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ABSTRACT 

, 

A numerical solution to the integro-differential equation describing 

the energy’distribution of a beam of electrons which has passed through 

matter, losing energy by radiation only, has been obtained utilizing a 

finite difference mesh method. Solutions were obtained for thicknesses 

of up to 0.1 radiation lengths for a complete screening approximation to 

the energy loss equation. The accuracy of the method was checked by 

comparison of results with known solutions to the diffusion equation. 

The formulas of Mo-Tsai and Tsai for electron straggling distributions 

were compared to the numerical results. Good agreement was found 

near the high energy end of the distribution, the numerical results being 

within two percent of the theoretical predictions. At the low energy end 

of the distribution, the numerical results differ from those predicted by 

as much as eight percent at thicknesses of 0.1 radiation length. The 

disagreement was found to be proportional to thickness traversed by the 

beam. 

(Submitted to Nucl. Instr. and Methods. ) 
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1. Introduction 

A problem of interest in electron scattering experiments is that of deter- 

mining the energy loss of electrons due to bremsstrahlung in the target material 

The formulas of Bethe and before and after the scattering process of interest. 

Heitler ” 2, and of Eyges 3) can be shown to satisfy the electron diffusion equation 

but are derived from expressions which only approximate the bremsstrahlung 

spectrum shape. Recently, MO and Tsai4’proposed an%pression which, while 

utilizing a more accurate approximation to the energy loss spectrum, appears 

to be impossible to check analytically except by examining its normalization 

properties. This has stimulated interest in obtaining a solution to the electron 

diffusion equation numerically in order to test the accuracy of the formulas in 

use. 

The problem which has been considered is the distribution in energy of 

electrons of uniform initial energy which have penetrated t radiation lengths and 

which lose energy by radiation only. Our interest was motivated because this 

distribution is required in the radiative corrections in inelastic electron scat- 

tering; in this application t is typically less than 0.1 radiation lengths, and this 

is the greatest thickness which has been investigated numerically. The energy 

distribution is always normalized to unity. Electrons created by pair-production, 

for example, are not included in the energy distribution under consideration. 

A method utilizing a finite difference mesh has met with some success; the 

accuracy was checked by comparison with known solutions to the diffusion equa- 

tion. The method of solution, as well as the results of comparing the various 

analytic expressions with numerical results are discussed below. 
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II. The Diffusion Eauation 

and 

The derivation of the diffusion equation given below follows that of Rossi 

Greison’) , but ignores pair production processes since we are only 

interested in solutions for values of t up to 0.1 radiation lengths. 

Let n(E, t) dE represent the probability of an electron having energy be- 

tween E and E + dE at thickness t. Q(v) dvdt represents the probability for an 

electron of energy E to radiate in thickness dt a photon of energy between k and 

k+ dk, where v = k/E. 

Electrons with energy E’, larger than E, can enter the interval between 

E and E + dE by radiating part of their energy (k= El-E). The increase in 

n(E, t) at t+ dt is: 

00 

dEdt n(E’, t) $((E’-E)/E’) dE’/E’ 
E 

Electrons initially in the interval between E and E + d.E can leave this interval 

by radiation loss. The decrease in r(E, t) at t+ dt is: 

-6 

E 
dEdt n(E) t) C$ ((E-E’)/E) dE’/E 

so that the change in r(E, t) with thickness dt is represented by the difference 

between the two integrals: 

&L 1 
E 

at - dE,t) o #NE-W/E) al/E 

m 

+ n(E’, t) $ ((El-E)/E’) dE’/E’ 
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The upper limit of infinity in the second integral can be replaced by the 

highest energy contained in the distribution in a practical case. The diffusion 

equation is often written in a slightly different form: 

an - =- 
at (2) 

using 

Equation (2) is the form of the diffusion equation most convenient for the 

application of Mellin transforms, while (1) is suitable for finite difference mesh 

solutions which depend on values of n(E, t) computed at regular intervals in E 

and t. 

Solutions to the above equations are of interest in electron scattering 

J experiments at values of t up to 0.1 radiation length. The expression used for 
I 

#(v) in the numerical solution was that corresponding to complete screening, 

+(v)=b(l/v-1)-!-v bz44/3 (3) 

which is valid for small energy loss and very close to the true shape of the 

bremsstrahlung spectrum for large energy loss at energies in the GeV range 4) 

(Fig. 1). Expressions involving arbitrary screening are impractical in the type 

of numerical solution discussed here because of the comparitively long time 

required to compute values for C#I (v) . 

Bethe and Heitler 1,2) used an expression which approximates the case of 

partial screening in obtaining their analytic expression for straggling: 

(b(v)=- b log (l-v) = b/log (E/E’) (4) 
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While Eyges 3) used a more general form: 

Cp(v) = -b(l-v)“/log (l-v) = b (E’/E)a/log (E/E’) (5) 

In (4) and (5), b is the value of v e(v) for v= 0. The logarithms are to the 

base e. Expression (5) is the same as (4) for the case a= 0. The various $ 

functions can be compared in Fig. 2, where values of vQ, have been plotted vs. 

V. Figure 1 shows some results from Rossi’s calculasns of v$ for variable 

5) screening . 

Eyges3) obtained the following solution to (2) for the loss function (5) by a 

Mellin transform: 

n(Eo,E,t) =+ 
bt E a [log tEo/E;lbtml 

0 
tl+a) z rtW (6) 

where .rr(Eo, E, t)dE is the probability for finding an electron with energy between 

E and E+dE at thickness t radiation lengths when the initial energy at t=O is Eo. 

This allows comparison of numerical and analytic results for various values of 

the parameter a in (5). It can be seen that values of a between .25 and .5 

describe the loss function best in the low v region, while negative values of a, 

like -. 25 are a better approximation in the region of v near to one. However, 

in the diffusion equation, the value of v in the gain integrand ranges from zero 

to (1 - E/EO), while the loss integrand always ranges over the entire range of v 

from zero to one, so that it is impossible to find an optimum value for a except 

for a specific energy (see Fig. 5). 

The expression given by Mo-Tsai is, in the present notation: 

t 

- 
MO, E, t) = 

EO 
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If (4) is substituted for @ in the above expression we get: 

bt-’ 

~tEo,E,t) = 
EO 

While Bethe-Heitler and Eyges give for this same loss function (4) the analytic 

result: 

- 

which is normalized to unity when integrated from E=O to E=EO. Since the 

Mo-Tsai expression was derived for small bt, the gamma function was approxi- 

mated by one. In the present study, we have restored I? (l+ bt) to the denominator 

since at values of tE.1, lY(l+bt) M .g4. 

Although the Mellin transformation can be applied to (2) when the loss func- 

tion corresponds to (3), the inverse transformation requires solution of the 

integra13’ 5): 

J 

6+i ~0 

e 
- b q(s+l) t + t (s+ 1) 1 (s+2) da!3 

where y = log (EO/E), and $ is the logarithmic derivative of the gamma function. 

Eyges solved the inversion integral corresponding to the loss function (4) by 

completing the contour in the negative half plane with a circle and applying the 

residue theorem. Since the poles at s= -1 and s = -2 in the above integral are 

not regular singular points, the residue theorem can not be used for loss function 

(3). Also, ZJ has an infinite number of poles and zeroes in the negative half 

plane. Saddle point solutions3 are inaccurate for the case of small t, of interest 

here, and solving the integral by numerical methods appears difficult. Hence, 

there is need for another approach. 
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III. Numerical Method of Solution 

In obtaining a numerical solution to the diffusion equation, we make use of 

the fact that n(E) t) is known at t=O. The integrals in (1) may be evaluated 

numerically by a method to be discussed below. An approximate solution can 

be obtained at t=dt by applying Euler’s method 6) , which is equivalent to applying 

a first order Taylor expansion over a small interval, dt: 

r(E, dt) = n(E, 0) + dt asp 

A mesh, or grid is set up in E and t as shown in Fig. 3. Mesh points are 

taken at equal intervals in energy so that they may be used as sample points in 

the numerical evaluation of the integrals in (1). Equation (7) is applied to every 

mesh point in column 2 of the mesh. Points in column 3 may be computed by 

using points in column 2 as sample points in the integrals. The process is 

repeated until the desired value of t is reached and all points in energy have been 

computed. Any initial distribution can be handled this way, but we are interested 

in the case of a beam of electrons with an initial distribution at t = 0 of 

n(E,O) = 6(EO-E) 

where E. is the initial energy. 

- 

This distribution is approximated in column 1 of the mesh by assigning a 

value of l/dE to the top, left-hand corner mesh point Pll. All others are 

initially set equal to zero. dE is the separation of mesh points in energy. Thus, 

the delta function is approximated by a triangular distribution in column 1. l/dE 

is chosen as the value for P I1 to normalize the distribution. In each column j 

we should have: 

NE 
E 
i=l 

Pij dF = 1 

where NE is the total number of energy points. 
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Equation (1) is a more useful form than (2) for a mesh solution. 

apparent pole at v = 1 in (2) corresponds to an infinite upper limit of 

is not of importance here. One can rewrite (2) as follows: 

The 

energy and 

#(v)dv+ 
l-E/E0 

0 0 

where we have ignored the region above E o since n(E,+jis zero for E>EO. 

For the case of the lower limit, we note that $(v), in Eqs. (3)) (4)) and 

(5)) behaves like l/v and diverges as v goes to 0. However, the difference 

between the integrals in (1) or in the terms of the integrand in (2) remains 

finite5). 

Equation (1) can be rewritten as follows: 

$ (E, t) = -n(E,t) iE c+(s)%+ [; n(E’,t) @(yj F 

6 E+6 
+r(E,t) E’-E I dE’. -- dE’, t, 0 \ E’ E’ (8) 

E 

We can consider the last two integrals separately, making a change of variable 

in the first of ET= E, and in the second of E!=E+e and combining the terms into 

one integral: 

For small E 

n(E+c,t) = n(E, t) + E aE 8n+ 1 2 a27r : Z E 
832 l ” 
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and 

Dropping second order terms in E, the integral becomes: 

b s(E,t)+Ew n(E,t)+Ew 
i 

(9) 

which tends to 0 in the limit as 6-O for E < E 0’ 
As a first approximation, the first two integrals in (8) can be evaluated by 

rectangular rule 6). . 

Y(X) dx L h ( y(A) + y (A+h) + y (A+2h) + . . . -t- y A + (n-1)h) 

h - B-A 
n-l 

The value of h is determined by the value of dE in the mesh. Expression (9) is 

added to compensate for the error introduced by the finite size of 6(=dE). If 

rectangular rule is used, together with Euler’s method (7), the method of solu- 

tion is easy to visualize, but not very accurate, the error in rectangular rule 

integration being approximately: 

With this method, one can consider the probability distribution as bined in 

E, with bins at a given value of t losing to bins of lower E values at t + dt, while 

gaining from higher bins at t - dt (Fig. 3). The first attempt at solving (1) 
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utilized this method and was moderately successful. The chief drawback of the 

method is that h must be made very small, i. e. , a large number of points must 

be taken in E and t to minimize error. 

In the numerical solution under discussion here, the first two integrals 

of (7) were evaluated by the trapezoidal rule: 

f 

B 
Y(X) d-9 ( y(A) + By(A+h) + 2y(A+Bh) + . . . f y(A+(n-l)h)\ 

A 

h - B-A 
n-l 

where n is the number of equally spaced sample points. The error in trapezoidal 

integration is: 

where 5 is some value of x between the limits of integration. The integrand in 

the gain integral is strongly peaked due to the nature of n(E, t) near the upper 

limit, and the integrands of the gain and loss integrals are peaked near the 

lower limits due to the nature of C$ (v) . In the case of the lower limits, there is 

some tendency for the error to cancel since we are taking the difference of the 

two integrals. When E is near 0 fewer mesh points are available for computa- 

tion of the loss integral, while when E is near Eo, fewer mesh points are avail- 

able for computation of the gain integral. The net result of all of these effects 

can be seen in Fig. 4, where numerical results for the case: 

q)(v) = -bo” 
log (l-v) 

have been compared to the analytic solution obtained by Eyges. The effect of 

changing the mesh size in the E direction by a factor of two is shown in Fig. 4. 
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The expression (9) is added to the sum of the first two integrals in (8) to 

compensate for the finite lower limit of integration. The partial of T with 

respect to E is computed by a difference approximation: 

&r+ 1: n(E+dE, t) - r(E, t) 
dE 

which shows an obvious bias towards higher values of E. This form is chosen 

because the partial originated in the Taylor expansion of r(E, t) in the direction 

of increasing energy. 

The Euler method for integration along lines of constant E has an error 

per step of6 

d2 n(E,q) (dz2 
at2 

t<q <t+dt 

and values of dt as low as . 0001 are required in the present case, which of 

course means 1000 steps in t. 

A considerable improvement in accuracy can be obtained by using one of 

the so-called predictor-corrector methods. 6 We first use: 

r(E,t+dt) = n(E,t-dt) + 2(dt) w 

to Predict a value of r(E, t+ dt), then use the result obtained for n(E, t+ dt) to 

correct by the expression: 

r(E, t+dt) = r(E, t) + ;(dt) 
(’ 
‘n(E&:+ dt) + w, 

This method allows the use of a larger step size, dt, so that the number of 

energy points can be increased without increasing computation times drastically. 

The error for the first (predictor) is: 

a3n(E,n) (dz3 
at3 
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while the error for the second (corrector) is: 

a37r(E ,q 1 @tit3 
at3 

The difference between the corrected and predicted values is: 

If a37r/Bt3 does not change sign in the interval, then the two values obtained are 

on opposite sides of the true value (for that step). Thus by accumulating differ- 

ences between the predictor and the corrector, some feeling for the error may 

be obtained. @fortunately, errors in the integrals over E give wrong values 

for %r/at, so that this procedure is only useful in determining an optimum value 

of dt and cannot be used in estimating the error in the final result except perhaps 

in the region E - E0/2 where there is a tendency for error in the integrals to 

cancel. The value of dt was .004 for the results reported here. 

Since the evaluation of the integrals in Eq. (1) is the most difficult part of 

the solution, accuracy might be improved by using some higher order numerical 

technique. Trapezoidal rule was chosen because it is simple, not requiring 

either an even or odd number of sample points, and handles the triangular 

approximation to the delta function starting condition in a way which is clearly 

understood. As the solution progresses in t, the normalization over E remains 

close to unity. Higher order methods are often equivalent to the analytic inte- 

gration of some interpolation polynomial, which may not behave properly in the 

peaked region E - Eo. 

Our procedure then, is to compute values of r(E, t) in column 2 of the mesh 

by using Euler’s method after obtaining 87r/8t by applying the trapezoidal rule 

to the integrals in (l), using mesh points from column 1 as sample points. We 
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can start with any initial distribution, but for the purposes of this discussion, 

we start with the triangular distribution shown in Fig. 3. After mesh points in 

column 2 are computed, succeeding columns can be computed by the predictor- 

corrector method, since it requires two previous points. 

IV. Numerical Results 

A computer program was written from the foregoing considerations and 

run on the SLAC IBM 360/91 machine. Double precision was used to minimize 

roundoff error, since something like 100,000 integrations are performed. The 

loss integrals need only be computed once for each i value in the mesh, but 

the gain integrals must be recomputed for each ij point, and the number of 

sample points in the gain integrals is proportional to the number of energy 

points. Thus, the running time of the program is proportional to the product 

of the square of the number of points in energy and the number of points in 

thickness. When the complete screening approximation is used (3) the running 

time for the program is a little over 3 minutes on the IBM 360/91. When expres- 

sions like (4) and (5) are used as energy loss functions, the running time in- 

creases to 24 minutes due to the time required to compute the logarithms and 

exponentials. 

The Pij array which represents r(E, t) in the program is a double precision 

array and would occupy 200,000 words of storage if dimensioned according to 

the total number of points in E and t. The maximum storage available on the 

IBM 360/91 is 75,000 words. For this reason, a solution is obtained for ten 

columns in t, and then re-started for another ten, the last column of a set be- 

coming the first column of the next set. 

The accuracy of the program was checked by using (5) as a loss function 

and comparing the results with (6). Figure 4 shows that the error is greatest 
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at values of E near 0 and near E 0 as might be expected from the considerations 

of the preceeding section. Other checks were made by varying dE and dt. 

Figure 4 also shows the effect of changing dE by a factor of two. The effects 

of changing dt by a factor of two are not large enough to be observed in the figure, 

being only .005% at E/E0 = .5 and .04% at E/E0 = 0 9. The results of comparison 

with (6) indicate that the solution obtained numerically is accurate to .02% over 

the range E/E0 = .15 to E/E0 = .97 and to .3% for E/E0 up to .99 when all of the 

mesh points are calculated, However, the accuracy of the solution when (3) is 

used as a loss function may not be this good. The results obtained in this type of 

calculation are therefore, unreliable at values of E/E0 greater than .95. If we 

believe that the solution obtained by applying the Mellin transformation to (2) is 

correct, then we know the solution approximately at E - E. since the $I functions 

all behave as l/v in the low v region which corresponds to E N Eo. The Eyges 

expression (6) with a=0 becomes equivalent to that of Mo-Tsai divided by 

I’(l+bt). 

Thus, the numerical solution is most accurate in the middle energy region, 

while the various theories generally become equivalent in the region E - Eo, 

although (6) contains the factor (l+a) bt which has a 3 percent effect for a=. 25 

at t= . 1. The effect of the $ function on the accuracy of the numerical results 

is known only for the case of (5) where values of a of -. 25, 0, and .25 were 

used in comparison runs between analytic and numerical results. The behavior 

of the solution is the same as that shown in Fig. 4 for high and low E values, 

but the flat mid regions in E are somewhat different, At E/E0 = .5, the error 

curve is about .002% below the axis for the case of a= 0. When a = .25, the 

error at E/E = .5 becomes -. 0060/o, while for a= -. 25, it becomes + .02%. 0 
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One obvious way of improving the accuracy of the numerical solution is to 

use a finer mesh, i.e., use more points in the integrations. However, compu- 

tation times increase nearly as the square of the number of energy points used. 

In order to compute the value of r at given values of E and t, the values of 7r at 

mesh points of higher E, but lower t, must be known. Thus the solution at a 

particular mesh point depends only on the points contained in the rectangular 

region of higher E and lower t. Points of lower energy do not contribute to the 

solution. This feature can be used to find 7~ numerically at E values close to Eo. 

The same 400 point mesh is used, only with energy E on the lowest line instead 

of zero. The loss integrals are evaluated for each E value once at the beginning 

of the calculation and stored. In this way, numerical results were obtained at 

values of E/E0 up to .999. Again, the accuracy of the numerical solution was 

checked by comparison with (6) when (5) was used as a loss function. At 

E/E0 = .999, .05 percent agreement was obtained for a= 0. 

Figure 5 shows a comparison between the numerical results for complete 

screening and the expression for straggling obtained by Eyges (6) for various 

values of the parameter a, and for t= 0.1 radiation length. The Bethe-Heitler 

formula (a=O) can be seen to deviate from the numerical results for complete 

screening up to 10% down to values of E/E =O. 3, below which the error becomes 0 
greater. The formula (6) for n(E, t) is too large at high values of E/E0 due to 

overestimation of the gain integral in the low v region and is too small at low 

values because of underestimation of the gain integral in the high v region. The 

relative error in the loss integral is the same in both cases, as the absolute 

value of the loss integral is too large due to overestimation of $ in the low v 

region. 
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Note that vertical scale in Fig. 5 is a factor of twenty greater than that of 

Fig, 4. The deviations from unity in Fig. 5 show how the formulas of Bethe- 

Heitler and Eyges differ from the numerical results when the complete screening 

approximation (3) is used as a loss function in the numerical computation, and 

are due to the 4 functions used in the theories, not errors in the numerical 

method. 

The expression of MO-Tsar 4 for complete screening modified by dividing 

by I’(l+bt): 

+o,%t) = 
t # (1-e‘ (log qbt 

E. l?(l+bt) 

has been compared to the numerical results for complete screening (Fig. 6). 

The error is proportional to t, vanishing as t-0, and is most severe at low 

values of E. For values of E/E0 > .65, this modified expression of Mo-Tsai 

agrees with the numerical results within l%, but the error grows b 9% at 

E/E0 = . 1. 

G. Miller 7) has used the numerical results to find a correction to (10) for 

values of Z of 1, 13, and 29 and values of t up to 0.1 and E/E0 from . 1 to 1. 

His results are: 

Go, E, t) = E. I’(l+bt) (1 + bt x(. 53875 +x(-2.1938+. 9634a 

(11) 

x= 
E. - E 

EO 

- 16 - 



As shown in Fig. 7, this expression agrees with Ihe numerical results to within 

.6% over the ranges of E/E0 from . 1 to 1.0 for E. ranging from 1 to 20 GeV 

and agrees with the analytic solution of Eyges for a= 0 in the limit as E/EO- 1. 

Note that the correction factor becomes unity when t= 0 and when E = Eo. 

Tsai8) has proposed a new expression based on numerical results 

using (10) . 

~(Eo,E,t) = I’(1 WI (14 

Again, this expression agrees with (6) in the limit as E -E. for a= 0. Comparison 

with numerical results is shown in Fig. (6). The difference is less than 2% for 

values of E/E0 between .2 and ,999. The large deviation below E/E0 = .2 is due 

to the fact that the exponential term in (12) is no longer a good approximation to 

the log term in (10). One nice feature of (12) is that it can be integrated analyt- 

ically over E for the complete screening case. The results of integrating (12) 

from E =0 to E=EO are that it is not normalized, the value obtained being .99 

at t=O. 1 rather than 1. This is consistent with Fig. 6 which shows that (12) is 

too low. 

W(EO,E,t) = 
Vbt 

b ,bt- 

,bt+ 1 

W+ 1) 

where 

v= 1-g ‘I . 
0 

The fact that most of the distribution is contained in the region E M E. may 

account for the fact that the total distribution is only one percent low, while the 

segment shown in Fig. 6 is generally two percent low. 
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The disagreement between the numerical results and expressions (lo), (ll), 

and (12) at E/E0 x 1.0 and t = .1 radiation length is .6’%. One would expect that 

these expressions would agree with numerical results within the known error 

of the program (. 05%) at this energy, because (10) becomes identical to the 

Bethe-Heitler expression in the limit as E - Eo, and this is a known solution to 

the diffusion equation. However, Eyges’ expression (6) is also an analytic solu- 

tion and clearly depends on the shape of the loss function when E - E. (Fig. 5) 

because of the factor (l+ a) bt . Since all of the loss functions behave as l/v in 

the low v region, it is tempting to assume that the probability distribution 

a(Eo, E, t) at E - E. depends on small v terms and that the nature of $I (v) at high 

values of v is relatively unimportant. Equation (6) and the numerical results 

show that this is true only for very small values of t like t= . 01. 

V. Conclusion 

The results shown in Figs. 5 and 6 indicate that the expressions given by 

.Mo-Tsai4) and Tsai’) are useful approximations to the probability distribution 

describing electron straggling at radiator thicknesses up to 0.1 radiation lengths. 

The numerical results indicate that these expressions are approximations only, 

however, and do not represent true solutions to the electron diffusion equation. 

G. Miller 7) has given a correction for the Mo-Tsai expression which brings it 

into agreement with the numerical results to within 0 6% at thicknesses of 0.1 

radiation length. The disagreement between all of the above expressions for 

electron straggling and the numerical results is proportional to the thickness of 

material traversed, so that at thicknesses of . 01 radiation lengths, the maximum 

disagreement is less than one percent. 
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tion with the expressions for straggling obtained by Bethe-Heitler and 

Eyges for t = 0.1 r.1. Deviations from 1.0 are due to the energy loss 

functions used in the theories. 

Comparison of various expressions for straggling with numerical results 

when a complete screening approximation is used in both the numerical 

calculations and in the analytic expressions. Deviations from 1.0 are 

due to errors in the analytic expressions, t = 0.1 r. l., b = 4/3. 
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