5;
where in each line thé\'s indicate the amount of non-commutationdf (or its conjugate) with the diagonal
generator of the respective symmetry. ik, Rs, Y or (B — L). In terms of thel’; matrices of basis C, thEg
andI'l assume the form

1000 00 00
i [0 B [0 4 |0 o000 o1 o0 o0
F5{A 0}’115[30 A=l 0000 BTlo o0 1 0 (6.10)
000 1 00 00

herel is a4 x 4 unit matrix.

6.2 Features of the ®99;

Two other features that are worth discussing is howdthg Higgs fields given in eql (6.8) behave in the Yukawa
sector and how they behave in the Higgs mechanism.

(i) Letus for brevity consider the most general case in whietbreak theSO(10) gauge group only with the
Higgs field®sI's + @})I‘J. Then the resulting vev endows the following gauge bosoniseof5 with mass
W WEL WL, W, W W, AL, A, A andY,,Y,,Ys. Remark : It should be noted that if the above
listed gauge bosons already have mass due to some otherfidigighey will gain additional masses up on
the @45, breaking.

(i) One can show tha®s;I's + @})I‘J induces mixing among certain gauge bosons. The gauge bos6i)s
mix: W, — Wy, W — Wi W2 - W2, A, —Y,, where the sign 2" illustrates mixing. A purebas;
breaking produces one massive and one massless mode foe abbve mixed states. i.e., There will be
a total number of six massive and six massless mixed gaugsbosiowever the detailed nature of the
mixing will be elaborated after the Higgs sector is fully agpated.
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Fig. 6.1: The Scalar ®5 coupling to fermions, where ®5 is flowing into the vertex

(iii) Let us consider the Yukawa terryj; (\TfZ Doy \IJ]-), wherei, j = (1,2,3) are family indicesy;; are the
Yukawa couplings and’; are the family spinors. The vacuum expectation values ofityies + <I>§I‘5T
Higgs fields endow all the fermions with Dirac masses. Thematexpectation values of tmr5+®gF5T
Higgs fields endow all the fermions with Dirac masses. Théaes at which the Higgs scalars couple to the
fermions are shown in Fid. (6.1). The charges conservecthtwesatex can be checked from Tables (4.3) and
(4.4), (7.1). They produce equal masses for fermionstigleptons and up-quarks get equal masses like
m, = m,. Also down-leptons and down-quarks get equal massesiike= m.. The equality of lepton
and quark masses can be easily deduced from the uniformtiteafiatrix2 which was shown in eq. (6.10).
Finally the up fermions and down fermions get all the samesnike m,, = my, becauseby and@é are
conjugated to each other., i.e., they assume veV's thatiffenat most by a phase.

Details concerning the above features will be considerted tn again.

6.3 Weight Diagrams for the 10

us

T 9t - AV

(1,1,6)

1.13) (113

Fig. 6.2: The decomposition of the sextet in the 10 with respect to SU(3) x SU(2)r x SU(2)r x U(1)p—r. The

L, R isospin weights are suppressed and Ujs points out of page.
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Charges of the 10 Higgs Fields

221) | Q|BL| ILr| Lr| Y| 11,6 | Q | BL |Isz |Ir| Y
et | 0| -1/2| -1/2| 1| & | -1/3|-2/3| 0 | 0 | -2/3
o)1 0| 0| -1/2|41/2 | +1| ® | -1/3|-2/3| 0 | 0 | -2/3
ol 0 0| +1/2| -1/2| -1| &5 | +1/3|+42/3| 0 | 0 |+2/3
11 | 41| 0| 41/2 | H1/2 | 41| B | +1/3|+2/3] 0 | 0 | +2/3

Dy | +1/3 | +2/3] 0O 0 | +2/3
i -1/3 | -2/3 | 0 0 | -2/3

Tab. 6.1: Charges of the scalar bosons in the 10 Higgs representation of SO(10)
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7. THE HIGGS MULTIPLETS: THE(126)-REPRESENTATION

In this part we elaborate thE26 Higgs representation. Not all of these Higgs fields will beful only those
which can be implemented in the spontaneous breakdowi®gi0) over various intermediate symmetries down
to SU(3) x U(1)g, will be to us of physical importance. TH&6 is spanned by the-products of th&”; basis of
SO(10) which were introduced if§[2.3. Theses-products include all the possiblgI';I',I';T",, terms in which
i # j # k # | # m. There will be252 such products. But half of them will be related o¥&gt;,. to the rest. This
means that, there will bE26 Higgs fields and 26 charge conjugated Higgs fields, namely 1R6. The expansion

reads
1 1 Q1 Qoo
\/32 16 Qo1 Qoo

whereI" are 126 linearly independent combination of thproducts andp are the charge raisa@6 fields. It is
formally not pleasing to treat these fields over a singlexrlde ¢, with « = (1,...,126). Therefore we must
develop a relatively practical way of labelling. We use twwér indices to denote left and right isospin states and
an upper index to distinguish among those fields which passesame left-right isospin state. The convention
will be explained in some more detail later on. The complestedf the Higgs fieldsb and theI's of the 126
expanded in terms of the real valued scalar figlgs;,,, and the 5-products;I';I',I';I",,, respectively are given in
Appendix B. As done before, the tota2 x 32 Higgs matrix will be truncated int@6 x 16 blocks of matrices as
shown in eq./(7.1). To be illustrative, let us considerfhenatrices of basis C to depict the matrix@%. Then

Q11 andQq, turn out to be occupied fully by zeros. Thg, part is

Gijiam DD, Tk Iy = — (0- @+ T 01) = ( (7.1)

M2 #fp of 21 e, ®f el 5, er ez az @]y @, @}, @i, ]
el x99y e} el A8 ¢ #F aq #f a1z an B, #f,  @fy e,
3 efy  az elf ey e} A9 ®f a5 a9 #f a0 *}  #f, e}, ef
ofp el elp el ey el el el e es aregy efy @l ey )
Aaooefp ®3 e a0 ep e} e el e, e}, e}y ol -as  -as -
L S T T A 8 e e 2fo  ® ®Y  —ar -] -ag  —og
oty o} xe e e} e} A e e #y  efp ey ez oz -], —o7
oy el el el el el efl el of ol e cen aw o)
®o A1 P2 B3 %)) ) *3 ®3, Mo @ e e} —a el e} e}
Ba @G5 P12 A ey e5 ef e e A e} ei) el -as ) ]
Bs B9 ®y5 P0G, 8, *f) °5, @ ey a2 e e ef . —xg ef]
I T T T TR TR - TR 1 SR 5 22 S S S+ S S N A S A S
®fr ®op Yy W el —Aa =85 —fe  —xa Ppp of e N ®l; ®3; *3;
TR R T T R O S B ST L gt A2 *3; *}?
®5;  o% ey ®5 e sz -3y A7 e}y ey -x ef  efy el A3 *{}
Lade of od ol s cen cm el e} el el el el wlf el efp ]

In this block, all positions are occupied and no Higgs fielcharge conjugated to any other in thene block. On
the other sid€2;5 = le, so that the lower block is occupied by th26 Higgs fields. Thel26 decomposes under
the SU(2) x SU(2)g x SU(4). symmetry into the3, 1, 10) & (1, 3,10) & (1,1,6) & (2, 2, 15) multiplets [53].
Initially we will consider the first three multiplets and éaiton the last one. Let us first introduce explicitly the



Higgs fields which occupy the same cites in the above matrbxes€ entries are shown with, «; and ;. In
the Higgs field matrix above, the entrigs and «; which are defined fof = (1,...,12) are composed of the
following fields

pr = cI)(1)0 Qo Pr = (I)éo + @5 - cI)(1)0 +&y a7 = (I)oo g0
P2 = ‘1)2” - ‘I)(Q)o Ps = (I)5“ - ‘I)go Q2 = ‘1)2 + ‘1)00 ag = (I)5 + (I)oo
Bs = CI)OO Doy Po = (I)oo + @5 a3 CI)OO +®5 g = ‘PSO H
Bi = Qg5+ @y fro =P — oo aa =gy — DGy 10 = PGy + g
Bs = ‘1)2 + ‘1)00 B = ‘1)5 + ‘I)oo Qs = ‘I)?)O - ‘I)go Qi1 = (I)§ - (I)(Q)O

Be = cI)?)o + CI) frz = (I)oo q)gO ag = cI)?)o - @30 + cI)gO

(7.2)

12 = (I)oo

In the above expressionis,, are left and right isospin singlet Higgs fields. This is inegliby the two zeros in
the subscript. There are totally six such Higgs fields ang tbem a sextet(1, 1, 6) for whichi = (1,...,6).
These fields are listed in the first column in eq. (7.3). On theioside we have te@}m and ten@éo fields which
have the sam8U (4) weights with the fields of the sextet for= (1, ...6). Actually they belong to th€3, 1, 10)
and(1, 3,10) multiplets respectively and exhibit a triplet structurehwiespect to left and right isospin groups
respectively and do sit at the same sites withl, 6) in the Higgs matrix. To avoid any inconsistent labelling, we
have put a hat on the zeros wherever the zero denotes a zéve i@pective isospin triplet. Indeed t{xgo and

(I)i fields belong to separate decouplets whatens up tol 0. The other partners of the above mentioned six fields
are the<I>7 5 @5, @10 and thed] , ©F , @2 | 10 fields respectively and are seen to lie along the diagonal

00’
in the same respectwe bIocks These f|elds are listed inetbensl and in the last column in €. (7.3) respectively

whereA = (71, 0, 1) denotes the triplet structure of the respective isospimgauoup. We have
1 1
(I)(A 0,0 7% 7%) cI)(O,A, 0,+%,+%)
¢2 1 1 1 ®2
(8,0,-% 45021 0,843, —51=+25)
1 3 3
00,045 4t Plao-iogaa P08 484212~ 1)
o2 o4 ot
(0.0,43,—555.+75) (2,0,0+ 2=+ %) (0,4, 0,—=,— )
o3 ®° o>
0.0, +3, 45— %) (8,043, —50=+ ) (0,8, -3 +53=.— )
@4 (1)6 q)() (73)
(0,0, 0, 775 =’ﬁ) (2,0,+3 +N_ f) (()A,77,77,+7)
o2 o7 o7
(0,0,—3, +7 —7—) (A,0,— —37——) (0,A,+1, +\/— \/—)
o6 o8 o3
(0,0,— m7+76) (A,0,+1,— \f7 \f) 0,4, 17+77+7)
oY oY
(A0, 0+— 7—) (0,A, 077 f)
10 10
(I)(A 0,0,0 +f) cI)(OA 0,0, ,)

Other elements of thg3, 1, 10) and(1, 3, 10) multiplets occupy the x 4 blocks positioned along the off-diagonals
and can be easily recognized from their labels. In the Higgfir the isospin triplet fields are symbolically
labelled with (7,0, |) which indeed correspond to tife-1,0, —1) values of the weights. Other weights of these
fields are in the Higgs matrix suppressed, but are given ipénentheses in equation €q. (7.3). These values are
SU(2), x SU(2)r x SU(4) weights in the ordetLs, R3, Us, U, Uy5) respectively. The weight diagrams of the
126 are given in Fig.[(7.3). The explicit expression of the cleajsed field® in eq. [7.3) and th&"s in terms of
Gijram andl; ;T IN, respectively are listed in appendix C.

Since all the sextet fields in ef]. (7.3) posses color andraettarge, they are no good for symmetry breaking
and can be excluded in advance. These fields decompose$iEid2);, x SU(2)g x SU(3) x U(1) g, into the
(1,1, 3) and the(1, 1, 3) color triplets which differ by theB — L numbers and the members of these triplets carry
—1/3 and1/3 fractional electric charge respectively.

The only fields which areSU (3) singlets in the(3, 1,10) and (1, 3,10) multiplets are thel0”* fields. The
10*" fields in eq.[(7.3) decompose und#l/ (2), x SU(2)r x SU(3) x U(1)p_r, into the(3,1,1) and(1,3,1)
multiplets as illustrated in Fig. (7.3). The electric chesgs well as other charges of thas&" fields are listed
in Table [7.1). Since electric-charge conservation shaolche allowed to be violated, only the two electrically
neutral components of th@, 1, 1) and(1, 3, 1) color singlet fields are good for symmetry breaking. The raut
components ar& (1), singlets. We have

()i} =T

Ar=0
(1,0,0,0 +3) ,

1
— A + §ABfL =0= AQ,
(7.4)

(i) 1“5‘; =Tl

_3) AL =0
(0.41,0,0 ,—2)

1
HARJriAB,L:O:AQ:Ay,
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where theA'’s in the upper line indicate the amount of non—commutatibiﬁ‘izg with the diagonal generator of
the respective symmetry and tiés in the lower line indicate the amount of non—commutaticbrf@? with the
diagonal generator of the respective symmetry. The fdotdis due to the factor in the electric charge eigenvalue
operator, namely) = L + R+ (B — L)/2 and(B — L) = 2,/2/3 Uy5. Let us consider the following terms
qualifying for the Higgs mechanism

1 1
P3110 + P1310 = 32 Tj) @10 + 32 Lol @60 5 Tr [(P5110)°] = (®]0)% Tr [(P1s10)’] = (®6))*  (7.5)

where( )2 = ()( ). From now on, we will always refer to the above two Higgs fietasthe right hand side
with (3,1,10) and(1, 3, 10) respectively, or equivalently witt s, ;, and®131 respectively.I‘ig in terms of the
T'; basis is expressible as
[0 = —T1Is507 0y + iT D357 — a0 T3l5TsTyg — [ Tl5TsTg
—il'1I'3l6l'7 g — I'1['3l6'7'g + I'1 I'3l6l'g'1g — eI I'3T6'gI'g
+il TylsT7 0 + DTy D57l — T Ty 580 + eT'1 Ty 58T
Iy Tel7p + i1 Ty Tgl7 g — iT'1 Tyl T's M9 — T'1 T4 T6 8Ty
+il'ol'y'g'gl'g — I'ol'4 g9 + o'y '6I'7g + a9 467110
LTy I5Ts g + il Ty ls g0 — il T4 ls 7Ty + Ty I'sT'7 T
—Tol'sTl'slg — iI'2l'3T'g's M1 + iT'2l'3T6 7’9 — I'aI'3T'6 17110
+il'o'3l5gg — I'oI'3'5's Mg + D235 79 + 213151710

(7.6)

If we use thel’; matrices of basis C, thE}j matrix turns out to have a non-vanishing entry i%2,at position
(4,32) where all other entries are zero. This is directlyeotable from the Higgs field matrix of the26 as well.
The position(4, 32) lies in theQ,, block. If we use basi® to evaluate the matrix above than the non zero entry
lies at position(7, 26) and for basis A, it lies at positiof2, 21). The common property of these positions is that it
correctly couples the Higgs fiekdl|{ to two neutrinos which are;, and(v°) ;. This will be considered in some
more detail in§7.1. TheI‘(l)? in terms of thel; basis is found as

I§) = +T1Ts0507 g — il D357l — 01 T3l5TsTyg — [ T3l5TsTg
—il'3lel'7lg — I sDgl'7l'g — I 'sDgls g + eI I'3T6'sTg
+il TylsT7 0 + DDy D579 + T Ty 580 — eT'1 Ty 'sT's T
+01 Tyl — eI Ty T2l — a1 Tyl l's 10 — T'1 Ty T's I
—il'alylel'glg + T'alyl'gl's'1p + T2l'4l'6l'7 g + il2T'4 67110
+ly sy + il Dy I'sI'slyg + iy I'sI'7 g — I'al'y 57110
—Dol'3lel'slg — i3 T's Mg — il'2'3T6 71’9 + 2’36’71 10
—ilol'3s gy 4 I'ol'3I'5I'sMyg + [ol'3I's 71 + 4053151710

(7.7)

Again if we use thd’; matrices in basis C, theﬁl? turns out to have a non-vanishing entry i&2,at position
(16,20) where all other entries are zero. Notice {that 20) lies inQ2;2 block which is also directly observable from
the Higgs field matrix of the@26. If we use basis3 to evaluate the matrix above, the non zero entry lies atiposit
(18,15) and for basis A, it lies at positio(b, 18). The common property of these positions is that it correctly
couples the Higgs fiel@})‘{ to two neutrinos which aré&°), andvg. Notice also that in each of the expressions
for T}§ andT';{ the first four rows are related to the terms in the last foursrower—iT fi,e = 'y -- - T'19 as was
pointed out before. We have the following commutation retet

[ o, Lg} = -1 T { T, L;;} - 0 Ty
[t = o 1y R = TR
[ i UJ} = 0 T [ T, Ug] = 0 TP (7.8)
] - 0y ] - o o
[ INFS U15} = Jr% T [ T, U15} = 7% s
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Before we continue elaborating the remaining fields in thggdimatrix, we will sort out various symmetry break-
ing chains that the above Higgs term given in €qg. (7.5), nguthe (3, 1, 10) and (1, 3, 10) can initiate. The first
component of the Higgs term breaks the following initial syatries to the final symmetries

(1) SU4) x SU(2)r x SU(2)r downtoSU(3). x SU(2)r x U(1)y+ where theJ(1)y- is an Abelian gauge
group whose eigenvalue operatofis+ (B — L)/2. TheU(1)y, symmetry operating on this, (or 16 )
spinor of fermions is understood to yield them of the L3 and(B — L)/2 eigenvalues.

(1) SU(3) x SU(2)p x SU(2)r x U(1)p—r, downtoSU(3) x SU(2)r x U(1)y- as above.
(791) SU(3) x SU(2)r x U(1)y+ remains unbroken
(tv) SU(3) x SU(2)r x U(1)y downtoSU(3) x U(1)q.
The second component of the Higgs term breaks the subsegiteisymmetries to the final symmetries
(1) SU(4) x SU(2)r, x SU(2)g down toSU(3) x SU(2), x U(1)y
(1) SU(3) x SU(2) x SU(2)r x U(1)p—_r, downtoSU(3) x SU(2)r x U(1)y as above.
(#3t) SU(3) x SU(2)r x U(1)y remains unbroken.
(iv) SU
It is remarkable to notice that the left-right symmetric @dler gauge groupilways breaks down taSU (3) x
U(1)q, if both components of th¢3, 1,10) & (1, 3,10) operate. This can easily be verified from above. Some
other cases that we had previously explored for(the, 1) of the 10 can be reconsidered in cooperation with
(3,1,10) @ (1,3, 10). In this respect we take the final symmetries that had be@hegavia the2, 2, 1) as initial

symmetries on which th€, 1,10) & (1, 3, 10) can act. Then thé3, 1, 10) breaks the following symmetries to the
final symmetries

(i) SU(4) x U(1)4r down toSU(3) x U(1)g

(3) X SU(Q)R X U(].)y/ down tOSU(g) X U(].)Q

(17) SUB) xU(1)p+r x U(1)g—r downtoSU(3) x U(1)qg

The second term, i.e., th&, 3, 10) breaks the following initial symmetries to the final symnir
(i) SU4) x U(1)p+r downtoSU(3) x U(1)q
(1) SUB)xU(1)p+r x U(1)g—r downtoSU(3) x U(1)qg

So we have made the observation that (e, 1) and the(1, 3,10) & (3, 1, 10) are very well cooperating. This
cooperation is easier to observe from the illustration i FL11.1) where all the above cases as well as the ones
in §16 are illustrated. It is seen that the Higso, i.e., the®,51, ®1319 and ®5;1 nNever pushes the symmetry
inacul de sac, i.e.,theSU(3). x U(1)q is reachable regardless of the order of the Higgs multigetployed.

The obviouscalculational advantage of this observation is that one has the freedormpdog the above Higgs
multiplets in the Higgs mechanism (a) without choosjngdetermined chains of symmetries, or (b) without
bothering about the order of the respective vevs. But at tige we must be able to ascribe the vevs their correct
values, as far as physics is concerned. This will be achievgd5

7.1 Features of the ®1310 ® P31

Two important features that are worth discussing is howsithg, & ®5, , multiplets behave in the Yukawa sector
and in the Higgs mechanism.

(1) Again we consider the most general case in that we breals@@0) gauge group with the Higgs field
(T} @10 + L] ©47). Then the resulting vev of therst term endows the following gauge boson of ttie
withmass :Xp_p, Wy, Wi, Wi, A, Ag, Ay, A}, Al A andX,, X, X, Thesecond term endows the
following gauge boson of thé5 with mass :Xp_r, W, , WP, W/, A, Ay, Ay, Y., Y, Y, and X, X,
X,. Theremarkin §6.2 applies here as well.

(ii) The first component of the above Higgs field induces mixing rgn&_;, — W2 , where the sign- is
always illustrative. The mixed state has one massive andr@assless mode. The second component of the
above Higgs field gives rise to mixing amofg;_;, — W?. Similarly this mixed state has also one massive
and one massless mode.
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(#4¢) If both Higgs fields receive vevs there occurs a mixing amdng — Wy — Xp_1 where one mode is
massless and two modes are massive. The two massive modeglarand low-mass modes.

(iv) TheT'[§ ®g+T? ®a? Higgs fields as pointed out previously couple to neutrinosasshown in egs. (7.6)
and (7.7). Let us consider the Yukawa teky) ¥; (91310 + ®3119) ¥; wherei, j = (1,2,3) are family
indices,Y;; are the Yukawa couplings and; are the family spinors. The vacuum expectation values of
T') @5+ T} @47 will endow the neutrinos with Majorana masses. These \estice shown in Fig. (7.1).
The charges conserved at both vertices can be checked fluesT{4.3),/(4.4) and (7.1). These are Majorana

mass terms likez, (v1)¢ and(vr)© vg.

10
q)w

VL

VR

10
(I)()T

()L

Fig. 7.1: The scalars @18 and (I)(l)(T) coupling to neutrinos. The scalars are flowing into the vertices.

Details concerning the above features will be considertedt Ia§/11 and§/12. Let us come back to those fields

of the 126 which we haven'’t discussed yet. In the Higgs field matrix ahdkie entries\; along the diagonal for

i=(1,...,12) are multiply occupied. We have
M= ] - alifs
Y = o - elif3
Ay =@, — @], — @]7/3
o= 8-l
Y = B -2l
Ao = —0f; — ®f; — 073/3

These fields are part of a bi-doublet in tR& (2), x SU(2)r space and simultaneously satisfy a 15-plet in the
SU(4) space. We labelled each field of tifis 2, 15) multiplet with an upper indexwhere; = (1,

e = o], —alis
N
Ao == —@f —P}/3
o = 0], —alis
= it
Mz = —®f — @ — &;7/3

(7.9)

..15). There

are totally 60 Higgs fields falling in this multiplet, and thare listed together with their weights as below.

1
Q1414100
(I)2

(£3.£3,+3, 5550

¢3 1 1 1 3
L(li@iiy*iﬂrmyo)

(I)(i%,i%,q,o,o)

(1)5
(bt -3 -5p0)

0] )
(bh 45+ 5050

0]

(£3,£3,0,0,0)
8

Qi1 41000
9

q)(i%i%,-f—%ﬁ—ﬁ#%)
(I)l()
(5,53 T 55t )
(I)ll
g:;%d:%y()ﬁ%ﬁ%)
@ +1 41 1 1 2
([ 2 2 2 2\/31 \/g)
(I)ldl 1,1 1 2
(£3.+5.+ )
1427 2 2 23" V6
@
%é,ﬂ:%ﬁﬁ%,f%)
¢

(£%,£4,0,0,0)

1
1514100
2

(0] )
:(Si%,:F%#%A-ﬁ,O)

o
A(lﬁ:%,:F%ﬁ%Hr%,O)

@(i%,xé,fl,om

®5 1 1 1 3
éiiﬂ:@*@*mvo)

(0] )
(f%,x%,%,—ﬁm

(0]

(£3,73,0,0,0)
8

Q151000
9

(0]
(E3.F5+5 1505+ %)
10 1.1 1 1 2
521‘25,435,*§,+m,+%)
d

E:QN:%,:F%,(%*%#%)
(I)(il 111 _2)

1321:':21 2 2v3° NG
q)(il Fl4l 2
1421 29 2 2v3’ V6
o

gi%;%xm%ﬁ%)
d

5
(£3.¥3,0,0,0)

(7.10)

where in each weight configuration either up signs or downssghould be chosen. The weight diagrams of the
(1,1, 15) multiplet is given in Fig.[(7.3). In the Higgs field matrix tH{e-1/2) isospin states are symbolically
indicated with 4 possible configuration$, 1|, |T and || as subscripts. The remaining weights are suppressed.

o7



But since there is always an upper index addressed for eddlirfitne Higgs field matrix, it is possible to read off
its remaining weights from the above given list.

Again the useful Higgs fields for implementing in the Higgsamanism must be first of aBU(3).. singlets.
As shown in Fig.[(7.8), under th&U (2), x SU(2)r x SU(3). x U(1)g—r symmetry, the first eight bi-doublets
above constitute a color octet, namely fRe2, 8) and the next six bi-doublets decompose into two color ti#ple
which are the2, 2, 3) and the(2, 2, 3) triplets. These carry all fractional electric charges. Tt field®'® which
comes with 4 possible left-right isospin configurations$t&3). singlets. UndeSU (2) 1, x SU(2) g x SU(3). x
U(1)p-y these 4 fields decompose into tfe 2, 1) multiplet all with zeroB — L number. Various charges of
these 4 fields are given in Table (7.1). Only t§ and®1? Higgs fields are electrically neutral. It should be
noted that thé2, 2, 1) of the 10 and the abov@, 2, 1) of the 126, are basically different in that the latter endows
the X, bosons with mass and the former not. This and related piepefthe(2, 2, 15) will be reconsidered later
in §7.2. We have

(Z) I‘ﬁ EI‘(+%7_%70,070)—>AL+AR=0=AQ, Ap_1 =0
(i) Ty, =T7° ) 2 AR+AL=0=A7q, Ap_p=0

(—3.+3.0,0,0

(7.11)

where theA'’s in the upper line indicate the amount of non—commutatibli‘ﬁ with L3z andR3. TheA's in the
lower line indicate the amount of non—commutatiorﬂﬁ with L3 andR3. Let us consider the following term as
qualifying for the Higgs potential

1
Pa215 = m (Fﬁ ‘I)ﬁ + Fﬁ ‘I’ﬁ) ;o Trl(®aais)?] = (@1?)2 + (‘I)ﬁ)z (7.12)

where( )2 = ()( ). From now on, we will always refer to the above two Higgs fieldth the (2,2, 15) or
equivalently with®a,;5. In terms of thel; matricesI'{$ andT'}? are given as

—I‘ﬁ = (=i Tol3TyT g — TiTel3Tylg + i T o561
+ITol'sT6lg + ¢ ' I'al'7g1g + I'1 I'2I'71's I

(7.13)

—Tsl6l'7T'sg — 1 56710 + I'sT'4I'7 8Ty

+iT30y 7T 19 + TsTul'sT6Tg + ¢ TsTal's 6o )

—Fﬁ = (=i Tal3Tyyg + T Tel3TyTg + i1 Tols 6T
—I'1ToT's6'g — ¢ ' I'a'7 gl + ' I'2I'7 sy (7.14)

—IsT6l7lslg + ¢ [sT6l7TsM0 + T l'7 18Ty
—i 3Tyl Tglg — TsTal'sTeTg + i T'sTyI'sT6 0 )

Itis seen from the expressions tII&t? andI‘ﬁ are not charge conjugated. The below given commutatiotioak&
are also useful. We have

[Ti.Ls] = +f T [T = —§ T
R = 4 TH (TR = 45 T
T = 0 Ty T = o0 T (7.15)
T = 0 T RO
s = 0Ty [ThUs] = 0T
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If we utilize theT’; matrices given by Basis C, then tiig? andT'}? matrices turn out to assume the following
form

B 00 0 100 0
0 A 000 0 010 0

15 — —
F”[O 0] A=1lo 00 o0| B7{oo0o1 o
000 B 00 0 -3

(7.16)

00 0 0 (10 0 0]
0 A 0 B 0 0 010 0

15 [ —
FlT{O O]A o0 Bo| BTloo1 o
00 0 0 000 -3

Here A is al6 x 16 block andB is of size4 x 4. It turns out thatB is proportional to the generat&f,; of the
fundamental representation 8t/ (4) which was given in Tablé (3.2). This can also be seen from thigplicities
appearing in eq. (719). From the above matrices it is seelﬁxﬁacouplest (only left-isospin up states) witlfiz
(only right-isospin up states) and aléf®) r (only left-isospin down states) witfy ), (only right-isospin down
states) . Similarlybﬁ couples coupleg;, (only left-isospin down states) witfiz (only right-isospin down states)
and alsq f¢) g (only left-isospin up states) withy <) ;, (only right-isospin up states). Also the hermitian conjega
must be considered. We will come back to this point late§#h2. The®|? and®}} Higgs fields can break the
following initial symmetries to the final symmetries:

(i) SU(4) x SU(2)r x SU(2)g down toSU(3). x U(1)p4+r x U(1)p—r, whereU(1) 4+ r was previously
defined in§ 6.

(1) SU(3)e x SU(2)p, x SU2)r x U(1)p—r, downtoSU(3). x U(1)+r x U(1)p—1.
(#9) SU(3) x SU(2)r x U(1)y down toSU(3) x U(1)g.
(iv) SU(3)e x SU(2)r x U(1)y- downtoSU(3) x U(1)q, where thd/(1)y was previously defined if6.

The above chains of symmetry breakdown givefiirto (iv) are illustrated together with the previo{gs 2, 1) of
the 10 and thé1, 3,10) & (3,1, 10) of the 126 in Fig. (11.1).

7.2 Features of the ®g915

Some other feature that is worth discussing is howdtha s Higgs fields given in eql (7.12) behave in the Yukawa
sector and how they behave in the Higgs mechanism.

(i) Consider the most general case in which we brealsth¢10) gauge group with the Higgs field'|3 ® 7 +
'} @13), then the resulting vev of thérst term endows the following gauge boson of tiewith mass:
Wz_a Wgy WL_1 W]:‘:‘jy W]%a W}gy A;a qua Ag)y Y;‘a YVgaYE)a }/rla ng Y;)I andX11 ng Xb
The second term endows the following gauge boson of tiiewith mass:W,", WP, W, , Wi, W9, W,
Ap, Ag, Ay, AL AL ALY, Y, Y, andX,, X, X, Theremark in §/6.2 applies here as well.

(ii) The first component of the above Higgs field gives rise to ngix@mongVy — W}, where the sign=" is
always illustrative. This mixed state has one massive aedeassless mode. The second component of the
above Higgs field also leads to the mixing amdh§ — W?, and has also one massive and one massless
mode.

(ii7) If both Higgs field receive vevs then they gives rise to mixifig: — W7 where this state has one massive
and one massless mod&;: — W= with two massive modes for each charge configuratitip.— Y;, with
two massive modes for each color configuration. The two massbdes are understood to be high and low
masses.

(iv) As pointed out previously, the first Higgs field {ir|3 ®}? + I';7 ®1%) couples only to théd, ¢) (down-
type) fermions and the second term couples onlftta) (up-type) fermions. Thereby all the fermions are
endowed with Dirac masses. Let us consider the Yukawa}e;nﬁ\ifi Doo15 \I/j) wherei, j = (1,2, 3) are
family indices,Y;; are the Yukawa couplings anlg; are the family spinors. The vacuum expectation values
of theT'}? @12 + I'}} @1 Higgs fields endow all the fermions with Dirac masses. Théices generated
by the Yukawa term are shown in Fig. (7.2). The charges coadeat each vertex can be checked from
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(d°)r dr (e)r er
15 15 15 15
P P P P
(d°)r dr, (e“)r €L
(u)r uR (V)R VR
15 15 15 15
@47 @47 @47 @47
(u®)r wL (V)L YL

Fig. 7.2: The Scalars Qﬁ and @ﬁ couple to d, e and u, v fermions respectively. All scalars flow out of the vertices.

Tables,[(4.8),/ (4.4)and (7.1). THe, 2,15) multiplet has a multiplicity of 3 at the positions that coeipb
leptons, therefore the relatioms;, = 3m. andm, = 3m, will hold. Since@ﬁ produces only Dirac
mass terms fofd, ¢) (down-type) anc{)ﬁ produces only Dirac mass terms far, v) (up-type) fermions. It
follows that the down fermion sector and the up fermion secan get different masses i.exg andm,, can

be different, provided that we employ not only both Higgsdesbut assign them unequal vevs. One should
have in mind thatb|? and®;? are not charge conjugated and their vevs can assume differkres. This
feature differentiates the2, 2, 15) singlet of the126 from the (2, 2, 1)of the 10 where the®; and ®; are
conjugated.

Details concerning the above features will be visited lateagain in§/11 and§/12.

7.3 Weight Diagrams for the 126

Charges of some 126 Higgs Fields

(3,1,10) ® (1,3,10) | Q |B-L | Isg | Iz | Y| (22,15) | Q |BL| Iig | Iz | Y
®10 0| +2 0 -1|+2| @f +1] 0 | +1/2 | +1/2 | +1
P40 +1 ] +2 0| 0|+2| @ 0 0 | +1/2| -1/2 | +1
19 +2 | +2 0| +1|+2| @ 0 0 | -1/2 | +1/2 | -1
P40 2 -2 1| 0] 4| o 1|0 | <12 | <172 | -1
o0 1| -2 0 0] -2
P4 0| 2| +1] 0] O0

Tab. 7.1: Charges of some Higgs bosons in the 126 Higgs representation of SO(10)
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22,3) 223 (221

(1,1,6) 1,1,3) (1,1,3)

1]
+
+
o]

(3,1,6) (3.1,3) (G.1,1)
us
- + + @] u3
¥ u1s
(1,3,10) (1,3.,6) 1.3,3) (1,3,1)

Fig. 7.3: In the figure L, R isospin weights are suppressed. Uis points out of page. Us and Us are laying on the
page. The decomposition of the 126 with respect to SU(2)r x SU(2)r X SU(4). is given in the first
column. The decomposition of the 126 with respect to SU(2)r x SU(2)r x SU(3)c x U(1)p—r are given
horizontally.
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8. THE HIGGS MULTIPLETS: THE(210)-REPRESENTATION

In this part we elaborate th&10 Higgs representation. Th&l0 is spanned by thd-products of thel’; basis
of SO(10) which was introduced i§(2.3. Thesel-products include all the possiblgI';I',I'; terms in which
i # 7 # k # 1. There will be210 such components. We have

1
V32

The 210 Higgs representation is indeed rather complex and contailysa few useful multiplets for th€O(10)
Higgs sector. These fields decompose undeffii€2); x SU(2) r x SU (4) gauge group int¢2, 2,10) + (2, 2, 10)
+(1,3,15) + (3,1,15) + (1,1,15) + (2,2,6) + (1,1, 1) multiplets [53]. Many of these fields occupy the same
sites, if one considers an explicit matrix representalioifhe(2;; block is presented in two parts below such that
the former one contains the Higgs fields of the first five miétipi.e.,(2,2,10) + (2,2,10)+(1, 3, 15) + (3,1, 15)
+(1,1,1) and the latter contains the remaining 2 multiplets {(&.1, 15) + (2, 2, 6) where we have used basis C.
The conventions used for the upper and lower scripts in tlyg$ifields was previously defined §ni7 and will
not be repeated here. The sum of the two giRgs For basis C{2;, and(),; are null blocks.2,, is related to
4, through a parity transformation whefeis given in eq./(4.25). The diagonal elemehtdori = (1,...,16)
appearing in the first matrix below are explicitly

r.T 1 Q Q
Gij D00 = — (T - &+ 1. of) = 11 12 81
jkl L kLl 16 ( ) ( o ’s ( )

A= —®5, + @go + @ég Ag = +0f + (I)go + ‘1)(1)3
Ao = =B, + Bf + Dy Mo = +Pgy + PG, + Py
s = —Bjy — BT — B + @Y Ay = 45, — BTy — BF + L2
My = —®5 — 3 Py Az =+ —3 87 (8.2)
Xs = = @G — @g, — P50 Aty = + 80 — D — Pog |
Ao = — D5 — 05 — dL2 M = +®Gy — Doy — Py
A = =@ + ®f, + Bf, — Do A = @G0 + By + Bgy — Byg
As = =Dy + 3 D) A6 = +®5 + 3 Dy
The diagonal elements; and; fori = (1,...,8) in the same matrix are explicitly
B = +<I>¥0 — @%(5) Bs = +CI)I() - (I)i?)
Bo = JrCID?O — @%(5) Be = +(I)?0 - @1(5) (8.3)
Bz =~y — 0 — @3 fr =2, -}y — 2[5 |
By = +3015 fs = +30[7
a1 = +0f, — 4} as = +®g) — @)
ay = +®f; — D4} a = +@5; — o) (8.4)
ay= 0 — 0% — Ol ar = —0f — &, — ol |
ay = +3075 ag = +3Pg]
Finally the diagonal elements; fori = (1,...,4) in the second matrix are
Ay = +07, + Pgp
Ay =+, + Pgp (8.5)

Ag = —f, — f + B4
Ay = —305
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3 % efy el efy ey e ef  es ey} -, -0y a5 -]
efp ey el el efy @f ef e} e ey -®f,  -P0 -2 e
®2, @42 0 0 0 0 0 ~1>1T @fT @ffT 0 @], ‘P%l 23,
®3, 43 0 0 0 0 @1, 0 ¢, el el 0 @9, @3,
Ag od 0 0 0 0 o3, of, 0 oty @3 @f, 0 @,
o Ay 0 0 0 0 ‘I)ELET 2%, @‘l‘T 0 @ffl 27, ‘P%l 0
0 0 A —af, —®3, -®h2 0 @%T <I>%T <I>§T 0 é%l @%i @?i
0 0 —ad, Ag —o3,  —aold 214 0 @?T 2%, @%l 0 ‘P?l 23,
0 0 -23, —*§, As —als ‘P%T @?T 0 @‘T*T @%l @?l 0 ‘P%L
0 0 —2d, -8 -—ab} Ay @?T <I>?T <I>‘T*T 0 @%l <I>?l @‘%i 0
23, @?l 0 @‘l‘l 2%, @?i Ay @, @3, @d, 0 0 0 0
L 22, et 0 @3 @3, L T SR S 0 0 0 0
0 21, @f 2%, 0 el @3 @30 Az @f} 0 0 0 0
L2 0 2%, 27, e}, 0 op2 @l aold Ay 0 0 0 0
@?T <I>‘T3T 0 <1>1*T @?T @?T 0 0 0 0 A —ad,  —®5, -—@J,
‘PET}T @%T @‘l‘T 0 ‘P?T ‘P%T 0 0 0 0 —af, Ag —o8,  —alf
0 I @3, 0 @}, 0 0 0 0 —2%, -3}, A3 -l
L2 0 @?T <I>fT @lp 0 0 0 0 0 —oft  —ed  —ahd Ay
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The(2,2,10) and the(2, 2, 10) multiplets of the210 Higgs representation are

(I)l

(3£ 05~ )
d

giga éa_%ﬁf'#a_%)
o

(23,23, -4— e+ )

q)(iQ,i;,(>+f,+ )
(1)5
(F5.£5.+3. 505t %)
(1)6
(i2,i2,+2,+2f7 )
o7

@éﬁcg,i%,f ~ 5 v8)
q)giQ,iz,Jrl T3 Ue)
it o)

(£3.43.0,0 +2)

ol ol
1 1 1 1

(£3.¥3,0, Tga—%) (£3.£3, 014‘714‘%)
o2 o2

1 1 1
(I)gi27:':27 2#‘77—%) (I)(di27i2,+27 f’+7)
(I)Elilq:a e itv, Ta sy ) cI)‘(li E3Hssls—J8)
é:l:l:Fz 0+ﬁ, %) éi 3, 0,— f f)
(0] (0]
GhFhtb-satd)  Ghabobash o)
(0] (0]
@;i27:|:27+2,+2\/—7 f) @(i27 11_%1 \/*JF\}*)

1 1 1 1

(I)éi Fr-l—Z5— %) (I)éi 5 x5+ L+t 5)
(F3.F5.+L—F— %) (£5.£5,- L+t 08)
q)?i 0,+-=2 ) q)?i +1,0-% +1)
1027:F27 \/—7 \/— 1027 » Uy V3’ NG
(0] 0] .
(ié7:|:270 0 +f) (i27i_ 0,0, jg)

(I)l
q)éi2,¢2,0+f,+f)
gi2,¢2,+2, 55t 5)
iii§,¥2,+2,+m,\/g)
q)éié,;%,o,f%,fﬁ)
(63 %3~ o %)
i;iwq:w %1_m7+%)
q)é:t%ﬂzgﬁlﬁr\%ﬂr%)
(I)giéﬂ:%ﬁlﬁﬁﬁﬁ)
q)g:OtQ,ﬂF?,O F+%)
(i2,q:2,0 0 ——)
(8.6)

The values in the parenthesis indicate 81€(2);, x SU(2)r x SU(4) weights. They are given in the order
(Ls, R3,Us, Ug, Uys) respectively. The first two columns above show (Re2, 10) Higgs fields and the last two

columns show thé2, 2, 10) Higgs fields. Again either up or down pairs {1, +1 ...

yandin(+i,F1...)

should be chosen. In the 210 Higgs matrix, {Be2, 10) fields are located in the upper off diagonal block and the
(2,2,10) fields are located in the lower off diagonal block. Note thatlaven't distinguished between them by

means of any label.

The10** component of2, 2, 10) with (up,up) isospin and the)** component of2, 2, 10) with (down,down)
isospin areSU (3). x U(1)q singlets. Indeed each of them could be in principal utilizetireak theSU (2), x

SU(2)r x SU(4) symmetry down t&6U (3). x U(1)q

. But this spontaneous symmetry breaking initiates a very

sudden transition between the final and initial states ltiagun extremely heavy gauge bosons with masses high
above the Fermi scale. Since this is in conflict with the eteetak theory, we disregard these Higgs fields. From
the other side thé3, 1, 15), (1, 3, 15) and(1, 1, 15) Higgs fields are respectively defined as

1 1 1
cI)(A,0,+1,0,0) cI)(o A,—1,0,0) (I)(O 0,+1,0,0)

2
(I)(A 0,+§,+#,0) (I)(o A,— ,77 ,0) (0 0 +2,+7 0)
o3 o3 o3

(A,0,— 27+2\f70) (0A+27 2\/10) (0,0,— 27+m10)
cI)(A 0,—1,0,0) cI)(o A,+1,0,0) (I)(O,O,—I,O,O)

5

éA ,0, 75,77,0) éo A3 +7 0) éo 0,75,7#,0)
P P (0]

(8,0,43,—52=,0) (0,A,—5,+5%,0) (0,0,+3,-32=,0)
cI)(A,O,O,o,o) cI)(O,A,O,o,o) (I)(O 0,0,0,0)

8 8
(I)SA,(),(),(),()) (I)go,A,o,o,o) (0 0,0,0,0) (8.7)

1 1 2 1 1 2 1 2

(A, Oa+§,+m,+7) (0, A1_§1_77_7) (00+2,+2\/§7+7)
o0 H10 H10

(8,0,—3 +525+3) 0,843,352~ 3) (0,0,— 3, + 555, +5)
oLl H1l Pl

(8,0,0,— 9=+ %) (0,4,0,+9=,— %) (0,0,0,— 75, +35)
o12 H12 P12

(8,0,—3,—53=.— %) (0,843, +55=+3) 0,0,—3,~ 352~ %)
ol3 H13 P13

(A0+2=5v5 V&) (0.A=5 4505+ 5) (0043 =55~ V)
P P 2 2

EA 10,0472, —55) gvo T3t 3) go 0,042, —2)
olo olo oo

(A,0,0,0,0)

(0,A,0,0,0)

(0,0,0,0,0)

The Higgs fields of thé1, 1, 15) multiplet coincides with those of the, 1, 15) and(1, 3, 15) multiplets as seen
from Q. The last Higgs field of th€l, 1, 15) multiplet above which is thél5 decomposes und&iU (2), x
SU(2)rxSU(3)exU(1)p_r asa(l,1, 1), singlet. It could be utilized to break tH/(2), x SU(2)g x SU(4)

symmetry down t&6U (2)1, x SU(2)r x SU(3). x U(1)p—r. We will use instead a similar singlet from tH&
representation which we first introduce§i®. A discussion about the necessity of using such a singtaeikliggs
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mechanism will be surveyed §i11. The Higgs fields of th&, 2, 6) multiplet are

P! P!

(£5.£5, 0+ +%) (£3.F35, 0+ o+ %)
P2 PP i1 1 o
1 1 1 1 1
éi§1i§7+§a_ma+%) éiEFFEH'ia—mH'Tg)
IR 1 1 1 s 1 1
(i§,i§7+§,+2\/§7*\/g) (iav:FEHriHr?\/g,*\/g) (8 8)
ol 1 1 ol 1 1 '
(£3,£35,0 vt 7*\/5) (£3,¥3:0 vt 7*\/3)
¢5 1 1 1 1 1 ¢5 1 1 1 1 1
éi§7i§7—§7+m7—%) éi§7:|:§a—§,+m7—75)
(I)(il 411141 (I)(il SCS RN B W T
272 2 23 Ve 2t T2 T 33T e

These Higgs fields are overlapping with those of (2g2, 10) and the(2, 2, 10) multiplets. All of the (2,2, 6)
Higgs fields carrnySU(3).. color and fractional electric charges. Therefore none efitltan be used in the Higgs
mechanism. Finally we have®U (2);, x SU(2)r x SU(4) singlet which is

®70,0,0,0,0 (8.9)

This (1,1, 1) singlet was shortly denoted wit§, in the matrix. For the Higgs mechanism we will use the
following Higgs term
1

\/3—2¢)7891() 789l 0 5 Tr[(®111)?] = (®350)° (8.10)

Q111 = 550 =
where( )* = ()()T.

8.1 Features of the @,

(i) Againwe consider the most general case in that we breaKh(10) gauge group with the Higgs fiefd,.
Then the vev of this Higgs fields endows the gauge fields of2h2, 6) multiplet with mass.

(i) The ®§, singlet of210 can not be employed in the Yukawa sector. Because it failsdadyze dirac mass
terms for fermions. This fact applies to all Higgs fields ie #10 Higgs representation. This can also be
seen from the matrix a’s. It couples¥ ;, with ¥, and notW , with ¥ p.
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9. THE HIGGS MULTIPLETS : THE45)-REPRESENTATION

9.1 The Structure

The45 is the collection of antisymmetric objects that can be caesed from the bi-products of tHg basis with

i = (1...10) so thats,, = —X4,. These are the generatdts, of SO(10) and were introduced previously in
eq. (2.12). In order to investigate tHé Higgs representation, we defidé real scalar fields),, wherea,b =
(1,...,10) with ¢4, = —ds, and construct the sum

10

r o éTT {(zab qsab)ﬂ =Y 6%, a#b 9.1)

a,b=1

1

—Ea ab —
i b Pab

|~

which is alike the gauge term except for that we have scallisfiastead of vector fields. The Higgs fields
are complex and are spanned by the basig@f TheI's are made of the bi-produci§I'; with ¢ # j. The
decomposition of the5 Higgs fields is akin to that of th& gauge bosons studied §8 [53]. The decomposition
of the 45 in terms of the maximal subgrouflU (4) x SU(2)r x SU(2)r and in terms of its descestl/(3). x
SU(2)r, x SU(2)g x U(1)p_1, is done as

45 = (1,1,15) + (2,2,6) + (1,3,1) + (1,1,3)

45 = (1,1,8), + (LL3)ys + (LL3) ,p + (LL1), + (2,2,3)y, 9.2)

(25273)72/3 + (15371)0 + (15173)()

respectively, where the subscripts denBte- L numbers. The expressions for the Higgs fields that fall iheo t
above multiplets in terms of the basig, can be easily recovered from our previous analysfgs3nThe(1, 1,15)
members are

iy = Pho = (Pas + P63+ P53 +i dag)/2 By = (a3 + Pra + i3t + idhoa)/2

?go = ‘1)50 = (¢s2+ o1 +ide2+id15)/2 B = (o5 + P61 + ids1 + ide2)/2

Doy = Do = (P23 + da1 +i P31 +idaz)/2 By = (b5 + des + sz + ida)/2 (9.3)
Ofy = Oy = (do1 + daz + 2 P65)/ V06 P = (P21 + daz — des)/V3

P8y = @) = (d21 — 2 duz — d65)/V6

where®},, 3, and ®3, are conjugated t@3,, ®5, and ®§, respectively. ®7, and 5, are made of diagonal
elements. Alsab}3, (3, @3 are conjugated t@),, ®5), ®4j. The two zeros in the subscripts show left and right
isospin states. Thg, 1,1) and the(1, 3, 1) triplet fields are respectively

iy = (¢pos + dro7 +idro +igos)/2 P = (Pos + Pri0 + igro +ichs10)/2
q)go = (fs7 + $100)/V2 (I)§() = (¢s7 + b910)/V2 (9.4)
®fy = (Pos + Pr07 —idr9 —id108)/2 PG = (¢Pos + 710 — ip79 — iPs10)/2

The subscript$7, 0, | ) show left and right isospin states of the respective isosjptet. The hat on the zero is,
as done before, introduced to distinguish between theiisogutral fields. The fields in the coset of the maximal
subgroup and th€0(10) group, fall into the(2, 2, 6) multiplet. These are

D = (fr5 + des +igre +igss)/2 BT = (¢os + Pe10 + ihos + id105)/2
DT = (P37 + ¢pag +igra +iga)/2  B] = (¢30 + Par0 + idos + ich310)/2
o3, (¢71 + ds2 +igar +idg1) /2 @} = (do1 + Proz2 + i + ipr01)/2
(9.5)
Dt = (¢s9 + Pe10 +ideo +idr05)/2 P = (Gr5 + bse + idre + idss)/2
DY = (do3 + Par0 + igag +i¢310)/2 D] = (¢37+ Psa +icra + ids3)/2

DY = (P19 + ¢ro2 +igor +igr01)/2 PF = (P11 + Pos + iy +ihig)/2



The subscriptg | etc. show left and right isospin states. The above fields atered as below, where the values
in parentheses denote weights with respect to the maxirbgtsup in the ordef.5, R3, Us, Us andU;5. We have

1 1 7

(I)(o 0,41,0, 0) @(+§,+§,+§,+ﬁ,fﬁ) q)(f%,f%,f% 55+ s)

(I)(o 0,44 ,45%.0) P? 1,1 L R R T
3 (+3,+3,— 3t35 —%) —57—§7+§7—ﬁ7+%)

.0, 2_0 o7 1 1 Y, 1 1
( - Jr2\/§’) (+3,+3.,0, —ﬁ =) —2=2:0,+75 +5)
(0,0,71,0 0)

o> ot P10
g) 0,—3,—525,0) E)Jrg,f%ﬁr%#ﬁfﬁ) g;é#%ﬁ%, 55t 5)

(I)(oo+— —=2_.0) ‘I)(+1 _1141 1y QL1 +1)

27 2v3° 627 2T 2T 3T G 1227 2T T3 TG
(0.00.00) Py 1o 1 R R

ot (+3:-3:0.—% — %) 3F3, 0,05 H0g) -
(0,0,0,0,0) (1,1,15) (2,2,3) (2,23)
9 13 19
(0,043, +55.+3) cI)( ALl l L) (I)H S R RN S T

2 = 3: 753 s =
P10 1 ! it 23 VG 20 PRV
(I,§O1 03t 55+ ) —3+3- 55 75) (+3.-3+3 505t 75)
15 21
0,0,0,— L D0y 1 @ L L

q)§2 V5t s 143,02 ,—75) (+3,-3,0 .+ -+ )
0,0-%,—3=-%) ,

o3 (I)%S; _lglga 1y (I)?i TR R S S
(0.0,43.— 55— %) N R 53 BTG
14 [0 [0

(I)(000+— -2) (1;% —3 -5 t505—5) (2+4 TRt Tasty )]

P )
(I)(o,o,o,o,o) —3-5: 0.7 .~ 75) (+3.+3. 0.+ 75 +75)
1 1
q)(T,(),(),(),()) CI)(o 1,0,0,0)
3 3
@(6,0,0,0,0) (3.1.1) (I)(o 0,0,0,0) (1,3.1)
(1)2

(1,0,0,0,0) (I)(o 1,0,0,0)
(9.6)

The weight diagrams of these scalar fields are the same vaitfeifustrated in Fig[ (3.1). The Higgs fields of the
(1,1, 8) form a color octet and are electrically neutral. T2e2, 3)_2/3 and its conjugaté2, 2, 3)2/3 are color
triplets and color anti-triplets respectively, which gegtectric charges. Similarly th@, 1, 3), /3 and its conjugate
(1,1, 3)72/3 are also color triplets with electric charge. None of theskl$i should be given any vev.

However the(1, 3, 1), is a right isospin triplet, color singlet. These Higgs teiptomes with 3 different electric
charges, namely+-1,0, —1) and the(3,1, 1), is a left isospin triplet with electric chargés-1,0, —1). Since the
neutral members of both triplets asg/(3) x U(1)q singlets, they can be candidates for the Higgs mechanism.
The neutral Higgs field of the former triplet brea®& (2) r down toU (1) r and the neutral Higgs field of the latter
triplet breaksSU (2), down toU (1) . Furthermore none of the two can generate Dirac massesrfoidies.

Finally the(1,1,1), is a singletunder theU (3) x U (1) symmetry. Itis a candidate for the Higgs mechanism
and breaks the following initial symmetries to the final syatries

(Z) SU(4> X SU(Q)L X SU(Q)R down tOSU(?)) X SU(Q)L X SU(Z)R X U(]-)BfL-
(ZZ) SU(4> X U(l)L+R down tOSU(g) X U(]-)L+R X U(]-)BfL-

These descents are illustrated in Fig. (11.1) togetherthvigtHiggs multiplets studied in the preceding sections.
Using the isomorphism betwe&D (6) x SO(4) andSU (4) x SU(2) x SU(2) we can rewrite the expansion in
eq. (9.1) in terms of the unitary generators given infeq) @@ (3.10). Thél, 1,1), singlet is nothing but thé{3
Higgs field in eq.[(9.3) and multiplieB}3 in the isomorphically equivalent expansmn which is the generator
We denote the sumin eq. (9.1) formally@asTheng transforms under the representation of the maximal sulpgrou
such that
¢ —ApAN 5 A=exp(—igUih —igL\; —igR;\!) (9.7)

where the)’s are some parameters. Actually the basis for: = (1,...24) should also be included in the
exponential so that the transformation is generalizedd&'th(10) case. We can expardaround the identity and
look at the infinitesimal transformation ¢f From the expansion we get

¢ — ¢ +iglo, Uil i +ig o, Ri] N + ig[¢, Li] N + O(g°) + . .. (9.8)

The higher order terms can be found through the CampbeleBEkusdorff lemma. In general prior to some
spontaneous breakdown, transforms not only with respetttot also separately under each of the exponentials.
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Since the generators of each gauge group in the direct profittee maximal subgroup mutually commute, they
can be collected in a single exponential as above which ficmuftly general.

The vacuum is by definition thetable ground state of the Higgs field. if receives spontaneously a vev,
some of the commutators above will not vanish any more, the. initial symmetry will be lost. The residual
symmetry that the vacuum respects can be sorted out fronmothenatators in the expansion. Let us assume that
boac = (BE3) - T35, where(®3) denotes the vev received by thig 1, 1), singlet. Then we obtain

[Liydvae)] = 0 i=1,...,3 ; SU2)L

[Riyvae] = 0 i=1,...,3 ; SU2)g

(Ui, poac] = 0 i=1,....,8 ; SU(3) (9.9)
[Uiv¢vac] = 0 i=15 ;U(l)BfL ’
[Uiybvac) # 0 i=9,...,14 ; X bosons

[Siyvae] # 0 i=1,...,24 ; (2,2,6)bosons

This choice of¢,.. above lets the vacuum to develop a minimum that is invariadeu the residuabU (3). x
SU(2)r, x SU(2)r x U(1)p—r gauge symmetry. It is seen from the last line above that #resformations
generated by/; fori = (9,...,14) andS; underi = (1,...,24) are no more symmetries of the vacuum. Indeed
these symmetries can be recovered throughithignry gauge at the minima, in which th&l,, and(2, 2, 6) gauge
bosons eat the goldstone bosons. We have occasionallyssegrthe above commutations shortly as

U15:I%8 — AR:AL:AB,LZO = AQZO (910)

HereA'’s denote the amount of non-commutation with respect to tneesponding symmetries. Note that we have
not devised any potentidf (¢) yet. This will be first done in conjunction with many other ripllets in §(11.1.
The term suitable for the Higgs mechanism will be chosen as

1
s = 5 315 T3 + Goldstone modes (9.11)

Since the residual symmetry of the vacuum after spontargoumetry breakdown is th&€U (3). x U(1)q there
will exist 45 — 8 — 1 = 36 massive gauge fields i5ilO(10). Therefore we needl6 Goldstone modes. We choose
them out of thet5 Higgs multiplet as

Goldstone modes% {®1; T} + 07, T}, + 0, T, + @ T + @} T + ®F TF +
®[ I, + 2], F?l +@] T +7T17 + @3 7|5 + [T T i+
CUT} + @[T+ T+ O[T} + @ TT ] + O[T |+ (9.12)
PTH + 0T 1 0T + ORI 1 0T 1 oI
@0y Ty + oo Tao + oo oo + Pog Too + Pog Loo + Poo Loo+
(I)TO FTO + (I)oo 1-‘00 + (I) FLO + (I)OT FOT + (I)oo 1-‘00 + (I)Ol FOl}
These Higgs fields will receive no vev but will providé longitudinal degrees of freedom for other gauge fields
becoming massive iI8O(10). They can be gauged away via a unitary gauge indtheepresentation. We will

come back to this point later §111. Note that thds in the above expansion are labelled in the same way as the
Higgs fields of thel5 and can be easily recognized. We have

(I‘L)T = F%T = (X754 Mg — 1 X6 — 1 Xgs) /4, (1"1)) 1"15 = (Zo5+ Xg10 — 7 Xog — 7 105)/4
(FTL)T =T = (Z3r+Xug — i Xra — i Bag) /4, (I‘QO)T =T = (330 + Xu10 — i Bos — i Uz10) /4
(F?L)T = F?T = (Z71 4+ X0 — 1 X7 — i 3s1)/4, (I‘QI)T = Fls = (Zg1 4+ X102 — 1 X29 — 1 X101)/4
(Iﬁ?)T =T = (Zs0+ X610 — i X690 — i S105)/ (F%%)T =T1% = (S5 +Xgs — i X7 — @ Tsg)/4
(I‘H)T =T% = (Boz+ Laro — i Xag — i X310)/ (F%‘T‘)T =TT = (Z37+Xgs—i 7y —iYs3)/4
(I‘ﬁ)T = F?l = B9+ X102 — 7392 — 1 X101)/ (I‘%‘%)T = I‘lg = (U714 Xos —i Yo7 — 1 X1g)/4
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(1_‘610)T Tl = (Zus+Te3—iX53—iXag)/4
(T3) = T2 = (Sso+Te1—iTeo—iTis)/4
(FS())T = T3 = (Za3+%41—iX3 —iX)/4
(I‘(7)0)Jr = Iy = (32 + e5)/V6
(I‘SO)T = I = (Za-— E43)/\/6 (9.13)
(TR) = T9) = (Sos+Sra—i Va1 —iDoy)/4
(Fég)T = T§) = (B25+ 61— i35 — i e2)/4
(Fég)T Li = (Bas+ Se3 — i Usz — i Bgs) /4
r's (Z21 + Sa3 — Be5)/V12
Ty = (Xos+ Tior — i Yrg — i X108)/4
Fgo = (Zs7 + S100)/V8
Fw = (Zos + X107+ X79 + i X108)/4
(9.14)
Lo = (Xog+ Tri0 — i Brg — i Xg10)/4
Fgﬁ = (Zs7 + Zo10)/V8
I = (Zos+ X710 +1i Y79 + i Xg10)/4

9.2 Features of the ®})

(i) If we spontaneously breakO(10) by giving a vev tod(3, the X,, bosons and all th€, 2, 6) bosons get
mass.

(i) The ®3 singlet of(1,1,15) can not be used in the Yukawa sector. It fails to produce Dirass terms for
fermions.

(i) In contrast to the Higgs scalar that spontaneouslyakrthe electroweak gauge symmetry, thg, Higgs
scalar has no quantum numbers. It has no electric chargbenégft- nor right-isospin, it has n8 — L
number and no spin etc. It can acquire onlyss. There by it has a very classical nature.
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10. THE HIGGS MULTIPLETS: THE16)-REPRESENTATION

10.1 The Structure

We had previously decomposed the spindisand ¥  with respect taSU(3)¢ x U(1)q and also with respect
to SU(3)c x SU(2)r x U(1)y in §[4.3.1. It was pointed out there that the existence of elsaityi neutral and
colorless fermion singlets make thé’s i.e., ¥, and ¥ eligible for the Higgs mechanism. These electrically
neutral and colorless fermion singlets are indeed neussiates given in ed. (4.19) and (4.20). In the following,
we concentrate on using thé for representing Higgs fields. The approach is to assign teagealar fields to
the U, and ¥R spinors. Since the Higgs scalar have no spin, the subsdriptsd R which denote chirality of
the spinors should be interpreted differently. Let us #sand — instead ofL and R respectively. Also we use
the lettersp,. and¢_ instead of’ . and the?’_. As a matter of fact the,. and thep_ Higgs representation are

understood to transform under thig. andX._ representations respectively. These are projectionsafdmplete
SO(10) representation :

Ziza(

If T'tipe in eq. (2.15) for a particular basis assumes the special forey. (2.16), then the comple®0(10)
representation angl can be expressed as

P 102

This actually happens for basisandB. Let us assigB2 scalar fieldy; withi = (1, ..., 32) to the 32 dimensional
¢. Then we obtain

1
1 irfi'ue) by ) (bi = 5 (1 iFfive) <Z> (10'1)

e G
2/3 2/3
o a
e, g
9 V/3 f1/3
7;1/3 8021/5
v 1/3 9 1/3
o “,
bt = 1/3 ) - = 5?/3 (10-3)
s e
s 9173
cplll 1971
_(ij/d _ngQ/d
T T
—2/3 2/3
— 0] —9z
*809_2/3 7199—2/3
b b
L =¥ L 0]
Here the complex scalar fields are explicitly defined as
192/3 (61 +i¢2)/V2 1/5 = (¢o + i ¢10)/V2
0= (93 +i00)/V2 0717 = (d11 +idin)/V2 04
90 = (65 +i06)/V2 ‘1/3 = ($13+i614)/V2
= (¢7 +igs)/V2 = (¢15 +i¢r6)/V2



= (17 +i¢1s)/V2 _2/ = (¢p25 + i da6)/ V2
= (¢19 +i¢20)/\/§ _2/ = (¢a7 +i¢28>/\/§ (10.5)
= (o1 + i ¢h22)/V2 _2/ = (¢p29 + i b30)/ V2

= (¢23 + i h24) /V2 —¥ = (31 +i ha2)/ V2

Note that¢, contains the abovis fields,¢_ contains the charge conjugated fields. ilé., The various charges
carried by thesaz2 fields are shown in the superscripts as well as in the sultscilipe superscripts denote electric-
charges, subscripts dena&é’/(3)-color. The isospin charges are suppressed. However tlds fielnoted withp
carry only right isospin and the fields denoted witlearry only left isospin. Note that all these Higgs fields garr
B — L numbers. The fields ip_ appear in a different order than thosefin. Actually they are related over the
C andP transformations. We have

O ] [ ¢ }
o=oe=r | 50| % (100)
Here¢p should transform under the transformed representation given in €q. (4.24). Undergghaonjugation

we have 5 4
_ _ + _ —
Cd)d)oc[qb_}{—fl(m_} (10.7)

where A is given in eql(4.23) ang¢ should transform under the conjugated representatiomgiveq.(4.21).
Furthermore the decomposition of tB2 dimensional Higgs multiplet is given #110.7.

10.2 The Primary Descent

Looking at the decomposition of tt82 dimensional Higgs multiplet if§[10.7, we see that there are no singlet
fields in the second row. Therefore tR&/(4) x SU(2);, x SU(2)r symmetry can not be spontaneously broken
downtoSU (3) x SU(2)r, x SU(2)g x U(1) p—y, via a Higgs scalar in th&2. In the third row there are the, 1),
and(1, 1), singlet Higgs fields. These singlets corresponghtaand its charge conjugatg’ respectively. They
carry zero hypercharge and &#(3). x U(1)q singlets. These can be employed in the following two descent

(Z) SU(3)C X SU(Q)L X SU(Z)R X U(]-)BfL — SU(3)C X SU(Z)L X U(].)y
(ii) SU@3)e x SU@)r x UL)yr — SU(3). x U(1)g

where the first one will be called the-imary descent. Because it spontaneously breaks the left-right symmetric
symmetry down to the electroweak gauge symmetry. If allsscilds are set to zero and is given a vev, the
resultingevec expression will have two non zero entries. We have

0T © o
0 0
0 0
0 <500>*
0 0
0 0
0 0

ac 0 vac O it

(bi = 0 ) P = 0 s Puvac = |: 23—0,0 :| (10'8)
0 0
0 0
0 0
0 0
0 0
0 0

L =" | L 0]

Let us defing(y”) = vrexp(—ifr). We will refer to these two multiplets as’, and16’_ respectively. The
residual symmetries under which the vacuum is left invdriam be found through infinitesimal transformations.
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These are manifest through the following set of operations.

— Si¢vac =0 Z:(O,,12)
E; szc ;8 Si vac # 0 i=(13,...,24)
L3 (z)’t)ac =0 Uz (z):t)ac =0 ’L = (1, ceey 8)
Ry ¢pac #0 Ui ¢vac #0 1= (9, ceey 15) (109)
RQ (z);Zc ?é 0 (R3 + (B - L)/Q) (z)'t)ac = (Y/Q) ¢Uac =0
RB vaac ?é 0 (L5 + Y/2> ¢vac = Q d)vac =0

Since the amount of breaking is andUg_ 1, are opposite in sign and equal in strength, the hyperchargains
a residual symmetry of the vacuum.

10.3 The Secondary Descent

Looking at the decomposition of tr&2 dimensional Higgs multiplet if§[10.7, we see that each of tiie, 2) ,
and(1,2), multiplets in the second line decompose undéf(3) x U(1)q into singlets. These colorless and
electrically neutral fields aré® and its charge conjugat® respectively. These can be employed in the following
two descents. We have

(’L) SU(3)C x SUR2) x SUR)r xU(l)p_, — SU(3)C x SUR2)r x U(1)y
(Z’L) ;S’(](?))c X SU(Q)L X U(l)y — SU(S)C X U(l)Q

The second one will be called thecondary descent. Itis complementary to the primary descent. They can be used
together. Meanwhile the secondary descent above is formiatiilar to the spontaneous breakdown implemented
in the electroweak theory where the Higgs fields is assign@dspinor, strictly speaking a doublet. If all fields are
set to zero and is assigned a vev, we obtain

0 0

0 0

0 0

() 0

0 0

0 0

0 0
vac 0 vac 0 ¢vac
¢ 0 ) - = 0 ) ¢'L)ac = |: qﬁé_ac ] (10'10)

0 0

0 0

0 0

0 0

0 0

0 0

o | )" |

Let us defingy®) = vy exp (—i6). We will refer to these two multiplets d$’, and16” . The residual symme-
tries under which the vacuum is left invariant can be obtieough the following operations

L1 ¢pae #0 Si dvac =0 = (4,5,6,10,11,12,16,17,18,22,23,24)
Lo ¢ppae #0 Si dvac F0 1= (1,2,3 7,8,9,13,14,15,19,20,21)
LS ¢UGC 7& 0 Ui ¢UGC =0 ( , )

Rl vaac =0 Uz ¢vac ?é 0 ( s )

RQ (z)vac =0 Y ¢vac 7é 0

RB (z)vac =0 (Ld + Y/2> ¢vac = Q ¢'Uac =0

(10.11)
In the last expression it is seen that the amount of breakitdg iand inY” add up to zero so th&f(1), remains a
residual symmetry of the vacuum.

10.4 Left-Right Asymmetry

We know that theSU (3) xU (1) o gauge symmetry is preceded by the electroweak gauge sygnasaire approach
the Fermi mass scale. Therefore the primary descent shakedilace at some energy scale which lies above the
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mass scale of the secondary descent provided that we testrielf to use bottip) and(¥°) in a spontaneous
symmetry breakdown. We should haye’) > (¥°). This hierarchy gives rise to the following pattern:

SU@) x SU2)1 x SU©2)r x UL)p_1 2 SUB) x SUR), x U(L)y 2 SUB) x U)o (10.12)

If we reverse this inequality such thgt’) < (9°) then things change and we encounter a different pattern:

SU(3) x SU(2)1, x SU2)r x U(1)p_1 U3 SU3) x SU@)g x U(L)y: 2 SUB) x U(L)g  (10.13)

This latter pattern is symmetric to the former under par@ysformation. According to the above descents where
the initial symmetry is common, a left-right symmetric imteediate vacuum could have been possible if the initial
symmetry were not spontaneously broken at all, or it couleelreen possible if the initial symmetry were spon-
taneously broken with equal strengths of the two vevs suah@) = (9°). In both cases we would not observe
an intermediate electroweak gauge symmetry at all. Theentiphenomenology restricts us to the condition that
(©%) < (¥%). The above situation is not special to the patterns that mmeght about by the twaé's. It also
occurs when we consider tlig, 3, 10) @ (3, 1, 10) Higgs fields in§[7.1. As a result, in the realm &fO(10) one
should consider a primary descent which is considerably elevattdrespect to the secondary descent.

10.5 Features of the 16" and 16"

Here we shortly consider how thé’ in eq. (10.8) and thé6” in eq. (10.10) behave in the Higgs mechanism and
in the Yukawa sector.

(i) Thel6’ gives mass to thel,, A, X,, W, , W3, Wy, Xp_1, gauge fields. Thé6” gives mass to th,,
Ap, Xo, W W2, W, , Xp_ 1, gauge fields.

(#4) Since thel6’ and16” are no square matrices, the possible mass terms that cam$teumted for fermions,

have mass dimensions greater thianThis spoils renormalisibility. Dimension 5 terms whichogduce Dirac
masses for all fermions can be obtained through terms like

((162)" (165)) (@ wr) = ((&°)" (9°)" + () (0) Tr f (10.14)

where either th¢+—) or (—+) pairs should be considered. These vertices are shown ilid.). At the vertices
two Higgs scalars carry the correct quantum charges awéer@irac mass terms only for neutrinos can obtained
through terms like

((62)" (@) ((165)" (@) — () (8°) TLvm + () (0°) L) (v)© (10.15)

Majorana mass terms for neutrinos are also possible witfott@ving two terms
((162)" (wn)) ((162)T (WR)) — (°)(6") TR v (10.16)
((62) (@) ((167)" (W) — (9°)0°) P (2" (10.17)

Note that the primary descent produces Majorana mass temagf The secondary descent produces Majorana
masses fory,. These vertices are also shown in Fig. (10.1).

0 0
fr e VR ¥ VR ®
rd rd rd
rd 7 7
7 7 7
r'd r'd r'd
7 7 7
>\ >\ >\
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
~ ~ ~
fL ,190 vy, 190 VE (,90
Fig. 10.1: Mass terms for fermions produced via Higgs scalars in the 16’s. The first one produces Dirac mass
terms for all fermions and the latter two produce Majorana mass terms for neutrinos.
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10.6 Lepton and Quark Masses via the 16

The neutrinos may have simultaneously Dirac and Majorarssesa The charged leptons and quarks can have
only dirac masses. Using the Higgs multipléé. and16’,, which were defined if[10.2 and;[10.3 respectively,

we can rewrite the above dimension five mass terms for nestand as well as for charged leptons and quarks in
a nicer way. Let us introduce two Higgs fields and¢>. We have

¢ = ( ig:—f ) P2 = ( ig% ) (10.18)

These Higgs fields can be used to generate the mass terms. ifl@dst) to(10.17). The appropriate Yukawa
Lagrangian reads

YP (o - -
Ly = 2J {(‘151 ¢2) (\I’z \I’j) + (¢2 ¢)1) (\Ilz \Ifj) + (qﬂ \Pz) (qﬁ; \Ilj) + (gf); \I’z) ((ﬂ \I;])}
(10.19)
+ {ra(olw) (o w) + v (o) (6t ws) )
whereg;, = quP for k = 1,2. In our representatioR is like o in the Dirac-Pauli representatiomﬁ?, YLJL and

Yif' are Yukawa couplings. The summation is done aygr= (1, 2, 3), which denotes the family space. The first
two terms inLy generate Dirac masses not only for neutrinos but also foraghmaining fermions. It is useful to
define the following neutrino fields

. ) (ph) W, 7 - el 0LyT — =i (T e _ (O,
‘ \/5 vy ’ \/5 VL
P Sl U YA V1 T L7 N 7 R A R

V2 vR T V2 - R

HereF; and f; carry flavor index = (1,2, 3) running over all neutrino species. Theses neutrino fieldssaive
as an eigenbasis for writing the neutrino mass matrix. Tgerdasis has the property that= F¢ andf = f°.
The phasexpify andexpi 6 in f andF are originating from the vevs. The Dirac and Majorana massgdor
neutrinos resulting frondy- can be collected into a separate Lagrandiénthrough a mass matrix by means of
the formerly defined quantitie® and f. The terms in the upper line by can be brought to the same form with
the first term in the lower line if we sét, + 6z = 7. This simplifies the Lagrangian. We get

CpwroEirs] o,
Ly = fi F; ] =[fi Fi]M [ FJ ] (10.20)
MZ-? MZ-I;L F; J

Here ML

D, M} andM [T are3 x 3 matrices in the flavor space and are explicitly defined as

M7 =Y vivr, ME=Y5vi, MJ=YI o} (10.21)
Diagonalizing the mass matrix yields the masses;pbndvy. Without adapting any particular texture for the
Yukawa couplings, the neutrino masses are uniformly ptedias

mZ, =0 , Exactly zero

2 _ .2 2
myR—UL—i—UR

(10.22)

where we have suppressed over flavor indices and assumecbtheaanj?, M@ andM};’: to be scalar entries.
The couplings are chosen to satisfy the condifigh = ;% = ;¥ = 1. The values fo#) and () depend on
the model.
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10.7 Decomposition of the 16 & 16

We proceed with the decomposition of tszcomplex scalar fields undéf/ (4) x SU(2) x SU(2)r, SU(3) x
SU(2)L x SU(2)r x U(1)p_r andSU(3) x SU(2)r x U(1)y respectively. We have

32 = (4,2,1) +
32 = (372a1)+1/3 +
) —1 +
32 = (3,2),,  +
1,1), +
(372)71/3 +

+

+
+

(4,1,2)
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11. AN SO(10) MODEL

11.1 Its Higgs Lagrangian

In this section, we will construct a suitable Higgs Lagramgivhose potential part should consist of those Higgs
multiplets which are physicallyrost relevant. These Higgs multiplets are summarized in Table (11.1).SEmee
multiplets are also shown in Fig. (11.1) where we have gjedeimonstrated how these multiplets relate certain
descents in the Higgs mechanism.

Why do we need especially these multiplets ? And why are sotmer anultiplets excluded ? Let us try
to answer these questiong;) Naturally we expect that th8O(10) or the SU(4) x SU(2)r x SU(2)r gauge
symmetry can only exist at soneetremely high energy scale, high in comparison to the Fermi scalelakrtown
Fermion masses. If we were to break solely $it¢(10) or theSU (4) x SU(2)r x SU(2) gz gauge symmetry with
one of the multiplets in th&0 or in the126 with some vacuum expectation value at the order of thigemely
high scale then the fermions would also receive masses sabther. This is obviously in contradiction with
our observations of the known fermion mass¢&.) The gauge bosons which lie in the coset$¥9(10) and
SU(4) x SU(2)r, x SU(2)r should beeztremely massive, otherwise this would again be in contradiction with
the observation of the extremely long life time of the protdinerefore from(i) and (i) it is easy to conclude
that we need some multiplet which can endow the A/ |Y,,, Y. and X,, gauge bosons witmasses but leaves
simultaneously the fermionsiassless. This is easily met by the inclusion of tHe, 1, 15) of the 45 into the
Higgs potential. Note that th@, 1, 1) singlet of the210 can also meet the same requirement withdheption
that it leaves theX,, bosonsmassless. Nevertheless the inclusion of thig, 1, 1) singlet of the210 in the Higgs
mechanism might not be dangerous. Remember thaktlie can not mediate nucleon decays alone. Therefore
we will also include the(1, 1,1) singlet of the210 into the Higgs potential, in the hope that the inclusion of
intermediateSU (4) x SU(2);, x SU(2)r gauge symmetry in our model provides a better descriptiamatire
than its absence. We will come to this point again.

The Yukawa sector and the Higgs sector are of course notémdigmt, because the scalars which spontaneously
break the symmetry of the vacuum can also couple to fermiod€adow them with some masses. The multiplets
that can be used to account for fermion masses are ir0taad in thel 26 Higgs representations. We will make full
use of these scalars, allowing also Majorana masses forimesivia the(1, 3, 10) and(3, 1, 10) scalars. Primarily
there is nothing against this, and secondarily it is alseagrable due to the following facté&iii) The right-handed
neutrino is missing and if it exists at all, it should have somassabove the Fermi scale(iv) The left-handed
neutrinos, unlike theharged leptons and quarks, are almost massless, with masses extrerbelyw the Fermi
scale. (v) Remember that th6€O(10) Higgs sector should also be able to account for the lefttRglymmetry
which was discussed before; We expect that the vacuum eatmtialue of(1, 3,10) should be considerably
elevated with respect to that (8, 1, 10). The last three stegsii), (iv) and(v) are intrinsically tied together. The
nature of the neutrino masses as well as the left-right asstmynare better understood if one lets the neutrinos
acquire both Dirac and Majorana masses. This leads to masg@savhich produce neutrino masses similar to
that given in eq/(10.22).

The Most Relevant Higgs Multiplets
210 45 126 10
(1,1,1) (1,1,15) (3,1,10) | (1,3,10) | (2,2,15) (2,2,1)
v, ol ol | ey | ei| ey e e
+ 36 Goldstone modes

Tab. 11.1: The physically most relevant Higgs multiplets in SO(10)
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Fig. 11.1: An illustration showing how the Higgs fields break the initial and intermediate symmetries.

Another problem one has to account for are the degrees aldreén the gauge sector. As seen from Ta-
ble (11.1), we have introduced totall$ Goldstone bosons. These are chosen out of the Higgs scéltues 4
and will receive no vacuum expectation value. In the spardan breakdown of th8O(10) symmetry down to
SU(3). x U(1)q there exist exactly5 — 8 — 1 = 36 gauge fields which become massive. It could be thought
that these86 gauge fields eat thos¥® Goldstone bosons and gain an extra longitudinal degreesefirm. The
initial symmetry of the vacuum even after spontaneous symmetry breakdovwsvdoeeally get lost [70]. The
36 Goldstone bosons are chosen out of4hdecause at the minimum, it should be possible to paramettrez
36 Goldstone fields via a unitary gauge as done in the electdotiesory. This is physically a consistent way of
gauging away the unwanted Goldstone bosons|[51][71].

In the following, we introduce some shorthand definitionstfee Higgs fields in Table (11.1) which simplify
the expressions entering the Higgs Lagrangian. We have

_ s s
(1)111 - q)oo FOO )

O45 = (1/2) (23, T}y + O Ty + @ Ty + &7 Tf) + 07 T3 + @4 T7 +
) I, + 0} I + &) I +@IT)+ @1 T} + @FT 7+
q>r+c1>r+q>r+c1>r+q>r+c1>rﬁ+
o1 I1] + @3 I3) + 97 I3} + @71 7] + T T + o T+ (11.1)
@OOFOO+<I>53P10+<I>55P +<I>3)31“ +<I>5gr +<I>5§1“OO+
D0 Too + 1o g + @3 Tg + D% Ty + By Top + @ T+

00~ 00 00~ 00
2 2
(I)Ol I‘Ol ) )

cI)311’0 = (q)w 10) /32
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D310 = (CI)(I)(T) I%(T)) /32,

(11.2)
®s = (#7141 + @12 TI) VAT,

5 5 5 5
Pao1 = (@7 7, +@}4TY;) /V32,

The properties of these Higgs fields were previously stuitietktail in§[8,/9, 7 and 6 respectively. The vacuum
expectation values of the above given Higgs fields will beashwith ( ). They are chosen as

_ s
(@111) =2 T , z=2z (cosp + ising)

ST
(Pa5) =xTqq , x =2 (cost¥ + isind)

(P3110) = VL F%g ) vy =wvg (cosf + ising)

(11.3)
(®1310) = vR T | vr =vg (cosy + i sinvy)
<‘I)2215>=11F%?+VI‘1? , u=u (cosd +isind) , v=uv (cos + isinf)
<®221>:kr?i+kfra 7 k=Fk (cosa + isina)

where{z, x, vy, vr, u, v, k} are complex valued quantities. The phases assigned to ¥eesere defined as
in the right hand side above. Let us construct the followinteptial terms by using the multiplets defined in

egs.(11.1) and (11.2):

Ui = —mTr{®11 @]y} + 32 MTr{(®111®111)?} + Bu(Tr{®1110]4, })?
Uss = —usTr{@as®hs} + (96/7) \sTr{(®a58]5)?} + Bs(Tr{PusPhs })?

Usipo = _/~L4TT{CI)(3117))(I);11’0} + )\4T7‘{((I)311*0(I)2;11—0)2} + 54(T7"{(I)311’0‘I);1f0})2
(11.4)

Uisio = —uaTr{®13100 {510} + MTr{(P1310P1310)%} + Ba(Tr{®13100]5,0})
Usors = —usTr{®aa15®lpi5} + (24/7) AsTr{(Pa215®hy5)?} + Ba(Tr{Pa215P1015})?

Usor = —puoTr{ @21 Yy } + 32 Mo Tr{(Pa21®hy;)?} + Bo(Tr{ P21 @1y, })?

The labelling might seem to be extravagant. But a more ecaradmotation could make things less traceable. The
funny numbers appearing in front of the coupling strengtiesigtroduced to simplify the resulting expressions.
They can be reabsorbed after one finishes solving for thenmainiet us continue with the potential terms that can
be build by crossing the Higgs fields. These are

U =32 s Tr{ s @l @111®] 1} + AisTr{Pus L5 } Tr{ @111 ], }

USHO = 32 104 Tr{ @510} 1, @111®] 11} + A Tr{ Py 0@, 1} {1110, }

(11.5)
U = 32 puaTr{@13109]510P1110}11 } + AraTr{@1310®] 5,0} Tr{ @111 @] }
UBL® = 32 p1sTr{ @215 Phoy s P111 011} + AisTr{®oo1s®hyy 5 1T { @111 0]}
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URL = 32 i Tr{@op1 @ @111011, } + Mo Tr{ ooy @1, }Tr{®1110],, }
UL = (32/3) psa Tr{®ay 1o @] 1 PasPls ) + Tr{q>3110<1>3110}Tr{q>45c1>45}

U210 = (32/3) M54T7“{‘I)1310‘I)1310<I’45<I>45} + )\54T7"{<I>1510<I>1310}TT{CI’45‘I)45}
U225 = (96/7) pssTr{PosisPhy1s@as®hs} + Asa Tr{Pao15®hoys YT {PusBls }
U = 32 15 Tr{@op1 &l 0450l } + Nao Tr{®o @y }Tr{ a5 @l }
UL = 1aaTr{®@1310® ]300 Tr{D31100} 1} (11.6)
Uiﬂ% (8/3) M43T7"{‘I)5110‘1)3110‘1)2215(1)2215} + )\43T7“{(I>5110(I>3110}Tr{(1)2215<1>2215}
Uiﬂo (8/3) N42T7"{CI)3110<I’3110<I)221 @221} + >\42TT{<I>3110<I>3110}Tr{<I>221<I>221}
UG = (8/3) pasTr{®13100 15,0 P021505,5} + AasTr{P13100 510 }Tr{P2215D1,15}
U3lo = (8/3) s Tr{®1310®] 510201 Bly } + AaoTr{@1510® 1510} T7{ P221 15, }

UZL, = 32 psoTr{ Poo15Phy 5 P221 By } + As2 Tr{ Poois®hyy s 17 { P21 @y, }

In addition to the above the above crossed terms, the fallgwérms are also possible. They have significant
effects on the solution of the minimum. They are respondiméehe left-right asymmetry in the vacuum which
was previously discussed §1(10.4). We have

U%QI% =32 K1 T?"{@;ll—()@221@1310@221} (11 7)
U = (8/3) ko Tr{®]3,Pa2150] 1 P2os}

By definition the total potentidl 4,4, consists of the sum of all th& terms above in eqs. (11.4) to (11.7). The
kinetic termsT g5 IS defined as

Triggs =Tr [Dy ( P111 + Pas + P3110 + P10 + Poo1s + Poos )]2 =Tr [ D, (Pan )]2 (11.8)

whereD,, is the covariant gauge derivative. The gauge invarianttkitterm of the Higgs field is

2
Tr (Duq)all)2 =Tr (a;tq)all +1 g [q)alh IR W]) (119)

S
V2
Here( )2 = ( )( ). And g is the single gauge coupling 6fO(10). Also ¥ - W is the gauge term given in
eq. (4.1). The Higgs Lagrangian is composed of the the kirsetd the potential terms :

LHiggs = THiggs - UHiggs (11.10)
In the following two sections, we will investigate the ab@aential and kinetic parts separately. The kinetic part

will generate the masses for the gauge fields and the pdteatiawill generate the masses of the Higgs fields
upon spontaneous symmetry breakdown.
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11.2 SSB of the Higgs Lagrangian: The Potential Part

11.2.1 Minimizing the Higgs Potential

We can substitute the vevs given in eq. (11.3) directly intolliggs potential given in ed. (11.10) and minimize
the total Higgs potentidUy, 45 With respecttov; = {z,x,vy,Vvr, u,v,k}. To do so one needs the explicit
expressions of the variolids appearing in eqs. (11.1) and (11.2). These were expligitldied in sections on the
Higgs multiplets and can be borrowed from there. The Higdgemt@l at the minimum is a very long expression
and we will spare our self from presenting it explicitly. Wet@oroUy,,4s/0v; = 0, the following set of equations

(1) 222\ + B1) + B2 (A2 + p12) + (u? 4+ 0%) (A3 + p13)
+ (vp2 +FvrR?) (M4 + p1a) + 22 (M5 + pas) —p1 =0

(i1) 22°(Xs 4 B5) + k*(Xs2 + ps2) + (u® +v*)(As3 + ps3)
+ (02 +F vR?)(Nsa + psa) + 22(M1s + p15) — s = 0

(iii) wvr(e*k?ky + €210 2 Ka2) + 2ei(’3+7)vL(k2()\42 + f42)
+(u? v ) Mz + 22 (Mg + s ) + 2052 (Mg + Ba)
— g+ vR% paa +u? puz + 2% (Asa+ 51 ) ) =0

(iv) v (e k*k1 + ¥ uko) 4 2¢" PR (k2 (Aag + f142)
+(u? +v?) Mg +vrpag +20R% (M +Ba ) — s (11.11)
+ 2% (Ma+p1a ) +u? praz + 3% (Xsa +psa ) ) =0
(v) wpwr ke e P20 42 (WP 407 B3 — s
+2u? A3+ 2% (M3 4 1z ) + k2 (a2 + z2)
+ (v + vR®)(Aas + pas) + 2% (As3 + ps3) =0

(vi)  2®(As3 + ps3) + (vr® 4+ vR?) Mg + 2%( A1 + pas )
+2(u? +v?)Bs + k*(N3g + pz2) +202 A3 —pu3 =0

(Uii) ei( 2a—f—7) v, VR K1 + 2 k2 ()\2 + 52) + ( ’UL2 + UR2 ) ( Ago + fig2 )
+ (u? +v?)(A32 + p32) + 22 (As2 + ps2) + 22 (Mg 4 p12) — 2 =0

These equations can be solved for the vevs in terms of thesHiggplings. The easiest way is to divide equation
(4ii) and equatior(iv) by 2¢*(**+7)y;, and2¢ Pty respectively. Then through adding and subtracting these
resulting equations they can be solved among themselvesg fandvy as below. We have

1/2
o+ vk =5 (i = (@ 4 0%) s — 2% Qa4 ) =

k2 (A2 + pan) — u? puaz + 2% (Asa + pisa) ] =2 o (11.12)

ei (2a—B—7) k2 K1+ ei (26—B—7) u2 Ko
4(Pa+ra)—2paa

It is seen that the upper equation describes a circle anawer lequation a hyperbola on the plane with the axes
vg, andvg. The solution corresponds to the geometric intersectiaghefwo curves. In terms of the above defined
variablesf; and f,, we obtain

vRﬁ\/f12+ \/f14*f22 ’ ’UL\/§\/f12 \/f147f22 (1113)
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Furthermore, it is appropriate to eliminate andvy in the remaining equations, i.e.(i), (ii), (v), (vi) and
(vii) above by using the expressions in eq. (11.13). Consequémlybecome linear in the squares of the vevs.
These 5 equations can be further solved for the remaining$ Viégherebyf; and f> are also determined in terms
of the Higgs couplings. However the solutions fer, x, u, v, k} will not be presented here since they are very
long expressions. An interesting aspect of the above solusi that, if f* # f.?, we end up with a left-right
asymmetric vacuum amounting4@ # vp.

Yet another aspect of the potential part of the Higgs Lageangre the resulting Higgs masses. These can be
found through substituting the ternvs + H; into the Higgs Potential at the minimum. HéfE = {H,, Hy,
H,, . H,., H,,H, Hy} are the corresponding Higgs fields associated with thewye\rhe procedure requires
to collect all second order terms lika?; H; H; into a mass-squared matrix whetg; are nothing but pre-factors
made of the above vevs and the Higgs couplings defined in theahgian. But unfortunately this mass-squared
matrix, of size7 x 7, has no zero entries and the evaluation of its mass eigers/éiluns out to become very
exhaustive. From the other side, one should keep in mindtitigatoupling strengths in the Higgs Lagrangian
are sofar unknown to us. Apart from the theoretical evatunatif the Higgs masses, their existence is currently
speculative. Therefore, we do not go into the details ofthlsulation. More interesting is the kinetic part where
the gauge boson masses are generated. An apparent advantage ofétie gart is that thgauge couplings enter
the mass-squared matrix instead of #i@gs couplings.

11.3 SSB of the Higgs Lagrangian: The Kinetic Part

11.3.1 Mass-squared Matrix of the Gauge Fields

In this section, we will mainly consider the term given in €L.9) in its full extent. This term entails the physically
most meaningful part of th80O(10) model. We will be able to extract information about how thegmbosons
mix and what masses they receive through the spontaneouseatyyibreakdown. The expressions, we arrive at,
will depend on the vevs and the coupling strengths of theragpgauge interactions. During the evaluation of
the commutator below, the single gauge couplmyf the gauge term should be moved inside it so thean be
replaced by the gauge couplings of the separate gaugedtiterawhich were introduced previously §r(5.27).
We have

2
1 ,
Tr (—H’gﬁ [@g;ﬁ,z-W]) = F MF (11.14)

Here the Higgs fields are collected as a linear sud n as given in eq! (1118). Consequenthy;s’ is the sum of
the vevs in eq/ (1113). All the resulting terms arisings fihi@trace operation can be collected into a mass-squared
matrix M where the gauge fields are placed into a column veetdie have

- A, -
Ag
Ap
Al
Ay
)
Y
Yy
Yy
vy

’
YQ

F=| ¥ (11.15)
X

Xg
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This column vector has totally2 entries. But if we count the charge conjugated gauge fieldsfitogether, we
get altogetheB7 gauge fields. Note thath — 37 = 8, correspond to the 8 gluons. These remain massless and are
absent in the expression fét. The electromagnetic gauge field is not allowed to get anysrbgsconstruction.
We expect tha87 — 1 = 36 gauge fields receive mass. Explicit evaluation of the termgn(11.14) yields the
mass-squared Matrix/. We have

@3

a4

as

5

a

5

5

6

6

@8

@16

@19 -

where each dot denotes a zero entry. There are tdt@llydependent non-zero entriesiith shown witho; where

1 =(1,...,16). These entries are composed as
a1 = ¢*(4u* + 2% + 3(vi +vg +2%))/3 ag = gp(k* +u? +0* + 4%) /4
s = g% (3k% 4 3u® 4 3v% + 227 4+ 60 +62%) /6 a1 = 9p—r (vl +vF)
a3 = g2 (3k% + 3u® + 30° + 227 + 602 +622) /6 any = 292\/2/3e T O0FD) (e OHB) 4 eHi204 )
ay = g*(4v® + 2% + 32%)/3 o = g3 (—3e k2 — 2uve 1 (079) /6
as = ¢ (4u® + 4* + 4a® + 3vF + 3v)/3 a1z = grgr(k? e —2uvet 09 /4
ag = g1 (k* +u® +v* +201) /4 a1 = —grgr(k* +u® +v%)/4
ar = g (K +u® +v° + 40) /4 Q15 = —gB-LYR V]
ag = gr(k* +u? + 0 + 20%) /4 a16 = —9gB-LYRVE

(11.16)

The entries are exact expressions and no approximatioresdegre. The couplings, g, gr andgp_, are as
defined in§ (5.27). However their numerical values are subject to neradization which will be considered later
in §/14. Note thatv;; , a2 anday3 are complex valued. Therefore the following definitions phases will be

useful

Q13 = |0413| €

i C1

Q12 = || €6

11 = || e e
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The explicit expressions fqi, ¢, and(z are givenin eqs| (11.26) and (11.27). For future referemeadditionally
define some new combinations which read

az0 = \/ (K2 +u2 +02) (v} + v}) + 4030 (63 + 9R)oh 1, + 9 0h)
az = g3 (k2 +u® + 0% — 4v3) /4 (11.18)
o = gh(k* +u® +0? — 4})/4

These additionak’s will be useful in expressing the mass eigenvalues and migssistates in an equivalent but
drastically shorter form. As next, we will work out the maggemstates and mass eigenvalues of this mass-squared
matrix M.

11.3.2 Gauge Bosons: Mixing and Masses
Mass FEigenstates

The mass matriX\/ yields 22 eigenstates. But as we pointed out in the former section atieet Hermicity of
M, these22 eigenstates relate us to totally eigenstates. Among them only one eigenstate turns out 4exo
mass and should be identified as the gauge field of the redit{ia, symmetry. We have exactly

Ae<ﬂ+%+ E) (11.19)
gL 9gRr g15

Herein the photon appears as a mixture of the above eldbtrizautral gauge fields. The couplirgnormalizes
the electromagnetic gauge fiel, as shown irf (5.27). Three more eigenstates that follow frasare found as

I/VlﬂE = et % cos &y Wf +siné&; Wg
0 1 0 0 (11'20)
Zy = N (LWL + B2 Wp+ B Xp_1)

where the above mixing parametérs, , 82 ands are composed of the gauge couplings and the vevs. The phase
(1 is composednly of the vevs and the phases that enter the vevs. Indeed the ofig; are the phases in the
vevs. The mixing paramete€s, 31, 82, 33 and the phase; will be explicitly presented in eqs. (11.23), (11.24)
and (11.26). The electrically charged massive gauge figigisare a mixture OWjE andW;{'E. As will be shown

later the phase€; is a source foC' P violation. The neutral gauge field! is composed of the same gauge fields
that enter4,,. But is a massive mass eigenstatéis introduced to normalize the mass eigensgteln addition

to theZ) and theW1i gauge fields, we find 3 more similar mass eigenstatéd oThese are

WQi = —etiCging WLi + cos&; W}%

o S0 , (11.21)
By WL+ By Wi+ 03 Xp-1)

1
0
Z2 - AT (
where the mixing anglé, appears again, but mixes thig;" and W3 fields differently: ThelV;* and ;" mass
eigenstates are orthonormal to each othg}.mixes through the parametes$, 35 and ;. A’ is introduced to
normalize the mass eigenstdté. These are again composed of the gauge couplings and the Tiegsmixing
parameterg, 5 and 35 will be explicitly presented in eq. (11.25). The remainingssive mass eigenstates are
collectively found as
Ws = Y' :nomixing

[e%

Wy
W

€'%2 cos &y Yy + sin &y Al
—e'%sin &, Yy, + cosés Al (11.22)

We= €' cos &3 Ay +sinés X,
Wy = —e'Ssinés Ay + cosés Xa
Here the gauge fields, do not undergo any mixing. This is not an accident. The afectrarge ofY” doesn’t

match with any other of the available gauge fields. We forynddinote thes&, gauge fields witl1s. It should
be kept in mind thatV; comes in three different colors and is electrically chargéte 173 mass eigenstates form
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a color triplet with degenerate mass. We see ¥aaand A, mix through the parametés into two different mass
eigenstates wher® is given in eq.[(11.23). These are shown with andW; and have different masses. Both
W4 andWs are electrically charged color triplets. The masses witthéncolor triplets arelegenerate. Finally, as
was mentioned i§[5.2 theX,, lepto-quark gauge fields mix with,,’s through the parametes into two different
mass eigenstates with different masses wifgiis given in eq./(11.23). Here again thé; andW; gauge fields
are electrically charged color triplets and the massesmitie color triplets arelegenerate.

Although we haven't presented the explicit expressiongHermasses of the above gauge fields yet, it might
be useful to mention qualitatively some remarkable points:

The massive gauge fielddV:*, Z9) and (W, Z9) should be separated by a sizeable mass gap. It would
be phenomenologically consistent to expect such a gap beagther the former or the latter "triplet” should
correspond to the observed gauge figltd$*, Z) of the electroweak theory. Actually it is the mixing andie
which is determinant in this identification. For the abovyegtypf mixing amondV;, andWWx there will be stringent
bounds org; [44]. If cos&; is relatively bigger thawin &7, the fieIdWLi will be the dominant component Wli.
This dominance could allow us to relat&/’:=, Z¥) with (W*, Z). If it turns out to be the opposite case then
(W5, Z9) should be identified as tH@V'*, Z). Of course in both cases, it should be investigated to whatitm
Wg enters the mixed mass eigenstates and whether this framiidd be tolerated by the current experimental
errors concerning processes involving charged curre2i§73][74][75][76]. From the other side there will be
also bounds on the heavier neutral bostih(or Z?) which come from precision experiments on neutral-current
processes [40][42][41][43]. Such issues are awaiting ukwifl be considered ir§[15. We find it sufficient to
having presented here the mass eigenstatd$ ahd their properties.

Mixing Parameters

The explicit expressions for the the mixing parameters drabes which we introduced in the preceding section
will be presented here. We have

r 273
. 04670484»\/(0467048)24»4 |a13|2
& =arcsin |1+
2 |0413|
[ 2 2\ 7] 3
042—0434-\/042—043 +4 |ai2
& = arcsin |1+ ( ) [one| (11.23)
2 |0412|
[ 2 2\ ] 3
. Oé5—0[1+\/(a5—a1) +4|0411|
&3 = arcsin |1+
2 |0411|

where| | denotes the absolute value. The mixing parameters entiwénglectrically neutral mass eigenstatg
are

-9 7 B \/ ( S
o (grous + graae) {(OW +az1 — ano) (a7 + ag + aio) QQO]
= 2 — ang) — \/ 2 2 (11.24)
& (9rais + graie) |:(Ckg +azz — ay) (a7 +ag + a1p) ago]
B3 =1
where the appropriate normalization factgris defined asV' = /37 + 35 + 33. The quantitiesva, aas and

aag appearing above are defined as in eq. (11.18). The mixingnEdess entering the electrically neutral mass

84



eigenstateZ? are

g = m {(047 + g1 — aqg) + \/(a7 +ag +a10)” — 04%0]
11.25
8= (b o — )+ (ar o ) -y o
15 (416

B =1

Here the appropriate normalization factdY is defined asV'’ = /3’5 + 35 + ('5. TheC P violating phase;
which appears iV’ and also if¥; is composed of the vevs and the phases of the vevs. We have

(11.26)

¢ aretan [ k? sin(2a) — 2uwv sin(d — ) }
L= —

k2 cos(2a) —2uw cos(d — 0)

There are two more phases of interest, nangelgnd(s. These appeared in the mass eigenstadtedi’; and,
Wy respectively. The explicit expressions of these phases are

(> = arctan [3 K sin(2a) +2u v sin(6 - 9)}
2 =

3k2cos(2a) +2uv cos(d — 0)
(11.27)

(3 = arctan {UL sin(d — B) + vg sin(y — 9) ]

v, cos(0 — ) + vg cos(y — 9)

Estimated values of the above parameters will be given(irb).

Mass Eigenvalues

In this section, we present the explicit expressions of theswigenvalues of the mass eigenstatéd oNote that
no approximations are done. To avoid lengthy expressitesmiass eigenvalues are given in terms ofdisein
eqs./(11.16) and (11.18). The photon has zero mass

Ma=0 (11.28)

In the rest of this section, thguares of the masses will be given. This simplifies the appearantieecgxpressions.
The squared masses6f andZ? are respectively

(Mwli>2 =

|~

{(aﬁ +ag) — \/(046 —ag)’ + 40‘%5}
(11.29)

1
(M3,)* = 3 {(047 + ag + a1g) — \/(047 +ag + aip)’ — 0‘%0}

During the numerical evaluation of the above masses, itpsaiate to factoy; out and leave in the expression

the other gauge couplings as fractionggflike gr/gz, Or g15/91. These ratios are nothing but the normalization
constants given in eq. (5.26). Indeed these are subjechte senormalization procedure which will be studied in
§/14. The squared massesulzi‘fjt andZ?) are respectively

(MW;)2 = % |:(046 + ag) + \/(046 —ag)” + 40‘%5}

(11.30)

(MZQ)2 = {(047 + ag + aqo) + \/(047 + ag + 0410)2 - Of%():|

|~

It is remarkable to see how the, /7~ in the above expressions alternates and produces one hed\gna low
massive state each time. Consequently there occurssa gap between W3, Z9) and(W:, Z9). The squared
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masses of the mass eigenstates inleq. (11.22) are respective

(MW3>2 = Q4
o _
(M = 5 (@2 + 0) = /o2 = as)” 44 ool )
o _
(Mi,)? = 5 (@2 + ) + /(0 — ) +4 sl
o _
(M, )? = 5 (@1 +a5) = /(1 — a5)? 4 Jas
r i (11.32)
(M )? = 5 [0+ as) + /(o1 — ) +4 Jans

Similarly due to thei\/ﬁ in the last four expressions above, it is seen thigt, and My, are separated by a
mass gap. The same also occursids,, and My, .

Numerical estimates of the above masses and as well as tisagagas and the values of the mixing parameters
and phases can only be studied once we know the vevs and thes\aflthe coupling strengths at all mass scales,
because the evaluation of the mentioned quantities rexjthiese as an input. But unfortunately we don'’t have
precise knowledge about all the input values:

Note that the Higgs couplings are unknown. Therefore it wagossible to find the values of the vevs from
the minimum of the Higgs Potential. Quite similarly the war$ gauge couplings that anet contained in the
electroweak theory likgr andgp_;, are also unknown. Nevertheless there are still some teghsitpat we can
use: One possibility is tfit the values of the vevs and the values of the gauge couplimgsai we make use of the
experimentally verified parameters of the electroweak theory like the knovasses of th&/’* and theZ bosons
and the values of the 3 known coupling strengths at the elsetik mass scale, namely the Fermi scale. Another
possibility is to make use of the fact that the various cavgdistrengths satisyouge coupling unification at the
unification mass scale.

In this respect certain relations among the parametersea$@(10) theory and the parameters of the elec-
troweak theory will serve as a bridge to estimate the unknpanameters as far as possible. Estimated values of
the above masses will be given§is.
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12. THE YUKAWA SECTOR: QUARK AND LEPTON MASSES

12.1 Quark and Charged Lepton Masses via 126 and 10

In this section, we will construct a suitable Yukawa Lagtiang For the generation of fermion masses, we should
consider again those Higgs fields which entered the Higgsdragan. These where collected in the expression
of &, in eq. (11.8). But note that the Higgs multiplets defined tigto®,,; and through®,s in eq. (11.1) can
not produce any fermion masses. Among the Higgs fields delfeia ®,;;, only ®5; 15 , P1310 » 2215 anNdPoog

can be used in the Yukawa Lagrangian. To shorten expres#igmaseful to collect the Higgs fields that enter the
Yukawa Lagrangian under a single expressions. We define

Py = P10 + Piz10 + P2215s + Po2s (12.1)
Using this definition fordy- the suitable Yukawa Lagrangiafy- can be written down. We have
Ly =Yy (¥; @y ¥;) + hec. (12.2)

HereY;; is by definition the Yukawa coupling. It carries family indEwhere, j = (1, 2,3) and¥; is the family
spinor transforming under th®0(10) representation. Note that there is summation of the farpéce inly-. We
will assume that all 3 families couple to each other with égtr@ngths. This leads to the well known form

11 1
Vy==[111 (12.3)
111

wherel/3 is an appropriate normalization constant [77]. Note thatethtries are just uniformly filled with 1. At
this stage, we should also ask whether the isospin up fesniba isospin down fermions, the charged leptons and
the neutral leptons couple to each other all withdlwee strength ? If this isiot the case then we should introduce

new Yukawa couplings liké&’;2/*, ¥;\/*, ¥;* and Y% which are again uniform with respect to family indices but
are distinguished with respect to electric charge as ineita the superscripts. Note that, being up or down in
the isospin space manifests itself also through electrdegdh But we will disregard all these possibilities for the
moment. It would be worth considering it first provided that assumption of uniformity fails to reproduce the
fermion masses of the heaviest generation successfulipgUise definitions of the vevs in eq. (11.3), we arrive
at(®y). Let us substituté®y-) in Ly above. Since the fermions become massive one should cotiseédmass
eigenstates rather than the flavor eigenstates. From teegitte only the fermions with equal charge can undergo
mixing. Therefore all 3 flavors of say, the up fermions shdddollected in a 3 by 3 matrix. Similarly this should
also be done for the down fermions, the charged leptons andehtral leptons where the last one needs special
attention since there will also appear Majorana massesefatral leptons. The mass terms for neutrinos will be
separately considered §n(12.2). Since the Yukawa couplings were uniform, so theienwf these 3 by 3 mass
matrices for the up fermions, the down fermions and the avatgptons will also be uniform. That means two
of the mass eigenvalues will always be zero and only one sigembecomes massive. These fermions can be
identified as the heaviest fermion generation, namely ting generation. Since the vevs have phases, the quarks
will have phases too. We have

_ i D D _i¢Pk
my=mee'®, mp =m) ¢ (12.4)
my, =mpe's | m, =m, e

Here D indicates Dirac masses of neutrinos and the various phésgmrks are shown witlj as abovem, and
my, are the top and bottom quark masses respectimﬁ/.anme are the tau-neutrino and tau masses respectively.

We have
- ‘Jre*mk ey k2 uk cos(a 5>+u2
= - — | = S — S — -
‘ 42 26 32 83 24
| 4 (12.5)
m—‘_ﬂ_ﬂ — k_2+ﬂcos(a+9)+£
’ 12 26 32 83 24



The mass of the leptons are

D ‘_’_e“ak_i_?)e”u k2+ uk ( 6)+3u2
m, =|+———+——| =4/ == + —= cos(a — —
o 42 2v6 32 83 8
| | (12.6)
- ‘ekarSe”’v _ K vk cos(a+9)+3—v2
Tl 42 206 |\ 32 83 8

where in the first line the Dirac mass term of the tau-neutisrgiven. The final expression of the mass of the tau-
neutrino will be obtained in conjunction with the Majoranass terms that result together frady in eq. (12.2).
As seen in the above expressions, all the fermions in theé g@neration receive mass via thethrough the vev
k. In contrast, the vew contributes only to the up fermion and the vevsontributes only to the down fermion
masses. This can naturally induce an asymmetry betweerotkie dnd up fermion masses. Note also that the
phases andfd appear in the up- and down-fermions mass terms respectiégh can reinforce this asymmetry
further. Another remarkable point is that the vevkadindw or similarly £ andv are interfering.

Direct evaluation of the above mass terms requires inebtafiee values of the vevs and the phases. This will
be first achieved ifj [15.

12.2  Neutral Lepton Masses via 126 and 10

Let us continue with the Dirac and Majorana mass terms ofraklgiptons that result fromiy in eq. (12.2). The
Dirac mass of the tau-neutrino was independently given &gi(12.6). Similarly the Majorana mass terms for
the tau-neutrinos read

i, =
_ (12.7)
M iy
mVTR = VR E€E

where the superscript/ denotes Majorana mass term ahdR denote handedness. Now we will treat these terms

together. The Dirac and Majorana mass terms of the neutrgmsting from£Ly can be arranged into a 2 by 2

matrix where each entry has a 3 by 3 flavor subspace [78][fL@feicollect all these neutrino mass terms under

the expressioify.. We have

_ MZLJ M? fi _ i

=2(F F) —(5n Rym(F) a2
Byt mE )\ :

<

Here M is the neutrino mass matrix. The fermion stafeand F' are the Majorana-neutrino flavor-eigenbasis.
They are defined as

5 m eﬂﬁ/%% +eiﬁ/2(,/%)c 7 - eﬂﬁ/QEJre*iﬁ/QW
T V2 o V2
v ] o o (12.9)
o RO ey e
’ V2 ’ V2

Herei,j = (1,2, 3). The phases iff andF’ are identified agl and~ respectively. These originate from the vevs
in eq. (11.3). Note also that® = f andF© = F. By means of the above eigenbasis, the 3 by 3 mass matrices in
M read

etiaf  3eidy
M v (S 2
VoY < 42 2V6
MLLJ _ }/ZJ vr (12.10)
M} = Yijvr

It can be easily checked that the Majorana mass terms in 2d7)(are generated through the prodgict; MZL]
andF; F; M [ respectively. The Dirac mass terms of the neutrinos arergetethrough?; f; M7 or f; F; MJ.
These two terms should correctly yield the Dirac mass teregir{12.6). Consequently the phagesnd~ should
satisfy some relation for consistency. We ha{€—7)/2 = 1. TheCP violating phas&, in eq. (11.26) does not
become trivial through this condition. Assurie- v = 2 = n where n is an integer number, them (3 = — cot 8
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provided thatv;, # vg. If we diagonalizeM, 4 mass eigenstates will have zero masses because of tienunif
entries inY;;. The remaining two mass eigenstates, which should be fa=htis the mass eigenstates of the
tau-neutrino of the third generation, have non-zero magdesse masses are

1
My, =vL+ VR — 2—\/5\//€2 +12u? + 8 (vp —vg)> 4+ 4V3ku cos(a — §)
(12.11)

1 2
my. =vp +vp 4+ ——=1/k2+12u2 + 8 (v;, —vR)> +4V3ku cos(a — &
a=u et oy (o1 —v) (a—0)

Herem, andml,T2 are the masses of the mass eigenstatesindv,, respectively. These are not pure in the
Majorana flavor eigenbasj or F;, i.e., they have no pure handedness but are mixturgsarid F;. The mixing
can be stated over a mixing angleand a phasé, where the latter is again a possible sourcefét violation [79].
The mass eigenstates far,, andm,,, read

U, = +e'% fycos €y + Fysinéy

, (12.12)
Vry = —€'%% fasinéy + Fycos &y
The phasé, which follows from M is found as
k sin(a) + u /12 sin(0)
~avetan |- 12.13
¢4 = arctan [ k cos(a) +u /12 cos(6) ( )

Here we have used the lett@r. Because,; with ¢ = (1,2, 3) are the phases that enter the expressions for mixing
of gauge bosons which were already given in eqs. (11.26)Eh@&7). Here the mixing parametgris a function
of the vevs and their phases. We have

[N

2
(4(’UL —vR) — \/5\//62 +12u2 + 43 ku cos(a —4)+8(vL —UR)Q)
2k2 +12u2

&, = arcsin +1 (12.14)

In the state of the art, we have left-handed neutrinos inreathich are treated in the framework of the electroweak
theory. Recent findings tell us that these left-handed ireasgthave tiny masses [80][81][82][83]. On the other side
the right-handed neutrinos have never been observed. €b@keak theory naturally excludes the existence of
right-handed neutrinos. However we can not write down amg@®inass term for the neutrinos in the framework of
the electroweak theory which would lead right-handed rieosrto have the same mass with left-handed neutrinos.
This would be in conflict with the absence of light right-haddeutrinos. Obviously the electroweak theory has a
shortcoming in the neutrino sector.

In the SO(10) theory the above mass matii can generate unequal masses for left-handed and righetand
neutrinos. Consequently almost massless left-handedimesiand very massive right-handed neutrinos can co-
exist in nature without conflicting the current status ofeviments.

Now in the light of our analysis, it would be consistent toritify v, in eq. (12.12) with the heaviest observed
left-handed neutrino which is the tau-neutrino. Consetiyen, in eq. (12.12) should then correspond to the
hypothetical right-handed tau-neutrino. But ngr neitherv., has pure handedness which is revealed by the
above mixing in eq.(12.12). Therefore we should expect¢hsaf, equals almost zero in the above mixing so
thatv,, becomes almost a pure left-handed mass eigenstatearmbcomes almost a pure right-handed mass
eigenstate. As a result, the above described mixing woulphysically acceptable only #in¢, andm,,  are
very small. The evaluation ofn ¢, andm,, will be postponed until we gain some accurate knowledge of th
vevs in§[15 via afitting procedure.
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13. COUPLING OF THE GAUGE FIELDS TO FERMIONS

13.1 Charged Currents (CC')

The ®45; and®4215 Higgs fields given in eql (11.3) gave rise to a complex mixinpag theWjE ande{E gauge
fields. The resulting mixing was previously stated in €q%.2Z0) and[(11.21). It was found thH;t’1 andW;" are
corresponding to mass eigenstates with different massssoas in eqs! (11.29) and (11.30). This mixing can be
described through a rotation. We have

Wi etiCcosé;  sing wi
= (13.1)
Wi —etiCsing  cosé; Wi
where¢; is the mixing angle and; is the phase originating from the vevs which can be traced ttathe mass-
squared matrix of the gauge fields§id1.3. The phase is a source for spontanéofisviolation. On the other side
Wi andW; correspond to the physical fields. Therefore we should tewhie Lagrangian in ed. (5.18) which
describes the interaction of fermions with the chargedesus; in terms of the physical field&:* andW;". We

expect the original Lagrangian to assume the form given erritiht hand side as below. This can be achieved
through the inverse transformation in €q. (13.1). We have

L€ = +iV2(grJg Wi + g1 Jf - Wi) = +i V2 (g1 JT - W + g2 J5 - W5) (13.2)

Hereing;, andgp are the coupling strengths 61/ (2), andSU(2) respectivellef anszE are the left-isospin
and right-isospin charged currents respectively. By uliegnverse transformation above, we obtain

1 i g
£90 = i o (R (on cona Vo Py — g1 sin Vi ) WY (13.3)

+ (gL sin&; Vi, P + gr e’ cos& Vi PR) WQ’L] fa+ h.c.}

Herein the charged isospin currents are projected thrduglptojection operatorg;, and Pr into JLi and J§
respectively wheré’, r = (1 F5) /2. Also f, and f; denote the up and down fermions. That means we have
indeed two Lagrangians written in expression: one for tipeoleic sector and one for the quark sector. Indeed
the family spinor¥ in eq. (5.18) contains both quarks and leptons. Conseguestshould do the replacements
fu — wandf,; — dfor quarks, and we should do the replacemegits- v andf,; — e forleptonsinf¢“. Onthe
other side the fermions should also correspond to the phlystiates and not the flavor states because they become
massive through the spontaneous symmetry breakdowntéatihrough the same Higgs scalar. The mixing among
the fermions for each sector is achieved throughith@ndVxz matrices which should be identified as A& M
matrices in case of quarks [84][6][85]. Theg andVz matrices should be identified as the Maki-Nagawaka-Sakata
(MNS) matrices in case of leptons [86][87][88][89]. Notatlihe mixing among left- and right-handed fermions
might be different therefore we ha¥g and alsoVy.

13.2  Neutral Currents (NC')

The @291, Po215, P1310 and 3 ; 1 Higgs fields given in eql (11.3) gave rise to a mixing amongWfg W3
and Xp_1 gauge fields. The resulting mixing was previously statedcjs. €11.19), [(11.21) an20) It
was found thatZ; and Z; are corresponding to mass eigenstates with different rmassshown in egs. (11.29)
and (11.30). And4, was the massless electromagnetic gauge field. This mixindeadescribed through the
following transformation. We have

A % R 9 wp
2= 2 & & || wy (13.4)
Zs 8. B B Xp_1



wherefs, B2, B3 and gy, 55, 05 are the mixing parameters which are explicitly given in €44.24) and((11.25).
Furthermoreyy, gr andgp— 1, are the coupling strengths of thé/(2) 1, SU(2) r andU (1) 5— 1, gauge interactions
respectively and, A" and N’ are normalization constants where the former is the cogglirength of/(1). The
interaction of the fermions with the neutral curredis_r,, J? andJ% in SO(10) were given in the Lagrangians
in egs.[(5.8) and (5.18). These terms can be collected in eabgian as below. We have

' 2
L£=+4i <gL JLWE +gr JRWh + \/;QB—L JB—LXB—L> (13.5)

=+ileJoA+ g1z Z1+ 92 Iz, Z2)

It is appropriate to express this Lagrangian in terms of thesjral fieldsA, Z; andZ, as described in the second
line above. Using the inverse transformation in eq. (13vé)should obtain

L=Lom4 LN =

+ i{e (fr.Qy f) A" + {f’y#% (c{, —cﬂfyg,) f} Z1"+ [f’y#% (c{,, —c£,75) f} zy +h.c.}
(13.6)

where f are the fermions. i.e., quarks and leptori3; is the electric charge of the fermigfi The first term

in £ is identified as the electromagnetic interaction Lagramgl&™. The second and the third terms dhare
identified as the neutral current interaction Lagrangfdff’ and are written in a compact form: We introduced
two pairs of vector and axial-vector couplingg,, ¢/,) and(c?,,, ¢/,,) which are composed of the elements of the
transformation matrix in eq. (13.4). The vector and axiattor couplings depend on the vevs and the coupling
strengths which can be traced back to the mass-squaredkmbttie gauge fields i§[11.3. The vector and
axial-vector couplings will also depend on thB — L), L3 and R3 quantum numbers of the fermiorfis We will
give the expressions for the vector and axial-vector caggliof SO(10) and their values if§[15.3. In the above
Lagrangian, it is appropriate to identify the second terrthwhie usualVC interaction of the electroweak theory
and the third term as a neiNC interaction. IfZ, has a comparable massig there will be stringent bounds on
thec’,,, ¢!, couplings and the&Z, mass [41][42][43].

13.3 Charged and 4-Colored Currents

The @291, Poo15, P1310 andPs ; 1 Higgs fields given in eq) (11.3) gave rise to a mixing among¥hend A/,

fields and a further mixing among thk, and X, fields. TheY, fields didn’t mix with any other gauge field. The
resulting mass eigenstates were previously given inle@s22). The masses of these mass eigenstates were given
in eq. (11.31). The mass eigenstatEs, Ws, Wg, andW, can be described through the following rotations. We
have

W3 = Y, :nomixing (13.7)

[ Wy ] [ etiCcosé&,  siné | [ Y. |
- (13.8)

| Ws | | —eTi%sing coséy | | AL |

[ We ] [ etiCcosés  sinés | [ A |
- (13.9)

| W7 | | —eTi%sing cosés | | Xa |

From the other side the Lagrangian describing the interastbf fermions with the currents mediated by the
An, ALY, Y. and X, fields prior to any SSB were given in egs. (5.1) and|(5.8) rethy. We collect these
interaction terms in a single Lagrangian. We have

L::-H'g\/i (JA-A—l—JA'-A’+JY-Y—|—JY/-Y’+JX“-Xa—f—h-c-) (1310)
= +igV2 (Jy - Wy J - W Js - W+ Jg - WL+ Jp - Wy + hec)
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where we have restatedlin terms of the physical gauge fieldg;, W, W5, W5, andW; on the right hand side
above. Using the transformations given in egs. (13.7) 8)1and (13.9), we arrive at

L=+igV2 {(J;? e %2 cos &y — Jlf( siné&) Wi + (Jf e 2 ging, —|—Jj( cosé&y) W
+ (Ji’ e % coséy — J;‘/ sinﬁg) W+ (JZ e sings + J;‘/ cos§3) wi (13.11)
Y WL e

Single interaction terms in the above Lagrangian can beddyrusing the explicit expressions for the currents in
eq. [(5.4) to[(5.7) and eq. (5.11). We have

Ly =+ ig% {[eapy (qu)avu (0)p + (@a)y Vula + 1GYu (a)7] (WE)y + hoc.}

. 1 —c c —c c 7 7 jc ~ c
Ly=+ Zgﬁ { [*(Qd% Yulg — (%)v Y lo +lav (Qd)v +luVp (Qu)v + 1%V (Qu>v + €apy (qd)a Tu (qa)s

(@) Y lu) [e7 7 coséy — sin&] (W), + hec.}

. 1 —c c —c c 7 7 jC 5 c
Ls=+1i gﬁ { [_(qd)v Yulg — (T )y Yo by +lavp (qd)~y + Ly T (qu)y + 15 T (qu)y + €apy (Qd)a T (9a)s

—(G5) Yl [e7 72 sings + cos &) (W), + hoc.}

. 1 — c jC —C — > jC
Le =+ Zgﬁ { [_eaﬁv (Gu)aYu (@2)s + 1o v (qa)y — (@5)y Yula — €apy (Gd)o T (gn)s + g T (qu)y

—(@5)y Y lu] [e7 ¢ cos&s —sin&s] (WE), + hc.}

. 1 — c jC —C — > jC
Lr=+ Zgﬁ { [_eaﬁv (Gu)a Y (@2)s + 1o v (qa)y — (@5)y Yula — €apy (Gd)o T (gn)s + g T (qu)y

—(5)y Yl [€7 7 sinés + cos&s] (W), + hec.}

(13.12)
wherel = L3+ --- + L7. Also g and! denote quarksu, ¢, t,d, s,b) and leptonge, i, 7, ve, v, v, ) respectively.
The subscripts: andd denote up and down states respectivelys, = —eq,3 = 1 and the indicega, 3,7)
denoteSU (3)..

Before we end this section, we find it appropriate to mentidieva aspects of the&SO(10) theory which
are linked to cosmology. Actually it is intriguing how grandified theories of elementary particles and their
interactions are connected with cosmology. As it is welllnpour universe is predominantly made of matter and
we have evidence for that there are more particles thanpanticles [90]. A suggestion from Yoshimura is that
the baryon number violation can combine wittP violation to produce a calculable net amount of baryon numbe
even though the universe was initially baryon neutral [92][

The mechanism becomes more transparent if one compareartied gecay rates of heavy gauge bosons and
anti-gauge bosons ( or Higgs bosons ) into quark + quark palsanti-quark + anti-quark pairs respectively [93].
This can be stated as _

{223 —q+qt ,I'l223)—q+q}
r{(2,2,3) — all} 7 r{(2,2,3) — all}
where the(2, 2, 3) multiplet denotes thel,,, A/, Y, andY’ gauge bosons. Similarly tHe, 2, 3) and the(2, 2, 3)

gauge bosons can also decay into quark + lepton or anti-guarki-lepton pairs respectively [94]. This can be
stated as

(13.13)

r{2,23) —q+1} ,T[223) —qg+i}
r{(2,2,3) — all} r{(2,2,3) — all}
To reach from an initially matter anti-matter symmetricwerse a universe with net excess of baryons surrounded
by a huge number of released photons, we would néed’ and C'P violating interactions wherd3 denotes
baryon-number. All the vertices above iy, . . . , L7 violate separatelyB and L number but conservé& — L
except the vertices i, and L5 which also violateB — L number. The general requirements for a net excess of

(13.14)
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baryons in our universe was studied by Sakharov in 1967 [B%. well know ratio reads

BB _Ta—Tq (13.15)

Ny Ng + Ng
wheren, andn; are the number of quarks and anti-quarks as products of theeatecaysn z andn., are the net
baryon and photon numbers. Heraipandn, can only be different if the interactions atkviolating which breaks
the symmetry among, = n;. From the other side the same interactions must als@ Beviolating because,,
andng remain unchanged over a parity transformation [94]in the denominator is related with the decaysg gf
mesons into photons and the nominatgris related with excess quarks that confine to make the baryoaiter
around us.

We have previously shown i§f4.3.2 thatSO(10) interactions are separately, P andC'P invariant. The
spontaneous breakdown of t5€)(10) symmetry gave rise to th& and(; phases which are possible sources
for CP violation in the above interaction Lagrangians. These ehase explicitly given eql. (11.27). They will
be evaluated later if[15. On the other side the interactions4f’® which are given in eql (13.2) are al§tP
violating due to th&; phase which is given in eq. (11/26). The valugpfvill be estimated later if§[15.

As we will show later in§[14 and$/15 the vevay;, andvg are not equal. This has certain consequences: The
WlﬂE andW2ﬂE gauge bosons acquire different masses and interact alsdlifférent strengths. As a result and
P invariance in£¢“ is numerically lost.

As aresultSO(10) grand unification has the necessary ingredient to produet excess of matter over anti-
matter. From th@ K radiation background and the average density of mattemiliverse which roughly equals
10~3! g cm~3, the above ratio turns out to read

"B 1070 (13.16)

Toy
This value puts a stringent bound on our model [94]. A quatii analysis of the above ratio using the decay
rates is however very complicated and will not be invesédatny further.
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14. RENORMALIZATION OF THE COUPLING STRENGTHS INO(10)

We have shown irg [3] that all of the Standard Model gauge interactions desgrifyethe direct product gauge
groupSU(3)¢ x SU(2)r, x U(1)y are derivable from6O(10) gauge interactions. Furthermoi$((10) grand
unification disposes of a single coupling strengtlwvhich formally describes a single force, which is not achie
in the Standard Model. But we should keep in mind that the gaimyplings strengths assigned to the color,
weak isospin and hypercharge gauge groups in the Standad&IMoe not numerically related to each other
exactly through the ratios that we stated in €q. (5.26). Thedns the measured values of these couplings are
not satisfying the simple ratios originating from tB©(10) group. This is a well known problem studied in the
framework of renormalization [30][96] [97][98]. In the reximing part, we will study the renormalization of these
various coupling strengths defined in éq. (5.26).

Let us start with the lucid identification that the separaiapting strengthg; assigned to the various sub-
groups ofSO(10) are equal in value at some grand unification mass st&lewhose value is subject to further
determination. We have

gL gr _ 9B-L _ 9y _ VAmas _ Virag e

97¢C, " Cn Cpr Oy _C, Cy  Cq (14.1)
— O e = e —— o
g1 92 g3 9a gs ge g7

The renormalization procedure influences the couplingngtiesg; to evolve differently as we move towards lower
energy scales. Formally, these unequal coupling streiegihbe perceived as the origin of the separate interactions
manifesting themselves in nature. One of the fundamenpacts of grand unification is to establish the above
equalities among these gauge couplings with the gauge iogupl For small values of the unification gauge
coupling the renormalization equations can be stated as

1 1 Q bij . Q
gi (1) Q) 20 t2 bj Rt (142)
whereg; (1) andg;(Q) is the measured strength gfat the energy scalge and @ respectively [23]. Formally
the renormalization of any of the gauge coupligjgdepends on the dimension of the unitary gauge group to
which the coupling is assigned. This property is contaimetthéb, functions which get contributions from gauge
bosons, fermion loops and scalar bosons [31]. If only theygdoosons and fermion loop contributions to vacuum
polarization are taken into account one obtains

1 11 4

whereN is related toSU (V) andn, indicating the number of fermion generations|[93][25]. ustintroduce for
each of the following subgroup a coupling strengtland a functiorby with an appropriate label. We have

U)q » by, e(Q) = Cqog(Q) = 4ma(Q)

SUMe , by, ag(Q = %@

SUBe . bs,  as(Q = L@

Uy , b1, gv(Q) = Cyga(Q) (14.4)
Ulp-r , b7, g5-0(Q) = Cp-rg3(Q)

SU@2)r , b, 9r(Q) = Crg2(Q)

SU@2). , by, 9.(@Q) = Crai(Q)

Note that these conventions confirm those in eg. (14.1). i@ef@ start using the above definitions in the renor-
malization procedure, let us consider certain ratios antbegoupling strengths that will be later useful. A well



known ratio follows from the electroweak theory. We have

9y (Q) _ &94(@)
9.(Q)  CL 91(Q)

where( indicates the energy scale dependence at which the intaréeprobed andin 6, (Q) is the weak mixing
angle. In contrast to the electroweak theory the electromatiggauge field is a mixture of th&,, Wxr andXp_ 1,
fields in SO(10) as shown in eql (11.19). Therefoti@ §;, doesnot correspond to any mixing angle $0(10).

But it is still important to us, because the ratio is expentaly determined and can be used as an input in the
fitting procedure that will be introduced §15. The ratio between the coupling strengghof SU(2)r and the
gp—r1, of U(1) g1, provides a similar use. We have

98-1(Q) _ Cp-193(Q)
9r(Q) Cr 92(Q)

Here it is remarkable to see that the last two equations abawve structural resemblance. It is easy to show that
the X5_, and W}, fields can mix into theXy gauge field over a mixing anglén 6, if we were break the
SU(2)r x U(1)s—1 gauge symmetry into th€(1)y symmetry through a Higgs field in the& Representation.
This would be quite analogous with the symmetry breakindiegpo theSU(2);, x U(1)y symmetry where
the Xy and theW? gauge fields mix into4,, again via a Higgs field in thé6 Representation, or as originally
done with a doublet i.e., in therepresentation. Somehow the neutral gauge fields are dhachired with each
other to yield the massless photon. This hypothetical ngixinglesin  is analogous tain §;, and is alsono
mizing angle of SO(10). It will be clear in a few lines how we make use of this ratiopitesthe fact that it is not
measured. The ratio between the coupling strepgtbf SU(2) r and thegy of U(1)y is also useful. We have

9r(Q) _Crg(Q) 1 (14.7)

9v(Q)  Cy ga(Q) sinfg
This ratio can be obtained through the relations given iff288) together with the above one. As nextwe consider
the coupling strengths of the left and right isospin groMis.have

9.(Q) _ Crg1(Q) _ sinbr (14.8)

gr(Q)  Crg2(Q)  tanfp
Note that her&', = Cr = 1. The ratio should be equal to unity at the unification maskese&;. This ratio can
be used to define a measure of thét — right asymmetry of the vacuum. For example assuming that g%%
is very close to one and knowing the experimentally verifialig ofsin #;, one can determingn 6y at a known
mass scale. The ratio between the coupling strepgtbf U(1)s_;, andgp_;, of U(1)s_, is also useful. We
have

= tanfy, (14.5)

=tanfp (14.6)

95-1(Q) _Cp1 93(Q) _ 1 (14.9)

gy (Q) Cy g4(Q) cosfgr

This ratio can be derived from the above given relations.

In the remaining part, we will consider the so called runrifighe coupling strengthg; and solve them for
various mass scales embodied.$§(10). The intermediate mass scales and symmetries can be detelas
in Fig. (14.1). If we compare Fig. 11.1) with Fig. (14.1), ometices that they are not really equivalent. This is
a technical problem. We do not know yet what values the veesjir{11.3) assume therefore it is hard to guess
which SSB route should be chosen in advance. We restricelfuosexpect that all the Higgs scalar in €q. (11.3)
will cooperate in the SSB afO(10). Then, it would be most relevant to expect that at the scilgsand at
My operate the scala®,;o and @45 respectively. This was discussed in some more detdilid.1. As seen
in Fig. (11.1) we should either proceed witti/ (3). x SU(2)g x U(1)y+, SU(3). x SU(2)r x U(1)y or with
SU(3)e xU(1)p+r X U(1)p—r. Phenomenologically we know th&U/ (3). x SU(2)r x U(1)y is adominating
symmetry of the vacuum. Therefore it should be consideredfagher intermediate symmetry with its mass scale
My in Fig. (14.1). Itis seen that along the above prescribeterall the vevs in eq/ (11.3) are involved. The
D419, D221 anddqa5 Higgs scalar are nevertheless cooperating at the mass/galeBut this does not imply
that they assume precisely equal vevdy, might have a fine structure i6O(10). The details about this fine
structure will be postponed 15.
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S0(10) Me

1 1
SU(4)CXSU 2)L XSU(2)R MC
l 1
SU(?))CXU(l)B_LXSU(Q)L XSU(Q)R Mp
l 1
SU@B)e x SU2)L xU(1)y Myw (4 fine structure)
1 1
SU3). xU(1)g no further SSB

Fig. 14.1: Backbone of Descents in SO(10) are on the left hand side and corresponding Intermediate mass scales
are on the right hand side. A possible fine structure of My is suppressed.

Let us start with the running afy- in four separate regions. We have

1 1 2 3 Mg
— = = 4+ 2(=by + =bI) In(—2), Mg > Q > Mc
1 1 2 3 Mc
= = — +2(20¢ + ZbE) In(—=2), Mc > Q > Mg 14.10
7 g% (5 1ty 2 ) In( 0 ) ( )
1 1 M
= = —— + 2b In(=2), Mg > Q > Mw
91 9y Q
The beta function foyy betweenM o and Mg, can be derived from the following relations
1 1 1 L, 11 L1 21 1 51
— = =0, 5+5=C5=x5+5=5> 14.11
9% g% gp-1® PPgd g3 YV 4i 3¢3 g3 343 (141D
from the last step follows
1 21 1 2
= 31 by = —b§ + 3b§ (14.12)

2 5¢ 58 75 5
Again the beta function fogy betweenV and M is similar to the above expressionigfwith a replacement of
b¢ with by. Note thatl/ (1) 51, is a subgroup ofU (4). In the running ofy the factor /5 and3 /5 simply tell us
what fraction of the total renormalization is contributedge from SU(2) g andU (1) 51, or from SU (4)¢ and
U(1) g, interactions respectively abowdy, . The running oy, 951, gr, as anda, are given collectively as

L1 Mg

JgR : — = — +2bFIn , Q> Mw
gg gQG 2 (Q)
1 1 Mg
gB—1L : — = — + 2byIn(—=), Mg > Q > Mc¢
i g (Q)
1 1 Mo
— = = 4+ 2 In(—2), Mc > Q > Mgr
gg g% 1 (Q)
1 1 Mg
gL : — = — + 2k In(—2), Q > Mg 14.13
g% gQG 2 (Q) ( )
1 1 Mg
Qg : — = — +2byIn(—2), Mg > Q > Mc¢
’ 9% 9% (Q)
1 1 Mo
— = — +2b3In(—>), Mc > Q
9% 9 Q)
1 1 Mg
Qg : — = — + 2byIn(—=>), Q>MC
9% 9% (Q)
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The evolution of the electromagnetic coupling strengihuseful. We have

3 3 2 3 3 Mg
= 4 2(Shy 4 b+ Shk)yIn(=2 M M
§e2 8¢ (84+82+82)H(Q)’ c > Q > Mc
31 31 2 3 3 M,

C
51 _31 2(5b —|—3bL)1 (=) Mg > Q > M .
31 31 o5, L 3y, Me
862 S %’ S 1 ] 2 Q ) R W
31 31 My
= 26" In(—— Mw >
8e2 ~ 8e2, + 267" In( 0 )s w Q

For the determination of the beta functions in the abovergamergy intervals, the following relations among the
couplings can be used. We have

51 _521 31, .31 21
8e2 8'5g2 5g2 8g2 8e2 8g2
~————
1/93
5 3, (14.15)
—>bi’m:§b1+§b2 Mgr > Q > Mw
em 20 3]? 3L
—>b1 :gbl +§b2+§b2 Mc > Q > Mg

In the regionMg < Q < Mg, we haveh, insteadblc. At mass scale§ < My, the coupling: is found as

3 1 31 2 3 3 Mg 2 3 3 Mc
= +2(=b Zpf 4 Sl In(== 268 4 Zplt 4+ SpL) In(==
8 e2(Q) 820 (8 4+82+ Q)D(MC) (81+82+8 Q)D(MR) (14.16)
My '
+ 26" In
) (Q)

From heree can be determined. But it is nhecessary to find the unknowresaéat;, M- and My first to make

use of this result. For this purpose let us summarize thelomsyy,, g2 andgs by using the above set of equations
for the intervalM¢ < Q < My . We have

Mg
by + bg) hl(

2( Moy

8

1 1 2 3 Mg 2 3 Mc Mp
Dy ;| ——— = = +2(Zbs + =) In(=2) + 2268 + ZpE) In(==2) + 2by In(—2=
1 1 Mg
SU2), ; ————— = — +2bL In(=—= 14.17
1 1 Mg Me
SUB3)¢ ; 200n) 2G+2b41n(M ) + 2b31n (—MW)

A possibility is to use the the combinatior©.? /g2 + 1/g? — (Cy2 + 1)/g2. Itis free of the unknowm and
the first two terms in this combination equalitge?. It yields;

Mc Mg

1
— In
, )+ e

1 Mg
— =Aln + Bln

) (14.18)

w] oo

where the constants come out as
A =2(bk — 2by + bl
B=2(§b?+b§— §b3+b§) (14.19)
C= 2(%1)1 — §b3 +b3)

There are three unknowns in eq. (14.18), namely the sddles Mo and M. Further relations are required.
Another possibility comes from the weak mixing angle comtaii by the combinatioﬁ?;Q/gﬁ — C;Q/g%. We
have ) ) )
Cy Cy 1 _o.8in“ 0y,
— — = =—=—(1+C 14.20
gi g% 62 ( + Y ) 62 ( )
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Using the expressions fgr andg; and some reorganization of the terms yield

. 3 5 Mg Mc Mg
20, = — 22 [ DIn(== In(=—= In(—= 14.21
sin” 07, 3 86 ( n(MC)—i—E n(MR)—f—]-"n(MW)) ( )
The constant®, £ andF in terms of the beta functions are found as
2 3
D= 2(51)4 + 3b§ -vh)
2
£=2(z7 + §b§ g (14.22)

F =2(b1 - b3)

Since we have three unknowi$s, Mo and Mg in each of the statements above. It is impossible to fix them
with two equations. A third one is required. Unfortunatdigite is no further phenomenological input other than
the weak mixing angle and the coupling strengths of the le@gnetic and strong interactions. Let us impose a
condition such thal/c < M. This might serve as a third relation. Formally it would beamumore useful to
define this inequality throughtaning parametep that can help with the estimation of the scales. Let

Mg
Mo 14.2
p=mde (14.23)
By means ofp, the egs.[(14.18) and (14/21) can be solved among themdelvé three unknown scales. We
have
I B 1/(3 8 £ 1 81Y]
Mp = M, Al — ————— (= — —sin?0 EC_FB\e2 342
R =Mwexp |81 5szse?(5 5" L)+ECfB(62 39§>.
[ C-B 1 (3 8 E-F (1 81Y]
Mo — 1 A C€=B 1 /3 8.9, Y e 14.24
C WeXp_2+EC—fBeQ<5 5sm L>+gc_]_-6<e2 3g§)_ ( )
[ C-B 1 (3 8 E-F (1 81
M~ = M A ————— = — —sin®f SC_FB\e2 342
G WeXp_ 3+€C*f862 <5 581n L>+ECfB<€2 3952))_

The A’s appearing in these equations are composed of beta fusctind the tuning parametgr They are
explicitly found as

A _DB—EA
V= ec—rB"
_ AE-F)+DC-B)
Ay = 7B (14.25)
a1 AE=F)+D(C-B)
5T &C - FB

The scale factop is chosen by definition positive. If we substitute the valokthe beta functions, we find that

AL >0, Ay<0, A3<0 (14.26)

where Higgs scalar contributions are completely negleitté¢ide beta functions given in egs. (14.19) and (14.22).
If pis allowed to increase for a fixed value bfy, thanM decreases antl/; increases.

14.1 Mass Scales in SO(10)

It should be noted that the results of the former renormgétimgprocedure have some general validity or even
a universal character as long as the contribution of the $lggglars are ignored. That means if the number of
Higgs scalars entering the Higgs mechanism and their trgpldoublet nature is ignored, one ends up with almost
the same scenario. Different symmetry breaking routesdcbalenvisaged. But the dominant character of the
intermediate electroweak symmetry does not leave to muamrwr alternative routes. The problem reduces
mainly to the exact specification of of the Higgs multipletgiating the same SSB’s but suiting the the fermion

sector in a better way. Our selection of the Higgs sector ileTél1.1) has been done in the broadest fashion
where a renormalizable Yukawa sector is ensured with Mapend Dirac masses for neutrinos. This gives the
confidence to hope that the fermions masses can be reprodudlee vevs. From the other side, the Higgs sector
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p Ozs_l(Mw) Mqa Me Mp Oz_l(M(;) sin2 HL(MV[/) oz_l(Mw) Oéal
Inl 7 1.70 x 101 | 1.70 x 10 | 2.45 x 107 133.8 0.2315 128 50.2
In2 7 8.57 x 1018 | 4.28 x 108 | 9.79 x 10° 132.9 0.2315 128 49.8
In3 7 5.71 x 108 | 1.91 x 10'® | 2.20 x 101° 132.3 0.2315 128 49.6
Inl 8 3.09 x 1018 | 3.09 x 108 | 7.67 x 10° 131.5 0.2315 128 49.3
In2 8 1.54 x 1018 | 7.73 x 1017 | 3.07 x 1010 130.4 0.2315 128 48.9
In3 8 1.03 x 1018 | 3.43 x 1017 | 6.91 x 1010 129.9 0.2315 128 48.7
Inl 9 5.56 x 1017 | 5.56 x 1017 | 2.40 x 100 129.0 0.2315 128 48 .4
In2 9 2.78 x 1017 | 1.39 x 1017 | 9.62 x 100 128.1 0.2315 128 48.0
In3 9 1.85 x 1017 | 6.16 x 106 | 2.16 x 10! 127.5 0.2315 128 47.8
Inl 10 1.00 x 10'7 | 1.00 x 107 | 7.54 x 100 126.6 0.2315 128 47.5
In2 10 5.02 x 106 | 2.50 x 106 | 3.02 x 10! 125.6 0.2315 128 47.1
In3 10 3.34 x 106 | 1.12 x 10'6 | 6.78 x 101! 125.1 0.2315 128 46.9
Inl 10 6.74 x 106 | 6.74 x 1016 | 7.07 x 101° 125.4 0.2315 127 47.0
In2 10 3.37 x 106 | 1.68 x 1016 | 2.83 x 10! 124.1 0.2315 127 46.6
In3 10 2.24 x 1016 | 7.49 x 1015 | 6.37 x 10! 123.9 0.2315 127 46.4

Tab. 14.1: Grand unification and intermediate mass scales without contribution of any Higgs scalars. ag = g*/4w
is the coupling strength at the grand unification mass scale Mq.

also ensures e.g. the mixing of thi, and Wy gauge fields which leads to a richer phenomenology awaiting
precision experiments.

Neglecting the contribution of the Higgs particles might he a good approximation. Since the gauge boson
masses depend very sensitively on the vevs. Let us first egtithate the scales without any contribution of Higgs
scalars using ed. (14.24). These values are summarizedia [at.1).

It is found thatM/ rests betweeh0'® — 10'7 GeV andMy betweenl0'° — 10'! GeV for various values gf and
acceptable input values of the electroweak parametevgat= 246.218 GeV where especially; ! (M) = 10.

For smaller values ofi; !, the SO(10) model is no more physically viable. Becaukf; moves inescapably
towards the Planck scale. The various values(@¥/;) are also given in Table. 14.1 for the respective values of
the intermediate mass scales where the fine structure const M is obtained from eql (14.16). We have

3(47‘1’)_1 3 (47‘1’)_1 Mg § Mce

8 al@) ~ 8a(Mg) 2 Ve Sy
R W)

M M

+m§m+§@nmﬁaﬂ+aﬁmmpzr
This expression can be solved fofM) at@Q = My, . If we compare the values of ! at Mg and My, given
in the last six rows in Table. 14.1, it is observed that they\ary close. This does not happen in the effective
SU(3)c x SU(2)L, x U(1)y running ofa~!. The difference is caused by the existence offlie) 5, x SU(2)r
symmetries above th&/; scale. The beta functio®$™ in eq. (14.15) in the interva) > My becomes negative.
The running ofx ! is sketched in Fig. 1412. As seen in the figure! reaches a minimum value of approximately
117 at the mass scal&/, beyond this scale the electromagnetic interactions begradually weaker again.

2 3
“by+ = bE) In(

8 8 )

3 2 3
by + gbp) In(5=) +2(5bT + Sy +

(14.27)

14.2  Coupling Unification Beyond Mg

Towards the grand unification scale, the coupling strengtlt®nverge closer and closer until they all reach the
valueg at My as was prescribed before in the preceding section. One spalculate whether thegg's start
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Fig. 14.2: The evolution of 1/a(Q) (vertical axis) with respect to In @ (horizontal axis) where Q is in GeV.

to depart from each other beyodd. again [23]. Such a behavior would spoil unification. To ilimate this
problem let us consider the case in that we run, alterngttee$ O(10), the standard model gauge couplings of the
SU(3)cxSU(2) xU(1)y gauge group to some unification mass sddle through the following beta functions.
We have

17 11, 4 7
ba = B W
= ameE |30 3"

17 11, 4 7
by = 9y Z 14.28
2= G | 303" (14.28)
oo L [ 11 4]
YT amez |30 T3

Here it is easy to see that beyonf};, coupling unification is no more maintained and they staditerge, unless
some Super heavy gauge bosons beldw are introduced into the theory. These gauge bosons coutdimaie

to the running of the couplings in such a way that the betatfans become equal. To obtain the condition
bz = by = by the following gauge boson contributions can be considénshave

1 [ 1 11 4

ba = [ — —

S e |30 3T g
1 11 11 4

b2 = (477)2 7?2 — gng + gng (1429)
1 [ 11 11 4

bliw *gO*gﬂl‘i’gng

The task would be to find the appropriate multiplets of gauggohs that transform undéiU (3)c x SU(2)1 x
U(1)y and produce the corrent, no andns values. An easy approach to find these bosons comes from group
theory: The smallest gauge group in which the standard nuaaebe embedded , is the rank 4 gauge gr&u|e5),
or reverselySU (3)c x SU(2), x U(1)y is a maximal subgroup U (5). So the super heavy gauge bosons we
are seeking are obviously those residing in the cos&tlof5)/SU(3)c x SU(2)r, x U(1)y, which are theY,
andY, gauge bosons in eq. (3.26). It is found that they correctdyi, = 3, since for each choice of color there
is anSU(2),, doublet. Alsons = 2. Because for each value of weak-isospin there is one cafpetr Finally if
the charges of these gauge bosons in Table (3.1) are viearddhthe same hypercharge value there are 3 color
and 2 weak-isospin charges possible, produeing- 5.

In analogy we can check this for the beta functions in eq.4)14BeyondM all of the b3, b5, b2 andb?,
functions become equal, if tHe, 2,6) & (1, 1, 6) gauge bosons in the coset of thé(10)/ SU(3)e x U (1)1 x
SU(2), x SU(2)r are considered. These super heavy gauge bosons will beesmsdlove thd/. scale and
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will contribute to the beta functions, as in the former casethat coupling unification is assured. The main reason
that we highlighted this discussion is due to a simple f&(10) has no isomorphism with any unitary group

SU(N) that possesses exactly gauge bosons. Consequently, coupling unification aBdyses less obvious and
requires some analysis.
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15. THE VACUUM EXPECTATION VALUES : ANUMERICAL FIT

In this part, we will attempt to estimate various quantitiest we derived from oufO(10) model. As we have
pointed out previously, the numerical estimates of theofeihg quantities ;

1.1 Gauge boson massg¥, 7,), (Wi, Zs), (Ws, ..., Wr).
1.2 Fermion masses of the third familyz;, my, m,, ,m,.,, m-

13 MIXIng parametersﬂh 627 631 ﬂi7 6éa ﬂé and€17 §27 §37 §4
1.4 Phases fo€' P violation : (1, (2, (3, (4

require the following as input:

2.1 The values of the vacuum expectation valiies:, v, vr, vg, z, )
2.2 The values of the phases,.3, «, 6 andd
2.3 The values of the coupling strengthg.,, gr andgp_ 1, at relevant mass scales

Since we do not know the values of the Higgs coupling at ankesitas not possible to evaluate the vevs from the
minimum of the Higgs potential i§[11.2.1 despite of the fact that we have successfully soledrinimum for
each of the vevs separately. Therefore $fi®(10) model looses its predictive power to some extent. Actuailty t
situation is indeed not so hopeless. We have found from thémai of the Higgs potential that the vacuum looses
its invariance under th8U (2);, and SU(2)r symmetries in an hyperbolic fashion; this is manifest tigtothe
two expressions in ed. (11.12). We recall the latter one whéads

vpvp = 1 k2 + o u? (15.1)

Herein we have replaced the phases and the Higgs couplitiggandc, so that the expression looks simpler.
Remarkably there exist a further relation which resemilesbove dependencewf vy onk andu. This relation
comes from the-neutrino massn,, which was given in eq. (12.11). We know that eithey, or m, should
have a nearly vanishing mass. Because one of them shoulebtfied with the observed left-handed neutrino
and the other with the hypothetical heavier right-handednm®. If we set the expression for theneutrino mass
identically to zero and solve it subsequently fgr z then we obtain exactly

32vpvr = k? + 124 + 4 V3 ku cos(a — 0) (15.2)

Itis seen that the last two equations above are similar up totarference term betweérandwu. We will return to
this point later. Let us continue our analysis with the famnsithat have Dirac masses. If we look at the expressions
for my, my andm,, in eqs.[(12.5) and (12.6), we see that they depend on:

3.1 the vacuum expectation values: andv
3.2 the phases, § andd

Consequently there are two predictions that we can infanftioe expressions of the quark and charged lepton

masses in egs. (12.5) and (12.6) :

4.1 Since the quark masses lie all below the Fermi scalei.ez,246 GeV and even below the top quark
mass i.e.174 GeV, we expeck, v andv to be approximately at the order of the Fermi scale. ©42).

4.2 Since the top quark mass is bigger than the bottom quask,me expect to be larger tham andk
to assume a median value. With this assumptions, we can acfmuhe big mass gap between the
bottom quark and the top quark.



From the other side if/14, we had estimated the mass scaleS@(10). We had found thad/p ~ 1010-5+0:5
GeV as summarized shown in Table. (14.1). From the rematidstbove in steps.1) and from the expressions
in egs.[(15.1) and (15.2), we arrive at the following relatio
vy, - 1010.5ﬁ:0.5 o G2 N vy, >~
—_——

VR

(15.3)

This suggests that;, is an extremely small number roughly equalbte 10~°-°%0-> GeV and can be practically
taken as zero in all evaluations. The above statement isragty powerful. We can approximate the expression
of the gauge boson masses, mixing parameters and phase®spttt to the conditioniz > vy, = 0. In this
respect, let us consider the mass oﬂt’vié boson in eq/(11.29). The masskixfli should be equal to the mass of
the W+ boson of the electroweak theory. i.80, GeV. If we approximate the expression ok, = in eq. (11.29)
according tawg > vy, = 0, we obtain

1
(Myy2)? =~ ag = 1 97 (K*+u® +0% +207) =2 (80)°GeV? — (k? +u? +0?) = (246)°GeV*  (15.4)
Sincev;, = 0, we end up with the equality on the right hand side above. &gumntly we have recovered the
remark in step(4.1) which tells us that the relation in €g.(15.3) holds consitdye But unfortunately, it doesn’t
reveal us the values d@f, v andv separately. A straight forward approach is to seek tioseandv values that
can reproduce the fermion masses and simultaneouslyystestondition:

(k* 4+ u? +0?) = (246)°GeV’. (15.5)

With this condition, we will be able to unveil the input paratars ofSO(10) grand unification. The values of the
k,u andv vevs that can reproduce the fermion masses will be studiaexs

15.1 Fermion Masses

In the guidance of the remark in poifit.2) above, it becomes suitable to substitute the values246 + 40 GeV,
v=1GeV,k =4 GeV,cos(a — §) = —1 andcos(a + 0) = 1 into the exact expressions for the top and bottom
guark masses in eq. (12.5). These input values are summéamniZable [(15.2), We obtain

my =51+ 8 GeV

15.6
mp = 0.91 GeV ( )

These are the top and bottom quark masses at the grand aifiozdss scald/z = 3.37 - 1016 GeV where all

the entries of the Yukawa coupling are equal to 1 as infeq3J1Zhese quark masses should be renormalized to
energies below the Fermi scale by using @€ D renormalization group equations [99][100][101]. The taak
mass renormalizes ta;(m:) ~ 142 + 25 GeV and the bottom quark mass renormalizesugm,) ~ 4 GeV.
Furthermore we substitute the same same input values i Tabl2) into the exact expressions for théepton
andr-neutrino masses given in efy. (12.6). We obtain

m} =150.41+25 GeV

(15.7)
m, =0.76 GeV

These are the Dirac masses of the leptons at the grand uisificasss scald/; where again all the entries of the
Yukawa coupling are equal to 1 as in €q. (12.3). FHepton massn., roughly renormalizes down tt800 MeV
at2 GeV. Let us continue with the Majorana mass terms ofrtimeutrino given in eq! (127). Using the same input
values in Table (15!2), we obtain

15.8
mM =10 Gev (15:8)

TRi
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T-neutrino Mass in SO(10) : m,  and m,
v, (GeV) | vg (GeV) m,., (eV) my,.,, (GeV)
6- 1076 1010 5721188 1010
6-10° 109 75,101 1547 10°
6-10~* 108 750,36 135 %0 108
6- 103 107 7503,81 138007 107
6-1072 108 750038,10 7132507 106

Tab. 15.1: T-neutrino mass in SO(10) at the grand unification mass scale M¢ for various values of vg and vr
where vpvr = G? and G equals the Fermi scale.

Herein we have takenr = 10'° GeV andv; = 0. The values of the phasgsand satisfy the condition
e'B=71)/2 = 1. These were absorbed in the Majorana-neutrino flavor-eiasia in eq.[(12]9). The above masses
are therefore absolute values. Since we want to evaluate-tieitrino masseml,T1 andmy,z, we may proceed

in two ways: We can either find the mass eigenvalues of the masix M in eq. [(12.8) whose entries ameﬁ”

mf,Vf andm? which were evaluated above or we can directly substitutenigt values into the exact expressions
of My, andmy,1 ineq. (12.11). In both cases we obtain the same result. We hav

m,,, =5.727155 eV

(15.9)
_ 10
my,, = 2-10"% GeV

Itis very remarkable that the above valuewf, falls into the eV range. Note that we have takgrexactly zero.
If we repeat the same evaluation with = 6 - 10~% GeV which was estimated from eq. (15.3), the mass,
does not suffer any change. Before we close this section, iveamtinue to elaborate the-neutrino massn,,
by using different values af;, andvy that satisfy the condition:

vy vp = G2 (15.10)

The values of, u, v and the phases 6, o will be again like those given in Table (15.2). As seen in &l5.1),
forvp = 6- 10~ 5 GeV,m,,, enhances te- 75 eV which corresponds tor = 10° GeV. As we decreaser
each time by a factor of 10 and thereby increaseéy a factor of 10/, increases by a factor of 10 as seen in
Table [15.1).

These small values af;, do not violate the condition in ed. (15.5). That means our ehedll still predict
the W+ boson mass of the electroweak theory correctly hence withr@liss of heavier-neutrino masses. The
question we have to ask ourself is how smajlcould be inSO(10) ? As shown ir§[14 where we mainly studied
the coupling unification il5O(10), we found thatvr rests atl0'® GeV. In those evaluations we neglected the
contribution of scalar bosons in the beta functions. We mapeet that the contribution of Higgs scalars reduce
Mp maximally by two orders of magnitude. Then theneutrino massn,,, might be only as big as- 750 eV
at the grand unification mass scale as shown in Table (15.&)findf ther-neutrino masses in the first two rows
in Table (15.1) as favorable. Last but not least, 8aX(10) model predicts non-vanishing neutrino masses which
are consistent with the current status of neutrino physicsummary of the quark and lepton masses obtained
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Input Values for Quark and Lepton Masses in SO(10)

u v k vr VR cos(a + 0) | cos(a — )

246 + 40 1 4 6-10—6 1010 1 -1

Tab. 15.2: Input values for quark and lepton masses in SO(10). All values of the vevs are in GeV.

Quark and Lepton Masses in SO(10)

Quarks Leptons

my mp m, mr,, mr,,

51+8 GeV | 0.91 GeV | 760 MeV | 5727185 eV | 10'0 GeV

142 £ 25 GeV 4 GeV ~ 1800 MeV ~ 14 eV —

Tab. 15.3: Quark and lepton masses of the 3™ generation in SO(10). In the first row, masses are given at the
grand unification mass scale. In the second row, quark masses are given like m¢(m;) and ms(ms).
Lepton masses are given at 2 GeV.

for the heaviest fermion generation is given in Table ([1L5T3)e evaluation of the fermion masses of the first and
second generation requires a renormalization proceduteeofukawa couplings which we won’t undertake. We
are optimistic that such a renormalization procedure cprodice the remaining fermion masses in the realm of
SO(10) grand unification.

15.2 Gauge Boson Masses

In this section, we will evaluate the masses of the physiaabe bosons i5O(10) which were derived from the
mass-squared matrix i§111.3. The expressions for the physical gauge boson massespnaviously given in
eg. (11.3.2). Using the input values in Table (15.4), we iobta

My =0

Mwli

1%

80.10, 55 GeV (15.11)

Mz, = 91217130 GeV
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Input Values for Gauge Boson Masses in SO(10)

u v k v UR b'e z cos(a+6) | cos(a— )

X 3.38-1016 X
246 £40 1 4 610 1010 ———— | 3.38-1016 1 -1

9:(G) | 9r(G) | 95_1(G) | 91(MR) | gr(MR) | g5 (MR) | ¢°(Mc)

47 4 4 4 47 4 4 M Mg
1 1

_ _ = _ = . - 38.1016 1010
29.6 29.6 68.6 38.6 38.6 34.3 46.6 3.38-10 0

Tab. 15.4: Input values for gauge boson masses in SO(10). All values of the vevs are in GeV and e ~ 2.718 which
is the euler number.

My+ = 4.03-10" GeV
Mz, = 832-10° GeV
My, = 1.76-10'° GeVv
My, = 1.76-10' GeV (15.12)
My, = 1.76-10'° GeV
My, = 2.74-10" GeV
My, = 1.76-10'° GeV

Herein we have used the same input values that we used toaévajuark masses. The errors in the masses of
WlﬂE andZ; stem form the vew. Additionally required input values for the above evaloas are summarized in
Table (15.4). For example the evaluation of Wé andZ; gauge boson masses require the values of the coupling
strengthgy,, gr andgs_ 1, atthe mass scal@ as shown in Tablé (15.4). The grand unification mass scalbders
chosen ad/s = 3.38-10'6 GeV. The corresponding grand unification coupling streigth; = g2 /47 = 1/46.6
which was obtained i§14. For the tuning parameter, we have= In[Ms/Mc] = 2. Note that smaller values

of p may be acceptable as well but this has physical consequeriels will be discussed later if15.3. From

the other side the evaluation of the masses oﬂ/ﬂ’gé and Z, gauge bosons require the values of the coupling
strengths ofjr., gr andgp_ 1, atthe mass scale/r = 10'° GeV. These are also summarized in Table (15.4). They
are obtained from the renormalization equations of the bogiptrengths given in ed. (14.13). As we compare the
masses of th&l’s gauge bosons with the othBdf3, W, W5, W7 gauge bosons, we see that it is roughly 6 to 7 times
lighter. Ws andW; mediateB — L violating processes. The lightnessldf; will have interesting consequences.
A lower mass will increase the rate 8f — L violating processes and will thereby reduce the life-tifegasious
decays. The lightness &F; is a direct consequence pf= 2.

106



15.3 Mixing Parameters and Phases

15.3.1 Mixing Parameters of the Charged and Colored Fields

In this section, we will evaluate the mixing parametgrst, and¢s which resulted from the mass-squared matrix
in §/11.3. Using the input values in Table (15.4), we obtain

Charged currents { & =2 0.02631

&2 0.7147005 (15.13)
Charged + colored currents -
3= 0 ifxz#z

Here we find it appropriate to address the following two casked with the value of; :

CaseA:

CaseB:

If the vacuum expectation valueg andvgr were equal then the gauge fiel(ﬁ’s’gE andI/Vg,lE would mix
through the angl€; radians. In this special case the determination of the fmmiasses and gauge
bosons masses becomes in our opinion impossible. Thisrgichviously does not suit the pattern in
nature. We will not speculate about the reasons. Our evahsapredictvr = 10'° Gev>> vy, ~ 0
GeV.

The other case is when; is much greater than, thenWéE andezE start to decouple. Ak/g = 1010
GeV, the mixing angl€; assumes the above value. Beyond this value at rouily> 2.5-10'° GeV
they are completely decoupled. Stringent experimentahliswnts as reviewed in ref. [24] can allow
us to estimate a lowest bound 81iz.

As seen above, the value gy is very close td} and tells us thatl], andY,, mix almost in one to one proportion.
From the other side there are two cases of interestsfor

CaseA’:

CaseB’:

If the grand unification mass scal&f; equals the intermediate mass schle, then the gauge fields
A, andX,, mix through the anglg. In this case the masses of g, Wy, W5, Ws, W7 gauge bosons
become equal and increase by a factot .aft with respect to the values given in €g. (15.11). Such a
picture can be physically viable as seen in Table (14.1).

If M¢ is smaller thanV/; then the gauge fieldd, and X, will start to decouple. At a difference
of 100 GeV the mixing angle takes the valde = 1.6 - 10~° radians. The mass of tH&; boson
becomes gradually smaller than ti&, W, W5, W7 bosons depending on the raio= M¢/Mc.
Such a picture is also physically viable as seen in Tablelflhd reproduces our model for= 2.

It is remarkable how a small difference between the scalesand M can be so decisive ofy in Wz mass. The
decoupling ofA and X means thaB — L violating processes become extremely less probable. triicGeV
compared to the grand unification mass scale can suitablpisidered as a fluctuation. A" ~ 3.38 - 1016
GeV the grand unification mass scale and beyond of it can b&idened as a condensate of quarks and leptons in
equilibrium with gauge boson and Higgs bosons . As the usésepols down roughly00 GeV downA and X

will almost be decoupled with; = 1.6 - 10~5. Such processes will contribute to the net excess of bargesrs

anti-baryons as the universe cools down.

15.3.2 Mixing Parameters of the Neutral Fields:
Vector and Axial-vector Couplings in SO(10)

The mixing parameters appearing in the expressio&fdn eq. (11.20) can be evaluated at the mass sgalsing
the input values in Tablé (15.4). We have

B

>~ _2.1792 — — =~ —(0.8765
& M

By = 0.6568 — f—f =~ 0.2642 (15.14)

1
B3

s = 1 — — = (0.4022
B3 N

107



where the normalization constaht\' = 0.4022. The mixing parameters appearing in the expressiorzfoin
eq. (11.21) can be evaluated at the mass st&lausing the input values in Table (15.4). We have

~ ﬁ/ ~
U
B, =~ 0.9428 - f—;, ~ _0.6859 (15.15)
1
By =1 - 5_1, >~ 0.7276
M

where the normalization constahfA” ~ 0.7276. The above mixing parametefs, 32, 53 and 3, 85, 35 are
governing the mixing among neutral fieltls;,, Wr and X5_ 1, which we studied ir§[13.2 and thereby they are
related with the previously defined vector and axial-vectarplings in eq/ (13.6). We find it appropriate to study
the vector and axial-vector couplings in terms of the abaaduations ofsy, 52, 85 andg;, 85, 5. But first of all
these mixing parameters must be evaluated at the same nadsspeferentially at the Fermi scalebefore we
collect them in the matrix in ed. (13.4). Using the input \elin Table[(15.4), we find

A 0.4812  0.4812 0.7326 wp
Zy | =~ | —0.8765 0.2642 0.4022 w3 (15.16)
Zs 0 —0.8358 0.5490 Xp 1,

Note that all rows in the matrices are normalized properly.tdhe entries of the second row is as in €q. (15.14).
The third rows is re-evaluated at the mass s€al¥Ve need the inverse of this matrix to substituteltig, Wz and
Xp_ fields in term of thed, Z; andZ, fields into the interaction Lagrangian of the neutral cutsémeq.(13.5).
The inverse matrix reads

W) 0.4812 —0.8765 0 A
W9 | ~| 04812 02642 —0.8358 | | Z (15.17)
Xp L 0.7326  0.4022  0.5490 Zs

mMij

The entries of this inverse matrix will be called,; with ¢, j = (1,2, 3). If we substitute the gauge field&., Wr
andXp_ 1, into the interaction Lagrangian of the neutral currentsgn(&3.5), we obtain

. _ 1 _ 1 2 _
L=+ gL f 5(1—’75)fL3W2+ng’7u 5(1+’Y5)fR3W1%+\/;QB—Lf’Yuf(B—L)XB—L-i-h-C-

) - 1 ~ 1
=41 {gLf’Yu 5(1*’75)]:[43 (mit A+mi2 Z1 +maz Z2) + gr f Y 5(1+’75)fR3 (mao1 A+ maa Z1

1 ~
+mas Zs) + 3 9—1f v fXp—1 (B —L) (mg1 A+ msa Z1 +ms3 Z2) + h.c.]
(15.18)

Herein f shortly denotes fermions. Note that the neutral isospimetus are projected through the projection
operatorsP, and Pr into J¢ and.JY, respectively wheré’, r = (1 F ) /2. The currents/g_r, J? andJy in
SO(10) were given previously in egs. (5.13) and (5.21) respegtivilote that the facto/3/2 in the first line
above cancels out with the factgr2/3 which comes from the expression for tiig_;, current. We also receive
a factor of1 /2 from the JJp_ 1, current which properly accounts for the charge relafiGh= L3 + Rs + (B — L)
whereLs, Rs and(B — L) above are the eigenvalue operators. The above Lagrarfigian be further organized
into a more useful form. We have

= 1 1
L=+1i {f’m <[§ (9r m11 Ls + grmaoi R3 + gp—r m31 (B — L)) + 3 (9r m21Ls — gL, m11R3) 75] A

1 1 )
+ [5 (9 m12 Ls + grmes Rs + gp—1.m32 (B—L)) — 3 (g m12 Ls — gr ma2 R3) ’75] Zy

1 1 ’
+ [5 (9. m13 Ls + grmasz R3 + gp—, maz (B — L)) — B (9. m13 Ly — gr ma3 R3) 75} Zé) + h-C-} f
(15.19)
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Vector and Axial-vector Couplings of NC' Currents in SO(10):

Q B-L Isr Iz el oA o, cl,
1 1
Ve, Vy, Vr 0 -1 3 3 -0.371651 | -0.371654 | -0.507273 | 0.272296
1 1
e, T -1 -1 ~3 —5 0.027337 | 0.371654 | 0.037319 | -0.272296
2 1 1
u,c,t 3 3 3 3 -0.142108 | -0.371654 | -0.193971 | 0.272296
1 1 1
d,s,b -3 3 ~3 —5 0.256879 | 0.371654 | 0.350622 | -0.272296

Tab. 15.5: Vector and axial-vector couplings of NC' currents in SO(10). c{, and CQ are the couplings for Z;. c{/,
and cg, are the couplings for Z»> as defined in eq. (13.6).

The above Lagrangian is identical with the one in eq. (13.6).us examine the first row which is nothing but the
electromagnetic interaction Lagrangiép,,. We should have

(Z) e =grmi1 = grmao1 = gB—1 M31 and (’Ll) gRr mo1L3g — qr, mi11R3 =0 (15.20)

The above equalities ifi) and(i:) should hold regardless of their numerical values. They lgebaaically always
true since thé/ (1) symmetry is unbroken. Nevertheless with respect to ourtinplues in Table (15/4), we find
that the first equalities ité) hold with an error of one part ih0—> and the latter equality ifii) holds with an error

of 4 parts in10~%. Both conditions hold very accurately. Consequently wefaator oute so that the sum of the
L3, Rs and(B — L) eigenvalue operators make the electric-charge eigenogleiator2 Q. Thereby the first line
reproduces the electromagnetic interaction LagrangieomFRhe other side the matrix elements in the second and
third line above can be set equal to the previously definetbvand axial-vector couplings in eq. (13.6). We have

C{/ =grmiz Ls + grmos Rs + gp—1, ma2 (B — L)

CQ = gL M12R3 — grma2 L3

(15.21)
C{// = gr,mi3 L3 + grmas Rs + gp—rms3 (B — L)
CQI = gr,mi13 L3 — grmas R3

These equations require some special care during any éealuaSince we are used to assign fermions the
guantum numbers as in the standard model, we remind therreedeexample iff is an up-quark (u), it will
posses the chargds, = 1/2, Rs = 1/2andB — L = 1/3. If fis a down-quark (d), it will posses the charges
L3 =-1/2,R3 = —1/2andB — L = 1/3. On the other side if is an up-leptonx), it will possess the charges
L3 =1/2,R3=1/2andB — L = —1. If f is a down-leptond), it will posses the chargds; = 1/2, R3 = 1/2
andB — L = —1. Note that the electric charges of fermions are obtaineagtnd1/2)(Ls + Rs + (B — L))
since we deal with fermionf) and not with chiral stateg;, or fr (see remark at the end of this section). With
this token, we can evaluate the above expression§ of, ¢/, andc?,, using the values aofu;; in eq. (15.17) and
the values of the coupling strengths, gr andgz_;, at the mass scalé as given in Table (1514). Note that the
indexs in m;; runs along the row elements afpdlong the column elements. The values of these couplings are
summarized in the Tablg. (15.5). At this stage we can asketugs whether the above values of the vector and
axial-vector couplings of; in SO(10) are the same with those of tlieboson of the electroweak theory. Let us
call the latter couplings a@{i and C{; with a capitalC to avoid any confusion in advance. Indeed we have to
remember that the vertex féo¥ C' currents in the electroweak theory is given through

.9 1 ( ¥ ¥ )
- — — 15.22
ZCOS 910 T 2 CV CA V5 ( 5 )
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Vector and Axial-vector Couplings of NC' Currents in SO(10)
A Comparison with the Electroweak Theory

Q B-L Isp I35, c{/ cf; c{,, CQ,
1 1
Ve, Vy, Vs 0 -1 3 3 0.5000040 | 0.500004 | 0.682458 | -0.366333
1 1
e, T -1 -1 —3 —3 -0.0367777 | -0.500004 | -0.050207 | 0.366333
2 1 1 1
u, c,t 3 3 3 3 0.1911852 | 0.500004 | 0.260958 | -0.366333
1 1 1 1
d,s,b -3 3 —3 ) -0.3455928 | -0.500004 | -0.471708 | 0.366333

Tab. 15.6: Vector and axial-vector couplings of NC currents in SO(10) divided by a factor of ﬁ appearing as
vertex factor in the electroweak theory. See explanation on page

whereg is theweak coupling constant andf,, is the Weinberg mixing angle arﬁ{; andC}; are the vector and
axial-vector couplings non of which should be confused whitise of theSO(10) model. Now to make it easy to
compare the abov&{‘, andcfz1 couplings of theSO(10) model evaluated from the expressions in eq. (15.21) with
those of the electroweak theory, we will divide the value¥able [(15.5) through the factor

s 0.743302 (15.23)
These values are summarized in Table. (15.6). We see frote THR.6) that the vector and axial-vector couplings
of the Z boson in the electroweak theory and those of Zhéboson in theSO(10) theory are in good agreement
with respect to our evaluations. From the other sideAhdoson would be to heavy to be produced in current
accelerators. Therefore any mismatch between the veaticadal-vector couplings of th€O(10) theory and the
electroweak theory could be searched in precision expeatires an indication for physics beyond the standard
model.

Remark : In case that we use fermion fields which are handedfiiker f, the electric-charge relation reads

(B-1L)
2

Q=L+ R3+ (15.24)
But in our interaction Lagrangian the currents couplg tand not tof;, or to fr. Therefore the electric-charge
relation reads

L3+ Rs+ (B—1L)

@= 2

which can be verified to hold. Let us give an examplg:hasL; = 1/2, R3 = 0andB — L = 1/3. Andu
hasL; = 1/2, R3 = 1/2andB — L = 1/3. Both yield@ = 2/3. This is also dictated to us by the interaction
Lagrangian in egq{ (15.19). Note that the factg® in the first term in eq[(15.19) correctly multipliex) and
reproduces the correct electromagnetic interaction Lragaa:

(15.25)

£ =+i{e (fy.Qf) A* + h.c.} (15.26)

15.3.3 The CP-Phases of the Charged and Colored Fields in SO(10)

In this section, we will evaluate the phasgs(, and(s which resulted from the mass-squared matrix hl.3.
The expression of these phases were given in legs. (11.2€Lar¥).¢; one appeared in the expressioanszt
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andW; in eqgs.[(11.20) and (11.20) and thereby entered the Lagrargicharged currents given in eg. (13.3).
It is a source folC' P violation. The latter two phases appeared in the expressibW,, ..., W~ in egs.[(11.2R)
and entered the Lagrangian of charged and colored curremts ip eq.[(13.12). These are also sources(tét
violation. Using the input values in Table (15.4), we obtain

Charged current% 1 = —g

™
G =47 (15.27)
Charged + colored curren{s

™
¢3 = arctan(—cot ) = ~1

where we havg 4 v = /2.

15.3.4 The Mixing Angle and C' P-Phase of Neutrinos in SO(10)

We will evaluate two more parameters. These are the miximgrpeter, and the phas€, which originated
from the neutrino mass matrix in eg. (12.8). They deterntireecomplex mixing of the Majorana-neutrino flavor-

eigenbasis. The expressions fgrand¢, are given in eq/ (12.13) and (12/14) respectively. Usindrathe input
values in Table (15!4), we obtain

=90

15.28
&42-15-107" ( )

We have previously constraineds(« + 6) andcos(a — §) as in Table[(15/2). Therefore the angtes? and
were separately not assigned any definite value. Consdgwemhavea = 7 + 4. Through this relatiorfy in
eq. (12.13) reduces tb As a result, we have here a free parameter which should betadjfurther.

It can be verified from eq|. (12.12) that for the above valué,0i;, becomes practically left-handed and
becomes right-handed. Any experimental evidence indigatinon-zero value @f, would suggest that neutrinos
have both Dirac and Majorana Masses. Of course this wouldinegrecision experiments.
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16. CONCLUSION AND OUTLOOK

In this work we have studieflO(10)-grand unification with emphasis on fermion masses. Weestaxtr excursion

by introducing the essential ingredient required for thestauction of anSO(10) theory of gauge interactions.

In this respect, we introduced three different bases whiddyce different, but physically equivalent spinorial
representations of th80O(10) gauge group. We studied the structure of #@(10) gauge group by presenting
the general form of all the fields and generators. We derirecphysical charges of these gauge fields and their
decompositions with respect to various sub-symmetriesutiin certain commutation relations. We presented the
explicit matrix representation of the gauge term which actshe family spinor. We have derived the eigenvalue
operators that produce the charges of the fermions, andezhtivat the family spinor contains all the known
fermions of a single generation. Using the transformatimpprties of theSO(10) spinorial representation, we
showed tha5O(10) gauge interactions a@, P andC' P invariant in the unbroken phase. Prior to any symmetry
breakdown, we studied the interaction Lagrangian ofS$lig10) theory in the flavor basis, and we derived all
the interaction vertices between fermions and gauge figldshe light of this analysis, we showed that these
currents conserve baryon minus lepton number, but sepavédéate baryon and lepton numbers at the vertices.
We showed that the color carrying currents mediate variae$eon decays. Prior to any spontaneous symmetry
breakdown, we showed how the electromagnetic current mdtly contained by th&sO(10) theory. We have
shown how the single gauge couplipgdefining the strength #O(10) gauge interaction is related with relative
gauge couplings that are assigned to the unitary subgrdups SO(10) gauge group.

Starting fromg§ (6 until §10, we studied the Higgs fields that transform under$g10) symmetry, in order
to implement them in the Higgs mechanism. Through a detaitedysis, we sorted out the Higgs scalars which
can be utilized in the Higgs mechanism and in the Yukawa seti@ studied the charges and the decomposi-
tions of these Higgs scalars. We constructed a suitabledHiggrangian whose potential part consisted of those
Higgs multiplets which we regarded as physicatlyst relevant. These Higgs multiplets were summarized in
Table [(11.1). We have illustrated in Fig. (11.1), how thesadtiplets relate certain descents in the Higgs mecha-
nism. We studied the minimum of the potential part of the KBigiggrangian, and showed that the minimum of
the Higgs field describes a left-right asymmetric vacuumc8ithe Higgs couplings were unknown, we couldn’t
evaluate the vacuum expectation values from the minimurheHiggs potential despite of the fact that we have
been able to solve the vevs from the minimum. On the other, sidestudied the kinetic part of the Higgs La-
grangian and obtained a mass-squared matrix of the gauds.fietom the mass-squared matrix, we derived the
mass-eigenstates and mass-eigenvalues of the physicg felds. We have shown that these expressions, which
contain the mixing parameters and phases due to a compléxgndepend on the vevs and the coupling strengths
given by theSO(10) theory. After that we found the physical gauge fields, we Haeen able to reexpress the
physical currents of th8O(10) theory by replacing the gauge fields with the physical galajddiin the relevant
interaction Lagrangian. Consequently, we obtained thegetacurrent4C'C) in the SO(10) theory which are
responsible for weak interactions: In this extended varsidhe weak interaction Lagrangian, the physical gauge
fields W%, coupled not only to left- but also to right-handed currebtg,with different strengths. We have shown
that the lighter couples dominantly to left-handed cuiseamd the heavier dominantly to right-handed currents.
We have shown that this weak interaction Lagrangian isha? andC P invariant.

We have found that there are two neutral curré¥€’s) in the SO(10) theory. TheseV(C’s are mediated
by the Z, » physical gauge fields. We obtained the expressions of theemd axial-vector couplings of these
neutral currents in terms of the vevs and coupling strengthle have shown that the vector- and axial-vector
couplings of the lighter gauge field are in very good agregmith those predicted by the Standard Model. We
concluded that the neutral current mediated by the he#iés a new(/NC) current beyond the Standard Model.
We obtainedSO(10) currents that simultaneously carry charge and color, whrehresponsible for nucleon de-
cays. We briefly considered how these currents can accoutitdmbserved baryon asymmetry in nature through
investigating the partial decay rates of scalars into guarid leptons.

Beside the Higgs-sector, we studied the Yukawa-sector. &wetl explicit expressions for fermion masses
of the third generation by coupling the Higgs fields to therfiens through a democratic Yukawa coupling. We
obtained expressions for the Dirac masses of the chargeddies. On the other side, we obtained expressions
for the Dirac and Majorana masses of neutrinos. We introdlacavor-eigenbasis for neutrinos and derived the
mass-eigenstates and mass-eigenvalues of the neutrorosafineutrino mass matrix. We have shown that the



physical neutrinos are not purely left- or right-handeddmat rather mixtures, however we found that the mixing
is extremely small. We found explicit expressions P violation in the neutrino sector.

A remarkable fact abotO(10) grand unification is that the parameter space is under detednThis means
the number of observables are more than the number of inpatyeers which determine the values of these
observables. The main shortcoming®(10) grand unification is our ignorance about the Higgs couplifitpss
compels us to determine the vevs and their phases indirdattyther shortcoming of th80O(10) gauge theory is
the determination of relative coupling strengths like gr andgp_ 1. at mass scales, at which the renormalization
equations are no more exact. One can overcome this probl@xtiapolating the values. To acquire the values of
the vevs and the value of the grand unification coupling gtiteand as well as the relative coupling strengths we
used two sources:

First, we determined the vacuum expectation values anddhpling strengths of gauge interactions given
by the SO(10) theory through studying the mass scalesSifi(10), in the framework of coupling unification.
Complementarily, we determined the vacuum expectatiomegadnd their phases by adjusting them to the masses
of the known gauge bosons and fermions below the Fermi sdailehvare accurately measured and known.

In the remaining part of our conclusion, we find it appropiat briefly review the numerical values of various
important observables that we mainly derived in the previchapter. Through our Ansatzvy, vp = G? with
vg = 1019505 GeV from Table 14.1, we have been able to predict the quarkeptdn masses at the grand
unification mass scald/; = 3.38 - 10'6 GeV via a democratic Yukawa coupling. We have renormalibedée
fermion masses using the QCD renormalization group equatiod found that th6O(10) theory successfully
predicts the masses of the third generation as summariZexbld 15.3. Using the same input values in Table 15.4,
we obtained the masses of all the physical gauge bosons. Wehkan able to reproduce thé and theZ masses
of the Standard Model in very good agreement with the expanrtal results, where the former was identified as
the W, and the latter as th&; physical gauge boson. The masses of the hedVigand theZ, are found to
assume the valueis03 - 10° GeV ands.32 - 10° GeV respectively.

We have found the mixing angle between g and thelW gauge fields a§; = 0.02631, which tells us
that theC'C currents predicted by th€0(10) theory are not in conflict with the current experimentalustatwe
have found that the color and charge carrying gauge field&shaie denoted witiVs, ..., W, have the mass
1.76 - 10'¢ GeV, except folls which is lighter and assumes the masgt - 10'° GeV. Sincels mediatesB — L
violating interactions, we conclude that it gives rise tlatigely faster nucleon decay processes in the leptonic
channel. These processes will have a decay~até* times faster.

We have obtained th€ P-phases that enter the interaction Lagrangians using the ggput values in Table
[15.4. We have found that th@ P-violating phase in th€'C currents and as well as in the colored and charged
currents equals te/4.

We find it appropriate to mention here that the values of ttglem?, 6 and «,, which we determined as in
in Table[ 15.4, have almost no influence on the gauge bosoresassl the mixing parameters. In contrast they
influence the fermion masses very strongly. Therefore duastidy of the angle8, § anda might improve the
value of theC P-violating phase accordingly. This should be investigditether.

The fermion masses of the first and second generation carerfoubd unless we relinquish to use the demo-
cratic Yukawa coupling. We are convinced that the massehefitst and second generation can be obtained
through breaking the flavor symmetry by introducing smattyrbation terms into the democratic Yukawa cou-
pling as suggested by H. Fritzsch and D. Holtmannspottefi{77]. The Breaking of the subnuclear democracy
might be the origin of flavor mixing. This should be considakferther in the framework of th&€0(10) gauge
theory.
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APPENDIX



A. CONVENTIONS AND TOOLS

Quantum numbers of Tensors

Atensor¥¥!- transforming as
Uy = Un Uy Up Uy o W (A1)

whereUE, = [exp (i Supwap) %, has the same quantum numbers of a tensor witd'W,,. The charges o¥*
are

Hereind;; is the delta-Kroenecker ar@ is the electric charge eigenvalue operator @hdts it" eigenvalue. The
quantum numbers of*¥' ¥, are

Q (TrU'W,) = —Qr — Qi+ Qy (A.3)

We can also have instedg, one of theB — L, L3, R3 andY eigenvalue operators ifO(10). The quantum
numbers of 82 x 32 matrix Qj at each matrix site of thé5 representation are given in Appendix

Tensor Product of Matrices
If AandB aren x n andm x m matrices then the tensor product
C=AxB (A.4)
is anmn x mn matrix with elements
Cop = AuBij, a=mk—-1)+i, B=ml-1)+j (A.5)
or if A andB are2 by 2 matrices
ai1 by a11biz arzbin a2 bz
Ax B — < anB  a12B ) ai1 b1 airbay aiaba aizbe (A.6)

a21 B a2B a21bi1 a2 b1z a2bii  azbio
a21 b21 @21 b22  a22bai a2z bag

The product is not commutative but associative.

Pauli matrices

(00) (1) () e

Dirac Representation

w(00) () (1) e
3

=9 ()= (FT=—" k=12,



B. DECOMPOSITIONS OF THHE26

The following complex scalar fieldB and lowering matriceF make thed - I' = 126. In all expressions; jxm =
r,r,TI T, and allg; ., are real scalar fields whetej, k,l,m = (1,...,10) andTl',, € SO(10) basis. The
fields and lowering generators carry the same upper-s@ipssigned before. Lower-scripts indicating quantum
numbers are this time suppressed.

10
P [(Gimm DD DD T m)?] = Y @ iE T EEELEM (B.1)

—T
32 i,9,k,l,m=1
We start with| 1 states of2, 2, 15) (see ed. 7.10).
@l = 4i¢12350 + $12360 + $12450 — i $12460 + i 35780 + $36789 + P45780 — i S46780
—¢123510 + © #123610 + ¢ 124510 + #124610 — #357810 + @ 367810 + P P457810 + P467810
rl = +ivia350 + 712360 + V12450 — i V12469 + i 35780 + 136789 + 145789 — i V46789
—7123510 + #7123610 + ¢ 7124510 + V124610 — V357810 + @ ¥367810 + ¢ 7457810 + V467810
32 = —ig13450 — $13469 — i d15789 — 16789 — 923459 + i $23460 — P25789 + i P26789
+¢134510 — P $134610 + ¢157810 — ¢ 167810 — © $234510 — 9234610 — 257810 — $267810
2 = —i~y13450 — 713469 — i V15789 — V16789 — V23459 + i 723469 — ¥25789 + i 126789
+7134510 — ©7v134610 + Y157810 — ¢ V167810 — 7234510 — 7234610 — ¢ V257810 — V267810
23 = —idi3560 + 1613780 + $14569 — $14789 — ©23560 + $23789 — i $24569 + i 624789
+¢135610 — #137810 1+ @ 145610 — ¢ P147810 — ¢ $235610 + ¢ $237810 + $245610 — $247810
0% = —ivi3se9 + V13789 + V14569 — V14789 — 723569 + 123789 — 724569 + i 124789
+7135610 — 7137810 + ¢ 7145610 — ¢ V147810 — ©7Y235610 1 ¢ 7237810 + 7245610 — V247810
@t = —i612350 + #12360 + 12459 + i $12460 — i 635780 + P36789 + P45789 + i S46780
+¢123510 + i #123610 + 7 124510 — P124610 + $357810 + @ 367810 + @ P457810 — 467810
I = —iv12350 + 712360 + V12450 + i V12469 — i 735789 + 136789 + V45789 + i V46789
_ +7123510 + 7123610 + ¢ 7124510 — Y124610 + ¥357810 + ¢ ¥367810 + ¢ V457810 — 467810
®° = +id13459 — $13469 + i P15789 — P16789 — 23459 — ¢ $23469 — $25789 —  $26789
_ —$134510 — © 9134610 — $157810 — ¢ $167810 —  $234510 + $234610 — 257810 + $267810
TP = +i713459 — 713469 T 715789 — V16789 — Y23459 — © 723469 — V25789 — i ¥26789
—7134510 — # 7134610 — Y157810 — ¢ Y167810 — ¢ ¥234510 + 7234610 — ¢ 7257810 + 7267810
o0 = tid13560 — i $13780 + $14569 — $14789 — D23560 T $23789 + i 924560 — i 624789
— 135610 + ¢137810 + ¢ #145610 — @ $147810 — @ $235610 + ¢ $237810 — 245610 + $247810
r6 = +ivizseo — 713789 + V14560 — 714789 — V23569 + 123789 + i 724569 — i 724789
—7135610 + v137810 + ¢ 7145610 — ©¥147810 — +% 7235610 + ¢ 7237810 — 7245610 + V247810
@7 = —¢12340 — 412780 — $345690 — 56789 — i 123410 — i $127810 — i #345610 — i P567810
T7 = —412340 — V12789 — V34569 — V56789 — @ V123410 — © 7127810 — 7345610 — § V567810
28 = 4410560 — $12780 — ¢34560 + $34780 + i $125610 — i #127810 — i $345610 +  $347810
r8 = 412569 — V12789 — 734569 + V34789 + i V125610 — § V127810 — § V345610 + © 1347810
3% = tid13560 + 013780 + 14560 + 14789 + b23569 + P23789 — i 24569 — i S24780
—¢135610 — #137810 1+ @ 145610 + @ ¢147810 + @ $235610 + ¢ $237810 + $245610 + $247810
% = +ivi3560 + 1713789 + V14560 + 714780 + 723569 + V23789 — i V24569 — @ 724789

—7135610 — 7137810 t+ ¢ 7145610 + ¢ v147810 + 7235610 *+ ¢ 7237810 + 7Y245610 + 7247810

10 = —ig13450 + @13460 + i $15789 — $16789 — P23450 — i 23469 + $25789 + i 926780
+¢134510 + i #134610 — $157810 — ¢ P167810 — © $234510 + $234610 + @ 257810 — $267810
rl0 = —iyy3450 + 713469 t 115789 — V16789 — 723459 — © 723469 t 725789 + 726789
+7134510 + ¢ 7134610 — Y157810 — ¢ Y167810 — ¢¥234510 + V234610 + ¢ 7257810 — V267810
ol = 19350 + #12360 — $12450 — @ #12460 T i $35780 — ¢36789 + P45789 + i D46780
+¢123510 + i #123610 — ¢ $124510 + P124610 — $357810 — i $367810 + ¢ 457810 — $467810
ril = —iyip350 + 712369 — 712459 — © 712469 T ¢ 35789 — 736789 t V45789 + ¢ 746789
+7123510 + 27123610 — 7124510 + ¥124610 — ¥357810 — ¢ V367810 + ¢ 7457810 — V467810
12 = —ig13560 — i b13789 + $14569 + P14789 + $23569 + $23780 + i 24569 + i S24780
+¢135610 + ¢137810 + @ ¢145610 + @ 147810 + @ $235610 + P $237810 — 9245610 — 247810
12 = —i~yi3560 — i 713789 + V14569 + V14789 + V23560 + V23789 + i V24569 + i V24780
+7135610 + 7137810 + ¢ V145610 + ¢ 7147810 + ¢7235610 + ¢ Y237810 — 7245610 — V247810
13 = 4igi13450 + ¢13460 — i $15780 — $16789 — H23459 + i 923460 + 925780 — i 626789
—134510 + @ #134610 + ¢157810 — @ 167810 — @ $234510 — $234610 + © $257810 + $267810
13 = 4iy13450 + V13469 — i V15789 — 716780 — V23459 + i 723469 + V25789 — i 26789
—7134510 t+ ¢7134610 T V157810 — ¢ Y167810 — © 7234510 — 7234610 + 7257810 + 7267810
oM = 4ig12350 + $12360 — 12450 + i $12460 — i 635780 — $36780 + P45780 — i P46T8Y
—¢123510 + 7 #123610 — ¢ $124510 — 124610 + ¢357810 — © $367810 + ¢ $457810 + $467810
r = 4iv12350 + 712860 — V12450 + V12469 — § Y35789 — V36780 + 145789 — i V46789
—7123510 + 7123610 — # 7124510 — ¥124610 + ¥357810 — ¢ ¥367810 + ¢ 7457810 + V467810
% = 612340 + 12560 + 912780 + 634560 + 34780 — 56780 — @ #128410 + ¢ $125610
- +i¢127810 + % $345610 + @ $347810 —  $567810
15 = —y19340 + 712569 + V12789 + ¥34569 + V34789 — V56789 — § ¥123410 + § V125610

+iv127810 + 47345610 + ¢ ¥347810 — ¢ V567810

The following complex scalar fields and lowering matriceskenthe(| | ) stateq2, 2, 15) (see eq. 7.10)

@l = +id12357 — $12358 + 12367 + i $12368 + #12457 + i 12458 — @ P12467 + 12468
+i ¢357910 — ¢358910 + $367910 + ¢ 368910 T+ ¢457910 + @ Pa58910 — @ $467910 + $468910
rl = +ivia357 — 712358 + V12367 + i V12368 + V12457 + i V12458 — @ V12467 + 712468
+17357910 — 7358910 + ¥367910 + ¥ v368910 + V457910 + ¢ 7458910 — ¢ V467910 + 7468910
@2 = —i$13457 + #13458 — $13467 —  #13468 — $23457 — i #23458 + I $23467 — $23468
—1$157910 + #158910 — #167910 — ¢ 168910 — 257910 — @ $258910 + ¢ $267910 — 268910
I2 = —ivy13457 + V13458 — 718467 — § V13468 — 723457 — § 728458 + § 723467 — V23468
. —i9157910 + Y158910 — V167910 — # V168910 — Y257910 — ©Y258910 + ¢ V267910 — Y268910
@3 = —i¢13567 + 913568 + 14567 + i 14568 — $23567 — i $23568 — i 924567 + $24568
. +i 137910 — $138910 — $147910 — ¢ $148910 + 237910 + @ $238910 + P $247910 — $248910
3 = —ivyisse7 + 713568 + 714567 + i V14568 — V23567 — i 723568 — 124567 + V24568

+17137910 — V138910 — V147910 — ¢7Y148910 + V237910 + ¢ 7238910 + ¢ 7247910 — 7248910



—i¢$12357 + $12358 + $12367 + ¢ $12368 + P12457 + @ 12458 + i P12467 — 12468
—i 357910 + $358910 + #367910 + @ 368910 + ¢457910 + @ 458910 + @ P467910 — 468910
—1712357 + 712358 + 712367 + ¢ 712368 + V12457 + ¢ V12458 + ¢ 712467 — V12468
—17357910 t+ ¥358910 + 7367910 + ¢ Y368910 + 7457910 + ¢ 7458910 + ¢ 7467910 — V468910
+i¢13457 — 13458 — $13467 — ¢ $13468 — $23457 — @ $23458 — @ $23467 + $23468
+i 157910 — 158910 — ?167910 — ¢ 168910 — $257910 — ¢ $258910 —  $267910 + $268910
+4713457 — 713458 — V13467 — © 713468 — 723457 — © 723458 — © 723467 + 723468
+47157910 — 7158910 — Y167910 — ¢ Y168910 — V257910 — © V258910 — ¢ 7267910 + 7268910
+i 913567 — 13568 1+ $14567 + i 14568 — $23567 — @ $23568 + @ $24567 — 24568
—1¢137910 + $138910 — $147910 — ¢ $148910 + $237910 + i $238910 — @ $247910 + $248910
+4713567 — 713568 T 714567 + i 714568 — V23567 — © 723568 + @ V24567 — 724568
—47137910 + 7138910 — 7147910 — © 7148910 + V237910 + © 7238910 — ¢ 7247910 + 7248910
—#12347 — i 12348 — $34567 — @ $34568 — $127910 — P $128910 — $567910 — ¢ $568910
—712347 — 1712348 — V34567 — V34568 — Y127910 — ¢ Y128910 — Y567910 — i ¥568910
+d12567 + @ 12568 — $34567 — ¢ 34568 — ¢127910 — ¢ 128910 + $347910 + @ $348910
+712567 + ¢ 712568 — ¥34567 — 1734568 — V127910 — ¢ 7128910 + 7347910 + ¢ ¥348910
+id13567 — ¢13568 T 14567 + ¢ P14568 + P23567 + ¢ $23568 — @ P24567 + P24568
+i 137910 — $138910 + $147910 + ¢ ¢148910 + $237910 + @ 238910 — @ $247910 + $248910
+1713567 — 713568 t+ 714567 T ¢ 714568 + 723567 + 1723568 — V24567 + 724568
+47137910 — 7138910 + 7147910 + 7148910 + 7237910 + ©¥238910 — @ ¥247910 + 248910
—i 13457 + $13458 + $13467 + ¢ $13468 — 23457 — @ $23458 — @ $23467 1+ $23468
+i¢157910 — $158910 — 167910 — @ 168910 + $257910 + @ 258910 + P $267910 — $268910
—1713457 + 713458 + 713467 + ¢ 713468 — 723457 — © V23458 — © 723467 T 723468
+17157910 — 7158910 — V167910 — ¢7Y168910 T 7257910 + ¢ 7258910 + ¢ 7267910 — V268910
—i¢12357 + $12358 + $12367 + ¢ $12368 — #12457 — i $12458 — @ $12467 + $12468
+i ¢357910 — $358910 — $367910 — @ $368910 + $457910 + @ 458910 + P P467910 — $468910
—47v12357 + 712358 + 712367 + © 712368 — 712457 — © V12458 — © 712467 + V12468
+17357910 — 7358910 — ¥367910 — ¢ Y368910 1+ V457910 + ¢ 7458910 + ¢ 7467910 — V468910
—1 913567 + ¢13568 + $14567 + @ P14568 + P23567 + i $23568 + i P24567 — 24568
—i¢137910 + #138910 + #147910 + @ 148910 + 237910 + @ $238910 + ¢ 247910 — $248910
—4713567 + 713568 + V14567 + @ 714568 + V23567 + @ 723568 + @ V24567 — V24568
—47137910 + 7138910 + V147910 + ¥ 7148910 + 237910 + P 7238910 + © V247910 — V248910
+i 13457 — $13458 + $13467 + i 13468 — $23457 — @ $23458 + @ $23467 — 23468
—i¢157910 + $158010 — $167910 — ¢ 168910 + 257910 + i $258910 — @ $267910 + $268910
+4713457 — 713458 T 713467 + 1713468 — 723457 — © 723458 t 1723467 — 723468
—47157910 + 7158910 — V167910 — ¢ 7168910 + 257910 + ¢ 7258910 — ¢ 7267910 + 7268910
+i¢12357 — 12358 + $12367 + i $12368 — $12457 — i $12458 + @ P12467 — 12468
—i 357910 + $358910 — $367910 — ¢ $368910 + 457910 + ¢ 458910 — @ P467910 T $468910
+1712357 — 712358 + 712367 T 1712368 — Y12457 — ©712458 T 1712467 — 712468
—17357910 T ¥358910 — Y367910 — © 7368910 t Y457910 + ¢ 7458910 — ©7467910 + 7468910
—$12347 — 1412348 + $12567 + @ 12568 + #34567 + @ $34568 + ¢127910 + i P128910
+é347910 + @ $348910 — ¢567910 —  $568910
—712347 — ©712348 + V12567 + i V12568 + 34567 + ¢ ¥34568 + V127910 + ¢ 7128910
+7347910 + % ¥348910 — Y567910 — ¢ V568910

The following complex scalar fields and lowering matricesenthe(7|) stateg2, 2, 15) (see eq. 7.10)

ol
rl
P2
r2
3
3
a4

4

+i712359 + ¢12369 + $12459 — @ 12469 + ¢ P35789 + 36789 + P45789 — @ 46789
—®123510 + % #123610 + @ ?124510 + $124610 — $357810 + @ $367810 + @ $457810 + P467810
+1712359 + ¥12369 + 712459 — ¢ V12469 + ¢ V35789 + 36789 + V45789 — 1746789

—7123510 + % 7123610 + 7124510 + 7124610 — V357810 + ¢ ¥367810 + i 7457810 + V467810
—i1$13459 — 913469 — ¢ P15789 — $16789 — P23459 + ¢ $23469 — $25789 + ¢ $26789
+#134510 — ¢ 134610 + $157810 — ¢ 167810 — ¢ $234510 — $234610 —  $257810 — $267810
—14713459 — 13469 — ¢ Y15789 — V16789 — ¥23459 1+ ©¥23469 — V25789 + ¢ 726789
+7134510 — 7134610 + 7157810 — ¢ 7167810 — ¢ 7234510 — ¥234610 — ¢ ¥257810 — V267810
—i¢13569 + i $13789 + 14569 — $14789 — $23569 + $23789 — i $24569 + i $24789
+#135610 — #137810 + @ $145610 — ¢ 147810 — +iP235610 T ¢ $237810 + $245610 — 247810
—4713569 + 713789 + V14569 — V14789 — 723569 + 723789 — i ¥24569 1 i 724789
+7135610 — 7137810 t ¢ ¥145610 — ¢ 7147810 — +T¥7235610 t+ ¢7237810 t+ 7245610 — 7247810
—1¢12359 + $12369 + $12459 + @ $12469 — ¢ $35789 + $36789 + P45789 + i P46789
+123510 + 7 #123610 + @ P124510 — P124610 + $357810 + ¢ $367810 + ¢ $457810 — 467810
—4712359 + 712369 + 712459 + P V12469 — ¢ 735789 + Y36789 T+ V45789 + @ V46789
+7123510 + % 7123610 + ¢ Y124510 — V124610 + V357810 + 1 ¥367810 + P 7457810 — V467810
+i¢13459 — $13469 + i $15789 — P16789 — $23459 —  $23469 — 25789 —  $26789
—#134510 — © 9134610 — 157810 — ¢ $167810 — ¢ $234510 + $234610 — @ $257810 + $267810
+1713459 — 713469 t+ 715789 — V16789 — 723459 — 723469 — V25789 — ¢ V26789
—7134510 — ©7134610 — V157810 — ¢ ¥167810 — ¢ ¥234510 1 ¥234610 — ¢ 7257810 1+ 7267810
+i 13569 — ¢ 13789 + $14569 — $14789 — $23569 1+ $23789 + i $24569 — ¢ P24789
—#135610 + ¢137810 + i ¢145610 — ¢ $147810 — © $235610 + @ $237810 — 9245610 + $247810
+1713569 — 713789 1+ 714569 — V14789 — 723569 t 723789 + i 724569 — 724789
—7135610 T v137810 + ¢7145610 — ¢ 7¥147810 — ©7235610 * ¢ 237810 — 7245610 + 7247810
—$12349 — $12789 — $34569 — P56789 — P 123410 — ¢ 127810 — +i $345610 — ¥ $567810
—712349 — Y12789 — V34569 — V56789 — ¢ ¥123410 — ¢7127810 — +%7Y345610 — ¢ V567810
+P12569 — $12789 — $34569 T $34789 + i #125610 — ¢ 127810 — @ $345610 + ¢ $347810
+712569 — 712789 — 734569 T ¥34789 + V125610 — ¢ Y127810 — ¢ 7345610 t ¢ 7347810
+i¢13569 + @ $13789 + 14569 + P14789 + $23569 + $23789 — @ $24569 — i $24789
—#135610 — $137810 + @ ¢145610 + ¢ $147810 + @ $235610 1+ @ 237810 + 245610 + $247810
+4713569 + ¢ 713789 + 714569 + 714789 + V23569 + 723789 — ¥ 724569 — ¢ V24789
—7Y135610 — 7137810 t ¢ 145610 + ¢ v147810 + ¢ 7235610 + ¢ 7237810 + Y245610 + V247810
—i1$13459 + $13469 + 1 P15789 — P16789 — $23459 — @ $23469 + P25789 + i $26789
+#134510 + 7 $134610 — $157810 — P $167810 — @ 234510 + $234610 + P $257810 — $267810
—1713459 T 713469 T ¢ 715789 — V16789 — 723459 — © 723469 1+ Y25789 + i 726789
+7134510 + ¥ 7134610 — Y157810 — © V167810 — ¢ 7234510 + 7234610 + ¢ 7257810 — V267810
—1¢12359 + $12369 — $12459 — ¢ $12469 + ¢ $35789 — $36789 + P45789 + i 46789
+#123510 + 7 $123610 — @ $124510 + P124610 — $357810 — @ $367810 + © P457810 — P467810
—1712359 + 712369 — 712459 — ©712469 t 1735789 — V36789 T Y45789 + ¢ V46789
+7123510 + ¥7123610 — 7124510 + ¥124610 — ¥357810 — ¢ ¥367810 + ¢ 7457810 — V467810
—i¢13569 — @ 13789 + #14569 + $14789 + 23569 + 23789 + @ $24569 + ¢ P24789
+é135610 + 137810 + i ¢145610 + i 147810 + @ 235610 + @ $237810 — 245610 — $247810
—1713569 — ¢ 713789 + 714569 + 714789 + 723569 + 723789 + @ V24569 + ¢ V24789

+7135610 + v137810 + ©7145610 + 7147810 + ¢ 7235610 + ¢ ¥237810 — 245610 — V247810
+i¢13459 + $13469 — i 15789 — ¢16789 — $23459 + @ $23469 + $25789 — i P26789
—#134510 + @ #134610 + ¢157810 — ¢ $167810 —  $234510 — $234610 + ¢ $257810 + $267810
+1713459 + ¥13469 — 715789 — V16789 — V23459 + ¢ V23469 + ¥25789 — ¢ 726789
—7Y134510 T %7134610 + 7157810 — ¢ Y167810 — ©7234510 — 7234610 t ¢ 7257810 + 7267810
+i¢12359 + $12369 — $12459 + i $12469 — ¢ $35789 — $36789 + P45789 — i P46789
—®123510 + % $123610 — @ $124510 — $124610 + ¢357810 — @ ¢367810 + @ P457810 + P467810
+1712359 + 712369 — 712459 + 1712469 — ¢ V35789 — V36789 T V45789 — © V46789
—7123510 + ¥ 7123610 — 7124510 — V124610 + ¥357810 — ¢ 7367810 + ¢ 7457810 + v467810
—®12349 + ¢12569 + 12789 + $34569 + $34789 — P56789 — 123410 + i $125610
+i¢127810 + @ $345610 + ¢ $347810 —  $567810

—712349 + 712569 + 712789 + 734569 + 34789 — V56789 — ¢ V123410 + ¢ V125610
+iv127810 + i 7345610 + ¢ ¥347810 — © V567810
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The following complex scalar fields and lowering matricekenthe(71) stateq2, 2, 15) (see ed. 7.10)

@l = +id12357 + d12358 + $12367 — i $12368 + d12457 — i P12458 — i 12467 — $12468
—i 357910 — $358910 — $367910 T i $368910 — $457910 + @ 458910 + @ P467910 + $468910
rl = +4ivi3s7 + 712858 + V12367 — @ 712368 + V12457 — 1712458 — © Y12467 — 712468
—17357910 — 7358910 — V367910 t ©7368910 — V457910 + ¢7458910 + ©7467910 + 7468910
@2 = —i¢13457 — $13458 — $13467 + i 613468 — $23457 + i 23458 + I 923467 + 923468
+i¢157910 + #158910 + ¢167910 —  $168910 + $257910 — P $258910 —  $267910 — P268910
T2 = —iy13457 — 713458 — V13467 + © 713468 — 723457 + 723458 + ¢ 723467 + 723468
. +i7157910 + 7158910 + V167910 — ¥ ¥168910 + V257910 — ¢ V258910 — ¢ Y267910 — V268910
@3 = —i¢13567 — $13568 + #14567 — i #14568 — 23567 + i $23568 — i P24567 — P24568
. —4¢137910 — $138910 + ¢147910 — @ 148910 — $237910 + ¢ $238910 — ¥ $247910 — $248910
r$ = —19713567 — V13568 T 714567 — ¢ 714568 — V23567 T 1723568 — V24567 — V24568
4 —47137910 — 7138910 + 7147910 — ¢ 7148910 — ¥237910 1 ©Y238910 — ¥ Y247910 — 7248910
@ = —i$12357 — $12358 + $12367 — @ $12368 + $12457 — i d12458 + @ P12467 + P12468
" +i ¢357910 + $358910 — $367910 + ¢ $368910 — $457910 + ¢ 458910 — ¢ $467910 — $468910
r = —1712357 — 712358 T V12367 — ¢ 712368 T V12457 — 1712458 + ¢ 712467 + 712468
+17357910 + ¥358910 — ¥367910 T ¢ ¥368910 — Y457910 + ¢ V458910 — ¢ V467910 — V468910
@5 = +id13457 + 13458 — 13467 + i $13468 — $23457 + i 623458 — i $23467 — $23468
—i¢$157910 — $158910 T ¢167910 — i 168910 + 257910 — @ $258910 + ¢ $267910 + $268910
TS5 = 4ivy13457 + 713458 — V13467 T V13468 — 723457 + i 723458 — 723467 — 723468
—47157910 — 7158910 + 7167910 — ¢ 7168910 + Y257910 — @ ¥258910 + ¢ 7267910 + V268910
@6 = +id13567 + 13568 + 14567 — @ $14568 — $23567 + i 623568 + i P24567 + 24568
+i¢137910 + #138910 + ¢147910 — ¢ 148910 — $237910 + i $238910 + @ $247910 + $248910
6 = 4ivi3567 + 713568 + V14567 — P V14568 — 123567 + 723568 + i 124567 + 124568
+47137910 + 7138910 + 7147910 — 7148910 — V237910 + ¢ 7238910 + @ v247910 + 248910
@7 = —¢12347 + 7 d12348 — 634567 + i 34568 + 127910 — i 128910 + $567910 — ¢ 9568910
7 = 412347 + 1712348 — V34567 + i 734568 + V127910 — # V128910 + V567910 — % 7568910
@8 = +o10567 — i d12568 — $34567 T i 34568 + $127910 — © $128910 — $347910 + i 348910
I8 = 412567 — i 712568 — Y34567 + § 734568 + V127910 — i V128010 — 7347910 + 7348910
@9 = tidisse7 + 13568 T 14567 — i 14568 + $23567 — i 923568 — © $24567 — $24568
—1¢137910 — $138910 — $147910 + i #148910 — #237910 + @ $238910 + @ P247910 + $248910
r% = +ivizse7 + V13568 + V14567 — i 714568 t V23567 — 1723568 — ©Y24567 — V24568

—%7137910 — 7138910 — 7147910 + ©7148910 — ¥237910 + ©Y238910 + ¢ 7247910 + V248910

210 = —1$13457 — $13458 + 13467 — ¢ 913468 — $23457 T @ $23458 — @ $23467 — $23468
10 —i 157910 — 158910 T ¢167910 — ¢ 168910 — $257910 + ¢ $258910 — @ $267910 — $268910
r = —i713457 — 713458 + 713467 — ¥ 713468 — V23457 + ¢ v23458 — 1723467 — V23468
—47157910 — 7158910 + 7167910 — ¢ 7168910 — ¥257910 T ©¥258910 — ¥ Y267910 — Y268910
@1l = —ig1o357 — $12358 + $12367 — i $12368 — 12457 + i $12458 — @ $12467 — $12468
—i¢$357910 — $358910 1+ ¢367910 — ¢ $368910 — $457910 + ¢ $458910 — @ $467910 — 9468910
il = —iy12357 — V12358 + 712867 — § 712368 — 712457 + © V12458 — § 712467 — V12468
—17357910 — 7358910 T ¥367910 — ¢ 7368910 — V457910 t ¢ 7458910 — ¢ V467910 — 7468910
@12 = —ig13567 — $13568 + #14567 — i P14568 T 23567 — i 23568 + | $24567 + 24568
+i 137910 + $138910 — $147910 + ¢ $148910 — $237910 + P $238910 —  $247910 — 9248910
r'2 = —iy13567 — 713568 + 714567 — § 714568 T 723567 — i 723568 + i 724567 + 724568
. +47137910 + 7138910 — 7147910 + 7148910 — V237910 + © 7238910 — V247910 — 7248910
@13 = 4id13457 + ¢13458 + 913467 — i @13468 — $23457 + i $23458 + § b23467 + $23468
13 +i¢157910 + $158910 + #167910 — P #168910 — 257910 + @ 258910 + P P267910 + 268910
r = +i713457 + 713458 + 713467 — © 713468 — 723457 + 1723458 + ¢ V23467 + 723468
+i7157910 + 7158910 + 7167910 — © V168910 — V257910 + ¢ V258910 + © ¥267910 + Y268910
ol = +id12357 + 12358 + $12367 — @ $12368 — $12457 + @ $12458 + @ $12467 + 12468
14 +i ¢357910 + $358910 + #367910 —  $368910 — $457910 + ¢ $458910 * @ $467910 + $468910
r = +i712357 + 712358 + 712367 — © 712368 — 712457 + 1712458 + ¢ V12467 + 712468
+17357910 + ¥358910 + V367910 — % ¥368910 — Y457910 + ¢ V458910 + ¢ V467910 + 7468910
@15 = —¢19347 + i 412348 T 412567 — i $12568 + $34567 — i $34568 — $127910 T i $128010
—#347910 *+ @ $348910 + $567910 — ¢ $568910
T8 = 419347 + 712348 + V12567 — § 712568 + V34567 — i V34568 — Y127910 + § 7128910

—7347910 + © 7348910 + 7567910 — % V568910

The following complex scalar fields and lowering matriceskenthe(0 1) stateg(1, 3, 10) (see ed. 7.3)

@l = —¢13479 + i 413480 — $15670 + i 15689 + i $23479 + P23489 + i $25679 + P25689
—4 134710 — $134810 — ¥ $156710 — $156810 — $234710 + i $234810 — $256710 + ¢ 256810
= 913470 + i 713480 — V15679 + i V15680 + i 723479 + 723480 + i 125679 + 125680
5 —%7134710 — 7134810 — ¢ 7156710 — V156810 — 7234710 + ¢ 7234810 — 7256710 + 7256810
@ = —¢12379 + i $12380 + i b12479 + 12489 — #35679 + @ 35689 T i P45679 + P45689
5 —i¢$123710 — $123810 — 124710 1+ @ $124810 — ¢ #356710 — $356810 — $456710 + @ $456810
r = —712379 + 1712389 + 1712479 + 712489 — V35679 + ¢ 735689 + ¢ V45679 + V45689
—47123710 — 7123810 — ¥124710 T ¢ 7124810 — ? ¥356710 — ¥356810 — V456710 + 7456810
@3 = —¢12570 + i $12580 T i 12679 + $12689 — $34579 + i 34580 + i $34679 + 34689
—i¢125710 — $125810 — 126710 T © $#126810 — ¢ $345710 — $345810 — $346710 + @ 346810
3 = —vi2579 + 712580 + i V12670 + V12689 — ¥34570 + i ¥34580 + § V34679 + V34689
—47125710 — V125810 — Y126710 1 © 7126810 — % Y345710 — ¥345810 — V346710 + 7346810
@4 = —¢13470 + i 913480 + 15670 — i P15680 — i 23470 — $23489 + i $25679 + $25680
—4¢134710 — $134810 + i #156710 + ¢156810 + $234710 — i $234810 — 256710 + @ 256810
4 = 913479 + 713489 + V15679 — i V15689 — 723479 — V23489 + i 725679 + 125689
- —17134710 — Y134810 + 7156710 + 7156810 + ¥234710 — ? V234810 — Y256710 T ¢ Y256810
®° = +di12379 — i $12389 T i d12479 + #12489 — $35679 + 35689 — i P45679 — P45689
- +i¢123710 + $123810 — #124710 + ¢ ¢124810 — @ $356710 — $356810 + $456710 —  P456810
T° = 4712379 — i 712389 +i712479 + V12489 — V35679 + P ¥35689 — @ V45679 — V45689
+17123710 + 7123810 — 124710 + ¢ 7¥124810 — ¢7Y356710 — 7356810 1 7456710 — 7456810
@0 = —¢12570 + i d12580 — i 612670 — 612680 + 34579 — i 34589 + i 934679 + 634680
—i¢$125710 — $125810 T $126710 — ¢ $126810 *+ @ $345710 + #345810 — $346710 + @ $346810
6 = —~12579 + 712580 — i V12679 — 712689 + ¥34579 — i V34580 + i 734679 + V34689
—17125710 — 7125810 T ¥126710 — ©7126810 + ©7345710 + 7345810 — 7¥346710 1 ¢ 7346810
@7 =  —i¢13579 — $13580 — $18679 + i 613680 — $14570 + i $14580 + i $14679 + $14680

— 23579 + @ $23589 + @ $23679 + 23689 1+ @ $24579 + $24580 + $24679 — @ P24689

+¢135710 — 1 $135810 — ¢ $136710 — $136810 — ¢ 145710 — $145810 — $146710 + ¢ $146810

—i¢235710 — $235810 — $236710 T ¢ $236810 — $245710 + @ $245810 + ¢ $246710 + $246810
7 = —iy13579 — 713580 — V13679 + i 713689 — V14579 T i V14580 + i V14679 + V14689

—723579 + ¢ 723589 + ¢ 723679 + 723689 t ¢ 724579 + V24589 + Y24679 — ¢ V24689

+7135710 — 17135810 — 7136710 — Y136810 — ¢ ¥145710 — V145810 — Y146710 + ¢ 7146810

—17235710 — 7235810 — 7236710 t ©7236810 — 7245710 + ©7245810 + ¢ 7246710 + 7246810
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o8 = —id13570 — 613580 + 613679 — P 613689 + P14579 — i 14580 + i d14679 + 14689
— 23579 + i $23580 — i $23679 — $23689 — i $24579 — $24589 + $24679 — i $24689
+¢135710 — i $135810 + ¢ 136710 + ¢136810 + @ $145710 + $145810 — $146710 + @ P146810
—i$235710 — $235810 + #236710 — ¢ $236810 + $245710 — @ $245810 + ¢ 246710 + $246810
8 = —ivyi3579 — 713580 + 713679 — V13689 + V14579 — i 714589 + i 714679 + V14689
—723579 + 1723580 — 1723679 — 723689 — ¢ V24579 — 724589 1+ 724679 — © 724689
+7135710 — © 7135810 + ¥ 7136710 + 7136810 + P 7145710 + 7145810 — 7146710 + ¥ 7146810
—47235710 — V235810 + 7236710 — ¢ v236810 + 7245710 — ¢ v245810 + ¢ V246710 + Y246810
3% = —id13570 — 613580 + 613670 — I #13689 — 14579 + i S14580 — i $14679 — $14680
+¢23579 — i $23580 + i $23679 + 23689 — @ $24579 — $24589 + P24679 —  $24689
+¢135710 — 1 $135810 + 136710 + 9136810 — P $145710 — $145810 + 146710 — ¢ 146810
+i$235710 + $235810 — #236710 + @ 236810 + $245710 —  $245810 + i $246710 + P246810
r% = —ivis579 — 713580 + 713679 — 1 713680 — 714579 + § V14589 — i V14679 — V14689
+723579 — 1723589 + ¢ 723679 + 723689 — 724579 — 724589 T V24679 — 724689
+7135710 — 7135810 + 97136710 t 7136810 — ¢ Y145710 — Y145810 T Y146710 — ¢ V146810
+iv235710 + 7235810 — 7236710 + ¢ ¥236810 + V245710 — ¢ ¥245810 + ¢ ¥246710 + V246810

@10 = —ig13570 — $13580 — $13679 + i #13689 + 14579 — i $14589 — i P14679 — P14689
+23579 — i $23580 — @ $23679 — 923689 1 i $24579 + 24589 + 24679 —  $24689
+#135710 — 1 $135810 — ¢ 136710 — $136810 + 1 ¢145710 + #145810 + $146710 — ¢ $146810
+i$235710 + 235810 + $236710 — ¢ $236810 — 245710 + ¢ $245810 + ¢ 246710 + P246810

ri0 = —ivyi3570 — 713580 — 713679 + 1713689 T V14579 — 1714589 ~ © V14679 — V14689

+723579 — 1723589 — 1723679 — 723689 T i 724579 + 724589 t 724679 — 724689
+7135710 — 7135810 — ¢ ¥136710 — Y136810 T ¢ 7145710 + 7145810 T ¥146710 — ¢ 7146810
+iv235710 + 7235810 + v236710 — ¢ 7236810 — 7245710 + ¢ ¥245810 + ¢ ¥246710 + V246810

The following complex scalar fields and lowering matricekentne(0, A = 0) stateq(1, 3, 10) (see e

@l = +idi3478 + i 15678 + $23478 T 25678 — i $134910 — i 156010 — $234010 — $256910
rl = +ivis47s + i V15678 + 723478 + V25678 — § V134910 — i V156910 — 7234910 — V256910
@2 = tidiog7s + @12478 + i 635678 + P45678 — © #128010 — $124910 —  ¥356010 — P456910
1",2 = +iv12378 + 712478 + 1 ¥35678 + V45678 — ¢ ¥123910 — Y124910 — ¢ V356910 — V456910
‘Pj" = +id12578 + P12678 + ¢ $34578 + $34678 — 1 $125910 — $126910 — ¢ $345910 — $346910
3 = +ivias7s + 712678 + i 734578 + ¥34678 — 1 7125010 — V126910 — ¢ ¥345910 — V346910
@4 = tidi3478 — i 15678 — $23478 + $25678 — i $134910 + i P156910 + $234010 — $256910
F‘f = +i713478 — 1715678 — 723478 + 725678 — © 7134910 + 17156910 + 7234910 — 7256910
®2 = —i¢12378 + P12478 + 1 ¢35678 — P45678 + i $123010 — $124910 — ¢ $356910 + P456910
r° = —iv12378 + V12478 + i735678 — ¥45678 + P 7123910 — ¥124910 — ? ¥356910 T Y456910
@0 = tidios7s — 12678 — i 34578 + P34678 — P 125910 + $126910 + i #345910 — 346910
IS =  +ivias7s — V12678 — i 734578 + 734678 — § 7125910 + V126010 + § ¥345010 — 7346910
@7 = —¢13578 + 1913678 + i 14578 + S14678 + i P23578 + 23678 T P24578 — i $24678
+#135910 — © 9136910 — © $145910 — $146910 — ¢ $235910 — $236910 — 9245910 + ¢ $246910
r7 = —vigs7g i 713678 + 1714578 + 714678 t ¢ 723578 + 723678 + 724578 — 724678
+7135910 — 7136910 — © Y145910 — Y146910 — © ¥235910 — V236910 — Y245910 T # 7246910
@8 = —¢13578 — i $13678 — i b14578 + D14678 + i $23578 — P23678 — D24578 — i H24678
+#135910 + 7 #136910 + @ P145910 — $146910 — i $235910 + $236910 + P245910 + i $246910
8 = —4i3578 — i713678 — i 714578 + V14678 + i 723578 — V23678 — V24578 — i V24678
+7135910 + 27136910 + ¢ 7145910 — Y146910 — ¢7235910 + 7236910 + 7245910 + ¢ 7246910
@9 = —¢13578 — i 613678 + 1 14578 — 14678 — i 23578 + P23678 — P24578 — i H24678
+#135910 + 7 136910 — ¢ $145910 + $146910 + ¢ $235910 — 236910 + $245910 + ¢ $246910
9 = 913578 — i 713678 + i V14578 — V14678 — i V23578 + V23678 — 724578 — i V24678
+7135910 + % 7136910 — ©7145910 t+ 7146910 + ¢ 7235910 — 7236910 + 7245910 + ¢ 7246910
210 = —gi357 + 1 $13678 — © 914578 — $14678 — @ $23578 — 23678 + 24578 — © 24678
+#135910 — 1 $136910 + ¢ $145910 + $146910 + ¢ $235910 + $236910 — $245910 + ¢ $246910
rl0 = 513578 + 713678 — i 714578 — V14678 — i V23578 — V23678 + 124578 — i V24678

+7135910 — 7136910 + 7145910 + v146910 + ¢ v235910 + 7236910 — 7245910 + ¢ ¥246910

The following complex scalar fields and lowering matricekentne(0 | ) stateq(1, 3, 10) (see e
@1 = +o13470 + i b13480 + ¢15679 + i P15689 — i 23479 + $23480 — @ $25679 + 25689
—4¢134710 + $134810 — P #156710 + ¢156810 — 234710 — ¢ $234810 — $256710 — ¢ $256810
= 4413479 + 9713489 + V15679 + i V15689 — i 723479 + V23489 — i 125679 + 125680
—%7134710 + 7134810 — ¢ V156710 + V156810 — 234710 — ¢ Y234810 — V256710 — ¢ 7256810
@2 = +¢12379 + 112380 — i 12479 + S12480 + $35679 + i 35689 — i 45679 + P45689
—i¢123710 + $123810 — ¢124710 — ¢ $124810 — ¢ #356710 T $356810 — 456710 — ¢ $456810
T2 = 4412379 + 712380 — i V12479 + V12489 + V35679 + i 735689 — i V45679 T 145680
—47123710 + 7123810 — 7124710 — ¢ 7124810 — ¢ ¥356710 + ¥356810 — V456710 — © Y456810
®3 = +d12579 + i P12589 — i 12679 + $12689 + P34579 + @ $34589 — @ $34679 + $34689
—i¢125710 + $125810 — ¢126710 — ¢ 126810 — ¢ $345710 1+ $345810 — $346710 — ¢ $346810
I3 = 4412570 + 9712580 — i V12670 + V12689 + 784570 + § 734580 — § Y3467 + V34680
—47125710 + 7125810 — 7126710 — ¢ 7126810 — % ¥345710 + 7345810 — ¥346710 — ¥ 7346810
@4 = ¢13479 + 1613480 — #15670 — i P15689 + i $23470 — $23489 — i $25679 + $25680
—4¢134710 + #134810 + @ ¢156710 — $156810 + $234710 + 234810 — $256710 — ¢ $256810
4 = 413470 + 713480 — V15679 — i V15689 + i 723479 — 723480 — ¢ 725679 + 125689
- —17134710 + ¥134810 + ¢ Y156710 — ¥156810 + ¥234710 + ¢ ¥234810 — ¥256710 — % V256810
®° = —¢12379 — i $12389 — i #12479 + $12489 + 35679 + i #35689 t i P45679 — P45689
- +i 123710 — $123810 — $124710 — @ $124810 — ? #356710 T 356810 1+ $456710 + ¢ P456810
T° = —7v12379 — i712389 — © 712479 + 712489 + 735679 + P 735689 + @ V45679 — V45689
+%7123710 — 7123810 — 7124710 — ?¥124810 — ? ¥356710 + ¥356810 + ¥456710 + 456810
@0 = +¢12570 + 110580 + i d12679 — $12689 — $34579 — i $34589 — i 934679 + 634680
—i¢125710 + $125810 + ¢126710 + @ 126810 + © 345710 — $345810 — $346710 — ¢ $346810
6 = 419570 + 712580 + 712679 — V12689 — V34579 — i V34580 — i V34679 + V34689
—17125710 + 7125810 + 7126710 + ¢ 7126810 + ¢ ¥Y345710 — 7345810 — V346710 — ¢ 7346810
®7 = +id13579 — $13580 T 413679 + 7 $13689 + 414570 + i 14580 — i $14679 + 14689

+#23579 + @ $23589 — i $23679 + $23689 — @ $24579 + 24589 — 24679 — @ $24689
+é135710 + @ 135810 — ¢ $136710 + ¢136810 — @ 145710 + $145810 — $146710 — ¢ $146810
—i¢235710 + $235810 — $236710 — ¢ $236810 — $245710 — ¢ $245810 + @ $246710 — $246810
I7 = +ivi3s79 — V13589 + V13679 713689 + V14579 + i V14589 — i V14679 + V14689
+723579 + 1 v23589 — ©723679 + 723689 — © 724579 T 724589 — 24679 — ¢ 724689
+7135710 + 27135810 — 7136710 + 7136810 — ¢ 7145710 t+ Y145810 — 7146710 — V146810
—47235710 + 7235810 — 7236710 — ¢ 7236810 — Y245710 — ¢ ¥245810 1 ¥ 7246710 — 7246810
@8 = ti¢i3570 — 413580 — $13679 — 913689 — 14579 — © $14589 — © $14679 T 914689
+d23579 + @ $23589 + i 623679 — $23689 + ¢ 24579 — 24589 — $24679 — ¢ $24689
+é135710 + @ 135810 + @ $136710 — $136810 T ¢ $145710 — $145810 — $146710 — ¢ $146810
—i¢$235710 + $235810 + #236710 + @ $236810 + $245710 + @ $245810 + @ $246710 — $246810
r® = +iyi13579 — 713580 — 713679 — © V13689 — V14579 — P V14589 — i 714679 T 714689
+723579 + ¢ v23589 + 1723679 — 723689 1+ © V24579 — Y24589 — 24679 — ¢ V24689
+7135710 + 27135810 + ¢ ¥136710 — Y136810 1+ ¢ V145710 — Y145810 — Y146710 — V146810
—17235710 + 7235810 + 7236710 + ¢ 7236810 + 7245710 + ¢ 7245810 + ¢ 7246710 — V246810
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+i$13579 — $13580 — 13679 — ¢ $13689 T $14579 T i #14589 + i $14679 — $14689
— 23579 — @ $23589 — @ $23679 + $23689 + ¢ $24579 — $24589 — $24679 — i $24689
+¢135710 + 1 #135810 + @ 136710 — $136810 — ¢ #145710 + P145810 + $146710 + @ P146810
+i$235710 — $235810 — $236710 — ¢ $236810 + 245710 + i $245810 + @ 246710 — $246810
+4713579 — Y13589 — 713679 — ©713689 t Y14579 + V14589 + ¢ V14679 — 714689
—723579 — 723589 — © 723679 T 723689 T ¢ 724579 — 724589 — 24679 — ¢ 724689
+7135710 + 17135810 + ¢ 7136710 — 7136810 — ¥ 7145710 + ¥145810 + 7146710 + ¥ 7146810
+i7235710 — V235810 — V236710 — ?¥236810 T V245710 + ¢ V245810 + ¢ V246710 — V246810
+i$13579 — $13589 + ¢13679 + ¢ $13689 — $14579 — i #14589 + i $14679 — $14689
— 23579 — @ $23589 + i $23679 — $23689 — @ $24579 + $24589 — $24679 — @ $24689
+¢135710 + i $135810 — ¢ 136710 + $136810 + @ $145710 — $145810 + $146710 + @ $146810
+i$235710 — $235810 + $236710 + ¥ $236810 — $245710 — i $245810 + @ 246710 — $246810
+4713579 — 713589 1+ 713679 + 1713689 — V14579 — ¢ V14589 + ¢ V14679 — 714689

—723579 — 723589 T 1723679 — 723689 — © 724579 T 724589 — 724679 — ¢ V24689
+7135710 + ©7135810 — © 7136710 t 7136810 + 7145710 — 7145810 t 7146710 + ¥ 7146810
+i7235710 — v235810 + 7236710 + ¢ 7236810 — 7245710 — © V245810 + ¢ V246710 — 7246810

The following complex scalar fields and lowering matriceskentne(7, 0) states(3, 1, 10) (see ed. 7.3)

ol
rl
P2
r2
3
3
p4
4
5
5
F
6

o7

7

58

8

¢9

9

rlo

The following complex scalar fields and lowering matricekenthe(A = 0, 0) stateg(3, 1, 10) (see e

+#13479 — P $13489 — 15679 + P 15689 — @ $23479 — $23489 + i P25679 + 25689
—i 134710 — $134810 T ¢ #156710 + 156810 — 234710 + ¢ $234810 + $256710 — @ $256810
+713479 — 1713489 — V15679 + ¢ V15689 — © 723479 — 723489 + ¥ ¥25679 T 725689
—17134710 — 7134810 + 7156710 + Y156810 — ¥234710 + ¢ 7234810 + V256710 — ¢ V256810
—®12379 + i ¢$12380 + i d12479 + P12489 + P35679 — @ $35689 — @ 45679 — P45689
+id123710 + #123810 + $124710 — ¢ 124810 — © $356710 — $356810 — $456710 T ¢ $456810
—712379 + 712389 + @ V12479 + 712489 + V35679 — © ¥35689 — ¥ Y45679 — V45689
+i7v123710 + 7123810 + ¥124710 — V124810 — # V356710 — Y356810 — V456710 t @ ¥456810
+é12579 — i 12589 — ¢ P12679 — $12689 — 34579 + ¢ $34589 + i $34679 + $34689
—i$125710 — ¢125810 — ?126710 + ¢ $126810 + ¢ $345710 + $345810 + $346710 — ¢ $346810
+712579 — 712589 — © V12679 — V12689 — Y34579 T © 734589 + ¥ V34679 + ¥34689
—17125710 — 7125810 — ¥126710 t+ ¢7126810 + ¢7345710 T+ 7345810 + 7346710 — ¢ 7346810
+é13479 — i 13489 + P15679 — P 15689 + ¢ $23479 + P23489 + @ $25679 + $25689
—i1$134710 — $134810 — ¢ ¢156710 — $156810 + $234710 —  $234810 + $256710 — ¢ 256810
+713479 — 1713489 + Y15679 — ¢ V15689 T 723479 + ¥23489 + 1 ¥25679 + V25689
—%7134710 — 7134810 — ¢ Y156710 — V156810 1 7234710 — 7234810 + V256710 — 7256810
+#12379 — i ¢12389 + i $12479 + $12489 + #35679 — @ P35689 + @ P45679 + P45689
—i¢$123710 — $123810 1+ ¢124710 — © $124810 — ¢ $356710 — $356810 + $456710 — ¢ $456810
+712379 — © 712389 + i 712479 + 712489 + ¥35679 —  ¥35689 1+ ¢ Y45679 + V45689
—17123710 — 7123810 + ¥124710 — #7124810 — ¢ V356710 — Y356810 1+ V456710 — ¢ Y456810
+d12579 — i d12589 + i P12679 + $12689 + $34579 — @ $34589 + @ $34679 + $34689
—i$125710 — $125810 + 126710 — ¢ $126810 — ¢ $345710 — 345810 + #346710 — ¢ $346810
+712579 — i 712589 + i 712679 + 712689 + ¥34579 — @ ¥34589 + @ ¥34679 + V34689
—%7125710 — 7125810 + 7126710 — © 7126810 — % Y345710 — ¥345810 1 ¥346710 — ¥ 7346810
—i 13579 — 13589 + $13679 — ¢ 13689 + $14579 — @ $14589 + i P14679 1+ P14689
+#23579 — @ $23589 + @ $23679 + $23689 + ¢ 24579 + $24589 — P24679 + i $24689
—#135710 + 1 9135810 — @ #136710 — $136810 — ¢ $145710 — #145810 + 146710 — ¢ 146810
—1$235710 — $235810 T $236710 — ¢ $236810 + $245710 — ¢ $245810 + ¢ $246710 + $246810
—1713579 — 713589 + 713679 — ©713689 t ¥14579 — ©714589 + ¢ 714679 T+ 714689
+723579 — 723589 + 1723679 T 723689 T 724579 + 724589 — V24679 T 724689
—7135710 + ¢ 7135810 — © ¥136710 — V136810 — ¢ ¥Y145710 — Y145810 + 7146710 — ¢ 7146810
—4 7235710 — 7235810 + 7236710 — © 7236810 + ¥245710 — ¢ 245810 + ¢ V246710 + 7246810
—1¢13579 — 13589 — #13679 + ¢ 13689 — 14579 + @ 145890 + i P14679 + P14689
+#23579 — @ $23589 — @ 23679 — 23689 — ¢ $24579 — $24589 — $24679 + ¢ $24689
—®135710 + i #135810 + ¢ 136710 + $136810 + @ 145710 + $145810 + P146710 —  $146810
—1$235710 — $235810 — #236710 + ¢ $236810 — $245710 + ¢ 245810 + ¢ $246710 + $246810
—4713579 — V13589 — V13679 + ¢ 713689 — 714579 + i 714589 + i V14679 + V14689
+723579 — © 723580 — ©Y23679 — V23689 — © V24579 — V24589 — 724679 T i 724689
—7135710 + © 7135810 + 7136710 + 7136810 + ¢ 7145710 + 7145810 + 7146710 — % 7146810
—17235710 — 7235810 — ¥236710 + ¢ 7236810 — V245710 + ¢ 7245810 + ¢ 7246710 + V246810
—1¢13579 — 13589 — #13679 + ¢ 13689 + $14579 — @ 14589 — i $14679 — 914689
—#23579 + @ $23580 + i $23679 + 23689 — ¢ 24579 — 24589 — $24679 + ¢ $24689
—#135710 + i $135810 + ¢ 136710 + $136810 — @ 145710 — $145810 — $146710 + @ P146810
+i¢235710 + $235810 + $236710 — ¢ $236810 — $245710 + @ $245810 + @ $246710 + $246810
—1713579 — V13589 — ¥13679 + ¢ 713689 + ¥14579 — 714589 — ¢ V14679 — V14689
—723579 + 1723589 + © 723679 + 723689 — 724579 — V24589 — 724679 T ¢ 724689
—7135710 + © 7135810 + 7136710 + Y136810 — ©Y145710 — V145810 — Y146710 + ¢ 7146810
+i7v235710 + 7235810 + 7236710 — 7236810 — V245710 + @ 7245810 + @ 7246710 + 7246810
—1¢13579 — 13589 + $13679 — ¢ 13689 — 14579 + i 14589 — i 14679 — 914689
—®23579 + @ $23580 — i $23679 — $23689 t i $24579 + P24589 — 24679 + i $24689
—#135710 + ¢ #135810 — ¢ $136710 — $136810 + ¢ $145710 + $145810 — $146710 T ¢ 146810
+i ¢235710 + $235810 — $236710 + ¢ $236810 T $245710 — ¢ $245810 + @ $246710 + $246810
—4713579 — V13589 T V13679 — ¢ V13689 — V14579 T i 714589 — ¥ Y14679 — V14689
—723579 + @ 723589 — 1723679 — 723689 + 724579 + V24589 — 724679 + i 724689
—7135710 + # 7135810 — # 7136710 — 7136810 + ©v145710 + 7145810 — 7146710 + ¢ 7146810
+i7235710 + 7235810 — 7236710 + ¢ 7236810 1+ 7245710 — ¢ 7245810 + ¢ 7246710 + 7246810

+i¢$13478 — @ 15678 — $23478 + $25678 + ¢ $134910 — ¢ $156910 — 234910 T+ $256910
—1713478 + 1715678 — 723478 + ¥25678 — © 7134910 *+ ¥ Y156910 — 7234910 *+ 7256910
—1¢12378 + $12478 + i #35678 — P45678 — ¢ $123910 + 124910 +  $356910 — $456910
+i712378 + 712478 — 135678 — V45678 + 17123910 + V124910 — ¢ ¥356910 — V456910
+i 12578 — ¢12678 — @ 34578 + $34678 + ¢ $125910 — $126910 — ¢ $345910 + $346910
—1712578 — 712678 + 1734578 + ¥34678 — ©¥125910 — 7126910 T ©7Y345910 + V346910
—i¢13478 — 1 #15678 + $23478 + P25678 — P 134910 — i 156910 + $234910 + $256910
—1713478 — 715678 + 723478 + ¥25678 — ¢ V134910 — ¢ Y156910 1+ V234910 + 7256910
—i¢12378 + ¢12478 — 1 #35678 + P45678 — @ $123910 + $124910 — @ $356910 + 456910
—1712378 + 712478 — ©735678 T 745678 — © 7123910 + 7124910 — %7Y356910 T V456910
—i¢12578 — ¢12678 1+ @ $34578 + $34678 + ¢ $125910 T $126910 — ¥ $345910 — $346910
+i712578 — V12678 — ©¥34578 + V34678 — ©v125910 + 7126910 + ¢ ¥345910 — V346910
—®13578 + i $13678 + i P14578 + P14678 + ¥ $23578 + $23678 + P24578 — @ P24678
—®135910 + @ #136910 + ¢ ?145910 + P146910 + @ $235910 + $236910 + $245910 —  $246910
—713578 — ©713678 — 714578 + 714678 — 723578 T 723678 1+ ¥24578 + 1724678
—7135910 — ©7136910 — ¢ 7145910 + 7146910 — # 7235910 + 236910 + Y245910 + ¢ 7246910
—®13578 — 1913678 — @ 14578 + $14678 + i $23578 — $23678 — $24578 — @ $24678
—#135910 + 1 $136910 + ¢ $145910 + $146910 — @ $235910 — $236910 — $245910 + @ $246910
—713578 + 1713678 + ¢ V14578 + 714678 — © V23578 — V23678 — 24578 + © 724678
—7135910 — 7136910 — ¢ 7145910 + Y146910 + ¢ 7235910 — 236910 — V245910 — 7246910
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@ = —¢13578 — i $13678 + 1 14578 — 14678 — i b23578 + P23678 — P24578 — i H24678
—#135910 — 9136910 1+ ¢ 145910 — $146910 — ¢ $235910 + $236910 — 245910 — © $246910

% = —4i3578 + 1713678 — i V14578 — V14678 + i V23578 + V23678 — V24578 + i V24678
—7135910 1+ 7136910 — © 7145910 — V146910 t ¢7235910 T 7236910 — 7245910 + ¢ 7246910

20 = —g13578 + $13678 — @ $14578 — 14678 — @ $23578 — $23678 T $24578 — i $24678
10 —#135910 + 1 9136910 — ¢ 145910 — $146910 — ¢ $235910 — $236910 + 245910 — @ $246910
r = —713578 — ©713678 t+ ¢ V14578 — 714678 1+ i 723578 — V23678 + V24578 + @ V24678

—7135910 — #7136910 + ¢ 7145910 — V146910 + 7235910 — 7236910 + ¥245910 + ¢ ¥246910

The following complex scalar fields and lowering matricekenthe( |, 0) states(3, 1, 10) (see e

@l = —¢13470 — i $13480 + $15679 T i $15680 + i $23470 — $23489 — i P25679 + $25680
—i¢$134710 + $134810 + ¢ 156710 — 156810 — 9234710 — @ $234810 + $256710 + @ 256810
rl = 913470 — i 713480 + 715679 + i V15689 + i 723479 — ¥23480 — i V25679 + V25689
—17134710 + 7134810 + ¢ V156710 — Y156810 — 7234710 — ©7234810 t 7256710 + ¢ 7256810
®2 = +¢10370 +1b12380 — i 12479 + $12480 — $35679 — i $35689 T i P456T9 — P45689
+i 123710 — $123810 + ¢124710 + @ $124810 — @ $356710 + $356810 — $456710 — ¢ $456810
T2 = 419379 + 712380 — § V12479 + V12489 — V35679 — © V35680 + I VAB6TO — V45689
+i7v123710 — 7123810 + 7124710 + 7124810 — © V356710 + V356810 — V456710 — % Y456810
@3 = —¢12570 — i $12580 + i 612679 — #12689 + 34579 + 7 #34580 — i P34679 + $34680
. —i¢125710 + $125810 — $126710 — ¢ $126810 + @ $345710 — $345810 + #346710 + @ $346810
3 = —712579 — © 712589 + 1712679 — 712689 + ¥34579 + i 734589 — ¢ 734679 t 734689
—47125710 + 7125810 — 7126710 — ¢ 7126810 + © ¥345710 — 345810 + ¥346710 + ¢ 7346810
@4 = —¢13470 — i 613480 — $15679 — i $15680 — i 623479 + P23480 — i 25679 T P25689
—4¢134710 + $134810 — P #156710 + ¢156810 + $234710 + @ 234810 + $256710 + @ $256810
% = 913479 — i713480 — V15679 — P V15680 — i 723479 + 723489 — P V25679 + V25689
- —17134710 + 7134810 — ¢ 7156710 + 7156810 1+ 7234710 + ¢ ¥234810 + 7256710 + ¢ 7256810
®° = —¢12379 — i $12389 — i #12479 + $12489 — $35679 — i $35689 — i P45679 t P45689
—i¢123710 + $123810 + #124710 + @ 124810 — ¢ #356710 + ¢356810 + ¢456710 + @ P456810
5 = —v12379 — i 712380 — i 712479 + V12489 — V35679 — i V35680 — i 145679 + V45689
—17123710 + 7123810 + 7124710 + ¢ 7124810 — ¢ 7356710 + ¥356810 T 7456710 + ¢ 7456810
6 = —®12579 — i 12589 — P 12679 + $12689 — 34579 — © $34589 — © $34679 T $34689
—i¢125710 + $125810 + #126710 + @ 126810 — ¢ $345710 + ¢345810 + ¢346710 + @ $346810
6 = 12579 — i 712580 — i 712679 + V12689 — V34579 — V34580 — i V34679 + V34689
—47125710 + 7125810 + V126710 + ¥ 7126810 — ©¥345710 + ¥345810 + ¥346710 + ? 7346810
@7 = +id13570 — 13580 — $13679 — i #13680 — $14579 — @ #14580 — i $14679 + $14689
—®23579 — i 23589 — P $23679 + $23689 — ¢ $24579 + $24589 + $24679 + i $24689

—®135710 — © 9135810 — © 136710 + #136810 — @ $145710 + ¢145810 + #146710 + @ P146810

—i¢235710 + $235810 + #236710 + @ 236810 + $245710 + @ $245810 + ¢ 246710 — $246810
r7 = +4ivi3s79 — 713580 — V13679 — 713689 — Y14579 — @ V14589 — ¢ 714679 1 V14689

—723579 — ©723589 — ©723679 T 723689 — 724579 1+ ¥24589 + 724679 + ¢ 724689

—7135710 — ©7135810 — © 7136710 + 7136810 — % Y145710 + V145810 + Y146710 + ¢ 7146810

—17235710 + 7235810 + 7236710 + ¢ 236810 + 7245710 + ¢ 7245810 + ¢ 7246710 — V246810
@8 = tid13570 — 13580 + 13670 + i $13689 + $14570 + i $14580 — i $14670 + $14689

—#23579 — i 23589 + i $23679 — 923689 + i $24579 — $24589 + $24679 + i 24689

—#135710 — ©$135810 + @ #136710 — #136810 + @ 145710 — $145810 + #146710 + @ P146810

—i¢$235710 + $235810 — $236710 — ¢ $236810 — $245710 — ¢ $245810 + @ $246710 — $246810
8 = +ivizs7o — v13580 + 713679 + i 713689 + 714579 + § 714580 — § V14679 + V14689

—723579 — ©723589 + ©723679 — 723689 + 724579 — V24589 + 724679 + i 724689

—7135710 — ©7135810 t ¢ 7136710 — 7136810 t ¥ 7145710 — 7145810 t Y146710 t ¥ 7146810

—47235710 + 7235810 — 7236710 — ¢ 7236810 — Y245710 — ¢ ¥245810 1 ¥ 7246710 — 7246810
2% =  +i¢i3s70 — 413580 + $13679 T © $13689 — $14579 — 1 $14589 + ¢ $14679 — $14689

+#23579 + @ $23580 — i $23679 + $23689 + ¢ 24579 — P24589 + P24679 + i $24689

—#135710 — 9135810 + ¢ #136710 — $136810 — ¢ $145710 + $145810 — 146710 — © $146810

+i ¢235710 — $235810 + $236710 + ¢ $236810 — $245710 — @ $245810 + ¢ $246710 — 9246810
r% = +4ivi3579 — 713580 + 713679 + i 713689 — V14579 — i V14580 + i V14679 — V14689

+723579 + 1723589 — ©723679 + 723689 1+ ¢ V24579 — ¥24589 + 724679 + ¢ 724689

—7135710 — ©7135810 T ¢ 7136710 — V136810 — ¢ Y145710 T 7145810 — V146710 — % Y146810

+17235710 — 7235810 t ¥236710 1 ¢ 7236810 — 7245710 — © 7245810 t ¢ 7246710 — V246810

@10 = +idi3579 — $13580 — $13679 — @ #13689 + 14579 + i $14580 + i $14679 — $14689
+d23579 + @ $23589 + i $23679 — $23689 — ¢ $24579 + 24589 + P24679 + i $24689
—#135710 — 9135810 — @ 136710 + #136810 + ¢ ¢145710 — $145810 — $146710 — ¢ $146810
+i ¢235710 — $235810 — $236710 — @ $236810 + $245710 + @ $245810 + @ $246710 — 9246810
10 = 4iv13570 — 713580 — 713679 — @ 713689 + V14579 + i ¥14580 + § V14679 — V14689

+723579 + ¢ 723589 + ¢ 723679 — 723689 — ©724579 t 724589 + 724679 + 1724689
—7135710 — 7135810 — ¢ 7136710 + 7136810 + ¢ Y145710 — 7145810 — V146710 — ¢ 7146810
+i7v235710 — 7235810 — ¥236710 — ¢ 7236810 1+ v245710 + ¢ 7245810 + © 7246710 — 246810

The following Complex scalar fields and lowering matriceskentne(0, 0) states of 1, 1, 6). (see ed. 7.3)

el = —i¢13456 + $23456 + i $178910 — $278910
rt = +i713456 + 723456 — 1 V178910 — V278910
®2 = +id12356 — $12456 — i #378910 + $478910
r2 = —ivyi2356 — V12456 + i 7378910 + V478910
@3 = —i¢19345 + $21346 + i $578910 — $678910
rs = +i712345 + v21346 — ¢ Y578910 — V678910
@4 = +idisase + $28456 + i 6178010 + $278910
r* = —ivyi3456 + 723456 — i V178910 + 7278910
®5 = —i¢12356 — $12456 — i $378010 — $478910
5 = +iv12356 — 712456 + i 7378910 — V478910
@6 = 4id12345 + P12346 + 7 #578910 + 678910
r6 = —ivyi2345 + 712346 — i V578910 + V678910
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C. CHARTS FOR WEIGHTS OH.3, R3, Us_s_15 AND @

—
—
1
Bl > IR [N B [N BT [ i ) o (e} (e} o o (e} (e} [e] [e] o o [e] o o N =N AN
A HA HN H © O © O O O O O o o o o o o o I H N A
N HA AN | O o (e} [en} o o (e} (e} [e] [e] o o [e] o o N =N AN
N HAN AN e O o (e} (e} o o (e} (e} [e] [e] o o [e] o o N =N AN ]
A HA HN H © O ©O O O O O O o o o o o o o I H N A
N HA AN e O o (e} (e} o o (e} (e} [e] [e] o o [e] o o N =N AN N
A HA HN H © O © O O O O O o o o o o o o I N N A
Bl [ IR N B [N R I i ) o (e} [en) o o (e} (e} [e] [e] o o [e] o o N =N AN e
S O O O HA HA HA HA A=A AN N N IO HN H N N =N A [ o o o O
, I , , I I , , I I , I I , ,
(] o o O HIA HA =A@ HA A=A O H N = A =N AN = = =N e o (] (] o
, I , , I I , , I I , I I , ,
O O O O HA HA HN HA A=A AN N N IO HN H N N AN A [ o o o O
[ I , [ I I , , I I , I I , ,
(] o o O HIA HA H® A H[A H O H N e A =N AN = = = e o (] (] o
, I , , I I , , I I , I I , ,
— — — -1 HA H A AN A=A A =N =N T [ T T [ JRES] [N BRST [ BT [ T [ S o — — — —
— — — — N =N =N =N =] =] =N~ Rl [ BT [~ BT o B o R T BT B [ — — — —
— — — — HN HA A AN A=A A =N =N T [ T T [ JRES] [N BRST [ BT [ T [ S o — — — —
— — — — HEN HA H A AN A=A A =N =N T 1 T T [ JREST [N BRST o BT [ BT [ B T — — — —

In the following pages, we present for basis C, the eigem#ht the sites 032 x 32 matrices in the adjoint

representation. We proceed in the order, Rs , Us, Ug, U5 and@. Each one is divided into 4 blocks which are
given in the ordef11), (21), (12), (22) respectively. They are obtained as explained in Appendir Ags| A.1

to/A.3.
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