
CALT-68-2200

SLAC-PUB-7988

November 1998

CORBA Evaluations for the BABAR Online Systema

S. Yangy and T.Glanzmanyy

yPhysics Department, Caltech, Pasadena, CA 91125
yyStanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

For the BABAR Computing Groupb

Abstract

The Common Object Request Broker Architecture (CORBA) is a software

system to deal with distributed object computing. The release of CORBA

version 2, and real implementations from numerous vendors (both free-

ware and payware) have made its use very attractive for interprocess and

interprocessor communication within an object-oriented software system.

A number of object request brokers (ORBs) were evaluated for possible use

within the BABAR Online system. Given an expectation for a reasonable

level of performance within the Online system, it was essential to charac-

terize the behaviour and test the response of these products prior to their

adoption. This paper summarizes the results of a systematic performance

study of six ORB products. The products tested include: Visibroker, Or-

bix, DAIS, Omnibroker, OmniORB2, and TAO. Performance results of

ORB products, including a test of TCP/IP sockets, are compared. These

tests resulted in the adoption of the TAO ORB for use within the BABAR

Online system.

aContributed to the International Conference on Computing in High Energy Physics (CHEP 98),

Chicago, IL, August 31 - September 4, 1998.
bWork supported in part by Department of Energy grant DE-FG-03-92ER40701 and contract

DE-AC03-76SF00515.

1 Introduction

The Common Object Request Broker Architecture (CORBA) is an industry standard

way for distributed objects and clients to interact with each other. The driving force

behind CORBA is the Object Management Group (OMG) [1], which was formed in

1989 to promote the interoperability of object-oriented software systems.

The CORBA was designed to allow intelligent software components to discover each

other and interoperate on an object bus called Object Request Broker (ORB). The

ORB is a server application that functions like a network switch. Any client object

can make a request to a local or remote server object through an ORB. The server also

responds through it. Being language-independent, CORBA introduces an Interface

De�nition Language (IDL) to describe the content and capabilities of objects without

implementing their details. An IDL compiler then creates the C++ or other language

stub �les.

The BABAR Online system [2] is a collection of cooperating processes. It is also

object-oriented. Thus, the availability of CORBA made its use very attractive for

interprocess and interprocessor communications. Six di�erent CORBA products were

tested which resulted in the adoption of TAO for use within the BABAROnline system.

2 Performance tests

We used six di�erent C++ ORBs to measure performance: OMNIBROKER 2.0.1 [3],

omniORB2 2.2.0 [4], and TAO 0.0.10 and 0.2.3 [5], VisiBroker 3.0 [6], orbix 2.3c [7],

and DAIS 3.0 [8]. These tests were geared toward addressing the types of communi-

cations anticipated should the CORBA technology be adopted.

We used two Solaris 2.5.1 UltraSPARC machines (Percheron is 246MHz CPU En-

terprise 6000 and Charger is 168MHz CPU Ultra 2) connected by switched 100Mbps

Fast Ethernet. A simple test was constructed: Client sends data and server receives

data, then returns nothing (oneway), void, or the original input data. The oneway

test is similar to a return of void except that the return of void requires a handshake,

while oneway does not. With some e�ort all tested ORBs were interoperable with

each other, e.g. An Orbix client could communicate with a VisiBroker server. We

performed the following benchmark performance tests:

� Type dependence. Transmit various types of CORBA sequences (char,
oat,

long, and double) and corresponding struct sequences (e.g. struct with only one

char etc.).

� Structure element type dependence. Transmit structs of the same size and

with same number of elements, but with di�erent types of elements: four longs

(homogeneous), and one double, one
oat, and two shorts (heterogeneous)

2

� Structure element number dependence. Transmit structs of the same size but

with di�ering content, one struct with one double vs. and one struct with two

oats

3 Results

The lessons we learned from the benchmark tests are summarized below. Results

using VisiBroker 3.0 appear in �gure 1.

� The sending of structs (vs. sequences) incurs an extra overhead.

� The relative struct sending overhead gets larger as the struct size gets smaller.

For example, the overhead ratio between single char struct and single double

struct is about 3.3.

� The struct overhead gets larger as the number of elements in the struct increases.

For example, the overhead ratio between an eight char struct and a single double

struct is about 5.

� There is no signi�cant performance di�erence between di�erent sequence types.

� There is no signi�cant performance di�erence between structs containing iden-

tical vs dissimilar elements of the same size.

� The best performance is generally achieved when the data payload is greater

than 1kB.

The comparison among di�erent ORB vendors is summarized below:

� Visibroker 3.0 versus OMNIBROKER 2.0.1 and omniORB2 2.2.0: Visibroker

3.0 gave the best results. The performance between OMNIBROKER 2.0.1 and

omniORB2 2.2.0 is similar. Within a factor of two, the performance of all three

vendors is similar and the throughput plateau is above 2Mbps as shown in

�gure 2.

� Visibroker 3.0 versus orbix 2.3c and DAIS 3.0: Visibroker 3.0 gave the

best results. DAIS 3.0 gave terrible performance at payload above 10kB as

shown in �gure 3.

� Visibroker 3.0 versus TAO: TAO 0.2.3 gave the best results for sending char

sequence. For sending structs, TAO 0.2.3 gave the best results at payload

below 1kB and comparable to Visibroker 3.0 at payload above 1kB as shown

in �gure 4.

We also compared ordinary TCP/IP socket communication versus VisiBroker 3.0

throughput performance as shown in �gure 5. As indicated by the plots, the perfor-

mance di�erence between sockets and CORBA is signi�cant for small message sizes.

This di�erence narrows considerably as the message sizes gets larger.

3

4 Conclusions

We have observed signi�cant throughput di�erences between various ORB implemen-

tations and between CORBA and ordinary socket communications. A combination

of throughput and latency issues have prevented us from adopting CORBA for event

transport within the BABAR online system. However, CORBA was found to be su�-

ciently performant for use within other areas of the system. Coupled with its
exible

higher level services and language independence, it has been adopted for appropriate

applications. The TAO ORB was selected because of its performance and real-time

orientation, vigorous developer group and, of course, it is free.

References

[1] OMG: http://www.omg.org/

[2] BABAR : http://www.slac.stanford.edu:/BF/doc/www/bfHome.html

[3] OMNIBROKER: http://www.ooc.com/ob.html

[4] omniORB2: http://www.orl.co.uk/omniORB/omniORB.html

[5] TAO: http://siesta.cs.wustl.edu/ schmidt/TAO.html

[6] VisiBroker: http://www.inprise.com/visibroker/

[7] orbix: http://www.iona.com/products/orbix/

[8] DAIS: http://www.daisorb.com/sbs/daismenu.html

4

 (percheron-to-charger) Time (void return)

10
-1

1

10

10 2

10 3

10 4

1 10
2

10
4

10
6

10
-1

1

10

10 2

10 3

10 4

1 10
2

10
4

10
6

10
-1

1

10

10 2

10 3

10 4

1 10
2

10
4

10
6

10
-1

1

10

10 2

10 3

10 4

1 10
2

10
4

10
6

10
-1

1

10

10 2

10 3

10 4

1 10
2

10
4

10
6

10
-1

1

10

10 2

10 3

10 4

1 10
2

10
4

10
6

Figure 1: Transfer time in msecs as a function of payload in bytes

5

 (percheron-to-charger) Throughput (void return)

1

10

10 2

10 3

10 4

10 5

1 10
2

10
4

10
6

1

10

10 2

10 3

10 4

10 5

1 10
2

10
4

10
6

1

10

10 2

10 3

10 4

10 5

1 10
2

10
4

10
6

1

10

10 2

10 3

10 4

10 5

1 10
2

10
4

10
6

1

10

10 2

10 3

10 4

10 5

1 10
2

10
4

10
6

1

10

10 2

10 3

10 4

10 5

1 10
2

10
4

10
6

Figure 2: Throughput performance of three di�erent ORB vendors: VisiBroker 3.0

(VB), OMNIBROKER 2.0.1 (OB), and omniORB2 2.2.0 (OO2).

6

 (percheron-to-charger) Throughput (void return)

1

10

10 2

10 3

10 4

10 5

1 10 10
2

10
3

10
4

10
5

10
6

1

10

10 2

10 3

10 4

10 5

1 10 10
2

10
3

10
4

10
5

10
6

1

10

10 2

10 3

10 4

10 5

1 10 10
2

10
3

10
4

10
5

10
6

1

10

10 2

10 3

10 4

10 5

1 10 10
2

10
3

10
4

10
5

10
6

Figure 3: Throughput performance of three di�erent ORB vendors: VisiBroker 3.0,

orbix 2.3c, and DAIS 3.0.

7

 (percheron-to-charger) Time (oneway)

10
-2

10
-1

1

10

10 2

10 3

10 4

1 10 10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

1

10

10 2

10 3

10 4

1 10 10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

1

10

10 2

10 3

10 4

1 10 10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

1

10

10 2

10 3

10 4

1 10 10
2

10
3

10
4

10
5

10
6

Figure 4: Throughput performance of two di�erent ORB vendors: VisiBroker and

two di�erent TAO version. TAO improves the performance over time.

8

 CORBA-versus-Socket (Send Character)

10
-2

10
-1

1

10

10 2

10 3

10 4

1 10 10
2

10
3

10
4

10
5

10
6

1

10

10 2

10 3

10 4

10 5

1 10 10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

1

10

10 2

10 3

10 4

1 10 10
2

10
3

10
4

10
5

10
6

1

10

10 2

10 3

10 4

10 5

1 10 10
2

10
3

10
4

10
5

10
6

Figure 5: TCP/IP socket versus VisiBroker 3.0 performance. The top two plots are

for local transfer and the bottom two plots are for remote transaction.

9

