
General Relativity and Gravitation (2011)
DOI 10.1007/s10714-007-0599-8

RESEARCH ARTICLE

Yakov Itin

Wave propagation in axion electrodynamics

Received: 27 May 2007 / Accepted: 21 June 2007
c© Springer Science+Business Media, LLC 2008

Abstract In this paper, the axion contribution to the electromagnetic wave prop-
agation is studied. First we show how the axion electrodynamics model can be
embedded into a premetric formalism of Maxwell electrodynamics. In this formal-
ism, the axion field is not an arbitrary added Chern–Simon term of the Lagrangian,
but emerges in a natural way as an irreducible part of a general constitutive tensor.
We show that in order to represent the axion contribution to the wave propaga-
tion it is necessary to go beyond the geometric approximation, which is usually
used in the premetric formalism. We derive a covariant dispersion relation for the
axion modified electrodynamics. The wave propagation in this model is studied
for an axion field with timelike, spacelike and null derivative covectors. The bire-
fringence effect emerges in all these classes as a signal of Lorentz violation. This
effect is however completely different from the ordinary birefringence appearing
in classical optics and in premetric electrodynamics. The axion field does not sim-
ple double the ordinary light cone structure. In fact, it modifies the global topolog-
ical structure of light cones surfaces. In CFJ-electrodynamics, such a modification
results in violation of causality. In addition, the optical metrics in axion electro-
dynamics are not pseudo-Riemannian. In fact, for all types of the axion field, they
are even non-Finslerian.

Keywords Axion electrodynamics, Wave propagation, Birefringence

1 Introduction

Axion electrodynamics, i.e., the standard electrodynamics modified by an addi-
tional axion field [1], is a subject of a growing theoretical and experimental inter-
est. In particular, such a modification provides a theoretical framework for a pos-
sible violation of parity and Lorentz invariance—the Carroll–Field–Jackiw (CFJ)
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model [2; 3]. For recent developments of this model, see [4] and the reference
given therein. Also the non-abelian extensions of the axion modified electrody-
namics for the Standard Model [5] and gravity [6] were worked out.

Although Lorentz invariance is a basic assumption of the standard classical
and quantum field theory, in quantum gravity and string theory this invariance is
probably violated. One believes that the low-energy manifestation of Lorentz vio-
lation can be observed in experiments with the electromagnetic waves. It justifies
the importance of examination of the theoretical aspects of axion contributions to
the light propagation effects. Although this problem was investigated intensively,
we apply here an alternative approach based on a metric-free (premetric) formu-
lation of electrodynamics, see [7] and the reference given therein. A characteristic
feature of such a construction is that the axion field is not involved by hand (merely
as an additional term in the Lagrangian). Alternatively, in the premetric formalism,
axion emerges as a necessary and natural partner of the standard photon variable.

In fact, there is a certain contradiction between the premetric electrodynamics
and the CFJ-model. On one hand, in the premetric construction, one usually states
that the axion component does not alternate the wave propagation at all [7]. On
the other hand, the Lorentz violation in the CFJ-model is explicitly manifested in
a modification of the standard light cone. In fact, this contradiction comes from the
specific geometric
optics approximation which is usually applied in the premetric electrodynamics.
A constant axion field indeed does not contribute to the wave propagation. To
describe the wave propagation in the CFJ-model one has to go beyond the geo-
metric optics approximation and take into account the first order derivatives of the
axion field [8; 9]. With this modification, two constructions yield the equivalent
results.

The original CFJ-model is based on the standard special relativistic electrody-
namics Lagrangian modified by an additional Chern–Simon term [2]

L =−1
4

Fi jF i j − 1
4

piε
i jklA j∂kAl +Ai ji, (1)

where pi is a constant time-like vector. In fact, a special parametrization pi =
(µ,0,0,0) is usually used. Note that, in such a construction, the Lorentz viola-
tion is involved by hand. The spatial SO(3)-invariance and gauge invariance are
preserved however. It was already pointed out in [2] that the model can be equiv-
alently reformulated in an explicitly gauge invariant form

L =−1
4

Fi jF i j +ψε
i jklFi jFkl +Ai ji, (2)

where ψ is a pseudoscalar axion field. It is related to the vector pi as

ψ,i = pi, or ψ = µt. (3)

In the current paper, we use a Lagrangian similar to (2). We will not restrict,
however, to an axion field with constant first order derivatives and will not require
it to be timelike. Moreover, we will consider a model on a curved pseudo-Riemannian
spacetime. Our approximation will be based, however, on an assumption that the
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gravitational field changes much more slowly than the axion field. This restric-
tion considerably simplifies the calculations and, hopefully, does not change the
results, at least, qualitatively.

The current paper is devoted to the 60th birthday of Professor Bahram Mash-
hoon. His permanent interest and considerable contribution to the study of wave
propagation effects are well known, see, for instance [10; 11]. The methods devel-
oped by Mashhoon will be useful also in the axion modified electrodynamics.

2 The axion modified electrodynamics model

Let us briefly describe how the axion modified electrodynamics is embedded in
the framework of the premetric approach. We start with two independent antisym-
metric tensor fields, the field strength tensor Fi j and the excitation field H i j. The
latter field is a pseudotensor density of weight (+1). The flux conservation law
(the first Maxwell equation) is postulated,

ε
i jklFi j,k = 0. (4)

Here the Roman indices range from 0 to 3, ε i jkl and εi jkl are the Levi–Civita
permutation tensors normalized with ε0123 =−ε0123 = 1, the commas denote the
ordinary partial derivatives. Due to (4), the field strength tensor is expressed in
term of the standard vector potentials Ai,

Fi j =
1
2

(Ai, j −A j,i) . (5)

A local linear homogeneous constitutive relation between the fields Fi j and
H i j,

H i j =
1
2

χ
i jklFkl , (6)

is assumed. By definition, the constitutive pseudotensor χ i jkl must respect the
symmetries of the fields Fi j and H i j,

χ
i jkl = χ

[i j]kl = χ
i j[kl]. (7)

Hence it has, in general, 36 independent components. The irreducible decompo-
sition of this tensor under the group of linear transformations involves three inde-
pendent pieces. One of these three pieces is the axion field, which is a subject of
our interest.

The high number of components of χ i jkl allows to describe a wide range of
physical effects. The axion field, however, adds only one addition component to
the standard electrodynamics. So, in order to embed the axion electrodynamics
into the premetric approach, one has to restrict the number of the independent
components. The first restriction comes from the Lagrangian formulation of the
model. We assume the action integral to be of the standard form

A =
∫
M

(
Fi jH

i j +AiJ
i)d4x. (8)
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When (6) is substituted, the action takes the form

A =
∫
M

(
1
2

χ
i jklFi jFkl +AiJ

i
)

d4x. (9)

Note, however, that, in contrast to the ordinary textbooks formulation, the elec-
tromagnetic current J i and the excitation field H i j are pseudotensorial densities
of weight +1 (see Appendix for definition and details). Thus the Lagrangian (8)
is general covariant and admits arbitrary transformations of coordinates. The con-
stitutive pseudotensor involved in (8) respects an additional symmetry

χ
i jkl = χ

kli j. (10)

This condition removes 15 independent components of χ i jkl which compose the
so-called skewon part of the constitutive tensor. The remaining quantity of 21
independent components is decomposed irreducibly to a principle part of 20 com-
ponents plus one component that represents the axion field. In contrast to the
Lagrangian (2), the premetric formulation (8) does not involve an addition axion
term in the Lagrangian. In fact, such a term is hidden in the constitutive tensor.

The variation of (8) with respect to the vector potentials Ai yields the second
Maxwell equation

H i j, j = J i, or
1
2

(
χ

i jklFkl

)
, j

= J i. (11)

Observe that this general construction, is explicitly gauge invariant. As usually,
the charge conservation law ∂iJ i = 0 is a consequence of the field equation (11).

The standard electrodynamics is reinstated in this formalism by a special Maxwell
constitutive tensor

(Max)
χ

i jkl =
(

gikg jl −gilg jk
)√

−g. (12)

Here gi j is a metric tensor with the signature {+,−,−,−} and with the deter-
minant g. To involve the axion field contribution to the standard electromagnetic
Lagrangian, it is enough now to consider a slightly modified constitutive tensor of
the following form

χ
i jkl = (Max)

χ
i jkl +ψε

i jkl . (13)

Here the axion ψ is a pseudoscalar field. It is invariant under transformations of
coordinates with positive determinant and changes its sign under transformations
with negative determinant.

The constitutive tensor (13) is not merely a modification of the standard expres-
sion (12). In fact, it is an irreducible decomposition of a general constitutive tensor
χ i jkl . The Lagrangian formulation removes the skewon part of it. An additional
requirement of closeness, see [7], restricts the principle part of 20 independent
components to a pure metrical expression. So the axion part appears in this for-
malism as a natural and necessary ingredient of a general construction. To simplify
our consideration we will treat the axion field only phenomenologically. An addi-
tional dynamical axion Lagrangian can be readily added to (8).
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3 Wave solution

To study the wave propagation in the axion modified model, we assume the elec-
tromagnetic current to be equal to zero. Substitute (5) into the second field equa-
tion (11) to rewrite it as (

χ
i jklAk,l

)
, j

= 0, (14)

or, equivalently, as

χ
i jklAk,l j + χ

i jkl
, jAk,l = 0. (15)

In this paper, we will apply the following approximation

χ
i jkl

, j = ψ, jε
i jkl . (16)

In other words, we restrict to the spacetime regions where the gravitational field
varies slowly as compared to the change of the pseudoscalar field. In particular,
our analysis will be exact for an axion field considered on a flat Minkowski space.

Substituting (13) and (16) into (15) we get(
gikg jl −gilg jk

)
Ak,l j

√
−g+ψ, jε

i jklAk,l = 0. (17)

We are looking for a plane monochromatic wave solution of the Eq. (17). Write it
as

Ak = Re
(

akeiqmxm
)

. (18)

Here the amplitude ak and the wave covector qm do not depend on a point. Both
quantities can be complex, the physical solution Ak is equal to the real part of the
corresponding complex expression. Since (17) is a linear field equation with real
coefficients, it is possible to deal, as usual, with the complex valued expression
Ak = akeiqmxm

itself. Substituting this Ansatz in (17) we have(
gikg jl −gilg jk

)√
−gq jqlak− iψ, jqlε

i jklak = 0. (19)

This tensorial equation is represented by a linear system of four equation for four
components of the covector ak. Write it briefly as

Mi ja j = 0, (20)

where

Mi j =
(

gi jgkl −gilg jk
)√

−gqkql + iψ,kqlε
i jkl

=
(
gi jq2−qiq j)√−g+ iψ,kqlε

i jkl . (21)

Observe two evident relations that hold due to the definition of the matrix Mik

Mi jqi = 0, Mi jq j = 0. (22)
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These relations can be given a pure physical sense: The former one represents the
charge conservation law, while the latter relation represents the gauge invariance
of the field equation.

The linear system (20) has a non-zero solution if and only if its determinant
equal to zero. For the system (20), this condition holds identically, which can be
seen even without explicit calculation of the determinant. Indeed, the identities
(22) express linear relation between the rows (and between the columns) of the
matrix Mik. So this matrix is singular. Moreover, (22b) also means that the linear
system (20) has a non-zero solution of the form

a j = Cq j (23)

with an arbitrary constant C. This solution is evidently unphysical since it corre-
sponds to the gauge invariance of the field equations. To describe an observable
physically meaningful situation we must have an additional linear independent
solution of (20).

4 Dispersion relation

The linear system (19) has two linear independent solutions (one for gauge and
one for physics) if and only if its matrix Mi j is of rank 2 or less. An algebraic
expression of this requirement is
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Ai j = 0, (24)

where Ai j is the adjoint matrix. This matrix is obtained by removing the i-th row
and the i-th column from the original matrix. The determinants of the retaining
3× 3 matrices are calculated and assembled in a new matrix Ai j. The entries of
the adjoint matrix are expressed via the entries of the matrix Mi j as

Ai j =
1
3!

εii1i2i3ε j j1 j2 j3Mi1 j1Mi2 j2Mi3 j3 . (25)

Note that for a covariant tensor of a rank (2,0), the adjoint matrix is a contravari-
ant tensor of a rank (0,2). Since the adjoint matrix has, in general, 16 independent
components it seems that we have to require 16 independent conditions. The fol-
lowing algebraic fact [12] shows that the situation is rather simpler.

Proposition If a square n×n matrix Mi j satisfies the relations

Mi jqi = 0, Mi jq j = 0 (26)

for some nonzero vector qi, its adjoint matrix Ai j is represented by

Ai j = λ (q)qiq j. (27)

Consequently, instead of 16 conditions (24), we have to require only one condition

λ (q) = 0. (28)

Recall that this condition is necessary for existence a physically meaningful solu-
tion of the generalized wave equation, so it is a generalized dispersion relation.

We calculate now the adjoint matrix for the axion modified electrodynamics
model. Substituting (21) into (25) we get

Ai j =
1
3!

εii1i2i3ε j j1 j2 j3

(
M i1 j1 + iψ,k1ql1ε

i1 j1k1l1
)

×
(
M i2 j2 + iψ,k2ql2ε

i2 j2k2l2
)(

M i3 j3 + iψ,k3ql3ε
i3 j3k3l3

)
, (29)

where a notation

M i j =
(
gi jq2−qiq j)√−g (30)

for the pure Maxwell part of the matrix Mi j is involved.
Calculate now in turn the entries of (29) as the powers of the imaginary unit.

The calculations are considerable simplified when we take into account that due
to the Proposition above the result has to be a symmetric matrix. It means that all
antisymmetric contributions to Ai j are canceled. The free in i term, i.e., the pure
Maxwell term, takes the form

1
3!

εii1i2i3ε j j1 j2 j3M
i1 j1M i2 j2M i3 j3 =−

√
−gq4qiq j. (31)

The i-term takes the form

i(1/2)εii1i2i3ε j j1 j2 j3M
i1 j1M i2 j2ψ,k3ql3ε

i3 j3k3l3 . (32)
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Since the Maxwell matrix M i j is symmetric, this expression is antisymmetric
in the indices i, j and does not give a contribution to the adjoint matrix. In fact,
explicit calculations show that the expression (32) vanishes identically. The i2-
term is given by

i2 (1/2)εii1i2i3ε j j1 j2 j3M
i1 j1ψ,k2ql2ε

i2 j2k2l2ψ,k3ql3ε
i3 j3k3l3

=−
√
−g

[
(ψ,mψ

,m)q2− (ψ,mqm)2
]

qiq j. (33)

The i3-term takes the form

(i)3(1/2)εii1i2i3ε j j1 j2 j3ψ,k1ψ,k2ψ,k3ql1ql2ql3ε
i1 j1k1l1ε

i2 j2k2l2ε
i3 j3k3l3 (34)

This expression is evidently antisymmetric in the indices i, j so it does not give a
contribution to the symmetric matrix Ai j. In fact, it is equal to zero.

Consequently we have the adjoint matrix in the following form

Ai j =−
√
−g

[
q4 +(ψ,mψ

,m)q2− (ψ,mqm)2
]

qiq j. (35)

Thus the dispersion relation for the electromagnetic waves in the axion electrody-
namics is expressed as

q4 +(ψ,mψ
,m)q2− (ψ,mqm)2 = 0. (36)

Observe some characteristic features of this equation.

1. In Minkowski space, for an axion field with a constant covector of derivatives,
it coincides with the dispersion relation expression given in [2].

2. The axion dispersion relation (36) is essentially different from the general
covariant dispersion relation appearing in the premetric electrodynamics. The
premetric dispersion relation is a quartic homogeneous polynomial in the wave
covector variable q. Its general form is

G i jklqiq jqkql = 0. (37)

Certainly the homogeneity is originated in the geometric approximation used
for its derivation. The quartic polynomial of the axion electrodynamics (36) is
not homogeneous, so it provides some additional types of light cones structure.
In particular, the birefringence effect here comes from the derivatives of the
media parameters. On the contrary, in the premetric electrodynamics as well as
in the classical crystal optics, the birefringence effect comes from the tensorial
nature of the parameters of the media.

3. Another interesting feature of the dispersion relation (36) is that it is, in fact,
a general covariant expression. Indeed it is invariant under general pointwise
transformations of coordinates (with positive or negative determinant). This is
in spite of the fact that we used for its derivation the ansatz (18) which is only
special relativistic.

4. The relation (36) is invariant under the transformation qi →−qi. Thus the light
cones structure has to be PT invariant.

5. The relation (36) is invariant under the transformation of the field ψ i →−ψ i.
Thus the light cones have to be similarly oriented relative to the vector ψ i.
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6. A quartic expression dispersion relation (36) is sometimes factored to a prod-
uct of two second order polynomials. It is easy to see that the relation (36)
cannot be factored in covariant way. Such factorization is possible, however,
in special coordinates. Since (36) is not homogeneous, at least one of these
quadratic factors is not homogeneous.

7. For ordinary electrodynamics in vacuum, the factors are homogeneous and
coincide. This unique homogeneous quadratic factor corresponds to unique
Minkowski metric. For general anisotropic media, in (geometric approxima-
tion) two factors are homogeneous but different one from another. This case is
formulated in term of two optical metrics, both pseudo-Riemannian. In axion
electrodynamics, at least one factor is necessary inhomogeneous. This factor
cannot be reformulated in term of on ordinary pseudo-Riemannian metric. In
fact, it does not even correspond to a general Finslerian metric, which in gen-
eral appear in premetric electrodynamics [13; 14].

5 Special axion fields

5.1 Axion field on Minkowski spacetime

In this section, we restrict for simplicity to the Minkowski spacetime. In the Carte-
sian coordinates, gi j = diag(1,−1,−1,−1) with g =−1, so the dispersion relation
(36) takes the form

q4 +(ψ,mψ
,m)q2− (ψ,mqm)2 = 0. (38)

Note that now all scalar products are taken with respect to the constant Minkowski
metric. We apply the (1+3) splitting and denote

q = (w,k), k = |k|, (39)

and

ψ,i = (µ,m), m = |m|. (40)

Denote by α the angle between the vectors m and k. For a complex vector qi, the
usual analytic extension for α is assumed. Due to the symmetry of (38) under the
reflection ψi →−ψi, we can deal locally with the case µ > 0.

In the (1+3) notation, the dispersion relation (38) takes the form

(w2− k2)2 +
(
µ

2−m2)(w2− k2)− (wµ +mk cosα)2 = 0. (41)

It is useful to express the dispersion relation in term of the phase velocity vp = w/k

v4
p− v2

p

(
2+

m2

k2

)
−2vp

µm
k2 cosα +

(
1− µ2

k2 +
m2

k2 sin2
α

)
= 0. (42)

We observe now that, in the left hand side of (42), the dependence on the angle α

can be removed only if the vector m can be taken equal to zero. Such coordinates
can be chosen if and only if the 4-covector ψ,i is timelike. In this case, the SO(3)
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invariance is preserved. Alternatively, for an arbitrary null or spacelike covector
ψ,i, the rotational symmetry is violated.

Additionally, let the term linear in vp cannot be removed, i.e., the parameters m
or µ cannot be chosen be equal to zero. Consequently, vp and (−vp) cannot satisfy
simultaneously the same dispersion relation. It means that the future and the past
light cones are not identical. Thus the time inversion symmetry (T -invariance)
is violated. Since the whole Eq. (38) is PT -invariant, the parity invariance (P-
invariance) is also violated.

The axion field and the covector of its derivatives are assumed to change
smoothly in the whole spacetime. Thus the spacetime itself is separated to dis-
tinct regions with different norms of the covector ψm. In every specific region,
special coordinates can be chosen in order to simplify the parametrization of the
covector field ψm.

5.2 Axion field with a timelike derivative

This model and its physics consequences was studied in the original version of
axion modified electrodynamics—the Carroll–Field–Jackiw model [2]. Consider
a spacetime region, where the derivatives of the axion field compose a timelike
covector

ψ,iψ
,i > 0. (43)

Choose in this region the time coordinate axis to be directed along the covector
ψ,i. Consequently, this covector is parameterized now as

ψ,i = (µ,0,0,0). (44)

Due to the symmetries of the dispersion relation (36), we can, without lose of
generality, require µ > 0. In the original CFJ-model, the axion field was given as
ψ = µt with a constant parameter µ . Observe, however, that only the first order
derivatives of the axion field are involved in the dispersion relation (36). So, in
fact, we can deal with a more general case, where µ is an arbitrary function of a
point.

Substituting (44) into (41) we get

(w2− k2−µk)(w2− k2 + µk) = 0. (45)

The solutions of this equation are

(1)w =
√

k2 + µk, (2)w =−
√

k2 + µk, (46)
(3)w =

√
k2−µk, (4)w =−

√
k2−µk. (47)

Thus, for k > µ , we have four distinct real solutions: two positive and two negative.
For k = µ , there are two real solutions of opposite signs and one double solution
equal to zero. For k < µ , two solutions are real and two are pure imaginary.

Geometrically, the solutions (46, 47) define two distinct double hypersurfaces

w2− k2
1 − k2

2 − k2
3 −µ

√
k2

1 + k2
2 + k2

3 = 0. (48)
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Fig. 1 The graphs represent two hypersurfaces corresponding to CFJ modified electrodynamics

and

w2− k2
1 − k2

2 − k2
3 + µ

√
k2

1 + k2
2 + k2

3 = 0. (49)

We depict on Fig. 1 these hypersurfaces in the coordinates (k1,k2,w) (the third
coordinate k3 is suppressed, as usual). The first picture corresponds to the solution
(46). It is topologically equivalent to the ordinary light cone. In particular, two
cones are joined by a unique point (w = 0,k = 0). When this point is removed the
interior region bounded by the hypersurface is separated to two disjoint parts—the
future and the past spacetime regions. The second hypersurface corresponding to
(47) is topologically different from the ordinary light cone structure. It consists of
two pieces which are joined by a sphere (k = µ,w = 0) and by a point (k = 0,w =
0). Consequently the interior region cannot be separated into two disjoint parts
even if the origin is removed. It means that the future (the upper region) and the
past (the downer region) always connected and cannot be disjoint. In other words,
the causality on this branch is violated.

Since the Eqs. (48,49) involve a term linear in the covector k the corresponding
light hypersurfaces cannot be associated with some pseudo-Riemannian optical
metrics.

The phase velocities of the waves are given by the expressions

(1)vp =
√

1+
µ

k
, (2)vp =

√
1− µ

k
, (50)

which coincide with the corresponding formulas of [2]. One of the phase velocities
is greater than the speed of light in a vacuum. It increases monotonically when the
factor µ/k increases, i.e., when the parameter k tends to zero. The second phase
velocity is less than the speed of light in a vacuum and monotonically decreases
to zero when the parameter k tends to zero.

Well known that the phase velocity does not completely characterize the energy
propagation. Another useful characteristic is the group velocity which is usually
thought of as the velocity at which energy is propagated along a wave. This quan-
tity is defined by the derivative

vg =
∂w
∂k

. (51)

From (50) we have

(1)vg =
k + µ/2√

k2 + µk
, (2)vg =

k−µ/2√
k2−µk

. (52)

Consequently, both group velocities are superluminal and monotonically increase
when the parameter k tends to zero. Observe that on the second branch, both veloc-
ities are defined only for 0≤ µ/k ≤ 1. For k → µ , the phase velocity tends to zero
while the group velocity goes to infinity. This behavior corresponds to transmis-
sion of energy with infinite velocity, i.e., indicates the runaway modes, see [2; 15].
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Fig. 2 The graphs represent two double light hypersurfaces of the spacelike axion modified
electrodynamics

Consequently, the waves with k > µ propagate along two distinct future light
hypersurfaces. This behavior corresponds to the birefringence effect known from
classical optics. The topological type of the light hypersurfaces is different, how-
ever, from the ordinary light cones. For k < µ , the runaway modes emerge.

5.3 Axion field with a spacelike derivative

Let us consider a spacetime region where the axion field has a spacelike covector
of derivative

ψ,mψ
,m < 0. (53)

By transformation of the coordinates, we can choose in the whole region a parametriza-
tion

ψ,i = (0,m,0,0). (54)

Also here the parameter m can be considered as a function of a point. We can
restrict to m > 0. The dispersion relation (41) takes now the form

w2 = k2 +
m2

2
±

√
m4

4
+m2k2 cos2 α. (55)

Observe that an inequality w2 ≥ k2 ≥ 0 holds for (55). Hence this equation for w
has four real solutions for every values of parameters. Consequently the runaway
solutions are absent.

The corresponding light hypersurfaces are given by

w2− k2
1 − k2

2 − k2
3 −

m2

2

1+

√
1+

4k2
1

m2

 = 0. (56)

and

w2− k2
1 − k2

2 − k2
3 −

m2

2

1−

√
1+

4k2
1

m2

 = 0. (57)

These hypersurfaces are depicted on Fig. 2. The first structure is topologically
different from the standard one. Indeed, (56) has not real solutions for w = 0.
Consequently, two branch given by (56) are represented by two disjoint surfaces.
In other words there is not, for this lightlike hypersurfaces, a way from the past to
the future. The second Eq. (57), for w = 0, has a unique solution k1 = k2 = k3 = 0.
Thus we have on this branch the standard light cone topology with one point
joining the past and the future spacetime regions. However, an ordinary definition
of the causality is not applicable in this case. Indeed, due to the inhomogeneity of
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the dispesion relation, a type of a light trajectory depends on the parametrization.
The expressions (56, 57) contain non-polynomial terms. Thus also in this case, the
optical metrics cannot be represented in a pseudo-Riemannian form.

In term of the phase velocity (42) is rewritten as

v4
p− v2

p

(
2+

m2

k2

)
+

(
1+

m2

k2 sin2
α

)
= 0. (58)

Thus the phase velocities are expressed as

(1)vp =

√√√√1+
m2

2k2 +

√
m2

k2

(
m2

4k2 + cos2 α

)
(59)

and

(2)vp =

√√√√1+
m2

2k2 −

√
m2

k2

(
m2

4k2 + cos2 α

)
. (60)

These expressions depend explicitly on the angle α , so the SO(3) invariance is
violated. However, due to the fact that the expression is invariant under the change
vp →−vp, the future and the past cone are the same. Thus the T -invariance and
consequently the P-invariance are preserved. For small k the first phase velocity
(59) goes to infinity while the second phase velocity (60) tends to zero. In the
transversal direction, α = π/2, one of the phase velocities is greater and one is
equal to the speed of light in a vacuum.

The group velocities are expressed as

vg =
1
vp

1± 2cos2 α√
1+ 4k2

m2 cos2 α

 . (61)

Both expressions tend to zero for small values of k. In transversal direction we
have

vg =
1
vp

, (62)

i.e., one of the group velocities is less and one is equal to the speed of light in
vacuum.

5.4 Axion field with a lightlike derivative

Consider a spacetime region, where the derivatives of the axion field compose a
null covector

ψ,mψ
,m = 0. (63)
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Fig. 3 The graphs represent two light hypersurfaces of the lightlike axion modified electrody-
namics

In this case, the general covariant dispersion relation (36) takes the form

q4− (ψ,mqm)2 = 0. (64)

This expression is readily factored as

(q2−ψ,mqm)(q2 +ψ,mqm) = 0. (65)

The expression in the left hand side does not have a defined sign for an arbitrary
non zero covector qm. Thus the non-birefringence condition [16] is explicitly vio-
lated. Consequently, the birefringence effect emerges for arbitrary varying null
axion fields.

We can choose a parametrization

ψ,i = (m,m,0,0) m > 0. (66)

On a flat Minkowski manifold, the dispersion relation takes now the form

(w2− k2)2−m2 (w+ k cosα)2 = 0, (67)

or,

w2 = k2±m(w+ k cosα), (68)

Consequently the light hypersurfaces are expressed as

w2− k2
1 − k2

2 − k2
3 +m(w+ k1) = 0, (69)

and

w2− k2
1 − k2

2 − k2
3 −m(w+ k1) = 0. (70)

The linear terms indicate that these expressions cannot be represented by pseudo-
Riemannian metrics.

The Eqs. (68) have four solutions

(1)w =
m
2

+

√
m2

4
+ k2 +mk cosα

(2)w =
m
2
−

√
m2

4
+ k2 +mk cosα,

(71)

and

(3)w =−m
2

+

√
m2

4
+ k2−mk cosα

(4)w =−m
2
−

√
m2

4
+ k2−mk cosα.

(72)

These expressions are real for every values of the parameters. Consequently, for
the axion field with lightlike derivative, the runaway solutions are absent.
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The light hypersurfaces are depicted on Fig. 3. The first picture corresponds
to (69), while the second one is for (70). The future and the past surfaces are
contacted at points

w =±m
2

, k1 =±m
2

, k2 = 0, k3 = 0. (73)

This topological structure is also different from the standard light cone structure.
The electromagnetic waves propagate with two different phase velocities

(1)vp =
m
2k

+

√
m2

4k2 +
m
k

cosα +1, (74)

and

(2)vp =− m
2k

+

√
m2

4k2 −
m
k

cosα +1. (75)

When the dimensionless parameter m/k increases, i.e., for small k, the first veloc-
ity (74) goes to infinity, while the second one (75) tends to zero.

The group velocities are expressed as

(1)vg =
mcosα +2k√

m2 +4kmcosα +4k2
, (76)

and

(2)vg =
mcosα −2k√

m2 +4kmcosα −4k2
. (77)

For small k they tend to the same value cosα ≤ 1.

6 Conclusions

We have considered a general phenomenological model of axion modified electro-
dynamics. It is shown that the axion modified electrodynamics can be treated as a
special case of premetric electrodynamics. In this formalism, the axion field is not
involved as an additional Chern–Simon term. Alternatively, it emerges as an irre-
ducible part of a general constitutive tensor. We have derived a covariant disper-
sion relation of axion electrodynamics. For a varying axion field, it yields a mod-
ification of light cone. The birefringence effect indicates violation of the Lorentz
invariance for timelike, spacelike and null covector of axion field derivatives. This
effect, however, completely different from the ordinary birefringence appearing
in classical optics and in the premetric electrodynamics. It can be explicitly seen
from the fact that the topological structure of the light hypersurface is different
from the ordinary light cone structure. In addition, the optical metrics are not
homogeneous in the wave covector so they are even non-Finslerian.

Acknowledgments My thanks to Roman Jackiw, Friedrich Hehl and Volker Perlick for useful
discussion. My deep acknowledgments to Yuri Obukhov for valuable corrections.
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Appendix A. Tensors and pseudotensors

Since the axion field possesses a special transformational behavior, it is useful to
have a precise meaning of all quantities involved in the formalism. Although the
notion of weighted tensors and pseudotensors is a classical subject, see [17] and
also [7] for a modern treatment, some confusions in the basic definitions can be
found in literature. We will characterize the geometrical quantities accordingly to
the transformation properties of their components relative to transformations of
coordinates.

Let be given a smooth transformation

xi → xi′ = f i′(xi) (78)

with a transformation matrix

Li′
i =

∂ f i′(xi)
∂xi (79)

and its inverse Li′
i. Denote the determinant of the transformation matrix by J. It is

expressed by

J = det(Li′
i) =

1
4!

εi′ j′k′l′ε
i jklLi′

i L j′
j Lk′

k Ll′
l , (80)

where ε i jkl and εi jkl are the permutation symbols. They take the constant values
0,±1 in all coordinate systems. The relation (80) is equivalent to

ε
i′ j′k′l′J = ε

i jklLi′
i L j′

j Lk′
k Ll′

l , (81)

and

εi′ j′k′l′ = Jεi jklLi′
i L j′

j Lk′
k Ll′

l . (82)

Recall, see [17], the definitions of the extended tensorial objects.

Ordinary tensor has a set of components which are transformed as

T i′···
j′···→ Li′

i · · ·L j′
j · · ·T i···

j···. (83)

Tensor density of weight k is a set of components which are transformed as

T i′···
j′···→

1
Jk Li′

i · · ·L j′
j · · ·T i···

j···. (84)

So the ordinary tensors are tensor densities of zero weight.

Pseudotensor has a set of components which are transformed as

T i′···
j′···→ (sgnJ)Li′

i · · ·L j′
j · · ·T i···

j···. (85)
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Pseudotensor density of weight k is a set of components which are transformed
as

T i′···
j′···→

sgnJ
Jk Li′

i · · ·L j
j′ · · ·T i···

j···. (86)

The ordinary pseudotensors are of zero weight.
Let us start with an action

A =
∫
M

Lvol, (87)

which is an ordinary real number. Its integrand, Lvol, has to be a scalar valued
invariant volume element, i.e., a pseudoscalar density. In the formalism of dif-
ferential forms, it is an odd (twisted) 4-form, see for instance [18]. Here L is a
scalar valued function (Lagrangian) while vol is a special invariant volume ele-
ment defined from the geometric quantities. On a 4D pseudo-Riemannian mani-
fold, the standard invariant volume element is defined by the determinant of the
metric tensor g = det(gi j)

(Riem)vol =
√
−gd4x, d4x = dx0dx1dx2dx3. (88)

In a pure tensorial form, it is equivalently rewritten as

(Riem)vol =
√
−g

(
1
4!

εi jkldxidx jdxkdxl
)

. (89)

Due to (81), the permutation symbol ε i jkl is a tensor density of weight (+1).
Its “inverse” εi jkl is a tensor density of weight (−1). Consequently d4x is a scalar
density of weight (−1).

From the ordinary transformation law for the metric tensor

gi′ j′ = gi jLi
i′L

j
j′ , (90)

one readily has the transformation law for the determinant and its square root

g′ =
1
J2 g,

√
−g′ =

1
|J|
√
−g =

sgn(J)
J

√
−g. (91)

Thus g is a scalar density of weight (+2) while
√
−g is a pseudoscalar density of

weight (+1).
One builds from these two objects a quantity ε̃i jkl =

√
−gεi jkl , which is a (non-

weighted) pseudotensor. Observe that the integrand of the action Lvol has a proper
transformation behavior, it is a pseudoscalar of zero weight. Since the expression
L
√
−g is the subject of variation, this pseudoscalar density of weight (+1) is often

referred to as the Lagrangian density.
Let us return now to the premetric electrodynamics action

A =
∫
M

(
Fi jH

i j +AiJ
i)d4x, (92)
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and, equivalently,

A =
∫
M

(
1
2

χ
i jklFi jFkl +AiJ

i
)

d4x. (93)

Since d4x is a scalar density of weight (−1), the scalar integrand (the expression
in the parenthesis) has to be treated as a pseudoscalar density of weight (+1). It
is constructed from the ordinary tensors Fi j and Ai and the pseudotensor densities
of weight (+1)—H i j and J i. On a pseudo-Euclidean manifold, the ordinary
tensors H i j and Ji are extracted from them by H i j = H i j√−g and J i = Ji√−g.
Consequently, χ i jkl , which is defined by H i j = χ i jklFkl , is a pseudotensor density
of weight (+1).

In axion electrodynamics, the constitutive tensor is given by

(Max)
χ

i jkl =
(

gikg jl −gilg jk
)√

−g+ψε
i jkl . (94)

Since
√
−g s a pseudoscalar density of weight (+1), the first term is a pseudoten-

sor density of weight (+1). In the second term, ε i jkl is a tensor density of weight
(+1). Consequently, ψ is a pseudoscalar. In physics literature, it is called axion.

The matrix Mi j = χ i jklqkql is a pseudotensor density of weight (+1). Its deter-
minant is a scalar density of weight (+2). Consequently the adjoint matrix Ai j is
a pseudotensor density of weight (+1) while the function λ (q) is a pseudoscalar
density of weight (+1). The photon propagator derived for premetric electrody-
namics in [12] is a pseudotensor of weight (−1).
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Birkhäuser Boston

8. Y. Itin (2004) Phys. Rev. D 70 025012
9. Hehl, F.W., Itin, Y., Obukhov, Yu.N.: Recent developments in premetric

classical electrodynamics. In: Zlatibor, S., Montenegro B.D., et al. (eds.)
Proceedings of the 3rd Summer School in Modern Mathematical Physics,
20–31 August 2004. SFIN (Notebooks on Physical Sciences) XVIII: Con-
ferences, A1 (2005), pp. 375–408. Institute of Physics, Belgrade (2005).
[arXiv.org/physics/0610221]

10. S. Kopeikin B. Mashhoon (2002) Phys. Rev. D 65 064025
11. J.C. Hauck B. Mashhoon (2003) Ann. Phys. 12 275



Wave propagation in axion electrodynamics 19

12. Itin, Y.: A generalized photon propagator. J. Phys. A. 40, F737 (2007)
13. V. Perlick (2000) Ray Optics, Fermat’s Princi-

ple, and Applications to General Relativity Springer
Berlin

14. V. Perlick (2006) Gen. Rel. Grav. 38 365
15. C. Adam F.R. Klinkhamer (2001) Nucl. Phys. B 607 247
16. Y. Itin (2005) Phys. Rev. D 72 087502
17. J.A. Schouten (1964) Tensor Analysis for Physicists Clarendon Oxford
18. Gronwald, F., Muench, U., Macias, A., Hehl, F.W.: Phys. Rev. D 58, 084021

(1998) [arXiv:gr-qc/9712063]


