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1. Introduction

The Feynman Tree Theorem (FTT) [1, 2] applies to any (local and unitary) quantum

field theories in Minkowsky space with an arbitrary number d of space-time dimensions.

It relates perturbative scattering amplitudes and Green’s functions at the loop level with

analogous quantities at the tree level. This relation follows from a basic and more elemen-

tary relation between loop integrals and phase-space integrals. Using this basic relation

loop Feynman diagrams can be rewritten in terms of phase-space integrals of tree-level

Feynman diagrams. The corresponding tree-level Feynman diagrams are then obtained by

considering multiple cuts (single cuts, double cuts, triple cuts and so forth) of the original

loop Feynman diagram.

We have recently proposed a method [3 – 5] to numerically compute multi-leg one-loop

cross sections in perturbative field theories. The starting point of this method is a duality

relation between one-loop integrals and phase-space integrals. Although the analogy with

the FTT is quite close, there are important differences. The key difference is that the

duality relation involves only single cuts of the one-loop Feynman diagrams. Both the

FTT and the duality relation can be derived by using the residue theorem.1

In this paper, we illustrate and derive the duality relation. Since the FTT has recently

attracted a renewed interest [6] in the context of twistor-inspired methods [7, 8] to evaluate

one-loop scattering amplitudes [9], we also discuss its correspondence (including similarities

and differences) with the duality relation.

The outline of the paper is as follows. In section 2, we introduce our notation. In

section 3, we briefly recall how the FTT relates one-loop integrals with multiple-cut phase-

space integrals. In section 4, we present one of the main results of this publication: we

derive and illustrate the duality relation between one-loop integrals and single-cut phase-

space integrals. We also prove that the duality relation requires to properly regularize

propagators by a complex Lorentz-covariant prescription, which is different from the cus-

tomary +i0 prescription of the Feynman propagators. The duality is illustrated in section 5

by considering the two-point function as the simplest example application. The correspon-

dence between the FTT and the duality relation is formalized in section 6. In section 7, we

explore the one-to-one correspondence between one-loop Feynman integrals and single-cut

integrals on more mathematical grounds, and establish a generalized duality relation. The

treatment of particle masses (including complex masses of unstable particles) when cutting

loop integrals is discussed in section 8. In section 9, we analyze the effect of the gauge poles

introduced by the propagators of the gauge fields in local gauge theories. In section 10, we

discuss the extension of the duality relation to one-loop Green’s functions and scattering

amplitudes. Some final remarks are presented in section 11. Details about the derivation of

the duality relation by using the residue theorem are discussed in appendix A. The proof

of an algebraic relation is presented in appendix B. Issues related to tadpole singularities

are discussed in appendix C.

1Within the context of loop integrals, the use of the residue theorem has been considered many times

in textbooks and in the literature.
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Figure 1: Momentum configuration of the one-loop N -point scalar integral.

2. Notation

The FTT and the duality relation can be illustrated with no loss of generality by considering

their application to the basic ingredient of any one-loop Feynman diagrams, namely a

generic one-loop scalar integral L(N) with N (N ≥ 2) external legs.

The momenta of the external legs are denoted by pµ
1 , pµ

2 , . . . , pµ
N and are clockwise

ordered (figure 1). All are taken as outgoing. To simplify the notation and the presentation,

we also limit ourselves in the beginning to considering massless internal lines only. Thus,

the one-loop integral L(N) can in general be expressed as:

L(N)(p1, p2, . . . , pN ) = −i

∫
ddq

(2π)d

N∏

i=1

1

q2
i + i0

, (2.1)

where qµ is the loop momentum (which flows anti-clockwise). The momenta of the internal

lines are denoted by qµ
i ; they are given by

qi = q +

i∑

k=1

pk , (2.2)

and momentum conservation results in the constraint

N∑

i=1

pi = 0 . (2.3)

The value of the label i of the external momenta is defined modulo N , i.e. pN+i ≡ pi.

The number of space-time dimensions is denoted by d (the convention for the Lorentz-

indices adopted here is µ = 0, 1, . . . , d− 1) with metric tensor gµν = diag(+1,−1, . . . ,−1).

The space-time coordinates of any momentum kµ are denoted as kµ = (k0,k), where k0 is

the energy (time component) of kµ. It is also convenient to introduce light-cone coordinates

kµ = (k+, k⊥, k−), where k± = (k0 ± kd−1)/
√

2. Throughout the paper we consider loop

integrals and phase-space integrals. If the integrals are ultraviolet or infrared divergent,

we always assume that they are regularized by using analytic continuation in the number

of space-time dimensions (dimensional regularization). Therefore, d is not fixed and does

not necessarily have integer value.
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We introduce the following shorthand notation:

−i

∫
ddq

(2π)d
· · · ≡

∫

q
· · · . (2.4)

When we factorize off in a loop integral the integration over the momentum coordinate q0

or q+, we write

−i

∫ +∞

−∞
dq0

∫
dd−1q

(2π)d
· · · ≡

∫
dq0

∫

q

· · · , (2.5)

and

−i

∫ +∞

−∞
dq+

∫ +∞

−∞
dq−

∫
dd−2q⊥

(2π)d
· · · ≡

∫
dq+

∫

(q−,q⊥)
· · · , (2.6)

respectively. The customary phase-space integral of a physical massless particle with mo-

mentum q (i.e. an on-shell particle with positive-definite energy: q2 = 0, q0 ≥ 0) reads
∫

ddq

(2π)d−1
θ(q0) δ(q2) · · · ≡

∫

q
δ̃(q) · · · , (2.7)

where we have defined

δ̃(q) ≡ 2π i θ(q0) δ(q2) = 2π i δ+(q2) . (2.8)

Using this shorthand notation, the one-loop integral L(N) in eq. (2.1) can be cast into

L(N)(p1, p2, . . . , pN ) =

∫

q

N∏

i=1

G(qi) , (2.9)

where G(q) denotes the customary Feynman propagator,

G(q) ≡ 1

q2 + i0
. (2.10)

We also introduce the advanced propagator GA(q),

GA(q) ≡ 1

q2 − i0 q0
. (2.11)

We recall that the Feynman and advanced propagators only differ in the position of the

particle poles in the complex plane (figure 2). Using q2 = q2
0 − q2 = 2q+q− − q2

⊥, we

therefore have

[G(q)]−1 = 0 =⇒ q0 = ±
√

q2 − i0 , or q± =
q2
⊥ − i0

2q∓
, (2.12)

and

[GA(q)]−1 = 0 =⇒ q0 ≃ ±
√

q2 + i0 , or q± ≃
q2
⊥

2q∓
+ i0 . (2.13)

Thus, in the complex plane of the variable q0 (or, equivalently,2 q±), the pole with positive

(negative) energy of the Feynman propagator is slightly displaced below (above) the real

axis, while both poles (independently of the sign of the energy) of the advanced propagator

are slightly displaced above the real axis.

2To be precise, each propagator leads to two poles in the plane q0 and to only one pole in the plane q+

(or q−).
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Figure 2: Location of the particle poles of the Feynman (left) and advanced (right) propagators,

G(q) and GA(q), in the complex plane of the variable q0 or q±.

3. The Feynman theorem

In this section we briefly recall the FTT [1, 2].

To this end, we first introduce the advanced one-loop integral L
(N)
A , which is obtained

from L(N) in eq. (2.9) by replacing the Feynman propagators G(qi) with the corresponding

advanced propagators GA(qi):

L
(N)
A (p1, p2, . . . , pN ) =

∫

q

N∏

i=1

GA(qi) . (3.1)

Then, we note that

L
(N)
A (p1, p2, . . . , pN ) = 0 . (3.2)

The proof of eq. (3.2) can be carried out in an elementary way by using the Cauchy

residue theorem and choosing a suitable integration path CL. We have

L
(N)
A (p1, p2, . . . , pN ) =

∫

q

∫
dq0

N∏

i=1

GA(qi)

=

∫

q

∫

CL

dq0

N∏

i=1

GA(qi) = − 2πi

∫

q

∑
Res{Im q0<0}

[
N∏

i=1

GA(qi)

]
= 0 . (3.3)

The loop integral is evaluated by integrating first over the energy component q0. Since

the integrand is convergent when q0 → ∞, the q0 integration can be performed along

the contour CL, which is closed at ∞ in the lower half-plane of the complex variable q0

(figure 3–left). The only singularities of the integrand with respect to the variable q0 are

the poles of the advanced propagators GA(qi), which are located in the upper half-plane.

The integral along CL is then equal to the sum of the residues at the poles in the lower

half-plane and therefore it vanishes.

The advanced and Feynman propagators are related by

GA(q) = G(q) + δ̃(q) , (3.4)

– 5 –
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Figure 3: Location of poles and integration contour CL in the complex q0-plane for the advanced

(left) and Feynman (right) one-loop integrals, L
(N)
A

and L(N).

which can straightforwardly be obtained by using the elementary identity

1

x± i0
= PV

(
1

x

)
∓ iπ δ(x) , (3.5)

where PV denotes the principal-value prescription. Inserting eq. (3.4) into the right-hand

side of eq. (3.1) and collecting the contributions with an equal number of factors G(qi) and

δ̃(qj), we obtain a relation between L
(N)
A and the one-loop integral L(N):

L
(N)
A (p1, p2, . . . , pN ) =

∫

q

N∏

i=1

[
G(qi) + δ̃(qi)

]

= L(N)(p1, p2, . . . , pN ) + L
(N)
1−cut(p1, p2, . . . , pN ) + · · ·+ L

(N)
N−cut(p1, p2, . . . , pN ) . (3.6)

Here, the single-cut contribution is given by

L
(N)
1−cut(p1, p2, . . . , pN ) =

∫

q

N∑

i=1

δ̃(qi)
N∏

j=1

j 6=i

G(qj) . (3.7)

In general, the m-cut terms L
(N)
m−cut (m ≤ N) are the contributions with precisely m delta

functions δ̃(qi):

L
(N)
m−cut(p1, p2, . . . , pN ) =

∫

q

{
δ̃(q1) . . . δ̃(qm) G(qm+1) . . . G(qN ) + uneq. perms.

}
, (3.8)

where the sum in the curly bracket includes all the permutations of q1, . . . , qN that give

unequal terms in the integrand.

Recalling that L
(N)
A vanishes, cf. eq. (3.2), eq. (3.6) results in:

L(N)(p1, p2, . . . , pN ) = −
[

L
(N)
1−cut(p1, p2, . . . , pN ) + · · · + L

(N)
N−cut(p1, p2, . . . , pN )

]
. (3.9)
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Figure 4: The single-cut contribution of the Feynman Tree Theorem to the one-loop N -point

scalar integral. Graphical representation as a sum of N basic single-cut phase-space integrals.

This equation is the FTT in the specific case of the one-loop integral L(N). The FTT relates

the one-loop integral L(N) to the multiple-cut3 integrals L
(N)
m−cut. Each delta function δ̃(qi)

in L
(N)
m−cut replaces the corresponding Feynman propagator in L(N) by cutting the internal

line with momentum qi. This is synonymous to setting the respective particle on shell. An

m-particle cut decomposes the one-loop diagram in m tree diagrams: in this sense, the

FTT allows us to calculate loop-level diagrams from tree-level diagrams.

In view of the discussion in the following sections, it is useful to consider the single-cut

contribution L
(N)
1−cut on the right-hand side of eq. (3.9). In the case of single-cut contribu-

tions, the FTT replaces the one-loop integral with the customary one-particle phase-space

integral, see eqs. (2.7) and (3.7). Using the invariance of the loop-integration measure under

translations of the loop momentum q, we can perform the momentum shift q → q−∑i
k=1 pk

in the term proportional to δ̃(qi) on the right-hand side of eq. (3.7). Thus, cf. eq. (2.2), we

have qi → q and qj → q + (pi+1 + pi+2 + · · · + pi+j), with i 6= j. We can repeat the same

shift for each of the terms (i = 1, 2, . . . , N) in the sum on the right-hand side of eq. (3.7),

and we can rewrite L
(N)
1−cut as a sum of N basic phase-space integrals (figure 4):

L
(N)
1−cut(p1, p2, . . . , pN ) = I

(N−1)
1−cut (p1, p1 + p2, . . . , p1 + p2 + · · ·+ pN−1) + cyclic perms.

=

N∑

i=1

I
(N−1)
1−cut (pi, pi + pi+1, . . . , pi + pi+1 + · · ·+ pi+N−2) . (3.10)

We denote the basic one-particle phase-space integrals with n Feynman propagators by

I
(n)
1−cut. They are defined as follows:

I
(n)
1−cut(k1, k2, . . . , kn) =

∫

q
δ̃(q)

n∏

j=1

G(q + kj) =

∫

q
δ̃(q)

n∏

j=1

1

2qkj + k2
j + i0

. (3.11)

The extension of the FTT from the one-loop integrals L(N) to one-loop scattering

amplitudes A(1−loop) (or Green’s functions) in perturbative field theories is straightforward,

3If the number of space-time dimensions is d, the right-hand side of eq. (3.9) receives contributions only

from the terms with m ≤ d; the terms with larger values of m vanish, since the corresponding number of

delta functions in the integrand is larger than the number of integration variables.

– 7 –
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provided the corresponding field theory is unitary and local. The generalization of eq. (3.9)

to arbitrary scattering amplitudes is [1, 2]:

A(1−loop) = −
[
A(1−loop)

1−cut +A(1−loop)
2−cut + . . .

]
, (3.12)

where A(1−loop)
m−cut is obtained in the same way as L

(N)
m−cut, i.e. by starting from A(1−loop) and

considering all possible replacements of m Feynman propagators G(qi) of its loop internal

lines with the ‘cut propagators’ δ̃(qi).

The proof of eq. (3.12) directly follows from eq. (3.9): A(1−loop) is a linear combination

of one-loop integrals that differ from L(N) only by the inclusion of interaction vertices

and, eventually, particle masses. As briefly recalled below, these differences have harmless

consequences on the derivation of the FTT.

Including particle masses in the advanced and Feynman propagators has an effect on

the location of the poles produced by the internal lines in the loop. However, as long as the

masses are real, as in the case of unitary theories, the position of the poles in the complex

plane of the variable q0 is affected only by a translation parallel to the real axis, with no

effect on the imaginary part of the poles. This translation does not interfere with the proof

of the FTT as given in eqs. (3.1)–(3.9). Therefore, the effect of a particle mass Mi in a loop

internal line with momentum qi simply amounts to modifying the corresponding on-shell

delta function δ̃(qi) when this line is cut to obtain A(1−loop)
m−cut . This modification then leads

to the obvious replacement:

δ̃(qi)→ δ̃(qi;Mi) = 2π i θ(qi0) δ(q2
i −M2

i ) = 2π i δ+(q2
i −M2

i ) . (3.13)

Including interaction vertices has the effect of introducing numerator factors in the

integrand of the one-loop integrals. As long as the theory is local, these numerator factors

are at worst polynomials of the integration momentum q.4 In the complex plane of the

variable q0, this polynomial behavior does not lead to additional singularities at any finite

values of q0. The only danger, when using the Cauchy theorem as in eq. (3.3) to prove

the FTT, stems from polynomials of high degree that can spoil the convergence of the

q0-integration at infinity. Nonetheless, if the field theory is unitary, these singularities at

infinity never occur since the degree of the polynomials in the various integrands is always

sufficiently limited by the unitarity constraint.

4. A duality theorem

In this section we derive and illustrate the duality relation between one-loop integrals and

single-cut phase-space integrals. This relation is the main general result of the present work.

4This statement is not completely true in the case of gauge theories and, in particular, in the case of

gauge-dependent quantities. The discussion of the additional issues that arise in gauge theories is postponed

to section 9.
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Rather than starting from L
(N)
A , we directly apply the residue theorem to the compu-

tation of L(N). We proceed exactly as in eq. (3.3), and obtain

L(N)(p1, p2, . . . , pN ) =

∫

q

∫
dq0

N∏

i=1

G(qi)

=

∫

q

∫

CL

dq0

N∏

i=1

G(qi) = − 2πi

∫

q

∑
Res{Im q0<0}

[
N∏

i=1

G(qi)

]
. (4.1)

At variance with GA(qi), each of the Feynman propagators G(qi) has single poles in both

the upper and lower half-planes of the complex variable q0 (see figure 3–right) and therefore

the integral does not vanish as in the case of the advanced propagators. In contrast, here,

the N poles in the lower half-plane contribute to the residues in eq. (4.1).

The calculation of these residues is elementary, but it involves several subtleties. The

detailed calculation, including a discussion of its subtle points, is presented in appendix A.

In the present section we limit ourselves to sketching the derivation of the result of this

computation.

The sum over residues in eq. (4.1) receives contributions from N terms, namely the N

residues at the poles with negative imaginary part of each of the propagators G(qi), with

i = 1, . . . , N , see eq. (2.12). Considering the residue at the i-th pole we write

Res{i−th pole}




N∏

j=1

G(qj)


 =

[
Res{i−th pole} G(qi)

]



N∏

j=1

j 6=i

G(qj)



{i−th pole}

, (4.2)

where we have used the fact that the propagators G(qj), with j 6= i, are not singular at

the value of the pole of G(qi). Therefore, they can be directly evaluated at this value.

The calculation of the residue of G(qi) is straightforward and gives

[
Res{i−th pole} G(qi)

]
=

[
Res{i−th pole}

1

q2
i + i0

]
=

∫
dq0 δ+(q2

i ) . (4.3)

This result shows that considering the residue of the Feynman propagator of the internal

line with momentum qi is equivalent to cutting that line by including the corresponding on-

shell propagator δ+(q2
i ). The subscript + of δ+ refers to the on-shell mode with positive def-

inite energy, qi0 = |qi|: the positive-energy mode is selected by the Feynman i0 prescription

of the propagator G(qi). The insertion of eq. (4.3) in eq. (4.1) directly leads to a representa-

tion of the one-loop integral as a linear combination of N single-cut phase-space integrals.

The calculation of the residue prefactor on the r.h.s. of eq. ( 4.2) is more subtle (see

appendix A) and yields



∏

j 6=i

G(qj)



{i−th pole}

=




∏

j 6=i

1

q2
j + i0



{i−th pole}

=
∏

j 6=i

1

q2
j − i0 η(qj − qi)

, (4.4)

where η is a future-like vector,

ηµ = (η0, η) , η0 ≥ 0, η2 = ηµηµ ≥ 0 , (4.5)

– 9 –
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Figure 5: The duality relation for the one-loop N -point scalar integral. Graphical representation

as a sum of N basic dual integrals.

i.e. a d-dimensional vector that can be either light-like (η2 = 0) or time-like (η2 > 0)

with positive definite energy η0. Note that the calculation of the residue at the pole of

the internal line with momentum qi changes the propagators of the other lines in the loop

integral. Although the propagator of the j-th internal line still has the customary form

1/q2
j , its singularity at q2

j = 0 is regularized by a different i0 prescription: the original

Feynman prescription q2
j + i0 is modified in the new prescription q2

j − i0 η(qj − qi), which

we name the ‘dual’ i0 prescription or, briefly, the η prescription. The dual i0 prescription

arises from the fact that the original Feynman propagator 1/(q2
j + i0) is evaluated at

the complex value of the loop momentum q, which is determined by the location of the

pole at q2
i + i0 = 0. The i0 dependence from the pole has to be combined with the i0

dependence in the Feynman propagator to obtain the total dependence as given by the

dual i0 prescription. The presence of the vector ηµ is a consequence of using the residue

theorem. To apply it to the calculation of the d dimensional loop integral, we have to

specify a system of coordinates (e.g. space-time or light-cone coordinates) and select one of

them to be integrated over at fixed values of the remaining d− 1 coordinates. Introducing

the auxiliary vector ηµ with space-time coordinates ηµ = (η0,0⊥, ηd−1), the selected system

of coordinates can be denoted in a Lorentz-invariant form. Applying the residue theorem

in the complex plane of the variable q0 at fixed (and real) values of the coordinates q⊥

and q′d−1 = qd−1 − q0ηd−1/η0 (to be precise, in eq. (4.1) we actually used ηµ = (1,0)), we

obtain the result in eq. (4.4).

The η dependence of the ensuing i0 prescription is thus a consequence of the fact

that the residues at each of the poles are not Lorentz-invariant quantities. The Lorentz-

invariance of the loop integral is recovered only after summing over all the residues.

Inserting the results of eq. (4.2)–(4.4) in eq. (4.1) we directly obtain the duality relation

between one-loop integrals and phase-space integrals:

L(N)(p1, p2, . . . , pN ) = − L̃(N)(p1, p2, . . . , pN ) , (4.6)

where the explicit expression of the phase-space integral L̃(N) is (figure 5)

L̃(N)(p1, p2, . . . , pN ) =

∫

q

N∑

i=1

δ̃(qi)

N∏

j=1

j 6=i

1

q2
j − i0 η(qj − qi)

, (4.7)
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and η is the auxiliary vector defined in eq. (4.5). Each of the N − 1 propagators in the

integrand is regularized by the dual i0 prescription and, thus, it is named ‘dual’ propagator.

Note that the momentum difference qi − qj is independent of the integration momentum

q: it only depends on the momenta of the external legs of the loop (see eq. (2.2)).

Using the invariance of the integration measure under translations of the momentum

q, we can perform the same momentum shifts as described in section 3. In analogy to

eq. (3.10), we can rewrite eq. (4.7) as a sum of N basic phase-space integrals (figure 5):

L̃(N)(p1, p2, . . . , pN ) = I(N−1)(p1, p1 + p2, . . . , p1 + p2 + · · ·+ pN−1) + cyclic perms.

=

N∑

i=1

I(N−1)(pi, pi + pi+1, . . . , pi + pi+1 + · · ·+ pi+N−2) . (4.8)

The basic one-particle phase-space integrals with n dual propagators are denoted by I(n),

and are defined as follows:

I(n)(k1, k2, . . . , kn) =

∫

q
δ̃(q) I(n)(q; k1, k2, . . . , kn) =

∫

q
δ̃(q)

n∏

j=1

1

2qkj + k2
j − i0 ηkj

.

(4.9)

We now comment on the comparison between the FTT (eqs. (3.7)–(3.11)) and the

duality relation (eqs. (4.6)–(4.9)). The multiple-cut contributions L
(N)
m−cut, with m ≥ 2, of

the FTT are completely absent from the duality relation, which only involves single-cut

contributions similar to those in L
(N)
1−cut. However, the Feynman propagators present in

L
(N)
1−cut are replaced by dual propagators in L̃(N). This compensates for the absence of

multiple-cut contributions in the duality relation.

The i0 prescription of the dual propagator depends on the auxiliary vector η. The basic

dual integrals I(n) are well defined for arbitrary values of η. However, when computing

L̃(N), the future-like vector η has to be the same in all its contributing dual integrals

(propagators): only then L̃(N) does not depend on η.

In our derivation of the duality relation, the auxiliary vector η originates from the use

of the residue theorem. Independently of its origin, we can comment on the role of η in the

duality relation. The one-loop integral L(N)(p1, p2, . . . , pN ) is a function of the Lorentz-

invariants (pipj). This function has a complicated analytic structure, with pole and branch-

cut singularities (scattering singularities), in the multidimensional space of the complex

variables (pipj). The i0 prescription of the Feynman propagators selects a Riemann sheet

in this multidimensional space and, thus, it unambiguously defines L(N)(p1, p2, . . . , pN ) as

a single-valued function. Each single-cut contribution to L̃(N) has additional (unphysical)

singularities in the multidimensional complex space. The dual i0 prescription fixes the

position of these singularities. The auxiliary vector η correlates the various single-cut

contributions in L̃(N), so that they are evaluated on the same Riemann sheet: this leads

to the cancellation of the unphysical single-cut singularities. In contrast, in the FTT, this

cancellation is produced by the introduction of the multiple-cut contributions L
(N)
m−cut.

We remark that the expression (4.8) of L̃(N) as a sum of basic dual integrals is just

a matter of notation: for massless internal particles L̃(N) is actually a single phase-space

– 11 –
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p1 p2

q + p1

q

Figure 6: The one-loop two-point scalar integral L(2)(p1, p2).

integral whose integrand is the sum of the terms obtained by cutting each of the internal

lines of the loop. In explicit form, we can write:

L̃(N)(p1, p2, . . . , pN ) =

∫

q
δ̃(q)

N∑

i=1

I(N−1)(q; pi, pi + pi+1, . . . , pi + pi+1 + · · ·+ pi+N−2) ,

(4.10)

where the function I(n) is the integrand of the dual integral in eq. (4.9). Therefore, the

duality relation (4.6) directly expresses the one-loop integral as the phase-space integral of

a tree-level quantity. To name eq. (4.6), we have introduced the term ‘duality’ precisely to

point out this direct relation5 between the d-dimensional integral over the loop momentum

and the (d − 1)-dimensional integral over the one-particle phase-space. For the FTT, the

relation between loop-level and tree-level quantities is more involved, since the multiple-cut

contributions L
(N)
m−cut (with m ≥ 2) contain integrals of expressions that correspond to the

product of m tree-level diagrams over the phase-space for different number of particles.

The simpler correspondence between loops and trees in the context of the duality re-

lation is further exploited in section 10, where we discuss Green’s functions and scattering

amplitudes.

5. Example: the scalar two-point function

In this section we illustrate the application of the FTT and of the duality relation to the

evaluation of the one-loop two-point function L(2). A detailed discussion (including detailed

results in analytic form and numerical results) of higher-point functions will be presented

elsewhere [5] (see also refs. [3, 4]).

The two-point function (figure 6), also known as bubble function Bub, is the simplest

non-trivial one-loop integral with massless internal lines:

Bub(p2
1) ≡ L(2)(p1, p2) = −i

∫
ddq

(2π)d
1

[q2 + i0] [(q + p1)2 + i0]
. (5.1)

5The word duality also suggests a stronger (possibly one-to-one) correspondence between dual integrals

and loop integrals, which is further discussed in section 7.
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Here, we have visibly implemented momentum conservation (p1 + p2 = 0) and exploited

Lorentz invariance (L(2)(p1, p2) can only depend on p2
1, which is the sole available invari-

ant). Since most of the one-loop calculations have been carried out in four-dimensional

field theories (or in their dimensionally-regularized versions), we set d = 4 − 2ǫ. Note,

however, that we present results for arbitrary values of ǫ or, equivalently, for any value d

of space-time dimensions.

The result of the one-loop integral in eq. (5.1) is well known:

Bub(p2) = cΓ
1

ǫ(1− 2ǫ)

(
−p2 − i0

)−ǫ
, (5.2)

where cΓ is the customary d-dimensional volume factor that appears from the calculation

of one-loop integrals:

cΓ ≡
Γ(1 + ǫ) Γ2(1− ǫ)

(4π)2−ǫ Γ(1− 2ǫ)
. (5.3)

We recall that the i0 prescription in eq. (5.2) follows from the corresponding prescrip-

tion of the Feynman propagators in the integrand of eq. (5.1). The i0 prescription defines

Bub(p2) as a single-value function of the real variable p2. In particular, it gives Bub(p2)

an imaginary part with an unambiguous value when p2 > 0:

Bub(p2) = cΓ
1

ǫ(1− 2ǫ)

(
|p2|

)−ǫ [
θ(−p2) + θ(p2) eiπǫ

]
. (5.4)

5.1 General form of single-cut integrals

To apply the FTT and the duality relation, we have to compute the single-cut integrals

I
(1)
1−cut and I(1), respectively. Since these integrals only differ because of their i0 prescription,

we introduce a more general regularized version, I
(1)
reg, of the single-cut integral. We define:

I(1)
reg(k; c(k)) =

∫

q
δ̃(q)

1

2qk + k2 + i0 c(k)
=

∫
ddq

(2π)d−1
δ+(q2)

1

2qk + k2 + i0 c(k)
. (5.5)

Although c(k) is an arbitrary function of k, I
(1)
reg only depends on the sign of the i0 prescrip-

tion, i.e. on the sign of the function c(k): setting c(k) = +1 we recover I
(1)
1−cut, cf. eq. (3.11),

while setting c(k) = −ηk we recover I(1) (see eq. (4.9)).

The calculation of the integral in eq. (5.5) is elementary, and the result is

I(1)
reg(k; c(k)) = − cΓ

2 cos(πǫ)

1

ǫ(1− 2ǫ)

[
k2

k0
− i0 k2 c(k)

]−ǫ [
k0 − i0 k2 c(k)

]−ǫ
. (5.6)

Note that the typical volume factor, c̃Γ, of the d-dimensional phase-space integral is

c̃Γ =
Γ(1− ǫ) Γ(1 + 2ǫ)

(4π)2−ǫ . (5.7)

The factor cos(πǫ) in eq. (5.6) originates from the difference between c̃Γ and the volume

factor cΓ of the loop integral:

c̃Γ

cΓ
=

Γ(1 + 2ǫ) Γ(1− 2ǫ)

Γ(1 + ǫ) Γ(1− ǫ)
=

1

cos(πǫ)
. (5.8)
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p1 p2

q
=

1
(q + p1)

2 − i0ηp1

δ̃(q)

−

1
(q − p1)

2 + i0ηp1

δ̃(q)

−

Figure 7: One-loop two-point function: the duality relation.

We also note that the result in eq. (5.6) depends on the sign of the energy k0. This follows

from the fact that the integration measure in eq. (5.5) has support on the future light-cone,

which is selected by the positive-energy requirement of the on-shell constraint δ+(q2).

The denominator contribution (2qk+k2) in the integrand of eq. (5.5) is positive definite

in the kinematical region where k2 > 0 and k0 > 0. In this region the i0 prescription is

inconsequential, and I
(1)
reg has no imaginary part. Outside this kinematical region, (2qk+k2)

can vanish, leading to a singularity of the integrand. The singularity is regularized by the

i0 prescription, which also produces a non-vanishing imaginary part. The result in eq. (5.6)

explicitly shows these expected features, since it can be rewritten as

I(1)
reg(k; c(k)) = − cΓ

2 cos(πǫ)

(
|k2|

)−ǫ

ǫ(1− 2ǫ)

{
θ(−k2) [cos(πǫ)− i sin(πǫ) sign(c(k))]

+ θ(k2) [θ(k0) + θ(−k0) (cos(2πǫ) + i sin(2πǫ) sign(c(k)))]
}

. (5.9)

We note that the functions Bub(k2) and I
(1)
reg(k; c(k)) have different analyticity properties in

the complex k2 plane. The bubble function has a branch-cut singularity along the positive

real axis, k2 > 0. The phase-space integral I
(1)
reg(k; c(k)) has a branch-cut singularity along

the entire real axis if k0 < 0, while the branch-cut singularity is placed along the negative

real axis if k0 > 0.

5.2 Duality relation for the two-point function

We now consider the duality relation (figure 7) in the context of this example. The dual

representation of the one-loop two-point function is given by

L̃(2)(p1, p2) = I(1)(p1) +
(
p1 ↔ −p1

)
, (5.10)

cf. eqs. (4.8) and (4.9). The basic dual integral I(1)(k) is obtained by setting c(k) = −ηk

in eq. (5.6). Since ηµ is a future-like vector, c(k) has the following important property:

sign(ηk) = sign(k0) , if k2 ≥ 0 . (5.11)

Using this property, the result in eq. (5.6) can be written as

I(1)(k) = − cΓ

2

(
−k2 − i0

)−ǫ

ǫ(1− 2ǫ)

[
1− i

sin(πǫ)

cos(πǫ)
sign(k2ηk)

]
. (5.12)
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p1 p2

q
=

1
(q + p1)

2 + i0

δ̃(q)

−

1
(q − p1)

2 + i0

δ̃(q)

−

δ̃(q)

δ̃(q + p1)

−

Figure 8: One-loop two-point function: the Feynman Tree Theorem

Comparing this expression with eq. (5.2), we see that the imaginary contribution in the

square bracket is responsible for the difference with the two-point function. However,

since sign(−ηk) = −sign(ηk), this contribution is odd under the exchange k → −k and,

therefore, it cancels when eq. (5.12) is inserted in eq. (5.10). Taken together,

L̃(2)(p1, p2) = I(1)(p1) +
(
p1 ↔ −p1

)
= − cΓ

(
−p2

1 − i0
)−ǫ

ǫ(1− 2ǫ)
, (5.13)

which fully agrees with the duality relation L̃(2)(p1, p2) = −Bub(p2
1).

5.3 FTT for the two-point function

We now would like to discuss the FTT (figure 8) in the case of the two-point function. To

this end, we want to check the relations of eqs. (3.8)–(3.11). For the FTT, the two-point

function is cast into the form

L(2)(p1, p2, . . . , pN ) = −
[

L
(2)
1−cut(p1, p2) + L

(2)
2−cut(p1, p2)

]
, (5.14)

where the single-cut and double-cut contributions are

L
(2)
1−cut(p1, p2) = I

(1)
1−cut(p1) +

(
p1 ↔ −p1

)
, (5.15)

and

L
(2)
2−cut(p1, p2) =

∫

q
δ̃(q) δ̃(q + p1) = i

∫
ddq

(2π)d−2
θ(q0) δ(q2) θ(q0 + p10) δ((q + p1)

2) ,

(5.16)
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2 i Im
[

p

q
]

θ(p0) =

δ̃(q)

δ̃(p − q)

Figure 9: One-loop two-point function: the imaginary part.

respectively. The basic single-cut integral I
(1)
1−cut(k) of eq. (5.15) is obtained by setting

c(k) = +1 in eq. (5.6); we then have

I
(1)
1−cut(k) = − cΓ

2

(
−k2 − i0

)−ǫ

ǫ(1− 2ǫ)

[
1− i

sin(πǫ)

cos(πǫ)

[
θ(−k2) + θ(k2) sign(k0)

]]
. (5.17)

Comparing the individual single-cut results, eqs. (5.12) and (5.17), we see that the imagi-

nary contributions in the square brackets are different. Inserting eq. (5.17) into eq. (5.15),

the part of the imaginary contribution that is proportional to sign(k0) cancels (this part is

odd under the exchange k → −k), while the remaining part does not:

L
(2)
1−cut(p1, p2)=I

(1)
1−cut(p1)+

(
p1↔−p1

)
=−cΓ

(
−p2

1−i0
)−ǫ

ǫ(1−2ǫ)

[
1−i

sin(πǫ)

cos(πǫ)
θ(−p2

1)

]
. (5.18)

We see that also the sum of the two single-cut contributions of eqs. (5.13) and (5.18) are

different: the difference is due to the replacement of the dual i0 prescription with the Feyn-

man i0 prescription. In particular, the difference is a purely imaginary term with support

on the space-like region p2
1 < 0, whereas the two-point function is purely real in the same

region. In the FTT, this difference is compensated by the double-cut contribution L
(2)
2−cut.

The calculation of the double-cut contribution in eq. (5.16) results in

L
(2)
2−cut(p1, p2) = − i cΓ

(
|p2

1|
)−ǫ

ǫ(1− 2ǫ)

sin(πǫ)

cos(πǫ)
θ(−p2

1) . (5.19)

Inserting eqs. (5.18) and (5.19) into the right-hand side of the FTT expression of eq. (5.14),

we find agreement with the result from the direct one-loop computation of the two-point

function.

To conclude this illustration of the FTT, we add a remark. The double-cut contribution

L
(2)
2−cut is different from the unitarity-cut contribution that gives the imaginary part of

the bubble function (or, equivalently, the discontinuity of Bub(p2) across its branch-cut

singularity). The imaginary part of the two-point function can be obtained by applying

the Cutkosky rules (figure 9):

2 i Im
[
Bub(p2)

]
θ(p0) =

∫

q
δ̃(q) δ̃(p−q) = i

∫
ddq

(2π)d−2
θ(q0) δ(q2) θ(p0−q0) δ((q−p)2) .

(5.20)
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We see that the double-cut contributions in eq. (5.16) and (5.20) are different due to the

determination of the positive-energy flow in the internal lines. Once the energy of the

line with momentum q is fixed to be positive, the on-shell line with momentum q + k has

positive energy in eq. (5.16) and negative energy in eq. (5.20). The computation of the

double-cut integral in eq. (5.20) yields

∫

q
δ̃(q) δ̃(p− q) = + i cΓ

(
|p2|

)−ǫ

ǫ(1− 2ǫ)
2 sin(πǫ) θ(p2) θ(p0) , (5.21)

which indeed differs from the expression in eq. (5.19). Inserting eq. (5.21) in eq. (5.20), we

obtain the imaginary part of Bub(p2), in complete agreement with the result (5.4) of the

one-loop integral.

We also note that the Cutkosky rules in eq. (5.20) can be derived in a direct way (i.e.,

without the explicit computation of any integrals) from the duality relation. The derivation

is as follows. Applying the identity (3.5) to the dual propagator, we have

Im [I(1)(p)] = π

∫

q
δ̃(q) δ((q + p)2) sign(ηp) . (5.22)

We now use the duality relation to compute the imaginary part of the two-point function,

which is given by

2 i Im
[
Bub(p2)

]
θ(p0) = −2 i θ(p0)

[
Im I(1)(p) + (p↔ −p)

]
. (5.23)

Inserting eq. (5.22) in eq. (5.23), we obtain

2 iIm
[
Bub(p2)

]
θ(p0) = −2π i sign(ηp) θ(p0)

∫

q
δ̃(q)

[
δ((q + p)2)− δ((q − p)2)

]

=−(2πi)2sign(ηp)θ(p0)

∫

q
δ(q2)δ((q−p)2)

{
θ(q0−p0)−θ(q0)

}
, (5.24)

where the first term in the square bracket has been rewritten by performing the shift

q → q − p of the integration variable q. The energy constraints in eq. (5.24) result in

θ(p0)
{

θ(q0 − p0)− θ(q0)
}

= − θ(q0) θ(p0 − q0) . (5.25)

This can be inserted in eq. (5.24) to obtain

2 i Im
[
Bub(p2)

]
θ(p0) = sign(ηp)

∫

q
δ̃(q) δ̃(p− q) . (5.26)

We observe that the constraints q2 = (p− q)2 = 0 and q0 > 0, p0− q0 > 0 imply sign(ηq) =

sign(η(p − q)) = +1 (see eq. (5.11)) and, hence, sign(ηp) = +1. Therefore eq. (5.26)

becomes identical to eq. (5.20).
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6. Relating Feynman’s theorem and the duality theorem

The one-loop integral L(N) can be expressed by using either the FTT or the duality relation.

Comparing eq. (3.9) with eq. (4.6), we thus derive

L̃(N)(p1, p2, . . . , pN ) = L
(N)
1−cut(p1, p2, . . . , pN ) + · · ·+ L

(N)
N−cut(p1, p2, . . . , pN ) . (6.1)

This expression relates single-cut dual integrals with multiple-cut Feynman integrals. It

has been derived in an indirect way, by applying the residue theorem to the evaluation of

one-loop integrals.

In this section we present another proof of eq. (6.1). The proof is direct and purely

algebraic. It further clarifies the connection between the FTT and the duality relation.

Our starting point is a basic identity between dual and Feynman propagators. The

identity applies to the dual propagators when they are inserted in a single-cut integral.

Then

δ̃(q)
1

2qk + k2 − i0 ηk
= δ̃(q)

[
G(q + k) + θ(ηk) 2πi δ((q + k)2)

]

= δ̃(q)
[
G(q + k) + θ(ηk) δ̃(q + k)

]
. (6.2)

The equality on the first line of eq. (6.2) directly follows from eq. (3.5). The equality on the

second line is obtained as follows. Using the constraint δ̃(q), we have q2 = 0 and q0 > 0.

Therefore, from eq. (5.11) we thus have ηq > 0. Using ηq > 0 and the constraint θ(ηk),

we have η(q + k) > 0. Combining η(q + k) > 0 with (q + k)2 = 0, from eq. (5.11) we thus

have q0 + k0 > 0. This enables the replacement δ((q + k)2) → δ+((q + k)2), which finally

yields eq. (6.2).

6.1 Two-point function

The relation (6.2) can be used to prove eq. (6.1). We first consider the case N = 2.

Inserting eq. (6.2) in eq. (4.9) and comparing with eqs. (3.11) and (5.16), we obtain

I(1)(p1) = I
(1)
1−cut(p1)+ θ(ηp1)

∫

q
δ̃(q) δ̃(q + p1) = I

(1)
1−cut(p1)+ θ(ηp1) L

(2)
2−cut(p1, p2) . (6.3)

We can now use this equation to compute L̃(2):

L̃(2)(p1, p2) = I(1)(p1)+ I(1)(p2) = L
(2)
1−cut(p1, p2)+

[
θ(ηp1)+ θ(ηp2)

]
L

(2)
2−cut(p1, p2) . (6.4)

This relation is equivalent to eq. (6.1), since by merely using momentum conservation,

p1 + p2 = 0, we find

θ(ηp1) + θ(ηp2) = θ(ηp1) + θ(−ηp1) = 1 . (6.5)
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6.2 General N-point function

More generally, the identity (6.2) relates the basic dual integrals I(n) with multiple-cut

Feynman integrals. Inserting eq. (6.2) in eq. (4.9) and using eq. (3.11), we obtain

I(n)(k1, k2, . . . , kn) = I
(n)
1−cut(k1, k2, . . . , kn) + I(n)

η (k1, k2, . . . , kn)

= I
(n)
1−cut(k1, k2, . . . , kn) +

n∑

m=1

I(n)
m,η(k1, k2, . . . , kn) , (6.6)

where

I(n)
m,η(k1, k2, . . . , kn) =

∫

q
δ̃(q)

{
δ̃(q + k1) . . . δ̃(q + km) G(q + km+1) . . . G(q + kn)

× θ(ηk1) . . . θ(ηkm) + uneq. perms.
}

. (6.7)

Note that the key difference between I
(n)
m,η and the multiple-cut contributions of the FTT

(see eq. (3.8)) is the presence of the momentum constraints, θ(ηki), in eq. (6.7).

For a proof in the case of the N -point function, we employ the following relation:

I
(N−1)
m−1,η (p1, p1+p2, . . . , p1+p2+· · ·+pN−1)+ cyclic perms. = L

(N)
m−cut(p1, p2, . . . , pN ) . (6.8)

Summing over the cyclic permutations of I(N−1) as in eq. (4.8), and using eqs. (6.6), (3.10)

and (6.8), we straightforwardly obtain the relation in eq. (6.1).

We note that the proof of eq. (6.8) is mainly a matter of combinatorics, and it does

not require the explicit evaluation of any m-cut integral. Eventually, the main ingredient

of the proof is the following algebraic identity

θ(ηp1) θ(η(p1 + p2)) . . . θ(η(p1 + p2 + · · ·+ pN−1)) + cyclic perms. = 1 . (6.9)

It is a direct consequence of momentum conservation, namely
∑N

i=1 pi = 0. The derivation

of eq. (6.9) is presented in appendix B.

To simplify the combinatorics in the proof of eq. (6.8), we first rewrite I
(n)
m,η in eq. (6.7)

as

I(n)
m,η(k1, k2, . . . , kn) = I

(n)
m,F (k1, k2, . . . , kn) + δI(n)

m,η(k1, k2, . . . , kn) , (6.10)

where

I
(n)
m,F (k1, k2, . . . , kn) =

1

m + 1

∫

q
δ̃(q)

{
δ̃(q + k1) . . . δ̃(q + km) G(q + km+1) . . . G(q + kn)

+ uneq. perms.
}

, (6.11)

and

δI(n)
m,η(k1, k2, . . . , kn) =

∫

q
δ̃(q)

{
δ̃(q + k1) . . . δ̃(q + km) G(q + km+1) . . . G(q + kn)

×
[
θ(ηk1) . . . θ(ηkm)− 1

m + 1

]
+ uneq. perms.

}
. (6.12)
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This leaves us with the task to prove the relations

I
(N−1)
m−1,F (p1, p1 + p2, . . . , p1 + p2 + · · ·+ pN−1) + cyclic perms. = L

(N)
m−cut(p1, p2, . . . , pN ) ,

(6.13)

and

δI
(N−1)
m−1,η (p1, p1 + p2, . . . , p1 + p2 + · · ·+ pN−1) + cyclic perms. = 0 . (6.14)

Obviously, eqs. (6.10), (6.13) and (6.14) imply eq. (6.8).

The relation (6.13) can be proven as follows. According to eq. (3.8), L
(N)
m−cut is a sum of

m-cut contributions with a fully symmetric dependence on the momenta qi of the internal

lines of the loop integral. The expression on the left-hand side of eq. (6.13) is also a fully

symmetric linear combination of m-cut contributions: the symmetrization follows from the

sum over the permutations in eqs. (6.11) and (6.13). Hence, owing to their symmetry, the

left-hand side and the right-hand side of eq. (6.13) are necessarily proportional, and the

proportionality coefficient is just unity. To show this, we can give weight unity to each

m-cut contribution and simply count the number of m-cut contributions on both sides of

eq. (6.13). The number of terms in L
(N)
m−cut equals the total number of permutations in the

curly bracket of eq. (3.8), namely

(
N

m

)
=

N !

m! (N −m)!
. (6.15)

The number of terms on the left-hand side of eq. (6.13) is

1

m

(
N − 1

m− 1

)
N =

1

m

(N − 1)!

(m− 1)! (N −m)!
N , (6.16)

where the factor 1/m is the weight of each contribution to I
(N−1)
m−1,F , the factor

(N−1
m−1

)
is

the number of permutations that contribute to I
(N−1)
m−1,F (see eq. (6.11)), and the factor N

is the number of cyclic permutations in eq. (6.13). As we can see, the numbers given by

eqs. (6.15) and (6.16) coincide, thus yielding the equality in eq. (6.13).

The relation (6.14) can be proven as follows. The left-hand side is a sum of m-cut

contributions of the loop integral L(N). We can organize these contributions in a sum of(
N
m

)
diagrams as on the right-hand side of eq. (3.8): each diagram has m fixed internal

lines that have been cut. The coefficient of each diagram is computed according to the

expression on the left-hand side of eq. (6.14). As discussed below, this coefficient vanishes

algebraically, thus yielding the result in eq. (6.14).

We consider one of the diagram with m cut lines, and we denote the momenta of

these internal lines as Q1, Q2, . . . , Qm (figure 10). We define Pi = Qi − Qi−1, so that Pi

is the total external momentum between the cut lines with momenta Qi and Qi−1. The

computation of the diagram involves the factor

δ̃(Q1) δ̃(Q2) . . . δ̃(Qm) , (6.17)

and two other factors. One factor stems from the product of the Feynman propagators

of the uncut internal lines and it is inconsequential to the present discussion. The other
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P1

Q1
P2

Q2

Qm

Pm

P3

Figure 10: A one-loop diagram with m cut lines. Each blob denotes a set of internal lines that

are not cut.

factor arises from the term in the square bracket on the right-hand side of eq. (6.12). We

note that δI
(N−1)
m−1,η involves the product δ̃(q) δ̃(q + k1) . . . δ̃(q + km−1) of m delta functions,

but the term in the square bracket is symmetric only with respect to the argument of m−1

delta functions. Therefore, inserting eq. (6.12) into eq. (6.14) and performing the sum over

the permutations, the term in the square bracket leads to m different contributions: each

contribution corresponds to one of the assignments δ̃(q) → δ̃(Qi) with i = 1, 2, . . . ,m. In

conclusion, the square-bracket term contributes to multiply the left-hand side of eq. (6.17)

by a factor proportional to the following expression:
[
θ(ηP1) θ(η(P1 + P2)) . . . θ(η(P1 + P2 + · · ·+ Pm−1))−

1

m

]
+ cyclic perms.

=
{
θ(ηP1) θ(η(P1 + P2)) . . . θ(η(P1 + P2 + · · ·+ Pm−1)) + cyclic perms.

}
− 1 . (6.18)

This expression vanishes, because of eq. (6.9) and the momentum conservation constraint∑m
i=1 Pi = 0. Therefore, each m-cut diagram of the left-hand side of eq. (6.14) has a

vanishing coefficient.

7. Dual bases and generalized duality

One-loop Feynman integrals and single-cut dual integrals are not in a one-to-one corre-

spondence. Starting from this observation we discuss in more general terms the nature of

the correspondence between one-loop and single-cut integrals in this section.

Using the duality relation, any one-loop Feynman integral L(N) can be expressed as a

linear combination of the basic dual integrals I(N−1), but the opposite statement is not true.

Therefore, the dual integrals I(n) form a linear basis of the functional space generated by

the loop integrals, but overall they generate a larger space containing that of the one-loop

Feynman integrals.

To express I(N−1) as a linear combination of loop integrals, we have to introduce gen-

eralized one-loop integrals, whose integrands contain both Feynman and advanced propa-

gators. We define them through

L(N)(p1, α1, p2, α2, . . . , pN , αN ) =

∫

q

N∏

i=1

Gαi
(qi) , (7.1)
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where the label αi can take two values, αi = F,A, and GF (qi) = G(qi) is the Feynman

propagator, while GA(qi) is the advanced propagator. In particular, when α1 = α2 =

· · · = αN = F we recover the one-loop Feynman integral in eq. (2.9), while we obtain the

one-loop advanced integral in eqs. (3.1) and (3.2) for the case α1 = α2 = · · · = αN = A.

The relation between I(N−1) and the generalized one-loop integrals in eq. (7.1) is

obtained by rewriting the dual propagators as a linear combination of G and GA. Using

eqs. (3.4) and (6.2) we have:

δ̃(q)
1

2qk + k2 − i0 ηk
= δ̃(q)

[
G(q + k) + θ(ηk)

(
GA(q + k)−G(q + k)

) ]

= δ̃(q)
[
θ(−ηk)G(q + k) + θ(ηk)GA(q + k)

]
, (7.2)

which can be inserted in eq. (4.9). We thus obtain

I(n)(k1, k2, . . . , kn)=

∫

q
δ̃(q)

n∏

j=1

[
θ(−ηkj)G(q + kj) + θ(ηkj)GA(q + kj)

]

=

∫

q

(
GA(q)−G(q)

) n∏

j=1

[
θ(−ηkj)G(q + kj) (7.3)

+θ(ηkj)GA(q + kj)
]
,

where again we have used eq. (3.4) to express δ̃(q) as a linear combination of G(q) and

GA(q). The right-hand side of eq. (7.3) is a sum of generalized one-loop integrals. Note

that the η dependence of I(n) appears only in the coefficients θ(±ηkj).

In the simplest case, with n = 1, eq. (7.3) reads:

I(1)(p1) = − θ(−ηp1)

∫

q
G(q) G(q + p1)

+

[
θ(−ηp1)

∫

q
GA(q) G(q + p1)− θ(ηp1)

∫

q
G(q) GA(q + p1)

]
(7.4)

= − θ(−ηp1) L(2)(p1,−p1) +
[
θ(−ηp1) L(2)(p1, F,−p1, A)− (p1 ↔ −p1)

]
,

where we have used eq. (3.2). Note that the term in the square bracket is odd under the

exchange p1 ↔ −p1. Therefore the sum I(1)(p1) + I(1)(−p1) consistently reproduces the

duality relation (i.e., equivalently, it reproduces the two-point function L(2)(p1,−p1)).

More generally, the linear relation in eq. (7.3) implies that the dual integrals I(N−1)

belong to the functional space that is generated by the generalized one-loop integrals of

eq. (7.1)

Nonetheless, we have not yet established a one-to-one correspondence between single-

cut and one-loop integrals. In fact, the correspondence in eq. (7.3) is not invertible. The

generalized one-loop integrals can be expressed in terms of single-cut integrals by a proper

generalization of the duality relation in eqs. (4.6) and (4.7). However, the single-cut inte-

grals of this generalized relation involve the integration of both dual and advanced propa-

gators.
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The generalized duality relation is:

L(N)(p1, α1, p2, α2, . . . , pN , αN )= −
∫

q

N∑

i=1

δ̃(qi) δαi,F

×
N∏

j=1

j 6=i

[
δαj ,F

1

q2
j − i0 η(qj − qi)

+ δαj ,A GA(qj)

]
. (7.5)

This result can be derived by applying the residue theorem (see appendix A).

Alternatively, eq. (7.5) can also be derived by applying an algebraic procedure similar

to the one used in section 6 to prove eq. (6.1). This procedure consists of rewriting the

right-hand side of eqs. (7.1) and (7.5) as multiple-cut integrals of expressions involving

only advanced propagators. The resulting expressions can be shown to agree with each

other. The rewrite of eqs. (7.1) and (7.5) is achieved by using eq. (3.4) to replace Feynman

and dual propagators with advanced propagators. More precisely, in the case of the dual

propagators, eqs. (3.4) and (7.2) give:

δ̃(q)
1

2qk + k2 − i0 ηk
= δ̃(q)

[
GA(q + k)− θ(−ηk) δ̃(q + k)

]
. (7.6)

To exemplify this algebraic procedure, we can explicitly show its application to the

simple, though non-trivial, case of the one-loop integral L(3)(p1, F, p2, F, p3, A). The right-

hand side of eq. (7.1) yields

∫

q
GA(q) G(q + p1) G(q + p1 + p2) = −

∫

q
GA(q)

×
[
δ̃(q + p1) GA(q + p1 + p2) + δ̃(q + p1 + p2) GA(q + p1)− δ̃(q + p1) δ̃(q + p1 + p2)

]
, (7.7)

where we have also used eq. (3.2). After using eq. (7.6), the right-hand side of eq. (7.5) reads

−
∫

q
GA(q)

[
δ̃(q + p1)

1

(q + p1 + p2)2 − i0 ηp2
+ δ̃(q + p1 + p2)

1

(q + p1)2 + i0 ηp2

]

= −
∫

q
GA(q)

[
δ̃(q + p1)

(
GA(q + p1 + p2)− θ(−ηp2) δ̃(q + p1 + p2)

)

+ δ̃(q + p1 + p2)
(
GA(q + p1)− θ(ηp2) δ̃(q + p1)

)]
. (7.8)

By simple inspection, we see that the expressions in eqs. (7.7) and (7.8) coincide.

The generalized duality in eq. (7.5) relates one-loop integrals to single-cut phase-space

integrals. Note that only the Feynman propagators of the loop integral are cut; the uncut

Feynman propagators are instead replaced by dual propagators. The advanced propagators

of the loop integral are not cut, and they appear unchanged in the integrand of the phase-

space integral.
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Moreover, the correspondence in eq. (7.5) between one-loop and single-cut integrals is

invertible. Using the same algebraic steps as in eqs. (7.2) and (7.3), we indeed obtain:

∫

q
δ̃(q)




m∏

j=1

1

2qkj + k2
j − i0 ηkj




k∏

i=1

GA(q + ki)

=

∫

q

(
GA(q)−G(q)

) m∏

j=1

[
θ(−ηkj)G(q + kj) + θ(ηkj)GA(q + kj)

] k∏

i=1

GA(q + ki) . (7.9)

The functional space generated by the generalized one-loop integrals is thus equivalent to

the space generated by the single-cut integrals on the left-hand side of eq. (7.9). The one-

loop integrals of Feynman and advanced propagators and the single-cut integrals of dual

and advanced propagators can therefore be regarded as equivalent dual basis of the same

functional space.

8. Massive integrals, complex masses and unstable particles

As discussed at the end of section 3, the introduction of particle masses and massive

propagators does not lead to difficulties in the generalization of the FTT from the massless

case. The same discussion and the same conclusions apply to the duality relation, since this

relation can be derived by applying the residue theorem in close analogy with the derivation

of the FTT. Therefore, as long as the mass is real, the effect of a particle mass Mi in the

Feynman propagator of a loop internal line with momentum qi amounts to modifying

(according to the replacement in eq. (3.13)) the corresponding on-shell delta function δ̃(qi)

when this line is cut to obtain the dual representation L̃(N) (see eqs. (4.7) and (7.5)) of

the loop integral L(N). Note also that the i0 prescription of the dual propagators is not

affected by the masses. More precisely, if the Feynman propagator of the j-th internal line

has mass Mj , the corresponding dual propagator is

1

q2
j −M2

j − i0 η(qj − qi)
, (8.1)

independently of the value Mi of the mass in the i-th line — the cut line.

In any unitary quantum field theory, the masses of the basic fields are real. If some of

these fields describe unstable particles, a proper (physical) treatment of the corresponding

propagators in perturbation theory requires a Dyson summation of self-energy insertions,

which produces finite-width effects introducing finite imaginary contributions in the prop-

agators. A typical form of the ensuing propagator GC (such as the propagator used in the

complex-mass scheme6 [10]) is

GC(q; s) =
1

q2 − s
, (8.2)

where s denotes the complex mass of the unstable particle:

s = Re s + i Im s , with Re s > 0 > Im s . (8.3)

6In the complex-mass scheme, unitarity can be perturbatively recovered (modulo higher-order terms)

order by order.
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These complex masses, together with complex couplings, are introduced in both tree-level

and one-loop Feynman diagrams. A natural question that arises in the context of the

present paper is whether the duality relation between one-loop and phase-space integrals

(and the FTT, as well) can deal with complex-mass propagators or, more generally, with

propagators of unstable particles. The answer to this question is positive, as we discuss

below.

We consider a one-loop N -point scalar integral (see eq. (2.9)) where one or more of

the Feynman propagators of the internal lines are replaced by complex-mass propagators

GC(qi; si). To derive a representation of this one-loop integral in terms of single-cut phase

space integrals, we then apply the same procedure as in section 4. The only difference is the

presence of the complex-mass propagators. In the complex plane of the loop integration

variable q0, the complex-mass propagators produce poles that are located far off the real

axis, the displacement being controlled by the finite imaginary part of the complex masses.

Using the Cauchy theorem as in eq. (4.1), we derive a duality relation that is analogous to

eq. (4.6). The only difference is that the the right-hand side of eq. (4.6) has to be modified:

L̃(N)(p1, p2, . . . , pN )→ L̃(N)(p1, p2, . . . , pN ) + L̃
(N)
C (p1, p2, . . . , pN ) . (8.4)

Here, L̃(N) denotes the terms that correspond to the residues at the poles of the Feynman

propagators of the loop integral, while L̃
(N)
C denotes those from the poles of the complex-

mass propagators.

L̃(N) is thus expressed as

L̃(N)(p1, p2, . . . , pN ) =

∫

q

∑

i∈F

δ̃(qi;Mi)




∏

j 6=i

. . .


 , (8.5)

where the sum refers to the internal lines i of the loop with a Feynman propagator (we use

the notation i ∈ F to denote these cut lines). The term in the square bracket denotes the

product of the propagators of the uncut lines. The Feynman propagators of the loop are

replaced by the corresponding dual propagators (as in eq. (4.7)), while the complex-mass

propagators are unchanged.7

The expression of L̃
(N)
C is similar to eq. (8.5), but the cut lines i are those with complex-

mass propagators (we use the notation i ∈ C to denote these cut lines). Taken together

L̃
(N)
C (p1, p2, . . . , pN ) =

∫

q

∑

i∈C

δ̃(qi; si)




∏

j 6=i

. . .




=

∫
dd−1q

(2π)d−1

∑

i∈C

1

2
√

q2
i + si




∏

j 6=i

. . .




qi0=
√

q
2
i +si

, (8.6)

where the term in the square bracket contains the propagators of the uncut lines. Note

that in the integral representation on the first line of eq. (8.6) the ‘on-shell’ delta function

7The dual propagators arise from the infinitesimal i0 displacement produced by the residue at the pole

of the Feynman propagator, see section 4 and appendix A. This infinitesimal imaginary displacement has

no effect on the complex-mass propagators, owing to the finite imaginary part of the complex mass.
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δ̃(qi; si) of the cut propagator has a formal meaning, since it singles out the residue at the

complex-mass pole, qi0 = q
(C,+)
i0 =

√
q2

i + si, which has a finite (and negative) imaginary

part. The explicit expression of L̃
(N)
C is thus given in the second line of eq. (8.6). Owing

to the finite imaginary component of q
(C,+)
i0 , we can remove the i0 prescription in any of

the Feynman propagators inside the square bracket.

The outcome of our discussion of the duality relation can also be used to explain how

the FTT can be generalized to deal with complex-mass propagators of the internal lines.

Following the derivation of the FTT in section 3, we can replace the advanced one-loop

integral L
(N)
A of eq. (3.1) with a one-loop integral that contains both advanced propagators

and complex-mass propagators. This one-loop integral can be rewritten in two different

ways. First (exploiting eq. (3.4)), it can be expressed, as in the right-hand side of eq. (3.6),

in terms of a linear combination of the required one-loop integral (i.e. the integral with

Feynman and complex-mass propagators) and of multiple-cut phase-space integrals L
(N)
m−cut.

Alternatively, it can be evaluated directly by applying the Cauchy theorem as in eq. (3.3).

This direct evaluation leads to the computation of the residues at the poles of the complex-

mass propagators (the poles of the advanced propagators do not contribute, since they are

placed outside the integration contour): the computation gives exactly the contribution in

eq. (8.6). Comparing the expressions obtained in these two ways, we conclude that the

generalization of the FTT to include complex-mass propagators is realized by the following

replacement in the right-hand side of eq. (3.9):

L
(N)
1−cut(p1, p2, . . . , pN )→ L

(N)
1−cut(p1, p2, . . . , pN ) + L̃

(N)
C (p1, p2, . . . , pN ) . (8.7)

Here, L
(N)
1−cut is the usual contribution (see eq. (3.7)) emerging from the single cuts of the

sole Feynman propagators of the internal lines (the complex-mass propagators are not cut),

while L̃
(N)
C is given by eq. (8.6). Note, in particular, that the complex-mass propagators do

not produce further m-cut contributions (m ≥ 2) to the FTT in addition to the real-mass

terms L
(N)
m−cut in eq. (3.8).

We add a final comment on one-loop integrals with unstable internal particles. The

propagator of an unstable particle can have a form that differs from the complex-mass

propagator in eq. (8.2). We can introduce, for instance, a complex mass, s(q2), that depends

on the momentum q of the propagator. We can also include a non-resonant component,

in addition to the resonant contribution of the complex-mass pole. Independently of its

specific form, the propagator of the unstable particle produces singularities that are located

at a finite imaginary distance from the real axis in the complex plane of the loop integration

variable q0. Such contributions can be included in the duality relation and in the FTT by

performing the replacements in eq. (8.4) and in eq. (8.7), respectively. In general, the term

L̃
(N)
C has a form that differs from eq. (8.6) and depends on the actual expression of the

propagator and, in particular, on the singularity structure (poles, branch cuts, . . . ) of the

propagator in the complex plane.

9. Gauge theories and gauge poles

The quantization of gauge theories requires the introduction of a gauge-fixing procedure,
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which specifies the spin polarization vectors of the gauge bosons and the ensuing content

of (possible) compensating fictitious particles (e.g. the Faddeev-Popov ghosts in unbroken

non-Abelian gauge theories, or the would-be Goldstone bosons in spontaneously broken

gauge theories).

The fictitious particles have their own Feynman propagators, which have to be taken

into account when applying either the FTT or the duality relation. This is done in a

straightforward manner: if some internal lines in a one-loop integral correspond to fictitious

particles, they have to be cut exactly in the same way as for physical particles. The

multiple-cut phase-space integrals of the FTT and the single-cut phase-space integral of

the duality relation will include the contributions from the cuts of the Feynman propagators

of these fictitious particles.

The impact of the propagators of the gauge particles is more delicate, since they

introduce ‘gauge poles’. This point is discussed below.

The propagator of the (spin 1) gauge boson with momentum q is obtained by multi-

plying the customary Feynman propagator G(q) with the tensor dµν(q), which arises from

the sum of the spin polarizations. The general form of the polarization tensor is

dµν(q) = −gµν + (ζ − 1) ℓµν(q)GG(q) . (9.1)

The second term on the right-hand side is absent only in the ’t Hooft-Feynman gauge (ζ =

1). In any other gauge, this term is present and the tensor ℓµν(q) propagates longitudinal

polarizations, which are proportional to qµ, or qν , or qµqν . On the one hand, the specific

form of ℓµν(q) is not relevant in the context of the following discussion; the only relevant

point is that ℓµν(q) has a polynomial dependence on the momentum q. On the other

hand, the factor GG(q) (we call it ‘gauge-mode’ propagator) has a potentially dangerous,

non-polynomial dependence on q and, in particular, it produces poles with respect to the

momentum variable q.

When considering one-loop quantities in gauge theories, we deal with one-loop integrals

containing gauge boson propagators as internal lines of the loop. Therefore, to derive

the FTT or the duality relation, we have to consider the effect produced by the gauge

polarization tensors. In the ’t Hooft-Feynman gauge the effect is harmless: the polarization

tensor is simply −gµν and factorizes off the loop integration. When applying the Cauchy

residue theorem as in sections 3 and 4 in any other gauge, we have to take into account

the possible additional contributions that arise from the presence of the poles of the gauge-

mode propagator GG(q) (the presence of polynomial terms from ℓµν(q) does not interfere

with the residue theorem).

We first discuss the case of spontaneously broken gauge theories. Here, the gauge

boson has a finite mass M , and the form of the gauge-mode propagator GG(q) is

GG(q) =
1

ζ(q2 + i0)−M2
. (9.2)

Considering the unitary gauge (ζ = 0), the gauge-mode propagator does not depend on

q and factorizes off the loop integration in any of the one-loop integrals. Therefore, the
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unitary gauge has only inconsequential implications on the use of the FTT and the du-

ality relation for one-loop calculations in gauge theories. If we instead consider a generic

renormalizable gauge (or Rζ gauge) with ζ 6= 0, we see that the gauge-mode propagator

introduces a pole when q2 = M2/ζ − i0. This is an additional pole with respect to the

physical pole (when q2 = M2 − i0) from the associated Feynman propagator. For the

extension of the FTT and the duality relation of sections 3 and 4 to one-loop computations

in the Rζ gauge, one has to properly consider the introduction of additional single-cut and

multiple-cut contributions from gauge-mode propagators. We will not pursue this issue

any further in the present paper.

We now discuss the case of unbroken gauge theories, where the gauge boson is massless.

We separately consider two classes of gauges: covariant gauges and physical gauges.

In covariant gauges, we have

GG(q) =
1

q2 + i0
. (9.3)

Since the gauge-mode propagator GG(q) is equal to the Feynman propagator, the two

propagators together generate a second-order pole when q2 = − i0. The extension of the

FTT and the duality relation of sections 3 and 4 to hold for one-loop computations in

covariant gauges requires a proper treatment of the contributions from this type of second-

order poles.8 This issue is not pursued any further in the present paper.

In physical gauges, the typical form of the gauge-mode propagator is

GG(q) =
1

(n · q)k , k = 1 or 2 , (9.4)

where nµ denotes an auxiliary gauge vector. We see that GG(q) leads to a (first- or second-

order) pole when n · q = 0. In Coulomb gauge we have nµ = (0,q), where q is the space

component of the gauge boson momentum qµ = (q0,q). In axial (n · A = 0) or planar

gauges, nµ is a fixed external vector and the pole has to be regularized according to a

proper prescription (the precise position of the pole has to be specified by some imaginary

displacement from the real axis), which we do not specify here, since its specific form has

no effect on the discussion that follows.

We now consider a generic one-loop integral, whose integrand contains gauge-mode

propagators in addition to Feynman propagators. To derive a duality relation by using the

residue theorem in the complex plane of the variable q0 (as in section 4), we have to take

into account the possible contributions from the poles of the gauge-mode propagators.

In Coulomb gauge, the pole of GG(q) is located at q2 = 0. Applying the residue

theorem in the q0 plane at fixed values of q (see section 4 and appendix A), the gauge pole

does not contribute. We conclude that the gauge-mode propagator remains untouched

in going from the one-loop integral to its representation as a single-cut dual integral.

Note, however, that this conclusion follows from having kept q fixed while performing the

integration over q0. Therefore, the auxiliary future-like vector ηµ of the duality relation is

necessarily fixed (see appendix A) to be ηµ = (η0,0), i.e. aligned along the time direction.

8Of course, this does not apply to the ’t Hooft-Feynman gauge, where GG(q) is absent.
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In axial or planar gauges, the pole of GG(q) is located at nq = n0q0 − nd−1qd−1 = 0.

Without loosing generality, we can assume nµ = (n0,0⊥, nd−1) and apply (see section 4)

the residue theorem in the complex plane q0 at fixed values of the coordinates q⊥ and

q′d−1 = qd−1 − q0ηd−1/η0. Setting ηd−1/η0 = n0/nd−1, we have nq = −nd−1q
′
d−1. Hence,

GG(q) does not depend on the integration variable q0. We conclude that the gauge-mode

propagator, including the regularization prescription of its gauge pole, is untouched in

going from the one-loop integral to its representation as a single-cut dual integral. Note,

however, that we have set ηd−1/η0 = n0/nd−1. Therefore, since the vector ηµ specifying

the dual prescription is future-like, the above conclusion is valid only if the gauge vector

nµ is either space-like or light-like (n2 ≤ 0) and, moreover, the dual vector is fixed to be

orthogonal to the gauge vector, n ·η = 0. These requirements are not fulfilled if nµ is time-

like.9 The derivation of the duality relation in time-like gauges requires to properly include

contributions from cuts of the gauge-polarization tensors (these contributions depend on the

specific regularization of the gauge poles): this derivation is beyond the scope of this paper.

Our discussion and conclusions regarding the duality relation in physical gauges can

straightforwardly be used to draw similar conclusions on the validity of the FTT. The only

difference is that in the latter case there is no auxiliary dual vector ηµ. To be precise, in

Coulomb gauge and in space-like or light-like gauges, the FTT is valid in its customary form,

without introducing any multiple-cut contributions stemming from the gauge-polarization

tensors. In time-like gauges, the poles of the gauge-polarization tensors can play a role,

and their effect has to be taken into account when applying the FTT.

10. Loop-tree duality at the amplitude level

In the final part of section 3, we have discussed how the FTT can be extended to eval-

uate not only basic one-loop integrals L(N) but also complete one-loop quantities (such

as Green’s functions and scattering amplitudes). The same reasoning (see also sections 8

and 9) applies to the extension of the duality relation to the amplitude level.

The analogue of eq. (3.12) is the following duality relation:

A(1−loop) = − Ã(1−loop) , (10.1)

where A(1−loop) generically denotes a one-loop quantity. The expression Ã(1−loop) on the

right-hand side of eq. (10.1) is obtained in the same way as L̃(N) in eqs. (4.6) and (4.7).

We start from any Feynman diagram in A(1−loop) and consider all possible replacements of

each Feynman propagator G(qi) of its loop internal lines with the cut propagator δ̃(qi;Mi);

the uncut Feynman propagators in the loop are then replaced by the corresponding dual

propagators. All the other factors in the Feynman diagrams are left unchanged by going

from A(1−loop) to Ã(1−loop).

The duality relation (10.1) is valid in any field theory that is unitary and local. Some

words of caution are, however, needed (see the conclusions of section 9) about its appli-

cability to theories with local gauge symmetries. In spontaneously broken gauge theories,

9For example, in the axial gauge A0 = 0, we have nq = n0q0, and the pole of the gauge-mode propagator

does not decouple from the integration over q0.
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the duality relation is valid in the ’t Hooft-Feynman gauge and in the unitary gauge. In

unbroken gauge theories, the duality relation is valid in the ’t Hooft-Feynman gauge; it is

also valid in physical gauges specified by a gauge vector nν, provided the auxiliary duality

vector ηµ is chosen such that n · η = 0 (this excludes gauges where nν is time-like).

Equation (10.1) establishes a correspondence between one-loop Feynman diagrams and

the phase-space integral of tree-level Feynman diagrams. The right-hand side of eq. (10.1)

can be written in the following sketchy form:

A(1−loop) ∼
∫

q

∑

P

δ̃(q;MP )
∑

d.o.f.(P )

A(tree)
P , (10.2)

where
∑

P denotes the sum over the particles that can propagate in the loop internal lines

that are cut, and
∑

d.o.f.(P ) denotes the sum over the degrees of freedom (such as spin,

colors, . . . ) of the particle P . The integrand A(tree)
P is given by the sum of the tree-level

Feynman diagrams that are obtained by cutting the one-loop Feynman diagrams on the

left-hand side.

The structure of eq. (10.2) implies a natural question.10 If A(1−loop) is the one-loop

expression of a specific quantity A, how is A(tree)
P related to the tree-level expression A(tree)

of the same quantity A? In the next subsections, we show how the duality relation can be

formulated directly at the amplitude level, when the quantity A is a Green’s function. We

also discuss the case of on-shell scattering amplitudes.

10.1 Green’s functions

In the following, AN (p1, . . . , pN ) denotes a generic off-shell Green’s function with N ex-

ternal lines (the outgoing momentum of the i-th line is pi). To be precise, we consider

Green’s functions that are connected and amputated of the free propagators of the exter-

nal lines. The tree-level and one-loop expressions of A are A(tree) and A(1−loop), respec-

tively. The tree-level scattering amplitude for a given physical process is obtained from

A(tree)(p1, . . . , pN ) by setting the external momenta on their physical mass shell (p2
i = M2

i ,

pi0 ≥ 0 for an outgoing particle, −pi0 ≥ 0 for an incoming particle) and including the appro-

priate wave-function factors of the external particles. The one-loop scattering amplitude

is obtained from A(1−loop) by specifying the renormalization procedure.

To simplify the illustration of the duality relation, we first consider the case with only

one type of massive scalar particles. We thus refer to a theory with a single real scalar field

φ (φ∗ = φ) of mass M . The particles are self-interacting through polynomial interactions

(e.g. φ3 or φ4). In this case, the duality relation (10.2) has the following explicit form:

A(1−loop)
N (p1, . . . , pN ) = +

1

2

∫
ddq

(2π)d−1
δ+(q2 −M2) Ã(tree)

N+2 (q,−q, p1, . . . , pN ) , (10.3)

where the integrand factor A(tree) on the right-hand side is exactly the tree-level counterpart

of the one-loop quantity A(1−loop)
N on the left-hand side. The tree-level counterpart A(tree)

N+2

involves two additional external lines with outgoing momenta q and −q.

10Issues related to similar questions were discussed by Feynman [2] in the context of the FTT.
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The tilde superscript in Ã(tree) denotes the replacement of some of the Feynman

propagators with dual propagators. More precisely, to obtain Ã(tree)(q,−q, . . . ) from

A(tree)(q,−q, . . . ), we assign a dual propagator (rather than a Feynman propagator) to

each internal line with momentum q + kj (kj is a linear combination of the external mo-

menta pi). We note that this step can also be performed by using a short-cut recipe, namely

by applying the momentum shift qµ → qµ − i0 ηµ/(2ηq) in the Feynman propagators of

A(tree)(q,−q, . . . ).

The momenta q and −q of the two additional external lines of A(tree)
N+2 (q,−q, . . . ) in

eq. (10.3) are on their physical mass-shell: in this respect, A(tree)
N+2 is a scattering amplitude

(there are no wave-function factors for scalar particles). More precisely, A(tree)
N+2 (q,−q, . . . )

is the tree-level physical amplitude that corresponds to the forward-scattering process of a

particle with momentum q in the external field produced by N self-interacting sources (the

N external legs).

In a theory with different types of particles and antiparticles, the generalization of

eq. (10.3) is obtained by including a sum over the particle types P . We find:

A(1−loop)
N (. . . ) = +

1

2

∫
ddq

(2π)d−1

∑

P

δ+(q2 −M2
P ) σ(P ) Ã(tree)

N+2 (P (q)← P (q), . . . ) ,

(10.4)

where the momenta pi of N external legs are denoted by ‘dots’, since they play no active

role on both sides of the equation. Note that
∑

P includes the sum over both particles

and antiparticles (if P 6= P ). The coefficient σ(P ) on the right-hand side of eq. (10.4) is a

Bose-Fermi statistics factor: σ(P ) = +1 if P is a bosonic particle (e.g. spin 0 Higgs boson,

spin 1 gauge boson), and σ(P ) = −1 if P is a fermionic particle (e.g. spin 1/2 fermion,

Faddeev-Popov ghost).

As in eq. (10.3), Ã(tree)(P (q) ← P (q), . . . ) is obtained from A(tree)(P (q) ← P (q), . . . )

by the replacement of Feynman propagators with dual propagators. The tree-level ex-

pression A(tree)
N+2 (P (q) ← P (q), . . . ) is the amplitude for the forward-scattering process

P (q) → P (q) in the field of the N external legs. This expression is obtained from the

Green’s function A(tree)
N+2 (P (q), P (−q), . . . ) by setting the momentum q on the physical mass-

shell (q2 = M2
P , q0 ≥ 0) and including the proper wave-function factors of the external

legs with outgoing momenta q and −q. We can write:

A(tree)
N+2 (P (q)← P (q), . . . ) =

∑

spin, color, ...

〈P (q) | A(tree)
N+2 (P (q), P (−q), . . . ) |P (q) 〉 , (10.5)

where the (‘ket’ and ‘bra’) vectors |P (q) 〉 and 〈P (q) | generically denote the (spin-

dependent, color-dependent, . . . ) incoming and outgoing wave-function factors of the

forward-scattered particle P . The quantum numbers (spin, color, . . . ) of the incoming

and outgoing wave functions are fixed to be equal, and the notation
∑

spin, color, ... denotes

the coherent sum over them.

We illustrate the general notation in eq. (10.5) with a few explicit examples:
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• P= gluon (λ labels the spin-polarization or helicity states; µ, ν are Lorentz indices;

a, b are color indices) yields

A(tree)
N+2 (g(q)← g(q), . . . ) =

∑

λ

∑

µ,ν

∑

a,b

(
ε(λ)
µ (q)

)∗ [
A(tree)

N+2 (g(q), g(−q), . . . )
]µ ν

ab
ε(λ)
ν (q)

=
∑

µ,ν

dµν(q)
∑

a,b

[
A(tree)

N+2 (g(q), g(−q), . . . )
]µ ν

ab
, (10.6)

where ε
(λ)
ν (q) is the gluon-polarization vector and dµν(q) =

∑
λ(ε

(λ)
µ (q))∗ε

(λ)
ν (q) is the

corresponding polarization tensor;

• P= massive quark (s labels the spin; α, β are Dirac indices; i, j are color indices)

yields

A(tree)
N+2 (Q(q)← Q(q), . . . ) =

∑

s=1,2

∑

α,β

∑

i,j

u(s)
α (q)

[
A(tree)

N+2 (Q(q), Q(−q), . . . )
]ij

α β
u

(s)
β (q)

= Tr
[
(/q + M)

∑

i,j

[
A(tree)

N+2 (Q(q), Q(−q), . . . )
]ij

]
, (10.7)

where u
(s)
β (q) is the customary Dirac spinor for spin 1/2 fermions;

• P= massive anti-quark (s labels the spin; α, β are Dirac indices; i, j are color indices)

yields

A(tree)
N+2 (Q(q)← Q(q), . . . )= −

∑

s=1,2

∑

α,β

∑

i,j

v(s)
α (q)

[
A(tree)

N+2 (Q(−q), Q(q), . . . )
]ij

α β
v
(s)
β (q)

= − Tr
[
(/q −M)

∑

i,j

[
A(tree)

N+2 (Q(−q), Q(q), . . . )
]ij

]
, (10.8)

where v
(s)
β (q) is the customary Dirac spinor for spin 1/2 anti-fermions.

Note that, as stated below eq. (10.4), we sum over both particles and antiparticles.

However, on the right-hand side of eq. (10.4),
∑

P can equivalently be defined to just

refer to the sum over particles. According to this alternative definition, the antiparticle

contribution Ã(tree)
N+2 (P (q) ← P (q), . . . ) is absent, and the corresponding particle contribu-

tion Ã(tree)
N+2 (P (q) ← P (q), . . . ) must be multiplied by a factor of 2. In view of the issue

discussed in appendix C, the definition of
∑

P as sum over both particle and antiparticle

contributions has to be preferred on general grounds.

We recall that, at the level of one-loop computations, the definition of dimensional reg-

ularization involves some arbitrariness. Although the loop momentum qµ is d-dimensional,

there is still freedom in the definition of the dimensionality of the momenta of the external

particles and of the number of polarizations of both internal and external particles. As

remarked below eq. (10.1), the duality relation acts only on the Feynman propagators of

the loop, leaving unchanged all the other factors in the Feynman diagrams. Therefore,

the dimensional-regularization rules to be used in the tree-level integrand Ã(tree)
N+2 (P (q) ←

P (q), . . . ) of eq. (10.4) are exactly the same as specified in the definition of A(1−loop)
N (. . . ).
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We remark that in eq. (10.4) the on-shell integration momentum qµ has always to be

considered as d-dimensional, with d arbitrary in the sense of dimensional regularization. In

particular, a d-dimensional on-shell momentum qµ is required also if the one-loop Green’s

function A(1−loop)
N is finite11 (i.e. if it has no infrared and ultraviolet divergences) in the

original and fixed dimensionality (e.g. d = 4) of the space-time. The use of a d-dimensional

qµ is necessary since, in general, the various terms12 in the integrand on the right-hand

side of eq. (10.4) are not separately integrable in a fixed number of space-time dimensions.

10.2 Scattering amplitudes

To extend the discussion of section 10.1 to scattering amplitudes, the only relevant point to

be examined is the on-shell limit of the corresponding Green’s functions (the introduction

of the wave-function factors of the external lines is straightforward).

Considering the off-shell Green’s function A(1−loop)
N , we introduce the following

decomposition:

A(1−loop)
N = A(1−loop; ex.)

N +A(1−loop; in.)
N , (10.9)

where A(1−loop; ex.)
N is the contribution from one-loop insertions on the N external lines,

while A(1−loop; in.)
N is the remaining contribution (i.e. one-loop insertions on internal lines).

In explicit form, we have

A(1−loop; ex.)
N (p1, . . . , pN ) =

N∑

j=1

A(1−loop)
2 (pj ,−pj)

i Dj(pj)

p2
j −M2

j + i0
A(tree)

N (p1, . . . , pN )

(10.10)

where Dj(pj) is the spin-polarization factor13 of the particle in the internal line with

momentum pj.

As is well known, A(1−loop; ex.)
N cannot directly be evaluated on-shell owing to the kine-

matical singularity arising from its external-line propagators (the propagators with momen-

tum pj in eq. (10.10)). Thus, to calculate the one-loop scattering amplitude, A(1−loop; ex.)
N

has to be first evaluated off-shell, then it has to be renormalized (mass and wave-function

renormalization), before considering its on-shell limit.

11If A
(1−loop)
N is finite, the d-dimensionality of qµ in eq. (10.4) plays simply the role of an intermediate

computational tool, rather than the role of a necessary regularization procedure. The same intermediate

computational tool is used in other methods to perform one-loop calculations [9]: the customary reduction

of tensor integrals to scalar integrals has to be carried out in terms of d-dimensional one-loop integrals; the

computation of finite rational terms in one-loop amplitudes can be carried out by exploiting d-dimensional

unitarity techniques.
12Even if some of these terms correspond to the sum of the single cuts of a finite loop integral, each single-

cut contribution may not be separately finite. Moreover, possible cancellations of the singularities from the

various single-cut contributions can be locally (though, not globally) spoiled by the loop-momentum shifts

(compare eqs. (3.7) or (3.10) with eqs. (4.7) or (4.8)) that are applied to the separate single-cut terms. In

eq. (10.4) the momentum shifts are implemented to be able to identify the different cut momenta of the

loop with the common external momentum q of the tree-level expression eA
(tree)
N+2 (P (q)← P (q), . . . ).

13To be explicit, Dj(p) denotes dµν(p) (cfr. eqs. (9.1) and (10.6)) if the j-th line refers to a spin 1 particle,

whereas Dj(p) denotes /p + M (cfr. eq. (10.7)) if the j-th line refers to a spin 1/2 particle.
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In contrast, the one-loop contribution A(1−loop; in.)
N can directly be computed in the

on-shell limit. In particular, we can write a duality relation in the form of eq. (10.1):

A(1−loop; in.)
N = − Ã(1−loop; in.)

N . (10.11)

Here, the integrand of the phase-space integral on the right-hand side contains a sum

of on-shell tree-level Feynman diagrams (the N external lines are on-shell, and the two

additional lines from cutting the loop are also on-shell). The algebraic computation of

the integrand is thus completely analogous to the computation of the (on-shell) tree-level

scattering amplitude with N+2 external legs. Having performed the tree-level computation

of the integrand, the result can be integrated over the single-particle phase-space to obtain

the full one-loop term A(1−loop; in.)
N .

We point out that the integrand of the phase-space integral on the right-hand side of

eq. (10.11) is not equal (modulo the replacement of Feynman with dual propagators) to

the tree-level scattering amplitude with N + 2 external legs. This is because a subset of

the diagrams that enter the complete tree-level scattering amplitude is not included. This

subset has been removed by considering only A(1−loop; in.)
N , i.e. by removing A(1−loop; ex.)

N

from the complete one-loop expression A(1−loop)
N .

This ‘missing’ subset of tree-level diagrams can be reinserted in the duality relation.

However, as discussed below, this makes more delicate the on-shell limit.

We consider the internal-line contribution A(1−loop; in.)
N before setting the external lines

on-shell. We can write the following duality relation:

A(1−loop; in.)
N (p1, . . . , pN ) = +

1

2

∫
ddq

(2π)d−1

∑

P

δ+(q2 −M2
P ) σ(P )

×
{
Ã(tree)

N+2 (P (q)← P (q), p1, . . . , pN ) (10.12)

−
N∑

j=1

Ã(tree)
4 (P (q)← P (q), pj ,−pj)

i Dj(pj)

p2
j −M2

j + i0
A(tree)

N (p1, . . . , pN )
}

.

The derivation of this equation is simple. We first use eq. (10.9) to express A(1−loop; in.)
N as

difference of A(1−loop)
N and A(1−loop; ex.)

N . Then we use eq. (10.10) to rewrite A(1−loop; ex.)
N

in terms of A(1−loop)
2 . Finally, we express the full one-loop Green’s functions A(1−loop)

N and

A(1−loop)
2 in terms of the duality relation (10.4).

The duality relation (10.12) involves the phase-space integration of complete tree-level

Green’s functions, namely A(tree)
N (p1, . . . , pN ), and (the duality-propagator version of)

A(tree)
N+2 (P (q) ← P (q), p1, . . . , pN ) and A(tree)

4 (P (q) ← P (q), pj ,−pj). The integrand factor

in the curly bracket on the right-hand side is well defined in the on-shell limit. However, the

two terms in the curly bracket are separately singular in the on-shell limit. The singularity

is purely kinematical; it simply arises from the propagators of the lines with momenta equal

to the momenta pj of the external lines. Various procedures can be devised to introduce

an intermediate regularization of the separate singularities, so as to directly evaluate the

two terms close to on-shell kinematical configurations.
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11. Final remarks

Applying directly the Cauchy residue theorem in the complex plane of any of the space-time

coordinates of the loop momentum we have derived a duality relation between one-loop

integrals and single-cut phase-space integrals. The calculation of the residues is elementary,

but introduces several subtleties. The location in the complex plane of the pole of the cut

propagator modifies the original +i0 Feynman prescription of the uncut propagators. One-

loop integrals are then written as a linear combination of N single-cut phase-space integrals,

with propagators regularized by a new complex Lorentz-covariant prescription, named dual

prescription. It is defined through a future-like auxiliary vector η. This simple modification

compensates for the absence of multiple-cut contributions that appear in the FTT. The

dependence on η cancels, as expected, in the sum of all the single-cut contributions, leading

to η-independent results.

We have generalized the duality relation for internal massive propagators and unstable

particles. Real masses just modify the position of the poles in the complex plane by a

translation parallel to the real axis, and thus do not affect the dual prescription. Unstable

particles introduce a finite imaginary contribution in their propagators. The poles of the

complex-mass propagators are located at a finite imaginary distance from the real axis, and

the +i0 prescription of the usual Feynman propagators can be removed when propagators

of unstable particles are cut.

Particular care has to be taken with gauge propagators in both the FTT and the

duality relation owing to the presence of unphysical extra gauge poles. We have discussed

this issue, and have identified the different gauge choices where the duality relation can

be applied in its original form, which includes the sole single-cut terms from the Feynman

propagators. This avoids the introduction of additional single-cut terms from the absorptive

contribution of unphysical gauge poles.

Finally, we have extended the duality relation from Feynman integrals to Green’s func-

tions and scattering amplitudes. One-loop scattering amplitudes can be obtained starting

from tree-level scattering amplitudes (or, more precisely, from Feynman diagrams that

enter the computation of tree-level scattering amplitudes), where (some of) the internal

propagators are replaced by dual propagators. This tree-level counterpart is then integrated

over a single-particle phase space to get the one-loop scattering amplitude.

In recent years much progress [11 – 13] has been achieved on the computation of tree-

level amplitudes, including results in compact analytic form. Using the duality relation,

this amount of information at the tree level can be exploited for applications to analytic

calculations at the one-loop level.

The computation of cross sections at next-to-leading order (NLO) requires the separate

evaluation of real and virtual radiative corrections. Real (virtual) radiative corrections are

given by multileg tree-level (one-loop) matrix elements to be integrated over the multipar-

ticle phase-space of the physical process. The loop-tree duality discussed in this paper, as

well as other methods that relates one-loop and phase-space integrals, have an attractive

feature [3, 14 – 16]: they recast the virtual radiative corrections in a form that closely par-

allels the contribution of the real radiative corrections. This close correspondence can help
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to directly combine real and virtual contributions to NLO cross sections. In particular,

using the duality relation, we can apply [3] mixed analytical/numerical techniques to the

evaluation of the one-loop virtual contributions. The (infrared or ultraviolet) divergent

part of the corresponding dual integrals can be analitycally evaluated in dimensional reg-

ularization. The finite part of the dual integrals can be computed numerically, together

with the finite part of the real emission contribution. Partial results along these lines are

presented in refs. [3, 4] and further work is in progress.

The extension of the duality relation from one-loop to two-loop Feynman diagrams is

under investigation [5].
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A. Derivation of the duality relation

In section 4 we have illustrated the derivation of the duality relation in eqs. (4.6) and (4.7)

by using the residue theorem. The derivation is simple. However, it involves some subtle

points. These points are discussed in detail in this appendix.

Applying the residue theorem in the complex plane of the variable q0, the computation

of the one-loop integral L(N) reduces to the evaluation of the residues at N poles, according

to eqs. (4.1) and (4.2).

The evaluation of the residues in eq. (4.2) is a key point in the derivation of the

duality relation. To make this point as clear as possible, we first introduce the notation

q
(+)
i0 to explicitly denote the location of the i-th pole, i.e. the location of the pole with

negative imaginary part (see eq. (2.12)) that is produced by the propagator G(qi). We

further simplify our notation with respect to the explicit dependence on the subscripts

that label the momenta. We write G(qj) = G(qi + (qj − qi)), where qi depends on the

loop momentum while (qj − qi) = kji is a linear combination of the external momenta (see

eq. (2.2)). Therefore, to carry out the explicit computation of the i-th residue in eq. (4.2),
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we re-label the momenta by qi → q and qj → q + kj , and we simply evaluate the term

[
Res

{q0=q
(+)
0 }

G(q)
]




∏

j

G(q + kj)




q0=q
(+)
0

, (A.1)

where (see eq. (2.12))

q
(+)
0 =

√
q2 − i0 . (A.2)

In the next paragraphs, we follow the steps of section 4 (see eqs. (4.3) and (4.4)) and we

separately compute the residue of G(q) and its prefactor — the associated factor arising

from the propagators G(q + kj).

The computation of the residue of G(q) gives

Res
{q0=q

(+)
0 }

G(q) = lim
q0 → q

(+)
0

{
(q0 − q

(+)
0 )

1

q2
0 − q2 + i0

}
=

1

2 q
(+)
0

=
1

2
√

q2
=

∫
dq0 δ+(q2) , (A.3)

thus leading to the result in eq. (4.3). Note that the first equality in the second line of

eq. (A.3) is obtained by removing the i0 prescription from the previous expression. This

is fully justified. The term (q
(+)
0 )−1 = (

√
q2 − i0)−1 becomes singular when q2 → 0,

and this corresponds to an end-point singularity in the integration over q: therefore the

i0 prescription has no regularization effect on such end-point singularity. The second

equality in the second line of eq. (A.3) simply follows from the definition of the on-shell

delta function δ+(q2).

We now consider the evaluation of the residue prefactor (the second square-bracket

factor in eq. (A.1)). We first recall that the i0 prescription of the Feynman propagators

has played an important role in the application (see eqs. (4.1) and (A.1)) of the residue

theorem to the computation of the loop integral: having selected the pole with negative

imaginary part, q0 = q
(+)
0 , the prescription eventually singled out the on-shell mode with

positive definite energy, q0 = |q| (see eq. (A.3)). However, we observe that the result

in eq. (A.3) can be obtained by removing (neglecting) the i0 prescription either in q
(+)
0

(q
(+)
0 → |q|) or in G(q) (G(q)→ 1/q2):

Res
{q0=q

(+)
0 }

G(q) = Res{q0=|q|}
1

q2
=

∫
dq0 δ+(q2) . (A.4)

Hence, the i0 prescription has no effect on the actual calculation of the residue of the

propagator G(q) in eq. (A.1). On the basis of this observation, we might assume that the

i0 prescription also has no effect on the calculation of the residue prefactor in eq. (A.1),

since the propagators G(q + kj) are not singular when evaluated at the poles of G(q).

We might thus compute the residue prefactor by removing the i0 prescription; under this

assumption we obtain



∏

j

G(q + kj)




q0=q
(+)
0

→




∏

j

1

(q + kj)2




q0=|q|

. (A.5)
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The expression on the right-hand side of eq. (A.5) is well-defined, but, when inserted

(through eqs. (A.1) and (4.2)) in eq. (4.1), it leads to an ill-defined result: the integration

over q is singular at any phase-space points where the denominator factors (q+kj)
2 vanish.

To recover a well-defined result, we have to reintroduce the i0 prescription in the residue

prefactor. We might thus maintain the i0 prescription in the Feynman propagators G(q+kj)

and still keeping q0 at its on-shell value q0 = |q|; then we obtain




∏

j

G(q + kj)




q0=q
(+)
0

→




∏

j

1

(q + kj)2 + i0




q0=|q|

. (A.6)

Inserting (through eqs. (A.1) and (4.2)) eq. (A.3) and the right-hand side of eq. (A.6) into

eq. (4.1), we arrive at a well-defined result for the one-loop integral, since the singularities

from the propagators 1/(q + kj)
2 are now regularized by the Feynman i0 prescription.

However, this result for the one-loop integral is exactly equal (see eqs. (3.7) and (3.9)) to

the sole 1-cut contribution, L1−cut, of the FTT. The ensuing contradiction with the FTT

can be resolved only if the total contribution from multiple cuts, L2−cut + L3−cut + . . . ,

to the FTT vanishes; this is obviously unlikely, and it is actually not true as shown by the

explicit one-loop calculations performed in section 5.

The discussion of the previous paragraph illustrates that the evaluation of the one-

loop integrals by the direct application of the residue theorem (as in eq. (4.1)) involves

some subtleties. The subtleties mainly concern the correct treatment of the Feynman i0

prescription in the calculation of the residue prefactors. A consistent treatment requires

the strict computation of the residue prefactor in eq. (A.1): the i0 prescription in both

G(q + kj) and q
(+)
0 has to be dealt with by considering the imaginary part i0 as a finite

(thus, for instance, 2i0 6= i0), though possibly small, quantity; the limit of infinitesimal

values of i0 has to be taken only at the very end of the computation, thus leading to the

interpretation of the ensuing i0 prescription as mathematical distribution. Applying this

strict procedure, we obtain




∏

j

G(q + kj)




q0=q
(+)
0

=




∏

j

1

(q + kj)2 + i0




q0=q
(+)
0

=
∏

j

1

2q
(+)
0 kj0 − 2q · kj + k2

j

=
∏

j

1

2|q|kj0 − 2q · kj + k2
j − i0kj0/|q|

=




∏

j

1

2qkj + k2
j − i0kj0/q0




q0=|q|

. (A.7)

The last equality on the first line of eq. (A.7) simply follows from setting q0 = q
(+)
0 in the ex-

pression on the square-bracket (note, in particular, that q2 = −i0). The first equality on the

second line follows from 2q
(+)
0 ≃ 2|q|−i0/|q| (i.e. from expanding q

(+)
0 at small values of i0).

The result in eq. (A.7) for the residue prefactor is well-defined and leads to a well-

defined (i.e. non singular) expression once it is inserted in eq. (4.1). The possible singulari-

ties from each of the propagators 1/(q +kj)
2 are regularized by the displacement produced

by the associated imaginary amount i0kj0/q0. Performing the limit of infinitesimal values
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of i0, only the sign of the i0 prescription (and not its actual magnitude) is relevant. There-

fore, since q0 is positive, in eq. (A.7) we can perform the replacement i0kj0/q0 → i0 ηkj ,

where ηµ is the vector ηµ = (η0,0) with η0 > 0; we finally obtain



∏

j

G(q + kj)




q0=q
(+)
0

=




∏

j

1

(q + kj)2 − i0 ηkj




q0=|q|

, (A.8)

which is the result in eq. (4.4) (to be precise, eq. (4.4) is recovered by reintroducing the

original labels of the momenta of the loop integral according to the replacements q → qi,

kj → qj − qi, see the discussion above eq. (A.1)).

In the following we explain in more detail the origin of the η dependence in the i0

prescription of the dual propagators. The explicit calculation performed in this appendix

leads to the introduction of the future-like vector ηµ = (η0,0) (see eqs. (A.7) and (A.8)).

As discussed in section 4, different future-like vectors can be introduced by applying the

residue theorem in different systems of coordinates. To clarify this point, we explicitly

show the application of the residue theorem in light-cone coordinates (see eq. (2.6))

rather than in space-time coordinates (as in eq. (4.1)). The one-loop integral can then be

evaluated as follows:

L(N)(p1, p2, . . . , pN ) =

∫

(q−,q⊥)

∫
dq+

N∏

i=1

G(qi)

= − 2πi

∫

(q−,q⊥)

∑
Res{Im q+<0}

[
N∏

i=1

G(qi)

]
, (A.9)

where we have applied the residue theorem by closing the integration contour at ∞ in the

lower half-plane of the complex variable q+ (see figures 2 and 3). We can now compute the

residues in eq. (A.9) by closely following the analogous computation in eqs. (A.1), (A.3)

and (A.7).

The analogue of the term in eq. (A.1) is

[
Res

{q+=q
(+)
+ }

G(q)

] 


∏

j

G(q + kj)




q+=q
(+)
+

, (A.10)

where q
(+)
+ denotes the location (in the q+ plane) of the pole with negative imaginary part

that is produced by the propagator G(q). Thus (see eq. (2.12)), we have

q
(+)
+ =

q⊥
2 − i0

2q−
, with q− > 0 , (A.11)

where the requirement of negative imaginary part leads to the constraint q− > 0.

The computation of the residue of G(q) gives

Res
{q+=q

(+)
+ }

G(q) = θ(q−) lim
q+ → q

(+)
+

{
(q+ − q

(+)
+ )

1

2q+q− − q⊥
2 + i0

}

= θ(q−)
1

2q−
=

∫
dq+ δ+(q2) . (A.12)
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We see that the residue produces the same factor as in eq. (A.3).

The residue prefactor is evaluated by using the same procedure as in eqs. (A.7)

and (A.8). We obtain




∏

j

G(q + kj)




q+=q
(+)
+

=
∏

j

1

2q
(+)
+ kj− + 2q−kj+ − 2q⊥ · k⊥j + k2

j

=



∏

j

1

2qkj + k2
j − i0kj−/q−




q+=q⊥
2/q−

=




∏

j

1

(q + kj)2 − i0 ηkj




q+=q⊥
2/q−

.(A.13)

The last equality in this equation has been found by performing the limit of infinitesimal

values of i0, analogously to eq. (A.8). Since q− is positive, we have thus implemented

the replacement i0kj−/q− → i0 ηkj where, in the present case, we have introduced the

future-like vector ηµ = (η+,0⊥, η− = 0) with η+ = η0

√
2 > 0.

It is important to note that, owing to the on-shell condition δ+(q2), eqs. (A.8)

and (A.13) have the same form, although the corresponding auxiliary vectors ηµ are

different: though η0 > 0 in both equations, η is time-like (η2 > 0) in eq. (A.8), whereas it

is light-like (η2 = 0) in eq. (A.13).

We also note that the use of the residue theorem in the complex plane q0 at fixed

values of q− and q⊥ leads to a residue prefactor with exactly the same light-like vector ηµ

as in eq. (A.13).

The main features of the calculation presented in this appendix are very general: they

are valid in any system of coordinates that can be used to apply the residue theorem. The

residue of G(q) always replaces the Feynman propagator with the corresponding on-shell

propagator δ+(q2) (see eqs. (4.3), (A.3) and (A.12)); the residue prefactor generates dual

propagators with an auxiliary vector η that depends on the specific system of coordinates

that has been actually employed (see eqs. (4.4), (A.8) and (A.13)).

We conclude this appendix by briefly describing the derivation (by means of the residue

theorem) of the generalized duality relation stated in eq. (7.5). The generalized one-

loop integral on the left-hand side contains both Feynman and advanced propagators.

Before applying the residue theorem, we can specify how the infinitesimal limit ‘i0→ 0’ is

performed in the two different types of propagators. We rewrite the advanced propagator

as GA(q) = [ q2 − iρ sign(q0) ]−1 and, evaluating the one-loop integral, we perform first the

limit i0 → 0 (at fixed ρ) in the Feynman propagators and then the limit iρ → 0 in the

advanced propagators. We apply the residue theorem by closing the integration contour at

∞ in the lower half-plane of the complex variable q0, such that the poles of the advanced

propagators do not contribute. Performing the limit i0 → 0, the Feynman propagators

behave exactly as in the case of the duality relation in eqs. (4.6) and (4.7), while the

advanced propagators remain unchanged (since ρ is kept finite). Finally, we perform the

infinitesimal limit iρ → 0. We thus obtain eq. (7.5), whereas the advanced propagators

have not been altered by going from the one-loop integral on the left-hand side to the

phase-space integral on the right-hand side.
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B. An algebraic relation

Here, we provide a proof of the relation (6.9). More generally, we consider a set of n real

variables λi, with i = 1, 2, . . . , n, that fulfill the constraint

n∑

i=1

λi = 0 . (B.1)

We shall prove the following relation:

θ(λ1) θ(λ1 + λ2) . . . θ(λ1 + λ2 + · · ·+ λn−1) + cyclic perms. = 1 . (B.2)

Equation (6.9) simply follows from setting λi = η pi and is just a consequence of

momentum conservation, namely eq. (B.1). Note that the future-like nature of the vector

η plays no role in eq. (6.9).

To present the proof of eq. (B.2), we first define the following function Fn:

Fn(λ1, . . . , λn) = θ(λ1) θ(λ1 + λ2) . . . θ(λ1 + λ2 + · · ·+ λn−1) + cyclic perms. . (B.3)

Then, we proceed by induction. Assuming that eq. (B.2) is valid for n − 1 real variables

(i.e. Fn−1 = 1), we shall prove that it is valid for n variables (i.e. Fn = 1).

The proof is simple. We first note two properties: owing to eq. (B.1), at least one of the

variables λi must have a positive value; Fn(λ1, . . . , λn) has a fully symmetric dependence

on the n variables λi. If we can show that Fn = 1 when one of the variables, say λ1, is

positive, from these two properties it follows that Fn is always equal to unity.

We consider the various terms on the right-hand side of eq. (B.3) and, setting λ1 > 0,

we have:

θ(λ1) θ(λ1 +λ2) . . . θ(λ1 +λ2 + · · ·+λn−1) = θ(λ1 +λ2) . . . θ(λ1 +λ2 + · · ·+λn−1) , (B.4)

θ(λ2) θ(λ2 + λ3) . . . θ(λ2 + · · ·+ λn) = 0 , (B.5)

θ(λi) . . . θ(λi + · · ·+ λn) θ(λi + · · · + λn + λ1) θ(λi + · · ·+ λn + λ1 + λ2) . . .

= θ(λi) . . . θ(λi + · · ·+ λn) θ(λi + · · · + λn + λ1 + λ2) . . . , (i ≥ 3) . (B.6)

The equality in eq. (B.4) simply follows from θ(λ1) = 1. To obtain eq. (B.5), we exploit

momentum conservation to get θ(λ2 + · · ·+λn) = θ(−λ1), and then we use θ(−λ1) = 0. To

obtain eq. (B.6) we simply use θ(λi + · · ·+ λn + λ1) = 1, which follows from the presence

of θ(λi + · · ·+ λn) and from λ1 > 0.

Summing the terms on the left-hand side of eqs. (B.4), (B.5) and (B.6), we obtain

Fn(λ1, λ2, . . . , λn); the sum of the corresponding terms on the right-hand side gives

Fn−1(λ1 + λ2, . . . , λn) (note that the two variables λ1 and λ2 are replaced by the single

variable λ1 + λ2). Therefore, we obtain14 Fn(λ1, λ2, . . . , λn) = Fn−1(λ1 + λ2, . . . , λn), and

hence Fn(λ1, λ2, . . . , λn) = 1 from the induction assumption. This completes the proof of

eq. (B.2).

14Note that, starting from λi > 0, we would have obtained

Fn(· · · , λi, λi+1, . . .) = Fn−1(· · · , λi + λi+1, . . .). Starting from λi < 0, we can analogously obtain

Fn(· · · , λi−1, λi, . . .) = Fn−1(· · · , λi−1 + λi, . . .).
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pi

q

K

pi

q q

K

Figure 11: A one-loop Feynman diagram with a 1-particle tadpole (left), and the tree-level

diagram that is obtained by cutting the tadpole (right). The black disk denotes a generic tree

diagram.

C. Tadpoles and off-forward regularization

The one-loop Feynman diagrams that contribute to a generic quantity include diagrams

with tadpoles. Among them there are also ‘1-particle tadpoles’, namely tadpoles linked

to a single line of the diagram (figure 11–left). This single line necessarily corresponds to

the zero-momentum propagation of a particle K with no associated antiparticle (i.e. the

particle K is the quantum of a real bosonic field). If the particle K is massless, its zero-

momentum propagator is ill-defined (it gives 1/(+i0)). In this case, the theory is consistent

(perturbatively stable) only if the 1-particle tadpole vanishes.

In any consistent theories, the diagrams with 1-particle tadpoles linked to a massless

line are considered to be vanishing, by definition. Therefore, they are harmless in any

direct computations at one-loop level: they are simply removed from the set of one-loop

diagrams to be computed. However, their effect may appear to be ‘dangerous’ in the

context of loop-tree duality at the amplitude level.

To illustrate the origin of the possible ‘danger’, we consider the right-hand side of

the duality relation in eq. (10.4). Here, the integrand is related to the tree-level forward-

scattering amplitude A(tree)
N+2 (P (q) ← P (q), . . . ). This amplitude is the full tree-level am-

plutude and, therefore, it includes also the tree-level diagrams that are obtained by cut-

ting 1-particle tadpoles (see figure 11–right). If the 1-particle tadpole is linked to the

ill-defined propagator 1/(+i0) of a massless particle K, the corresponding diagram in the

tree-level scattering amplitude is also ill-defined. To make eq. (10.4) a well-defined rela-

tion, Ã(tree)
N+2 (P (q)← P (q), . . . ) has to be defined starting from a regularized version of the

(possibly ill-defined) amplitude A(tree)
N+2 (P (q) ← P (q), . . . ). This regularization procedure

has to be consistent: the only effect that it can eventually produce in the right-hand of

eq. (10.4) is the cancellation of the terms that correspond to vanishing tadpole diagrams

at one-loop level.

We introduce a very simple regularization procedure of tadpole-induced (forward-

scattering) singularities: the two momenta of the on-shell particle P are displaced slightly
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P (q1) P (q)

pi

q1 q

µ g, γ

P (q1) P (q)

pi

−q1 −q

µ g, γ

Figure 12: Off-forward regularization of tree-level diagrams with tadpole-induced singularities:

contributions from particle (left) and antiparticle (right) scattering.

off-forward. We thus consider the following off-forward scattering amplitude (cf. eq. (10.5)):

A(tree)
N+2 (P (q)← P (q1), . . . ) =

∑

spin, color, ...

〈P (q) | A(tree)
N+2 (P (q), P (−q1), . . . ) |P (q1) 〉 , (C.1)

where q 6= q1, although both q and q1 are on-shell. It is important to note that the

expression in eq. (C.1) includes the wave-function factors of the on-shell external lines with

momenta q and q1; in particular, it includes the coherent sum over the spins and colours

of the wave functions of the incoming and outgoing particles P . The possibly ill-defined

propagators 1/(+i0), related to forward-scattering kinematics, are obviously replaced by

1/((q − q1)
2 + i0) when considering A(tree)

N+2 (P (q)← P (q1), . . . ).

As discussed in section 10, the amplitude Ã(tree)
N+2 (P (q)← P (q), . . . ) is obtained by start-

ing from A(tree)
N+2 (P (q)← P (q), . . . ) and replacing Feynman propagators with dual propaga-

tors. The off-forward regularization is obtained by starting from the corresponding regu-

larized version of A(tree)
N+2 (P (q)← P (q), . . . ). The regularized version is defined as follows:

• if P has no corresponding antiparticle, we consider the limit q1 → q of

A(tree)
N+2 (P (q)← P (q1), . . . );

• if P has a corresponding antiparticle P , we first combine the particle and antiparticle

contributions and then we consider the limit q1 → q of the sum

A(tree)
N+2 (P (q)← P (q1), . . . ) +A(tree)

N+2 (P (q)← P (q1), . . . ).

The key point of the off-forward regularization is simple: rather than considering the

forward-scattering limit at fixed values of the spin and colour, we first sum over spins,

colours and, possibly, particle and antiparticle, and then we consider the forward-scattering

limit.

Within the Standard Model of strong and electroweak interactions, the massless parti-

cles K that can produce tadpole-induced singularities are gluons and photons (figure 12).

We consider these explicit examples to illustrate how the off-forward regularization consis-

tently leads to the cancellation of tadpole-induced singularities.

The gluon case is very trivial, since the colour sum on the right-hand side of eq. (C.1)

directly cancels any tadpole-induced singularities. The cancellation is eventually the con-

sequence of colour conservation. To be precise, the coupling P (q)P (q1)g
∗ (see figure 12) is
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proportional to the colour matrix T a
cc1, where a is the color index of the gluon, and c and

c1 are the colour indeces of P (q) and P (q1), respectively. The sum over the colours of the

particle P thus gives Tr(T a) = 0, independently of the specific case (gluon, quark, ghost,

. . . ) of particle P .

In the photon case, the particle P is charged and thus P 6= P . In this case, the

cancellation of the tadpole-induced singularity is eventually due to charge conservation,

and it is achieved by summing the contributions of P (figure 12–left) and P (figure 12–

right). To be precise, we can consider explicitly the three cases: P is a charged scalar, P

is a charged vector boson and P is a charged fermion.

If P is a charged scalar particle, the couplings P (q)P (q1)γ
∗ and P (q)P (q1)γ

∗ lead to

the factors (q + q1)
µ and −(q + q1)

µ, respectively (µ is the Lorentz index of the photon).

These two factors simply differ by the overall sign, and thus they cancel each other.

If P is a charged vector boson, the cancellation occurs as in the case of scalar particles.

To be precise, the scalar vertex (q + q1)
µ is replaced by the vertex Γνµν1(q, q1 − q,−q1) =

(q + q1)
µgνν1 + . . . , where ν and ν1 are the Lorentz indeces of the vector bosons P (q) and

P (q1), respectively. Including the wave-function polarization vectors of the charged vector

bosons, we can define

V (λ)µ(q, q1) ≡
∑

ν,ν1

(ε(λ)
ν (q))∗ Γνµν1(q, q1 − q,−q1) ε(λ)

ν1
(q1) . (C.2)

The couplings P (q)P (q1)γ
∗ and P (q)P (q1)γ

∗ lead to the factors V (λ)µ(q, q1) and

−V (λ)µ(q, q1), respectively. Therefore, these two contributions cancel each other for any

fixed polarization state λ of the vector boson.

If P is a charged (massive or massless) fermion, the cancellation takes place after

summing over the spin states s = 1, 2 of the fermion and antifermion contributions. Indeed,

the sum of the couplings P (q)P (q1)γ
∗ and P (q)P (q1)γ

∗ produces the factor

∑

s=1,2

u(s)(q) γµ u(s)(q1)−
∑

s=1,2

v(s)(q1) γµ v(s)(q) , (C.3)

which identically vanishes.

To show that the expression in eq. (C.3) vanishes, we use the following relations:

∑

s=1,2

u(s)
α (q1) u

(s)
β (q) =

[
(/q1

+ M)(1 + γ0)(/q + M)

2
√

(q10 + M)(q0 + M)

]

αβ

,

−
∑

s=1,2

v(s)
α (q) v

(s)
β (q1) =

[
(−/q + M)(1 − γ0)(−/q1

+ M)

2
√

(q10 + M)(q0 + M)

]

αβ

, (C.4)

∑

s=1,2

u(s)(q) γµ u(s)(q1) =
Tr

[
γµ(/q1

+ M)(1 + γ0)(/q + M)
]

2
√

(q10 + M)(q0 + M)
,

−
∑

s=1,2

v(s)(q1) γµ v(s)(q) =
Tr

[
γµ(/q −M)(1 − γ0)(/q1

−M)
]

2
√

(q10 + M)(q0 + M)
, (C.5)
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Tr
[
γµ(/q1

+ M)(1 + γ0)(/q + M)
]

=− Tr
[
γµ(/q −M)(1 − γ0)(/q1

−M)
]

(C.6)

=4

[
M(q1 + q)µ + (q0q

µ
1 + q10q

µ) +
1

2
gµ0(q − q1)

2

]
.

The two relations in eq. (C.4) are directly derived by using the explicit expressions of the

Dirac spinors u(s) and v(s) from the solutions of the Dirac equation. The two relations in

eq. (C.5) are obtained from eq. (C.4), and eq. (C.6) is the result of an elementary compu-

tation of Dirac γ matrices. Using the relations in eqs. (C.5) and (C.6), we immediately see

that the expression in eq. (C.3) is equal to zero.
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