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Preface

This thesis presents part of the research I conducted over the last four years at the
Institute for Theoretical Physics of the University of Amsterdam, which resulted in
the publications listed on page iii. A large part of theoretical physics is inherently
collaborative, and all my research was done in the context of collaborations. For
this reason, all but a few pages of this thesis are written using the pronoun ‘we’
to do justice to the involvement and the influence of others. (Apart from this
preface, the only exception to this rule is page iii, where I outline my individual
contributions to the publications on which this thesis is based.)

My research focuses on dualities that arise from string theory. To motivate the
utility of these dualities and to illustrate their context, I first give a general intro-
duction in Chapter 1. Section 1.1 is presented at a level that should be accessible
to the interested lay reader. Here, I first illustrate the overwhelming success of
the perturbative approach to quantum field theory by means of the computation
of the magnetic moment of the electron. I then motivate the study of nonpertur-
bative and strong coupling effects using dualities. Starting from Section 1.2, the
technical level of the discussion increases gradually. The rest of Chapter 1 intro-
duces the holographic principle, its realization in the AdS/CFT correspondence
and several elements of the AdS/CFT dictionary. I also motivate the importance
of nonperturbative effects using a simple quantum-mechanical model and explain
the idea behind electromagnetic duality in gauge theory. Finally, in Section 1.6,
I give an overview of the other chapters of this thesis, and explain how they are
related to the introduction.

A large part of my research is related to boundary symmetries. Chapter 2 gives
a detailed introduction to this topic. There, I first introduce the Chern-Simons
formulation of three-dimensional gravity. After analyzing its boundary symme-
tries, I explain how Drinfeld–Sokolov reduction leads to interesting asymptotic
symmetry algebras. The techniques introduced in Chapter 2 are used extensively
in Chapter 3 and are an important part of the motivation underlying Chapter 4.
To give a coherent presentation of these techniques, I have incorporated parts
of the publications on which Chapters 3 and 4 are based in Chapter 2. Finally,
Chapter 5 presents an investigation of the evolution of entanglement entropy fol-
lowing a quantum quench using the AdS/CFT dictionary. This thesis concludes
with a technical summary and outlook in English on page 145 and a non-technical
summary in Dutch on page 171.
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Chapter 1

Introduction

The research presented in this thesis investigates dualities that arise from string
theory. This chapter introduces a selection of the ideas that led to these dualities
and explores several of their features.

We start off gently in Section 1.1 by introducing perturbative expansions in quan-
tum field theory. Using the famous calculation of the anomalous magnetic moment
of the electron as an example, we point out two possible problems with perturba-
tion theory: strong coupling and nonperturbative phenomena.

The first problem motivates the idea of dualities. In Section 1.2, we introduce
the holographic principle and explain how it is realized by the AdS/CFT corre-
spondence. The second problem leads us to instantons and magnetic monopoles in
Section 1.3. We then use these nonperturbative objects to describe electromagnetic
duality. Next, we demonstrate several entries in the AdS/CFT dictionary in more
detail. We study symmetries in Section 1.4, where the three-dimensional case gets
particular emphasis. Section 1.5 then introduces correlators, Wilson loops and en-
tanglement entropy as probes of holography. Finally, in Section 1.6, we summarize
the remaining chapters and explain their relation to this introduction.

1.1 The trouble with perturbation theory

In everyday life, objects move in a very definite way. When you play a game of
pool, the balls will move along the exact same trajectory every time you hit them
at the same angle and with the same force. The same is true for larger objects:
this way, we can predict when the sun will rise and when it will set.

In fact, already hundreds of years ago, scientists have developed models of
gravity that allow us to predict the motion of the planets in our solar system in
great detail. They have been continuously improved. Our current understanding
of gravity was developed by Einstein and is known as general relativity. It allows us
to describe many aspects of our universe at large scales, including the formations
of galaxies and even the beginning of time itself at the Big Bang. For all these
diverse processes, general relativity allows us to make very definite predictions.

1



1. Introduction

On the other hand, one of the great surprises of 20th century physics has been
that smaller objects, such as molecules and atoms, move in a rather different way.
Quantum physics tells us that such objects can actually be found along all trajec-
tories, and it associates a certain probability to every possible outcome. Quantum
physics has proven to be an extremely accurate description of a particular part
of our universe. While general relativity focuses on large scales, quantum physics
allows us to describe the physics of small scales. The fundamental insights it
provides have been essential in developing many new technologies such as lasers,
atom clocks and the microprocessors used in computers.

Although general relativity and quantum physics describe rather different as-
pects of our universe, they should ultimately be two different sides of the same
coin. String theory allows us to describe both general relativity and quantum
mechanics in a consistent way. As the name suggests, it describes particles and
gravity in terms of vibrations of a string. Although many aspects of string the-
ory remain to be understood, it has suggested some remarkable and unexpected
connections between quantum physics and gravity.

This thesis consists of several attempts to extend, understand and apply such
connections, which are also known as dualities. In the remainder of this section,
we will motivate two such dualities from the point of view of quantum physics.
Starting from Section 1.2, the discussion will gradually become more technical.
An accessible lay summary (in Dutch) is provided on page 171.

When we study the motion of relatively large objects, such as those involved in
a game of pool or in our solar system, one trajectory dominates overwhelmingly
and reproduces the definite motion we are used to. However, as one approaches
the length scales of atoms, quantum physics tells us that we also need to take
other trajectories into account. To illustrate this, let us look at the motion of an
electron, as depicted in Figure 1.1.

e− e−

Figure 1.1: An electron e− moving through space and time.

In quantum physics, the motion of an electron is described by a wave, whose
frequency is determined by the mass of the electron. Such waves can interact,
and these interactions manifest themselves as forces in our everyday world. For
example, the electric force is modeled by the interaction of the electron with a
photon, which is depicted in Figure 1.2a. There, a photon (wavy line) is absorbed
by the electron (straight line) as it moves forward in time. The strength of this
force is parametrized by the charge e of the electron.

In fact, the process in Figure 1.2a corresponds to a particular physical effect: it
measures the ratio between the electron’s intrinsic spin and its magnetic moment.
This ratio is often called g, and the process in Figure 1.2a corresponds to g = 2.
However, this is not the final answer. More complicated trajectories are also
possible, such as the one depicted in Figure 1.2b. Following the rules of quantum
physics, we should take both of the trajectories in Figure 1.2 into account!

2



1.1. The trouble with perturbation theory

γ

e− e−

(a) Single interaction with a photon γ.

e− e−

γ

(b) More complicated interaction.

Figure 1.2: Diagrams contributing to the magnetic moment g of the electron.

The trajectory depicted in Figure 1.2b requires two additional interactions
between the electron and a photon. This means that it should be weighted with
a factor of e2 compared to the trajectory in Figure 1.2a. Conventionally, the
weights associated to these diagrams are expressed using what is known as the
fine structure constant

α = e2

4π ≈
1

137 . (1.1)

This dimensionless number quantifies the strength of the interaction between the
photon and the electron. Since α is rather small, diagrams with more interactions
carry less weight. Concretely, this means that the diagram in Figure 1.2b will mod-
ify the result from the diagram in Figure 1.2a, but only slightly. In other words,
we can compute the answer perturbatively, including higher order corrections at
each step. The correction associated to the diagram in Figure 1.2b corresponds to
the first term in this perturbative result. It was first computed by Schwinger [4,5],
who obtained

g − 2
2 = α

2π ≈ 0.0011614. (1.2)

Back in 1948, when Schwinger announced this result, experiments had long shown
that g was slightly larger than 2. Explaining this difference was one of the first
major successes of quantum field theory.

Of course, more complicated diagrams are also possible. They will come with
higher powers of α and correspond to even smaller corrections. Today, seventy
years after Schwinger’s result, the correction to g is currently known numerically [6]
up to α5:

g − 2
2 = 0.00115965218178(77). (1.3)

On the other hand, it has been found experimentally that [7]
g − 2

2 = 0.00115965218073(28). (1.4)

Using this iterative method, which is known as perturbation theory, quantum field
theory allows us to make unfathomably precise predictions. Moreover, these pre-
dictions agree wonderfully with experiment!

3



1. Introduction

In practice, performing these computations quickly becomes extremely diffi-
cult. For one, the number of diagrams that go into each additional correction
grows rapidly: to obtain the most subleading contribution to (1.3), a whopping
12672 diagrams had to be calculated. Needless to say, we will have little to con-
tribute to these results in this thesis. However, apart from its computational
difficulty, perturbation theory has several inherent shortcomings. We discuss two
such shortcomings in the remainder of this section. First, for some problems,
there are no small coupling constants that we can use to iterate our way to an
answer. Second, even if a perturbative expansion is possible, it may not tell us
about several important effects. This thesis is an attempt to expand and apply
several ideas that have been raised to tackle these problems.

1.1.1 Strong coupling and duality

The first problem with perturbation theory comes from the fact that most coupling
constants, such as α, are in fact not constant. Rather, their value depends on the
energy scale at which we perform our experiments. In our previous example,
this energy scale could be set by the total energy contained in the mass and the
momentum of the electron in Figure 1.2. If the momentum of the electron is
small compared to its mass, the value of the coupling constant in equation (1.1)
is approximately correct. If we increase the energy scale µ of the experiment, for
example by accelerating the electron, it turns out that the value of the coupling
constant increases as well. This is illustrated in Figure 1.3a.

In some theories, a coupling constant that is initially small may increase to be
much larger than one. At that point, we say that the theory is strongly coupled.
Since higher powers of the coupling constant then contribute more, we cannot
obtain useful results using perturbation theory. This is not a very pressing problem
when we are studying the magnetic moment of the electron since α is small at all
reasonable energy scales, and we can still use our perturbative methods. On the
other hand, the situation is much worse for the nuclear force, where the coupling
constant is large at low energies and small at high energies, as in Figure 1.3b.

µ

α(µ)

(a) Electromagnetic coupling α

µ

gYM(µ)

(b) Nuclear force coupling gYM

Figure 1.3: Coupling constants as a function of energy µ.

4



1.2. The holographic principle and AdS/CFT

This phenomenon is known as asymptotic freedom and was discovered by Gross,
Wilczek and Politzer [8,9]. It is one of the reasons that the Large Hadron Collider
exists: we need to collide nucleons with high energy to enter a regime where they
are no longer bound together, so that we can test our perturbative computations.
However, although this program has been very successful, these high-energy per-
turbative results tell us little about the strong-coupling behavior that determines
nuclear physics at low energy.

So what are we to do if we insist on studying the strong-coupling physics of, for
example, the nuclear force? We can hope for a miracle. In rare cases, it has
been discovered that such strongly-coupled systems have a dual description. This
dual description may involve completely different physics and, if we’re lucky, it
can sometimes be easier to solve. Twenty years ago, Maldacena discovered the
AdS/CFT correspondence [10]. It allows us to describe strongly-coupled quantum
field theories in terms of a seemingly unrelated system involving gravity. This
correspondence is a realization of a more general idea about the nature of quantum
gravity, known as the holographic principle. We will introduce both in Section 1.2.

1.1.2 Divergence of perturbation expansion
Now let us return to the case of the electron magnetic moment g. Since the fine
structure constant is small at reasonable energy scales, we are free to continue
doing perturbation theory. Imagine that some day, a brave physicist manages to
compute the 1000th order correction to g. Would this be an improvement?

Surprisingly, no! As was first pointed out by Dyson [11], the perturbative
expansion in quantum field theory is generally asymptotic: at some point, the
subsequent corrections become larger rather than smaller.

In fact, Dyson gave a good physical argument for why we should have expected
this failure. Let’s say we’re using perturbation theory to compute a quantity F (α)
which depends on the value of the coupling constant, such as g. If we’re doing a
perturbative computation, we expand F (α) around α = 0. This can only work if
the result also makes sense for small but negative values of α. But recall that α
quantifies the electric force, so α < 0 means that equally charged particles attract
instead of repel! This would trigger so many instabilities that the question of the
electron’s magnetic moment would quickly become a very ill-posed one.

That being said, we should emphasize that the divergence of a perturbation ex-
pansion is not a failure of physics, but a failure of our methods. It means that we
are missing essential physical phenomena if we only do perturbation theory. Such
phenomena are collectively known as nonperturbative effects, and we will illustrate
them using a simple model in Section 1.3.

1.2 The holographic principle and AdS/CFT

Einstein’s theory of general relativity tells us that gravity can be understood
as the curvature of space and time. One of the most intriguing aspects of this

5



1. Introduction

Figure 1.4: Black hole with spherical horizon at r = r0 and infalling observer.

theory is the appearance of black hole solutions, such as the four-dimensional
Schwarzschild metric:

ds2 = −
(

1− 2GM
r

)
dt2 + dr2

1− 2GM/r
+ r2dΩ2

2. (1.5)

Here, G is Newton’s constant and dΩ2
2 is the metric on the round two-sphere. The

metric in equation (1.5) is a solution of the vacuum Einstein equations: it is purely
gravitational and requires no matter to exist. We can still assign a mass M to
it, which corresponds to the gravitational pull one would feel at a large distance
away from the black hole. The apparent singularity at r = r0 = 2GM is merely
an artifact of the coordinates. However, at that point, the sign of the temporal
and radial components of the metric is exchanged. After coming closer than r0
to a black hole, an ill-fated observer—who has to travel forward in the direction
with negative sign—is then forced to move inward along the radial direction and
can never return to r > r0. Therefore, r = r0 parametrizes what is known as an
event horizon. This is illustrated in Figure 1.4. For the black hole in (1.5), the
event horizon is a sphere of area A = 4πr2

0 = 16G2M2.

Many beautiful mathematical results are known about the dynamics of black holes
in Einstein gravity. For example, Hawking [12] showed that if two black holes
merge, their total horizon area is nondecreasing:

Afinal ≥ Ainitial. (1.6)

Bardeen, Carter and Hawking [13] related an infinitesimal change in the mass of
a black hole to an infinitesimal change of its area:

δM = κ

8π δA. (1.7)

Here, κ is the surface gravity of the black hole. While we have restricted our-
selves to spherically symmetric black holes, similar results still hold if rotating
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1.2. The holographic principle and AdS/CFT

and charged black holes are included. Remarkably, if one interprets κ as a tem-
perature and A as an entropy, equations (1.7) and (1.6) are similar to the first and
second law of thermodynamics, respectively. At first, this appears to be a purely
mathematical analogy. Since black holes can exist in a vacuum, there seems to
be nothing that can have an actual temperature. However, as pointed out by
Bekenstein [14], we are forced to take this analogy seriously!

Black holes can be formed by gravitational collapse. If a spherically symmetric
matter distribution of total mass M gravitates to be contained within a sphere of
radius r0, it will eventually be described by the metric (1.5). At least on the level
of classical physics, all information about the composition of the initial matter
distribution is then lost to an outside observer. From r > r0, there is no way to
tell if the black hole was formed by the collapse of, say, red bricks or blue balloons.
In fact, assuming spacetime is asymptotically flat, Birkhoff’s theorem [15] shows
that that the Schwarzschild solution is actually the only spherically symmetric
solution of Einstein gravity.

But then we are in trouble. If only one black hole can be formed by such
a collapse, the final entropy is zero. Since our initial matter shell certainly has
nonzero entropy, this appears to be a blatant violation of the second law!

In an effort to resolve such paradoxes, Bekenstein [14] made the radical proposal to
take the analogy between black holes and thermodynamics seriously. As suggested
by equations (1.6) and (1.7), we can assign an entropy to the black hole itself,
proportional to its area. Taking this entropy into account, thermodynamics is
properly described by the generalized second law:

d (Smatter + SBH) ≥ 0. (1.8)

Hawking then found that a scalar field that is in a vacuum state near the horizon
is actually at finite temperature TH = κ/2π far away from the black hole. This
fixes the constant of proportionality between the black hole entropy and area:

SBH = A

4G. (1.9)

This is known as the Bekenstein-Hawking entropy of a black hole. This raises
one immediate question: If S = k log Ω and only a very finite class of black hole
solutions exist in gravity, then what does the degeneracy Ω count? Remarkably, for
special classes of black holes, string theory can answer this question! As Strominger
and Vafa [16] showed, the string theory construction corresponding to these black
holes has a degeneracy which precisely reproduces (1.9).

1.2.1 The holographic principle
Although string theory provides a precise interpretation of the black hole degrees
of freedom, it only does so for a very limited class of black holes. However, there
are good reasons to believe that the idea of associating degrees of freedom to a
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horizon holds more generally. This is known as the holographic principle. Following
the review [17] by Bousso, we now repeat an argument due to Susskind [18] and
’t Hooft [19].

Suppose we start with a collection of matter which is contained in a sphere of
area A. Assume that it is approximately static, so it does not collapse into a black
hole of its own accord. This means that the total energy E of the matter must
be less than the mass M of the black hole corresponding to a sphere of area A.
If it were equal to or larger than that mass, it would effectively be a black hole
already. We can then force a collapse by throwing in an additional shell of mass
M − E. For an outside observer, the result is a black hole of mass M . Since the
shell we threw in has nonzero entropy, the generalized second law (1.8) leads to

Smatter < Smatter + Sshell ≤ SBH = A

4G. (1.10)

This gives us a bound on the entropy of the initial matter in terms of the area
of a sphere enclosing it. But this is very peculiar! For normal matter, one would
expect the entropy to scale like the volume. For example, a two-state system on a
three-dimensional lattice with spacing a would have approximately 2V/a3 degrees
of freedom, which would violate the bound (1.10) if the system is large enough.
This means that at some point, the degrees of freedom in a theory including
gravity behave differently than what we are used to. On the other hand, if we
believe (1.10), it is conceivable that a regular but lower-dimensional description
exists! Said differently, at some point the degrees of freedom of a system including
gravity become nonlocal, but they can then be described by a non-gravitational
system on its boundary. This is known as the holographic principle.

1.2.2 The AdS/CFT correspondence
String theory is a theory of quantum gravity. It unifies particle physics and gravity
by describing both in terms of excitations of strings. In addition to strings, the
theory contains nonperturbative objects known as D-branes, which can extend in
several dimensions. See Figure 1.5 for a sketch.

Gravity is contained in the excitations of closed strings. They feel the presence
of D-branes as heavy objects which create a gravitational potential. If one stacks
sufficiently many D-branes on top of each other, they can be used to create black
holes. It turns out that a large number of D-brane configurations lead to black
holes with the same macroscopic properties such as charge and mass. As we
mentioned earlier, Strominger and Vafa [16] showed that in certain cases, this
degeneracy agrees exactly with the horizon area of the corresponding black hole.

In addition to their gravitational interpretation, D-branes play another role in
string theory: they are objects on which open strings can end. Just like the closed
string spectrum contains gravitons, the first excitations of the open string describe
Yang–Mills gauge fields—similar to those that appear in the Standard Model. In
some cases, these gauge theories are conformal: they are insensitive to any change
in the metric that preserves angles.
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1.2. The holographic principle and AdS/CFT

Figure 1.5: D-branes with open and closed strings and a horizon.

Maldacena [10] realized that it is possible to take a particular low-energy limit
of this setup which retains nontrivial degrees of freedom from both an open and
closed string perspective. First consider closed strings, which see the D-branes as
a black hole background. Since the light cone collapses near the horizon, strings
moving close to it experience an infinite redshift. In fact, for the extremal black
holes that D-branes produce, the region of infinite redshift turns out to have infi-
nite volume itself. This region, which is described by an anti-de Sitter geometry,
is effectively decoupled from the rest of the black hole spacetime. All string exci-
tations on the near-horizon anti-de Sitter (AdS) geometry are of zero energy from
the point of view of an outside observer. Thus, the low-energy excitations of closed
strings near a large number of D-branes corresponds to closed strings on AdS.

On the other hand, the low-energy excitations of open strings produce a confor-
mal field theory which does not contain gravity. If we believe that the low-energy
degrees of freedom of the open and closed strings give an equivalent description of
the low-energy degrees of freedom of the D-brane system, this implies a relation
which is known as the AdS/CFT correspondence. It relates a gravitational theory
of closed strings on AdSd+1 to a non-gravitational conformal field theory (CFT)
on a d-dimensional manifold. As such, it provides a concrete realization of the
holographic correspondence outlined in Section 1.2.1.

The best-understood incarnation of this correspondence arises from the low-energy
limit of N D3 branes. From the point of view of the closed strings, a large number
of D3 branes produce a black hole whose horizon stretches along four spacetime
dimensions. Its near-horizon geometry is AdS5 × S5. Given the amount of super-
symmetry that the D3 branes preserve, their four-dimensional low-energy open
string description is fully determined: it is N = 4 supersymmetric SU(N) Yang–
Mills theory, which is a CFT. Then the AdS/CFT correspondence states that

IIB string theory on AdS5 × S5

m
four-dimensional N = 4 super-Yang–Mills theory.

(1.11)

This is an amazing result. However, although it strokes with our intuition from
the holographic principle, it is also confusing. First, these theories are formulated
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in different dimensions. Second, their variables are at first sight also very differ-
ent. To make sense of the correspondence between these two seemingly unrelated
languages, we need a dictionary to translate between them. Developing and un-
derstanding a precise dictionary has been a major effort in string theory since
Maldacena first made his discovery. We will only be able to touch upon a small
part of the literature, see for example [20–23] for more general reviews.

Parameters of the duality As a first entry in this dictionary, let us discuss
the relation between the various coupling constants involved. The gauge theory
has a coupling constant which we denote by gYM. Furthermore, the rank N of
the gauge group corresponds to the number of D-branes. As first discovered by
’t Hooft [24], it is useful to combine both parameters in a new coupling constant1

λ = g2
YMN. (1.12)

In the closed string picture, the strings have a length scale ls and a coupling con-
stant gs. In addition, the AdS5 and S5 spaces have an (equal) radius of curvature,
which we will denote by `. The Einstein equation then imposes the relation

`4 = 4πl4sgsN = l4sg
2
YMN. (1.13)

For the last equality, we have used the relation between open and closed strings,
which prescribes that 4πgs = g2

YM. In terms of the ’t Hooft parameter (1.12), we
can write this as (

`

ls

)4
= λ. (1.14)

Then sending N → ∞ at fixed λ = 4πgsN corresponds to sending the string
coupling gs to zero. This means that the duality is now between

classical IIB strings on AdS5 × S5

m
planar N = 4 super-Yang–Mills theory.

(1.15)

This is already much better: now we have some hope of calculation! In field
theory, λ � 1 allows us to do perturbation theory, but that comes at the cost
of having the string length much larger than the AdS radius, which complicates
even classical string computations. One can study this regime using integrability
(see [25] for a review) but we will not discuss it here.

On the AdS side, a simpler limit is λ → ∞. In that case, the string length is
small compared to the AdS radius. In this limit, string theory is well approximated

1If we send N → ∞ while keeping λ fixed, all gauge theory diagrams that are topologically
nontrivial are suppressed: only planar diagrams survive. This drastically simplifies the pertur-
bative expansion in the new coupling constant λ. Higher genus diagrams are subleading terms
in a 1/N expansion.
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1.3. Electromagnetic duality

by classical supergravity. This brings us to perhaps the most frequently used limit
of the AdS/CFT correspondence:

classical IIB AdS5 × S5 supergravity
m

planar N = 4 super-Yang–Mills theory at strong coupling.
(1.16)

Generalizations So far, we have mainly studied the concrete realization of the
AdS/CFT correspondence which arises from the low-energy excitations of N D3
branes. However, it turns out that several aspects of the correspondence hold
independently of the precise field content of the theories involved. This is especially
true in the limit described by (1.16). Therefore, it is generally believed that there
exists at least a class of conformal field theories with many degrees of freedom that
correspond to a theory involving gravity on an AdS background. Schematically,

gravity on AdSd+1

m
d-dimensional conformal field theory.

(1.17)

While this may seem like a bold statement, there are several reasons why it should
be given some credence. First, both theories have a large amount of symmetries,
which can be identified in nontrivial ways. This is especially true if the gravity
theory is three-dimensional. We discuss this in Section 1.4. Second, there are sev-
eral explicit quantities one can compute to strengthen one’s belief that the relation
(1.17) has a fundamental truth to it. We will review three such computations in
Section 1.5.

1.3 Electromagnetic duality

So far, we have mainly discussed the idea of holography and its realization through
AdS/CFT. Chapter 4 will be concerned with a different kind of duality, which
was discovered by Alday, Gaiotto and Tachikawa [26]. It relates four-dimensional
gauge theories to CFTs on two-dimensional surfaces. In this section, we review
some basic features of gauge theory to motivate this correspondence. Following up
on the second possible failure of perturbation theory we discussed in Section 1.1.2,
we first motivate the importance of nonperturbative effects. We give examples in
electromagnetism and introduce electromagnetic duality at a classical level, which
provides us with a first hint of the appearance of two-dimensional surfaces.

1.3.1 Tunneling and instantons
We start our discussion with the anharmonic oscillator, following the work of
Bender and Wu [27]. This is a simple one-dimensional quantum-mechanical system
where nonperturbative effects are nonetheless important. Consider the following
potential:

V (x) = 1
2mx

2 + 1
4!λx

4. (1.18)
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At λ = 0 this is the usual harmonic oscillator, whose ground state energy is
E0 = 1/2. We expect that we can express the effect of small but nonzero λ on
physical observables such as E0 in terms of a perturbation expansion:

E(λ)− E0

E0
=
∑

anλ
n. (1.19)

Instead, Bender and Wu found that for large n, the coefficients an grow factorially
in n. This means that no matter how small we choose λ > 0, the expansion (1.19)
will diverge!

Therefore, if we steadfastly keep computing higher-order corrections to the
ground state energy E0(λ), eventually our prediction will become worse. However,
the argument by Dyson that we discussed in Section 1.1.2 also applies here: we
should not expect the perturbation series to converge in an expansion around
λ = 0, because the physics for λ < 0 is radically different from that for λ < 0.
This is obvious if we plot the potential (1.18) as in Figure 1.6.

x

V (x)

(a) λ > 0

x

V (x)

(b) λ < 0

Figure 1.6: The potential V (x) = 1
2mx

2 + 1
4!λx

4 for positive and negative λ.

For small positive λ, the potential merely results in a potential well that is
slightly steeper than the unperturbed quadratic potential. In this case, it is rea-
sonable to expect that the resulting ground state energy is not too different. How-
ever, for small but negative λ there are no longer even any bound states: a particle
can tunnel from x = 0 to x→ ±∞!

This instability can be described using a finite-action solution of the corre-
sponding Euclidean theory. Such configurations are known as instantons. The
possible instantons can often be classified using topological methods. In this case,
the particle can tunnel in two directions, which can be (somewhat pedantically)
described using π0(S0) ' Z2. The topological perspective is especially useful in
gauge theory, as we will see shortly.

The divergence of our perturbative expansion signals the presence of these non-
perturbative phenomena. One can deal with this divergence by properly taking the
corresponding instanton solutions of the Euclidean theory into account. See for
example [28] for an introduction and a more detailed account of the anharmonic
potential.
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1.3. Electromagnetic duality

Instantons in gauge theory More intricate nonperturbative phenomena are
possible if we consider gauge fields. At this point, the topological perspective we
mentioned before starts to pay off. (For more detail, see for example [29] or [30].)
As an example, let us look at the instantons of Euclidean SU(2) Yang–Mills theory
on R4, which is given by the following action:

SYM = −
∫
R4

TrF ∧ ?F. (1.20)

Here, the field strength F is a su(2)-valued two-form, ? denotes the Hodge dual and
Tr denotes a matrix trace which results in a gauge-invariant expression. For the
action to be finite, the field strength F should decay fast enough as it approaches
the boundary of R4. That means we can add a point at infinity to compactify
the base space to S4. A sphere can be covered by two patches overlapping around
the equator. Gauge bundles over the sphere are then classified by the transition
functions between the patches. For S4, these are maps from the S3 at the equator
to the gauge group. Since SU(2) ' S3, this corresponds to

π3(S3) ' Z. (1.21)

The corresponding winding number k ∈ Z corresponds to the integral of a topolog-
ical invariant of the gauge bundle, which is known as the second Chern character :

k = 1
8π2

∫
R4

TrF ∧ F. (1.22)

For k > 0, we can use this to show that the Yang–Mills action has a lower bound:

SYM = −1
2

∫
R4

Tr [(F + ?F ) ∧ (F + ?F )] +
∫
R4

TrF ∧ F ≥ 8π2k (1.23)

This bound is attained by connections satisfying

? F = −F. (1.24)

By the Bianchi identity, such connections automatically satisfy the equation of
motion. They are known as the anti-self-dual instanton solutions with instanton
number k. (For k < 0, the minimal action comes from a solution of ?F = F ,
which is a self-dual instanton.)

1.3.2 Magnetic monopoles

There is one other class of nonperturbative objects that we want to introduce. For
this, we return to electromagnetism. We can write the electric charge enclosed in
a two-sphere as ∮

S2
?F = ne, n ∈ Z. (1.25)
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It is quantized in units of the electron charge e. Although standard electromag-
netism does not include sources of magnetic flux, Dirac showed that it is nonethe-
less possible to write down a gauge potential which describes a magnetic monopole:∮

S2

~B · d~S =
∮
S2
F = 2πmgm, m ∈ Z. (1.26)

Here, we have introduced a parameter gm for magnetic charge. In modern lan-
guage [31], this corresponds to a nontrivial U(1) bundle over S2. Such bundles
are classified by their transition functions π1(U(1)) ' Z, which leads to the quan-
tization above. The magnetic charge is also known as the first Chern number of
the gauge bundle.

For nonabelian gauge theories, solving equations such as (1.24) is a nontrivial
task. Luckily, there exists a systematic construction of general self-dual instanton
configurations [32]. In Chapter 4, the monopole version of this construction by
Nahm [33] for a su(N) gauge theory will be essential. Briefly, Nahm’s construction
associates a monopole configuration to a su(2) embedding in su(N),

[Ti, Tj ] = iεijkTk, Ti ∈ su(N).

These T i appear as boundary values of auxiliary fields Xi defined on an interval,

Xi(σ)→ T i

σ ± 1 + · · · , σ ∈ [−1, 1]. (1.27)

From the point of view of the gauge theory, theXi do not have any obvious physical
interpretation. However, it was found by Diaconescu [34] that this construction
has an elegant embedding in string theory. The monopoles of four-dimensional
SU(N) super-Yang–Mills are given by stable configurations of D1 branes stretched
between N D3 branes. Here, the Xi are the scalars of the D1 worldvolume theory,
and the T i prescribe their boundary value at the intersection with the D3 branes.

1.3.3 Electromagnetic duality
Now let us study a single electron of charge e and a magnetic monopole of
charge gm. By demanding that the wave function of an electron is single-valued in
the background of a magnetic monopole, Dirac showed that the product of their
charges must be an integer multiple of 2π. For simplicity, we assume that

egm
2π = 1. (1.28)

Now as we can see from (1.25) and (1.26), sending F → F ′ = ?F in electro-
magnetism exchanges electric and magnetic charge. Moreover, we see that the
electric charge e′ after the transformation is given by

e′ =
∮
S2
?F ′ =

∮
S2
F = 2πgm = 4π2

e
. (1.29)
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Here, we have used (1.28) for the last equality. In addition to exchanging electric
and magnetic fields, we see that this transformation inverts the coupling. Elec-
trically charged particles that are weakly coupled in the original theory become
strongly-coupled magnetic monopoles in the transformed theory and vice versa.

For gauge groups of higher rank, one can also add the instanton-counting
term F ∧ F from (1.22) to the action, which comes with an additional coupling
constant θ. It is then useful to define the complex coupling

τ = θ

2π + 4πi
e2 . (1.30)

The transformation in (1.29) corresponds to τ 7→ −1/τ at θ = 0. The path integral
is also invariant under a shift τ → τ+1. Such transformations exchange electrically
and magnetically charged matter and monopole configurations. If the spectrum
of a theory happens to be symmetric under such an exchange, the theory could be
invariant under these transformations. This idea was proposed by Montonen and
Olive [35] and is known as electromagnetic duality.

Gauge theory labeled by a torus? Note that these transformations gen-
erate SL(2,Z), the group of modular transformations of a torus with complex
parameter τ . They identify tori with an equivalent complex structure, just like
electromagnetic duality identifies equivalent gauge theory configurations. There-
fore, at least on a purely mathematical level, it is possible to say that a gauge
theory with electromagnetic duality is labeled by a torus.

At this point, such a statement may seem a bit artificial. From the point
of view of the four-dimensional theory, this torus would be an external object:
perhaps mathematically useful, but with no intrinsic meaning. However, the same
could be said of the external fields Xi in Nahm’s construction, which turned out
to have a physical interpretation in string theory after all.

Remarkably, a similar surprise is in store for this torus. We will return to
this topic in Chapter 4, where we study a detailed correspondence involving four-
dimensional gauge theories labeled by two-dimensional Riemann surfaces. For
now, let us just mention the following. Long before AdS/CFT, Osborn [36] pro-
posed that the N = 4 super-Yang–Mills theory we encountered in Section 1.2 is
the most natural candidate for a theory with electromagnetic duality. In terms of
the D3 brane holographic correspondence in (1.11), this makes total sense: electro-
magnetic duality for the boundary theory corresponds to the SL(2,Z) symmetry
of IIB string theory! This was already pointed out by Maldacena immediately
after stating the correspondence in [10].

1.4 Symmetries and asymptotics in AdS/CFT

Finally, let us write down the (d + 1)-dimensional anti-de Sitter (AdS) metric
explicitly. In this section, we write the metric using Poincaré coordinates:

ds2 = `2

z2

(
−dt2 + d~x2 + dz2) . (1.31)
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Here, ` parametrizes the radius of curvature of AdS. At each fixed value of z,
we have a d-dimensional timelike surface parametrized by a time coordinate t
and (d − 1) spatial coordinates ~x. Distances on this R1,d−1 submanifold grow
asymptotically towards z = 0. In fact, even though it is at infinite distance, we
can think of the z = 0 surface as a boundary of AdSd+1. This can be seen by
multiplying the metric (1.31) with the function f(z)2 = z2/`2, which gives

ds′
2 = f(z)2ds2 = −dt2 + d~x2 + dz2. (1.32)

This is just R1,d with one coordinate z restricted to z ≥ 0. Since multiplying the
metric with f(z)2 corresponds to a conformal transformation, the boundary at
z = 0 is known as the conformal boundary of AdSd+1.

1.4.1 Conformal symmetries in AdS

However, notice that we could have used any function f(t, ~x, z) to obtain the
conformal compactification, as long as it grows like z2 for z → 0. In particular,
we can take

f(t, ~x, z) = Ω(t, ~x)z
2

`2
. (1.33)

This acts on the boundary metric at z = 0 by

− dt2 + d~x2 7→ Ω(t, ~x)
(
−dt2 + d~x2) . (1.34)

If there is any physics on the conformal boundary, it should be invariant under
such transformations of the boundary metric, which are known as Weyl trans-
formations. Any field theory that is covariantly coupled to a background metric
is invariant under coordinate transformations. Generally, such transformations
are gauge symmetries, leading to equivalent descriptions of the same physics, but
without a conserved charge associated to them. For this reason, we say they are
not physical: they are merely redundancies of the mathematical description.

However, if a theory is invariant under Weyl transformations, we can use them
to absorb certain coordinate transformations, which are then physical. The coor-
dinate transformations that can be absorbed using (1.34) are exactly the angle-
preserving conformal transformations. For R1,d−1 the corresponding group is
SO(2, d). Furthermore, as we will show in Section 2.1, SO(2, d) is also the isometry
group of (1.31).

Any theory living on the boundary of AdS will therefore have to be a conformal
field theory. It is therefore tempting to think of the CFT involved in the corre-
spondence as living on the conformal boundary. For this reason, it is commonly
referred to as the boundary theory, whereas the corresponding (d+ 1)-dimensional
theory of gravity is referred to as the bulk theory. We will discuss several ways to
make this correspondence more precise in Section 1.5.
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1.4. Symmetries and asymptotics in AdS/CFT

1.4.2 The Virasoro algebra from AdS3

Conformal symmetries are especially powerful in two dimensions. Using null co-
ordinates x± = (x± t)/2 on the boundary the AdS3 metric is

ds2 = `2

z2

(
4dx+dx− + dz2) . (1.35)

The boundary Weyl transformations are now

4dx+dx− 7→ 4Ω(x+, x−)dx+dx−. (1.36)

Now any chiral function of x± is a conformal transformation: under a coordinate
transformation parametrized by x+ 7→ f(x+), the metric is mapped to

4dx+dx− 7→ 4f ′(x+)dx+dx−, (1.37)

and similarly for x− 7→ g(x−). All such transformations can be compensated
using (1.36). This means that the two-dimensional algebra of conformal transfor-
mations is infinite-dimensional! It is generated by

`m = −(x+)m+1∂+, ¯̀
m = −(x−)m+1∂−, (1.38)

which satisfy the following commutation relations:

[`m, `n] = (m− n)`m+n, [¯̀m, ¯̀
n] = (m− n)¯̀

m+n. (1.39)

As a result of this large set of symmetries, many properties of two-dimensional
CFTs can be determined exactly, see for example [37] for a review. On a quantum
level, this algebra can develop a central extension:

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0. (1.40)

The parameter c is also known as the central charge of the algebra. In this form,
(1.40) is known as the Virasoro algebra. In field theory, the appearance of a
central charge is a distinctly quantum phenomenon. Remarkably, Brown and
Henneaux [38] found that the Virasoro algebra (1.40) also appears in a careful
analysis of the classical symmetries of AdS3! To be precise, they found

cBH = 3`
2G. (1.41)

In a sense, this result was an early precursor of the AdS/CFT correspondence. It
is entirely in the spirit of the general conjecture in (1.17).

The techniques required to derive this result will be reviewed in Chapter 2. A
large part of this thesis is devoted to applying these techniques to find generaliza-
tions and applications of three-dimensional holography.

Finally, it is worth mentioning that the Brown–Henneaux central charge (1.41)
can be used to explain the entropy of three-dimensional black holes. Under rea-
sonable assumptions, Cardy [39] found that there exists a universal formula for
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the entropy of a two-dimensional conformal field theory as a function of its central
charge. Using the Brown–Henneaux result (1.41), one recovers the entropy of the
three-dimensional black holes! This was first pointed out by Strominger [40]. It is
remarkably simpler than the intricate analysis that went into the Strominger-Vafa
entropy computation.

In this sense, three-dimensional gravity can be a useful probe of holography.
Without invoking too much detail about the underlying string theory construc-
tions, we can provide nontrivial tests for dualities on the level of symmetries. We
will now discuss several other probes that also hold more generally, supporting the
‘strong’ AdS/CFT correspondence proposed in (1.17).

1.5 Probes of holography

Soon after the work of Maldacena first appeared, it was realized that many essen-
tial properties of CFTs can be reproduced without any reference to the intricate
details of the classical planar D3 correspondence (1.16). This motivates the idea
that the relation between AdS and CFT should hold more generally, at least as
stated in (1.17). The translations of these properties have become an essential
part of the dictionary of AdS/CFT, so we will review several of them here.

In Section 1.4, we saw that the boundary behavior of the AdS metric is subtle
yet crucial for the holographic dictionary. As Gubser, Klebanov, Polyakov and
Witten realized [41,42], the same is true for all fields on an AdS background. They
proposed to interpret bulk fields as duals of operators in the boundary CFT. In
Section 1.5.1 we will briefly review how this reproduces CFT two-point functions.

We then review how the confinement of matter coupled to gauge theories can
be probed using Wilson lines. The latter have a simple bulk interpretation in
AdS/CFT, which we discuss in Section 1.5.2.

Finally, Ryu and Takayanagi [43] understood how another essential quantum
observable, entanglement entropy, could be mapped to minimal surfaces in the
bulk. We review this identification in Section 1.5.3.

1.5.1 Correlators
Conformal symmetry greatly simplifies the analysis of a field theory. Its repre-
sentations organize operators in towers of descendants built on top of primary
operators. For simplicity, we restrict ourselves to scalar (non-spinning) operators.
The conformal symmetry fixes the two-point function of such a scalar primary
operator O with scaling weight ∆ to be

〈O(x)O(y)〉 = 1
|x− y|2∆ . (1.42)

Since this result can be derived using only the conformal symmetries, it is true for
any conformal field theory. We saw that these symmetries have their analogue in
the bulk isometries, so it is natural to ask if a similarly general derivation allows
us to reproduce (1.42) from Anti-de Sitter space.
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1.5. Probes of holography

In the dictionary proposed by Gubser, Klebanov, Polyakov and Witten [41,42],
scalar primary CFT operators correspond to scalar fields in the bulk. The bulk
field φ(~x, z) satisfies the AdS Klein-Gordon equation �φ = m2φ. Moreover, the
weight ∆ of the CFT primary is related to the mass m of the bulk field by

∆ = d

2 +
√
d2

4 +m2`2. (1.43)

To compute correlators, we also need to identify sources J(x) for O(x) in the
bulk. Here, the proposal is to identify J(x) with the value of φ(x, z) at the
z → 0 boundary of AdS. If the boundary behavior of φ is fixed, the Klein-Gordon
equation determines it all across the bulk. We denote the corresponding solution
to the equations of motion by φ0. In the large N , large λ limit, this leads to the
following proposal

ZCFT[J(x)] = exp
(
− Sgrav[φ0]|φ0→J

)
. (1.44)

Because φ0 is on-shell, the gravity action reduces to a boundary integral:

Sgrav[φ0] ∼
∫
dd~x dd~x′

φ0(~x, 0)φ0(~x′, 0)
|~x− ~x′|2∆ (1.45)

Since we identified J(x) = φ0(~x, 0), taking two functional derivatives thus repro-
duces the CFT two-point function (1.42)!

1.5.2 Wilson lines
We mentioned in Section 1.1 that at very high energy scales, such as those accessed
by the LHC, quarks can be thought of as weakly-interacting particles. However,
the coupling becomes strong as we flow down to lower energy scales. At some
point, the quarks are ‘trapped’ into quark-antiquark pairs (mesons) or quark
triples (baryons). Understanding the precise mechanism behind this condensa-
tion, which is known as quark confinement, is one of the major open problems of
theoretical physics. Since the AdS/CFT correspondence promises us the ability to
do computations in strongly-coupled gauge theories, it is natural to ask if it can
help us understand confinement.

For this, it is useful to use the following order parameter, which was introduced
by Wilson [44] and also studied by ’t Hooft [45]. We want to understand the force
between two quarks, so we study a quark-antiquark pair that is separated by a
spatial distance L and annihilated after a (Euclidean) time T . Furthermore, we
assume that the quarks are approximately static after being moved apart. We can
then view them as test charges for the strong force. This is sketched in Figure 1.7.

Such a trajectory corresponds to a closed current loop that couples to the color
gauge potential. This results in what is known as a Wilson loop:

W (C) = P e−
∮
C
A
. (1.46)
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T

L

Figure 1.7: A square Wilson loop corresponding to a quark-antiquark pair.

Since it depends on the gauge potential along the entire contour C, a Wilson loop
is a nonlocal observable in gauge theory. Assuming that the quarks are static and
T is large, the expectation value of W (C) is approximately determined by the
potential V (L) between the quarks:

〈W (C)〉 ≈ e−V (L)T . (1.47)

This can be viewed as an order parameter for confinement. A normal Coulomb
potential V (L) ∼ 1/L decays at large separation, so it does not confine. In
contrast, one expects the potential to grow with the separation, V (L) ∼ L, if the
force is confining.

Such quantities are generally impossible to compute analytically and one has to
resort to numerical methods. However, the AdS/CFT correspondence allows us to
describe strongly-coupled gauge theories by doing bulk computations in classical
gravity and it is tempting to look for a bulk interpretation of Wilson loops.

Maldacena [46] proposed the following dictionary entry. First, the N = 4
theory coming from D3 branes does not contain matter fields in a fundamental
representation. To remedy this, we can start with a stack of N + 1 D3 branes and
move one away from the rest. This produces a massive W-boson, which we can
think of as a quark coupled to the SU(N) gauge theory on the remaining N D3
branes. It is modeled in the bulk by a string dangling into AdS from the position
of the quark at the boundary.

In the limit (1.16), we can approximate (1.46) using the action of the corre-
sponding bulk string worldsheet. For large T , the problem is invariant under time
translations and we immediately recover the linear scaling in T of (1.47). We
can then determine the quark-antiquark potential by studying the behavior of the
string on equal-time slices in the bulk.

As we can see from the bulk sketch in Figure 1.8a, increasing the quark-
antiquark separation L causes the string worldsheet to move further into the bulk.
However, the redshift due to the curvature of AdS is stronger as one moves further
into the bulk. This means that the string action actually falls off with 1/L. Thus,
in the boundary theory dual to empty AdS, such quarks feel a Coulomb-type force
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1.5. Probes of holography

and are not confined. However, this geometric perspective makes it very easy to
modify the geometry so that it does confine. If we cap off the bulk AdS space with
some ‘hard wall’ at z = zw, at some point the string worldsheet can no longer
reach further into the bulk. This is sketched in Figure 1.8b. Once the string hits
the bulk wall, the redshift no longer increases. At that point, the bulk worldsheet
area and the corresponding boundary potential scale proportional to the separa-
tion L, which means we can use this bulk geometry to describe confinement of the
boundary theory.

z = 0

x −→

−→

z

(a) AdS vacuum

z = 0

x −→
−→

z

z = zw

(b) AdS with hard wall

Figure 1.8: String worldsheet in the bulk (fixed time).

For more computational detail, see for example [22,23]. It is worth noting that
this prescription maps a nonlocal observable in strongly-coupled field theory to a
simple geometric bulk quantity. This kind of translation seems to be a general
feature of the AdS/CFT dictionary. We will now discuss one more example.

1.5.3 Entanglement entropy

In Chapter 5, we will apply the AdS/CFT correspondence to study another nonlo-
cal observable: the field theory’s spatial entanglement entropy. Again, as we will
now review, this observable turns out to be described in terms of a simple geomet-
ric bulk quantity if the boundary field theory is strongly coupled. We briefly review
some basic aspects of this extensively-studied entry in the AdS/CFT dictionary,
see for example [47] for a more complete introduction.

A defining feature of quantum mechanics is the fact that two degrees of freedom,
such as spins, can be entangled with each other. Measuring one such spin collapses
the state and affects consequent measurements on the other spin, even though the
particles they describe may not be in causal contact. Perhaps the simplest example
for this is the EPR pair,

1√
2

(|00〉+ |11〉) . (1.48)

This state describes a superposition of two particles, both of which have two states
which are labeled by 0 and 1. If the first particle is measured to be in the 0 state,
the second particle is necessarily also in the 0 state, hence they are entangled.
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More generally, one can quantify the entanglement of a subsystem A by study-
ing the reduced system that remains after tracing out its complement Ac. In
particular, if we describe a general state |Ψ〉 in our Hilbert space using a density
matrix ρ = |Ψ〉〈Ψ|, the reduced density matrix associated to A is

ρA = TrAc ρ. (1.49)

Using the Von Neumann entropy, one can then assign a number to the entangle-
ment between the region A and its complement,

S(A) = −TrA ρA log ρA. (1.50)

This is the entanglement entropy of a density matrix ρ associated to the subset A
of the Hilbert space. It can also be defined in quantum field theory, as long as
the Hilbert space factorizes into A and Ac. In the following, we will often be
interested in spatial entanglement entropy, where A corresponds to the degrees of
freedom associated to a subset of spacetime. By a slight abuse of notation, this
subset itself is often also denoted by A.

Calculating the entanglement entropy directly from the definition (1.50) is of-
ten prohibitively hard, especially in field theory. To avoid computing the logarithm
of ρA, one can use the Rényi entropies

Sn(A) = 1
1− n log Tr (ρA)n (1.51)

as an intermediate step. The nth Rényi entropy Sn(A) can be understood as the
path integral on an n-sheeted geometry, where n copies of spacetime are stitched
together across the entangling region A. If the resulting expression can be analyt-
ically continued in n, the limit n→ 1 reproduces S(A).

In two-dimensional CFTs, the sewing can be implemented using twist operators,
which leads to a universal result for their entanglement entropy as follows. We
take A to be an interval of length l on the one-dimensional spatial line of a CFT
on a Euclidean plane. In the vacuum state ρ = |0〉〈0|, the nth Rényi entropy can
be understood as the two-point function of two n-fold twist operators. Their two-
point functions are fixed by their weights, which depend only on n and on c, the
central charge of the theory. Analytically continuing to n→ 1 then gives [48,49]

S(A) = c

6 log
(
l

a

)
. (1.52)

This expression depends on a UV cutoff scale a, which regulates the local degrees
of freedom at the boundary of A.

Holographic interpretation This result depends on the specifics of the CFT2
under consideration only through its central charge. One could therefore wonder
if a similarly general holographic interpretation of entanglement entropy in terms
of AdS3 geometry exists.
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x −→

z = 0
−→

z

z = z?

A

Figure 1.9: The bulk entangling surface.

Ryu and Takayanagi [43,50,51] found that this is indeed the case. They iden-
tified the area of a hypersurface in the bulk as a natural dual to boundary spatial
entanglement entropy. Given a subregion A on the boundary, the corresponding
bulk hypersurface B(A) is given by the extremal surface that ends on ∂A on the
boundary of AdS, without wrapping nontrivial cycles in the bulk. The spatial
entanglement S(A) is then computed holographically by2

S(A) = Area [B(A)]
4G . (1.53)

Again, we see that a nonlocal observable in the boundary theory is related to a
simple geometric object in the bulk.

As a brief example, let us reproduce the two-dimensional result (1.52) using
this prescription [50]. We describe the bulk AdS3 geometry using the Poincaré
patch (1.31). In this background, the length of a constant t = t0 curve is

L =
∫
ds =

∫ √
X(µ)2dµ = `

∫
dz

z

√
1 + x′(z)2. (1.54)

Here, we have parametrized the curve Xµ(µ) = (t0, x(µ), z(µ)) using the bulk
coordinate µ = z. A minimal surface ending on two points (t, x) = (0,±l/2)
on the boundary will reach some maximal distance z∗ into the bulk at x = 0.
Furthermore, it is symmetric around that point, see Figure 1.9 for a sketch. Solving
the Euler-Lagrange equations, we get

x(z) = z∗

√
1−

( z
z∗

)2
, z∗ = l

2 . (1.55)

The length of this curve will be divergent since the boundary of AdS is at infinite

2Note that the string action that we identified with Wilson lines also measures the area
of a bulk surface. However, this is a timelike surface, whereas the hypersurfaces associated to
entanglement entropy are spacelike.
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spacelike distance, so a UV cutoff is required. Integrating from z = ε, we get

L = 2`
∫ z∗

ε

dz

z

√
1− (z/z∗)2

= 2` log
(
z∗

ε

(√
1−

( ε
z∗

)2
+ 1
))

. (1.56)

Indeed, this expression diverges as ε → 0. Since the cutoff ε should be small
compared to the interval size z∗ = l/2, we can approximate this result by

L ≈ 2` log l
ε

(1.57)

Using the Brown–Henneaux central charge c = 3`/2G associated to AdS3 which
we discussed in Section 1.4, the Ryu-Takayanagi prescription for the entanglement
entropy of A gives

S(A) = L

4G = c

3 log `
ε
. (1.58)

Indeed, this precisely reproduces the CFT result in (1.52)! In Chapter 5 we use
the Ryu-Takayanagi prescription to extract general lessons about the behavior of
entanglement entropy in strongly-coupled field theories.

1.6 Outline

We started this chapter by motivating the study of non-perturbative phenomena
and strong-coupling behavior. We introduced the holographic principle and its
realization in the AdS/CFT correspondence. We also briefly mentioned electro-
magnetic duality and the relation between four-dimensional gauge theories and
two-dimensional Riemann surfaces it suggests. Finally, we introduced several con-
crete elements of the AdS/CFT dictionary.

The rest of this thesis is concerned with extensions and applications of these
dualities. We will now give a brief outline of what is to come. (Further references
will be given in the corresponding chapters.)

1.6.1 Asymptotic symmetries in three dimensions
As we mentioned in Section 1.4.2, the matching between AdS and CFT symmetries
requires particular care if the bulk is three-dimensional. In Chapter 2 we give a
detailed derivation of the asymptotic Virasoro symmetries of AdS3 by identifying
three-dimensional Einstein gravity with a Chern–Simons theory.

In fact, we derive an expression for the asymptotic charges of any Chern–
Simons theory on a manifold with boundary. These charges form an affine al-
gebra corresponding to the symmetries of a Wess–Zumino–Witten model on the
boundary of the manifold. We then show how this affine algebra can be used
to reproduce the Brown–Henneaux Virasoro algebra using a technique known as
Drinfeld–Sokolov reduction.
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The advantage of this approach is that it can be easily extended to other theories of
gravity that are not (just) formulated in terms of a metric tensor. The Drinfeld–
Sokolov approach allows us to derive the asymptotic symmetries of any three-
dimensional theory of gravity that can be formulated as a Chern–Simons theory.
We illustrate this by reproducing the (classical)W3-algebra from a Chern–Simons
theory corresponding to higher spin gravity. We also review how general W-
algebras correspond to different embeddings of the Einstein subsector in higher
spin theories.

1.6.2 Nonrelativistic holography
So far, we have mainly focused on the foundations of the AdS/CFT correspondence
and its dictionary. Instead of studying ‘top-down’ dualities arising from a D-brane
setup, one can also attempt to model a given strongly-coupled field theory using a
suitable bulk gravity theory. This approach is known as ‘bottom-up’ holography.
One of its major applications has been the study of quantum critical points, see
for example [52] for a review and further references. These condensed-matter
systems are typically not relativistic. In particular, there is no reason why the
scaling symmetry at such critical points should treat space and time equally. For
example, we may see a scaling symmetry such as

t 7→ λζt, ~x 7→ λ~x. (1.59)

This is known as Lifshitz scaling. (The anisotropy between space and time is
conventionally parametrized using z, but we use ζ here to avoid confusion with
the bulk coordinate z.) In AdS/CFT, the boundary symmetries are realized as
isometries of the bulk metric. Therefore, the latter should be adjusted accordingly,
for example by including the parameter ζ in the AdS metric (1.31) as follows [53]

ds2 = −dt
2

z2ζ + d~x2 + dz2

z2 . (1.60)

This metric can still be obtained as a solution of a relativistic theory if appro-
priate background fields are turned on. However, the resulting boundary analysis
is subtle, see [54] for a review. Consequently, one may be led to think that study-
ing nonrelativistic phenomena using symmetry-breaking solutions of relativistic
theories is perhaps not the correct approach. Instead, it could be more natural
to look for a holographic description of such phenomena using theories that are
inherently nonrelativistic.

Recall that we use pseudo-Riemannian geometry to describe theories with local
Lorentz invariance. Similarly, there exist geometric constructions for nonrelativis-
tic theories where space and time are treated differently. We will collectively refer
to them here as Newton–Cartan geometry. Indeed, it has been found [55,56] that
in specific symmetry-breaking bulk Lifshitz models, the boundary theory naturally
couples to a particular Newton–Cartan geometry. Furthermore, Newton–Cartan
geometries can also be made dynamical, leading to nonrelativistic theories of grav-
ity which can be used to describe bulk physics.
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Intuitively, nonrelativistic holography should correspond to the low-energy
limit of a relativistic setup. However, because the geometric formulation of rel-
ativistic and nonrelativistic systems is rather different, it is hard to make this
intuition precise. As we mentioned, Einstein gravity can be described using Chern–
Simons theory in three dimensions. It turns out that certain nonrelativistic the-
ories of gravity can also be described as a Chern–Simons theory. In Chapter 3
we study the relation between the AdS3/CFT2 correspondence and a duality in-
volving a nonrelativistic theory of gravity by relating the local symmetry algebras
using a contraction. Furthermore, we can identify the bulk action, the phase space
and even all boundary symmetries using this contraction.

1.6.3 Deriving AGT from six dimensions

We then turn to a different type of strong-coupling duality in Chapter 4. In
Section 1.3.3, we briefly mentioned the idea that four-dimensional gauge theo-
ries may be related to two-dimensional Riemann surfaces. Over time, this idea
has been made increasingly precise. Its most recent incarnation is known as the
Alday–Gaiotto–Tachikawa (AGT) correspondence. It relates partition functions of
four-dimensional supersymmetric gauge theories to correlators of two-dimensional
conformal field theories on Riemann surfaces.

Remarkably, this relation was established by identifying quantities that can be
computed exactly on each side of the correspondence. In contrast, the AdS/CFT
correspondence is motivated by the D-brane construction we discussed in Sec-
tion 1.2, but although it survived many highly nontrivial checks, it has not been
established at the level of an equality between exactly computable quantities. In
this sense, one could argue that the AGT correspondence is already better estab-
lished than AdS/CFT.

However, the way in which AdS/CFT was discovered also has its advantages.
By studying branes in different geometrical setups, it is relatively easy to find gen-
eralizations of AdS/CFT beyond the D3 brane system we discussed in Section 1.2.
In contrast, the AGT correspondence establishes an equality which cannot be eas-
ily generalized without any underlying intuition. In that sense, the derivation of
the AdS/CFT correspondence is more ‘constructive’: although it does not identify
exact quantities, it provides a physical intuition for why the correspondence should
be true, which can then be generalized to other settings.

One can therefore wonder if a similarly constructive derivation of the AGT
correspondence exists. Since AGT relates two-dimensional and four-dimensional
theories, it is natural to look for an overarching six-dimensional perspective. In
Chapter 4, we investigate a proposed derivation of the AGT correspondence which
involves the boundary dynamics of a higher-spin-type Chern–Simons theory. In
particular, we focus on the origin of the relevant Drinfeld–Sokolov boundary con-
ditions, which are related to the Nahm pole data we discussed in (1.27). In Chap-
ter 4, we propose a different D-brane setup to explain the origin of the Nahm pole
in this context. Furthermore, our setup allows us to include theories with general
W-symmetry corresponding to different embeddings of the Nahm pole data.

26



1.6. Outline

1.6.4 Holography out of equilibrium
As we mentioned briefly in Section 1.5.3, AdS/CFT maps complicated nonlocal
boundary observables such as spatial entanglement entropy to simple geometric
quantities in the bulk. In line with the ‘bottom-up’ approach to holography dis-
cussed in Section 1.6.2, we will use this mapping in Chapter 5 to study general
properties of strongly-coupled field theories out of equilibrium.

Even though black holes radiate, they can be in thermal equilibrium in AdS due
to its negative curvature. Such ‘large’ black holes correspond to thermal states in
the boundary field theory. Small perturbations on top of this black hole geometry
then correspond to near-equilibrium fluctuations in the boundary. This results in
the fluid-gravity correspondence, which allows us to describe the hydrodynamic
regime of strongly-coupled field theories using gravity. It has been used to model
many physically relevant systems such as the quark-gluon plasma observed after
heavy ion collisions, see for example [57] for a review.

However, this approach does not allow us to study the formation of thermal
states in strongly-coupled theories. Naively, one expects a generic system with
many degrees of freedom to settle into an approximately thermal state after a
sufficient amount of energy is inserted. This process is known as thermalization.

As a nonlocal boundary observable with a simple bulk interpretation, entan-
glement entropy is a natural probe to study thermalization. For simplicity, we
can assume that all injected energy is inserted at one instant of time and that it
is spread out homogeneously across space. In field theory, this is also known as
a global quench. For the purposes of entanglement entropy, it can be modeled
holographically [58] using

ds2 = 1
u2

(
−f(v, u)dv2 − 2dvdu+ d~x2) , f(v, u) = 1−

(
u

uH

)d
. (1.61)

Here, u and v are outgoing and infalling Eddington-Finkelstein coordinates. This
metric, which is known as the Vaidya geometry, corresponds to empty AdS for
v < 0 and to an AdS-Schwarzschild black hole with horizon uH for v > 0.

In Chapter 5, we use this holographic setup to study the evolution of spatial
entanglement entropy after a global quench with arbitrary time dependence. We
find analytic results for spatial boundary regions that are small compared to uH ,
which parametrizes the temperature of the resulting thermal state. We then use
these results to define a notion of distance to the adiabatic process that results
in the same thermal state and we work out several examples corresponding to a
representative set of quench profiles.
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Chapter 2

Three-dimensional holography

As a testing ground for holography, three-dimensional gravity is particularly in-
teresting. First, it is a relatively simple theory: since gravitational waves do not
exist in three dimensions, we can focus on the boundary degrees of freedom. As
we briefly mentioned in Section 1.4.2, a rich symmetry structure emerges at the
boundary of three-dimensional Anti-de Sitter spacetimes.

Second, three-dimensional gravity can be interpreted as a Chern–Simons the-
ory. This formulation uses the same mathematical tools that greatly simplified
our analysis of nonperturbative effects in gauge theory in Section 1.3. Similarly,
compared to the usual metric formulation, the Chern–Simons formulation allows
a more systematic derivation of the boundary degrees of freedom of gravity.

Finally, by modifying the local symmetry algebra, Chern–Simons theory can
also be used to describe different theories of gravity. These include nonrelativistic
theories of gravity and theories involving higher spin fields, which we will encounter
in Chapter 3 and 4, respectively. The unified Chern–Simons perspective allows us
to study the boundary dynamics of all such theories using the same tools.

In this chapter, we will study the boundary dynamics of three-dimensional gravity
in more detail. After a brief motivation, we introduce the Chern–Simons formu-
lation of Einstein gravity with negative cosmological constant in Section 2.2. We
derive the boundary charges of Chern–Simons theory in Section 2.3 and write
out the boundary Wess–Zumino–Witten phase space in Section 2.4. Finally, we
explain how Drinfeld–Sokolov reduction reproduces the Brown–Henneaux asymp-
totic symmetries of AdS3 and work out a higher-spin example in Section 2.5.

Parts of this chapter have previously appeared in the appendices of [1] and in [2].
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2.1 Motivation

We first introduce some basic notions of three-dimensional gravity using the metric
formalism. With a cosmological constant Λ, the Einstein–Hilbert (EH) action is

SEH = 1
16πG

∫
d3x
√
−g (R− 2Λ) . (2.1)

All solutions of three-dimensional Einstein gravity are homogeneous and isotropic,
meaning that all points and all directions are equivalent. Locally, the only non-
trivial information is contained in the (constant) scalar curvature. In other words,
we can express the full Riemann tensor of all solutions to the equations of motion
using only the Ricci scalar:

Rµνρσ = R

6 (gµρgνσ − gµσgνρ) . (2.2)

Once we specify Λ, the scalar curvature is set and the metric is fixed. In this
section, we will study maximally symmetric solutions with negative curvature.
These are the Anti-de Sitter (AdS) solutions we encountered in Section 1.2. They
describe manifolds with a boundary, so we should worry about the boundary con-
ditions associated to the equations of motion. Although all solutions are locally
the same, we will see that they can be distinguished using boundary charges.

Global AdS3 So far, we have only used the AdS3 metric in Poincaré coordi-
nates (1.31). These coordinates describe only part of the maximal solution, which
is known as global AdS3. It is described by

ds2 = `2
(
− cosh2 ρdt2 + dρ+ sinh2 ρdϕ2) . (2.3)

The curvature radius ` is related to the cosmological constant by Λ = −1/`2. This
space can be viewed as a hypersurface in R2,2 satisfying

−X2
−1 −X2

0 +X2
2 +X2

3 = −`2. (2.4)

The metric (2.3) is then induced by the flat metric on R2,2. From this embedding
it is clear that the isometry group of global AdS3 is SO(2, 2), just like the isometry
group of a sphere in Rd is SO(d). The isometry group acts transitively on the
hypersurface and the stabilizer of a single point is SO(1, 2). This means that we
can view (2.4) as the manifold associated to the corresponding quotient:

global AdS3 ' SO(2, 2)/SO(1, 2). (2.5)

Note that the time coordinate on the hypersurface described in (2.4) is periodic.
We should remove this periodicity to avoid closed timelike curves, so we will
actually work with the universal cover of (2.4) from now on. Finally, using the
radial coordinate transformation cosh ρ = (cosχ)−1 with χ ∈ [0, π/2), we can
write the metric as

ds2 = `2

cos2 χ

(
−dt2 + dχ2 + sin2 χdϕ2) . (2.6)
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Thus we see that the conformal boundary of global AdS3 is a cylinder at χ→ π/2,
corresponding to ρ→∞.

BTZ black holes We’ve determined that any and all solutions of Einstein’s
equations with negative cosmological constant are locally described by (2.3). One
may therefore be tempted to conclude that no interesting solutions other than
global AdS3 exist. But this is false. As discovered [59] by Bañados, Teitelboim
and Zanelli (BTZ), black hole solutions exist:

ds2 = −
(
r2 − r2

+
) (
r2 − r2

−
)

`2r2 dt2 + `2r2dr2(
r2 − r2

+
) (
r2 − r2

−
)

+ r2
(
dϕ− r+r−

`r2 dt
)2
.

(2.7)

One can assign a mass M and angular momentum J to these BTZ black holes: in
terms of the outer and inner horizons r±,

M =
r2
+ + r2

−
8G`2 , J = r+r−

4G` . (2.8)

In fact, BTZ black holes can be understood [60] as quotients of global AdS3. For
any value of M and J , the metric (2.7) can be constructed from global AdS3 by
identifying points using a discrete subgroup Γ of the isometry group SO(2, 2).
What’s more, all that these discrete symmetries are doing is a periodic identifica-
tion of the coordinates, similar to the way we construct a circle from a line.

At first sight, this is rather confusing. Local observers cannot distinguish BTZ
from global AdS3. The BTZ metric has no curvature singularity, in contrast to for
example the Schwarzschild metric (1.5) in (3 + 1) dimensions. Then why would
we assign a mass and angular momentum to the BTZ metric?

To resolve this confusion, it is important to realize that in general relativity,
quantities such as mass and angular momentum are global properties of a metric.
They correspond to conserved charges that are defined on the conformal boundary
of spacetime. Constructing a BTZ black hole by performing a discrete coordinate
identification on global AdS3 also affects the conformal boundary. Indeed, it acts
precisely by compactifying a particular linear combination of the boundary space
and time coordinates to a circle! As a result, the boundary charges corresponding
to mass and angular momentum are affected by the discrete identifications that
lead to the BTZ metric.

In fact, as we briefly mentioned in Section 1.4.2, there actually exists an infinite
set of such charges at the conformal boundary of AdS3. Roughly speaking, they
correspond to the Fourier modes of the circle. These are the asymptotic Virasoro
charges discovered by Brown and Henneaux [38].

So far, our discussion has been rather informal. We will not give a precise deriva-
tion of the boundary charges in the metric formalism (but see for example [61–63]
for reviews from various perspectives). The main reason for this is that such a
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derivation would have no obvious generalization to the three-dimensional theories
we will study in Chapter 3 and 4. Instead, we now switch to a different geometric
formulation of Einstein gravity. It can be easily generalized to other theories of
gravity and leads to a more systematic construction of AdS3 boundary charges.

2.2 Einstein gravity and Chern–Simons theory

As we saw in Section 1.3, it is convenient to describe nonperturbative objects
in Yang–Mills theory in terms of topological properties of bundles and connec-
tions. To study the boundary dynamics of AdS3, it is useful to formulate three-
dimensional gravity in similar terms.

However, even in three dimensions, gravity is clearly not the same as Yang–
Mills theory. Instead, as discovered by Achúcarro, Townsend and Witten [64,65],
one can write three-dimensional Einstein gravity as a Chern–Simons theory. We
will now review this identification in a language that will allow for easy general-
ization later on. Then, in Section 2.3, we will use the Chern–Simons formulation
to work out the boundary charges of asymptotically AdS3 spacetimes.

2.2.1 First-order Einstein gravity
In Einstein gravity, we usually think of spacetime as a pseudo-Riemannian man-
ifold (M, g). It can equivalently be described in terms of local frames. This for-
mulation is useful as an intermediate step in the identification of Einstein gravity
with Chern–Simons theory.

Mathematically, a local frame is a choice of basis in the tangent bundle. At a
point p ∈M described by coordinates xµ, this leads to a set of vectors

ea(p) = eµa(p) ∂

∂xµ

∣∣∣∣
p

. (2.9)

If we choose eµa(p) = δµa , the resulting set of vectors is just the standard coordinate
basis of the tangent space. More generally, the eµa(p) can be arbitrary smooth
functions, and our basis corresponds to a set of vector fields ea = eµa∂µ. The
corresponding covectors ea = eaµ dx

µ form a basis of the cotangent space and are
also known as vielbeins. It is often more convenient to use an orthonormal basis,
which corresponds to a set of vector fields ea satisfying

g(ea, eb) = ηab. (2.10)

Physically, such a choice of basis corresponds to a local Lorentz frame. The vec-
tors ea are the inertial frames of a set of freely falling observers who see only
special relativity in their immediate surroundings.

However, when comparing vectors between their local inertial frames, such
observers still need to take the curvature of spacetime into account. This can be
done by introducing a notion of parallel transport on the frame bundle, which
comes from a spin connection ωab . We can use it to define a derivative D = d+ω
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2.2. Einstein gravity and Chern–Simons theory

that is covariant under local Lorentz transformations. Like the usual Levi-Civita
connection, ω is fully determined by requiring ea to be parallel,

Dea = dea + ωab ∧ eb = 0. (2.11)

This is known as the torsion-free condition. The curvature of this connection is

Rab = Dωab = dωab + ωac ∧ ωcb . (2.12)

At each point, the Riemannian metric can be recovered by taking the inner product
of the vielbeins in the local frame,

gµν(p) = ηabe
a
µ(p)ebν(p). (2.13)

This also shows that e = det(eaµ) =
√
−det(gµν) =

√
−g. The frame metric ηab is

sometimes referred to as the tangent space metric. We can use these variables to
rewrite the Einstein–Hilbert action (2.1). In three spacetime dimensions,

SEH = 1
16πG

∫
M3

εabc

(
ea ∧Rbc − Λ

3 e
a ∧ eb ∧ ec

)
. (2.14)

Similar actions are available for higher dimensions. We can introduce a dual spin
connection and curvature tensor:

Ωa = 1
2ε
a
bcω

bc, Ra = 1
2ε
a
bcR

bc. (2.15)

In terms of these variables, the action can be written as

SEH = 1
16πG

∫
M3

(
EA ∧

(
2dΩA + εABCΩA ∧ ΩB

)
−Λ

3 εABCE
A ∧ EB ∧ EC

)
.

(2.16)

Here, we have capitalized the indices and vielbeins for later convenience. What is
special about three dimensions is that all geometric objects are now vectors under
the local so(2, 1) Lorentz symmetry. As we will see in Section 2.2.3, this fact allows
us to write three-dimensional Einstein gravity as a Chern–Simons theory.

2.2.2 Chern–Simons action
First, let us mention some generalities about Chern–Simons forms. They arise
from a general theory classifying principal fiber bundles using characteristic classes
(see for example [29]). The Chern characters we encountered in Section 1.3 are a
particular example of such characteristic classes. In equation (1.22), we saw how
the second Chern character leads to the instanton number n of a Yang–Mills gauge
theory on a four-manifold M4,

1
8π2

∫
M4

TrF ∧ F = n ∈ Z. (2.17)
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The instanton number measures a topological property of the gauge bundle, which
quantifies to what degree TrF∧F is not an exact form. However, it is closed, which
means that it is at least locally exact. In a coordinate patch, we can therefore write

TrF ∧ F = d

(
Tr
[
A ∧ dA+ 2

3A ∧A ∧A
])

. (2.18)

The resulting three-form is know as a Chern–Simons form [66]. We can use it to
define a Chern–Simons theory on a three-manifold M3:

SCS = k

4π

∫
M3

Tr
[
A ∧ dA+ 2

3A ∧A ∧A
]
. (2.19)

This action has seen many applications in physics and mathematics, ranging from
massive gauge theories [67] to the Jones polynomial [68]. To have a well-defined
path integral, the coupling constant of this theory should be quantized: we need
k ∈ Z to ensure that the action produces a multiple of 2π independent of the M4
we used to define the theory on M3.

General Chern–Simons Lagrangian To connect with gravity and to allow
for generalizations later on, we will use a slight generalization of the Chern–
Simons (CS) action. First, the gauge groups we use in Yang–Mills theories are
generally compact: it turns out that this is not appropriate for gravity. Moreover,
the trace in (2.19) corresponds to a particular choice of bilinear form on the Lie
algebra. This choice is only unique (up to a prefactor) if the algebra is simple.
Again, this will not be convenient both for Einstein gravity and in particular for
our discussion in Chapter 3. Instead, we will work with the following action:

LCS =
〈
A, dA− 2

3 iA ∧A
〉
. (2.20)

Here, we have written (2.19) for a general Lie algebra g using sharp brackets to
denote an invariant bilinear form on this algebra. For X,Y, Z ∈ g this means

〈X, [Y, Z]〉 = 〈[X,Y ], Z〉. (2.21)

For a given set of generators Ta of the Lie algebra, we denote its components by

κab = 〈Ta, Tb〉. (2.22)

We only consider nondegenerate bilinear forms and denote their inverse by κab.
Additionally, we choose to work with Hermitian generators, so that the (real)
structure constants f c

ab are defined by

[Ta, Tb] = if c
ab Tc. (2.23)

This factor of i is compensated by the factor −i in the action (2.20).
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2.2. Einstein gravity and Chern–Simons theory

Flatness On a compact manifold, it is easy to see that the equations of motion
of (2.20) imply that A is a flat connection. In our conventions, this means that

F = dA− iA ∧A = 0. (2.24)

On a manifold with boundary, this analysis is more subtle. We will deal with these
subtleties in detail in Section 2.3.

Symmetries Like the Yang–Mills action, the CS action is invariant under gauge
transformations. Finite gauge transformations are parametrized by functions U(x)
valued in the Lie group associated to g,

A→ A′ = iU−1dU + U−1AU. (2.25)

If we write U(x) = exp(−iλ(x)) using a Lie algebra-valued function λ(x), the
corresponding infinitesimal transformations are

A→ A′ = dλ− i[A, λ]. (2.26)

Finally, we note that the gauge transformations of a flat connection can be trans-
lated to diffeomorphisms on the base space. Recall that we can write the Lie
derivative of the one-form A with respect to a vector field ξ as follows:

LξA = dιξA+ ιξdA. (2.27)

Then, using λ = A(ξ) = ιξA,

δA(ξ)A = dιξA− i[A, ιξA] = LξA− ιξF. (2.28)

Provided that the connection is flat, part of the gauge transformations therefore
correspond to coordinate transformations. We have introduced the vielbein for-
mulation of gravity because it exposes the rest of the gauge transformations: they
correspond to local Lorentz transformations.

2.2.3 Action for Einstein gravity
We will now show that three-dimensional Einstein gravity with negative cosmolog-
ical constant corresponds to so(2, 2) Chern–Simons theory [64,65]. In this section,
we reproduce the action. In Section 2.2.4, we solve the flatness condition to find
the connection corresponding to the global AdS3 metric.

We saw in Section 2.1 that so(2, 2) is the isometry algebra of global AdS3. It
is generated by bulk translations TA and rotations JA. They satisfy the following
commutation relations:

[TA, TB ] = i

`2
ε C
AB JC , [JA, JB ] = iε C

AB JC , [JA, TB ] = iε C
AB TC , (2.29)

where A = (0, 1, 2). The parameter ` is the radius of curvature. The bulk tangent
space metric ηAB = diag(−1, 1, 1) is used to raise and lower bulk indices and we
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2. Three-dimensional holography

set ε012 = +1. Since so(2, 2) is a semisimple Lie algebra, consisting of two simple
so(2, 1) factors, it is useful to introduce

SA = 1
2 (JA + `TA) , S̄A = 1

2 (JA − `TA) . (2.30)

These generators satisfy the so(2, 1) commutation relations

[SA, SB ] = iε C
AB SC ,

[
S̄A, S̄B

]
= iε C

AB S̄C . (2.31)

We can then couple the vielbein EA and the dual spin connection ΩA to the trans-
lation and rotation generators TA and JA to construct a so(2, 2) connection A.
The latter can be split into two connections A and Ā, one for each so(2, 1) factor:

A = EATA + ΩAJA = AASA + ĀAS̄A ,

AA = ΩA + 1
`
EA , ĀA = ΩA − 1

`
EA .

(2.32)

Finally, to write out the action (2.20) explicitly, we need to choose an invariant
bilinear form. For each so(2, 1) factor, we have one independent parameter, which
we denote by γs and γ̄s:

〈SA, SB〉 = 1
2γsηAB , 〈S̄A, S̄B〉 = −1

2 γ̄sηAB , 〈SA, S̄B〉 = 0 . (2.33)

Then the so(2, 2) Chern–Simons Lagrangian density splits into two so(2, 1) factors:

LCS[A] =
〈

A, dA− 2i
3 A ∧A

〉
= LCS[A] + LCS[Ā] ,

LCS[A] = 1
2γs

(
ηABA

A ∧ dAB + 1
3εABCA

A ∧AB ∧AC
)
. (2.34)

In terms of the vielbein and spin connection, this gives

LCS = γs + γ̄s
2`

(
2EA ∧ dΩBηAB + εABCE

A ∧ ΩB ∧ ΩC (2.35)

+ 1
3`2 εABCE

A ∧ EB ∧ EC
)

+ γs − γ̄s
2

(
ΩA ∧ dΩBηAB + 1

3εABCΩA ∧ ΩB ∧ ΩC + 1
`2
EA ∧ dEBηAB

+ 1
`2
εABCE

A ∧ EB ∧ ΩC
)
.

The term proportional to γs+ γ̄s reproduces the Einstein–Hilbert Lagrangian from
(2.14) with negative cosmological constant Λ = −1/`2. The term proportional to
γs − γ̄s is also known as the Lorentz–Chern–Simons term. It can be used to
construct topologically massive gravity [67, 69]. In the following, we will only
consider the Einstein term and set γs = γ̄s. In particular, if we choose

γs = γ̄s = k

4π , k = `

4G, (2.36)

we reproduce the vielbein form of the Einstein–Hilbert action in (2.16).
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2.2. Einstein gravity and Chern–Simons theory

2.2.4 Global AdS3 solution
Now let us find the on-shell connection corresponding to the global AdS3 met-
ric. The JA and TA components of the equations of motion (2.24) reproduce the
torsion-free condition (2.11) and the 3D Einstein equation,

0 = dEA + εABCΩB ∧ EC , (2.37)

0 = dΩA + 1
2ε
A
BC

(
ΩB ∧ ΩC + 1

`2
EB ∧ EC

)
. (2.38)

For a given metric, we can solve the spin connection ΩA in terms of the corre-
sponding vielbein EA using the torsion-free condition. The second equation is
then a constraint on the curvature of this spin connection. For the global AdS3
metric (2.3), we choose

E0 = ` cosh ρdt, E1 = −` sinh ρdϕ, E2 = `dρ. (2.39)

Solving (2.37) then leads to

Ω0 = cosh ρdϕ, Ω1 = − sinh ρdt, Ω2 = 0. (2.40)

Following (2.32), the corresponding so(2, 1) connections are

A = 2 cosh ρS0dx
+ − 2 sinh ρS1dx

+ + S2dρ, (2.41)
Ā = 2 cosh ρ S̄0dx

− + 2 sinh ρ S̄1dx
− − S̄2dρ. (2.42)

Here we have introduced the null coordinates x± = 1
2 (ϕ±t). In Fefferman–Graham

coordinates with r = eρ the global AdS3 metric reads

ds2 = dr2

r2 −
(
r2 + 2 + r−2) 1

4dt
2 +

(
r2 − 2 + r−2) 1

4dϕ
2 . (2.43)

Finally, it will be useful to introduce yet another set of generators. In terms of
the so(2, 1) generators SA and S̄A in (2.30), we define

L−1 = S0 + S1 , L0 = S2 , L1 = S0 − S1, (2.44a)
L̄−1 = −(S̄0 − S̄1) , L̄0 = −S̄2 , L̄1 = −(S̄0 + S̄1) . (2.44b)

Both sets of generators satisfy the sl(2,R) algebra

[Lm, Ln] = i(m− n)Lm+n . (2.45)

In this basis, the global AdS3 connection (2.41) becomes

A = L0dρ+
(
eρ L1 + e−ρ L−1

)
dx+ = eiρL0

(
id+ (L1 + L−1)dx+) e−iρL0 , (2.46)

Ā = L̄0dρ−
(
eρ L̄1 + e−ρ L̄−1

)
dx− = eiρL̄0

(
id− (L̄1 + L̄−1)dx−

)
e−iρL̄0 .

Since the two sl(2,R) sectors commute, we can write this concisely as

AAdS3 = eiρ(L0+L̄0) (id+ (L1 + L−1)dx+ − (L̄1 + L̄−1)dx−
)
e−iρ(L0+L̄0). (2.47)

This form of the so(2, 2) connection corresponding to the global AdS3 metric will
be particularly useful in the following.
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2.3 Canonical analysis of Chern–Simons theory

So far, we have mentioned but ignored several important issues with Chern–Simons
theory on a manifold with boundary. We will address them in this section.

First, the variational problem is not well defined. To solve this, we impose
chiral boundary conditions on the connection.

Second, one needs to be careful with gauge transformations that affect the
boundary. Using a Hamiltonian description, we show that a particular class of
transformations actually has a physical effect: they contribute to charges defined
on the boundary of the manifold. In this section, we follow the approach of
Bañados [70], see also [71–73] for earlier work.

2.3.1 Variational problem

In Section 2.2.4, we found the flat connection A corresponding to global AdS3 by
solving F = 0. However, we still need to do some work to show that this is actually
the equation of motion of Chern–Simons theory on a manifold with boundary.

We can see from the conformal compactification in (2.6) that global AdS3 is
topologically a solid cylinder. The following discussion is not particular to so(2, 2),
so we will revert to the conventions used in Section 2.2.2 and use A to denote a
general connection with curvature F , both of which are valued in an arbitrary Lie
algebra g. On the other hand, we keep the topology of AdS3 and place our theory
on a solid cylinder, which we denote by M . Varying the Chern–Simons action
then gives

δSCS = 2
∫
M

〈δA, F 〉+
∫
∂M

〈A, δA〉 . (2.48)

To conclude that F = 0 specifies a minimum of the action, the boundary term
must vanish. Generically, there is no reason that it should. In fact, a similar issue
arises in most field theories but we usually just require the fields to fall off quickly
enough so that the boundary term vanishes. Since the Chern–Simons action is
first order in derivatives, such a strategy would now require us to set A to zero at
∂M . This is a bad idea: as we can see from the connection in (2.41), it would rule
out global AdS3 as a solution!

Instead, we will impose chiral boundary conditions on A. We use coordinates
x± = 1

2 (ϕ±t) on the boundary ∂M and parametrize the transverse direction by ρ.
Then we can expand the connection A as follows,

A = Aρdρ+A−dx
− +A+dx

+. (2.49)

Thus, we can also make sure that the boundary term in (2.48) vanishes by choosing

A−|∂M = 0 (2.50)

⇓
〈A, δA〉|∂M = (〈A+, δA−〉 − 〈A−, δA+〉) dx+ ∧ dx−

∣∣
∂M

= 0. (2.51)
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With this choice, the variational principle is well defined and F = 0 is indeed
the equation of motion. More complicated boundary conditions would allow us to
construct a boundary phase space with nontrivial chemical potentials [74,75], but
we will not consider those here.

Split algebra and chirality While (2.50) solves the variational problem, we
typically do not want to set the dx− component to zero for the entire connection.
Let us illustrate this for the so(2, 2) connection A. As we can see from (2.32),
setting A− = 0 would mean that the vielbein EA cannot contain dx− components.
Then the resulting metric is degenerate in the x− coordinate, which is clearly
undesirable.

However, if the algebra in which the connection is valued splits into multiple
factors, one can impose chiral boundary conditions and still have a nondegenerate
metric. For Einstein gravity with negative cosmological constant,

so(2, 2) ' sl(2,R)⊕ sl(2,R). (2.52)

Then we can demand that the dx+ respectively the dx− component of either factor
vanishes. In other words, we can choose opposite chiralities in the sl(2,R) factors,

Ladx
+, L̄adx

−. (2.53)

This choice is compatible with the global AdS3 background connection (2.47).
With these boundary conditions, the connection in (2.47) is indeed a solution of a
well-defined variational problem. We will be able to choose similar chiral boundary
condition for all algebras considered in this thesis.

2.3.2 Improved generator of gauge transformations

Next, we will analyze the boundary behavior of gauge transformations. To do
this, we will use the Hamiltonian formalism. The Regge-Teitelboim method [76]
of constructing boundary charges was first applied to Chern–Simons theory by
Bañados [70, 77]. For a nice introduction to constraints and boundary charges
in Hamiltonian theories, see [78]. This discussion is somewhat technical, but the
result will be worthwhile: we will obtain a general expression for boundary charges
in Chern–Simons theory, which is valid for any gauge algebra.

Since M is a cylinder, we can foliate it using spatial disks Σ. Up to boundary
terms, the Hamiltonian form of the action (2.20) is then given by

SCS =
∫
dt

∫
Σ
d2xεijκab

(
ȦaiA

b
j +AatF

b
ij

)
. (2.54)

Here, we have written out the form components on Σ using the indices i, j, which
run over the spatial coordinates ρ and ϕ. We use the convention ερϕ = +1.

39



2. Three-dimensional holography

The first term in the bulk action determines the Poisson brackets,1{
Aai (x), Abj(y)

}
= κabεijδ(x− y). (2.55)

The phase space variables are the spatial components Aϕ and Aρ. They are each
other’s conjugate variables. The time component At has no conjugate variable.
Instead, it should be interpreted as a Lagrange multiplier implementing the con-
straint Fρϕ = 0, which demands that the connection is flat on Σ. To be precise,
the equations of motion from varying At and Ai in (2.54) are

Fρϕ = 0, Ȧi = DiAt = ∂iAt − i[Ai, At]. (2.56)

We now follow the presentation in [78]. In Hamiltonian mechanics, constraints
generate gauge transformations. Given a Lie algebra-valued function Λ, the obvi-
ous choice for a generator of the gauge transformations associated to the constraint
Fρϕ = 0 would be

G0[Λ] =
∫

Σ
〈Λ, F 〉 . (2.57)

Its action on the phase space variables can be determined by computing

{G0[Λ], Aai (x)} = −εijκab
δG0[Λ]
δAbj(x)

(2.58)

However, this functional derivative is not well defined! Varying G0[Λ] with respect
to Abj gives a boundary term:

δG0[Λ] = 2
∫

Σ
d2x εijκabΛa

[
∂iδA

b
j + f b

cd A
c
iδA

d
j

]
(2.59)

= −2
∫

Σ
d2x εijκab (∂iΛa − i[Ai,Λ]a) δAbj (2.60)

+ 2
∫

Σ
d2x εij∂i

(
κabΛaδAbj

)
.

The first term is just the covariant derivative of the gauge parameter with respect
to the Chern–Simons connection. This leads to the correct gauge transforma-
tion (2.26),

δΛA
a
i = DiΛa = ∂iΛa − i[Ai,Λ]a. (2.61)

However, the second term corresponds to a boundary term,

2
∫

Σ
d2x εij∂i

(
κabΛaδAbj

)
= 2

∮
∂Σ
〈Λ, δA〉. (2.62)

1A more careful derivation of this Poisson bracket proceeds as follows. One can introduce
abstract conjugate momenta πµa satisfying the usual Poisson bracket relations with Aaµ and
constrain them to be equal to the result of deriving the action with respect to Ȧaµ. Following for
example [79] or appendix A of [80], one sees that these constraints are second class. The Dirac
bracket on the reduced phase space then reproduces the Poisson bracket in (2.55).
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The presence of this boundary term in the variation of G0[Λ] means that the
Poisson bracket in (2.55) is not well defined! We encountered a similar problem
when varying the action in (2.48). In this case, however, we can solve it in a
different way. Rather than restricting the set of connections further, we can now
introduce a compensating boundary term: we replace the generator G0[Λ] by

G[Λ] = G0[Λ] +Q[Λ]. (2.63)

Here, Q[Λ] is a boundary integral, which is required to satisfy

δQ[Λ] = −2
∮
∂Σ
〈Λ, δA〉 . (2.64)

With this requirement, the Poisson bracket of the improved generator G[Λ] is well
defined. It is the proper generator of gauge transformations in the Hamiltonian
theory.

At this point, recall that the original generator G0[Λ] is proportional to the
bulk flatness constraint, By construction, this means that it vanishes for on-shell
connections. However, this is not necessarily true for the improved generator! For
specific combinations of A and Λ, the boundary term Q[Λ] may be nonzero even
on shell. These are the boundary charges we were after. They will allow us to make
a physical distinction between flat connections based on their boundary behavior.

Finally, note that it is not immediately obvious how we can use (2.64) to de-
termine Q[Λ]. To integrate this expression, we need to specify what variations
of A are allowed on ∂Σ. At the very least, we need to respect the boundary
condition A−|∂Σ = 0. In Section 2.4, we will see that this leads to an integrable
expression. After that, we will see in Section 2.5 that it is also possible to impose
further constraints on the boundary behavior of the connection and still obtain
integrable charges.

2.4 Wess–Zumino–Witten phase space

The purpose of this section is to work out the boundary symmetries associated
to Chern–Simons theory with chiral boundary conditions. First, we use part of
the gauge symmetries generated by G[Λ] to reach a convenient gauge fixing in the
bulk. After imposing the constraint Fρϕ = 0, we see that the remaining boundary
symmetries are those of a chiral Wess–Zumino–Witten model [81,82].

In fact, with chiral boundary conditions, the Chern–Simons action reduces to
the chiral Wess–Zumino–Witten (WZW) action at the boundary. (We do not
work this out here, but see for example [83] for a review.) For this reason, we
will refer to the on-shell, gauge-fixed set of connections as the WZW phase space.
To close this section, we work out the example of so(2, 2) Chern–Simons theory
corresponding to Einstein gravity with a negative cosmological constant.
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2.4.1 Gauge fixing and flatness
We can use the gauge transformations generated by G[Λ] to set Aρ to a constant
on all of Σ. It will be convenient to choose the parametrization

Aρ = ib(ρ)−1∂ρb(ρ). (2.65)

In principle, this constant can be any vector in the Lie algebra. However, we will
often have a reference connection in mind, such as the global AdS3 connection
in (2.47), which gives us a natural choice for Aρ. We will work out the so(2, 2)
example in Section 2.4.3. To show that the gauge choice in (2.65) is allowed, we
follow the argument given in [84]: starting from an arbitrary connection A′, its
radial component transforms under a finite gauge transformation (2.25) as

A′ρ → Aρ = iU−1∂ρU + U−1A′ρU. (2.66)

Then choose the parameter U = V b, so that requiring Aρ = ib−1∂ρb means

i∂ρV = −A′ρV. (2.67)

We can solve this for V by exponentiating,

V = Pei
∫ ρ
ρ0
A′ρdρ

′

V0. (2.68)

Here, ρ0 is an arbitrary initial point and P denotes path ordering. We can choose
ρ0 and V0 such that U is the unit element at the boundary and the gauge trans-
formation preserves our chiral boundary condition A−|∂M = 0.

Next, we can impose the constraint Fρϕ = 0 itself. Since Aρ is now constant
on Σ, ∂ϕAρ vanishes. Then the constraint is

Fρϕ = ∂ρAϕ − i[Aρ, Aϕ] = ∂ρAϕ − iAρAϕ + iAϕAρ = 0. (2.69)

To solve this equation, plug in Aρ = ib−1∂ρb and multiply by b(·)b−1,

b (∂ρAϕ) b−1 + (∂ρb)Aϕb−1 − bAϕb−1 (∂ρb) b−1 = ∂ρ
(
bAϕb

−1) = 0. (2.70)

This shows that all the ρ-dependence in Aϕ is now determined by b(ρ) as well!
Thus we can describe Aϕ using b(ρ) and a ρ-independent connection aϕ(t, ϕ),

Aϕ = b(ρ)−1aϕ(t, ϕ)b(ρ). (2.71)

The equations of motion Ȧi = DiAt then imply that we can write any on-shell
connection in terms of a single Lie algebra-valued function of x+,

A = b(ρ)−1 (id+ a+(x+)dx+) b(ρ). (2.72)

In the following, we will see that all remaining degrees of freedom parametrized
by a+(x+) are physical: they can be measured using the boundary charges Q(Λ).
We will sometimes refer to a as the reduced connection.
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2.4.2 Residual transformations and symmetries
The gauge-fixed, on-shell connection (2.72) still has residual symmetries: it is
preserved by gauge transformations of the form Λ = b(ρ)λ(x+)b−1(ρ). Under such
a gauge transformation, the reduced connection a transforms as

δλa = dλ− i[a, λ]. (2.73)

The fact that the residual symmetries of (2.72) take such a clean form simplifies
our analysis greatly. Once we have agreed on a choice of Aρ, we only have to
concern ourselves with the reduced connection a+(x+)dx+ and its residual sym-
metries parametrized by λ(x+). Indeed, the radial dependence also drops out of
the boundary charges in (2.74):

δQ[Λ] = δQλ = −2
∮
∂Σ
〈λ, δλa〉. (2.74)

Since λ does not depend on a, these boundary charges are integrable. They satisfy

{Qλ, Qµ} = δλQµ = −2
∮
∂Σ
〈µ, δλa〉 = −iQ[λ,µ] + 2

∮
∂Σ
〈λ, dµ〉. (2.75)

Using our conventional basis Ta for the Lie algebra g, we can expand

a+(x+) = F a(x+)Ta. (2.76)

The components of the invariant bilinear metric are given by κab = 〈Ta, Tb〉 and
the structure constants f c

ab satisfy [Ta, Tb] = if c
ab Tc. With these conventions,

the Poisson bracket of the currents F a(x+) is given by

{F a(x+), F b(y+)} = −1
2f

ab
cF

c(x+)δ(x+ − y+) + 1
2∂x

+δ(x+ − y+)κab. (2.77)

This is the affine algebra ĝ based on the Chern–Simons algebra g, with an extension
determined by the invariant bilinear form. Indeed, as can be verified by substitut-
ing (2.72) in the Chern–Simons action, the components F a(x+) in (2.76) are the
currents of a chiral Wess–Zumino–Witten model. These currents parametrize the
full classical phase space of Chern–Simons theory with chiral boundary conditions.

2.4.3 WZW phase space for Einstein gravity
Now let us work out the phase space of so(2, 2) Chern–Simons theory as an ex-
ample, using the sl2(R)⊕ sl2(R) basis introduced in (2.44). In equation (2.47) we
saw that the connection corresponding to global AdS3 is given by

AAdS3 = eiρ(L0+L̄0) (id+ (L1 + L−1)dx+ − (L̄1 + L̄−1)dx−
)
e−iρ(L0+L̄0).

This motivates the following choice for the radial component:

Aρ = L0 + L̄0, b(ρ) = e−iρL0 , b̄(ρ) = e−iρL̄0 . (2.78)
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Following (2.53), we choose chiral boundary conditions such that

Ladx
+, L̄adx

−.

Then we can write the full chiral gauge-fixed on-shell Chern–Simons connection
(2.72) corresponding to Einstein gravity with negative cosmological constant as

A = eiρ(L0+L̄0) (id+ F a(x+)Ladx+ + F̄ a(x−)L̄a dx−
)
e−iρ(L0+L̄0). (2.79)

It is instructive to see what this corresponds to in terms of metric data. For that,
let us expand (2.79) and write it in terms of the so(2, 1) generators SA and S̄A
in (2.30),

A =
(
L0 + L̄0

)
dρ+

(
eρF+L1 + F 0L0 + e−ρF−L−1

)
dx+

+
(
eρF̄+L̄1 + F̄ 0L̄0 + e−ρF̄−L̄−1

)
dx−

=
(
dρ+ F 0dx+)S2 +

(
−dρ− F̄0dx

−) S̄2 (2.80)
+
(
eρF+dx+ + e−ρF−dx+)S0 +

(
−eρF+dx+ + e−ρF−dx+)S1

+
(
−eρF̄+dx− − e−ρF̄−dx−

)
S̄0 +

(
−eρF̄+dx− + e−ρF̄−dx−

)
S̄1.

We can then use the relation to JA and PA in (2.30) to write down the vielbein
and spin connection corresponding to (2.79):

E0 = `

2
(
eρ
(
F+dx+ + F̄+dx−

)
+ e−ρ

(
F−dx+ + F̄−dx−

))
, (2.81a)

E1 = `

2
(
−eρ

(
F+dx+ − F̄+dx−

)
+ e−ρ

(
F−dx+ − F̄−dx−

))
, (2.81b)

E2 = `

(
dρ+ 1

2F
0dx+ + 1

2 F̄
0dx−

)
, (2.81c)

Ω0 = 1
2
(
eρ
(
F+dx+ − F̄+dx−

)
+ e−ρ

(
F−dx+ − F̄−dx−

))
, (2.81d)

Ω1 = 1
2
(
−eρ

(
F+dx+ + F̄+dx−

)
+ e−ρ

(
F−dx+ + F̄−dx−

))
, (2.81e)

Ω2 = 1
2
(
F 0dx+ − F̄ 0dx−

)
. (2.81f)

All these vielbeins correspond to locally AdS3 geometries. There are two affine
sl2(R) algebras of boundary charges, whose Poisson bracket is given by (2.77).

To reproduce the Brown–Henneaux Virasoro algebra mentioned in Section 1.4.2,
we have to make sure that the metric at the conformal boundary is fixed. In
other words, up to Weyl rescaling, we impose Dirichlet boundary conditions on
the metric. We can do this by setting the leading-order behavior of E0 and E1

to be equal to the AdS3 vielbeins in (2.39). This corresponds to imposing the
constraints

F+ ≡ 1, F̄+ ≡ −1. (2.82)

As we will now show, these constraints reduce the affine sl2(R) algebra to the
Brown–Henneaux Virasoro symmetries, including the correct central charge.
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2.5. Drinfeld–Sokolov reduction

2.5 Drinfeld–Sokolov reduction

So far, we have seen that Chern–Simons theory with chiral boundary conditions
leads to affine WZW boundary charges. Requiring that the bulk connections corre-
spond to asymptotically AdS3 geometries with Dirichlet boundary conditions leads
to the additional constraints (2.82). We will show that the reduced phase space
has a classical Virasoro symmetry algebra corresponding to the Brown–Henneaux
symmetries. Although we will not describe it here, this classical reduction can
also be carried out [85] on the level of the action, which leads to Liouville theory.
The general procedure which we will now describe is known as Drinfeld–Sokolov
reduction, after its origins [86] in the study of integrable systems. We first work
out the reduction of the affine sl2(R) algebra under the constraints in (2.82).

In the context of WZW models, Drinfeld–Sokolov reduction was first used [87]
to study higher-spin generalizations of Virasoro symmetries known asW-algebras.
These arise if the reduction procedure is applied to slN (R) with a specific sl2(R)
embedding. Multiple embeddings exist, and we review how the resulting W-
symmetry depends on it. Following [84], we then work out explicitly the classical
reduction of the affine sl3(R) algebra that leads to W3 symmetry.

For a general review on W-algebras, see [88]. We will only study the Drinfeld–
Sokolov reduction at a classical level, which is reviewed in [89, 90]. Quantum
versions of the reduction of the symmetry algebra [91] and actions [72] also exist.
Starting with [84,92], the Chern–Simons approach toW-symmetries has also found
application in higher spin holography, see [93,94] for a review.

2.5.1 Virasoro from sl2(R)

In the following, we will focus on one particular sl2(R) factor of so(2, 2). For
simplicity, we denote the relevant coordinate by ϕ. Imposing the asymptotically
AdS3 constraint (2.82), the reduced connection (2.76) is restricted to

aϕ = L+ + F 0L0 + F−L−. (2.83)

Now gauge transformations λ = λaLa can no longer be arbitrary: they have to
leave F+ ≡ 1 invariant. We can determine the allowed transformations by solving

0 = δλF
+ = ∂λ+ − i[aϕ, λ]+ = ∂λ+ + λ0 − F 0λ+. (2.84)

This is solved by

λ0 = −∂λ+ + λ+F 0. (2.85)

As we see, the gauge parameter λ now depends on the components of the connec-
tion. It is therefore not obvious that the infinitesimal charge δQλ defined in (2.74)
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is integrable. So let’s write it out explicitly:

δQλ = −2
∮
dϕ 〈λ, δa+〉

= −2γs
∮
dϕ

(
−λ+δF− + 1

2λ
0δF 0

)
(2.86)

= −2γs
∮
dϕ

(
−λ+δF− + 1

2
(
−∂λ+ + λ+F 0) δF 0

)
(2.87)

In the second step, we plugged in λ0 from (2.85). This charge is integrable! Using
λ+ as a parameter, we can write it as a total variation:

δQλ =
∮
dϕλ+δT, T = 2γs

(
F− − 1

4(F 0)2 − 1
2∂F

0
)
. (2.88)

We denote the corresponding finite charges using

QVir[λ+] =
∮
dϕλ+T. (2.89)

We see that the λ− parameter drops out entirely. Since λ0 is fixed, the only
meaningful transformation parameter seems to be λ+. Indeed, we will see that T
transforms as a Virasoro current under the transformations generated by λ+.

Invariant polynomial and gauge fixing For future purposes, it is useful to
rederive the current T we just encountered in another way. The constraint F+ ≡ 1
generates gauge transformations in the phase space (2.83) which is parametrized
by the functions F 0 and F−. Using the Poisson bracket in (2.77), we see that
these functions transform as follows:

δΛF
0(ϕ) =

∫
dψ
{

Λ(ψ)(F+(ψ)− 1), F 0(ϕ)
}

= 1
γs

Λ(ϕ)F+(ϕ) ≡ 1
γs

Λ(ϕ), (2.90a)

δΛF
−(ϕ) =

∫
dψ
{

Λ(ψ)(F+(ψ)− 1), F−(ϕ)
}

= 1
2γs

(
Λ(ϕ)F 0(ϕ) + ∂ϕΛ(ϕ)

)
. (2.90b)

Here we have introduced a parameter Λ(ϕ) for the gauge transformations gener-
ated by F+ ≡ 1. First, notice that the combination we encountered in (2.88) is
invariant under these transformations. For that reason, we are not forced to fix
the gauge transformations coming from F+ ≡ 1 and we can just work with the
‘invariant current’ T , which is a well-defined quantity on the reduced phase space.

Alternatively, we can use these transformations to gauge fix part of the re-
maining phase space variables. As we can see from (2.90a), we can set F 0(ϕ) to
zero by choosing Λ(ϕ) = −γsF 0(ϕ).
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2.5. Drinfeld–Sokolov reduction

Both approaches will be useful in the following. For larger algebras, such as the
sl3(R) examples that we will study next, any gauge fixing we can do will greatly
simplify the computations. On the other hand, we will consider contractions of
the Chern–Simons algebra in Chapter 3. To make sure that none of the limits we
take are singular, it will be useful to work with the invariant currents there.

Current transformations and Virasoro algebra Under the allowed trans-
formation specified by (2.85), the connection components transform as

δF 0 = λ+∂F 0 + F 0∂λ+ − ∂2λ+ + 2λ− − 2F−λ+,

δF− = ∂λ− + F−∂λ+ − F−F 0λ+ + F 0λ−. (2.91)

The current defined in (2.88) then transforms as a Virasoro current,

δT = λ+∂T + 2T∂λ+ + γs∂
3λ+. (2.92)

We can compute the Poisson bracket of the charges as follows,

{Qλ, Qµ} = δλQµ = −2
∮
dϕ 〈µ, δλa+〉 =

∮
dϕµ+δλT

=
∮
dϕµ+ (λ+∂T + 2T∂λ+ + γs∂

3λ+)
= QVir [µ+∂λ+ − λ+∂µ+]+ γs

∮
dϕµ+∂3λ+. (2.93)

Indeed, this is the Virasoro charge algebra! To obtain the usual expression in
terms of the Fourier modes of these charges, we can expand

T (ϕ) = − 1
2π
∑
n

Lne
−inϕ. (2.94)

Note that we assume that the current is a 2π-periodic functions. The generators
are obtained by choosing the corresponding Fourier modes as symmetry parameter,

Ln = −
∮
dϕ einϕ T (ϕ) = −QVir[einϕ]. (2.95)

Then the Poisson bracket in (2.93) leads to the following Poisson brackets and
commutators for the Fourier modes,

{Lm, Ln} = −i(m− n)Lm+n − 2πiγsm3δm+n,0, (2.96)
[Lm, Ln] = i {Lm, Ln} = (m− n)Lm+n + 2πγsm3δm+n,0, (2.97)

As we found in (2.36), our definition of the bilinear form is related to the usual
Chern–Simons level by γs = k/4π, and Einstein gravity corresponds to k = `/4G.
Therefore, the above reproduces the Brown–Henneaux central charge:

c = 24πγs = 6k = 3`
2G. (2.98)
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After shifting Lm → Lm + cδm,0/24, we get

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0. (2.99)

This is the Virasoro algebra of AdS3 asymptotic symmetries that we wrote down in
Section 1.4.2. The other sl2(R) factor in so(2, 2) leads to another Virasoro algebra
with the same central charge. Thus we have seen how the boundary charges of
Einstein gravity with negative cosmological constant can be reproduced using
a Drinfeld–Sokolov reduction of the asymptotic symmetries of so(2, 2) Chern–
Simons.

2.5.2 General W-algebras from slN(R)
So far, we have mainly been concerned with Einstein gravity, which corresponds
to two chiral sl2(R) connections. However, other theories of gravity can also be
described using a Chern–Simons formulation. We will now look at slN (R) theories,
which have been extensively studied in the context of current algebras and higher
spin gravity, see for example [74,84,89–92,95–98].

In addition to a spin two metric field, which corresponds to a sl2(R) subalgebra,
the slN (R) Chern–Simons theories describe additional fields with corresponding
boundary charges. The coupling of these charges to the Virasoro charges associ-
ated to the metric sector depends heavily on the embedding of the sl2(R) algebra
in the full slN (R) algebra.

Given a set of sl2(R) generators La ∈ slN (R), we can impose chiral boundary
conditions and gauge fix the radial component as in (2.65),

A−|∂M = 0, Aρ = L0 ∈ slN . (2.100)

Let us denote the slN (R) generators by Ta. Again, for simplicity we denote the
remaining boundary coordinate (in this case x+) using ϕ. With this choice, the
full gauge-fixed on-shell connection in (2.72) becomes

A = eiρL0 (id+ Ja(ϕ)Tadϕ) e−iρL0 . (2.101)

To obtain an asymptotically AdS3 metric, we should now impose boundary con-
ditions similar to (2.82). For this, it is useful to organize the slN (R) basis in
multiplets of the sl2(R) subalgebra corresponding to La. The radial falloff of a
current component Ja in the connection is then determined by the weight of the
corresponding generator T a under L0. To be precise, if [L0, Ta] = iw(a)Ta, we see
that the Ta component of Aϕ is

Az|Ta Ta = Ja(ϕ) eiρL0 Ta e
−iρL0 = e−w(a)ρ Ja(ϕ)Ta. (2.102)

Thus, if we fix the leading part of the connection in terms of the global AdS3 con-
nection (2.2.4), we constrain all the current components Ja of w(a) < 0 generators,

JL+ ≡ 1 & JTa ≡ 0 for all other negative weight generators Ta. (2.103)
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2.5. Drinfeld–Sokolov reduction

These constraints generate additional gauge freedom, which can be used to fix all
but the highest weight currents of each multiplet to zero. We will demonstrate
this explicitly for one example in Section 2.5.3. This brings us to what is usually
known as highest-weight or Drinfeld–Sokolov gauge, with a single current for each
sl2(R) multiplet.

At this point, it is useful to introduce a more algebraic perspective on the
embeddings and the corresponding multiplet structure (see for example [91, 96]).
The possible decompositions of the slN (R) fundamental representation are labeled
by partitions λ of N ,

NN =
N⊕
k=1

nkk2 ←→ λ : N =
∑

nk. (2.104)

Here, we use kM to denote a k-dimensional fundamental representation of slM (R).
We are interested in the multiplet structure of slN (R) under the adjoint action
of its sl2(R) subalgebra. Through the corresponding decomposition N =

∑
nk

in (2.104), the choice of partition λ determines the number of sl2(R) multiplets in
the adjoint representation of slN (R). For example, if N = 3 we can choose 3 = 3,
3 = 2 + 1 or 3 = 1 + 1 + 1, corresponding to

33 = 32 =⇒ 33 ⊗ 3̄3 − 12 = 52 ⊕ 32, (2.105)
33 = 22 ⊕ 12 =⇒ 33 ⊗ 3̄3 − 12 = 32 ⊕ 2 22 ⊕ 12, (2.106)
33 = 12 ⊕ 12 ⊕ 12 =⇒ 33 ⊗ 3̄3 − 12 = 8 12. (2.107)

These partitions correspond to the principal, diagonal and trivial embedding of
sl2(R) in sl3(R), respectively.

The residual symmetries of the affine slN (R) WZW model constrained by
(2.103) for the first two decompositions are the W3 algebra [87, 95] and W(2)

3
Polyakov-Bershadsky algebra [99], respectively. In addition to the Virasoro cur-
rent, the former contains a spin three current, while the latter comes with two
spin 3/2 and a spin one current. In the final decomposition, no positive radial
weights appear so no constraints are imposed and we are still left with the full
affine sl3(R) current algebra.

2.5.3 W3 from principal embedding in sl3(R)
We now work out the Drinfeld–Sokolov reduction explicitly for sl3(R) with respect
to the principal sl2(R) embedding following [84]. We take the generators La for
the sl2 subgroup and Wb for the remaining generators, where a = −1, 0, 1 and
b = −2, . . . , 2. They satisfy the following commutation relations,

[Lm, Ln] = i(m− n)Lm+n, (2.108a)
[Lm,Wn] = i(2m− n)Wm+n, (2.108b)

[Wm,Wn] = iσ

3 (m− n)(2m2 + 2n2 −mn− 8)Lm+n. (2.108c)
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Here, σ < 0 corresponds to the normalization of the Wb generators, which we can
keep arbitrary. The bilinear form for the sl2(R) sector is

〈L0, L0〉 = γs
2 , 〈L+, L−〉 = −γs. (2.109)

For the Wa sector, it is

〈W+2,W−2〉 = −4σγs, 〈W+1,W−1〉 = σγs, 〈W0,W0〉 = −2σγs
3 . (2.110)

Following (2.103), we see that there are now three asymptotically AdS3 constraints:

FL+ ≡ 1, FW+2 ≡ 0, FW+1 ≡ 0. (2.111)

Due to the large amount of generators, it will be convenient to use the gauge
transformations coming from these constraints to set some of the currents to zero.
Let us denote the parameters corresponding to the three constraints by Λ, Ω2 and
Ω1 respectively. We will only gauge fix currents if their variation is proportional
to FL+ , since we know that current does not vanish for any element of the phase
space where the constraint FL+ = 1 holds. Other currents, such as FW−2 , may
conceivably be zero for some states in the phase space, so we cannot rely on them
to define a gauge fixing.

For each of the constraints above, we will look for the current component whose
variation is proportional to FL+ and gauge it to zero. For the gauge transforma-
tions parametrized by Λ, this component appears in the sl2 sector:

δΛF
L0 = FL+Λ

γs
, (2.112)

δΛF
L− = ∂Λ + FL0Λ

2γs
. (2.113)

Indeed, since the sl2 is a closed subsector, this just gives the same transformations
as in (2.90). Thus we see that we can still use the first constraint to set FL0 to
zero. Next, let us look at the second constraint. Here, the FL+ current appears
in the variation of the Wm sector:

δΩ2F
W−1 = FL+Ω2

2γsσ
, (2.114)

δΩ2F
W−2 = ∂Ω2 + 2FL0Ω2

8γsσ
. (2.115)

Thus we can use Ω2 to set FW−1 to zero. Finally, the third constraint gives

δΩ1F
W0 = −3FL+1Ω1

2γsσ
, (2.116)

δΩ1F
W−1 = −∂Ω1 + FL0Ω1

2γsσ
, (2.117)

δΩ1F
W−2 = FL−1Ω1

2γsσ
. (2.118)
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This allows us to set FW0 to zero. The gauge fixed connection is then

aϕ = L+ + FW−2(ϕ)W−2 + FL−(ϕ)L−. (2.119)

We can determine the currents by working out

δQλ = −2
∮
〈λ, δa〉

=
∮ (

8γsσλW+δFW+2 + 2γsλ+δFL+
)
dϕ (2.120)

=
∮

(εδT + χδW) dϕ. (2.121)

In the last line, we have defined the currents

T = 2γsFL− , W = 8γsσFW−2 . (2.122)

The corresponding transformation parameters are χ = λW+2 and ε = λL+ . The
currents transform as:

δεT = ε∂T + 2T∂ε+ γs∂
3ε, (2.123a)

δεW = ε∂W + 3W∂ε, (2.123b)
δχT = 2χ∂W + 3W∂χ, (2.123c)

δχW = 16σ
3γs

(
Tχ∂T + T 2∂χ

)
+ 3σ

2 ∂χ∂2T + 5σ∂T∂2χ (2.123d)

+ 2σ
3 χ∂3T + 10σ

3 T∂3χ+ γsσ

3 ∂5χ.

Indeed, we see that W is a spin-2 current under the transformations generated by
the Virasoro current T . With γs = k/4π, this is the classical W3-algebra [84].
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Chapter 3

Zooming in on AdS3/CFT2

Having introduced the boundary analysis of three-dimensional gravity in the con-
text of AdS3, we now turn to its first new application. The holographic principle
as we discussed it in Section 1.2.1 is believed to be more general than AdS/CFT.
There has been a large effort to find a holographic description for theories that
are not conformal, warped conformal or even nonrelativistic, both in the bulk and
on the boundary.

In this chapter, we motivate a novel duality relating a nonconformal relativistic
boundary theory to a nonrelativistic bulk theory. Using the tools developed in
Chapter 2, we can arrive at these theories by taking a limit of a particular extension
of the AdS3/CFT2 correspondence.

The work in this chapter has appeared previously in [1].
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3.1 Introduction

The idea of holography has become the most powerful tool in understanding the-
ories of quantum gravity. Its most celebrated realization is seen in the AdS/CFT
correspondence [10,42] which relates a general relativistic quantum gravity theory
on an asymptotically anti-de Sitter (AdS) spacetime to a conformal field theory
(CFT) living on the boundary of AdS.

While this duality has led to amazing progress in the last decades, with impact
on a wide range of areas in theoretical physics, there are many fundamental ques-
tions that remain unanswered. One widely studied route towards gaining deeper
insight is by taking consistent limits of the correspondence, therewith simplifying
both sides while still retaining non-trivial features. Examples include the BMN
limit [100], the limit considered by Kruczenski [101] as well as the closely related
Spin Matrix Theory limit of Ref. [102]. Other actively pursued directions are to
consider i). non-AdS vacua within Einstein gravity [54, 103, 104] or ii). bulk the-
ories that are Chern–Simons, higher spin or non-Einsteinian gravity theories like
Hořava–Lifshitz gravity1.

In this chapter we will study a decoupling limit of the AdS3/CFT2 correspondence
that can be formulated in the bulk as a Chern–Simons theory that is not equivalent
to Einstein gravity. On the field theory side, the limit utilizes a U(1) flavor
symmetry, for example an R-symmetry of a superconformal field theory, and zooms
in on the spectrum close to the lightest charged state of the theory on the cylinder.
Thus we are zooming in on the sector of the theory near a BPS bound, much in
the spirit of the Spin Matrix Theory proposal of [102] which considers limits to
critical points of N = 4 supersymmetric Yang–Mills theory, keeping only one-
loop corrections to the BPS states. On the gravity side, the limit results in a
Chern–Simons (CS) action that is defined on an algebra that can be viewed as a
different real form of the complexified versions of the algebras used in the Chern–
Simons (Newton–Cartan) gravity theories of [107–109]. In particular, our CS
theory describes a novel version of non-Lorentzian geometry, which we call pseudo-
Newton–Cartan (pseudo-NC) geometry. These theories have the feature that the
holographic direction emerges in a much simpler way than in AdS because there
is a special foliation structure associated with it.

While our primary focus will be on AdS3/CFT2, the limit we consider is quite
general, as any d+1 dimensional CFT with a U(1) flavor symmetry, a BPS bound
and a free coupling constant admits a limit in which one zooms in on the spectrum

1 For the discussion in this chapter it is relevant to note that Hořava–Lifshitz gravity [105] can
be reformulated as a theory of dynamical Newton–Cartan geometry [106], and, moreover in three
dimensions these theories and generalizations thereof can be formulated [107] (see also [108,109])
as Chern–Simons theories on non-Lorentzian kinematical algebras, such as the Bargmann or
Newton–Hooke algebra. Chern–Simons theories also play a role in another avatar of non-AdS
holography [110] involving warped CFTs (see for example [111–116]) as boundary field theories.
Torsional Newton–Cartan geometry was first observed in the context of non-AdS holography in
Refs. [55,56,117]. It is worth emphasizing that non-AdS holography is a vast subject, including
for example also non-UV conformal models (see [118, 119] for recent reviews). However, for the
purposes of this chapter, we focus on the subset of theories that have nonrelativistic symmetries.

54



3.1. Introduction

close to the lightest charged state of the theory on R×Sd. In further detail, after
using the state-operator map, the BPS operators have a conformal weight that is
equal to the energy of the lightest charged state in units of the sphere radius. Using
the BPS condition this energy in turn is equal to a U(1) charge Q. We assume that
the theory has a free marginal coupling constant g that can be used to compute
the one-loop corrections to the conformal dimension away from the BPS bound.
By turning on a ‘chemical potential’2 for the charge Q we can offset the dilatation
operator D to D−Q which still has a non-negative spectrum. This new dilatation
operator has order g corrections when we turn on the interactions perturbatively.
The limit zooms in on this 1-loop piece of the dilatation operator. The symmetry
algebra in this limit is an Inönü–Wigner contraction of so(2, d + 1) ⊕ u(1) that
leads to a relativistic algebra with scale but no conformal generators.

For the specific case of 2D CFTs the Lorentz generator is abelian and it turns
out to be useful to add a second u(1). One then considers an Inönü–Wigner
contraction of so(2, 2)⊕u(1)⊕u(1), i.e. two copies of sl(2,R)⊕u(1). The resulting
contracted algebra is then two copies of P c2 , the two-dimensional centrally extended
Poincaré algebra. This algebra admits an infinite-dimensional extension, namely a
left- and right-moving warped Virasoro algebra, which turns out to appear as the
asymptotic symmetry of our novel bulk gravity dual. We show that the CS action
on two copies of P c2 can be obtained by applying our contraction to the CS action
on two copies of sl(2,R)⊕u(1). We then demonstrate that the entire phase space
of asymptotically AdS3 solutions of the so(2, 2)⊕u(1)⊕u(1) Chern–Simons theory
can be mapped to the phase space of the limit theory. This procedure requires a
fixed radial chemical potential for one of the two u(1) connections which is related
to the background ‘chemical potential’ needed to offset the dilatation operator
close to a BPS bound.

We emphasize that since we can reach the full phase space of the P c2 theory
from the sl(2,R)⊕u(1) theory, we can study many well-understood aspects of the
AdS3/CFT2 correspondence in this limit. For example, this procedure allows us
to find the vacuum of the theory. Following the coset procedure for homogeneous
nonrelativistic spacetimes proposed in [120] we show that this three-dimensional
vacuum geometry corresponds to the coset (Pc

2 × Pc
2)/(Pc

2 × U(1)), where Pc
2

stands for centrally extended 2D Poincaré group. We demonstrate that for this
background 6 of the 8 generators of the P c2 ⊕ P c2 algebra are realized in terms
of Killing vectors while the two central extensions are visible only once we study
matter fields on these backgrounds.

Our limiting procedure of contracting so(2, 2) ⊕ u(1) ⊕ u(1) by turning on a
radial chemical potential to zoom in on the lightest charged state of the theory on
the cylinder bears a strong resemblance to viewing nonrelativistic limits as con-
tractions of Poincaré⊕u(1). There, one turns on a chemical potential to offset the
Hamiltonian of the relativistic theory (splitting off the rest mass) before sending

2 We write ‘chemical potential’ in quotation marks since this is not a usual chemical potential
corresponding to a time component of a background U(1) gauge field. Rather, it is the radial
component of a background U(1) potential in radial quantization.
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the speed of light to infinity [121, 122]. In [109] a contraction was studied along
these lines of a CS theory on the relativistic algebra iso(2, 1) ⊕ u(1) ⊕ u(1). In
the large speed of light limit the two u(1) gauge fields correspond to two quan-
tum numbers of a nonrelativistic particle, the rest mass and rest spin [108]. This
limit can be generalized in the presence of a cosmological constant leading to CS
theory on what is known as the extended Newton–Hooke algebra. For a nega-
tive cosmological constant this algebra is isomorphic to Ec2 ⊕ Ec2, with Ec2 the
two-dimensional centrally extended algebra of the Euclidean two-plane. The CS
action on the extended Newton–Hooke algebra was considered in [107, 123]. The
limit of so(2, 2)⊕u(1)⊕u(1) we take in this chapter leads to the algebra P c2 ⊕P c2 .
This can be viewed as a different real form of a complexified version of the Ec2⊕Ec2
algebra.

We know from the CS theory on Ec2 ⊕ Ec2 that the geometry is described by
Newton–Cartan geometry in which time plays a special role. Essentially Newton–
Cartan geometry is a covariant description of a special foliation structure where
each leaf corresponds to a certain instant of time. In the case of the CS theory
on P c2 ⊕ P c2 , the bulk geometry is a version of Newton–Cartan (NC) geometry
that we call pseudo-Newton–Cartan geometry. In this case the leaves are those
corresponding to constant values of the emerging holographic coordinate and each
such hypersurface has a two-dimensional Lorentzian signature. This suggests that
pseudo-Newton–Cartan geometry in the bulk provides, in some sense, a much
simpler realization of the holographic paradigm than the one that employs Rie-
mannian geometry. Since the limit can be generalized to higher dimensions on
the level of the algebra, we can speculate that the corresponding geometry (ob-
tained by gauging the algebra) will appear more generally as a bulk dual in any
dimension when zooming in on the spectrum close to the BPS bound. Just like
NC geometry can be obtained by gauging the Bargmann algebra [107,124,125] in
its usual real form, pseudo-NC geometry can be obtained by gauging a different
real form of the complexified Bargmann algebra that we discuss here.

It is interesting to put the holographic correspondence that we obtain in this
chapter in the larger context of non-AdS holography. So far, we have encoun-
tered roughly three classes of dualities. In its original form, the AdS/CFT cor-
respondence relates a relativistic bulk gravity to a corresponding dual (confor-
mal) relativistic field theory living on the boundary. For non-AdS holography,
using for example asymptotically Schrödinger or Lifshitz spacetimes, there are
setups with relativistic theories in the bulk, e.g. Einstein–Maxwell-dilaton or
Einstein–Proca-dilaton theories, and nonrelativistic field theories living on the
boundary. These boundary theories naturally couple to nonrelativistic geome-
tries [126–128], such as (torsional) NC geometry, as first shown in the holographic
context in [55,56,117,129]. Additionally, it has been suggested that the latter field
theories have perhaps a more natural holographic realization with nonrelativistic
gravity theories in the bulk [53,107,110,130]. What we see here, somewhat unex-
pectedly, is that there is a fourth situation in which one has a nonrelativistic bulk
gravity theory but a scale invariant relativistic field theory on the boundary.
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It is natural to wonder how these scale invariant two-dimensional field theories
that appear in our novel holographic correspondence relate to standard 2D CFTs.
Local unitary 2D scale invariant relativistic field theories for which the dilatation
operator is diagonalizable and has a non-negative discrete spectrum admit currents
for special conformal generators [131], i.e. the charge algebra of symmetries of the
theory is sl(2,R)⊕ sl(2,R) which enhances to two commuting Virasoro algebras.
This infinite-dimensional symmetry appears as the asymptotic symmetry algebra
in AdS3 gravity, as shown in the seminal paper [38]. In our case we will show
that likewise the theory has a symmetry algebra that contains two copies of a
warped Virasoro algebra and so has the symmetries of a CFT3. To understand
the nature of the two-dimensional field theory better one would have to work out
the unitary irreducible representations of the two copies of the warped Virasoro
groups. We leave a more detailed analysis of this for the future and comment on
related aspects in the discussion.

Outline and brief summary

This chapter is organized as follows. In Section 3.2 we present the various algebras
that play a role in our holographic construction and also present the CS action that
appears in our limit. In particular, in Section 3.2.1 we discuss the Inönü–Wigner
contraction of so(2, 2) ⊕ u(1) ⊕ u(1) and show how this gives P c2 ⊕ P c2 . We also
present its alternative form in terms of the three-dimensional extended Newton–
Hooke algebra with a non-standard real form. We then perform in Section 3.2.2
the same contraction at the level of the CS theory, resulting in a CS action for two
copies of P c2 , which inherits a chiral structure from its relativistic parent action.
This action thus describes pseudo-Newton–Cartan gravity in three dimensions. To
put our limit in a broader perspective, we also discuss in Section 3.2.3 the Inönü–
Wigner contraction of so(2, d+ 1)⊕ u(1). From the boundary point of view, this
results in a novel algebra that contains relativistic and scale symmetries, but no
conformal symmetries. From the bulk perspective we show that it corresponds
to a different real form of the complexified (d + 2)-dimensional Newton–Hooke
algebra.

We then turn in Section 3.3 to studying the phase space of our limit theory
by relating it to the phase space of the parent theory. To this end, we first show
in Section 3.3.1 how we can obtain the most general P c2 connection as a limit
of the most general sl(2,R) ⊕ u(1) connection. We then continue to show how
the limit of the phase space of the so(2, 2)⊕ u(1)⊕ u(1) CS theory acts in terms
of metric data. In Section 3.3.2 we examine what happens to the Poincaré and
global AdS3 geometries after the limit and study the symmetries of the resulting
vacua. Finally, in Section 3.3.3 we consider a bulk scalar field model where all
symmetries, including central extensions, are explicitly realized.

In Section 3.4, we then study the asymptotic symmetry algebra after the limit.
The main result is presented in Section 3.4.1 where we show that in the limit

3 See also [132] for recent related work. Note that these theories are different from the chiral
warped CFTs studied in [111], since we have two copies of a warped Virasoro algebra.
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theory one obtains a chiral and antichiral warped Virasoro algebra. To elucidate
the appearance of this particular infinite-dimensional algebra, we repeat the same
procedure in Section 3.4.2 at finite value of the contraction parameter and obtain
a more general form of the algebra in that case. We then discuss in Section 3.4.3
how this more general result relates to the naively expected asymptotic symme-
try algebra consisting of an uncoupled Virasoro and affine u(1). We end with a
discussion and outlook in Section 3.5.

3.2 Near-BPS limit of AdS Chern–Simons theory

In this chapter, we will be concerned with a Chern–Simons theory of gravity with
a non-semisimple algebra. We refer the reader to Section 2.2.2 for our conventions
for general Chern–Simons theory. Some earlier examples of Chern–Simons theory
with non-semisimple algebras include [108,133], see [107,109] for more recent work.

3.2.1 Contraction of 2D conformal algebra with abelian charges

From the boundary perspective, our starting point is a two-dimensional conformal
field theory with two u(1) flavor symmetries. We are interested in an Inönü–
Wigner contraction of the global symmetry algebra so(2, 2) ⊕ u(1) ⊕ u(1) that
zooms in on the state with lowest charge under the flavor symmetries.4 As we will
see, the resulting algebra has a nondegenerate bilinear form, and can therefore be
used to construct a Chern–Simons theory. After identifying the correct limit of
the algebra in the following, we will proceed to studying the contraction of the
corresponding bulk gravity.

Relativistic conformal algebra

In AdS3/CFT2, the so(2, 2) symmetry algebra has two interpretations. First of
all, it is the global conformal algebra of the conformal field theory living on the
boundary of AdS3, as we discussed in Section 1.4.1. In this incarnation, we will
exhibit it using the standard basis of translations, boosts, dilatation and special
conformal transformations, which satisfy

[Pa,Kb] = −2iDηab − 2iMεab , [D,Pa] = iPa , [D,Ka] = −iKa ,

[M,Pa] = iεa
bPb , [M,Ka] = iεa

bKb .
(3.1)

Here and in the following, we will use a lowercase Latin index a = (0, 1) for
boundary components, so ηab and εab are the 2-dimensional Minkowski metric
and Levi–Civita symbol, respectively. Boundary indices are raised and lowered
with ηab and we set ε01 = +1.

4 Note that our initial algebra so(2, 2) ⊕ u(1) ⊕ u(1) is the bosonic part of the N = (2, 2)
superconformal algebra, where the abelian currents correspond to the R-charge current in each
chiral sector.
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3.2. Near-BPS limit of AdS Chern–Simons theory

From a bulk gravity perspective, so(2, 2) is also the isometry algebra of AdS3.
For this purpose, the natural generators are the bulk translations TA and bulk
rotations JA given by

Ta = 1
2`εa

b(Pb +Kb) , T2 = 1
`
D , Ja = 1

2(Pa −Ka) , J2 = M . (3.2)

Here, ` is the bulk radius of curvature. The commutators of these generators can
be found in equation (2.29). Finally, the so(2, 2) generators can be split into two
chiral copies of sl(2,R),

[Ln, Lm] = i(n−m)Ln+m , [L̄n, L̄m] = i(n−m)L̄n+m . (3.3)

The left- and right-moving generators Lm and L̄m are given by

L−1 = 1
2 (P1 + P0) , L0 = 1

2 (D +M) , L1 = 1
2 (K1 −K0) , (3.4)

L̄−1 = 1
2 (P1 − P0) , L̄0 = 1

2 (D −M) , L̄1 = 1
2 (K1 +K0) . (3.5)

Upon Wick rotation (t = itE) the left- and right-moving coordinates (x+, x−)
become the complex coordinates (z, z̄). Additionally, we assume that the 2D CFT
has two flavor u(1) symmetries generated by Q1 and Q2. For future convenience,
we define the following combinations of u(1) generators,

N0 := 1
2(`Q1 +Q2), N̄0 := 1

2(`Q1 −Q2). (3.6)

We will see in the following that these combinations naturally appear in the chiral
decomposition of the contracted algebra. Following (2.33), we parametrize the
invariant bilinear form on the left- and right-moving sl(2,R)⊕ u(1) by

2〈L0, L0〉 = −〈L−1, L1〉 = γs , 〈N0, N0〉 = 1
2γu , (3.7)

2〈L̄0, L̄0〉 = −〈L̄−1, L̄1〉 = −γ̄s , 〈N̄0, N̄0〉 = −1
2 γ̄u . (3.8)

Let Φ be a field that transforms in a representation of the total symmetry group
so(2, 2)⊕ u(1)⊕ u(1). At the level of the algebra, a representation is given by

PaΦ = −i∂aΦ ,

MΦ = −i
(
εa
bxa∂b + s

)
Φ ,

DΦ = −i (xa∂a + ∆) Φ , (3.9)
KaΦ = −i

(
2ηacxcxb∂b − x2∂a + 2ηabxb∆− 2εabxbs

)
Φ ,

Q1Φ = q1Φ ,

Q2Φ = q2Φ .

The field Φ thus carries the labels ∆ (conformal dimension), s (spin) and q1, q2
(charges).
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Contracted algebra

There exists a general procedure for obtaining nonrelativistic algebras from a
contraction of relativistic ones, which is loosely referred to as Inönü-Wigner con-
traction (see for example [122] for a review). In fact, this procedure does not
exclusively yield nonrelativistic algebras, and has also been applied to studying
the flat space limit of AdS holography [134–136].

The procedure is as follows. Define a basis for the initial algebra that depends
on some parameter α. In this basis, the structure constants now depend on α
but the algebra is still fundamentally unchanged. However, by taking α → ∞
one obtains a contracted algebra that is generically not isomorphic to the initial
algebra.

Starting from so(2, 2)⊕u(1)⊕u(1), we want to consider the following contrac-
tion.5 Define the generators Pa, Ka, D,M, N and S by setting

Pa = αPa , Ka = αKa ,

D = 1
2D + α2N , Q1 = −1

2D + α2N , (3.10)

M = 1
2M+ α2S , Q2 = −1

2M+ α2S .

From (3.1) we find that they satisfy the following commutation relations,

[Pa,Kb] = −2i
(
D

2α2 +N
)
ηab − 2i

(
M
2α2 + S

)
εab,

[D,Pa] = iPa, [D,Ka] = −iKa,
[M,Pa] = iε b

a Pb, [M,Ka] = iε b
a Kb,

[N ,Pa] = iPa
2α2 , [N ,Pa] = − iKa2α2 ,

[S,Pa] = iε b
a Pb
2α2 , [S,Ka] = iε b

a Kb
2α2 .

(3.11)

At this point, we have only performed a basis transformation and the algebra is
still unchanged. However, by sending α→∞, we obtain an inequivalent algebra:

[Pa,Kb] = −2iNηab − 2iSεab ,
[D,Pa] = iPa , [D,Ka] = −iKa , (3.12)
[M,Pa] = iεa

bPb , [M,Ka] = iεa
bKb .

All other commutators vanish and one observes that N and S are now central
elements. This algebra, which we will call the scaling nonconformal algebra, will
be the central object of study in this chapter. The generatorsM and Pa form a
2D Poincaré subalgebra and D is a dilatation generator. However, the Ka can no
longer be thought of as conformal generators.

5 This is not the only possible contraction. For other options, see [137].
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A representation of this algebra on a field Φ is given by

PaΦ = −i∂aΦ ,

MΦ = −i
(
εa
bxa∂b + σ

)
Φ ,

DΦ = −i (xa∂a + δ) Φ , (3.13)
KaΦ =

(
2ηabxbN − 2εabxbS

)
Φ ,

NΦ = NΦ ,

SΦ = SΦ .

Like so(2, 2), the algebra (3.12) can be split in two factors. Here, the factors
are given by a 2D Poincaré algebra with central extension, which we denote by P c2 .
To see this we define

L−1 = 1
2 (P1 + P0) , L0 = 1

2 (D +M) , (3.14)

N0 = N + S , N1 = 1
2 (K1 −K0) , (3.15)

L̄−1 = 1
2 (P1 − P0) , L̄0 = 1

2 (D −M) , (3.16)

N̄0 = N − S , N̄1 = 1
2 (K1 +K0) . (3.17)

The nonzero commutators of these generators are

[L−1 ,L0] = −iL−1 , [L−1 ,N1] = −iN0 −
i

α2L0 , [L0 ,N1] = −iN1 ,

[N0 ,L−1] = i

α2L− , [N0 ,N1] = − i

α2N1 (3.18)

and likewise for the barred generators. At finite α, this is just a redefinition of
sl(2,R)⊕u(1), but in the limit α→∞ these are the commutation relations of P c2 ,

[L−1 ,L0] = −iL−1 , [L−1 ,N1] = −iN0 , [L0 ,N1] = −iN1 . (3.19)

One can think of L−1 and N1 as translation generators in a two-dimensional
Poincaré plane, with Lorentz boost L0. The central extension is given by N0.
This algebra can be viewed as a different real form of the complexified centrally
extended 2D Euclidean algebra Ec2. The latter is sometimes referred to as the
Nappi–Witten algebra [133]. We parametrize the most general invariant bilinear
form on the two copies of P c2 using

〈L0,L0〉 = 1
2γ1 , 〈L0,N0〉 = −〈L−1,N1〉 = γ2 , (3.20)

〈L̄0, L̄0〉 = −1
2 γ̄1 , 〈L̄0, N̄0〉 = −〈L̄−1, N̄1〉 = −γ̄2 . (3.21)

We will see that (3.19) has an infinite-dimensional lift with generators (Lm, L̄m).
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In terms of sl(2,R) ⊕ u(1) generators, the basis transformation above corre-
sponds to

L−1 = αL−1 , L0 = 1
2L0 + α2

2 N0 ,

L1 = αN1 , N0 = −1
2L0 + α2

2 N0 .

(3.22)

Then it follows that the coefficients of the P c2 and sl(2,R) ⊕ u(1) bilinear forms
are related by

γs = 1
2γ1 + α2γ2 , γu = 1

2γ1 − α2γ2 , (3.23)

and likewise for the barred sector. This means that at finite α, the bilinear form
satisfies

〈L−1,N1〉 = −γ2 −
γ1

2α2 , 〈L0,N0〉 = γ2,

〈L0,L0〉 = γ1

2 , 〈N0,N0〉 = γ1

2α4 .
(3.24)

In the above, we have discussed the limit of so(2, 2)⊕u(1)⊕u(1) as a conformal
symmetry algebra. There is also a bulk perspective on this contraction. Define Ta
and Ra by

Ta = 1
2 (Pa +Ka) , Ra = 1

2 (Pa −Ka) . (3.25)

Rescaling Ta, D and N by `, the algebra (3.12) can be written as

[Ta,Rb] = iNηab , [M, Ta] = iεa
bTb , [M,Ra] = iεa

bRb ,

[D,Ra] = iTa , [D, Ta] = i

`2
Ra , (3.26)

[Ta, Tb] = − i

`2
Sεab , [Ra,Rb] = iSεab .

Since the generator S corresponds to a central extension and ηab has Minkowski
signature, we will refer to this algebra as the extended pseudo-Newton–Hooke
algebra. For `→∞, the first two lines of this algebra provide a different real form
of the complexified Bargmann algebra6. The analogy with the Bargmann algebra
becomes clear if we view D as the Hamiltonian,M as the generator of rotations,
Ta as the momenta, Ra as the Galilei boosts and N as the mass generator. For
finite l, the first two lines of (3.26) are a different real form of the Newton–Hooke
algebra7. The addition of the central element S ensures that we can construct a
non-degenerate invariant bilinear form on the algebra.

6 The Bargmann algebra would be obtained by replacing the 2D Minkowski metric ηab with
the Euclidean metric δab.

7 The contraction we take is not one of the kinematical algebras classified by Bacry and
Leblond (see also [138–140] for a recent classification). Instead, it is a different real form of the
complexified extended Newton–Hooke algebra, which is isomorphic to two copies of Ec2 as opposed
to P c2 . The Chern–Simons theory for extended Newton–Hooke has been studied in [107,123]
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3.2.2 Chern–Simons action after contraction

As we saw in Section 2.2.3, the Chern–Simons Lagrangian with gauge algebra
so(2, 2) reproduces the three-dimensional Einstein–Hilbert Lagrangian with cos-
mological constant [65]. We now add the u(1) connections, whose components we
parametrize by

Au(1) = Z1Q1 + Z2Q2 = UN0 + ŪN̄0 . (3.27)

The relation between (Q1, Q2) and (N0, N̄0) is given in (3.6). Using the bilinear
form in (3.7) their contribution to the CS Lagrangian is

〈
Au(1), dAu(1)

〉
= γu − γ̄u

2

(
1
`2
Z1 ∧ dZ1 + Z2 ∧ dZ2

)
+ γu + γ̄u

`
Z1 ∧ dZ2.

(3.28)

The total so(2, 2)⊕ u(1)⊕ u(1) connection then consists of the following compo-
nents,

A = EATA + ΩAJA + Z1Q1 + Z2Q2. (3.29)

Recall that EA is the vielbein, ΩA is the (dual) spin connection and Z1 and Z2 are
two bulk u(1) gauge fields. In terms of these components, the total Chern–Simons
Lagrangian is

LCS = γs + γ̄s
2`

(
2EA ∧ dΩBηAB + εABCE

A ∧ ΩB ∧ ΩC (3.30)

+ 1
3`2 εABCE

A ∧ EB ∧ EC
)

+ γs − γ̄s
2

(
ΩA ∧ dΩBηAB + 1

3εABCΩA ∧ ΩB ∧ ΩC

+ 1
`2
EA ∧ dEBηAB + 1

`2
εABCE

A ∧ EB ∧ ΩC
)

+ γu − γ̄u
2

(
1
`2
Z1 ∧ dZ1 + Z2 ∧ dZ2

)
+ γu + γ̄u

`
Z1 ∧ dZ2.

Now let us determine the relation between the connection components in the
standard algebra and the contracted algebra. We use the `-rescaled bulk algebra in
(3.26) and also scale the Q1 generator correspondingly. The contracted connection
can then be written as

A = τD + eaTa +mN + ωM+ ωaRa + ζS. (3.31)

Here, τ and ea are Newton–Cartan vielbeine and ωa and ω play the role of
boost/spin connections. The components m and ζ correspond to the central ex-
tensions of the algebra.
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Taking into account that Ta, D and N have been rescaled by a factor of `, the
basis transformation in (3.10) then leads to the following identifications,

E2 = τ + m

2α2 , Ea = 1
α
εb
aeb , Z1 = −τ + m

2α2 ,

Ω2 = ω + ζ

2α2 , Ωa = 1
α
ωa , Z2 = −ω + ζ

2α2 .

(3.32)

Using this in the action (3.30) and taking the limit α → ∞, the action on the
contracted algebra P c2 × P c2 becomes

L = 1
2` (γ2 + γ̄2)

(
2τ ∧ dζ + 2εabea ∧ dωb + 2m ∧ dω − 1

`2
τ ∧ εabea ∧ eb

+ τ ∧ εabωa ∧ ωb + 2ηabea ∧ ωb ∧ ω
)

(3.33)

+ 1
2(γ2 − γ̄2)

(
ηabω

a ∧ dωb − 1
`2
ηabe

a ∧ deb + 2
`2
m ∧ dτ + 2ω ∧ dζ

+ 2
`2
ηabτ ∧ ea ∧ ωb −

1
`2
εabe

a ∧ eb ∧ ω + ω ∧ εabωa ∧ ωb
)

+ 1
`

(γ1 + γ̄1)τ ∧ dω + 1
2(γ1 − γ̄1)

(
1
`2
τ ∧ dτ + ω ∧ dω

)
.

This is the CS action for two copies of P c2 , using the connection (3.31) and the
metric (3.20). This action was first derived in [107] for extended Newton–Hooke,
which is a different real form of the complexification of our contracted algebra.
Since the vielbein ea now involves a Lorentzian structure, we will refer to the bulk
geometry as pseudo-Newton–Cartan gravity.

In the next section we will see that, in order for the limit to be properly
defined on the full phase space of AdS3 gravity, the distinguished vielbein τ has
to correspond to the radial direction. In contrast to the usual Fefferman–Graham
procedure in AdS, which is simply a choice of coordinates, the vielbein τ therefore
defines an (absolute) radial foliation which is intrinsic to the geometry. It would
be very interesting to investigate the consequences of this phenomenon on the RG
flow of the corresponding field theories.

3.2.3 Generalization to higher-dimensional algebra
The Inönü–Wigner contraction of the 2D conformal algebra shown above can in
fact be achieved for any dimension. Consider the conformal algebra so(d + 1, 2)
in d+ 1 dimensions,

[D,Pa] = iPa, [D,Ka] = −iKa, [Pa,Kb] = −2iDηab − 2iMab,

[Mab,Kc] = i (ηacKb − ηbcKa) , [Mab, Pc] = i (ηacPb − ηbcPa) , (3.34)
[Mab,Mcd] = i (ηacMbd + ηbdMac − ηadMbc − ηbcMad) ,

where a, b = 0, ..., d and ηab is the Minkowski metric. We add to this a u(1)
generator Q. We can also introduce another so(d, 1) algebra generated by Zab
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whose commutation relations are

[Zab, Zcd] = i (ηacZbd + ηbdZac − ηadZbc − ηbcZad) . (3.35)

The total algebra is thus so(d+1, 2)⊕u(1)⊕so(d, 1). In two spacetime dimensions
we can write Zab = Zεab and then Q and Z are the Q1 and Q2 generators of
Section 3.2. Now let us make the following α-dependent basis transformation,

Pa = αPa, Ka = αKa, D = D2 + α2N , Q = α2N − D2 ,

Mab = Mab

2 + α2Sab, Zab = Mab

2 − α2Sab .
(3.36)

We then see that for α→∞ we obtain the algebra

[Pa,Kb] = −2iNηab − 2iSab, [D,Pa] = iPa, [D,Ka] = −iKa,
[Mab,Kc] = i (ηacKb − ηbcKa) , [Mab,Pc] = i (ηacPb − ηbcPa) ,
[Mab,Mcd] = i (ηacMbd + ηbdMac − ηadMbc − ηbcMad) , (3.37)
[Mab,Scd] = i (ηacSbd + ηbdSac − ηadSbc − ηbcSad) .

If we had not included the Zab generators we would have found the algebra that
is obtained by setting Sab = 0. The latter algebra is the scaling nonconformal
algebra in general dimensions.

Importantly, the contraction of so(d+1, 2)⊕u(1) leads to a (d+1)-dimensional
relativistic algebra with dilatation generators but no conformal generators. Instead
of the conformal generators we have the Ka generators and a central element N .
By defining

Ta = 1
2 (Pa +Ka) , Ra = 1

2 (Pa −Ka) (3.38)

and by rescaling Ta, N and D using a length scale `, we obtain the algebra

[Ta,Rb] = iNηab, [D, Ta] = i

`2
Ra, [D,Ra] = iTa,

[Mab, Tc] = i (ηacTb − ηbcTa) , [Mab,Rc] = i (ηacRb − ηbcRa) , (3.39)
[Mab,Mcd] = i (ηacMbd + ηbdMac − ηadMbc − ηbcMad) ,

For `→∞ this is a different real form of the complexified Bargmann algebra in d
dimensions.

The algebra (3.39) is the d-dimensional generalization of (3.26) without the
central element S. Gauging this algebra leads to d-dimensional pseudo-Newton–
Cartan geometry. It is tempting to speculate that (3.39) governs the bulk gravity
theory for near-BPS limits of CFTs in any dimension.

3.3 Phase space of the limit theory

As we described in Chapter 2, the phase space of Chern–Simons theory with chiral
boundary conditions can be described using the associated Wess–Zumino–Witten
(WZW) model.
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In this section, we study the limit of the phase space corresponding to the
WZW model of so(2, 2)⊕u(1)⊕u(1) and show that it reproduces the full P c2 ⊕P c2
WZW phase space. We then write down the metric components in terms of the
original WZW currents. Next, we study the symmetries of the limit of the Poincaré
and global AdS3 vacua and show that these vacua can be written as a coset space.
Finally, we show that the full contracted symmetry algebra, including the central
extensions, can be realized on a scalar field coupled to a pseudo-Newton–Cartan
background.

3.3.1 Mapping relativistic phase space to contracted phase
space

In Section 2.4, we reviewed the standard parametrization of the classical phase
space of so(2, 2) Chern–Simons theory on a manifold with a boundary in terms of
the currents of a WZW model. This involves a choice of radial component Aρ as
well as a choice of chirality and results in the expression (2.79), which reads

A = eiρ(L0+L̄0) (id+ F a(x+)Ladx+ + F̄ a(x−)L̄a dx−
)
e−iρ(L0+L̄0). (3.40)

The WZW phase space is parametrized by the three current components F a(x+).
We now want to include two u(1) factors. Following Section 2.3.1, we also have
to choose a chirality for these generators. In terms of the generators (Q1, Q2)
and (N0, N̄0) introduced in (3.27), we choose the following parametrization of the
u(1)⊕ u(1) connection,

U = FNdx+ + Uρdρ , Ū = F̄ N̄dx− + Ūρdρ, (3.41)
UN0 + ŪN̄0 = Z1Q1 + Z2Q2. (3.42)

Here, we have defined

Z1
ρ = `

2
(
Uρ + Ūρ

)
, Z2

ρ = 1
2
(
Uρ − Ūρ

)
,

Z1 = `

2

(
FNdx+ + F̄ N̄dx−

)
+ Z1

ρdρ,

Z2 = 1
2

(
FNdx+ − F̄ N̄dx−

)
+ Z2

ρdρ.

(3.43)

We allow for a contribution UρN0 + ŪρN̄0 coming from u(1) ⊕ u(1) in the radial
component of the connection. We will see below that such a contribution is crucial
in order to have a well-defined limit of the phase space.

We would like the full WZW phase space to be finite and nonzero in the
α → ∞ limit. This can be achieved by scaling the currents F a(x+) and F̄ a(x+)
appropriately. For clarity, we focus on the unbarred sector in the following,

A = eiρL0
(
id+

(
F+L+ + F 0L0 + F−L−

)
dx+) e−iρL0

+ FNN0dx
+ + UρN0dρ.

(3.44)
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Plugging in the algebra redefinition (3.22) for sl(2,R)⊕ u(1),

L− = αL−, L+ = αN+, L0 = 1
2L0 + α2

2 N0, N0 = −1
2L0 + α2

2 N0,

the resulting connection can be written as

A = 1
2 (1− Uρ)L0dρ+ α2

2 (1 + Uρ)N0dρ (3.45)

+
(
eραF+N+ + 1

2
(
F 0 − FN

)
L0

+α2

2
(
F 0 + FN

)
N0 + e−ραF−L−

)
dx+.

For A to be finite as α→∞, we have to set Uρ = −1. This means that the radial
component of this sl(2,R)⊕ u(1) factor of the full connection has to be set to

Aρ = L0 = L0 −N0. (3.46)

Furthermore, the following combinations have to be finite in the α→∞ limit,

F+ := αF+, F0 := 1
2
(
F 0 − FN

)
,

F− := αF−, FN := α2

2
(
F 0 + FN

)
.

(3.47)

With those redefinitions, the connection is now

A = L0dρ+ eρF+N+dx
+ + F0L0dx

+ + FNN0dx
+ + e−ρF−L−dx+

= eiρL0
(
id+

(
F+N+ + F0L0 + FNN0 + F−L−

)
dx+) e−iρL0 . (3.48)

This is the most general P c2 connection, which we obtain as a limit of the most
general sl(2,R) ⊕ u(1) connection! In other words, we can reach the full phase
space of the P c2 theory from a limit of the phase space of the sl(2,R)⊕u(1) theory.
The total radial component is

Aρ = L0 + L̄0 = L0 + L̄0 −N0 − N̄0 = L0 + L̄0 − `Q1,

Z1
ρ = −`, Z2

ρ = 0.
(3.49)

This background radial chemical potential offsets the dilatation generator L0 + L̄0
and leads to the new dilatation generator L0 + L̄0.

Let us now study what the limit of the so(2, 2) ⊕ u(1) ⊕ u(1) Chern–Simons
phase space looks like in terms of the metric data. In Section 2.4.3 we worked
out how metric data maps to so(2, 2) connections, which are flat if the metric is
on-shell. The map from the most general sl(2,R) ⊕ sl(2,R) current components
F a defined in (2.79) to the vielbein and spin connection data is laid out in (2.81).

We now want to show explicitly that the identification of the connection com-
ponents in (3.32) implies that the components of the contracted connection are
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nonzero and finite in the α → ∞ limit. The vielbeine ea on the leaves of the
foliation are given by

e0 = αE1 = α`

2

(
−eρ

(
F+dx+ − F+

dx−
)

+ e−ρ
(
F−dx+ − F−dx−

))
= `

2

(
−eρ

(
F+dx+ −F+

dx−
)

+ e−ρ
(
F−dx+ −F−dx−

))
, (3.50a)

e1 = αE0 = α`

2

(
eρ
(
F+dx+ + F

+
dx−

)
+ e−ρ

(
F−dx+ + F

−
dx−

))
= `

2

(
eρ
(
F+dx+ + F+

dx−
)

+ e−ρ
(
F−dx+ + F−dx−

))
. (3.50b)

Next, τ and m can be expressed in terms of the currents as follows.

τ = 1
2
(
E2 − Z1) = 1

2

[
`dρ+ `

2
(
F 0dx+ + F̄ 0dx−

)
− Z1

]
= `dρ+ `

2F
0dx+ + `

2F
0
dx−, (3.51a)

m = α2 (E2 + Z1) = α2
[
`dρ+ `

2
(
F 0dx+ + F̄ 0dx−

)
+ Z1

]
= `FNdx+ + `F̄ N̄dx−. (3.51b)

Note that knowledge of the components we have listed so far specifies all func-
tions (F a, F̄ a). In particular, the remaining components can be integrated out.
Explicitly, ω and ζ are

ω = 1
2
(
Ω2 − Z2) = 1

2

[
1
2
(
F 0dx+ − F̄ 0dx−

)
− Z2

]
= 1

2F
0dx+ − 1

2F
0
dx−, (3.52a)

ζ = α2 (Ω2 + Z2) = α2
[

1
2
(
F 0dx+ − F̄ 0dx−

)
+ Z2

]
= FNdx+ − F̄ N̄dx−. (3.52b)

Finally, the ωa can be expressed as

ω0 = αΩ0 = 1
2

(
eρ
(
F+dx+ −F+

dx−
)

+ e−ρ
(
F−dx+ −F−dx−

))
, (3.53a)

ω1 = αΩ1 = 1
2

(
−eρ

(
F+dx+ + F+

dx−
)

+ e−ρ
(
F−dx+ + F−dx−

))
. (3.53b)

We thus see that all the metric data is manifestly finite in the α→∞ limit.

3.3.2 Solutions and Killing symmetries
We now want to study the limit of the Poincaré and global AdS3 connections in
more detail. In particular, we want to find the equivalent of the Killing symmetries
for the pseudo-Newton–Cartan metric data.
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Let us use M to denote a bulk spacetime world index. Consider a local gauge
transformation with parameter Λ = ξMAM + Σ. Since the translation generators
couple to the vielbeine, A contains all translation generators. Without loss of gen-
erality, we can therefore choose ξM such that Σ contains no translation generators.
For our contracted bulk algebra (3.26) this means that Σ can be parametrized by

Σ = λaRa + λM+ σN + βS . (3.54)

On-shell, the connection A then transforms as follows under Λ,

δAM = LξAM + ∂MΣ− i[AM ,Σ] . (3.55)

We see that ξM corresponds to a diffeomorphism of the three-dimensional base
manifold, while Σ generates internal transformations in the tangent bundle. Using
the connection components defined in (3.31), we see that the Newton–Cartan
metric data τM , mM and hMN = −ηabeaMebN transforms as8

δτM = LξτM , (3.56)
δhMN = LξhMN − λa (eaMτN + eaNτM ) , (3.57)
δmM = LξmM + ∂Mσ + λae

a
M . (3.58)

First, consider the connection corresponding to pure Poincaré AdS3, which has
vanishing Virasoro and affine u(1) currents. The corresponding Newton–Cartan
metric data is

τ = dr

r
, m = 0 , e0 = dx

r
, e1 = dt

r
,

hMNdx
MdxN =

(
e0
Me

0
N − e1

Me
1
N

)
dxMdxN = 1

r2

(
−dt2 + dx2) . (3.59)

The Killing vectors of this solution can be found by solving (3.56)–(3.58),

ξt = ct+ µx+ at + 1
2b
tr2 , ξx = cx+ µt+ ax + 1

2b
xr2 , ξr = cr ,(3.60)

λ0 = bxr , λ1 = −btr , σ = btt− bxx . (3.61)

Here, aa and ba are arbitrary (constant) two-vectors. Note that the internal trans-
formations parametrized by λ drop out. They are internal Lorentz transforma-
tions of the frame defined by ea which are always present but not necessary for
our present considerations, so we will set λ = 0 in the following.

We can collect six Killing vectors in the following diffeomorphism generators,

Pa = −i∂a , Ka = −ir2∂a , D = −i(r∂r + xa∂a) , M = −iεabxa∂b . (3.62)

8 Note that we use a nonstandard sign in the definition of hMN to compensate for the
exchange of indices that occurs in (3.50). This exchange is ultimately due to the fact that we
have defined Ta = (Pa + Ka)/2` without the ε ba factor in the uncontracted generator Ta =
ε ba (Pb +Kb)/2`.
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They form a representation of the generators in (3.12) without central elements
in terms of bulk diffeomorphisms. Here, r is a radial coordinate and xa = (t, x)
parametrize the boundary. Using x± = x ± t the Killing vectors split into two
commuting sets,

L−1 = −i∂+ , L0 = −i
(
x+∂+ + r

2∂r
)
, N1 = −ir2∂− , (3.63)

L̄−1 = −i∂− , L̄0 = −i
(
x−∂− + r

2∂r
)
, N̄1 = −ir2∂+ , (3.64)

These are three out of four generators of P c2 . Note that the central elements are
not visible at the level of Killing vectors. As we will show in the next section, they
only act as internal symmetries on fields.

Second, the contraction of global AdS3 with vanishing u(1) currents leads to

τ = dρ , hMNdx
MdxN = − cosh2 ρdτ2 + sinh2 ρdϕ2 , m = 0 , (3.65)

where ϕ is periodic with period 2π. As in Einstein gravity, this solution can be re-
lated to the Newton–Cartan metric data of the Poincaré solution we studied above.
Consider (3.56)–(3.58) and leave out the diffeomorphisms. These transformations
can be exponentiated to the following finite transformations,

τ ′M = τM ,

m′M = mM + ∂Mσ + λae
a
M + 1

2λaλ
aτM , (3.66)

h′MN = hMN − λaeaMτN − λaeaNτM − λaλaτMτN .

We first perform the coordinate transformation

t = 1
2(R2 + 1)τ , x = 1

2(R2 − 1)ϕ , r = R (3.67)

where R = eρ so that hMNdx
MdxN in (3.59) matches hMNdx

MdxN in (3.65) up
to terms involving dR. Then we find a λa such that the transformed h′MNdx

MdxN

is exactly (3.65), which can be achieved by taking

λ0 = −Rϕ , λ1 = −Rτ . (3.68)

Finally, to make sure that the transformed m connection remains equal to zero,
we set σ to

σ = 1
4(R2 + 1)τ2 − 1

4(R2 − 1)ϕ2 . (3.69)

Now that we have related the pseudo-Newton–Cartan contractions of global
and Poincaré AdS3, we can also identify their Killing vectors. Two manifest Killing
vectors in the global vacuum (3.65) are ∂τ and ∂ϕ. Using the coordinate transfor-
mation (3.67) we see that the global AdS3 time and cylinder rotation generators
correspond to

∂τ = 1
2(r2 + 1)∂t = 1

2(K0 + P0) = T0 ,

∂ϕ = 1
2(r2 − 1)∂x = 1

2(K1 − P1) = −R1 .

(3.70)

70



3.3. Phase space of the limit theory

We see that T0 and R1 are the contracted versions of the global AdS3 generators
T1 and J1 defined in (3.2), respectively. Note that the AdS algebra (3.2) has an
inner automorphism, corresponding to a rotation in the 1–2 plane, which sends
(T0, T1, T2) 7→ (T0, T2,−T1) and (J0, J1, J2) 7→ (J0, J2,−J1). In global AdS3, T1
is the generator of global AdS time. The inner automorphism means that in
the AdS3 geometry, a Killing vector for T1 can equally be viewed as a generator
for dilatations T2 = D/`. Put differently, there are coordinate transformations,
generated by the isometry corresponding to the inner automorphism, that map
global AdS3 back to global AdS3 and map ∂τ from T1 to T2. This automorphism,
which is important for the state-operator map in AdS/CFT, is no longer present
after we take the contraction.

Coset description

The vacuum solutions (3.59) and (3.65) are homogeneous spacetimes. As we men-
tioned in equation (2.5), we can think of AdS3 as the coset SO(2, 2)/SO(2, 1).
Similarly, we could expect to be able to write these solutions as a coset space. In-
deed, this can be done using the description of nonrelativistic geometries as coset
spaces recently studied in [120].

For a general Lie group G with subgroup H, we denote its coset by M = G/H.
We split the Lie algebra g in the subalgebra h and its complement m. Note that
m is generically not a Lie algebra, and M is generically not a Lie group. Choose a
basis of g that splits in elements of the subalgebra h, which we denote by TI , and
elements of the coset m, which we denote by Ta. We will use I, J,K . . . for indices
of h and a, b, c, . . . for indices of m.

The coset space M is a manifold of dimension |m|, which we can parametrize
using coordinates xa. Now choose a coset representative

g =
|m|−1∏
a=0

exp (xaTa) ∈ G. (3.71)

To construct an H-invariant metric on M, we have to find a symmetric bilinear
form Ω on g/h that is invariant under the adjoint action of h. If we want to de-
scribe non-Riemannian geometries, the bilinear form Ω is degenerate and the cor-
responding construction has been worked out in [120]. Instead of a non-degenerate
bilinear form, one has to use a pair of degenerate bilinear forms (κab, κab) that are
h-invariant,

f c
aI κcb + f c

bI κca = 0, κacf b
cI + κbcf a

cI = 0 . (3.72)
It can be shown that for an appropriate choice of m and h, the degenerate pair of
bilinear forms (κab, κab) on the coset m exactly induces the degenerate (pseudo)-
Newton–Cartan metric on the coset M. The form κab, which turns out to be of
rank one, is used to define the one-form τ , while κab turns out to be rank two for
three-dimensional spacetime and defines the inverse spatial metric hµν . For more
details, we refer the reader to [120].

For the case we are interested in we start with the group G = Pc
2 ⊗ Pc

2. To
obtain a three-dimensional pseudo-Newton–Cartan manifold we have to quotient
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out a subgroup with five generators. A natural candidate is Pc
2 ⊗ U(1) where Pc

2
is the diagonal subgroup of Pc

2 ⊗Pc
2.

Using the basis in (3.26), the diagonal subgroup plus the U(1) of Pc
2⊗Pc

2 is gen-
erated by h = {R1,R0,M,S,N} while the coset generators are m = {D, T0, T1}9.
The corresponding h-invariant bilinear forms are κab ∝ diag{1, 0, 0} and κab ∝
diag{0,−1, 1}. By expanding the Maurer–Cartan 1-form g−1dg as follows

g−1dg = iTae
a + iTIm

I (3.73)

we can read off the coset vielbeine ea. The metrics are then τMτN = κabe
a
Me

b
N

and hMN = κabeMa e
N
b . We can generalize this construction to higher dimensions

using the contracted algebra in Section 3.2.3.
Now let us turn to the two solutions considered above. For the Poincaré AdS3

limit, we choose the following coset representative

g = ei(T1+R1)xei(T0+R0)teiDρ . (3.74)

The Maurer-Cartan 1-form is

g−1dg = eρ(T1 +R1)idx+ eρ(T0 +R0)idt+ iDdρ . (3.75)

The corresponding vielbeine are

τ = dρ, e0 = eρdt, e1 = eρdx . (3.76)

By defining r = e−ρ, we reproduce the pseudo-Newton–Cartan geometry in the
Poincaré coordinates (3.59). If we instead choose the coset representative to be

g = eiR1ϕeiT0τeiDρ (3.77)

we reproduce the limit of the global AdS3 solution

g−1dg = iT0 cosh ρdτ + iT1 sinh ρdϕ+ iDdρ+ iR0 sinh ρdτ + iR1 cosh ρdϕ . (3.78)

All these solutions locally have an algebra of Killing symmetries isomorphic to the
centerless two-dimensional Poincaré algebra in (3.63). In order to see the central
extensions, it is crucial to add matter fields which we now show using the simple
example of a bulk scalar field.

3.3.3 Central extension on bulk scalar field
Consider the following bulk action of a complex scalar field coupled to pseudo-NC
geometry,

S =
∫
d3xe

[
ivM (ψDMψ

∗ − ψ?DMψ)− hMNDMψDNψ
?
]
. (3.79)

9 Here, we have used the automorphism T0 ↔R1, D ↔M and N ↔ S.
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The covariant derivative is DMψ = (∂M − imM )ψ and e is the determinant of the
matrix (τM , eaM ). The inverse metric hMN is defined as hMN = ηabeMa e

N
b where

the square matrix (vM , eMa ) is the inverse of (τM , eaM ), so we have vMτM = 1,
vMeaM = 0, eMa τM = 0 and eMa e

b
M = δba. Using these inverse relations, (3.66)

implies that vM and hMN transform as

h′MN = hMN , v′M = vM − λaeMa . (3.80)

This transformation together with (3.66) leaves the action (3.79) invariant if ψ
transforms as

ψ = e−iσψ′ . (3.81)
Since the action (3.79) is invariant under the local pseudo-NC gauge symmetries it
is guaranteed that it is invariant under the Killing symmetries of the background
geometry. What is interesting is that some of these will act in a nontrivial manner
on ψ giving rise to central extensions of the algebra of Killing symmetries. For
example, if we evaluate (3.79) on the background (3.59), we obtain the action

S =
∫
dρdx−dx+ [i (ψ∂ρψ∗ − ψ?∂ρψ)− 2e2ρ (∂+ψ∂−ψ

? + ∂−ψ∂+ψ
?)
]
. (3.82)

This action is invariant under the following transformations

x′± = x± + a± ,

ρ′ = ρ+ 1
2 log λ+ , x′+ = λ+x

+ ,

ψ(ρ, x−, x+) = λ
1/2
+ ψ′(ρ′, x′−, x′+) ,

ρ′ = ρ+ 1
2 log λ− , x′− = λ−x

− ,

ψ(ρ, x−, x+) = λ
1/2
− ψ′(ρ′, x′−, x′+) , (3.83)

x′+ = x+ + e2ρv+ , ψ(ρ, x−, x+) = eiv
+x′−ψ′(ρ′, x′−, x′+) ,

x′− = x− + e2ρv− , ψ(ρ, x−, x+) = eiv
−x′+ψ′(ρ′, x′−, x′+) ,

ψ(ρ, x−, x+) = eiqψ′(ρ, x−, x+) ,

where a±, λ±, v± and q are constants. These transformations form the group
Pc

2 ⊗ Pc
2 where the two extensions are identified. In other words we have under

N and S
Nψ = ψ , Sψ = 0 . (3.84)

The infinitesimal version of (3.83) is given by the Killing vectors (3.63) together
with an additional internal transformation of the form

L−1ψ = −i∂+ψ , L0ψ = −i
(
x+∂+ + 1

2∂ρ + 1
2

)
ψ ,

N1ψ = −i
(
e2ρ∂− + ix+)ψ ,

L̄−1ψ = −i∂−ψ , L̄0ψ = −i
(
x−∂− + 1

2∂ρ + 1
2

)
ψ ,

N̄1ψ = −i
(
e2ρ∂+ + ix−

)
ψ .

(3.85)
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It would be interesting to see if this scalar field couples to an operator on the
boundary and to work out the representation of this operator under the global
symmetry group.

3.4 Asymptotic symmetry algebras

As we reviewed in Section 2.5, the asymptotic Virasoro symmetries of AdS3 can be
understood in terms of a Drinfeld–Sokolov reduction of the sl(2,R) WZW model
coming from so(2, 2) Chern–Simons theory.

The reduction arises from a Dirichlet constraint on the leading radial compo-
nents of the metric. In terms of the Newton–Hooke metric data, we can see from
(3.50) that constraining the leading-order behavior of ea corresponds to setting
F+ ≡ 1. The P c2 connection is then

a+ = N+ + F0L0 + F−L− + FNN0. (3.86)

This restriction corresponds to adding a constraint χ to the initial HamiltonianH0,

χ =
∫
dxΛ(x)

(
F+(x)− 1

)
, HT = H0 + χ. (3.87)

Here, Λ is an arbitrary function which acts as a Lagrange multiplier imposing the
constraint F+(x) ≡ 1. It generates gauge transformations through the Poisson
bracket (2.77) on the WZW phase space,

{Fa(x+),Fb(y+)} = −1
2f

ab
cFc(x+)δ(x+ − y+) + 1

2∂x
+δ(x+ − y+)κab. (3.88)

The structure constants are defined via [Ta, Tb] = if c
ab Tc and indices should be

raised and lowered using the invariant bilinear form κab = 〈Ta, Tb〉. Since we
consider a nondegenerate form, its inverse exists and is denoted by κab.

Using the bilinear form in (3.24) and the structure constants from (3.18), we
find that the constraint χ generates the following gauge transformations on the
currents in (3.86),

δΛF0(x) = {χ,F0(x)} = Λ(x)F+(x)
γ1 + 2α2γ2

≡ Λ(x)
γ1 + 2α2γ2

, (3.89a)

δΛF−(x) = {χ,F−(x)} = ∂Λ(x) + Λ(x)F0(x) + Λ(x)FN (x)/α2

2γ2 + γ1/α2 , (3.89b)

δΛFN (x) = {χ,FN (x)} = Λ(x)F+

2γ2 + γ1/α2 ≡
Λ(x)

2γ2 + γ1/α2 . (3.89c)

One could use these transformations to set part of the currents to zero. However,
to make sure that no information is lost in the contraction, we will not do any
gauge fixing. Instead, we will work with what we refer to as physical currents,
which are combinations of the currents in (3.86) that are invariant under the
gauge transformations generated by the constraint. This method is reviewed in
Section 2.5.1 for the reduction of affine sl2(R) to Virasoro.
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In this section, we will first compute the asymptotic symmetry algebra (ASA)
at infinite contraction parameter α in Section 3.4.1. This gives a warped Virasoro-
affine u(1) algebra. We then work out explicitly the finite α ASA in Section 3.4.2,
where we also show that its limit is well defined and reproduces the α→∞ result.

However, at finite α the Chern–Simons algebra is equivalent to sl(2,R)⊕u(1),
as we discussed in the previous section. Its natural ASA is an uncoupled Virasoro-
affine u(1) algebra, as we demonstrate in Section 3.4.3. We then show explicitly
how the coupled algebra at finite α can be obtained from a redefinition of the
uncoupled algebra.

3.4.1 Warped Virasoro algebra in limit theory
Only certain combinations of the Fa in (3.86) correspond to a physical, conserved
current with nontrivial boundary charges. Such ‘physical’ currents should be in-
variant under the gauge transformations in (3.89). In the limit α → ∞, the
following combinations are invariant,

F− −F0FN − ∂FN , F0 . (3.90)

The physical currents should be made up out of such invariant building blocks.
Recall that the infinitesimal boundary charges for Chern–Simons theory are given
by (2.74),

δQλ = −2
∮
∂Σ
〈λ, δλa〉. (3.91)

We contracted the Chern–Simons algebra, but the manifold on which the Chern–
Simons connections are defined is unchanged. In other words, the fibers are differ-
ent but the base manifold is still a cylinder, so we parametrize the boundary cycle
∂Σ = S1 using a periodic coordinate ϕ. For a gauge parameter λ to preserve the
constrained form of the connection in (3.86), we need

λ0 = F0λ+ − ∂λ+. (3.92)

Then the infinitesimal charge is given by

δQλ = −2
∮
dϕ〈λ, δa+〉 (3.93)

=
∮
dϕ
(
−γ1λ

0δF0 + 2γ2
(
λ+δF− − λ0δFN − λNδF0)) (3.94)

=
∮
dϕ
(
λ+ (−γ1

[
F0δF0 + ∂δF0]+ 2γ2

[
δF− −F0δFN − δ∂FN

])
(3.95)

−2γ2λ
NδF0) .

But now we have a problem: the F0δFN -term is not a total variation, so the
infinitesimal charge is not integrable as it stands. To fix this, we can define a new
parameter λ̄N via

λN = λ̄N + FNλ+. (3.96)
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Then the infinitesimal charge integrand is integrable and can be written as

−2〈λ, δa+〉 = λ+ δ

(
−γ1

[
1
2(F0)2 + ∂F0

]
+ 2γ2

[
F− −F0FN − ∂FN

])
− λ̄N δ

(
2γ2F0) (3.97)

= λ+δT + λ̄NδJ . (3.98)
Here, we have defined the two physical currents T and J ,

T = −γ1

[
1
2(F0)2 + ∂F0

]
+ 2γ2

[
F− −F0FN − ∂FN

]
, (3.99)

J = −2γ2F0. (3.100)
Indeed, these currents are composed out of the combinations in (3.90) and are
therefore invariant under the constraint gauge transformations. Under the residual
transformations satisfying (3.92), the physical currents transform as follows,

δT = λ+∂T + 2T ∂λ+ + γ1∂
3λ+ + J ∂λ̄N − 2γ2∂

2λ̄N , (3.101)
δJ = λ+∂J + J ∂λ+ + 2γ2∂

2λ+. (3.102)
The Poisson bracket of the boundary charges can be determined using the WZW
Poisson bracket (3.88). First, it is useful to split Qλ into a Virasoro and affine
u(1) charges,

Qλ =
∮
dϕ
(
λ+T + λ̄NJ

)
= QVir[λ+] +Qu(1)[λ̄N ] . (3.103)

They satisfy the following algebra,

{QVir[λ+], QVir[µ+]} = QVir [µ+∂λ+ − λ+∂µ+]+ γ1

∮
dϕµ+∂3λ+ , (3.104)

{QVir[λ+], Qu(1)[µ̄N ]} = −Qu(1) [λ+∂µ̄N
]

+ 2γ2

∮
dϕµ̄N∂2λ+ . (3.105)

Following (2.95), if we expand the Virasoro and affine u(1) charges in terms of the
modes

Lm = −QVir[eimϕ] , Nm = −Qu(1)[eimϕ] , (3.106)
we find that these modes satisfy the following commutation relations

{Lm,Ln} = −i(m− n)Lm+n − 2πiγ1m
3δm+n,0, (3.107)

{Lm,Nn} = inNm+n − 4πγ2m
2δm+n,0. (3.108)

Replacing i{·, ·} by [·, ·], and shifting the zero modes of the algebra using the
redefinition Lm → Lm + πγ1δm,0 and Nm → Nm + 4πγ2iδm,0, this yields

[Lm,Ln] = (m− n)Lm+n + 2πγ1m(m2 − 1)δm+n,0, (3.109a)
[Lm,Nn] = −nNm+n − 4πiγ2m(m+ 1)δm+n,0. (3.109b)

This is a warped Virasoro algebra with an extension in the Virasoro-affine u(1)
commutator and vanishing level of the affine u(1). It appeared before in the
context of Rindler holography [141] with vanishing Virasoro central charge. Here,
we find it using a systematic Drinfeld–Sokolov reduction of a P c2 WZW model.
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3.4.2 Asymptotic symmetries from contraction

In fact we can do more. As we explained for the Chern–Simons algebra in Sec-
tion 3.2, the Inönü-Wigner-type contraction is nothing but a basis transformation
until we take α → ∞. We now want to demonstrate that this is also true on the
level of the asymptotic symmetry algebra. To do that we first repeat the above
computation at finite α. Again we start with

a+ = N+ + F0L0 + F−L− + FNN0. (3.110)

We now use the finite α commutation relations from (3.18). The constrained
connection is then preserved by

λ0 =
(
F0 − F

N

α2

)
λ+ − ∂λ+ − λN

α2 . (3.111)

Now let us write out the expression for infinitesimal charges. As before, we will
see that a redefinition of λN will be necessary to obtain an integrable expression.
Using the bilinear form at finite α in (3.24), we find

δQλ = −2
∮
dϕ 〈λ, δa+〉 (3.112)

= −2
∮
dϕ
(
−λ+

(
γ2 + γ1

2α2

)
δF− + λ0

(
γ2δFN + γ1

2 δF
0
)

(3.113)

+λN
( γ1

2α4 δF
N + γ2δF0

))
= −2

∮
dϕλ+

[
−
(
γ2 + γ1

2α2

)
δF− +

(
F0 + F

N

α2

)(
γ2δFN + γ1

2 δF
0
)

+γ2δ∂FN + γ1

2 δ∂F
0
]

− 2
∮
dϕλN

(
γ2 −

γ1

2α2

)(
δF0 − δFN

α2

)
.

Again, we see that the infinitesimal charge is not integrable, which we fix by setting

λ+ = λ+, λN = λ̄N + FNλ+. (3.114)

The boundary charges can then be written as Qλ =
∮
dϕ
(
λ+T + λ̄NJ

)
with

currents

T = γ1

(
F−

α2 −
1
2(F0)2 − ∂F0 − 1

2α4

(
FN
)2) (3.115)

+ 2γ2
(
F− −FNF0 − ∂FN

)
,

J =
(

2γ2 −
γ1

α2

)(
F0 − F

N

α2

)
. (3.116)
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Their variation is given by

δT = λ+∂T + 2T ∂λ+ + γ1∂
3λ+ + J ∂λ̄N − 2

(
γ2 −

γ1

2α2

)
∂2λ̄N , (3.117)

δJ = λ+∂J + J ∂λ+ +
(

2γ2 −
γ1

α2

)(
∂2λ+ + 2∂λ̄N

α2

)
. (3.118)

As before we can write the charge algebra in terms of the Fourier modes

Ln = −
∮
dϕ einϕT (x+), Nn = −

∮
dϕ einϕJ (x+). (3.119)

They satisfy the following commutation relations,

[Lm,Ln] = (m− n)Lm+n + 2πγ1m
3δm+n,0, (3.120a)

[Lm,Nn] = −nNm+n − 2πim2
(

2γ2 −
γ1

α2

)
δm+n,0, (3.120b)

[Nm,Nn] = −4πm
α2

(
2γ2 −

γ1

α2

)
δm+n,0. (3.120c)

This is a Virasoro algebra with coupled affine u(1) algebra and nonzero affine u(1)
level. The contracted algebra can be obtained by sending α→∞, and we indeed
reproduce the asymptotic symmetry algebra at infinite α in (3.109).

3.4.3 Relation to uncoupled algebra

This result may seem confusing. One would expect that the asymptotic symmetry
algebra of an sl(2,R)⊕u(1) Chern–Simons theory would be an uncoupled Virasoro
and affine u(1) algebra. In fact, we can easily include a u(1) generator N0 in the
computation of Section 2.5.1 and show that this is the case. The constrained
connection, residual gauge transformations and boundary charges are then

a+ = L+ + F 0L0 + F−L− + FNN0, (3.121)
λ = λ+L+ + (F 0λ+ − ∂λ+)L0 + λ−L− + λNN0, (3.122)

Qλ = −2
∮
〈λ, δa+〉 =

∮
dϕ
(
λ+T + λNJ

)
= QVir[λ+] +Qu(1)[λN ]. (3.123)

Here, we have defined the physical currents

T = 2γs
(
F− − 1

4(F 0)2 − 1
2∂F

0
)
, J = −γuFN . (3.124)

Indeed, they transform as Virasoro and affine u(1) currents,

δT = λ+∂T + 2T∂λ+ + γs∂
3λ+, δJ = −γu∂λN . (3.125)
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Again, we can decompose these currents in Fourier modes,

Ln = −
∮
dϕ einϕ T (x+), Nn = −

∮
dϕ einϕJ(x+). (3.126)

These charges satisfy an uncoupled Virasoro-affine u(1) algebra with nonzero affine
level,

[Lm, Ln] = (m− n)Lm+n + 2πγsm3δm+n,0, (3.127a)
[Lm, Nn] = 0, (3.127b)
[Nm, Nn] = 2πγumδm+n,0. (3.127c)

In fact, there is no contradiction here. The uncoupled symmetries can be
transformed into the coupled algebra at finite α in (3.120). It is easiest to see this
on the level of the current transformations. The first step is to match δJ with δJ .
For this, define

− γuλN = λ+J − 2γu
α2

(
∂λ+ + 2λ̄N

α2

)
. (3.128)

Then δJ reproduces (3.118). To obtain the correct Virasoro transformations,
define

T = T − α4

8γu
J2 − α2

2 ∂J. (3.129)

This current satisfies the coupled transformation relation (3.117). The identifi-
cation between the coupled and uncoupled modes (Ln,Nn) and (Ln, Nn) then
follows by expanding the above. As generators of symmetries on a classical phase
space, the coupled and uncoupled algebras are therefore equivalent.

3.5 Conclusions and outlook

We conclude with a discussion and perspectives for further work.
The results of this chapter show that many of the features of the AdS3/CFT2

correspondence can be realized in a novel holographic correspondence, involving
a pseudo-Newton–Cartan theory in the bulk and a particular near-BPS limit on
the boundary. This provides a concrete model of beyond-AdS/CFT holography,
opening up many avenues of further exploration in terms of generalizing other
well-studied aspects of AdS/CFT.

As one possible direction, we note that the two copies of the Virasoro spacetime
algebra in AdS3/CFT2 can be induced from a sl(2,R) ⊕ sl(2,R) current algebra
on the string worldsheet [142]. Here, the spacetime chirality is closely related to
worldsheet chirality. For example, the left moving chiral algebra in spacetime is
lifted from left movers on the string worldsheet and vice versa. Moreover, the
string worldsheet analysis can give a microscopic interpretation of the central
charge in terms of string winding modes. It is expected that similar string theory
analyses should be valid even after we take the Inönü-Wigner limit. One would
expect the corresponding world-sheet theory to be a WZW model on P c2 , similar
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to what is studied in [133, 143]. In connection to this, it is interesting to note
that the target space of such a model can easily be inferred from the results
of [133] by replacing Ec2 with P c2 . This leads precisely to a pp-wave like geometry
with signature (−1,−1, 1, 1), i.e. two ‘times’, such that after a null reduction one
obtains a pseudo-NC geometry in the same way that pp-waves connect to NC
geometry after null reduction [56,144–146].

Moreover, it would be interesting to study string theory on pseudo-Newton–
Cartan gravity, using the AdS3/CFT2 results of Ref. [142], while one could also
examine whether the Wakimoto representation of sl(2,R) ⊕ u(1) on the world-
sheet [147] can reproduce the representations of [143] by taking our contraction
limit. Moreover, in a recent work [148] it was shown that NC geometry appears as
the target space in nonrelativistic string theory, which may also be of use to under-
stand strings on pseudo-NC geometry. In connection to this, it also seems relevant
to note that the nonrelativistic limit of AdS/CFT considered in [149] shows that
the resulting nonrelativistic string action has the supersymmetric Newton–Hooke
group as a symmetry group.

Another worthwhile direction to pursue is to employ the concrete AdS/CFT
model coming from the D1-D5 brane system in type IIB superstring theory, which
provides a duality between N = (4, 4) superconformal field theory and string the-
ory in AdS3 [10,142,150]. Thus our gravity theory should have a supersymmetric
extension, which is related to an appropriate limit of N = (2, 2) supergravity in
three dimensions [151]. In fact, the bosonic sector of this supergravity theory
exactly has two u(1) gauge fields as R-charge currents so directly fits into the
symmetry algebra we took as our starting point. Understanding this string theory
and supergravity embedding after our limit should provide a rich structure as well.

At the level of solutions of pseudo-NC gravity, we have focused on the vacuum
but an obvious next step is to examine the limit of the BTZ black hole [59] and
its physics. Another class of solutions that could shed further light on the the-
ory are the BPS supergravity solutions of [152–159] which are dual to CFT chiral
primaries. More generally, one may wish to address bulk reconstruction in our
setup. While for AdS3/CFT2 the entire relativistic bulk should be reconstructed
from the boundary conformal field theory, pseudo-NC gravity represents in some
sense a more minimal setup. In this case, we only need to reconstruct a folia-
tion structure, namely two-dimensional pseudo-Riemannian geometry fibred over
a dilatation one-form. Another, related direction would be to see if there is an
analogue of holographic entanglement entropy [43] for our correspondence. For
this, a minimal setup can be constructed using Chern–Simons theory [160,161]. It
would also be very interesting to investigate the implications of the radial fibration
on the RG flow of the dual field theories.

More generally, it will be important to better understand the field theory
that is dual to pseudo-NC gravity. In this connection it is worth remarking that
our limit has a strong resemblance to the limit that gives rise to Spin Matrix
Theory [102], which follows from the correspondence between AdS5/CFT4. To see
this, define a coupling constant g = α−2 and identify the energy E and charge J
as E = α−2D = N + g

2D and J = −α−2Q1 = N − g
2D respectively. By the state-

operator map the dilatation operator corresponds to the energy of states of the
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theory on the cylinder. In Spin Matrix Theory, N is the length of the spin chain
and D is the one-loop dilatation operator of the spin chain. The limit α → ∞
zooms in on states close to E = J which is the lowest lying state in the spectrum,
so by unitarity we have E ≥ J . The Spin Matrix Theory limit [102] corresponds to
sending g → 0 while keeping (E − J)/g fixed, which is precisely what happens in
our limit for the operatorsD and Q1 as we take α→∞. This connection with Spin
Matrix Theory seems to suggest that the symmetry of Spin Matrix Theory might
be related to an another real form of the complexified Newton–Hooke algebra. On
the other hand, applied to AdS3/CFT2, especially in relation to the N = (4, 4)
superconformal field theory and its possible spin chain interpretation (see [162] for
recent progress), this suggests that there might be some form of two-dimensional
Spin Matrix Theory.

Regarding the field theory interpretation, it is important to emphasize that
the finite α identifications we have made in Section 3.4.3 are entirely classical.
We have found an infinite-dimensional algebra of conserved charges for classical
Chern–Simons theory, which correspond to real-valued functions on the phase
space. Upon quantization, these charges should lead to unitary operators on a
Hilbert space of states. However, our classical computations do not tell us what
the inner product or Hermitian conjugate on this Hilbert space should be. We have
only obtained the algebra of symmetries that should be realized on it. Unitary
representations of the coupled algebra do exist, and [141] has explained how to
construct induced representations using its semidirect product structure. It would
be very interesting to study their consequences from a field theory perspective.
While the bulk may have allowed us to identify the relevant symmetries, we believe
that field theory will be our guide towards their representations.

Finally, it could be interesting to find analogues of our holographic correspon-
dence, such as higher spin and/or higher-dimensional generalizations. Following
the higher spin AdS3 work of e.g. [163], and its Chern–Simons theory construc-
tion [84, 92], it is possible to find connections between the non-AdS higher spin
holography of [80,164], TMG holography [165–170] and nonrelativistic higher spin
works of [171] to the higher spin generalization of our work.
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Chapter 4

Generalized Toda theory from six
dimensions

As we mentioned in Section 1.3.3, the idea that four-dimensional gauge theories
are related to two-dimensional Riemann surfaces has been around for a long time.
Over time, it has been made increasingly precise. Its most recent incarnation is
the discovery that partition functions of four-dimensional N = 2 super-Yang–Mills
theories can be mapped to correlators in two-dimensional Toda theories.

This relation is known as the Alday-Gaiotto-Tachikawa (AGT) correspondence.
It has a natural interpretation in M-theory: four-dimensional N = 2 theories can
be constructed by compactifying M5 branes on Riemann surfaces. Consequently,
it has been proposed that the AGT correspondence can be derived by obtaining
Toda theory from a compactification of M5 branes along four dimensions. This
compactification relies on a Drinfeld–Sokolov reduction of slN Chern–Simons the-
ory along the lines of our discussion in Section 2.5.2.

In this chapter, we attempt to solidify this derivation of the AGT correspon-
dence. We also propose an extension that includes more general Toda theories
arising from different sl2 embeddings.

The work in this chapter has appeared previously in [2].
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4.1 Introduction

The Alday-Gaiotto-Tachikawa (AGT) correspondence is a remarkable relation be-
tween BPS sectors of four-dimensional supersymmetric gauge theories and two-
dimensional non-supersymmetric conformal field theories [26,172]. The correspon-
dence states that S4 partition functions [173] of class S theories of type AN−1 [174]
can be expressed as correlation functions in AN−1 Toda theory. In particular, the
conformal blocks of the Toda theory were shown to be equivalent to the instanton
partition functions, computed in the Ω background [175], whereas the three-point
functions reproduce the one-loop determinants.

The correspondence can arguably be viewed as the culmination of a long effort
towards the understanding of the non-perturbative structure of N = 2 Yang–
Mills theories [174–178]. In particular, the systematic construction of the class
S theories provided great insight into the strong-coupling limits of these super-
Yang–Mills theories [174]. In this construction, gauge couplings are identified with
the complex structure parameters of a Riemann surface and strong-weak duali-
ties are interpreted as a change of ‘pairs of pants’-decomposition of the Riemann
surface. The AGT correspondence then explicitly brings (non-perturbative) four-
dimensional Yang–Mills into the realm of two-dimensional CFT. This connection is
fruitful since the latter class of theories is in general much better understood. For
example, S-duality invariance of the S4 partition function of N = 2 SU(2) Yang–
Mills with Nf = 4 corresponds to crossing symmetry of the Liouville four-point
function, which was rigorously proven some time ago [179].

Increasing the rank, however, the AGT correspondence maps unsolved prob-
lems in the gauge theory to other unsolved problems in Toda theory. For example,
the computation of partition functions of non-Lagrangian theories is mapped onto
the determination of a general three-point function. However, the correspondence
allows these problems to be phrased in very distinct settings, leading to new in-
sights and progress [180, 181]. Moreover, a complete solution to either problem
would kill two birds with one stone.

A physical interpretation of the AGT correspondence and its generalizations
to higher rank and inclusion of defects seems to rely on a six-dimensional per-
spective.1 Indeed, the construction of class S theories already hints at this since
it assigns a class S theory of type AN−1 to a punctured Riemann surface Σ, by
compactifying N M5 branes on Σ [174]. It is precisely this Riemann surface on
which the Toda theory lives. The number of punctures denotes the number of
primary insertions in the Toda correlation function.

To be precise, the six-dimensional interpretation of the AGT correspondence is
that the supersymmetric partition function of the 6d (2, 0) theory T of type AN−1
on S4 × Σ has a four- and two-dimensional incarnation, which are equal. This
is illustrated by the diagram in Figure 4.1. The arrows denote a supersymmetric
zero-mode reduction to the gauge theory S and Toda theory respectively.

The equivalence of the lower two partition functions in Figure 4.1 is explained
through a topological twist performed on Σ and the Weyl invariance of T . These

1 Relevant references will be given in the main body of the chapter.
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ZT
(
S4 × Σ

)
ZS
(
S4) ⇐⇒ ZToda (Σ)

Σ→0 S4→0

Figure 4.1: Equivalent reductions of the six-dimensional theory T .

features enable us to send the size of either manifold to zero without affecting
the value of the partition function, as long as we restrict to the supersymmetric
sector. However, the lack of a Lagrangian description of T blocks a straightforward
implementation of this strategy.

Over the past few years, many different approaches have been taken to over-
come this difficulty. See for an incomplete list of references [182–190]. A construc-
tive derivation of the correspondence is desirable as it could provide an idea of
the scope of AGT-like correspondences between supersymmetric sectors of gauge
theories and exactly solvable models. Moreover, due to its six-dimensional origin,
such a derivation may also shed light on the worldvolume theory of multiple M5
branes.

In this chapter we will build on a recent derivation by Córdova and Jaf-
feris [191]. Using the relation between the type AN−1 6d (2, 0) theory on a circle
and five-dimensional N = 2 SU(N) Yang–Mills theory [192–194], one performs
a Kaluza-Klein reduction on S4 to obtain AN−1 Toda theory on a Riemann sur-
face Σ. The Toda fields are understood as boundary fluctuations of SL(N,C)
Chern–Simons theory on a manifold with asymptotically hyperbolic boundary.
This is understood in the following way. Near the boundary, the Chern–Simons
connection satisfies the boundary conditions

A → dσ

σ
H + du

σ
T+ +O

(
σ0) . (4.1)

Here, H is an element of the Cartan of slN , which sits together with a raising
operator T+ in an sl2 ⊂ slN subalgebra. In a type IIA frame, these boundary
conditions arise from a Nahm pole on the scalars of D4 branes ending on D6
branes [34,195].

As we reviewed in Section 2.5, boundary conditions such as (4.1) are well known
to provide a reduction of the ŝlN WZW theory induced by Chern–Simons on the
boundary of asymptotically hyperbolic space, see for example [91,96,97]. For the
principal sl2 embedding found in [191], such constraints give Toda theory [95].
Consequently, one of the building blocks in establishing the AGT correspondence
is obtained.

However, as we discussed in Section 2.5.2, the residual symmetries of the con-
strained WZW theory strongly depend on the embedding of sl2 into slN . For
example, for N = 3, the reduced boundary theory has W3 symmetry if the em-
bedding is the principal one, but it has Polyakov-BershadskyW(2)

3 symmetries for
the diagonal embedding. More generally, sl2 embeddings into slN are labeled by
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the integer partitions λ of N . Each choice leads to a reduced boundary theory
with different symmetries, which we will denote by Wλ. These generalized Toda
theories play a role in extensions of the AGT correspondence.

In [196] a relation was proposed between instanton partition functions ofN = 2
SU(2) quiver gauge theories with an insertion of a surface operator, which arises
from a codimension two defect in the 6d theory, and conformal blocks of ŝl2 WZW
theories. This was generalized in [197] to a relation between SU(N) gauge theories
and ŝlN WZW theories. These cases dealt with the so-called full surface operators.

It was conjectured in [198] that the SU(N) instanton partition functions with
more general surface operators, labeled by a partition λ of N , would be equivalent
to the conformal blocks of theories withWλ symmetry. The standard AGT and full
surface operator setup are now special cases of this more general setup, correspond-
ing to the partitions N = N and N = 1 + . . . + 1 respectively. The Wλ algebra,
which is also labeled by a partition of N , is obtained by quantum Drinfeld–Sokolov
reduction of ŝlN . An explicit check was performed for the Polyakov-Bershadsky
algebra W(2)

3 , whose conformal blocks were shown to agree with instanton parti-
tion functions in the presence of a simple surface defect, with partition 3 = 2 + 1.
Further checks of the proposal have appeared in [199,200].

Then, based on mathematical results in instanton moduli spaces, it was realized
in [201] that the instanton partition function in the presence of a general surface
operator on C2 could be conveniently computed as an ordinary instanton partition
function on C/Zm × C, where m corresponds to the maximum number of parts
of the partition λ. This technique was further used in [202] to compute the S4

partition functions of N = 2∗ SU(N) theories in the presence of a full surface
operator, and was shown in the case of SU(2) to reproduce the full ŝl2 WZW
correlation function. For SU(N) results were obtained as well, but could not be
compared due to lack of results on the WZW side.

In the following, we will denote the generalized Toda theory resulting from an
slN reduction with partition λ by Todaλ. The corresponding generalized AGT
correspondence will be referred to as the AGTλ correspondence.

In the present chapter, we propose a setup to derive these AGTλ correspon-
dences using the path laid out by Córdova and Jafferis. This approach is very
natural for the problem at hand, since the general quantum Drinfeld–Sokolov re-
duction of ŝlN can be understood from a Chern–Simons perspective as well, by
imposing the boundary conditions (4.1) for a general sl2 ⊂ slN embedding. There-
fore, we wish to show that upon including the appropriate codimension two defects
in the six-dimensional setup, one finds these more general boundary conditions.
Along the way, we will also be able to clarify some aspects of the analysis in the
original paper [191].

4.1.1 Overview and summary of results

Since the story is rather intricate and hinges on some important assumptions, we
will briefly sketch the main logic and possible pitfalls of our arguments here.
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The original derivation, which we review in Section 4.2.1, connects the 4d-2d
correspondence to the 3d-3d correspondence through a Weyl rescaling. One of
the main virtues of this connection is that a full supergravity background was
already derived in [203] for the 3d-3d correspondence, which can then be put to
use in the 4d-2d setting. The three-manifold M3 on which the resulting Chern–
Simons theory lives has nontrivial boundary. With specific boundary conditions,
its boundary excitations lead to Toda theory.

These boundary conditions manifest themselves in a IIA frame in the form of
a Nahm pole on the worldvolume scalars of a D4 brane ending on a D6 brane.
The original derivation attributes the Nahm pole to the D6 branes that are also
related to a non-zero Chern–Simons level. We point out that the Nahm pole
should instead be attributed to a distinct set of branes, which we refer to as D6’
branes. The original branes will always be referred to as D6 branes, and will still
be related to the Chern–Simons coupling.

A crucial element in the original derivation is that the Nahm pole on the scalars
transforms under Weyl rescaling to the relevant Drinfeld–Sokolov boundary con-
dition on the Chern–Simons connection. It is argued that this boundary condition
is a natural way to combine Nahm data into a flat connection, but the Drinfeld–
Sokolov form is not the unique combination that achieves this. However, we have
not been able to obtain a better understanding of this point and our construc-
tion still relies on this assumption. We expect that carefully examining the Weyl
rescaling of the full supergravity background and the corresponding worldvolume
supersymmetry equations should allow one to translate the Nahm pole arising in
the 4d-2d frame to the Drinfeld–Sokolov boundary condition in the 3d-3d frame.
However, a direct implementation of this procedure is ruled out by the lack of a
Lagrangian description of multiple M5 branes.

The Weyl rescaling of the full supergravity background should also allow one
to further explain the claim in [191] that the Killing spinors as obtained in [203]
for the 3d-3d background become the usual 4d Killing spinors of [173, 204] after
Weyl rescaling and an R-gauge transformation. This argument is not completely
satisfactory, since the spinors in the 3d-3d frame are related to a squashed sphere
geometry that preserves an SU(2) × U(1) isometry, whereas the Killing spinors
in [204] are related to a squashed sphere with U(1) × U(1) isometry. We note
that this slight discrepancy may in fact be immaterial at the level of partition
functions, as was indeed originally found in [205] in the context of 3d partition
functions and properly understood in [206].

The uplift to M-theory of the setup we propose leads to M5 branes on a holo-
morphic divisor in a generalized conifold, which we discuss in Section 4.3. Here,
we crucially use the orbifold description of codimension two defects that was ad-
vocated in [200,201].2 This enables us to treat the defects purely geometrically, so
that we do not have to worry about coupling the worldvolume theory to additional
degrees of freedom on the defect.

2 The gravity duals of class S theories also treat such codimension two defects geometri-
cally [207].
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4. Generalized Toda theory from six dimensions

We propose to use the conifold geometry as an approximation to the pole
region of a full supergravity background that would be needed to account for a
defect in a squashed S4 background.3 Although this approximation suffices for our
purposes, it comes with a particular value of the squashing parameter that leads
to a curvature singularity corresponding to the conifold point. In principle, such a
singularity could couple to the M5 worldvolume theory. It would therefore be very
interesting to obtain a class of supergravity backgrounds for arbitrary parameter
values where this singularity can be avoided.

The radial slices of the divisor of the generalized conifold have a U(1)× U(1)
isometry. Furthermore, it supports two supercharges, in agreement with the four-
dimensional Ω background. In the special case where only a single D6’ brane
is present, corresponding to a trivial surface operator, the isometry enhances to
SU(2)×U(1), but still only two supercharges are present. This may seem strange,
since one expects a nontrivial surface operator to break part of the supersymme-
tries. However, placing a surface operator on a fully squashed S4 does not break
any additional isometries, hence the number of preserved supercharges on a fully
squashed background is the same with or without a surface operator.

An important assumption in our derivation is that the connection to the 3d-3d
correspondence still stands. Even though additional defects are present we claim
that these only manifest themselves in the boundary conditions of the Chern–
Simons theory. Since these defects are located at the asymptotic boundary of M3,
we believe that this claim is justified.

Finally, it is known that at k = 1 the Hilbert spaces of SL(N,C) and SL(N,R)
Chern–Simons theories agree [210]. Therefore, at k = 1 the reduction to gener-
alized real Toda theories proceeds as usual. For higher k, one obtains complex
Todaλ theories. In the principal case, the original derivation puts forward a du-
ality between complex Toda and real paraToda with a decoupled coset. It would
be interesting to formulate a similar correspondence for complex Todaλ theories.

4.2 Review

In this section we review the derivation by Córdova and Jafferis of both the 3d-3d
and AGT correspondence [191, 203]. Subsequently, we indicate how the Nahm
pole boundary conditions lead to Todaλ theories.

4.2.1 Principal Toda theory from six dimensions
Consider the 6d (2, 0) CFT of type AN−1 on two geometries which are related by
a Weyl transformation [191]

S4
` /Zk × Σ Weyl⇐=⇒ S3

` /Zk ×M3. (4.2)

We think of the S4
` /Zk as the Lens space S3

` /Zk fibred over an interval, shrinking
to zero size at the endpoints. The three-dimensional manifold M3 is a warped

3See also [208,209] for a like-minded approach to the 3d-3d correspondence.
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× Σ

(a) S4
` /Zk × Σ

M3× Σ1 Σ2

(b) S3
` /Zk ×M3

Figure 4.2: The geometries associated to (a) the 4d-2d frame and (b) the 3d-3d
frame. The Hopf fiber of the S3 is indicated in blue.

product of a Riemann surface Σ and R and ` is a squashing parameter which
controls the ratio between the Hopf fiber and base radius of the S3. We will refer
to these geometries as the 4d-2d and 3d-3d geometries respectively. See Figure
4.2 for an illustration.

In older work [211] it was shown how to couple 5d N = 2 SYM to 5d N = 2
off-shell supergravity. Using the equivalence between the AN−1 (2, 0) theory on
a circle and 5d N = 2 SU(N) Yang–Mills theory [192–194], these general results
allow one to preserve four supercharges from the (2, 0) theory on the geometry [203]

S3
` /Zk ×M3 ⊂ S3

` /Zk × T ∗M3 × R2. (4.3)

In the original derivation, the (2, 0) theory is reduced on the Hopf fiber. This
translates in 5d to a flux for the graviphoton, which is compatible with the 5d
supergravity background. For general squashing, it is required to turn on all
bosonic fields in the off-shell supergravity multiplet. The resulting background
allows for a supersymmetric zero mode reduction on the S3 which gives rise to
SL(N,C) Chern–Simons on M3 with coupling q = k + i

√
`2 − 1.4

The complex Chern–Simons coupling consists of an integer k and a continuous
parameter `. The former arises from the graviphoton flux that couples to the D4
gauge fields through the 5d Chern–Simons coupling

1
8π2

∫
S2×M3

Tr (C ∧ F ∧ F ) =⇒ k

4π

∫
M3

Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
. (4.4)

4 This provides a derivation of the 3d-3d correspondence as formulated in [212–214].
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4. Generalized Toda theory from six dimensions

The continuous parameter ` arises from the squashing parameter of the three-
sphere. A salient detail of the reduction is that the fermions of the (2, 0) theory
come to be interpreted as Faddeev-Popov ghosts for the gauge fixing of the non-
compact part of the gauge algebra

sl(N,C) ∼= su(N)⊕ i su(N).

This provides a concrete explanation for the puzzle that the supersymmetric reduc-
tion of 5d supersymmetric Yang–Mills with compact gauge group SU(N) becomes
a non-supersymmetric Chern–Simons theory with non-compact gauge group. The
ghost and gauge fixing terms in the effective action are subleading in RS3 , so that
in the far IR the gauge fixing is undone and the final result for the effective theory
on M3 is the full SL(N,C) Chern–Simons theory. The complex connection

A = A+ iX

is built out of the original Yang–Mills connection together with three of the five
worldvolume scalars Xi. The latter combine into a one-form on M3 due to the
topological twist. We denote the other two scalars by Ya. They correspond to
movement in the remaining R2 directions of (4.3).

We now return to the particular M3 that arises from the Weyl rescaling of
the 4d-2d background. Note that it has a nontrivial boundary consisting of two
components Σ ∪ Σ. So we need to specify boundary conditions, which ultimately
lead to non-chiral complex Toda theory on Σ, as we recall in Section 4.2.2.

To understand what type of boundary conditions have to be imposed, let us
first look at Table 4.1 that summarizes the 4d-2d setup.

S4/Zk Σ R3 R2

0 1 2 3 4 5 6 7 8 9 10
N M5 x x x x x x

Table 4.1: M-theory background relevant for the AGT correspondence.

The theory is topologically twisted along Σ. An R2 ⊂ R3 provides the fibers of its
cotangent bundle T ∗Σ. In the 3d-3d frame the entire R3 is used for the topological
twist on M3.

The setup is reduced on the Hopf fiber of the S3/Zk ⊂ S4/Zk. Equivalently,
thinking of the S4 as two k-centered Taub-NUTs glued along their asymptotic
boundary, one reduces on the Taub-NUT circle fiber. It is well known that the
M-theory reduction on the circle fiber of a multi-Taub-NUT yields D6 branes at
the Taub-NUT centers. The IIA setup5 is then given by Table 4.2.

5 Note that the resulting three-sphere has curvature singularities at the poles even for k = 1.
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S3 Σ R3 R2

1 2 3 4 5 6 7 8 9 10
N D4 x x x x x
k D6 x x x x x x x
k D6 x x x x x x x

Table 4.2: Reduction of M-theory background to type IIA.

The D6 and D6 branes sit at the north and south pole of the S3 respectively and
the D4 branes end on them. The boundary conditions on the D4 worldvolume
fields are then claimed to be similar to those studied in [195] for D3 branes ending
on D5 branes. That would imply that the D4 gauge field satisfies Dirichlet bound-
ary conditions, while the triplet of scalars Xi satisfy the Nahm pole boundary
conditions we mentioned in equation (1.27):

Xi →
Ti
σ
. (4.5)

Here, the Ti constitute an N dimensional representation of su(2) and the coor-
dinate σ parametrizes the interval over which the S3/Zk is fibred. This can be
understood by thinking of the N D4 branes as comprising a charge N monopole on
the D6 worldvolume. Indeed, the Nahm pole boundary conditions were originally
discovered in a similar context [34].

We want to pause here for a moment to note that it is not quite clear why the
present setup is related to the analyses of [34, 195]. The latter deal with (the
T-dual of) a D4-D6 brane system with different codimensions, as described in
Table 4.3.

R R2 Σ R3 R2

1 2 3 4 5 6 7 8 9 10
N D4 ` x x x x
k D6 x x x x x x x

Table 4.3: Type IIA setup in which Nahm poles arise as boundary conditions on
the Xi triplet of D4 scalars.

Here, the ` denotes the fact that the D4 branes end on the D6 branes. The D6
branes in Table 4.2 are instead similar to the ones studied in [215] (see also [216]).
The corresponding orbifold singularities in the 4d-2d frame reduce to a gravipho-
ton flux in the 3d-3d frame, which is responsible for the Chern–Simons coupling
through (4.4). However, they cannot give rise to a Nahm pole. In Section 4.4,
we propose an alternative perspective that simultaneously allows for a non-zero
Chern–Simons coupling and correct codimensions between D4 and D6 branes for
a Nahm pole to arise.
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4. Generalized Toda theory from six dimensions

Leaving these comments aside for the moment, we must understand precisely what
a Nahm pole in the topologically twisted scalars Xi would translate to in the 3d-3d
picture. As remarked in Section 4.1.1, transforming the supersymmetry equations
that lead to a Nahm pole under the Weyl transformation is a difficult problem.
However, we know that the resulting connection A = A+ iX will have to be flat.
Furthermore, we expect that the leading behavior of A towards the boundary
should still be fixed.

As we discussed in Section 2.3.1, the relation between Chern–Simons theory
and Wess–Zumino–Witten models requires A to be chiral on the boundary.6 If
(z, z̄) denote (anti)holomorphic coordinates on Σ, we should demand that Az̄
vanishes. Thus, a natural equivalent of the boundary conditions (4.5) would be

A = L0
dσ

σ
+ L+

dz

σ
+O

(
σ0) . (4.6)

This is a flat connection. We have defined the sl2 generators L0 = iT1 and
L± = T2 ∓ iT3. They satisfy the standard commutation relations7

[La,Lb] = (a− b)La+b. (4.7)

These boundary conditions are precisely the ones that correspond to the reduction
of the boundary ŝlN algebra to the WN algebra. The antiholomorphic connection
of the complex Chern–Simons theory behaves in the same way. Adding the con-
tributions from the two components of ∂M3 then gives rise to a full (non-chiral)
complex Toda theory. It would be interesting to directly verify the transformation
of the Nahm pole (4.5) to the connection boundary condition (4.6) under the Weyl
transformation, as we already pointed out in Section 4.1.1.

4.2.2 Nahm pole and Drinfeld–Sokolov reduction

Using the radial coordinate e−ρ = 1/σ, the leading order of the transformed
Nahm pole boundary conditions (4.6) corresponds to the highest weight con-
straint (2.103). We denote the reduced quantum theory obtained from a general
partition λ by Todaλ. As we discussed in Section 2.5.2, the corresponding Wλ

algebra contains a current for each sl2 multiplet appearing in the decomposition
of the adjoint of slN [89,91,96]. As we will see in the following section, Todaλ can
be obtained from six dimensions using the generalized conifold.

However, in this chapter our starting point is a complex slN (C) Chern–Simons
theory. Applying the Drinfeld–Sokolov procedure from Section 2.5 at the quantum
level would give us a complex Toda theory. The AGT correspondence involves a
real version of Toda theory. To mediate this, the following relation is suggested

6 Nonchiral boundary conditions lead to reduced theories with nonzero chemical poten-
tials [74, 97]. It would be interesting to see if they have a role to play in further generalizations
of the AGT correspondence.

7We will use antihermitian generators in this chapter.
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for the principal embedding [191]

complex Toda(N, k, s) ⇔ real paraToda(N, k, b) + ŝu(k)N
û(1)k−1 .

Here, N−1 gives the rank of the Toda theory. The parameters k and s are coupling
constants in the complex Toda theory. On the right hand side, k describes the
conformal dimension ∆ = 1−1/k of the parafermions in paraToda. The real Toda
coupling is

b =
√
k − is
k + is

.

At k = 1 the right hand side reduces to real Toda theory [217]. Both real and
complex generalized Toda theories can be obtained as Drinfeld–Sokolov reductions
of SL(N,R) or SL(N,C) Chern–Simons theories. Geometric quantization of the
latter two theories yields identical Hilbert spaces [210] for k = 1. After reduction,
the complex and real Toda theory therefore agree at this particular level. Likewise,
using a general sl2 ⊂ slN embedding, complex and real Todaλ theory at k = 1 are
identified.

4.3 Orbifold defects and the generalized conifold

In Section 4.3.1 we briefly summarize the setup pertaining to the AGTλ correspon-
dence. This leads us to consider generalized conifolds, denoted by Kk,m, whose
geometry we review in Section 4.3.2.

4.3.1 Codimension two defects and their geometric realization

We now consider the generalization of AGT that includes surface operators in the
gauge theory partition function, which we refer to as AGTλ. Under the correspon-
dence, the ramified instanton partition functions are mapped to conformal blocks
of Todaλ theories [198–200]. Similarly, it is expected that one-loop determinants
in the gauge theory map to three-point functions. This has been checked for the
case of a full surface operator [202].

A six-dimensional perspective on this correspondence is provided by including
codimension two defects in the 6d (2, 0) theory. These defects wrap Σ and lie
along a two-dimensional surface in the gauge theory. Therefore, they represent a
surface defect in the gauge theory, and change the theory on the Riemann surface.

There exists a natural class of codimension two defects that are labeled by
partitions of N [174], as we will discuss in more detail below. Table 4.4 summa-
rizes the M-theory background for the particular instance of AGTλ that we are
interested in.
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S4 Σ R3 R2

0 1 2 3 4 5 6 7 8 9 10
N M5 x x x x x x
Defect x x x x x x x

Table 4.4: Generalized AGT setup.

For the moment, we zoom in on the region near the north pole of the S4, where
the geometry locally looks like C2. In this region, we consider the realization
of the defect as a C2/Zm orbifold singularity that spans the 01910 directions of
Table 4.4 [200, 201] (see also [218]). Note that these codimension two defects are
usually described using an additional set of intersecting M5 branes together with
an orbifold singularity. We want to emphasize here that we describe the defects
using only the orbifold singularity. This interpretation is also supported by math-
ematical results on the equivalence between ramified instantons and instantons on
orbifolds. See [201] and references therein.

This means that from the gauge theory perspective, i.e. the 0123 directions,
that the geometry locally looks like C/Zm × C. A partition λ is then naturally
associated to the M5 branes

λ : N = n1 + . . .+ nm.

It specifies the number of M5 branes with a particular charge under the orbifold
group. Alternatively, when C2/Zm is thought of as a limit of an m-centered Taub-
NUT space, it specifies how the M5 branes are distributed among the m centers.
The M5 branes wrap the ‘cigars’ in the second relative homology of TNm. Upon
reduction on the Taub-NUT circle fiber, the partition specifies how the N D4
branes are distributed among the m D6 branes.

Another generalization of the original AGT correspondence [196] that was already
covered in the original derivation [191] concerns instanton partition functions on
C2/Zk, an orbifold singularity that spans the 0123 directions of Table 4.4 [219,220].
This generalization also naturally arises from a 3d-3d perspective since the S3/Zk
in (4.2) is mapped to S4/Zk after the Weyl transformation. The geometry near
the north pole of this quotiented four-sphere is precisely C2/Zk.

We now observe that there exists a simple (local) Calabi-Yau threefold that
provides a particular realization of two ALE spaces C2/Zk and C2/Zm, intersecting
along a two-dimensional subspace. This is the (partially resolved) generalized
singular conifold

Kk,m : xy = zkwm, (4.8)

where we identify x or y with the 01 directions, z with the 23 and w with the 910
directions in the Table 4.4. For earlier occurrences of this space, see [221, 222].
More recently, it has also appeared in [223]. Note that K1,m reflects the AGTλ
setup described above. This will therefore be the geometry we focus on in the
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following, although we will also make a brief comment on general k and m in
Section 4.4.3.

We will use the generalized conifold as an approximation in the pole region of
a squashed S4 with defect included. This is a considerable simplification to the
full supergravity background that would be needed to preserve supersymmetry on
the S4 with defect. One might worry that much information is lost by refraining
from a similarly detailed and rigorous analysis as in [203]. However, we can still
obtain a better understanding of the emergence of a general Nahm pole and the
ensuing AGTλ correspondence. This will be the main result of this chapter.

4.3.2 Intersecting D6s from the generalized conifold

In this section, we provide more detail on the geometry of our proposal. First, we
recall the relation between M-theory on a Zk ALE space and k D6 branes in IIA.
We then introduce the generalized conifold Kk,m and show how it effectively glues
two such ALEs together into a single six-dimensional manifold, leading to two sets
of k and m D6 branes upon reduction.

Consider the Zk ALE space as a surface in C3 described by

xy = zk. (4.9)

Equivalently, we can think of this four-dimensional space as a C2/Zk orbifold with

1 ∈ Zk : (x, y) ∈ C2 → (e2πi/kx, e−2πi/ky). (4.10)

The latter makes it clear that the resulting space is singular. In particular, we see
that there is a k-fold angular deficit at the origin in the circle

C :=
{

(eiαx, e−iαy) | eiα ∈ U(1)
}
' S1. (4.11)

Reducing M-theory on the Zk ALE along C gives rise in IIA to k D6 branes
located at the origin and stretched along the transverse directions. The generalized
conifold Kk,m in equation (4.8) describes a Zk and Zm ALE for fixed w0 6= 0
and z0 6= 0, respectively. We will make these considerations more precise in the
following.

In its most common form, which we will denote by K1,1, the standard conifold
is a hypersurface in C4 given by

xy = zw. (4.12)

The space K1,1 is a cone. We denote its base by T , so that its metric is

ds2
K1,1 = dρ2 + ρ2ds2

T . (4.13)
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z

w

xy

Figure 4.3: Each axis represents the modulus of a complex number, the surround-
ing circles denote its phase. We will reduce on the red (solid) circles, corresponding
to the phase of x and y, which shrink to a point at the z and w axes.

It can easily be seen from (4.12) that T is homeomorphic to S2 × S3. For K1,1 to
be Kähler, the base has to have the metric [224]8

ds2
T = 4

9
(
dψ + cos2(θ1/2)dϕ1 + cos2(θ2/2)dϕ2

)2
+ 1

6
[(
dθ2

1 + sin2 θ1dϕ
2
1
)

+
(
dθ2

2 + sin2 θ2dϕ
2
2
)]
.

(4.14)

This describes two two-spheres, each with one unit of magnetic charge with respect
to the shared Hopf fiber parametrized by ψ. In other words, T can be described
by SU(2)× SU(2)/U(1). The quotient by U(1) serves to identify the Hopf fibers
of the SU(2) ' S3 factors. More details can be found in Appendix 4.A.

Now we want to choose a circle which leads to intersecting D6 branes upon reduc-
tion to IIA. Following the circle (4.11) in the ALE case, we are led to consider the
action

(x, y, z, w) 7→ (eiαx, e−iαy, z, w), α ∈ [0, 2π). (4.15)

As can be seen from Appendix 4.A, in terms of the Hopf coordinates in (4.14)
describing the bulk of the base of the conifold, the circle is the orbit of

(θ1, θ2, ϕ1, ϕ2, ψ) 7→ (θ1, θ2, ϕ1 + α,ϕ2 + α,ψ − α). (4.16)

Thus the circle consists of equal θi orbits on the base two-spheres of T , together
with a rotation in the Hopf fiber. At θi = 0 or π these Hopf coordinates are no
longer valid and the circle described by (4.16) can shrink to a point. In terms
of the embedding C4 coordinates, these loci are hypersurfaces z = 0 and w = 0,

8 Note that this reproduces the standard conifold metric upon redefining ψ = (ψ′−ϕ1−ϕ2)/2.
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y

x

k D6

m D6’

N D4

Figure 4.4: The resulting IIA brane content corresponding to N M5 branes on
the w = 0 divisor Dw of the generalized conifold Kk,m after reduction on the xy
circle.

as we can see in (4.15). This is illustrated in Figure 4.3. Reduction of M-theory
along the circle generated by (4.15) leads to two D6-branes stretched along the z
and w directions, as illustrated in Figure 4.4:

D6 from x = y = z = 0 along w, D6’ from x = y = w = 0 along z.

Now let us look at the w = 0 divisor, which we denote by Dw. Setting w = 0 in
the conifold equation (4.12) implies that x = 0 or y = 0. These are two branches
meeting along the z axis. We will choose the latter one, so that the metric (4.13)
restricts to

ds2
Dw

= dρ2 + ρ2

6
(
dθ2

2 + sin2 θ2dϕ
2
2
)

+ 4ρ2

9
(
dψ + cos2(θ2/2)dϕ2

)2
. (4.17)

This is a radially fibred S3 with a particular squashing. Note that it preserves
SU(2)× U(1) isometries. At ρ = 1 it is parametrized by (see Appendix 4.A)

x = cos θ2

2 e
i(ψ+ϕ2),

z = sin θ2

2 e
iψ.

(4.18)

In these coordinates, the action (4.15) whose orbit defines the M-theory circle is

(θ2, ϕ2, ψ)→ (θ2, ϕ2 + α,ψ). (4.19)

We see that the corresponding circles are just the equal θ2 circles of the second
SU(2) factor of the conifold, sitting at the north pole θ1 = 0 of the first SU(2)
factor.
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Where does this circle shrink? Again, we have to be careful about the range
of our coordinates. At the north pole θ2 = 0, the action (4.15) shifts to the Hopf
fiber,

θ2 = 0 : (x, z) = (eiβ , 0), β → β + α. (4.20)

That is a circle of finite size unless ρ = 0. In contrast, the orbit of (4.15) shrinks
to a point at the south pole θ2 = π for all ρ,

θ2 = π : (x, z) = (0, eiδ), δ → δ. (4.21)

Therefore, from the perspective of the divisor, the D6’ brane stretches along z at
x = y = 0 and the D6 brane is pointlike at x = y = z = 0.

To obtain m D6 and D6’ branes, the M-theory circle should shrink with an m-
fold angular deficit. We can achieve this by quotienting the action (4.15) by
Zm ⊂ U(1). We denote the resulting generalized conifold by Km,m:9

xy = zmwm. (4.22)

We are mainly interested in the w = 0 divisor Dw of this space. From the point
of view of the divisor Dw, an m-fold angular deficit stretches along the z axis.
Reducing to IIA leads to m D6’ branes that stretch along z and are located at
x = w = 0.

A similar analysis for z = 0, w 6= 0 leads to a m-fold angular defect along w at
x = y = z = 0. This defect is pointlike in Dw, intersecting only at x = y = w =
z = 0. Upon reduction to IIA, it leads to m D6 branes. The conifold point at the
origin corresponds to the location where the two orbifold singularities intersect.

The generalized conifold Kk,m is described by equation (4.8),

xy = zkwm.

It can be obtained by partially resolving the singularity along the w axis of (4.22).
In a IIA frame, such a resolution corresponds to moving out (m−k) D6 branes to
infinity along the x or y axis. The resulting geometry is similar to that of Km,m,
except that it has a k-fold angular deficit intersecting at the origin with an m-fold
one. Consequently, reducing to IIA produces k D6 branes and m D6’ branes.

By resolving all the way to k = 1, Dw is equivalent to the C/Zm×C background
studied in [201]. In terms of the coordinates (4.18), it is described by

x = cos θ2

2 e
i(ψ+ϕ2/m), (4.23)

z = sin θ2

2 e
iψ. (4.24)

9 Note that the labels on Km,n are unrelated to the labels (p, q) that are sometimes used to
describe possible base spaces of the conifold.
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4.4. Todaλ theory from generalized conifolds

The metric (4.17) then becomes

ds2
Dw

= dρ2 + ρ2

6

(
dθ2

2 + 1
m2 sin2 θ2dϕ

2
2

)
+ 4ρ2

9

(
dψ + 1

m
cos2(θ2/2)dϕ2

2

)2
.

(4.25)

In this case, the sphere isometries are broken to U(1)×U(1). The M-theory circle
shrinks with a Zm angular deficit along the z axis. Note that the three-spheres
at fixed radius are in fact also squashed. This leads to an additional ‘squashing’
singularity at the origin, corresponding to the conifold point.

Finally, we should comment on how the M5 branes are placed in this geometry.
The Dw divisor has two components ending on the x = y = w = 0 defect, and we
can place the M5s together along either one. This setup preserves supersymmetry
since the divisor is holomorphic. See for instance [225] for a similar setup in IIB.

Note that the M5 branes are in a sense fractional: a brane along the x axis
needs to pair up with a brane along the y axis to be able to move off the defect.
Upon reduction, these fractional M5 branes correspond to D4 branes that end on
the D6’ branes, as we illustrate in Figure 4.4.

As we will show in the next section, three of the scalars on the D4 branes
will obtain a Nahm pole boundary condition dictated by how they are partitioned
among the m D6’ branes. On the other hand, the flux coming from the k D6
branes gives rise to the Chern–Simons coupling in the 3d-3d frame. Thus, both
sets of D6 branes play distinct but crucial roles in our construction.

4.4 Todaλ theory from generalized conifolds

In this section, we outline a derivation of the AGTλ correspondence in the spirit
of Córdova-Jafferis [191]. We will see that our proposal also sheds some light on
the derivation of the original AGT correspondence. The reason for this is that the
surface operator associated with the trivial partition N = N is decoupled from the
field theory. In our description, this is reflected by the fact that for m = 1 there
is no orbifold singularity. Thus, we can view the original AGT correspondence as
a special case of the AGTλ correspondence. This will be discussed first.

Moving on to the general AGTλ correspondence, a crucial role is played by
the generalized conifolds K1,m. In the presence of our defect, the pole region of a
squashed S4 can be identified with an appropriate divisor in K1,m. In this limit,
the chirality and amount of the S4 Killing spinors agree with those of the divisor
in K1,m, which we take as further evidence for our proposal.

It should be noted that we use the (generalized) conifold merely as a technical
simplification. We expect a general set of supergravity backgrounds exists that
allows for a squashed S4/Zk with defect included. However, since the supersym-
metry analysis is particularly easy for the conifold, we specialize to the parameter
values it dictates. Several subtleties that arise are expected to be resolved in the
general set of supergravity backgrounds.
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4. Generalized Toda theory from six dimensions

4.4.1 Compatibility of K1,1 with Córdova-Jafferis
As explained in the previous section, the standard conifold K1,1 produces a D6
and D6’ brane if we reduce to type IIA. In our setup, the D4 branes end properly
on the D6’ brane. The latter is not present in the original derivation [191] where
only the D6 brane is considered. The main reason for this discrepancy is that we
choose a different circle fiber in (4.15). In contrast to the Hopf fiber of the three-
sphere, which only shrinks at the poles of the S4, our circle degenerates along the
entire z-plane in the pole region.

To check that we can still build on the results of [203] we note that the D6 brane
in [191] translates to a flux for the graviphoton field in the 3d-3d frame, which is
ultimately responsible for a non-zero Chern–Simons level in three dimensions.10
This feature is not lost in our construction, since reduction on the conifold still
produces a similar D6 brane located at the north pole.

Our brane configuration is illustrated in Table 4.5.

R R2 Σ R3 R2

1 2 3 4 5 6 7 8 9 10
N D4 ` x x x x
D6’ x x x x x x x
D6 x x x x x x x

Table 4.5: Type IIA setup in the pole region after reduction on the circle of K1,1.

By the analysis of [34, 195], the D4-D6’ system leads to a (principal) Nahm pole
boundary condition on three of the D4 scalars, denoted by Xi in Section 4.2.1.
This provides a reinterpretation of the results in [191], where it is claimed that
the D6 brane is responsible for the Nahm pole.

We will now turn to consistency checks of our identification of the conifold
as an approximation of the supergravity background relevant to the AGT cor-
respondence. From the Nahm pole onwards, the original analysis of [191] then
goes through. Namely, after Weyl rescaling to the 3d-3d frame, the Nahm pole
translates into the reduction of the WZW model to Toda theory as reviewed in
Section 4.2.

Geometry Recall that the metric on the w = 0 divisor is given by (4.17),

ds2
Dw

= dρ2 + ρ2

6
(
dθ2

2 + sin2 θ2dϕ
2
2
)

+ 4ρ2

9
(
dψ + cos2 θ2/2dϕ2

)2
.

This is the pole region of the metric of a squashed four-sphere,

ds2 = dσ2 +
(
f(σ)2`2

4
(
dθ2 + sin2(θ)dϕ2)+ f(σ)2 (dψ + cos2(θ/2)dϕ

)2)
. (4.26)

10See also [215,216] for related discussions.
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4.4. Todaλ theory from generalized conifolds

The original derivation [191] of the AGT correspondence considers the class of
geometries (4.26) for general ` and any f(σ) that vanishes linearly near σ = 0, π.
The divisor of the conifold imposes the values ` = 3√

6 and f(σ) = 2
3σ +O

(
σ2).

Note that the conifold singularity translates to a squashing singularity of the
metric (4.26) for these particular choices of f(σ) and `. We will not be too con-
cerned about these curvature singularities. As argued in [191], the (2, 0) theory
cannot couple to curvature scalars of dimension four or higher such as RµνRµν .
In principle, it could couple to the Ricci scalar, but this can be resolved by an
appropriate choice of the function f(σ).

For the singular conifold, which dictates f(σ) and ` as above, the Ricci scalar
singularity is present. However, we expect the general set of supergravity back-
grounds to contain solutions that exclude singularities in the Ricci scalar. The
curvature singularity should be merely an artifact of the parameter values im-
posed by the conifold.

Supersymmetries Here, we will show that the amount and chirality of super-
charges preserved by the M5 brane on the conifold divisor match with what one
expects for the 6d (2, 0) theory in the AGT setup. Subsequently, we will relate
them to the supercharges in the 3d-3d frame.

It is well known that an M5 brane wrapped on a holomorphic divisor inside
a Calabi-Yau three-fold has at most (0, 4) supersymmetry in the remaining two
dimensions [226,227]. However, since the latter lie along the Riemann surface Σ, on
which the theory is topologically twisted, only two Killing spinors survive.11 Since
the Killing spinors are chiral from both a six-dimensional and a two-dimensional
perspective, they must be chiral in four dimensions as well,

ξchiral6d = ξchiral2d ⊗ ξchiral4d .

Now let us turn to the usual AGT setup. A 4d N = 2 theory on a squashed S4

with U(1)× U(1) isometries has an SU(2)R doublet of Killing spinors [204,228],

ε1 = (ξ1, ξ̄1)

= e
1
2 i(φ1+φ2)

(
e−i

θ
2 sin(σ2 ),−ei θ2 sin(σ2 ), ie−i θ2 cos(σ2 ),−iei θ2 cos(σ2 )

)
ε2 = (ξ2, ξ̄2)

= e−
1
2 i(φ1+φ2)

(
e−i

θ
2 sin(σ2 ), ei θ2 sin(σ2 ),−ie−i θ2 cos(σ2 ),−iei θ2 cos(σ2 )

)
.

(4.27)

Near the north pole these reduce, up to a local Lorentz and SU(2)R gauge trans-
formation, to the Ω background

ξ̄α̇A = δα̇A , ξαA = −1
2vm(σm)αα̇ξ̄α̇A. (4.28)

Here, vm is a Killing vector that generates a linear combination of the U(1)2 isom-
etry of the Ω background. It descends from the U(1)2 isometry of the squashed

11 This follows from the fact that the four supercharges form two doublets under the SU(2)
R-symmetry whose U(1) ⊂ SU(2) subgroup is used to perform the twist.
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sphere. Since vm vanishes linearly with σ one sees that the Killing spinors are
indeed chiral to zeroth order in σ. Hence, the amount and chirality of the super-
charges preserved by the divisor of the conifold are consistent with the ordinary
AGT setup.

As noted in [191], after Weyl rescaling to the 3d-3d frame, in a suitable R-
symmetry gauge, the Killing spinors in (4.27) become independent of σ. This is
required to make contact with the Killing spinors in the 3d-3d correspondence [203]
which are independent of σ due to the topological twist on M3.

A final subtlety is to be mentioned here. In the above, we have made contact
with the Killing spinors corresponding to the N = 2 theory on a squashed S4

which preserves U(1) × U(1) isometries. However, the derivation of the 3d-3d
correspondence in [203] makes use of a squashed sphere with SU(2)×U(1) isome-
tries. As was first observed in [205] and then properly understood in [206], the
three-dimensional supersymmetric partition function is in fact insensitive to these
extra symmetries. This should provide a justification for the proposed relation
between the partition functions evaluated in the 4d-2d and 3d-3d frame.

Twist Another perspective on the equivalence of the preserved supersymmetries
in the conifold case and the AGT setup lies in their relation to topological twists.
The worldvolume theory on the M5 branes is automatically topologically twisted,
since it wraps a Kähler cycle inside a Calabi-Yau threefold [229].12 In terms of
groups, the R-symmetry is broken by the setup to U(2). The U(1) R-symmetry
given by the embedding

U(1) ⊂ U(2) ⊂ SO(4) ⊂ SO(5)

is used to twist the U(1) ⊂ U(2) holonomy on the divisor (see e.g. Appendix A
in [230]).

This feature is also reflected in the standard AGT setup. Indeed, at zeroth
order in σ, the Killing spinors (4.28) precisely reflect the ordinary (Donaldson-
Witten) topological twist: the SU(2)R index is identified with the dotted spinors
index. The twist implemented by the conifold is a special version of this twist
when the holonomy is reduced to U(2).

4.4.2 K1,m and AGTλ
We now want to explain the relevance of the generalized conifold for the AGTλ
correspondence. First, a partition is associated to the divisor that specifies the
charges of the fractional M5 branes in the orbifold background

λ : N = n1 + . . .+ nm. (4.29)

After reduction on the circle fiber, this partition encodes the number ni of D4
branes ending on the ith D6’ brane.

12The normal bundle to the divisor is its canonical bundle. Then, the two scalars correspond-
ing to transverse movement inside K1,1 become holomorphic two-forms on the divisor [226,227].
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4.4. Todaλ theory from generalized conifolds

R R2 Σ R3 R2

1 2 3 4 5 6 7 8 9 10
N D4 ` x x x x
m D6’ x x x x x x x
D6 x x x x x x x

Table 4.6: Type IIA setup in the pole region after reduction on the circle of K1,m.

This imposes a Nahm pole on the three Xa D4 worldvolume scalars in terms of the
sl2 ⊂ slN embedding associated to λ. In the 3d-3d frame, the D6 brane is solely
reflected as a graviphoton flux which leads to a k = 1 Chern–Simons level [203].

In the M-theory frame, Weyl rescaling from 4d-2d to 3d-3d results in an asymp-
totically hyperbolic three-manifold M3 corresponding to the directions 145 in Ta-
ble 4.6. The half-line along the 1 direction is stretched to a line with an asymptotic
boundary. Since the D6’ branes are located at the edge of this half-line, the Nahm
pole they induce becomes a constraint at the asymptotic boundary of M3 in the
Weyl rescaled frame.

The bulk of M3 should therefore not be affected by the presence of the addi-
tional D6’ branes introduced by the generalized conifold. The analysis of [203],
which obtains complex Chern–Simons theory from reduction of the M5 worldvol-
ume theory, should then still hold in the bulk of M3. We thus claim that only the
constraint on the boundary behavior of the Chern–Simons theory is different.

To be precise, the partition of the N D4 branes on m D6’ branes translates in
the 3d-3d frame to a block diagonal form of the connection at the boundary. For
example,

λ : 3 = 2 + 1 ←→ A =

∗ ∗∗ ∗
∗

 . (4.30)

The Nahm pole then maps to a constraint in this block diagonal form,

A = dρ+ eρL+dz + · · · , L+ =

0 1
0 0

0

 . (4.31)

As we recalled in Section 4.2.2, such a constraint precisely reduces a SL(N) WZW
model to the Toda theory associated to the partition λ. Recalling the equivalence
between complex and real SL(N) Chern–Simons at level k = 1 [210], this leads to
a derivation of the AGTλ correspondence.

Geometry The w = 0 divisor of K1,m is equivalent to C/Zm×C, as we showed
in Section 4.3.2. The non-trivial Ω background that is manifested by the squashing
of a radially fibred three-sphere, just as in the k = m = 1 case, is also visible there.
The squashed three-sphere in this geometry preserves U(1)×U(1) isometries since
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4. Generalized Toda theory from six dimensions

the base of the Hopf fibration is now orbifolded. This shows that the divisor in
K1,m reproduces the setup in which the AGTλ correspondence was studied [201].13

Supersymmetries The generalized conifolds preserve the same amount of su-
persymmetry as the m = 1 conifold. This is particularly clear from the IIA
perspective, where instead of a single D6 and D6’ brane, we now have one D6
intersecting with m coincident D6’ branes.

Likewise, the general AGT setup concerns a squashed S4 with U(1) × U(1)
isometries,

t2 + |z|
2

`2
+ |x|

2

˜̀2 = 1

It is clear that including our defect at x = 0 does not break these isometries any
further. Therefore, just as in our conifold construction, including such defects in
the general AGT setup does not break any additional supersymmetry.

Furthermore, the divisor of the generalized conifold is still Kähler, so only chiral
supersymmetries survive. This agrees with the chirality of the Killing spinors of
an S4 in the pole region.

4.4.3 General k and m
Finally, we comment on a conjecture arising from the general conifold Kk,m. Here,
we expect to obtain SL(N,C) Chern–Simons theory at level k together with a
boundary condition determined by the partition

λ : N = n1 + . . .+ nm.

According to this partition one should obtain a quantum Drinfeld–Sokolov reduc-
tion of complex Toda theory. To arrive at a duality with a real paraToda theory,
in the spirit of [191], one could naively ask if

Complex Todaλ(n, k, s) ?⇔ real paraTodaλ(n, k, b) + ŝu(k)n
û(1)k−1 .

However, such a statement requires one to understand how parafermions couple
to generalized Toda theories. We are not aware of the existence of any such
constructions. An obvious first step would be to figure out how parafermions
could couple to affine subsectors.

4.5 Conclusions and outlook

We have argued that the derivation of the AGT correspondence proposed in [191]
can be understood by replacing the north pole region of the S4, where the ex-
citations of the four-dimensional gauge theory are localized, with a holomorphic

13The superconformal index of the 6d (2, 0) theory in the presence of these orbifold singular-
ities was computed in [218].
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divisor inside the singular conifold K1,1. This interpretation has two main virtues.
Firstly, it provides a clear perspective on the origin of the Nahm pole. Secondly,
the generalized conifolds K1,m allow us to outline a generalization of the derivation
of the original AGT correspondence, which we denote by AGTλ, involving the in-
clusion of surface operators on the gauge theory side and a generalization of Toda
theory to Todaλ on the two-dimensional side. We used an equivalent description
of these surface operators as orbifold defects, as advocated in [200,201].

Let us now turn to the possible pitfalls of our analysis and their potential reso-
lutions. First of all, we make a number of assumptions and simplifications due
to a lack of a full supergravity background and supersymmetry equations of the
worldvolume theory in the presence our additional defects. Even in the original
case, a full supergravity background and supersymmetry equations have only been
written down for the 3d-3d frame [203]. For a precise understanding of the origin
of the Nahm pole, one should furthermore obtain the supergravity background and
supersymmetry equations of the 4d-2d frame. In the presence of our additional
defects, such a background should include a geometry which resembles a conifold
near its pole regions. Transforming the supersymmetry equations to the 3d-3d
frame should then give rise to the Drinfeld–Sokolov boundary conditions on the
Chern–Simons connection.

An obstruction to performing this transformation is that these equations can
only be written down in a five-dimensional setting, since the Lagrangian formu-
lation of the 6d AN−1 theory is unknown. In other words, one cannot directly
transform the supersymmetry equations leading to a Nahm pole in 4d-2d to the
3d-3d equivalent which should give the correct Chern–Simons boundary condi-
tions.

Furthermore, the derivation of the 3d-3d correspondence [203] is in a sense only
concerned with the bulk of the Chern–Simons theory. Even there, ghosts appear,
which gauge fix the noncompact part of the gauge group at finite S3

` /Zk size.
On an M3 with boundary, one should similarly impose boundary conditions on
these ghosts, which are related to the boundary constraints of the Chern–Simons
connection. It would be interesting to see if such ghost terms can be obtained in
the 3d-3d frame, if they correspond to the proper Drinfeld–Sokolov constraints in
the setting we propose, and how they translate to the 4d-2d Nahm pole setting.

At level k = 1, using the equality between the Hilbert spaces of complex and
real SL(N) Chern–Simons theory, the complex Todaλ theory corresponds to a real
Todaλ theory. For higher k, it would be interesting to understand the equivalent
of the parafermions that were necessary to make contact with real Toda in the
original derivation [191].

In the main body of this chapter, we have not touched upon the relation between (a
limit of) the superconformal index of the 6d (2, 0) theory of type AN−1 and vacuum
characters of WN algebras discovered in [190]. This relation was also derived
in [191] following similar arguments to their derivation of the AGT correspondence.
The geometry relevant to the superconformal index, S5×S1, can be Weyl rescaled
to S3×EAdS3. One can understand this by thinking of the S5 as an S3 fibration
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over a disc, where the S3 shrinks at the boundary of the disc. The Weyl rescaling
stretches the radial direction of the disk to infinite length and produces the EAdS3
geometry.

The boundary conditions on the Chern–Simons connection are again argued
to be of Drinfeld–Sokolov type. The D6 brane that arises from reduction on the
Hopf fiber wraps the boundary circle of the disc and the S1.

As in the derivation of the AGT correspondence, this D6 brane does not have
the correct codimensions for a D4 brane to end on it, and for its scalars to acquire
a Nahm pole. Again, we claim that the analogous identification of the divisor
of a conifold in the S5 reproduces the D6 brane and additionally produces the
D6’ on which the D4s can end. This construction generalizes to the inclusion of
codimension two defects as orbifold singularities, as studied in [218]. This leads to
a derivation of the conjecture, appearing before in [190], that the vacuum character
of a general Wλ algebra is equal to the 6d superconformal index.

Further possibly interesting directions of research include the following. In the
3d-3d frame, the additional defects we introduced affect the boundary conditions
of Chern–Simons theory. On the other hand, they also have two directions along
the three-dimensional N = 2 theory T [M3]. It would be interesting to interpret
the role these defects play on this side of the correspondence.

We can also include other types of defects. Codimension two defects that
are pointlike on the Riemann surface translate to operator insertions in the Toda
theory. They are similarly labeled by a partition of N , which we can associate to
the choice of a (possibly semi-degenerate) Toda primary. In six dimensions, these
defects wrap an S4 that maps under Weyl rescaling to an S3 times the radial
direction of M3. One can then couple such a codimension two defect to the five-
dimensional Yang–Mills theory. Reducing to M3 should produce a Wilson line in
complex Chern–Simons theory.

Finally, the central charge of generalized Toda theories is known for any embed-
ding, see for example [91]. It would be interesting to reproduce this central charge
from six dimensions. This has been done for principal Toda in [182] by equivari-
antly integrating the anomaly eight-form over the R4 Ω background. Following
the geometric description of the codimension two defects, one could integrate a
suitable generalization of the anomaly polynomial on the orbifolded C×C/Zm Ω
background. Reproducing the generalized Toda central charge from such a compu-
tation would provide a convincing check on the validity of a geometric description
of the codimension two defects.

106



4.A. The conifold

4.A The conifold

Let us review some facts on the conifold. We mainly follow [224] but choose
slightly different coordinates in places. The conifold K1,1 is a hypersurface in C4

defined by
zw = xy. (4.32)

This equation defines a six-dimensional cone. By intersecting K1,1 with a seven-
sphere of radius r, we can study its base, which we denote by T . The base T is
topologically equivalent to S2 × S3 and can be conveniently parametrized in the
following way,

Z := 1
r

(
z x
y w

)
T : detZ = 0, TrZ†Z = 1. (4.33)

We can write down the most general solution to these equations by taking a
particular solution Z0 and conjugating it with a pair (L,R) of SU(2) matrices,

Z = LZ0R
†, Z0 =

(
0 1
0 0

)
, L,R ∈ SU(2). (4.34)

Each SU(2) factor can be described using two complex coordinates,

L :=
(
a −b̄
b ā

)
∈ SU(2), (a, b) ∈ C2, |a|2 + |b|2 = 1,

R :=
(
k −l̄
l k̄

)
∈ SU(2), (k, l) ∈ C2, |k|2 + |l|2 = 1.

(4.35)

Now introduce Hopf coordinates on each SU(2) ' S3,

a = cos(θ1/2)ei(ψ1+ϕ1), k = cos(θ2/2)ei(ψ2+ϕ2),

b = sin(θ1/2)eiψ1 , l = sin(θ2/2)eiψ2 ,
(4.36)

Note that the parametrization of T in (4.34) is overcomplete. Two pairs of SU(2)
matrices (L,R) describe the same solution if and only if they are related by the
U(1) action

(L,R) 7→ (LΘ, RΘ†), Θ =
(
eiθ 0
0 e−iθ

)
∈ U(1) ⊂ SU(2). (4.37)

This degeneracy should be quotiented out of the SU(2)×SU(2) parametrization.
The U(1) acts on the S3 coordinates by

(a, b)→ (eiθa, eiθb), (k, l)→ (e−iθk, e−iθl). (4.38)

The resulting SU(2)× SU(2)/U(1) quotient is the conifold. Indeed, the invariant
coordinates under this U(1) action correspond to the ones used in (4.33). At r = 1,

x = ak, y = −bl, z = −al, w = bk. (4.39)

107



4. Generalized Toda theory from six dimensions

They are related by the defining equation (4.32) of the conifold. In terms of
the Hopf coordinates (4.36), the U(1) quotient (4.38) joins the two Hopf fiber
coordinates in the invariant combination ψ := ψ1 +ψ2. T is then parametrized by

x = cos θ1

2 cos θ2

2 e
i(ψ+ϕ1+ϕ2), (4.40a)

y = − sin θ1

2 sin θ2

2 e
iψ, (4.40b)

z = − cos θ1

2 sin θ2

2 e
i(ψ+ϕ1), (4.40c)

w = sin θ1

2 cos θ2

2 e
i(ψ+ϕ2). (4.40d)

Demanding that K1,1 is Kähler implies that the metric on T is given by [224]

ds2
T = 2

3 Tr
(
dZ†dZ

)
− 2

9
∣∣Tr
(
Z†dZ

)∣∣2 (4.41)

= 4
9
(
dψ + cos2(θ1/2)dϕ1 + cos2(θ2/2)dϕ2

)2 (4.42)

+ 1
6
[(
dθ2

1 + sin2 θ1dϕ
2
1
)

+
(
dθ2

2 + sin2 θ2dϕ
2
2
)]
.

This is the metric we wrote down in (4.14). It describes two three-spheres with a
shared Hopf fiber. If we think of this fibration as an electromagnetic U(1) bundle,
both spheres feel one unit of magnetic charge. Note that this metric is equivalent
to the usual one under the coordinate redefinition ψ = (ψ′ − ϕ1 − ϕ2)/2.

The divisor In the main text, we make extensive use of the w = 0 divisor of the
conifold. Setting w to zero in (4.32) implies that either x or y vanishes. In terms
of the coordinates in (4.40), these choices corresponds to setting either θ1 = 0 or
θ2 = π. Thus we are at the north (or south) pole of one of the S2 base factors
of T . The remaining sphere, together with the fiber, now describes an ordinary S3.
Setting θ1 = 0, the parametrization in (4.40) reduces to Hopf coordinates

x = cos θ2

2 e
i(ψ+ϕ2),

z = sin θ2

2 e
iψ.

(4.43)
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Chapter 5

Linear response of entanglement
entropy from holography

In this chapter, we study the time evolution of entanglement entropy in strongly-
coupled field theories using holography. We look at the response of the theory to
violent shocks known as global quenches. Assuming the theory thermalizes, we
can model this process in the bulk using a collapsing shell of matter.

As we reviewed in Section 1.5.3, entanglement entropy can be computed holo-
graphically in terms of the area of a minimal surface in the bulk. For small
boundary intervals, we find an analytic expression for the time evolution of spa-
tial entanglement entropy after a global quench with arbitrary time profile. We
use this expression to quantify how far this process is from being adiabatic and we
work out the corresponding expressions for a representative set of quench profiles.

The work in this chapter has appeared previously in [3].
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5.1 Introduction

Understanding the evolution of many-body systems after generic time-dependent
perturbations is a subject of great relevance, and currently one of the most difficult
problems connecting many areas of physics, ranging from condensed matter to
quantum information theory. If a system is prepared in a pure state, it will evolve
unitarily and will remain in a pure state. However, finite subsystems are likely
to thermalize. For example, if we consider a sufficiently small region, the number
of degrees of freedom outside the region is much larger than in the inside, so
a typical excited pure state would look thermal from the point of view of the
subsystem [231].

A useful order parameter to consider is the entanglement entropy, which we
introduced in Section 1.5.3. To compute this quantity one can imagine splitting
the system in two regions, A and its complement Ac. Assuming that the Hilbert
space factorizes as Htotal = HA ⊗HAc , the entanglement entropy of a region A is
then defined as the von Neumann entropy

SA = −Tr [ρA log ρA] , (5.1)

where ρA = TrAc [ρ] is the reduced density matrix associated to A. Given its inher-
ent nonlocal character, entanglement entropy could in principle capture quantum
correlations not encoded in observables constructed from any set of local opera-
tors Oi.

The reduced density matrix ρA is Hermitian and positive semi-definite, so it
can formally be expressed as

ρA = e−HA

Tr[e−HA ] , (5.2)

where the Hermitian operator HA is known as the modular Hamiltonian. Now,
consider any linear variation to the state of the system, ρ = ρ(0) + λδρ, so that
ρA = ρ

(0)
A + λδρA. The variations considered here are generic, so they include all

sorts of time-dependent perturbations. For practical purposes we can consider a
one-parameter family of states ρ(λ) such that ρ(0) = ρ(0) corresponds to a density
matrix of a reference state. To first order in the perturbation, the variation δO of
any quantity O is then defined by δO = ∂λO(λ)|λ=0. In particular, the variation
of entanglement entropy (5.1) is given by SA = S

(0)
A + λδSA, where

δSA = −Tr [δρA log ρA]− Tr
[
ρA ρ

−1
A δρA

]
,

= Tr [δρAHA]− Tr [δρA] . (5.3)

The last term in (5.3) is identically zero, since the trace of the reduced density
matrix equals one by definition. Hence, the leading order variation of the entan-
glement entropy is given by

δSA = δ〈HA〉 , (5.4)
which is known as the first law of entanglement entropy. The reference state is
normally taken to be the vacuum, but the equation (5.4) holds equally for any other
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reference state. The first law is useful in simple situations but its applicability
is limited. For example, there are only very few cases for which HA is known
explicitly. The most famous example is the case where A is half-space, say x1 > 0,
and ρ corresponds to the vacuum state. In this case [232,233]

HA = 2π
∫
A

x1 T00(x) dd−1x . (5.5)

That is, HA is given by the generator of Lorentz boosts. For a conformal field
theory (CFT) this result may be conformally mapped to the case where A is a
ball of radius R, in which case [234,235]

HA = 2π
∫
A

R2 − r2

2R T00(x) dd−1x . (5.6)

More generally, the modular Hamiltonian is highly nonlocal and cannot be
written in a closed form.1 Another limitation is that not all states are perturba-
tively close to the reference state. For example, the density matrix of a thermal
state is given by ρthermal = e−βH/Tr[e−βH ], which cannot be expanded around
the vacuum. In these cases (5.4) does not hold.

In this chapter we will consider time-dependent perturbations induced by the
so-called quantum quenches. Quantum quenches are unitary evolutions of pure
states triggered by a shift of parameters such as mass gaps or coupling constants.
To describe such processes, we can start with the Hamiltonian of the system H0
(or the Lagrangian L0), and add a perturbation of the form

Hλ = H0 + λ(t)δH∆ → Lλ = L0 + λ(t)O∆ . (5.7)

Here λ(t) corresponds to an external parameter and H∆ (or O∆) represents a
deformation by an operator of conformal dimension ∆. We assume that the source
is turned on at t = 0 and turned off at some t = tq and take as our reference state
the vacuum of the original Hamiltonian H0. We can distinguish between the
following two kinds of quenches:

• Global quenches. Global quenches are unitary evolutions triggered by a
homogeneous change of parameters in space. If the theory lives on a non-
compact manifold such as flat space R(d−1,1), this implies that the amount
of energy injected to the system is infinite, which generally leads to ther-
malization. Then, the final state is indistinguishable from a thermal state,
ρ(t)→ ρthermal+O(e−S), so the density matrix cannot be written as a small
perturbation over the reference state for all t > 0. This invalidates the first
law (5.4). It is thus interesting to ask what are the general laws governing
the time evolution of entanglement entropy in these cases.

1 In (1+1)-dimensional CFTs there are a few other examples in which the modular Hamil-
tonian may be written as an integral over the stress-energy tensor times a local weight, see
e.g. [236].
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• Local quenches. Local quenches are unitary evolutions triggered by a change
of parameters within a localized region or simply at a point. Since the
excitations are localized, the amount of energy injected to the system is
finite. Moreover, if the theory lives on a non-compact manifold, this energy
is scattered out to spatial infinity and the system returns back to its original
state at t→∞. Provided that the energy injected is infinitesimal, the state
of the system for t > 0 can be regarded in some cases as a perturbation over
the reference state so the first law (5.4) holds in these cases,2 regardless of
the time evolution and the inhomogeneity.

Let us focus on global quenches. To begin with, we can imagine that the per-
turbation is sharply peaked, i.e. λ(t) ∼ δ(t), so that the quench is instantaneous.
This is the simplest possible quench that we can study since we do not introduce
the extra scale tq. In this scenario, the evolution of the system can described by
the injection of a uniform energy density at t = 0, evolved forward in time by the
original Hamiltonian H0. In the seminal paper [237], Calabrese and Cardy showed
that for (1 + 1)−dimensional CFTs entanglement entropy of an interval of length
l = 2R grows linearly in time,

δSA(t) = 2tseq , t ≤ tsat , (5.8)

and then saturates discontinuously at t = tsat = R. Here seq denotes the entropy
density of the final state, which is approximately thermal. Crucially, their result
holds in the regime of large intervals, R � β, where β = T−1 is the inverse
temperature of the final state. As explained in [237], at least in this regime, the
growth of entanglement has a natural explanation in terms of free streaming EPR
pairs moving at the speed of light. Unfortunately, the techniques used in [237]
rely on methods particular to (1 + 1)−dimensional CFTs so their results cannot
be easily generalized to other theories and/or higher dimensions.

The emergence of holography [10,41,42] made it possible to tackle this problem
for theories with a gravity dual. In this context, global quenches are commonly
modeled by the formation of a black hole in the bulk —see [238–240] for some
early works on this subject. The computation of entanglement entropy in holo-
graphic models is remarkably simple, reducing the problem to the study of certain
extremal area surfaces in the corresponding dual geometry [43, 58]. Interestingly,
for holographic CFTs the entanglement growth for large subsystems after instan-
taneous global quenches was found to have a universal regime,

δSA(t) = vEseqAΣt , tloc � t� tsat . (5.9)

The constant vE here is interpreted as an ‘entanglement velocity’, which generally
depends on the number of spacetime dimensions d as well as on parameters of
the final state, and AΣ is the area of the entangling region’s boundary Σ = ∂A.

2This statement is formally true up to some caveats. For instance, one can argue that since
H 6= H0 for 0 < t < tq , the modular Hamiltonian HA has to be modified during this time
interval. We can by pass this problem by focusing on the regime t > tq , for which the evolution
is governed by H0.
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Finally, tloc is a local equilibration time which generally scales like the inverse
final temperature tloc ∼ β, while tsat is the saturation time and scales like the
characteristic size of the region tsat ∼ l. This universal linear growth was first
observed numerically in [241, 242] and analytically in [243–245], and was later
generalized to various holographic setups in [246–271].3 The universality here
refers to the shape of the entangling region A, but it is worth emphasizing that
vE may depend on parameters of the final state. For instance, if the final state is
thermal, one finds that

vE =
√

d

d− 2

(
d− 2

2(d− 1)

) d−1
d

. (5.10)

However, if the final state has an additional conserved U(1) charge Q, the en-
tanglement velocity will depend on the ratio of the chemical potential and the
temperature [245]

vE =
√

d

d− 2

( d%− %− 1
(%+ 1)(d− 1)

) 2(d−1)
d

−
(
%− 1
%+ 1

) 1
2

,

% ≡

√
1 + d(d− 2)2µ2

4π2(d− 1)T 2 .

(5.11)

Given the simplicity of (5.8) and (5.9), Liu and Suh proposed a heuristic picture
for the evolution of entanglement entropy which they dubbed as the ‘entanglement
tsunami’ [244, 245]. According to this picture, the quench generates a wave of
entanglement that spreads inward from the subsystem’s boundary Σ, with the
region covered by the wave becoming entangled with the outside. In some special
cases, the tsunami picture might have a microscopic explanation in terms of quasi-
particles, e.g. EPR pairs or GHZ blocks, with or without interactions [282, 283].
Indeed, if one sets d = 2 in the holographic result (5.10) one obtains vE = 1 as in
the free streaming model of [237], suggesting that i) the spread of entanglement
can be explained in terms of EPR pairs for all (1 + 1)−dimensional CFTs and ii)
the interactions between the pairs might not play a crucial role. Very recently,
the free streaming model of [237] was generalized to higher dimensions [284], and
it was found that

vfreeE =
Γ[ d−1

2 ]
√
πΓ[ d2 ]

, (5.12)

which is smaller than the holographic result (5.10) for d ≥ 3. This result implies
that interactions must play a role, provided that the spread of entanglement for
holographic theories actually admits a quasi-particle description. However, more
recent studies have shown that this is not the case. For example in [285–287] it
was argued that the quasi-particle picture fails to reproduce other holographic and
CFT results, e.g. the entanglement entropy for multiple intervals.

3See also [272–281] for some interesting results on the spread of holographic entanglement
entropy in other time-dependent scenarios such as local quenches and shock wave collisions.
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It is worth recalling that the above results are valid only in the strict limit of
large subsystems l� β and assuming that the quench is instantaneous. Relaxing
either of these conditions is challenging and the results might not be universal.
For instance, if we stay in the limit of large subsystem but consider a different type
of quench, the result for the spread of entanglement entropy will generally depend
on the quench profile, as well as the operator that is being quenched. Perhaps
the other limit that is under analytical control in this situation is the adiabatic
limit, but it is somehow trivial. For sufficiently slow quenches, the system can be
considered to be very close to equilibrium so the standard rules of thermodynamics
apply. Thus, in this limit entanglement entropy for large subsystems reduces to
thermal entropy, which is well defined for all t and evolves evolves adiabatically
in a controlled way.

For small subsystems, the situation is much less understood, with a few ex-
ceptions [288, 289]. In [288] the authors focused on instantaneous quenches while
in [289] the authors considered a t-linear source. From the analysis of [288] it was
clear that in the limit of small subsystems both the quasi-particle picture and the
tsunami picture break down. This is easy to understand: in the limit of small
subsystems l � β so tsat � tloc. This implies that the subsystem never enters
the regime for which the linear growth formula (5.9) applies. Interestingly, their
findings suggested that in this limit the evolution of the entanglement entropy
exhibits a different kind of universality. Even though the results depend on the
shape of the entangling region, they turn out to be independent of the parameters
of the final state, at least for cases where the final state has a conserved U(1)
charge Q. In this chapter we will elaborate more on this universality, focusing
in particular on the response of entanglement due to the expectation values of
field theory operators.4 More specifically, we will show that the result at leading
order in the size of the region is only sensitive to the one-point function of the
stress-energy tensor, provided that the operator being quenched has conformal
dimension in the range ∆ ∈ [d/2, d]. Our result is valid for any rate and profile
of injection of energy into the system, so we will be able to reproduce the results
of [289] for the case of a t-linear source.

In order to understand our result for small intervals, one can imagine expanding
the reduced density matrix in terms of some parameter λA that explicitly depends
on region A, so that ρA = ρ

(0)
A +λAδρA without making any assumption on ρ. For

example, in a thermal state one can have the dimensionless combination λA ∼ lT ,
where l is a characteristic size of the entangling region and T is the temperature.
At zeroth order in the size of the region, one finds that ρ(0)

A ' TrB [ρvac] where
ρvac is the density matrix of the vacuum state (provided that the theory has a
well defined UV fixed point). Therefore, in this limit, one can also arrive to a first

4A general quench can be modeled by introducing a time-dependent source in the field
theory, which corresponds to switching on non-normalizable modes in bulk fields. This source
has a direct effect on the entanglement entropy, which furthermore needs to be renormalized in a
model-dependent way [290]. We will not consider these effects. Instead, we focus on the change
in entanglement entropy due to the expectation values that are turned on by the presence of the
source.
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law like expression for the variation of the entanglement entropy in an arbitrary
excited state ρ [291–293]. For states that are perturbatively close to the vacuum,
we can directly use (5.6), assuming that the radius of the ball R is much smaller
than any other length scale of the system. In this limit the expectation value of
the energy density operator 〈T00(x)〉 = ε is approximately constant in the region
A and one can write

δSA = 2πεΩd−2

∫ R

0

R2 − r2

2R rd−2dr = 2πεΩd−2R
d

d2 − 1 . (5.13)

Here, Ωd−2 = 2π d−1
2 /Γ[ d−1

2 ] is the surface area of a (d−2)-dimensional unit sphere.
Defining δEA as the energy enclosed in region A,

δEA = εVA , VA ≡
Ωd−2

d− 1R
d−1 , (5.14)

where VA is the volume of region A, we arrive at

δSA = δEA
TA

, TA ≡
d+ 1
2πR , (5.15)

where TA is known as the entanglement temperature [291–293]. For arbitrary
static excited states, equation (5.15) still holds provided that εRd � 1. For
instance, in a thermal state, ε = σT d so (5.15) holds in the limit RT � 1.
However, a comment on the entanglement temperature (5.15) is in order. As
shown above, for ball-shaped regions the constant TA follows directly from (5.6),
which is valid for any CFT (whether or not it is holographic) so in this sense it is
universal. For more generic regions, one can in principle arrive to a first law such
as (5.15) but in that case TA may depend not only on the shape of A, but also on
the parameters of the theory. For example, for an infinite strip of width l it was
found that in Einstein gravity [291]

TA =
2(d2 − 1)Γ[ d+1

2(d−1) ]Γ[ d
2(d−1) ]2

√
πΓ[ 1

d−1 ]Γ[ 1
2(d−1) ]2l

. (5.16)

However, in higher order theories of gravity such as Gauss-Bonnet, TA depends in
addition on the central charges of the theory [294].

For time-dependent excited states, the first law relation (5.15) is valid as long
as the state is perturbatively close to the vacuum, but is not expected otherwise.
For example, in the models of local quenches presented in [272] the first law was
found to be valid for sufficiently small systems, regardless of the time evolution
and the inhomogeneity. For global quenches it is not a priori expected to be
valid, since the final state is not perturbatively close to the vacuum. In this case,
in order to determine whether or not the first law relation holds true for small
subsystems one must, in addition, compare l with all time scales characterizing
the rate of change of ε(t). For example, for instantaneous quenches ε(t) ∝ θ(t),
but entanglement entropy saturates at a finite time tsat ∼ l. This implies that
(5.15) does not hold in this limit. On general grounds, we expect to recover
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(5.15) whenever l is smaller than all characteristic time scales of the quench, i.e.
ε̇(t)Rd+1 � 1, ε̈(t)Rd+2 � 1, and so on. Indeed, we will see that our final formula
for the evolution of entanglement entropy for small subsystems reduces to (5.15)
for slowly varying global quenches.

The remainder of this chapter is organized as follows. In Section 5.2 we present the
derivation of the holographic entanglement entropy after global quenches. This
Section is divided in three parts. In Section 5.2.1 we explain the small subsystem
limit and the necessary expansions in the bulk geometry. In Section 5.2.2 we obtain
analytic expressions for the evolution of entanglement entropy δSA(t) under a
general global quenches modeled by a Vaidya solution. We consider two geometries
for the entangling region, a ball and a strip. In Section 5.2.3 we rewrite our result
for δSA(t) as a linear response. The resulting expression can be written as a
convolution between the energy density ε(t), which plays the role of the source, and
a specific kernel fixed by the geometry of the subsystem. We discuss the limiting
case where we recover the first law relation (5.15) and introduce a quantity ΥA(t)
to quantify how far the system is from satisfying the first law. Then, in Section
5.3, we work out the evolution of δSA(t) and ΥA(t) for various particular cases,
including instantaneous quenches, power-law quenches, and periodically driving
quenches. In Section 5.4 we give a brief summary of our main results and close
with conclusions.

5.2 Holographic computation

5.2.1 Perturbative expansion for small subsystems

We will begin by giving a quick overview of the results of [288] on the spread of
entanglement of small subsystems in holographic CFTs. However, we will relax one
important condition. Namely, we will not assume that the quench is instantaneous,
as long as it is homogeneous in space. For holographic CFTs, the entanglement
entropy of a boundary region A can be calculated via [43,58]

SA = 1
4G(d+1)

N

ext [Area (ΓA)] . (5.17)

Here, G(d+1)
N is the bulk Newton’s constant and ΓA is an extremal (d − 1)-

dimensional surface in the bulk such that ∂ΓA = ∂A = Σ. We assume that
the size of the region A is small in comparison to any other scale of the system.
This will allow us to extract a universal contribution to the evolution of entan-
glement entropy following a global quench. Depending on the particular fields
that are used to model the quench, the entanglement entropy would also contain
non-universal terms which we do not consider.

In order to study the small subsystem limit we need to focus on the near-
boundary region of the bulk geometry. In Fefferman-Graham coordinates, a gen-
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eral asymptotically AdS metric can be written as

ds2 = `2

z2

(
gµν(z, xµ)dxµdxν + dz2) . (5.18)

According to the UV/IR connection [295,296], the bulk radial coordinate z maps
to a length scale in the boundary theory.5 Now, for a given boundary region A, the
corresponding extremal surface probes parts of the bulk geometry up to maximum
depth z∗, which depends on the size of the region. For example, in pure AdS and
for a ball-shaped region, z∗ is directly equal to its radius R; for the infinite strip
geometry z∗ is proportional to its width l (up to a numerical coefficient) [298]. So,
at least in pure AdS, z∗ can probe all the way to z∗ →∞ as l→∞. However, for
excited states, there might be a maximum depth z∗ → zIR as l→∞. This includes
cases with bulk horizons (either black hole or cosmological), hard walls (or end
of the world branes) and entanglement shadows. For small subsystems, however,
the corresponding extremal surface will only probe regions close to the boundary.
Thus, without loss of generality one can assume that the characteristic size of the
region will be given by l ∼ z∗. The small subsystem limit is then governed by the
near-boundary region, which is nothing but AdS plus small corrections.

Let us now discuss the general structure of the asymptotic expansion (5.18)
for perturbations over empty AdS. From the Fefferman-Graham metric (5.18) we
can obtain the CFT metric ds̃2 = g̃µνdx

µdxν by g̃µν = gµν(0, xµ). We assume
that the boundary theory lives on flat space, so we set gµν(0, xµ) = ηµν . This will
already impose some constrains on the near boundary expansion of the full metric,
gµν(z, xµ) = ηµν + δgµν(z, xµ). In particular, δgµν(z, xµ) will get corrections from
several operators [299], which will crucially depend on the matter content of the
bulk theory. The first correction that we will analyze is due to the metric itself
and is therefore universal. The metric is dual to the stress-energy tensor, so the
leading correction (normalizable mode) is proportional to its expectation value,

δgµν = a zd 〈Tµν〉+ · · · , a ≡ d`d−1

16πG(d+1)
N

(5.19)

Mapping the radial coordinate to a length scale z ∼ l, we see that the leading
correction is exactly of order δgµν ∼ O(ld). There are also sub-leading corrections
coming from higher point functions of the stress-energy tensor. For example, to
quadratic order, the most general form allowed by Lorentz invariance is

δgµν = a zd 〈Tµν〉+ z2d (a1 〈TµαTαν〉+ a2 ηµν〈TαβTαβ〉
)

+ · · · , (5.20)

where a1 and a2 are some numerical constants. These extra corrections are sub-
leading in l so we will not consider them here. We can also consider corrections
due to operators dual to additional bulk fields. These additional bulk fields will
introduce two kind of corrections in the asymptotic expansion: terms that are
proportional to the source, and terms that are proportional to the expectation

5There are subtleties that arise in time-dependent configurations. See for example [297].
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value of the dual operator.6 Terms that are proportional to the source are non-
normalizable so they will require model-dependent renormalization. Here, we will
only focus on the normalizable contributions. For example, for a scalar operator
O of conformal dimension ∆ ≤ d, in the standard quantization

δgµν = a zd 〈Tµν〉+ b z2∆〈O2〉+ · · · . (5.21)

Note that this perturbation also involves a term of the form λ(t)z2(d−∆), where
λ(t) is the source of O (see for example [300]). We will subtract such terms and
focus only on the effects of the expectation values that are turned on by the quench.
More specifically, we will consider the difference

δSA(t) = SA(t)− S(0)
A − S

(λ)
A . (5.22)

Here, S(0)
A is the entanglement entropy in the vacuum and S(λ)

A consists of model-
dependent terms that describe the effect of the source λ(t) itself on the entangle-
ment entropy. We emphasize that such a splitting can only be achieved in the limit
of small subsystems. More generally, we expect the appearance of cross terms that
mix sources with expectation values at higher orders in the Fefferman-Graham ex-
pansion. Furthermore, note that the last term in (5.21) is the dominant term if
the operator is sufficiently relevant, i.e. for d

2 − 1 < ∆ < d
2 .

7 We will not consider
these cases here, but their effects could be addressed if one works with alternative
quantization [301]. As a final example we can consider sourcing the quench with
a bulk current Jµ. In this case the normalizable corrections take the form

δgµν = a zd 〈Tµν〉+ z2d−2 (c1 〈JµJν〉+ c2 ηµν〈JαJα〉) + · · · , (5.23)

which are also subleading.
Before closing this section, let us comment on the perturbative expansion of

entanglement entropy in terms of the characteristic size of the region A. In order
to compute the leading order correction of entanglement entropy we proceed in
the following way. Consider the functional LA[φA(ξ);λA] for the extremal sur-
faces, where A ≡ Area (ΓA) =

∫
dξ L[φA(ξ);λA], φA(ξ) denotes collectively all the

embedding functions, and λA is a generic dimensionless parameter in which the
perturbation is carried out, i.e. λA � 1. We can expand both LA and φA(ξ) as
follows.

LA[φA(ξ);λA] = L(0)
A [φA(ξ)] + λAL(1)

A [φA(ξ)] +O(λ2
A) ,

φA(ξ) = φ
(0)
A (ξ) + λAφ

(1)
A (ξ) +O(λ2

A) .
(5.24)

In principle, it should be possible to obtain the functions φ(n)
A (ξ) by solving the

equations of motion order by order in λA. These equations are generally highly
non-linear and difficult to solve. However, the key point here is that at the leading

6Cross terms can show up at higher order in the Fefferman-Graham expansion.
7The unitarity bound implies that ∆ > d

2 − 1.
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order in λA we have

Aon-shell[φA(ξ)] =
∫
dξ L(0)

A [φ(0)
A (ξ)] + λA

∫
dξ L(1)

A [φ(0)
A (ξ)]

+ λA

∫
dξ φ

(1)
A (ξ)

[
����������
d

dξ

∂L(0)
A

∂φ′A(ξ) −
∂L(0)

A

∂φA(ξ)

]
φ

(0)
A

+ · · ·
(5.25)

Therefore, we only need φ
(0)
A (ξ) to obtain the leading order correction to the

area. In our case, the expansion parameter as seen from the Fefferman-Graham
expansion is given by λA ∼ δ〈T00(x)〉ld � 1, where l is the characteristic length of
the entangling region. Notice that the small λA-expansion probes short distances,
i.e. the most UV part of the theory, so the strict limit λA → 0 we expect to recover
the embedding in pure AdS, which is known analytically. The leading correction
to the functional will then already contain information about the time-dependence
and thermalization.

5.2.2 Entanglement entropy after global quenches
Let us focus on specific holographic duals of global quenches. We will consider
generic AdS-Vaidya metrics, which in Eddington-Finkelstein coordinates are given
by8

ds2 = 1
u2

(
−f(v, u)dv2 − 2dvdu+ d~x2) , f(v, u) = 1− g(v)

(
u

uH

)d
, (5.26)

where g(v) is an arbitrary function of the infalling null coordinate v.9 A spe-
cific example of a quench that leads to the metric above is given in Appendix
5.A. We emphasize that this is not the most general bulk solution for a global
quench, and that the details may depend on the specific source that is turned
on. However, there is strong numerical and analytic evidence to support the idea
that even simple models such as AdS-Vaidya already capture the relevant uni-
versal features of the time-evolution and subsequent thermalization after a global
quench [260, 302–306]. For example, in the recent paper [306] it was found that
the gross features of the correlations following the quench are controlled by just a
few parameters: the pump duration and the initial and final temperatures, which
are all tunable in (5.26).

We will distinguish between two cases:

• Quenches of finite duration. Here g(v) interpolates smoothly between two
values over a fixed time interval δt = tq. Normally g(v → 0) = 0 so that
the initial state is pure AdS, and g(v → tq) = 1 so the final state is an

8We have set the AdS radius to unity ` = 1 but it can be restored via dimensional analysis
if necessary.

9Perhaps the only condition on g(v) is that g′(v) > 0 ∀ v. This is required in order to satisfy
the Null Energy Condition (NEC) in the bulk, and strong subadditivity inequality in the dual
CFT [250,251].
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5. Linear response of entanglement entropy from holography

AdS black hole with horizon at u = uH . Holographically, this describes a
thermalizing, out-of-equilibrium system evolving from zero temperature to
a final temperature,

T = 2(d− 1)
4πuH

. (5.27)

Since δ〈T00(t)〉 → σT d at late times, the expansion parameter in this case
is given by λA ∼ (u∗/uH)d ∼ (T l)d. We will mainly focus on this kind of
quenches in this chapter.

• Quenches of infinite duration. In these quenches, one is constantly pumping
energy to the system so both g(v) and δ〈T00(t)〉 grow indefinitely. We can
formally expand in terms of λA ∼ (u∗/uH)d, where uH is a reference scale.
However, since δ〈T00(t)〉 ∝ g(t) (see Appendix 5.B for details) we must keep
in mind that for a fixed l, the expansion will eventually become bad at
sufficiently late times.

As reviewed in the previous section, it is possible to obtain analytic expressions
in the limit where the interval size is much smaller than the energy density at a
given time. We will be interested in obtaining the first order correction to

SA = 1
4G(d+1)

N

ext [A(t)] , A(t) =
∫ u∗

0
duLA , (5.28)

where u∗ is the maximal depth of the entangling surface. The specific form of LA
will depend on the shape of A. We will consider the following two geometries:

• A (d − 1)-dimensional ball of radius R. Here, we parametrize by functions
{r(u), v(u)}, with boundary conditions r(0) = R, v(0) = t. We obtain the
following Lagrangian.

Lball = AΣr
d−2

Rd−2ud−1

√
r′2 − f(v, u)v′2 − 2v′, (5.29)

where AΣ = 2π d−1
2 Rd−2/Γ[ d−1

2 ] is the area of its (d−2)-dimensional bound-
ary.

• A (d − 1)-dimensional strip of width l. Here, we parametrize by functions
{x(u), v(u)}, with boundary conditions x(0) = ±l/2, v(0) = t. The La-
grangian is given by

Lstrip = AΣ

ud−1

√
x′2 − f(v, u)v′2 − 2v′, (5.30)

where AΣ = 2ld−2
⊥ is the area of the two disjoint boundaries of the strip.

Now let us return to the small interval expansion. The first order correction to
the vacuum entanglement is obtained by evaluating the first order correction of

120



5.2. Holographic computation

the area Lagrangian L on the vacuum embeddings. For the two geometries, the
latter is given by

L(1)
ball = AΣ

2Rd−2udH

urd−2v′2g(v)√
r′2 − v′2 − 2v′

, (5.31)

L(1)
strip = AΣ

2udH
uv′2g(v)√

x′2 − v′2 − 2v′
. (5.32)

The vacuum embeddings corresponding to the ball and the strip are

r(u) =
√
u2
∗ − u2 , u∗ = R , (5.33)

and

x(u) = l

2 −
ud

dud−1
∗

2F1

[
1
2 ,

d
2(d−1) ,

3d−2
2(d−1) ,

u2(d−1)

u
2(d−1)
∗

]
, (5.34)

u∗ =
Γ[ 1

2(d−1) ]l
2
√
πΓ[ d

2(d−1) ]
, (5.35)

respectively, while the embedding for v is given in both the cases by

v(u) = t− u . (5.36)

Plugging these vacuum solutions into the corresponding Lagrangians we find that,
at the leading order, the change in entanglement entropy is given by

δSball(t) = AΣ

8G(d+1)
N udH

∫ u∗

0
du g(t− u)u

[
1− (u/u∗)2

] d−1
2
, (5.37)

δSstrip(t) = AΣ

8G(d+1)
N udH

∫ u∗

0
du g(t− u)u

√
1− (u/u∗)2(d−1) . (5.38)

In the next section we will argue that these expressions have a natural interpre-
tation in terms of a linear response, and we will explore some of their general
properties. Finally, we will use these expressions to study specific quench exam-
ples that are interesting in their own right.

5.2.3 Linear response of entanglement entropy
An important observation on the expressions (5.37)-(5.38) is that they can be
written as convolution integrals! In particular, if we interpret the radial direction
as a time variable u = t′, we can arrive at generic expressions that look like

δSA(t) = f(t) ∗ g(t) ≡
∫ ∞
−∞

dt′ f(t− t′)g(t′) , (5.39)

for some appropriate f(t) and g(t). In the context of linear time-invariant theory
one of these functions, say f(t), represents the input or source function while g(t)
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5. Linear response of entanglement entropy from holography

is interpreted as the impulse response of the system. However, the role of f(t) and
g(t) are actually interchangeable since, by properties of the convolution integral,
we have that f(t) ∗ g(t) = g(t) ∗ f(t).

Let us now recall that in time-independent cases the first law relation (5.15)
holds, so δSA is proportional to the change in the energy δEA contained in the
region. This is natural since, as argued in Section 5.2.1, the first correction to
the metric near the boundary comes from the contribution of the stress-energy
tensor. Now, for the Vaidya-type quenches under consideration we find that (see
Appendix 5.B)

〈T00(t)〉 ≡ ε(t) = (d− 1)g(t)
16πG(d+1)

N udH
, (5.40)

〈Tii(t)〉 ≡ P (t) = g(t)
16πG(d+1)

N udH
. (5.41)

Without loss of generality, we thus identify the energy density (5.40) as our source
function, so that

f(t) = ε(t) . (5.42)

This is a natural choice because it only depends on the quench state and not on
the parameters of the subsystem A. On the other hand, the response function will
naturally depend on the region A,

gball(t) = 2πAΣ t

(d− 1)

[
1− (t/t∗)2

] d−1
2 [θ(t)− θ(t− t∗)] , (5.43)

gstrip(t) = 2πAΣ t

(d− 1)

√
1− (t/t∗)2(d−1) [θ(t)− θ(t− t∗)] , (5.44)

where t∗ = u∗. A few comments are in order here. First notice that we have
absorbed the limits of the integral into the response function so that the integral
for δSA is written as in (5.39). Second, the time scale t∗ controls both i) the
time interval over which the response function has support and ii) its rate of
change within such interval. And third, the response function vanishes for t < 0
so the system is causal. Notice also that if the quench has compact support, i.e.
ε(t) increases only over a finite time δt = tq, then the entanglement entropy will
saturate at a time

tsat = tq + t∗. (5.45)

It is also worth pointing out that δSA inherits all the properties of convolution
integrals. For our purposes, the relevant ones are

• Linearity. If the source is a linear function f(t) = A1 · f1(t) +A2 · f2(t),

δSA(t) = A1 · f1(t) ∗ g(t) +A2 · f2(t) ∗ g(t) . (5.46)

• Time-translation invariance. If δSA(t) = f(t) ∗ g(t), then

δSA(t− t0) = f(t− t0) ∗ g(t) . (5.47)
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• Differentiation. If δSA(t) = f(t) ∗ g(t), then

dδSA(t)
dt

= df(t)
dt
∗ g(t) = f(t) ∗ dg(t)

dt
. (5.48)

• Integration. If δSA(t) = f(t) ∗ g(t), then∫
dt δSA(t) =

(∫
dt f(t)

)
·
(∫

dt g(t)
)
. (5.49)

These properties can be helpful to analyze complicated sources, for example by
decomposing them in terms of elementary functions, or to prove general properties
for the growth of entanglement entropy. We will see explicit examples of both in
the next few sections.

Adiabatic limit and the first law of entanglement entropy

Let us consider for a moment the case where f(t) = ε is a constant. In this case, the
variation of entanglement entropy reduces to the integral of the response function.
It is easy to see that in this limit we recover the first law relation:

δSA = ε

∫ t∗

0
dt′ gA(t′) = δEA

TA
, (5.50)

where EA = εVA and TA is given in (5.15)-(5.16) for the ball and the strip,
respectively.

We can generalize the above result to include adiabatic or slowly-varying
quenches. For this, we need to consider a time-dependent source that is approxi-
mately constant over all time intervals of order δt = t∗. Given such a source, it is
clear that one can still write

δSA(t) = ε(t)
∫ t∗

0
dt′ gA(t′) = δEA(t)

TA
. (5.51)

To see this more rigorously, we can integrate δSA by parts to obtain:

δSA(t) = ε(t− t′)GA(t′)
∣∣∣t′= t∗

t′= 0
−
∫ t∗

0
dt′

dε(t− t′)
dt′

GA(t′) , (5.52)

where
dGA(t)
dt

= gA(t) for 0 ≤ t ≤ t∗ . (5.53)

The constant of integration for GA(t) is chosen such that GA(0) = −VA/TA, which
in turn implies GA(t∗) = 0. For example, for a ball one finds

Gball(t) = −2πAΣt
2
∗

d2 − 1

[
1− (t/t∗)2

] d+1
2 + Cball , (5.54)
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with Cball = 0, while for a strip

Gstrip(t) = 2πAΣt
2

d2 − 1

[√
1− (t/t∗)2(d−1) + d−1

2 2F1

(
1
2 ,

1
d−1 ,

d
d−1 , (t/t∗)

2(d−1)
)]

+ Cstrip , (5.55)

with Cstrip = −Vstrip/Tstrip. With these functions at hand, one arrives at

δSA(t) = −ε(t)GA(0)−
∫ t∗

0
dt′

dε(t− t′)
dt′

GA(t′) ,

= δEA(t)
TA

−
∫ t∗

0
dt′

dε(t− t′)
dt′

GA(t′) . (5.56)

Notice also that, with this choice of integration constants, the function GA(t) is
negative definite but its norm is bounded by |GA| ≤ VA/TA. Assuming that it
takes its maximum value, we can see that the integral can be neglected as long as

dε(t)
dt
� ε(t)

t∗
. (5.57)

That is, the variation of the energy density in a time interval from t to t+ δt must
be much smaller than the energy density at any given time in this interval divided
by the width of the support of the response function. This defines our adiabatic
regime. Finally, combining with the λA-expansion, and since t∗ ∼ l, this implies
that the regime for which the first law (5.51) is valid is given by

dε(t)
dt

ld+1 � ε(t)ld � 1 . (5.58)

An analogue of relative entropy for time-dependent excited states

It is interesting to note that the second term in (5.56) can be interpreted as a kind
of relative entropy [299]. Let us define

ΥA(t) ≡ δEA(t)
TA

− δSA(t) . (5.59)

We can see that i) this quantity vanishes whenever the first law is satisfied i.e. for
equilibrium states (and is negligible for slowly varying quenches). For a quench
of compact support, this implies that ΥA(t) = 0 both for t < 0 and t > tsat.
ii) It is positive definite, so it must increase and then decrease in the interval
0 < t < tsat. And iii) for a general quench (slowly or quickly varying), it serves as
a measure of how different the out-of-equilibrium state at time t is in comparison
to an equilibrium state with the same energy density ε(t). This follows directly
from its definition combined with the fact that ΥA(t) ≥ 0.

In order to check the positivity of ΥA(t) it is convenient to express (5.59)
as a convolution integral. Changing the variable of differentiation in (5.56), i.e.
dε(t− t′)/dt′ → −dε(t− t′)/dt, and defining

G̃A(t) ≡ GA(t) [θ(t)− θ(t− t∗)] , (5.60)
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we obtain
ΥA(t) = −dε(t)

dt
∗ G̃A(t) ≥ 0 . (5.61)

The proof of the inequality is trivial since G̃A(t) ≤ 0 and dε(t)/dt ≥ 0 ∀ t, which
is required by the Null Energy Condition (NEC) in the bulk. It is worth noticing
that the NEC is intimately connected to the strong subadditivity (SSA) inequality
of entanglement entropy in the boundary theory [250,251] (see [307] for a rigorous
proof). Combining this result with the above, we can conclude that, in these time-
dependent excited states, SSA implies ΥA(t) ≥ 0, in complete analogy with the
standard relative entropy SA(ρ1|ρ0) for time-independent states [299].

As mentioned above, ΥA(t) is expected to increase and decrease in the interval
0 < t < tsat. Let us study its time derivative in more detail. Either from the
differentiation property of the convolution integral or from the definition of ΥA(t)
we obtain

dΥA(t)
dt

= −dε(t)
dt
∗ dG̃A(t)

dt

= dε(t)
dt

VA
TA
− dε(t)

dt
∗ gA(t) . (5.62)

The first term in (5.62) is just a boundary term: it comes from the derivative of
the θ(t) term in (5.60). Provided that the quench has compact support, we can
divide the time evolution in two regimes:

• Driven regime (0 < t < tq): in this stage of the evolution dε(t)/dt > 0, so
both terms in (5.62) contribute. The first term is always positive but the
second term is negative since gA(t) ≥ 0. The behavior of dε(t′)/dt in the
interval t− t∗ < t′ < t determines which of these two terms dominates.

• Transient regime (tq < t < tsat): in this stage of the evolution the source is
already turned off so dε(t)/dt = 0 and the first term in (5.62) vanishes. The
second term is still negative and finite since gA(t) ≥ 0 and dε(t′)/dt still has
support in the interval t− t∗ < t′ < t. Therefore,

dΥA(t)
dt

≤ 0 tq < t < tsat . (5.63)

Before closing this section let us point out that ΥA(t) can be rewritten directly
in terms of the quench parameters by means of the appropriate Ward identity. For
example, for a quench by a scalar operator we find

∂µ〈Tµν〉 = −〈Oφ〉∂νJφ =⇒ dε(t)
dt

= 〈Oφ(t)〉dJφ(t)
dt

, (5.64)

where Oφ is the operator dual to the bulk field φ and Jφ is the corresponding
source. For a quench by an external electric field ~E (see Appendix 5.A) we find
that

∂µ〈Tµν〉 = −〈Jµ〉Fµν =⇒ dε(t)
dt

= 〈 ~J(t)〉 · ~E(t) , (5.65)
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where ~J is the current that couples to ~E. It would be interesting to obtain sim-
ilar expressions for the growth of entanglement from the field theory perspective
and compare them with the ones obtained above in the holographic context. In
particular, it would be very interesting to ask how the functions gA(t) and GA(t)
arise from field theory computations and to explore their properties.

5.3 Particular cases

In this section we will study the time evolution of entanglement entropy in some
particular cases of interest. First, we will review the results of [288] for instanta-
neous quenches (where tq → 0) and analyze the quantity ΥA(t) defined above in
more detail. Then we will consider a representative set of quenches of finite tq and
study the driven and transient regimes. Finally, we consider quenches of infinite
duration, where tq → ∞. In this scenario, the transient regime disappears and
entanglement entropy never reaches saturation. We pay particular attention to
the case of a linearly driven quench, where we recover the results of [289], and the
periodically driven quench, where we make contact with the results of [308,309].

5.3.1 Instantaneous quench
Let us first consider an instantaneous quench, where the source is given by

f(t) = ε(t) = ε0 θ(t) . (5.66)

Then, the entanglement entropy (5.39) reduces to the convolution of (5.66) with
the appropriate response function, (5.43) for the ball or (5.44) for the strip. The
two integrals were carried out explicitly in [288], leading to

δSA(t) =


0 t < 0 ,
δSeq

A FA(t/tsat) 0 < t < tsat ,

δSeq
A t > tsat ,

(5.67)

where δSeq
A = δEA/TA is the equilibrium value of entanglement entropy after

saturation,

δSeq
ball = 4π d−1

2 Rdε0

(d2 − 1)Γ[ d−1
2 ]

, (5.68)

δSeq
strip =

√
πΓ[ 1

d−1 ]Γ[ 1
2(d−1) ]2ld−2

⊥ l2ε0

2(d2 − 1)Γ[ d+1
2(d−1) ]Γ[ d

2(d−1) ]2
, (5.69)

and FA(x) is a function that characterizes its growth and thermalization,

Fball(x) = 1−
(
1− x2) d+1

2 , (5.70)

Fstrip(x) =
2Γ[ d+1

2(d−1) ]x2

√
πΓ[ 1

d−1 ]

[√
1− x2(d−1) + d−1

2 2F1

(
1
2 ,

1
d−1 ,

d
d−1 , x

2(d−1)
)]

.
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Figure 5.1: Evolution of δSA(t) for the ball (a) and the strip (b) in d = {2, 3, 4, 5}
dimensions, depicted in red, orange, green and blue, respectively.

An important observation here is that, contrary to the large subsystem limit, Seq
A

does not scale like the volume, so it is not extensive.10 We will see the implications
of this below. The saturation time in each case is given by the width of the response
function, i.e.

tsat = t∗ =


R , (ball)

Γ[ 1
2(d−1) ]l

2
√
πΓ[ d

2(d−1) ]
. (strip)

(5.71)

Figure 5.1 shows the evolution of entanglement entropy for the ball and the strip
in various number of dimensions. Let us now review the basic properties of the
entanglement growth pointed out in [288]:

• Early-time growth. For t� tsat there is a universal regime, where

δSA(t) = π

d− 1ε0AΣt
2 + · · · (5.72)

This result is independent of the shape of the region and holds both for small
and large subsystems. The proof presented in [288] made it clear that this
behavior is fixed by the symmetries of the dual theory, in this case conformal
symmetry.

• Quasi-linear growth. For intermediate times t ∼ tmax, there is a regime for
some 0 < tmax < tsat where

δSA(t)− δSA(tmax) = vmax
A seqAAΣ(t− tmax) + · · · (5.73)

where seqA = δSeq
A /VA. Contrary to the large subsystem limit, seqA here

depends on the shape of the region and so does vmax
A . Therefore, (5.73) is

not universal in the same sense as (5.9). However, it turns out that vmax
A

does not depend on the parameters of the state (e.g. chemical potentials
10For large subsystems, the equilibrium value of entanglement entropy is proportional to the

thermal entropy density: δSeq
A = sthVA.
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and conserved charges), while the tsunami velocity vE generally does. This
new universal behavior for small subsystems follows directly from the fact
that the leading correction near the boundary is given by the stress-energy
tensor, while the contributions from other operators are subleading (see the
discussion at the end of Section 5.2.1). The maximum rate of growth is
found to be

vmax
ball = (1 + d)(d− 1) d−3

2

dd/2
=



3
2 , d = 2 ,

0.7698 , d = 3 ,

0.5413 , d = 4 ,

0 , d→∞ ,

(5.74)

for the case of the ball, and

vmax
strip =

4(d− 1)3/2Γ[ 3d−1
2(d−1) ]Γ[ d

2(d−1) ]

d
d

2(d−1) Γ[ 1
2(d−1) ]Γ[ 1

d−1 ]
=



3
2 , d = 2 ,

0.9464 , d = 3 ,

0.7046 , d = 4 ,

0 , d→∞ .

(5.75)

for the strip. We emphasize that vmax
A is not necessarily a physical velocity.

However, the fact that vmax
A > 1 in d = 2 implies that the quasi-particle

picture [237] and the tsunami picture [244] break down in the limit of small
regions.11 On the other hand, if we define an instantaneous rate of growth,

RA(t) = 1
seqAAΣ

d δSA(t)
dt

, (5.76)

it can be shown that for any subsystem 〈RA(t)〉 ≡ vavgA ≤ 1. The proof of
this inequality follows from bulk causality [288]. In particular, for the two
geometries that we are considering, we find that

vavgball = 1
d− 1 =



1 , d = 2 ,
1
2 , d = 3 ,
1
3 , d = 4 ,

0 , d→∞ ,

(5.77)

and

vavgstrip =
√
πΓ[ d

2(d−1) ]
Γ[ 1

2(d−1) ]
=



1 , d = 2 ,

0.5991 , d = 3 ,

0.4312 , d = 4 ,

0 , d→∞ .

(5.78)

11In nonlocal higher-dimensional theories, vE can also exceed the speed of light [310].
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Figure 5.2: Evolution of ΥA(t), defined in (5.59), for the case of the ball (a) and
the strip (b) in d = {2, 3, 4, 5} dimensions, depicted in red, orange, green and blue,
respectively.

• Approach to saturation. In the limit t → tsat, entanglement entropy is also
universal (with respect to the state) and resembles a continuous, second-
order phase transition

δSA(t)− δSeq
A ∝ (tsat − t)γA , (5.79)

where
γball = d+ 1

2 , γstrip = 3
2 . (5.80)

This is in contrast with the result for large subsystems, where the saturation
can be continuous or discontinuous, depending both on the shape of the
region and the parameters of the state.

Before proceeding with more examples, let us study and comment on the quan-
tity ΥA(t) defined in (5.59). From the definition, it follows that for instantaneous
quenches

ΥA(t) = ε0VA/TA − δSeq
A FA(t/tsat) , 0 < t < tsat , (5.81)

and ΥA(t) = 0 otherwise. Figure 5.2 shows different examples of the evolution
of ΥA(t) for instantaneous quenches, both for the ball and the strip in various
dimensions. These figures illustrate the expected behavior from our discussion in
Section 5.2.3: i) it vanishes in equilibrium (both for t < 0 and t > tsat), ii) it
is positive definite, and iii) it decreases monotonically in the transient regime,
which in this case is given by 0 < t < tsat. Notice that since the quench is
instantaneous, the “driven regime” is thus limited to the single point t = 0, where
ΥA(t) increases discontinuously. Finally, it is worth pointing out that the behavior
of ΥA(t) throughout its evolution exemplifies its role as a measure of “distance”
between the out-of-equilibrium state and an equilibrium state at the same energy
density: it is maximal right after the quench and relaxes back to zero as t→ tsat.
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Case I: tq < t∗ Case II: t∗ < tq
Pre-quench t < 0 t < 0

Initial 0 < t < tq 0 < t < t∗
Intermediate tq < t < t∗ t∗ < t < tq

Final t∗ < t < tsat tq < t < tsat
Post-saturation t > tsat t > tsat.

Table 5.1: The different regimes for power-law quenches.

5.3.2 Power-law quench
Let us now study some representative quenches of finite duration tq. The family
of quenches that we will consider are power-law quenches, with energy density of
the form

f(t) = ε(t) = σtp[θ(t)− θ(t− tq)] + ε0 θ(t− tq) . (5.82)

Here, ε0 = σtpq is the final energy density. Notice that, given the linearity of the
convolution integral, considering the family of power-law quenches given above for
p ∈ Z is already general enough to represent any quench that is analytic on the
interval t ∈ (0, tq). Therefore, we will restrict our attention to power-law quenches
with integer p.

Again, the entanglement entropy (5.39) reduces to the convolution of (5.82)
with the appropriate response function: (5.43) for the ball or (5.44) for the strip.
Interestingly, for both geometries the integral can be performed analytically. There
are two distinct cases to consider: I. tq < t∗ and II. t∗ < tq. In both cases the
saturation time is given by tsat = tq + t∗ and the evolution can be split and
analyzed in various intervals, as illustrated in Table 5.1.

The pre-quench and post-saturation regimes are in equilibrium so ΥA vanishes.
This yields δSA = 0 for t < 0 and δSA = ε0VA/TA for t > tsat, as expected.
The initial, intermediate and final regimes are generally time dependent. The
final expressions are lengthy, so for ease of notation we will define some indefinite
integrals,

I(p)
A (t, t′) =

∫
dt′ (t− t′)pgA(t′) . (5.83)

These integrals can be performed analytically for any value of p and both geome-
tries of interest. To proceed, we expand the binomial (t − t′)p and perform the
individual integrals. The final result can be written as

I(p)
A (t, t′) = 2πAΣ

d− 1

p∑
k=0

(
p

k

)
tp−k(−t′)k+2

k + 2 T (p,k)
A (t′) , (5.84)

where

T (p,k)
ball (t′) = 2F1

[
1−d

2 , k+2
2 , k+4

2 , t
′2

t2∗

]
, (5.85)

T (p,k)
strip (t′) = 2F1

[
− 1

2 ,
k+2

2(d−1) ,
k+2d

2(d−1) ,
t′2(d−1)

t
2(d−1)
∗

]
. (5.86)
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In terms of these integrals, δSA(t) can be expressed as follows,

δS
(I)
A (t) =



0 , t < 0 ,
σI(p)

A (t, t′)|t0 , 0 < t < tq ,

ε0I(0)
A (t, t′)|t−tq0 + σI(p)

A (t, t′)|tt−tq , tq < t < t∗ ,

ε0I(0)
A (t, t′)|t−tq0 + σI(p)

A (t, t′)|t∗t−tq , t∗ < t < tsat ,

ε0I(0)
A (t, t′)|t∗0 , t > tsat ,

(5.87)

and

δS
(II)
A (t) =



0 , t < 0 ,
σI(p)

A (t, t′)|t0 , 0 < t < t∗ ,

σI(p)
A (t, t′)|t∗0 , t∗ < t < tq ,

ε0I(0)
A (t, t′)|t−tq0 + σI(p)

A (t, t′)|t∗t−tq , tq < t < tsat ,

ε0I(0)
A (t, t′)|t∗0 , t > tsat ,

(5.88)

respectively, where all the evaluations are for the integration variable t′. These
expressions can be easily understood graphically—see Figure 5.3 for an example.

The special case of a linear quench (p = 1) was considered in [289] so it is
interesting to study it in some detail. Specifically, the authors of [289] looked at a
steady state system where tq →∞ and focused on the fully driven regime, where
t > t∗. Under these assumptions, they found that entanglement entropy satisfies
a “First Law Of Entanglement Rates” (FLOER), given by

dδSA(t)
dt

= dε(t)
dt

VA
TA

. (5.89)

The origin of this law is very easy to understand from the definition of the “time-
dependent relative entropy” ΥA(t) in equation (5.61). Since dε(t)/dt is constant
in this regime, it follows that ΥA(t) is also a constant. Then from (5.59) we can
immediately derive equation (5.89). It is worth pointing out the fact that ΥA is
constant in non-equilibrium steady states is in agreement with the interpretation
of ΥA as a measure of the distance between a given state with respect to an
equilibrium state at the same energy density.

It is also interesting to study the other regimes of the linear quench. In Fig-
ure 5.4 we plot δSA(t), RA(t) and ΥA(t) for some representative cases of the
ratio tq/t∗ = {0.1, 1, 10}. The behavior of these quantities is very similar for the
two geometries that we considered, so for brevity we have only included plots of
the case of the ball. For tq/t∗ � 1 the quench is almost instantaneous, so all
the physical observables resemble those of Section 5.3.1. In the opposite regime
tq/t∗ � 1, most part of the evolution is fully driven, so apart from the initial
and final transients, the evolution is governed by the FLOER (5.89). Finally, in
the intermediate regime tq ∼ t∗ we see a smooth crossover between the latter two
cases. In the exact limit tq → t∗, the fully driven (or intermediate) regime dis-
appears and the evolution is fully captured by the two transients (the initial and
final regimes).
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Case I: tq < t∗ Case II: t∗ < tq

t− tq t t∗
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f(t− t′)

t′

Post-saturation

Figure 5.3: Schematic representation of the convolution integral for a power-law
quench with p = 1. The right and left columns show the two possible cases
I: tq < t∗ and II: t∗ < tq, respectively. In the pre-quench and post-saturation
regimes the integral is a constant. In the initial, intermediate and final growth
regimes the integral is time dependent and can be performed by splitting it in
various intervals, as shown in equations (5.87) and (5.88).
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Figure 5.4: Plots of entanglement entropy δSA(t), instantaneous rate of growth
RA(t) and time-dependent relative entropy ΥA(t) for the ball, after a linearly
driven quench with p = 1. Different values of d = {2, 3, 4, 5} are depicted in red,
yellow, green and blue, respectively, and we have chosen values tq/t∗ = {0.1, 1, 10}
from left to the right. In all plots, the dashed vertical line signals the end of the
driven phase t = tq.

Finally, in Figure 5.5 we plot δSA(t), RA(t) and ΥA(t) for other values of
the power p. For concreteness, we have only included plots for the case of the
ball and we have fixed the number of dimensions to d = 2. Other values of
d behave similarly. For the plots we have chosen the same representative cases
for the duration of the quench: tq/t∗ = {0.1, 1, 10}. Here we list some general
observations valid for arbitrary p:

• The early-time growth generally depends on the power p. From the final
formulas it follows that, for both geometries,

δSA(t) = 2πσAΣt
p+2

(d− 1)(2 + 3p+ p2) + · · · . (5.90)

This generalizes the result (5.72) for instantaneous quenches (p = 0) to
arbitrary p. The proof presented in [288] for the universality of the early-
time growth was entirely based on symmetries and can be easily generalized
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Figure 5.5: Plots of entanglement entropy δSA(t), instantaneous rate of growth
RA(t) and time-dependent relative entropy ΥA(t) for the ball, after a power-law
quench with p = {1, 2, 5, 10}, depicted in red, yellow, green and blue, respectively.
For the plots we have fixed the number of dimensions to d = 2 and we have chosen
values tq/t∗ = {0.1, 1, 10} from left to the right. In all plots, the dashed vertical
line signals the end of the driven phase t = tq.

to quenches of finite duration. Following the same reasoning, it is possible
to conclude that (5.90) should hold independently of the shape and size of
the entangling region.

• The maximum rate of growth decreases monotonically as we increase tq, so
it peaks in the limit of instantaneous quenches tq → 0. Since this limit is
universal (independent of p), we conclude that (5.74) and (5.75) are the true
maxima for the rate of growth of entanglement for any tq. On the other
hand, the maximum rate of growth at fixed tq grows with p, reaching a
maximum of vmax

A (tq, p → ∞) = vmax
A (tq → 0, p), which correspond to the

same value as that of the instantaneous quench. This follows from the fact
that a power-law quench with p → ∞ varies very rapidly near t → tq so it
behaves similarly to an instantaneous quench at t = tq.

• The proof that 〈RA(t)〉 ≡ vavgA ≤ 1 presented in [288] holds for a quench of
finite duration. In order to see this, one can think of the finite tq background
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as a collection of thin shells spread over the range v ∈ [0, tq] so the derivation
follows in a similar manner. It is easy to see that the average velocities (5.77)
and (5.78) generalize to

vavgA (tq, p) = vavgA (tq → 0)
1 + tq/t∗

, (5.91)

independent of p, so finite tq decreases the average speed of entanglement
propagation.

• Near saturation t → tsat, entanglement entropy is always continuous and
resembles a second order phase transition,

δSA(t)− δSeq
A ∝ (tsat − t)γA , (5.92)

where
γball = d+ 3

2 , γstrip = 5
2 , (5.93)

for any p > 0. It is interesting that the above result does not extrapolate
to the instantaneous quench (p = 0), which seems to be an isolated case.
These exponents can be derived directly from the two integrals of the stage
prior to saturation in (5.87) and (5.88), respectively. The leading term of
each integral goes like (tsat − t)

d+1
2 for the ball and (tsat − t)

3
2 for the strip.

However, the contribution of the two integrals cancel exactly. The exponents
in (5.93) then come from the first subleading terms of the integrals. The
reason why the p = 0 case is special is because the second integral in (5.87)
and (5.88) is absent, so the values of γ come from the leading behavior of
the first integral. This implies that the behavior of entanglement entropy
near saturation can single out instantaneous quenches over quenches of finite
duration!

• ΥA(t) is bounded from above: ΥA(t) ≤ δEeq
A /TA. This maximum value

is attained i) right after an instantaneous quench and ii) at t = tq in the
limit p → ∞. As mentioned above, a power-law quench with p → ∞ re-
sembles an instantaneous quench at t = tq so i) and ii) actually correspond
to a similar physical situation. The existence of such a bound is interesting
and reasonable from the point of view of the interpretation of ΥA(t) as a
measure of out-of-equilibrium dynamics: it tells us that the furthest that
a time-dependent state can be from equilibrium is right after an instanta-
neous quench (which is the most violent dynamical perturbation). We also
observe that the derivative of ΥA(t) is discontinuous at t = tq so it efficiently
captures the transition from the driven to the transient regime. This is in
contrast with the other two observables, δSA(t) and RA(t), for which the
derivatives are continuous.

5.3.3 Periodically driven quench
As a last example, we will consider a periodically driven system. The idea here
is to phenomenologically model the setup of [308,309] and obtain analytic results
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for the evolution of entanglement entropy in the regime where the linear response
is valid. For concreteness, we will assume that the energy density is given by12

f(t) = ε(t) = ε0 sin(ωt)θ(t) , (5.94)

where ω is the driving frequency and ε0 is an arbitrary constant. Given the
linearity of the convolution integral, a source with a single frequency as in (5.94)
is general enough to reproduce any other periodic source that admits a Fourier
decomposition.

Once more, the entanglement entropy (5.39) reduces to the convolution of
(5.94) with the appropriate response function: (5.43) for the ball or (5.44) for the
strip. We start driving the system at t = 0 and assume that the quench duration
is infinite, tq → ∞. Under these circumstances, the evolution of entanglement
entropy can be divided into three intervals: pre-quench (t < 0), initial (0 < t < t∗)
and fully driven regime (t > t∗), where

δSA(t) =


0 , t < 0 ,
ε0
∫ t

0 dt
′ sin(ω(t− t′))gA(t′) , 0 < t < t∗ ,

ε0
∫ t∗

0 dt′ sin(ω(t− t′))gA(t′) , t > t∗ .

(5.95)

The initial stage is a quick transient. We will be mostly interested in the fully
driven phase so in the rest of this section we will assume that t > t∗. It is easy
to see that in this regime, entanglement entropy satisfies the equation of a simple
harmonic oscillator. Differentiating (5.95) twice with respect to t we obtain

d2δSA
dt2

+ ω2δSA = 0 , (5.96)

whose solutions we denote by:

δSA(t) = AA(ω) sin(ωt+ φA(ω)) . (5.97)

Surprisingly, it is possible to obtain analytic results for AA(ω) and φA(ω) for the
two geometries of interest. For ease of notation, we will rewrite (5.97) as

δSA(t) = ψA(ω) cos(ωt) + χA(ω) sin(ωt) , (5.98)

and then express the amplitude and phase through

AA(ω) =
√
ψ2
A(ω) + χ2

A(ω) , φA(ω) = arctan
(
ψA(ω)
χA(ω)

)
. (5.99)

12Notice that a periodic energy density is unphysical since it violates the null energy condition
[250,251]. We can easily make (5.94) non-decreasing by adding a monotonically increasing term
to compensate (which we will do below). However, in light of the linearity property of the
convolution integral, these two terms can be treated independently.
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For the case of the ball we can obtain closed expressions for arbitrary d in terms
of hypergeometric functions:

ψball = −
ε0ωπ

d+2
2 td+1
∗ 0F1

[
d+4

2 ,− (ωt∗)2

4

]
2Γ[ d+4

2 ]
, (5.100)

χball =
ε0π

d+1
2 td∗1F2

[
1, 1

2 ,
d+3

2 ,− (ωt∗)2

4

]
Γ[ d+3

2 ]
. (5.101)

For a strip, one can obtain expressions for a fixed number of dimensions. For
example, in d = 3 one obtains:

ψ
(d=3)
strip = ε0ωπ

3
2 l⊥t

3
∗

24Γ[ 9
4 ]Γ[ 11

4 ]

(
Γ[54 ]Γ[94 ]ω2t2∗0F3

[
3
2 ,

7
4 ,

11
4 ,
(
ωt∗
4

)4
]

(5.102)

−6Γ[34 ]Γ[11
4 ]0F3

[
1
2 ,

5
4 ,

9
4 ,
(
ωt∗
4

)4
])

,

χ
(d=3)
strip = ε0πl⊥t

2
∗

12

(
3π0F3

[
1
4 ,

3
4 , 2,

(
ωt∗
4

)4
]

(5.103)

−2ω2t2∗1F4

[
1, 3

4 ,
5
4 ,

3
2 ,

5
2 ,
(
ωt∗
4

)4
])

.

Expressions for higher dimensions are straightforward to obtain but become in-
creasingly cumbersome, so we will not transcribe them here.

It is interesting to study the behavior of AA and φA as a function of ω for the
various cases of interest. In Figure 5.6 we plot the amplitudes and relative phases
for both the ball and the strip in different number of dimensions d = {2, 3, 4, 5, 6}.
In all cases, the amplitudes peak at ω → 0 and slowly decay as ω →∞, displaying
mild oscillations at intermediate frequencies. The behavior of the relative phases
is markedly different in various cases. For the case of the ball in d = {2, 3}
and the strip in any number of dimensions the phase varies monotonically in the
whole range φA ∈ (0, 2π). For the case of the ball in d ≥ 4 we see an interesting
phenomenon: the relative phase is constrained in a finite interval around φball = π.
This interval becomes narrower as ω is increased, indicating that the entanglement
entropy tends to be out of phase with respect to the source. Indeed, in the strict
limit ω →∞ the relative phase approaches π, which implies that the entanglement
entropy is exactly out of phase with the source in this limit.

We remind the reader that a periodic source as in (5.94) is unphysical since
it violates the NEC [250, 251]. In keeping with the laws of black hole thermody-
namics, the black hole mass should be non-decreasing. It is easy to make (5.94)
non-decreasing by simply adding an monotonically increasing source. The easiest
example is to add a linear pump:

f(t) = ε(t) = ε0 (sin (ωt) + ζ t) θ(t) , ζ ≥ ω. (5.104)
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Figure 5.6: Normalized amplitude ÃA = AA/AΣε0 and relative phase φA as a function
of ωt∗ for the two geometries of interest: the ball and the strip. The various lines corre-
spond to d = {2, 3, 4, 5, 6} depicted in red, orange, green, blue and yellow, respectively.

Since we are considering linear response, we can simply add the expressions for
the periodic and linear quenches, the later corresponding to the case p = 1 and
tq →∞ in the notation of the previous subsection.

The full entanglement evolution, with and without the linear driving, is plotted
for sample parameters in Figure 5.7. It is worth noticing that the evolution of
entanglement entropy is monotonically increasing for the cases where the energy
density respects the NEC. This follows directly from property of differentiation
of the convolution integral. Since gA(t) ≥ 0 and, assuming that dε(t)/dt ≥ 0, it
follows that in the linear response regime

dδSA(t)
dt

= dε(t)
dt
∗ gA(t) ≥ 0 , (5.105)

so the system is dissipative. In contrast, the authors of [308,309] obtained a more
intricate phase space, where the system transitions from a dissipation dominated
phase (linear response) to a resonant amplification phase where entanglement en-
tropy is not necessarily monotonic. These non-monotonicities arise because the
extremal surfaces in such a regime probe deeper into the bulk and bend back-
wards in time, thus receiving contributions from different time slices. It would be
interesting to compute higher order contributions to the entanglement entropy for
small subsystems to study this transition analytically. Finally, the time-dependent
relative entropy behaves as expected with and without the linear pump. For the
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Figure 5.7: Sample plots for the source ε(t) (solid blue) entanglement entropy
δSA(t) (dashed red) and relative entropy ΥA(t) (dot-dashed green) for a ball-
shaped region in d = 3 dimensions. For the plots we have chosen the following
parameters: ε0 = 1, t∗ = 1 and ω = 3, for (a) a purely periodic source and (b) a
source respecting the bulk NEC with ζ = 3.

purely oscillatory source, ΥA(t) quickly reaches a periodic evolution after the ini-
tial transient. From the definition (5.59) it follows that in the fully driven regime

ΥA(t) = ψA(ω) cos(ωt) +
(
χA(ω) + ε0VA

TA

)
sin(ωt) . (5.106)

Therefore, ΥA(t) has an amplitude and phase that can be determined from anal-
ogous expressions to (5.99), with χA → χA + ε0VA/TA. For the oscillatory source
with a linear pump term, ΥA(t) oscillates around a constant value Υ(p=1)

A which
is bigger than the amplitude of the oscillation. This is indeed expected since
ΥA(t) ≥ 0 for any source that respects the bulk NEC.

5.4 Conclusions and outlook

In this chapter, we have studied analytic expressions for the evolution of entangle-
ment entropy after a variety of time-dependent perturbations. We obtained these
results from holography, using a Vaidya geometry as a model of a quench. Analytic
results can be obtained to leading order in the small subsystem limit, comparing
to the energy injected in the quench. In this limit, the change in entanglement
entropy δSA(t) follows a linear response, where the energy density takes the role
of the source—see Figure 5.8 for a schematic diagram showing how this linear
response fits in the different regimes of entanglement propagation. Being a linear
response, the resulting expression for δSA(t) can be conveniently written as a con-
volution integral (5.39) of the source against a kernel which depends only on the
geometry of the subsystem under consideration. We determined this kernel (also
known as response function) for ball and strip subsystems in (5.43) and (5.44),
respectively.
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Figure 5.8: Schematic diagram of the different regimes of interest of entanglement
propagation for (a) fast quenches tq → 0 and (b) slow quenches tq →∞. The blue
region corresponds to the small subsystem limit. The dashed vertical line in this
region is a separatrix that signals the point at which the first law of entanglement
starts to be valid. The dashed regions in the upper right corners correspond to the
large subsystem limit. For fast quenches the spread of entanglement this region
is well described by the heuristic entanglement tsunami picture, however in some
special cases it admits an microscopic interpretation in terms of quasi-particles.
For sufficiently slow quenches the system can be considered very close to equilib-
rium so the standard rules of thermodynamics apply. In this limit entanglement
entropy reduces to thermal entropy, which evolves adiabatically.

For small time-independent perturbations around the vacuum, entanglement
entropy satisfies a relation similar to the first law of thermodynamics. Our linear
response relation reduces to this first law if the quench profile varies sufficiently
slowly. In order to quantify this statement, we introduced a quantity ΥA(t) in
(5.59) as a measure for how far the system is from satisfying the first law of
entanglement entropy. This ΥA(t) can be thought of as comparing the reduced
density matrix of our system at a time t to a thermal density matrix at the same
energy density. It also resembles relative entropy in several ways. First, it is
positive for quench profiles that satisfy the NEC in the bulk. Second, it vanishes
at equilibrium, so for quenches of finite duration it returns to zero once the system
has thermalized. Furthermore, in contrast to δSA(t) or the rate of growth RA(t),
the quantity ΥA(t) undergoes a discontinuous first-order transition at the end of
the driven phase of a quench, which clearly signals the approach to thermality
that follows.

After incorporating the instantaneous quenches studied in [288] in our frame-
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work, we turned to quenches of finite duration tq with a power-law time depen-
dence ε(t) ∝ tp. Since our convolution expression is linear in the source, these
are in principle general enough to determine δSA(t) for any quench that is ana-
lytic in the interval t ∈ (0, tq). Quenches of finite duration exhibit some distinct
features. Most notably, the rate of growth of entanglement decreases with increas-
ing tq for a fixed p. Furthermore, inspection of ΥA(t) confirms that the system
is maximally out-of-equilibrium after an instantaneous quench. This sets an up-
per bound, ΥA(t) ≤ δEeq

A /TA, which can be attained right after an instantaneous
quench, or at t = tq in the limit p→∞. We also commented on the results of [289]
for linearly increasing sources and showed that they can be easily understood in
terms of the linear response formalism.

Finally, we studied the evolution of entanglement entropy after quenches in-
volving a periodic source. We focused on sources with a single frequency ε(t) ∝
sin(ωt). However, given the linearity of the convolution integral, our results can
be easily generalized to any periodic source that admits a Fourier decomposition.
Following an initial transient regime, δSA(t) and ΥA(t) are both periodic but out
of phase with respect to the energy density. We found analytic expressions for the
amplitudes and relative phases for the ball and strip geometries in any number of
dimensions. We found an interesting transition for ball-shaped regions in d ≥ 4,
where the entanglement entropy tends to be completely out of phase with respect
to the source for large enough frequencies. We also commented on the numerical
results of [308, 309], finding qualitative agreement with our results in the regime
where the linear response is valid.

There are a number of open questions related to our work that are worth exploring.
For example, our results for the entanglement growth are valid in the strict limit
of infinite coupling, as is evident from the use of Einstein gravity in the bulk.
It would be worthwhile to explore the universality of our results in holographic
theories with higher derivative corrections. For instance, in time-independent
cases, adding a Gauss-Bonnet term changes the entanglement temperature TA for
strip regions but not for ball regions [294]. It would be interesting to see the effect
of various higher-curvature corrections to our entanglement kernels.

It should also be possible to derive a linear response of entanglement entropy
from a purely field theoretic computation. One way to see this is as follows. Using
the replica trick, entanglement entropy can be computed from two-point functions
of twist operators. For small subsystems, these two-point functions can be ex-
panded using their OPEs. Furthermore, if we study this two-point function using,
say, the Schwinger-Keldysh formalism, it is expected to have a linear response
relation in the appropriate limit.13

It would also be interesting to find a field theory derivation of our linear re-
sponse expressions for large c CFTs, perhaps along the lines of [312]. In the large
c limit, the leading contribution is given by the stress-energy tensor, which is dual
to the leading metric contribution to δSA(t) discussed here. A natural question to
ask is what the response function gA(t) corresponds to in field theory language.

13See also [311] for related results.
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Another natural generalization would be to compute subleading corrections
from other operators running in the OPE. A similar question was considered re-
cently in [313] for time-independent scenarios. Based on their findings, we expect
that the linear response that we found here should include extra contributions
from one-point functions of operators dual to other light bulk fields, each with a
different kernel.

5.A Example: Electric field quench in AdS4/CFT3

As a concrete example, we will consider an electric field quench in the context of
AdS4/CFT3. The starting point is the Einstein–Hilbert action with a negative
cosmological constant coupled to a Maxwell field,14

S = 1
2κ2

∫
d4x
√
−g
(
R+ 6− F 2) , (5.107)

where κ2 = 8πG. The gauge field Aµ is dual to a conserved current in the boundary
theory Jµ = {ρ, ~J}. The quench is introduced here by an external, time-dependent
electric field ~E = E(t)x̂. In the boundary theory, ~E sources ~J , so the system is
described by the following partition function,

Z[ ~E] =
∫
D ~Jei

∫
ddx(L+~E· ~J) . (5.108)

Interestingly, the above system admits an analytic, fully backreacted solution for
an arbitrary electric field E(t) [305]. The bulk solution can be written in the
following form,

ds2 = 1
u2

(
−f(v, u)dv2 − 2dvdu+ dx2 + dy2) , (5.109)

F = −E(v)dv ∧ dx , (5.110)

where
f(v, u) = 1− u3m(v) , m(v) = 1

2

∫ v

−∞
E(v′)2dv′ . (5.111)

The metric (5.109) is written in terms of Eddington-Finkelstein coordinates, so
v labels ingoing null trajectories. This variable is related to the standard time
coordinate t through

dv = dt− du

f(v, u) . (5.112)

In particular, near the boundary u→ 0 we have that f(v, u)→ 1 so

v ' t− u . (5.113)

14Alternatively, we could start with Einstein gravity coupled to a DBI action and turn on an
electric field on the brane, see for example [314–317].
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Re-expressing the above solution in terms of the standard AdS coordinates, we
find that

Fxt = E(v) , Fxu = −E(v)/f(v, u) . (5.114)

The electric field E(t) = limu→0 Fxt induces a current in the boundary theory

J(t) = −(4πG)−1 lim
u→0

Fxu,

so the conductivity turns out to be a constant even nonlinearly,

σ(ω) = σDC = J(ω)
E(ω) = 1

4πG . (5.115)

A trivial consequence is that the energy (ADM mass) M = (8πG)−1m increases
at the rate predicted by Joule heating, dM/dt = ~E · ~J , which from the boundary
perspective, this follows from the fact that the stress tensor satisfies

∂µT
µν = FµνJµ . (5.116)

This equation can be derived on general grounds from the appropriate Ward iden-
tity.

5.B Holographic stress-energy tensor

In order to compute the stress-energy tensor for a general Vaidya quench we have
to write the metric (5.26) in Fefferman-Graham coordinates

ds2 = 1
z2

(
gµν(z, x)dxµdxν + dz2) . (5.117)

For an asymptotically AdSd+1 geometry, the function gµν(z, x) has the following
expansion near the boundary (located at z → 0),

gµν(z, x) = g(0)
µν (x) + z2g(2)

µν (x) + · · ·
+zdg(d)

µν (x) + zd log(z2)h(d)
µν (x) + · · · . (5.118)

From this expansion we can extract the CFT metric, ds̃2 = g
(0)
µν (x)dxµdxν , and

the expectation value of the stress-energy tensor [62,318]

〈Tµν(x)〉 = d

16πG(d+1)
N

(
g(d)
µν (x) +X(d)

µν (x)
)
. (5.119)

The last term in (5.119) is related to the gravitational conformal anomaly, and
vanishes in odd dimensions. In even dimensions we have, for example,

X(2)
µν = −gµνg(2)α

α , (5.120)

X(4)
µν = −1

8gµν
[(
g(2)α
α

)2
− g(2)β

α g
(2)α
β

]
− 1

2g
(2)α
µ g(2)

αν + 1
4g

(2)
µν g

(2)α
α .
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In higher dimensions X(d)
µν is given by similar but more long-winded expressions

that we will not transcribe here.
Consider the case f(v, u) = 1, i.e. pure AdS in Eddington-Finkelstein coordi-

nates. The transformation in this case is the following,

v = t− z , u = z , (5.121)

and leads to
ds2 = 1

z2

(
ηµνdx

µdxν + dz2) . (5.122)

As expected, this is empty AdS written in Poincaré coordinates, where we have
〈Tµν(x)〉 = 0. For f(v, u) 6= 1 we can proceed perturbatively. Specifically, after
the coordinate transformation

v = t− z
[
1 + (d− 1)g(t)zd

2d(d+ 1)udH
+ · · ·

]
, (5.123)

u = z

[
1− g(t)zd

2d udH
+ · · ·

]
, (5.124)

we arrive at
ds2 = 1

z2

[
(ηµν + τµνz

d + · · · )dxµdxν + dz2] , (5.125)

where

τ00 = (d− 1)g(t)
d udH

, τii = g(t)
d udH

. (5.126)

From here it follows that

〈T00(t)〉 ≡ ε(t) = (d− 1)g(t)
16πG(d+1)

N udH
, (5.127)

〈Tii(t)〉 ≡ P (t) = g(t)
16πG(d+1)

N udH
. (5.128)

Notice that the stress-energy tensor is traceless, as expected for a CFT.
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We conclude this thesis with a brief summary and outlook, highlighting some
elements of the individual chapters. A non-technical Dutch summary can be found
on page 171.

Background The perturbative approach to quantum field theory has been im-
mensely successful. It has led to some of the most precise experimentally-verified
predictions in physics. However, it also has several shortcomings, two of which
are discussed in Chapter 1. First, a perturbative approach is only useful if small
coupling constants are available. In many physically relevant theories, such as the
gauge theory describing the strong nuclear force, this is not the case. Second, var-
ious nonperturbative effects such as magnetic monopoles and instantons in gauge
theory lead to an inherent limitation on the applicability of perturbative methods.
Both of these shortcomings motivate dual descriptions of quantum field theory
through a string-theoretic construction.

The Alday–Gaiotto–Tachikawa (AGT) correspondence relates supersymmetric
four-dimensional gauge theories to two-dimensional conformal field theories. It can
be understood as the most recent incarnation of the idea that four-dimensional
gauge theories can be described in terms of two-dimensional Riemann surfaces.
This idea can be traced back to the symmetry in Maxwell’s equations exchanging
electric and magnetic charge.

The AdS/CFT correspondence allows us to describe a d-dimensional strongly-
coupled conformal field theory (CFT) in terms of a (d + 1)-dimensional gravita-
tional theory on an anti-de Sitter (AdS) spacetime. The latter is a maximally
symmetric spacetime with negative scalar curvature. Its isometries are equal to
the d-dimensional conformal group. Moreover, AdS is a solid cylinder where dis-
tances increase asymptotically towards the boundary of the cylinder. The metric
on this conformal boundary is only defined up to Weyl transformations, and we
often think of the dual CFT as living on the boundary of AdS. For this reason, the
field theory is commonly known as the boundary theory, while the gravitational
theory is referred to as the bulk theory.

In this thesis, we have investigated several applications and extensions of the
AdS/CFT and AGT correspondence. Although the AdS/CFT correspondence
has its origins in detailed string theory constructions, many aspects of the associ-
ated dictionary seem to rely only on basic features of its geometry and symmetry.
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Consequently, one can apply the AdS/CFT correspondence to model strongly-
coupled field theories in terms of a suitable bulk theory. However, many interest-
ing strongly-coupled theories one may wish to study are not relativistic, and it is
not obvious how AdS/CFT should be generalized to accommodate them. Like-
wise, while the AGT correspondence provides a detailed identification between
two specific sets of theories, it cannot be easily generalized without a constructive
understanding of its string theory origins.

Asymptotic symmetries in three dimensions The AdS/CFT correspon-
dence comes with a dictionary relating various elements of the two theories it
identifies. Symmetries are a basic entry in this dictionary. If the bulk gravity
theory is three-dimensional, its asymptotic symmetry algebra is generally infinite-
dimensional. This is discussed in detail in Chapter 2.

For AdS3 Einstein gravity, the asymptotic symmetries should reproduce the
Virasoro symmetries of two-dimensional CFTs. To understand this result, it is
useful to formulate three-dimensional gravity as a Chern–Simons theory. The
asymptotic symmetries of a Chern–Simons theory form an affine algebra. Imposing
Dirichlet boundary conditions on the metric corresponds to a Drinfeld–Sokolov
reduction of the affine algebra. For the sl2(R) corresponding to AdS3 Einstein
gravity, this reproduces the asymptotic Virasoro algebra including the correct
central charge. However, this procedure is general. It can also be applied to
different algebras corresponding to other theories of gravity that do not (just)
contain a metric field.

Nonrelativistic holography from AdS3 Nonrelativistic theories can be cou-
pled to a background spacetime using Newton–Cartan geometry. It is reasonable to
expect that such Newton–Cartan theories, including gravitational theories where
the metric data is allowed to fluctuate, can be obtained as a suitable limit of
relativistic theories. However, the geometric description of relativistic and non-
relativistic theories is rather different. This is mainly due to the fact that local
Lorentz symmetry is broken in Newton–Cartan theories by designating one special
direction, which is usually the time direction.

On the other hand, certain three-dimensional Newton–Cartan theories of grav-
ity can also be formulated as a Chern–Simons theory. As we show in Chapter 3,
this enables a precise identification between such theories and a limit of a relativis-
tic theory. The corresponding asymptotic symmetry algebra consists of a left- and
right-moving warped Virasoro algebra with vanishing affine u(1) level. It contains
scaling symmetry but no special conformal transformations. It would be very in-
teresting to gain a better understanding of the associated two-dimensional field
theories, perhaps even as a string worldsheet theory. Moreover, it turns out that
the designated direction of the nonrelativistic bulk geometry is in this case the
radial direction, which will have important consequences for the bulk/boundary
mapping in such theories.
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Generalized AGT from conifolds It has been suggested that the relation be-
tween four-dimensional supersymmetric gauge theories and two-dimensional Toda
CFTs proposed by the AGT correspondence can be understood using two differ-
ent but equivalent compactifications of the AN−1 six-dimensional (2, 0) theory.
The compactification to two dimensions is argued to lead to Toda theory as the
boundary modes of a three-dimensional slN Chern–Simons theory. In Chapter 4,
we argue that the Drinfeld–Sokolov boundary conditions of the latter arise from
a different D-brane system than what was originally proposed. The geometry of
the M-theory uplift of the improved D-brane system can be approximated using a
generalized conifold.

Furthermore, this new construction can be extended to generalized Toda the-
ories, which arise as the boundary modes of slN Chern–Simons theory after a
non-principal sl2 ⊂ slN Drinfeld–Sokolov reduction. However, the result of this
reduction is a complex Toda theory, while the AGT correspondence involves a real
Toda theory. They agree for unit Chern–Simons level. It would be very interest-
ing to work out the relation between real and complex generalized Toda theories
at higher level. Additionally, the generalized conifolds lead to a purely geometric
interpretation of the defects associated to generalized Toda theories in AGT. Re-
producing the central charge of such theories using an equivariant reduction of the
six-dimensional anomaly polynomial would be a good check of this interpretation.

Holographic entanglement entropy after quenches Entanglement entropy
in holographic strongly-coupled field theories can be translated to the area of
minimal surfaces in the bulk. This prescription allows one to write down analytic
expressions corresponding to highly nontrivial boundary behavior, such as the
evolution of entanglement entropy after a global quantum quench. The latter can
be modeled in the bulk using an infalling shell of matter (a Vaidya metric), which
collapses to form a black hole. We can use this approach to study general features
of the dynamics of a particular class of strongly-coupled systems.

In Chapter 5, we consider boundary intervals that are small compared to the
resulting black hole, obtain analytic results for arbitrary quench profiles and work
out explicit expressions for a representative set of quenches. The extent to which
such quenches deviate from adiabatic behavior can be made precise by comparing
the resulting evolution of entanglement entropy to the first law of entanglement
entropy. It would be interesting to reproduce the kernels in the resulting linear
response expressions directly from field theory, for example in the large c expansion
in two-dimensional CFTs.
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Outlook

Over the last 20 years, the AdS/CFT correspondence has proven to be a magnifi-
cent and many-faceted gift. Perhaps its only flaw is the fact that its original form
is in a sense too symmetric. To learn which aspects of the concrete dualities that
have been derived from string theory are fundamental and which are accidental,
we can follow several different paths.

First, we can search for predictions that rely only on some high-level details
of the correspondence. The holographic identification of spatial entanglement
entropy in terms of minimal surfaces in the bulk is perhaps the most fruitful of such
predictions discovered so far. It would be very interesting if other identifications,
for example involving an appropriate notion of complexity, could be made at a
similar level of precision. Second, we can try to find generalizations of the original
correspondence, for example by studying controlled limits of ‘top-down’ string
theory models, or by building ‘bottom-up’ models motivated by other areas of
physics. Nonrelativistic holography has proven to be a particularly interesting
branch of such generalizations.

It seems fair to say that we are still only scratching the surface of a full un-
derstanding of nonrelativistic Newton–Cartan-type theories of gravity. For one,
little is known about the actions corresponding to such theories. Learning more
about the intrinsic geometry of Newton–Cartan structures and their natural cur-
vature invariants could be of great help here, just as a proper understanding of
Riemannian geometry makes it relatively easy to construct the Einstein–Hilbert
action. Conserved charges associated to such geometric data must also be defined,
and our three-dimensional Chern–Simons perspective may give hints for how this
should be done.

Next, nonrelativistic field theories should be able to describe at least some
approximation of thermal behavior. If they are to be related holographically to
nonrelativistic theories of gravity, the latter should also contain solutions that
model this approximately thermal behavior. Making any aspect of these bulk
solutions more precise will certainly teach us important lessons about Newton–
Cartan gravity and its holographic description. One possible approach to this
problem would be via a limit of relativistic black hole thermodynamics, and we
hope that our three-dimensional results will likewise be of some use here.

As for the AGT correspondence, we have advocated a constructive approach
towards its derivation. If we do not have a fundamental understanding of the mech-
anism through which the equality proposed by the AGT correspondence arises, we
have not yet fully understood the duality it signifies. Although certainly techni-
cally involved, working out all aspects of the derivation of the AGT correspondence
from six dimensions presents a rare opportunity to reach a new level of detail in
our understanding of strong-coupling dualities.
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Toegankelijke samenvatting

In de afgelopen eeuw hebben we veel voortgang geboekt met ons begrip van de
bouwstenen van de natuur. Alles wat we om ons heen zien, inclusief wijzelf, bestaat
uit moleculen, die weer bestaan uit atomen. Op hun beurt bestaan atomen uit
nog kleinere bouwstenen, die protonen, neutronen en elektronen genoemd worden.

Sommige van zulke bouwstenen, zoals de protonen en elektronen, zijn elektrisch
geladen. Door deze lading werkt er een elektrische kracht tussen zulke deeltjes. We
begrijpen heel goed hoe deze elektrische kracht werkt, en het is redelijk makke-
lijk om voorspellingen te doen aan de hand van deze kracht. Met deze kennis
kan je bijvoorbeeld heel goed uitrekenen wat het energieverbruik van een bepaald
elektrisch apparaat zal zijn.

Eén van de redenen waarom we de elektrische kracht goed begrijpen is dat deze
kracht over het algemeen vrij zwak is. Positief en negatief geladen deeltjes trekken
elkaar aan, maar over het algemeen kunnen we goed onderscheid maken tussen de
individuele deeltjes. Sommige krachten zijn vele male sterker dan de elektrische
kracht. Deeltjes die gevoelig zijn voor zulke krachten worden zo sterk tot elkaar
aangetrokken dat ze over het algemeen samengeklonterd zijn tot één geheel.

Hierdoor had men lange tijd niet door dat protonen en neutronen zelf óók
bestaan uit nog kleinere bouwstenen, die bekend staan als quarks. De kracht
tussen deze quarks is onder normale omstandigheden enorm groot, waardoor het
heel moeilijk is om ze te onderscheiden in de protonen en neutronen in de materie
om ons heen. Zulke deeltjes worden ook wel sterk gekoppeld genoemd: eenmaal
samen is het haast onmogelijk om ze uit elkaar te krijgen.

Er bestaat een heel goede theoretische beschrijving (in de natuurkunde ook
vaak simpelweg een theorie genoemd) van de materie die we om ons heen zien.
Deze theorie staat ook welk bekend als het Standaardmodel. De gebruikelijke
methodes van de theoretische natuurkunde zijn echter vooral geschikt voor the-
orieën die zwak gekoppelde deeltjes beschrijven, zoals elektrisch geladen deeltjes.
Hierdoor is het heel moeilijk om voorspellingen te doen over bijvoorbeeld het
ontstaan en het gedrag van atoomkernen, die bestaan uit sterk gekoppelde quarks.

Door protonen met enorme snelheden tegen elkaar te laten botsen kunnen we
de quarks waaruit ze bestaan tijdelijk uit elkaar krijgen. Dit gebeurt bijvoorbeeld
in de Large Hadron Collider (LHC) in Genève. Hierdoor is het kortstondig mo-
gelijk om de beschrijving van quarks in het Standaardmodel te testen met onze
gebruikelijke methodes, en de theorie heeft al deze experimentele testen tot nu
toe glansrijk doorstaan. We zijn echter nog niet klaar: als we ook buiten de
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LHC willen begrijpen hoe atomen in elkaar steken, moeten we de wereld van sterk
gekoppelde deeltjes beter begrijpen.

Het holografisch woordenboek
Ook in de natuurkunde komen nieuwe inzichten soms uit onverwachte hoek. Zo’n
twintig jaar geleden was er een enorme ontwikkeling in de snaartheorie, een tak
van de natuurkunde die ons in staat stelt om theorieën zoals het Standaardmodel
in contact te brengen met zwaartekracht. Hier ontdekte de Argentijnse natuur-
kundige Juan Maldacena dat bepaalde theorieën van sterk gekoppelde deeltjes in
zekere zin equivalent zijn aan bepaalde zwaartekrachtstheorieën.

Eén van de wonderlijke aspecten van deze ontdekking is dat de zwaartekracht
in een hogere dimensie blijkt te leven dan de sterk gekoppelde deeltjes die hij
beschrijft. Om die reden staat de ontdekking van Maldacena ook wel bekend als
holografie. Hiermee wordt verwezen naar hologrammen zoals die op je bankpas: ze
lijken er driedimensionaal uit te zien als je er op de juiste manier naar kijkt, terwijl
de bankpas zelf plat is. Op dezelfde manier geeft de holografie van Maldacena
ons een methode om sterk gekoppelde deeltjes te interpreteren in termen van
zwaartekracht in een hogere dimensie.

Je kunt over deze ontdekking nadenken als een woordenboek tussen twee ver-
schillende talen. Als een ware Steen van Rosetta heeft het holografisch woorden-
boek ons in staat gesteld om verbanden te leggen tussen onze ogenschijnlijk totaal
verschillende theorieën over zwaartekracht en sterk gekoppelde deeltjes. Sinds deze
ontdekking is een groot deel van de natuurkundige gemeenschap bezig geweest met
het uitbreiden en preciezer maken van de vertalingen van dit woordenboek. Vra-
gen die in één taal van het woordenboek zo goed als onoplosbaar leken, zijn in de
andere taal soms haast kinderlijk eenvoudig te beantwoorden.

In hoofdstuk 5 van dit proefschrift wordt gebruik gemaakt van zo’n vertaling uit
het holografisch woordenboek. Daarin onderzoeken we hoe zwaartekracht gebruikt
kan worden om de reactie van sterk gekoppelde systemen op bijvoorbeeld een harde
klap te beschrijven. Het is haast onmogelijk om zulke gewelddadige verstoringen
van het evenwicht van een sterk gekoppeld systeem met de gebruikelijke methodes
te beschrijven. Het blijkt echter dat met behulp van de taal van zwaartekracht
heel eenvoudige en algemene antwoorden op zulke vragen gegeven kunnen worden.

Trillende trommelvellen en driedimensionale zwaartekracht
Een groot deel van dit proefschrift gaat over een bepaald onderdeel van het holo-
grafisch woordenboek. Het blijkt dat zwaartekracht in sommige gevallen simpeler
werkt dan in de wereld zoals wij die zien. In het alledaagse leven merken we drie
ruimtedimensies: voor en achter, links en rechts, omhoog en omlaag. Einstein
leerde ons dat we over de tijd moeten nadenken als de vierde dimensie, dus in
totaal leven we in een vierdimensionale ruimtetijd.

In de theorie van Einstein is de zwaartekracht een gevolg van de kromming
van deze ruimtetijd, die in ons geval vierdimensionaal is. Wiskundig gezien is
het echter geen enkel probleem om zwaartekracht te bestuderen in een willekeurig
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aantal dimensies. Sterker nog, de zwaartekrachtstheorie van Einstein blijkt veel
makkelijker te worden als het gaat om een driedimensionale ruimtetijd.

Een driedimensionale ruimtetijd beschrijft twee ruimtedimensies. Je kan hier-
over nadenken als het vel van een trommel: daar kan bijvoorbeeld een kleine mier
naar links en rechts en naar voor en achter over lopen. In die zin heeft het trom-
melvel twee ruimtedimensies. Als je de trommel met rust laat, beweegt het vel
niet: het staat gespannen in een bepaalde positie doordat het aan de rand van de
trommel bevestigd is.

Het vel kan echter ook trillen als je er een klap op geeft. Dit brengt een
geluid voort zoals je dat kent van bijvoorbeeld een trommel in een drumstel. Elke
trommel klinkt echter een beetje anders. Dat komt doordat de mogelijke trillingen
van een trommelvel worden bepaald door de vorm van de trommel. Om precies te
zijn: elk trommelvel kan op meerdere manieren trillen. Elk van deze trillingen leidt
tot een andere toon, en de vorm van de trommel bepaalt welke van deze tonen het
meest tot uiting komen. Je kan experimenteel vaststellen hoe een trommel klinkt
door er gewoon eens op te slaan, maar als je de vorm van een trommel kent kan
je zijn klank ook voorspellen!

Het blijkt dat de zwaartekrachtstheorie van Einstein zich voor een driedimen-
sionale ruimtetijd net zo gedraagt. In dat geval kan de ruimte net als het vel
van een trommel weinig kanten op: zodra je de vorm van de rand van de ruimte
vastlegt wordt de rest van de ruimte daartussen opgespannen.

Net als een trommelvel kan je de driedimensionale ruimtetijd ook laten trillen.
Natuurlijk kan je hier niet zo makkelijk een experiment mee uitvoeren als met
een echte trommel, maar de wiskundige berekeningen lijken verrassend veel op
elkaar. Hoofdstuk 2 van dit proefschrift gaat over methodes en technieken om de
verschillende tonen in de klank van zulke driedimensionale ruimtetijden te bepalen.

Zulke tonen uit de driedimensionale zwaartekracht blijken ook een bijzon-
dere rol te spelen in de andere taal van het holografisch woordenboek. Deze
zwaartekrachtstonen vertellen ons met welke klasse van sterk gekoppelde theo-
rieën we te maken hebben. Kennis van de mogelijke tonen en hun onderlinge
samenspel stelt ons zo in staat om in één klap vrij veel te weten te komen over de
sterk gekoppelde kant van het holografisch woordenboek.

Andere edities van het holografisch woordenboek

Om die reden is het bestuderen van zulke trillingen in driedimensionale ruimtetijd
een goede manier om mogelijke uitbreidingen van het holografisch woordenboek
te vinden. Het oorspronkelijke woordenboek geeft ons een heel precieze vertaling,
maar wel tussen een vrij beperkte klasse aan theorieën. Hierdoor is het soms moei-
lijk te bepalen of het succes van het oorspronkelijke woordenboek een éénmalige
meevaller is.

Om die reden is het interessant om te kijken of er variaties op het oorspronke-
lijke woordenboek mogelijk zijn. Kunnen we nog steeds vertalingen vinden als
we één van de talen vervangen door een ander dialect, of zelfs door een geheel
andere taal? Door zo aan de boutjes en moeren van het holografisch woordenboek
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te sleutelen hopen we erachter te komen welke fundamentele principes aan het
bestaan van zulke woordenboeken ten grondslag liggen.

In hoofdstuk 3 van dit proefschrift worden de trillingen van een ander soort
ruimtetijd onderzocht. In zekere zin zijn deze ruimtetijden een beetje ouder-
wets: ze lijken meer op hoe ons begrip van zwaartekracht vóór Einstein eruit
zag. Alhoewel sommige van onze moderne methodes dus niet direct van toepas-
sing zijn, is het dus goed mogelijk dat het bestuderen van zo’n ouderwetse vorm
van zwaartekracht ons iets leert over het hoe en waarom van het holografisch
woordenboek.

De Alday–Gaiotto–Tachikawa-correspondentie

Hoofdstuk 4 van dit proefschrift gaat niet over holografie, maar over een andere
wonderbaarlijke relatie tussen twee ogenschijnlijk verschillende delen van de na-
tuurkunde. Deze relatie is ontdekt door de Argentijnse, Italiaanse en Japanse
natuurkundigen Luis Fernando Alday, Davide Gaiotto en Yuji Tachikawa en staat
daarom bekend als de AGT-correspondentie.

Waar het holografisch woordenboek ons in staat stelt om sterk gekoppelde
systemen te beschrijven in termen van zwaartekracht met één extra dimensie,
relateert de AGT-correspondentie theorieën met twéé dimensies verschil. Deze
theorieën bevatten bovendien geen van beiden zwaartekracht.

Zoals eerder beschreven zien we vier dimensies in de wereld om ons heen: drie
ruimtedimensies en één tijdsdimensie. Het Standaardmodel is daarom ook een
vierdimensionale theorie, waarin bepaalde deeltjes sterk gekoppeld en dus moeilijk
te beschrijven zijn. Het is mogelijk om wiskundige ‘trucs’ uit te halen om deze
theorieën overzichtelijker te maken. De bekendste daarvan gaat uit van het bestaan
van een extra symmetrie, die ook wel supersymmetrie genoemd wordt. (Er zijn
ook verschillende natuurkundige argumenten die voor de aanwezigheid van zulke
supersymmetrie pleiten. De nieuwe deeltjes die zulke symmetrieën voorspellen zijn
echter tot op heden nog niet waargenomen.)

Vierdimensionale theorieën over supersymmetrische materie bestaan al enige
tijd, maar de laatste twintig jaar is men zulke theorieën steeds beter en syste-
matischer gaan begrijpen. Zo is het bijvoorbeeld duidelijk geworden dat veel van
zulke theorieën op een gestructureerde manier in elkaar zitten. Net als de atomen
en moleculen die ze beschrijven kan je zulke theorieën zélf beschouwen als een
collectie van enkele fundamentele bouwstenen. De instructies voor het in elkaar
zetten van deze bouwstenen worden gegeven in termen van een tweedimensionaal
object, wat er bijvoorbeeld uit kan zien als een donut.

Alday, Gaiotto en Tachikawa beseften dat zo’n donut niet alleen als bouw-
tekening dient voor het in elkaar zetten van een vierdimensionale theorie. Zij
merkten op dat veel voorspellingen van een bepaalde klasse vierdimensionale su-
persymmetrische theorieën tevens te interpreteren zijn als voorspellingen van een
zeker soort tweedimensionale theorie. Net als het holografisch woordenboek werd
hierdoor een woordenboek samengesteld, maar nu tussen vier dimensies en twee
dimensies!
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Alhoewel er nog veel te ontdekken valt, zijn er goede argumenten te geven voor
het bestaan voor het holografisch woordenboek. Het 4d-2d woordenboek van de
AGT-correspondentie kwam echter in zekere zin uit de lucht vallen: destijds was
er geen achterliggend principe bekend wat deze wonderbaarlijke relatie mogelijk
maakte. Er waren weinig twijfels over de juistheid van het woordenboek, maar de
achterliggende principes waren minder goed te verklaren.

Enkele jaren geleden stelden Clay Córdova en Daniel Jafferis, twee Amerikaanse
natuurkundigen, een programma op waarmee deze mysterieuze relatie te verkla-
ren zou zijn. Ze opperden het idee om de vierdimensionale en tweedimensionale
werelden samen te voegen tot een zesdimensionaal geheel. Vanuit dit overkoepe-
lend perspectief konden vervolgens de twee elementen van het 4d-2d woordenboek
worden bereikt door de resterende dimensies samen te drukken.

Een deel van dit programma heeft een verrassende overlap met de methodes
en technieken om driedimensionale ruimtetijden te bestuderen die in hoofdstuk 2
besproken worden. Hierdoor kwamen we op het idee om te kijken of we de afleiding
van de AGT-correspondentie door Córdova en Jafferis konden uitbreiden naar
andere theorieën. Tevens bleek dat het bestuderen van zulke uitbreidingen ons
hielp om de oorspronkelijke afleiding beter te begrijpen.

Hoe nu verder?
Alle resultaten die beschreven zijn in dit proefschrift zijn in zekere zin kleine stapjes
op weg naar een groter doel. Het hebben van zulke woordenboeken, die ook wel
bekend staan als dualiteiten, helpt ons om sterk gekoppelde theorieën beter te
begrijpen. Het zou fantastisch zijn als deze inzichten gebruikt kunnen worden om
betere voorspellingen over het gedrag van de atomen om ons heen te maken. Waar
de scheikunde grotendeels is gebouwd op ons begrip van de elektrische kracht, zou
een beter begrip van de sterke krachten in atoomkernen de wereld op een dag
hopelijk ook ten goede kunnen veranderen.

Anderzijds hopen we ook meer te leren over de fundamentele eigenschappen
van zwaartekracht. In december 2015 zijn voor het eerst zwaartekrachtsgolven
op aarde waargenomen. Deze rimpelingen van de ruimtetijd stellen ons in staat
om met een geheel nieuwe blik naar het heelal te kijken. Hierdoor zou het goed
kunnen dat oplossingen van enkele van de vele raadsels over zwaartekracht in de
komende jaren binnen het bereik van de wetenschap gaan komen.
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