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Abstract

Many proposals for physics beyond the Standard Model do not give rise to only a single

dark-matter candidate — they give rise to an entire dark sector consisting of many

independent dark degrees of freedom. In this dissertation, we explore some of the

cosmological implications of such non-minimal dark sectors. In the first part of this

dissertation, we examine the phenomenology of dark sectors in which the density of

dark states grows exponentially with mass. Ensembles of such states arise naturally as

the “hadronic” resonances associated with the confining phase of a strongly-coupled

dark sector; they also arise naturally as the gauge-neutral bulk states of Type I

string theories. We study the dynamical properties of such ensembles, including their

e↵ective equations of state, and investigate some of the immediate model-independent

observational (astrophysical and cosmological) constraints on such ensembles that

follow. Remarkably, we find that these constraints allow such sectors to exhibit

energy scales ranging from the GeV scale all the way to the Planck scale, but that

the total present-day cosmological abundance of the dark sector must be spread across

an increasing number of di↵erent states in the ensemble as these energy scales are

dialed from the Planck scale down to the GeV scale. In the second part of this

dissertation, by contrast, we examine the possibility of non-trivial dynamics within

non-minimal dark sectors, focusing on processes in which heavier constituents within

a non-minimal dark sector decay to lighter constituents. We begin by demonstrating

that such decays can leave non-trivial imprints on the phase-space distribution of the

resulting dark matter. Indeed, as a result of these e↵ects, this phase-space distribution

need not be thermal — it can even be multi-modal, with a non-trivial pattern of peaks

and troughs as a function of momentum. We then proceed to study how these features

can induce non-trivial changes in the shape of the resulting matter power spectrum.

The results of this project therefore provide an interesting way of learning about (and
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potentially even constraining) non-trivial dynamics in the early universe.
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Chapter 1

Introduction

Particle physics, the study of the fundamental building blocks of the nature, has been

a tremendous success in the past 100 years or so. The Standard Model (SM), whose

last missing piece has been found by the discovery of the Higgs boson in 2012 [1, 2], is

the “Rosetta Stone” of particle physics that elegantly summarizes our current under-

standing of all the fundamental interactions besides gravity and provides us a solid

understanding of our world. However, there are still lots of unsolved fundamental

problems. Some of them refer to finding a complete and consistent unification of

all the theories, for example, the quest for a successful marriage between quantum

mechanics and general relativity – quantum gravity. Some are related to the natural-

ness of the existing theories. For example, the hierarchy problem [3] questions why

the quantum correction to the Higgs mass is quadratically sensitive to the ultraviolet

cuto↵ while the Higgs mass is so small. Similarly, the strong CP problem concerns

why the amount of CP violation in strong interactions is unexpectedly small as the

experimental bound on the neutron electric dipole moment suggests the ✓ angle in the

Lagrangian of the Quantum Chromodynamics (QCD), which controls the strength of

the CP violation via strong interactions, is tiny, if not vanishing[4]. Others involve

the unexplained experimental or observational evidence, e.g. the origin of the non-

vanishing neutrino masses [5, 6], the nature of dark matter which provides gravity to

form the structure we see today but does not seem to interact with light , and the

nature of dark energy which drives the accelerated expansion of the universe in the

current epoch [7, 8]. While many of these problems require new physics at micro-

scopic scales, the limit of humans’ ability in constructing ground-based high-energy

experiments severely constrains the search for physics beyond the Standard Model

(BSM). Nevertheless, the universe, in which physics manifests itself at macroscopic

scales, actually provides a rich playground for fundamental particle physics. Indeed,
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the universe as we observe today is the result of the cosmological evolution from very

early stage, and is in fact sensitive to the high-energy physical processes that have

occurred in the early universe. Therefore, studying particle physics in the cosmologi-

cal context allows us to decipher an enormous amount of information that is encoded

in the history of the universe.

Indeed, various aspects of particle physics can be addressed in cosmology. For

example, many cosmological parameters, such as the redshift of matter-radiation

equality (MRE) and the present-day dark-matter energy density are sensitive to the

sum of the neutrino masses, and therefore cosmological observations can be used to

constrain the physics of neutrinos. In fact, the strongest constraint on the sum of

the neutrino masses comes from cosmology [5]. Another example is the QCD axion

[9–12], which is a field that dynamically drives the ✓ angle to zero and thus solves the

strong CP problem. The QCD axion can be a natural candidate for dark matter, and

thus can be constrained by the observed dark-matter relic abundance, as well as other

cosmological and astrophysical observations, which, in turn, put stringent constraints

on its parameter space as well as production mechanism. Likewise, many BSM the-

ories which predicts one or more dark-matter candidate(s) receive constraints from

dark-matter relic density, direct and indirect detections, or even structure formation.

Among a plethora of interesting topics that relate high-energy physics and cos-

mology, the focus of this dissertation is on dark matter. The existence of dark matter

is strongly supported by astronomical observations, and it is widely believed that

dark matter has a particle nature. Therefore, dark matter is one of the strongest ev-

idence for new physics beyond the Standard Model. So far, there exist many models

for dark-matter physics, and most of the traditional scenarios feature a single dark-

matter candidate, e.g. a weakly interacting massive particle (WIMP). However, since

the traditional paradigm is more and more disfavored by the null result from the direct

and indirect experiments, we focus in this dissertation on non-traditional dark-matter

scenarios. In particular, we are interested in scenarios involving non-minimal dark

sectors, such as those that follow the framework of dynamical-dark-matter (DDM),

in which the property of dark matter is not completely determined by any individual
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particle alone.

The structure of the rest of the dissertation is as follows. In Chap. 2, we begin with

a brief review on cosmology to establish a basic picture of the cosmic history, and the

use thermodynamics in the universe. A general review on dark-matter physics is given

in Chap. 3, where we discuss the evidence that supports the existence of dark matter

and show some examples of dark-matter production mechanism. In Chap. 4, we

present the first scenario, in which we construct DDM models from strongly-coupled

dark sectors using the oscillator states in string theory or dark hadronic resonances

in the confining phase of strongly-coupled gauge theories. We establish preliminary

observational constraints, and show that a model like this is not only viable, but

can also arise naturally to satisfy the DDM scaling relations. In chap. 5, we present

another non-minimal scenario, in which the decays within the dark sector are able to

produce non-trivial phase-space distribution for the lightest state in the dark sector.

We show that the non-trivial phase-space distribution eventually leaves its imprints

on the matter power spectrum at late time and provide a qualitative map between the

features in the phase-space distribution and the matter power spectrum. In Chap. 6,

we summarize the entire dissertation and discuss the outlook for future researches.

Note that, the work in Chap. 4 is already published in Refs. [13, 14], and the work

in Chap. 5 is going to appear in Ref. [15].
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Chapter 2

Cosmology Basics

In this chapter, we present a review on cosmology to introduce the background pre-

liminaries and set up the stage for the later review on dark matter physics. We shall

discuss some of the observational facts and the motivations for studying physics at

the early epochs. Since it is a necessary tool, the application of thermodynamics in

cosmology is also reviewed in detail.

2.1 The Universe as We Observe Today

In classical cosmology, the equation that governs the evolution of all the energy con-

tent in the universe is the Einstein’s equation:

Rµ⌫ �
1

2
Rgµ⌫ = 8⇡GTµ⌫ , (2.1)

where Rµ⌫ and R ⌘ g
µ⌫

Rµ⌫ is the Ricci tensor and Ricci scalar, respectively, and

Tµ⌫ is the stress-energy tensor. From astronomical observations, we know that our

universe today is homogeneous and isotropic on cosmological scales to a very good

approximation [5]. The solution to the Einstein equation based on homogeneity and

isotropy is the Friedmann-Robertson-Walker (FRW) metric:

ds
2 = � dt

2 + a
2(t)


dr

2

1 � Kr2
+ r

2(d✓
2 + sin2

✓ d�
2)

�
, (2.2)

in which a(t) is the scale factor that determines the physical distance between any

two spatial coordinates i.e. xphys = a(t)x, K is the spatial curvature constant which

usually takes discrete values1
K = + 1, 0, �1 that corresponds to a closed, flat or

open universe.

1One can always rescale the radial coordinate r and the scale factor a to make K take these
discrete values.
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The curvature constant K is determined by the total energy density of the uni-

verse. To see this, let us assume that the stress-energy tensor takes the form of a

perfect fluid with a time-dependent pressure and energy density P (t) and ⇢(t):

T
⌫

µ
=

0

BBBBBB@

�⇢ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

1

CCCCCCA
. (2.3)

Using this and the Einstein’s equation, we can obtain two independent equations —

the Friedmann equation

H
2 =

8⇡G

3
⇢ �

K

a2
, (2.4)

where H(t) ⌘ (ȧ/a) is the Hubble parameter, and the Raychaudhuri equation

ä

a
= �

4⇡G

3
(⇢ + 3P ) . (2.5)

The continuity equation can be obtained from the two equations above:

⇢̇ + 3H(⇢ + P ) = 0 . (2.6)

The continuity equation can also be recast in a form that shows the conservation of

energy d(a3
⇢) = � Pd(a3) in a comoving volume a

3. In fact, it can also be obtained

from the conservation of energy momentum rµT
µ

⌫
= 0 .

If we define the critical energy density

⇢crit ⌘
3H2

8⇡G
, (2.7)

and the total abundance

⌦(t) ⌘ ⇢(t)/⇢crit(t) , (2.8)
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using Eq. (2.4), the curvature constant can be conveniently written as

K

a2
= H

2 (⌦ � 1) . (2.9)

Therefore, the spatial geometry depends on whether or not the total energy density

⇢ is larger or smaller than, or equal to the critical energy density. If ⌦ > 1, the

universe is closed, while if ⌦ < 1 the universe is open, and the universe is flat if

⌦ = 1. Current observations show that our universe is flat to a very good precision

with ⌦ = 1.0002 ± 0.0026 [6]. Therefore, for simplicity, we shall assume throughout

this dissertation that our universe is precisely flat, i.e. K = 0.

Besides the spatial curvature, the evolution of the universe is also determined

by the energy content in the universe. In a spatially flat expanding universe, if the

energy density ⇢ scales as a
�� with � � 0, Eq. (2.4) gives ȧ ⇠ a

1��/2. Solving this

equation, one finds

a ⇠

8
><

>:

t
2/�

, if � > 0 ;

e
Ht

, if � = 0 .

(2.10)

Therefore, the universe expands as a power law if � > 0, and it expands exponentially

if � = 0. The way the energy density scales depends on the equation of state

parameter

w ⌘
P

⇢
. (2.11)

Inserting this into Eq. (2.6), one finds ⇢ ⇠ a
�3(1+w), i.e. � = 3(1 + w). The

usual energy contents that we consider are dust, or in other words, matter (w = 0),

radiation (w = 1/3) and vacuum energy (w = � 1). It is obvious that a universe

dominated by matter or radiation undergoes power-law expansion with a ⇠ t
2/3 or

a ⇠ t
1/2, respectively. And if vacuum energy dominates, the universe would expand

exponentially with a ⇠ e
Ht. Interested readers can also check the case where � < 0

(or w < � 1), in which the universe is filled with the so-called phantom energy for

which the energy density increases as the universe expands. Phantom energy gives

rise to an expansion rate even faster than the exponential expansion. In fact, the
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scale factor a would diverge in finite time if phantom energy dominates, leading to

the “Big Rip”, in which even the subatomic particles would be torn apart. Although

interesting, phantom energy is beyond the scope of this dissertation, and therefore,

we shall ignore it from now on. Note that, the Friedmann equation also admits

contracting solutions. However, observations show that distant galaxies are receding

from the Earth in a way that follows the Hubble’s law

v = H0D , (2.12)

in which D is the physical distance between the Earth and a distant galaxy,

v = dD/dt is the receding velocity, and H0 > 0 is the present-day Hubble

parameter. This means that our universe is expanding, and therefore we shall not

consider the contracting solutions. In addition to that, we also know that our universe

is experiencing accelerated expansion, i.e. ä > 0. From Eq. (2.5), we see that, to

have accelerated expansion, one needs w < �1/3 — our universe is dominated by

the type of energy content that produces negative pressure.

For concreteness, recent measurements [6] show that the universe today can be well

described by the so-called ⇤CDM model that basically consists of four types of energy:

1) dark energy, which can be either vacuum energy or simply a cosmological constant

⇤ in Einstein’s equation; 2) dark matter, which includes both cold dark matter (CDM)

and non-relativistic neutrinos; 3) baryons, which include all the nuclei and electrons;

4) radiation, which consists of photons and relativistic neutrinos. The corresponding

measurements on the present-day cosmological abundances, ⌦i ⌘ ⇢i/
P

j
⇢j , that

are pertinent to the types of energy listed above are [6]

⌦⇤ = 0.692 ± 0.012 , ⌦CDM = 0.258 ± 0.011 , ⌦b = 0.0484 ± 0.0010 ,

⌦� = (5.38 ± 0.15) ⇥ 10�5
, 0.005 > ⌦⌫ � 0.0012 . (2.13)

Note that, instead of the total abundance of radiation, only the photon abundance

is known to us. The neutrinos are pretty much completely non-relativistic today.
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Though it is possible that the lightest flavor of neutrinos remains relativistic, its

contribution to the total neutrino abundance would be negligible in this case. Sur-

prisingly, our knowledge about the Standard Model only covers roughly 5% of the

energy content (baryons, photons and neutrinos) in the universe while the other 95%

is in forms of dark matter and dark energy which we know little of. Current ob-

servations find that the equation of state parameter for the dominant species, dark

energy, is wDE = � 1.01 ± 0.04 [16]. This is consistent with the simplest candidate,

the cosmological constant ⇤, which corresponds exactly to w⇤ = � 1. Without

further specification, we shall assume implicitly that dark energy is just the cosmo-

logical constant. For the present-day Hubble parameter, there is a recent tension be-

tween di↵erent measurements. Data from the Cosmic Microwave Background (CMB)

measurements give H0 = 67.8 ± 0.9 km s�1 Mpc�1 [5], whereas Type Ia Supernovae

measurements suggest H0 = 73.24 ± 1.74 km s�1 Mpc�1 [17]. Nevertheless, a dis-

cussion on potential causes of this tension is beyond the scope of this dissertation,

and we shall take the value suggested by CMB measurements whenever needed.

2.2 The Cosmic Timeline

As the universe expands, di↵erent types of energy scale di↵erently. Using the equation

of state, Eq. (2.11), we see that energy density of matter scales as ⇢m ⇠ a
�3, the

radiation energy density scales as ⇢r ⇠ a
�4, and vacuum energy has an energy

density which is constant in time ⇢⇤ ⇠ const. The physical interpretation of these

scaling behavior is straightforward. For matter, most of its energy is in its mass,

therefore ⇢m ⇡ nm, where n is the particle number density and m is the mass of the

corresponding particle. As the universe expands, the number density in a physical

volume dilutes like a
�3, while the mass of the particle stays constant, which gives

⇢m ⇠ a
�3. For radiation, the number density scales in the same way as matter

does, however, the energy of each particle is mostly in its momentum p, and the

momentum redshifts as the universe expands. One easy trick is to use p ⇠ 1/�,

where � is the particle’s de Broglie wavelength. Since the de Broglie wavelength is a

physical length, it is proportional to the scale factor, which gives p ⇠ a
�1. Bringing
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all the things together, it is easy to see that radiation dilutes faster than matter, with

⇢r ⇠ a
�4. At last, for vacuum energy, the total vacuum energy inside a physical

volume is proportional to the physical size of the volume, therefore the vacuum energy

density stays a constant as the universe expands.

Clearly, the energy contents that dilutes faster as the universe expand will become

less and less abundant in the future. However, if we evolve back in time, the energy

contents that are not taking a significant share of the total abundance at the present

epoch might play an important role or even dominate the universe in earlier epochs.

For example, our universe is dominated by dark energy today, whereas matter is

subdominant. However, in general, the ratio between the energy densities of matter

(including both dark matter and baryons) and dark energy is

⇢m(t)

⇢⇤(t)
=

⇢m(tnow)

⇢⇤(tnow)

a(tnow)3

a(t)3
. (2.14)

Using ⌦m ⇡ 0.3, ⌦⇤ ⇡ 0.7 and the convention a(tnow) = 1, we can roughly

estimate that, at a ⇡ 0.75, the energy densities of dark energy and matter are

equal. That is, the universe only recently stepped into the dark-energy dominated

phase, before that, it was dominated by matter. Similarly, using ⇢m/⇢r ⇠ a, one

can also estimate the value of the scale factor a when the energy density of radiation

is equal to that of matter. This moment is usually referred to as matter-radiation

equality (MRE), prior to which the universe was dominated by radiation. However,

caution must be taken in the calculation since neutrinos which are non-relativistic

today were relativistic and contribute to the radiation energy density at MRE. In

fact, we know that ⇢r ⇡ 1.68⇢� between neutrino decoupling and its transition from

being relativistic to being non-relativistic. Putting things together, we have

1 =
⇢m(tMRE)

⇢r(tMRE)
⇡

⇢m(tnow)

⇢�(tnow)

aeq

1.68
, (2.15)

where aeq ⌘ a(tMRE). A rough estimate with ⌦� ⇡ 5 ⇥ 10�5 and ⌦m ⇡ 0.3, gives

a(tMRE) ⇡ 2.8 ⇥ 10�4
⇠ 1/3500.

When discussing the history of the universe, it is usually more convenient to
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use the photon temperature T instead of the cosmological time t as the ticks on

the timeline, since T ⇠ a
�1. The CMB temperature today is measured to be

T = 2.7255 K ⇡ 0.234 meV [5]. Before our universe is dominated by dark energy,

there was a matter-dominated (MD) epoch which extends itself back to T ⇠ eV.

The formation of galaxies and large scale structure all occurred in the MD epoch

because the primordial density fluctuations were able to be amplified by gravity and

start to grow in the MD epoch. Neutral atoms were also formed in the MD epoch,

since when the temperature dropped below the eV scale, photons in the universe

were no longer energetic enough to ionize the neutral atoms. By the time neutral

atoms formed, photons decoupled from the rest of the cosmic plasma and became the

CMB we observe today. Before the MD epoch, there was the radiation-dominated

(RD) epoch. In the standard Big Bang picture, high-energy physical processes such

as the Electro-Weak phase-transition (T ⇠ O(100) GeV), the QCD phase-transition

(T ⇠ O(200) MeV), and the Big Bang nucleosynthesis (BBN, T ⇠ MeV) are all

assumed to take place within the RD epoch. However, it is usually not emphasized

that current observations only provide direct probe of the cosmic history up to the

BBN epoch. In some non-standard scenarios, it is even possible to insert an additional

early matter-dominated (EMD) epoch into the RD epoch before BBN [18–21]. In fact,

any cosmological model that successfully reproduces all the physics since the BBN

epoch is consistent with current observations.

Prior to the RD epoch, it is usually believed that there exists an epoch at an

energy scale of O(1013) GeV in which the universe is completely dominated by vacuum

energy and undergoes rapid exponential expansion. This epoch is called the cosmic

inflation. Inflation is strongly motivated by the observed uniformity of CMB. On one

hand, other than the observed almost perfect blackbody radiation with the 2.7255 K

average temperature, the observed temperature fluctuations in CMB which is related

to the density fluctuations in the early universe is as small as 1 part in 104. On the

other hand, the CMB photons that we see are coming from ⇠ 104 patches of space

that were not causally connected at the time of recombination. It is a mystery that

these regions which appear to have never talked to each other produce photons with
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almost the same temperature. This is often referred to as the horizon problem. To

solve this problem, the inflation mechanism is invoked so that those regions, that

were not causally connected at the time of recombination, had been in causal contact

at earlier times and therefore were able to smooth out quantum fluctuations before

inflation sent them apart. After the end of inflation, the inflaton, which is the field

that drives inflation, decays into particles which eventually thermalize and become the

radiation bath of the universe. This epoch is usually referred to as the reheating phase.

The primordial quantum fluctuations of the inflaton field thus become the density

fluctuations in radiation, which eventually become the tiny temperature fluctuations

in the CMB. Despite solving the horizon problem, inflation can also solve problems

such as the flatness problem and magnetic-monopole problem, etc [22]. The observed

almost scale-invariant primordial scalar power spectrum is a strong support for the

existence of such an inflationary epoch.

One can further explore the history of the universe beyond the inflationary epoch.

Naively, as the universe gets more and more dense, when evolving back in time, we

will eventually hit the big-bang singularity at which the density diverges and the

space-time ceases to exist. The big-bang singularity is usually thought as a sign that

general relativity fails to describe the physics at such a high scale. The most common

solution to the big-bang singularity problem is that, as we approach the Planck scale,

quantum e↵ects become important, and instead of using general relativity, one has to

resort to quantum gravity. However, despite the pure theoretical e↵orts such as string

theory [23–26] and loop quantum gravity [27–29], there is no observational evidence

for any theory of quantum gravity.

To conclude this section, we sketch in Fig. 2.1 the timeline of the standard cosmic

history and show the way the abundances of di↵erent species evolve.2 Since we do not

have a testable theory of quantum gravity yet, we start our storyline at the epoch of

the cosmic inflation. After the end of the inflation, the inflaton starts to oscillate in

the vacuum before it decays. The decay of the inflaton produces high-energy radiation

which then thermalizes and reheats the universe, so the universe heads into the RD

2Of course, the “standard” picture can also vary between di↵erent physicists.
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Figure 2.1: The cosmic timeline in the standard cosmology. The horizontal axis shows the
temperature of the SM thermal bath after reheating, for which we assume that there is no
additional degree of freedom beyond what exist already in the Standard Model. Before the
end of reheating, the axis only suggests the energy scales. The red, green and blue curves
represent the cosmological abundances of radiation, matter and dark energy, respectively.
The purple, blue, yellow, orange and red shaded regions correspond to the epochs of infla-
tion, reheating, radiation domination, matter domination and the dark-energy domination.
Some of the important moments are labeled by the vertical lines. Events like BBN and
recombination are shaded since they last for a small range of temperature. Since we do
not yet know how dark matter is produced in the early universe, the wide horizontal region
that is shaded darker suggests that dark matter can be produced at any scale in this region.
The vertical regions that are shaded darker correspond to the time intervals in which the
BBN and the recombination occur, since such events last for a non-negligible amount of
time. Finally, the hatching and the question marks suggest that we do not have direct
probes of such epochs, therefore, the existence of such epochs is hypothetical. Alternative
cosmologies could modify this part of cosmic history as long as they successfully reproduce
the rest of the history.

epoch. Since the energy scale of the RD epoch can be very high, it is an ideal test

ground for many BSM models. For example, the dark-matter production is assumed

to take place within the RD epoch. Depending on the scenarios in consideration,

the dark-matter particles can be produced right after the decay of the inflation, or

down to a few keV. This is indicated by the horizontal shaded region. As the

temperature of the radiation drops, the SM physics eventually comes into play, and

physical processes such as the electroweak phase transition, the QCD phase transition,

the decoupling of neutrinos from the rest of cosmic plasma and the production of

primordial light elements occur subsequently. Since radiation dilutes faster than

matter, as the temperature drops further, the energy density of the universe starts

to be dominated by matter. In the MD epoch, neutral atoms start to form, and
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photons free-stream and become the CMB we observe today. The primordial density

perturbations also start to grow within the MD epoch and form galaxies, clusters and

the large-scale structure. Since both the matter and the radiation energy densities

decrease as the universe expands, the dark energy whose energy density stays constant

eventually dominates the universe and drives the accelerated expansion of the universe

today. If the dark energy is indeed described by the cosmological constant, the

universe would eventually be completely dominated by the dark energy and expand

forever.

Once again, we emphasize that this storyline corresponds to the standard cosmic

history, and therefore the existence of the epochs before the BBN is only hypothetical

(the hatched regions). In general, a non-standard cosmic history can significantly alter

the phenomenological predictions of many BSM models.

2.3 Thermodynamics in Cosmology

The previous subsections briefly reviewed some of the current observations on our

universe and provide us with a rough sense of the basic facts as well as the evolution

picture. To study the evolution of the universe in more detail, especially at early

epochs when the universe was hot and dense, and was filled with a large number of

di↵erent species, tools from thermodynamics and statistical mechanics are necessary.

Let us start with the phase-space distribution. When we study a particular particle

species in the universe, we usually care about its number density, energy density

as well as the pressure it produces. The information about these quantities is all

contained in the distribution function f(p, t) which gives the number of such particles

occupying a phase-space volume element, f(p, t) d
3
xd

3
p. Through the phase-space

distribution, the number density n, energy density ⇢ and pressure P can be defined
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as follows:

n(t) ⌘ g

Z
d

3
p

(2⇡)3
f(p, t) , (2.16)

⇢(t) ⌘ g

Z
d

3
p

(2⇡)3
Ef(p, t) , (2.17)

P (t) ⌘ g

Z
d

3
p

(2⇡)3

p
2

3E
f(p, t) , (2.18)

where E =
p

p2 + m2, and g is the number of internal degrees of freedom, such

as spin and color, of the particle in consideration. Note that, the pressure defined

in such a way is appropriate for particles. The integrand p
2
/(3E)f(p, t) properly

counts the flow of momentum carried by particles through an infinitesimal surface.3

Therefore, it is not only true for collisional particles, but also valid for collisionless

particles. Straightforwardly, the equation of state parameter takes the same old form

w(t) ⌘ P (t)/⇢(t).

In the early universe, the whole universe was in a hot dense state, and lots of

species in the primordial particle soup were in equilibrium. There are three di↵erent

types of equilibrium — kinetic, chemical and thermal equilibrium, which refer to

di↵erent conditions, respectively. For kinetic equilibrium, particles can quickly scatter

and exchange energy momentum with the others. The phase-space distribution of any

species in kinetic equilibrium (with other species or even with itself) takes the form

of the Bose-Einstein or the Fermi-Dirac distribution:

f(p, t) =
1

exp[(E � µ)/T ] ± 1
, (2.19)

where T is the temperature, µ is the chemical potential, and “�/+” are for bosons

and fermions respectively. Chemical equilibrium refers to a steady state of reactions.

For a general process a + b + . . . $ i + j + . . . , the rates of the reaction in both

directions are the same if the species involved are in chemical equilibrium. This

3Interestingly, the factor of 3 in the denominator comes from the number of spatial dimensions.
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imposes a useful condition:4

µa + µb + . . . = µi + µj + . . . . (2.20)

For example, for a process a + b $ � + �, since we know that the photon chemical

potential µ� = 0, chemical equilibrium implies µa + µb = 2µ� = 0. Thermal

equilibrium is a much stronger condition. It implies both kinetic and chemical equi-

librium between and adds to them the condition that all the species share the same

temperature T .

Since as the universe expands, particles redshift, we expect the temperature of

the cosmic thermal bath to cool down as time goes. For the temperature of an entire

radiation bath in equilibrium, its actual evolution is complicated by the change of

degrees of freedom which we will discuss later. Here, let us look at what would

happen if a species had been in thermal contact with the thermal bath, but has

decoupled from the rest of the thermal bath at a certain point. Let us first choose a

phase-space volume element �x
3�p

3. As we have mentioned in Sec. 2.2, the physical

coordinates x ⇠ a, while momentum p ⇠ 1/a in an FRW universe, for which we

can formally write

x(t) =
a(t)

ai

xi , (2.21)

p(t) =
ai

a(t)
pi . (2.22)

Here the subscript “i” stands for values at an arbitrary initial time ti. Obviously the

size of the phase-space volume element �x(t)3�p(t)3 stays unchanged. The number

of particles reside in this volume5, f(p(t), t) �x(t)3�p(t)3, should also stay constant

if the particles are in equilibrium. Therefore, we have f(p(t), t) = f(pi, ti). The

condition for kinetic equilibrium implies

E(t) � µ(t)

T (t)
=

Ei � µi

Ti

. (2.23)

4It is usually not mentioned that a and b, or i and j can be the same species.
5We are sloppy here in neglecting factors like 1/(2⇡)3
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In the relativistic limit we can replace E with p. To keep the p/T part constant, we

can define the e↵ective temperature T (t) = (ai/a(t))Ti. With this definition, the

evolution of the chemical potential is forced to be

µ(t) =
T (t)

Ti

µi . (2.24)

This definition is reasonable as we see the zero chemical potential for photon stays

zero. For the non-relativistic limit, E ' m + p
2
/(2m), and thus we can similarly

define T (t) = (ai/a(t))2
Ti. Eq. (2.23) therefore implies

µ(t) = m � (m � µi)
T (t)

Ti

. (2.25)

To see why this is reasonable, one can check that in the limit m�µ � T , Eq. (2.19)

becomes the Maxwell-Boltzmann distribution

f(p, t) = exp

✓
�

m � µ(t)

T (t)

◆
exp

✓
�

p
2

2mT (t)

◆
, (2.26)

which is as expected. Therefore, we conclude here that the temperature of a decoupled

species scales as a
�1 if the species is relativistic, while it scales as a

�2 if the species

is non-relativistic.

Let us use the distributions in Eq. (2.19) to perform the integrals in Eqs. (5.1)–

(5.4). We are interested in several limiting cases. For relativistic species (T � m),

if T � µ,

n '

8
<

:
(⇣(3)/⇡2) gT

3 for boson

(3/4) (⇣(3)/⇡2) gT
3 for fermion

, (2.27)

⇢ '

8
<

:
(⇡2

/30) gT
4 for boson

(7/8) (⇡2
/30) gT

4 for fermion
, (2.28)

P ' ⇢/3 , (2.29)

where ⇣(3) = 1.202 . . . is the Riemann zeta function of 3. For non-relativistic species
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(T ⌧ m),

n ' g

✓
mT

2⇡

◆3/2

exp[�(m � µ)/T ] , (2.30)

⇢ ' nm +
3

2
nT , (2.31)

P ' nT . (2.32)

We see that in this limit, the energy density is mostly from particles’ rest mass,

and pressure is negligible. The above equations confirm what we mentioned in the

previous chapter that ultra-relativistic species has w ⇡ 1/3 and ⇢ / a
�4, while

non-relativistic species has w ⇡ 0 and ⇢ / a
�3.

For the purpose of studying dark matter in the early universe, we are interested

in the RD epoch in which the total energy density ⇢ ⇠ ⇢r. Using Eq. (2.28), we can

sum all the energy density from radiation

⇢r =
X

i

⇢r,i

=
⇡

2

30
T

4
⇥

 
bosonsX

i

gi

✓
Ti

T

◆4

+
7

8

fermionsX

i

gi

✓
Ti

T

◆4
!

=
⇡

2

30
g⇤(T )T 4

, (2.33)

in which Ti is the temperature of each individual species, T is a reference temperature

which is usually chosen to be the photon temperature, and g⇤(T ) is given by the entire

expression in the big brackets in the second line and is called the e↵ective number

of relativistic degrees of freedom. In principle, if we assume that g⇤ contains only

contributions from the standard model, given the fact that we can calculate when the

SM species are in thermal equilibrium and when they decouple, g⇤ is countable. A fit

for g⇤ is shown in Fig. 2.2.

Using the Friedmann equation 3M2

P
H

2 = ⇢ ' ⇢r, where MP = 1/
p

8⇡G is the
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Figure 2.2: E↵ective number of relativistic degrees of freedom for energy density
g⇤(T ), and for entropy density g⇤S(T ) using the analytical fit from Ref. [30]. The bot-
tom axis shows temperature while the upper axis marks the cosmological time t at
T = 1 keV, 1 MeV, 1 GeV, 1 TeV using the time-temperature relation Eq. (2.35).

reduced Planck mass, we have

H '
⇡

p
90

g
1/2

⇤ T
2

MP

. (2.34)

Since a ⇠ t
1/2 and thus H ' 1/(2t), we obtain the useful time-temperature relation:

t '

p
90

2⇡

MP

g
1/2

⇤ T 2

' 4.85 g
�1/2

⇤

✓
MeV

T

◆2

s . (2.35)

To have a better understanding of this relation, we mark out the values of t for

several typical temperature scales T = 1 keV, 1 MeV, 1 GeV and 1 TeV in the

upper axis of Fig. 2.2, assuming all the relativistic degrees of freedom comes from the

Standard Model.

As promised in previous paragraphs, we now discuss the evolution of temperature

for the species in equilibrium. We begin with the second law of thermal dynamics in
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the expanding universe:

TdS = d(⇢V ) + PdV �

X

i

µid(niV ) , (2.36)

in which V = a
3 is the physical size of a unit comoving volume, ⇢ and p are the total

energy density and pressure of the universe, and we have explicitly written down the

contribution of chemical potential from all the species. If the entire universe is in

thermal equilibrium or consists of decoupled sectors that each has its own thermal

equilibrium, chemical equilibrium implies that the last term vanishes. The reason

is simple. For a single decoupled species which equilibrates with itself, if all the

reactions among its own particles conserve particle number, d(niV ) = 0; while if

particle-number non-conserving processes exist, µi = 0. For species in thermal

equilibrium, for example, through a process a + b + . . . $ i + j + . . . , the moment

each species a, b, . . . on the left side of the reaction increase by a small amount dn, the

species i, j, . . . on the other side of the reaction equation would decrease by the same

amount dn, making the sum
P

i
µid(niV ) = 0. In the following, we shall therefore

ignore the last term in Eq. (2.36). Writing the factors of a explicitly, we have

TdS = d(⇢a
3) + pd(a3)

= a
3

✓
d⇢

dt
+ 3

(⇢ + P )

a

da

dt

◆
dt . (2.37)

From Eq. (2.6), the conservation of energy in an expanding universe, we see the terms

in the big brackets add up to zero. Therefore,

dS

dt
= 0 . (2.38)

We thus arrive at the important conclusion: the entropy is conserved if the entire

universe is in thermal equilibrium or if it is made up from decoupled sectors that is

in their own thermal equilibrium.
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It is often useful to define the entropy density

s ⌘
S

a3
. (2.39)

Entropy conservation thus implies that s ⇠ a
�3. To be able to actually calculate

the entropy density, we first rewrite Eq. (2.36) as

dS =
⇢ + P

T
dV + V

d⇢

T

= d

✓
⇢ + P

T
V

◆
�

dP

T
+

⇢ + P

T 2
dT . (2.40)

The next step is to find out the relation between dP and dT , and hope that the

relevant terms cancel. Since the energy density is only a function of T in thermal

equilibrium, we have

✓
@S

@V

◆

T

=
⇢ + P

T
,

✓
@S

@T

◆

V

=
V

T

d⇢

dT
. (2.41)

Using the integrability condition

@
2
S

@T@V
=

@
2
S

@V @T
, (2.42)

we find

dP = �
⇢ + P

T
dT , (2.43)

which gives

dS = d

✓
⇢ + P

T
V

◆
. (2.44)

With the definition in Eq. (2.39), we eventually arrive at

s =
⇢ + P

T
, (2.45)

in which we have ignored the integration constant. From Eqs. (2.27)-(2.32), we have

seen that the energy density of any species in equilibrium is exponentially small if the
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species is non-relativistic. Therefore, most of the contribution to the total entropy

comes from relativistic species. Using Eq. (2.28) and Eq. (2.29), we find, to a very

good approximation,

s =
2⇡2

45
g⇤ST

3
, (2.46)

in which the e↵ective number of degrees of freedom for entropy is defined as

g⇤S ⌘

bosonsX

i

gi

✓
Ti

T

◆3

+
7

8

fermionsX

i

gi

✓
Ti

T

◆3

. (2.47)

Like g⇤, g⇤S is also countable. A fit for g⇤S is also shown in Fig. 2.2.

With entropy conservation sa
3 = const., we see the temperature of the entire

thermal bath goes as T ⇠ g
�1/3

⇤S
a

�1. When g⇤S stays constant, T drops regularly

as a
�1. When g⇤S drops as certain species become non-relativistic, the entropy of

that species is transfered to the thermal bath in contact with it, therefore making the

temperature T decrease slower than a
�1.

Besides the evolution of temperature, entropy conservation is often used in calcu-

lating the comoving number density. A frequently used quantity is called the yield :

Y ⌘
n

s
. (2.48)

The yield is also sometimes referred to as the comoving number density since it is

proportional to the normal comoving number density na
3 when entropy is conserved.

Since the entropy can be directly calculated from temperature, it is very convenient

to relate the yield in the early universe to its observed value in the late-time universe.

A famous example is the calculation of dark-matter relic abundance in the thermal

freeze-out scenario. A successful freeze-out which produces the correct dark-matter

relic density must have the yield at freeze-out equal to the yield today

Yfo = Ynow . (2.49)

Since, Ynow can be inferred from the observed entropy density and dark-matter energy
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density, the condition above immediately put constraints on the associated dark-

matter model. We shall discuss the thermal freeze-out mechanism in more detail in

Chap. 3.
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Chapter 3

Dark Matter Basics

In this chapter, we shall review the basic observational evidence that supports the

existence of dark matter. We shall see that the existence of a matter content on

astrophysical and cosmological scales that has negligible interactions with light is

perhaps one of the strongest evidence for physics beyond the Standard Model. Since

dark matter might have been produced in the early universe, we shall discuss its

production mechanism and see how processes in the early universe and the obser-

vations in the present-day universe are related. In particular, we shall present two

typical scenarios, thermal freeze-out and misalignment production, which represent

two major classes of dark-matter production mechanisms — thermal production and

non-thermal production, respectively.

3.1 Observational Evidence

3.1.1 Why We Need Dark Matter

The observational evidence that supports the existence of dark matter comes from

many di↵erent sides, such as the measurements of mass-to-light ratios, galactic ro-

tation curves, bullet cluster, CMB and large scale structure. All of these pieces of

evidence can essentially be explained by the existence of a matter component that

interacts gravitationally but has a negligible electromagnetic interaction.

The earliest suggestion comes from the measurement of the radial velocity of

galaxies in the Coma cluster by Zwicky in 1930s [31, 32]. Since the total mass can

be estimated using the virial theorem, while visible mass can be inferred from the

amount of light emitted, it was shown that the mass-to-light ratio is unexpectedly

high, indicating that the system would not be gravitationally bound if all the mass

in the system is visible.
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The most commonly mentioned observational evidence for the presence of dark

matter is perhaps from the measurements of galactic rotation curves, pioneered

by Rubin in 1970s [33]. For simplicity, let us assume that a galaxy has a spher-

ically symmetric density profile ⇢(r). Then the total mass within a radius r is

M(r) =
R

r

0
dr 4⇡r

2
⇢(r). Using Newtonian mechanics, an object rotating around

the center of the galaxy at a radial distance r should have a velocity that satisfies

v(r)2

r
=

GM(r)

r2
. (3.1)

Now let us assume that the visible part of the galaxy has a radius R. If the visible

part contains most of the mass of the galaxy, beyond the radius R, ⇢(r) ⇡ 0, and the

total mass M(r) ⇠ const. Therefore, when looking at a galaxy, it is expected that the

rotational velocity v(r) ⇠ r
�1/2 beyond the visible part. However, in astronomical

observations, instead of seeing power-law falling tails, the observed rotation curves

generally flatten out well beyond the visible galactic disks. This means, the objects

in the outer region of a galaxy are moving as fast as those in the inner region. Since

the mass of the visible part of a galaxy can be well measured, it is found that those

objects would have already escaped if the total mass of the galaxy is mostly from the

visible mass. Therefore, additional invisible mass has to exist to make the system

gravitationally bound. One useful exercise is to find a density distribution that give

rise to a flat rotation curve at large radius. From Eq. (3.1), we see if additional mass

with ⇢(r) ⇠ 1/r2 exists for r > R, then M(r) ⇠ r, and the rotational velocity

becomes a constant at large radius.

The galactic rotation curves seem to be an indisputable support for the existence

of dark matter. However, there exist theories that are able to fit the rotation curves

by modifying gravity rather than introducing dark matter. Those theories are called

the Modified Newtonian Dynamics (MOND) [34, 35]. The basic idea of MOND is

that Newton’s second law F = ma is not correct when the acceleration is small.
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Instead, the gravitational acceleration of a test particle due to a mass M is

a =

8
<

:
aN , for a � ac ,

p
acaN , for a ⌧ ac ,

(3.2)

where aN ⌘ GM/r
2 is the Newtonian acceleration, and the critical accel-

eration is interestingly related to the speed of light and the Hubble parameter

ac ⇠ cH0/(2⇡) ⇠ 1.2 ⇥ 10�8 cm/s2. Obviously, this is able to reproduce the

flat rotation curve at large radius since a ⇠ 1/r instead of 1/r2 when acceleration

is small. In fact, MOND fits the galactic rotation curves very well.

To find a better theory between dark matter and MOND, additional complemen-

tary observations are necessary. The observation of Bullet Cluster provides evidence

from a di↵erent perspective. The Bullet Cluster comprises two merging galaxy clus-

ters. Naively, the region where two clusters are colliding is expected to have a higher

density both in mass and in the amount of hot gas of baryons. The hot gas emits

X-ray through bremsstrahlung, therefore we can observe and infer the mass distri-

bution of the baryons in the system. Except for the mass of the hot gas, the total

mass can be obtained through gravitational lensing. Surprisingly, observations on the

Bullet Cluster show a clear separation between the regions of highest mass density

and the regions of highest baryons density. MOND cannot easily explain the o↵set

of these regions, if not entirely impossible. On the contrary, explaining it using dark-

matter interpretation is straightforward — while the baryons collide with each other,

the dark-matter part of the two clusters, which contains most of the mass, passes

through each other without much interaction. With the dark-matter assumption,

numerical simulations were able to set limits on the self-interaction cross section of

dark matter per unit mass [36]:

���/m� . 1 cm2 g�1
, (3.3)

where � stands for dark matter.

Another piece of observational evidence that supports the dark-matter hypothe-
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sis and poses di�culty for MOND is from the CMB measurements. The anisotropy

power spectrum of CMB is very sensitive to the interplay between baryons, photon,

and the gravitational potential which comes from the primordial density fluctuations.

In particular, the oscillation of the photon-baryon plasma under the presence of gravi-

tational potential gives rise to acoustic peaks in the CMB anisotropy power spectrum.

Since dark matter is a source of gravity, and unlike baryons it is not tightly coupled

with photons, its presence can significantly modify the shape of the CMB power

spectrum, especially the height and position of the acoustic peaks. By measuring

these acoustic peaks, the study of the CMB strongly supports the existence of a mat-

ter component that, at times before recombination, was already not coupled to the

photon-baryon plasma and was interacting through gravity only. Indeed, the CMB

provides probably the most precise measurement of the dark-matter abundance and

the baryon abundance, which we have listed in Eq. (2.13).

From these observational facts, we conclude here that even though the modifica-

tion of gravity is able to explain some of the observations, the overall picture from

all the current observations strongly favors that dark matter is a matter content.

Therefore we shall assume in the rest of this dissertation that dark matter is really

one type of matter instead of a manifestation of MOND.

3.1.2 What Makes Dark Matter

Now the next natural question becomes what makes a good dark-matter candidate.

Could dark matter be anything in the Standard Model of particle physics or be made

of SM particles?

To answer these questions, let us examine through a list of candidates with the

observational evidence we have. First of all, we shall exclude all the massless particles

i.e. photon and gluon. Second, the fact that dark matter is invisible suggests its

electric charge has to be neutral. Therefore, charged particles such as electron and

proton are out. Third, since we can see the observed gravitational e↵ects of dark

matter at the present epoch, it has to be overall stable on cosmological time scale.1 In

1We shall see in later chapters how this requirement can be relaxed.
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fact the lifetime of dark matter is severely constrained. If the decay products of dark

matter are SM particles except for neutrinos, they would generate visible signals, and

thus can be easily detected. Even if the decay products are dark radiation, they can

be constrained by their gravitational e↵ects. Therefore electric neutral particles like

the Higgs boson, Z and neutron, are also immediately ruled out. The only massive,

neutral and stable particle candidates in the Standard Model are neutrinos. Neutrinos

only participate in weak and gravitational interactions, and therefore can perfectly

hide themselves inside galaxies and clusters if they are non-relativistic. Indeed, at

least most of the neutrinos are non-relativistic today. However, the problem concerns

the time at which they became non-relativistic, since we know that, deep within the

RD epoch, when the temperature is above a few MeV, neutrinos were relativistic and

in equilibrium with the rest of the SM thermal bath. Because the neutrino masses

are so small, it turns out that they are still relativistic at the time when structure

formation begins, which is around the MRE. This means neutrinos are able to free-

stream over large cosmological length scales. If neutrinos were to take a major share

of dark-matter abundance, the density perturbations at scales below the neutrino

free-streaming scale would not have enough time to grow and form galaxies, clusters

and the large-scale structure that we observe today. Therefore neutrinos cannot be

suitable dark-matter candidates.

To create massive, neutral and stable objects out of the Standard Model, one might

consider macroscopic objects such as Jupiter-like planets and brown dwarfs which are

made of baryons. Those objects are usually referred to as massive compact halo objects

(MACHOs). However, observations on the CMB also suggests that dark matter is

not coupled to the photon-baryon plasma at the times important for generating its

anisotropy. Since MACHOs are only formed at later time, the baryons that made

them were indeed coupled to the plasma. Thus they cannot make a significant fraction

of dark matter today, though in principle they can contribute a small fraction to the

measurement of mass-to-light ratio, galactic rotation curves and Bullet Cluster.

The only possibility for SM particles to become dark matter is through primordial

black holes (PBHs). PHBs are generated from the primordial density perturbation
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�⇢ in the RD epoch. Their energy density scales like matter and could behave as if

they are non-baryonic at times important for the CMB. The mass range of the PBHs

is huge. PBHs formed at Planck time would have mass MPBH ⇠ 10�5 g, while

those formed at 1 s would have MPBH ⇠ 105
M�. However, the density of PBHs

are constrained by the Hawking radiation: PBHs with MPBH ⇠ 1015 g would be

evaporating at the present epoch, producing photons at ⇠ 100 MeV, and thus are

constrained by the observed �-ray background. It is shown that the energy density

of PBH at this mass scale is lower than 10�8 of the critical energy density. PBHs

with masses smaller than 1015 g would evaporate at earlier epochs. The photons

they inject in the early universe could potentially modify the predictions of the BBN

and distort the CMB anisotropy. PBHs with masses larger than 1015 g could survive

today, and be constrained by its gravitational e↵ects such as lensing and gravitational

waves. Although in principle PBHs with 1017 g . MPBH . 1024 g are still viable

as dark-matter candidate, the fact that its formation relies a lot on the primordial

density-perturbation spectrum and its mass spans such a huge range makes it highly

model-dependent and not particularly predictive. We shall therefore not consider

PBHs as the major dark-matter candidate. Interested readers are encouraged to look

at Ref. [37] for constraints on PBHs.

Based on all the previous discussions, we conclude here that dark matter has to

be primarily made of particles beyond the Standard Model. The gross features that

a BSM dark-matter candidate needs to have are listed below:

• Massive: It has a mass.

• Cold : It has to be non-relativistic before the MRE.

• Dark : Its electromagnetic interaction has to be negligible at least from BBN to

the present day.

• Stable: It has to be overall stable on cosmological timescales.
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3.2 Dark-Matter Production in the Early-Universe

The previous section lists the major pieces of evidence for the existence of dark matter

in the part of cosmic history that we are able to probe. Most of the observations,

such as the mass-to-light ratio, the galactic rotation curves and the Bullet Cluster

concerns the universe at late time — deep within the MD epoch or even later than

that. However, the study of dark matter in general covers a wide range of temperature

scales in the history of the universe. In fact, most dark-matter scenarios rely heavily

on the physics in the early universe which we refer to as deeply within the RD epoch.

In this section, we shall discuss the production of dark matter in the early universe.

The ways through which dark matter is produced have already been thoroughly stud-

ied in the literature, and lots of di↵erent mechanisms have been proposed. Though the

details of these production mechanisms and the ways they are related to the late-time

detection signals vary-among di↵erent models, in general, there are two major classes

of dark matter production mechanisms — thermal production and non-thermal pro-

duction. The former assumes that dark matter had been in thermal equilibrium in the

early universe until it decoupled when the processes that had kept it in equilibrium

became too slow. The latter allows the possibility that dark matter was never in ther-

mal equilibrium with the rest of the cosmic plasma, and in this case dark matter can

usually be generated from misalignment production or out-of-equilibrium decay, etc.

In what follows, we shall briefly introduce two typical examples for the two classes of

production mechanisms — thermal freeze-out and vacuum misalignment.

3.2.1 Thermal Freeze-out

The thermal freeze-out is one of the most popular dark-matter production mecha-

nisms. It relies on the assumption that dark matter had been in thermal equilibrium

with the rest of the thermal bath at high temperature in the RD epoch. As the

universe expands and cools down, at a certain point the processes that had kept dark

matter in equilibrium became ine�cient, and thus dark matter decoupled from the

thermal bath with its comoving number density fixed.
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To fully appreciate the beauty of the thermal freeze-out mechanism, let us take a

simple example which only concerns the dark-matter annihilation: �� $ ��. Here

� can be any SM particle or BSM particle that couples to the SM particles, but for

simplicity, let us just assume it is a SM particle. The equation that governs the

evolution of dark-matter number density n� is the Boltzmann equation:

dn�

dt
+ 3Hn� = � n

2

�
h�vi

"
1 �

✓
n

eq

�

n�

◆2
#

, (3.4)

in which n
eq

�
is the number density if dark matter is in equilibrium, and h�vi is the

thermally averaged cross-section of the annihilation process.

Let us first analyze the general behavior of this type of equation. We first notice

there is a competition between H and n� h�vi — the Hubble expansion rate and the

reaction rate. If H � n� h�vi, the Hubble expansion dominates as the dark-matter

particles can hardly find each other to annihilate. Therefore n� simply dilutes as a
�3,

as if there is no interaction at all. If H ⌧ n� h�vi, the annihilation is very e�cient

such that particles can annihilate in a time scale much shorter than the Hubble time

H
�1. In this case, if n� > n

eq

�
, the right-hand side of Eq. (3.4) is negative, and

therefore n� decreases faster than a
�3 — dark matter annihilates more into the SM

particles. On the contrary, if n� < n
eq

�
, the right-hand side of Eq. (3.4) is positive,

which means n� scales slower than a
�3 — SM particles annihilate more to produce

dark-matter particles. Therefore, we see the scattering term on the right-hand side

always tends to keep maintain the species in equilibrium.

Now let us look back at Eq. (2.30). Since dark matter had already become non-

relativistic in the RD epoch, if it had been kept in equilibrium until today, its relic

density would be exponentially small. Therefore, dark matter that was in equilibrium

with the thermal bath has to break away from the thermal equilibrium su�ciently

early in order to have a large relic abundance as we have observed today. To guide

the eye, an plot for dark-matter freeze-out is shown in Fig. 3.1

Let us do some order of magnitude estimates. First, suppose that dark-matter

freezes out when relativistic, Tfo � m�, and its temperature right at freeze-out
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Figure 3.1: Thermal freeze-out of dark matter with mass m� = 100 GeV. The solid
curves show three di↵erent cases in which h�vi = 10�10

, , 10�8
, 10�6 GeV�2 at freeze-out.

The black dotted curve represents the equilibrium case.

is still the same as the temperature of the rest of the thermal bath. The yield at

freeze-out is equal to the yield today due to entropy conservation:

Y�,fo =
n�(Tfo)

s(Tfo)
= Y�,now =

n�(Tnow)

s(Tnow)
=

⇢�(Tnow)

m�s(Tnow)
. (3.5)

Let us ignore the di↵erence between g⇤ and g⇤,S as we have seen that they are very

similar during the the history of the universe. Substituting in the numbers, we see

Y�,fo ⇡ 1/(3g⇤(Tfo)). This leads to the relic abundance calculation

⌦� =
⇢�(Tnow)

⇢crit

= Y�,fo

m�s(Tnow)

⇢crit

⇡
1

3g⇤(Tfo)

m�s(Tnow)

⇢crit

. (3.6)

Using Tnow = 0.234 meV and ⇢�(Tnow) ⇠ (3/4)s(Tnow)Tnow ⇠ 5 ⇥ 10�5
⇢crit, we

find s(Tnow)/⇢crit ⇠ 30 eV�1. Therefore a rough estimate gives:

⌦� ⇠
1

g⇤(Tfo)

m�

10 eV
. (3.7)

This suggests a dark-matter mass at the eV scale. Just like neutrinos, such dark-

matter particles would be too hot for structure formation. This is why thermal dark
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matter that freezes out while being relativistic are typically categorized as the hot

dark matter.

Let us now look at the case in which dark matter freezes out non-relativistically

Tfo ⌧ m�. This time, we have Y�,fo ⇡ x
3/2

fo
e

�xfo/(6g⇤(Tfo)), in which the convention

x ⌘ m�/T is used. Unlike freezing out relativistically which depends on the freeze-

out temperature only through g⇤, the non-relativistic case has a stronger dependence

through xfo. The temperature at which dark matter freezes out can be estimated

using the condition H(Tfo) ⇠ n�(Tfo) h�vi. Together with Eq. (2.34), this condition

leads to

n�(Tfo) ⇠
⇡

p
90

g⇤(Tfo)1/2
T

2

fo

MP h�vi
. (3.8)

After some algebra, one can write it in a very suggestive way:

⌦� ⇠

⇣
xfo

10

⌘✓ 100

g⇤(Tfo)

◆1/2✓10�8 GeV�2

h�vi

◆
. (3.9)

The fact that a dark-matter candidate with m� ⇠ O(100) GeV and a weak scale

cross-section that freezes out non-relativistically at xfo ⇠ O(10) is able to give rise

to a relic abundance ⌦� ⇠ O(1) strongly motivates the traditional WIMP scenarios.

This is usually referred to as the “WIMP miracle”.

However, this does not mean that the thermal freeze-out mechanism favors a

weak-scale mass. Do notice that in deriving Eq. (3.9), no assumption for xfo has been

made. By playing with the way the cross-section scales with mass and couplings,

the dark-matter mass can be in principle as small as 0.1 eV [38]. Although for dark-

matter candidates that are produced thermally, similar to neutrinos, constraints from

structure formation have set the lower limit for dark-matter mass to be above a few

keV, the point emphasized here is that there is a lot of room to play in dark-matter

model building instead of hanging upon the WIMP miracle.

In the end, we briefly comment on the fact that light dark-matter candidates

(m� . keV) produced from thermal freeze-out receive severe constraint from struc-

ture formation. The reason behind this is very simple. On one hand, around freeze-

out, dark matter has the same temperature with the rest of the thermal bath. After
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the decoupling of dark matter, its temperature simply scales T� ⇠ a
�1 if it is rel-

ativistic, whereas T� ⇠ a
�2 if it is non-relativistic. At the same time, entropy

conservation tells us that the temperature of the thermal bath scales as T ⇠ a
�1 up

to small heating e↵ects from the change of g
�1/3

⇤S
which only gives O(1) corrections.

Therefore, the temperature of dark matter in general follows the temperature of the

thermal bath until dark matter is non-relativistic. On the other hand, most of the

contribution to the dark-matter free-streaming length comes from the time when dark

matter is relativistic. Now recall that structure formation starts around the MRE, at

which T ⇠ eV. For thermal dark matter with a mass below a few keV, no matter

when it decouples, it would always become non-relativistic at T ⇠ keV, which is

close enough to the MRE. Therefore, dark matter would almost always acquire a

free-streaming length large enough to leave a trace in the large-scale structure. In

the worst case, the time of the MRE will be shifted if the mass is too small. Thus,

to produce very light dark matter, non-thermal mechanisms are usually employed.

3.2.2 Misalignment Production

The misalignment production is one of the typical non-thermal production mecha-

nisms. It is widely used in the production light scalars2 such as axions or axion-like

particles (ALPs) whose mass scale ranges from 10�3 eV to 10�22 eV. In these sce-

narios, dark matter is usually described as a classical scalar field �(t), whose energy

density and pressure are

⇢� =
1

2
�̇

2 + V (�) , (3.10)

P� =
1

2
�̇

2
� V (�) . (3.11)

Note that the definition of pressure here for a classical field is di↵erent from that for

particles (see Eq. (2.18)). Depending on the evolution of the field, the equation of

state parameter w = P�/⇢� can vary from �1 to 1. For simplicity, let us use a

2Fermions have to have a mass above ⇠ keV due to their finite phase-space density in a gravi-
tational bounded system [39].
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quadratic potential V (�) = m
2
�

2
/2 as an example. The equation of motion of the

field � follows from the continuity equation, Eq. (2.6):

�̈ + 3H�̇ + m
2
� = 0 , (3.12)

in which we have used @V/@� = m
2
�. The above di↵erential equation takes the

form of a damped oscillator, in which the 3H�̇ term acts as a friction term. Let

us assume that H can be treated as a constant in the regimes we are interested in.

Inserting �(t) ⇠ e
i!t and solving for !, it is easy to find

! = i
3

2
H ±

r
m2 �

9

4
H2 . (3.13)

Now we can investigate the behaviors in di↵erent limits. At early times, H � m,

we see ! = 0, 3iH, which means � evolves quickly towards a constant

�(t) ' �0 + �1e
�3Ht 3Ht � 1

�����! �0 . (3.14)

The energy density therefore also quickly evolves towards an asymptotic constant

value ⇢� ' V = m
2
�

2

0
/2 — the field behaves like dark energy. At later times,

H ⌧ m, thus ! = 3iH/2 ± m and the field fast oscillates about its minimum:

�(t) = �2e
±imt

e
� 3H

2 t
. (3.15)

Using the virial theorem m
2
�

2 = �̇
2, which is valid since the oscillation time scale

1/m is much smaller than the expansion time scale 1/H, we see that on average

⇢� ' m
2
�

2

2
e

�3Ht
/2. Notice that, with the assumption that H can be treated as a

constant, e
�3Ht

⇠ a
�3. Therefore, the energy density ⇢� ⇠ a

�3, that is, the field

behaves like matter in this limit.

The transition point between these two regime is m ' 3H/2 when the real part

of ! becomes available which allows the field to oscillate. One can use this to define a

production time by H(tprod) = 2m/3. The production time defined by this relation
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Figure 3.2: Evolution of the classical field �. The dashed black line indicates the produc-
tion time defined by the relation H(tprod) ' 2m/3. Before tprod, the field and its energy
density (/ �

2) stay as a constant, and w ' � 1. After tprod, the field oscillates rapidly.
This makes hwi ' 0 and ⇢� ⇠ a

�3.

is shown in Fig. 3.2 as the dashed black vertical line. Clearly, there is a transition

from the phase in which the field is a constant into the fast oscillating phase after

the production time. Moreover, we see the average of the equation of state parameter

hwi = 0 in the oscillating phase, which means the average energy density of the

field is indeed behaving like matter. Needless to say, our qualitative estimate agrees

well with the numerical calculation.

We still need to make sure that the mass scales which we are interested in cor-

respond to a production time tprod before the MRE. To prove that, we notice that

Eq. (2.34) gives H(tMRE) ⇠ 10�28 eV. Therefore, even for the masses as small as

m ⇠ 10�22 eV, the production time is ensured to be before MRE.

In the end, in order to relate the dark-matter relic abundance with the initial field

value, let us glue the two limits together at tprod. First of all, the conservation of

energy at the transition time tprod gives �0 = �2 = �(tprod).3 Requiring ⇢� to be the

3We see here �0 shows how much the initial field value is misaligned with the minimum of the
potential which it oscillates about later, and hence the name misalignment production.
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energy density of dark matter, we have

0.25 ⇡ ⌦� =
⇢�(tnow)

⇢crit

⇠
m

2
�(tnow)2

(2.5 ⇥ 10�3 eV)4

=
m

2
�(tprod)2

(2.5 ⇥ 10�3 eV)4

✓
a(tprod)

a(tnow)

◆3

=
m

2
�(tprod)2

(2.5 ⇥ 10�3 eV)4

g⇤S(Tnow)

g⇤S(Tprod)

✓
Tnow

Tprod

◆3

. (3.16)

After a few algebra, the estimate shows

m�(tprod) ⇠ (mMP)3/4eV1/2
. (3.17)

To conclude this chapter, we have seen that there is ample evidence showing that

dark matter has to exist, and there are also compelling reasons for dark matter to have

a particle nature. Although we have not yet observed such particles, we know that

it should have some gross features — massive, cold, dark and overall stable. Particle

species like this do not exist in the Standard Model, and the production of those

particles has to take place in the early universe, deeply within the RD epoch. There

are two major classes of dark-matter production mechanisms, thermal production

and non-thermal production. We have shown one typical example for each class —

dark matter production from thermal freeze-out and from vacuum misalignment. We

have also demonstrated the way the relic abundance calculation is related to the

physical observables relevant in the early universe. Of course, there exist many other

production mechanisms as well as extensions to these two basic mechanisms, and

the details of dark matter production is highly model-dependent. Nevertheless, the

two production mechanisms that we have shown here are often used as necessary

ingredients.

We emphasize that the study of dark matter involves physics from many aspects,

including particle physics, astrophysics, cosmology and statistical physics, etc. There-

fore, when performing the calculations, it is important to check the implicit assump-

tions made from di↵erent sides. For example, the relic abundance calculation that
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we have shown has the following implicit assumptions: i) the history of the universe

is standard; ii) dark matter only has a single component and its phenomenology de-

pends only on the properties of itself; iii) dark matter is stable. Indeed, these implicit

assumptions prevail in most of the traditional scenarios. However, these assumptions

can be relaxed. First, as we have mentioned before, since we have no direct probe

of the physics before BBN, any cosmological model that successfully reproduces all

the physics from BBN to the present epoch cannot be ruled out by current obser-

vations. Therefore, in models within non-standard cosmological history, the relic

abundance calculation can be easily modified [18, 19, 21]. Second, other than being

single-component, it is not unreasonable to consider dark sectors with non-minimal

construction such that the dark-matter phenomenology depends on the properties of

not only one single particle, but the entire dark sector. After all, the Standard Model

has exhibited complex and delicate structure while dark matter is much more abun-

dant than the SM particles. If dark matter consists of more than one components,

absolute stability would not be a necessary requirement. In general, dark-matter

components whose cosmological abundance is small does not have to be stable at all.

Even if dark matter has only one component today, the early-universe dynamics in

the dark sector might also leave non-trivial imprints in the late-time cosmology.

Through out this dissertation, we shall assume a standard cosmology. However,

we shall relax the other two assumptions that dark matter physics is minimal and

that dark matter is absolutely stable. In the following chapters, we shall present two

types of non-minimal scenarios — those in which dark matter consists of multiple

components which decay predominantly into the SM final states, and those in which

dark matter is single-component today, but decays that occur entirely within the

non-minimal dark sector give rise to non-trivial cosmological consequences.
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Chapter 4

Dynamical Dark Matter from Strongly-Coupled Dark Sectors

In the previous chapter, we have discussed two typical traditional DM scenarios in

which the dark matter has only a single component. In this chapter, we shall study

a new framework for dark-matter physics which is called “Dynamical Dark Matter”

(DDM) [40–42].

The basic idea behind DDM is relatively simple. Rather than focus on one or

more stable dark-matter particles, we instead consider a multi-component framework

in which the dark matter of the universe comprises a vast ensemble of interacting fields

with a variety of di↵erent masses, mixings, and cosmological abundances. Moreover,

rather than impose stability for each field individually, we instead ensure the phe-

nomenological viability of such a scenario by requiring that those states with larger

masses and SM decay widths have correspondingly smaller relic abundances, and

vice versa. In other words, dark-matter stability is not an absolute requirement in

the DDM framework, but is replaced by a balancing of lifetimes against cosmological

abundances across the entire ensemble. This leads to highly dynamical scenario in

which cosmological quantities such as ⌦CDM experience non-trivial time-dependences

beyond those normally associated with cosmological expansion. It turns out that

many extensions to the SM — including string theory as well as theories with large

extra dimensions or large hidden sectors — give rise to large ensembles of dark states

in which such a balancing naturally occurs. Moreover, because the dark-matter “can-

didate” in this framework consists of a carefully balanced DDM ensemble which can-

not be characterized in terms of a single well-defined mass, decay width, or interac-

tion cross section, this framework generically gives rise to many striking signatures

at colliders as well as at direct- and indirect-detection dark-matter experiments —

signatures which transcend those usually associated with dark matter and which ulti-

mately reflect the collective behavior of the entire DDM ensemble. An artistic sketch
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Figure 4.1: A sketch for DDM. In this plot, the blue stripes stand for di↵erent dark-
matter components, and their lengths and widths represent the corresponding lifetimes and
abundances, respectively. Clearly, the dark matter that we observe today only consists of
the “surviving” components. There are components that have already decayed in the past,
and, eventually, all of the dark-matter components will decay in the future.

for the DDM idea is shown in Fig. 4.1 in which the dark-matter components are

represented by the blue stripes of which the lifetimes are indicated by their lengths,

while the abundances are indicated by their widths, and what we observe today as

the dark matter are merely the components that survive to the present day.

The DDM framework was originally introduced by K. R. Dienes and B. Thomas in

Ref. [40], in which its theoretical aspects have been surveyed. The “existence proof”

of the phenomenological viability of the DDM framework is shown in Refs. [43–45]

in which an explicit DDM model was constructed, and it is demonstrated that this

model satisfies all known collider, astrophysical, and cosmological constraints. Var-

ious signatures by which this framework might be experimentally tested and con-
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strained have also been studied. These include unique signatures at direct-detection

experiments [46], at indirect-detection experiments [47–50], and at colliders [51–55].

Of course, many of the constraints on such DDM ensembles depend on model-

specific details associated with the ensemble in question, such as the specific particle

nature of the individual dark constituent fields and the precise form of their decays

into SM states. By contrast, other phenomenological properties of (and constraints

on) these DDM ensembles depend simply on the manner in which the lifetimes and

abundances of ensemble constituents scale with respect to each other, and thus have

a greater degree of model-independence. For example, the e↵ective equations of state

for these ensembles are governed in large part solely by these scaling relations. As a

result, all phenomenological/observational constraints on the equations of state of the

dark sector are essentially constraints on the types of balancing relations that DDM

ensembles may exhibit. These are thus model-independent constraints which can be

placed on such ensembles simply as a result of their inherent scaling relations.

One general class of DDM ensembles consisting of large numbers of dark particle

species exhibiting suitable scaling relations between lifetimes and cosmological abun-

dances are those whose constituents are the Kaluza-Klein (KK) modes of a gauge-

neutral bulk field in a theory with extra spacetime dimensions in which cosmological

abundances are established through misalignment production [40]. Indeed, explicit

realizations of DDM ensembles of this type have been constructed [43, 44]. Although

many aspects of these ensembles depend on the details of the particular fields under

study, certain general properties are common across all such ensembles in this class.

One of these is that the cosmological abundance of each component scales as a power

of the lifetime of that component. Likewise, the density of states within such ensem-

bles is either insensitive to mass or scales roughly as a polynomial function of mass

across the ensemble. For these reasons, most phenomenological studies of the DDM

framework have focused on ensembles exhibiting polynomial scaling relationships.

Polynomial scaling relations also emerge in other (purely four-dimensional) con-

texts as well. For example, under certain circumstances, thermal freeze-out mech-

anisms for abundance generation can also lead to appropriate polynomial inverse
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scaling relations between lifetimes and abundances [56]. In fact, such inverse scaling

relations can even emerge statistically in contexts in which the dynamics underlying

the dark sector is essentially random [57].

There are, however, other well-motivated theoretical constructions which do not

give rise to dark sectors with polynomial scaling relations. One example is a dark

sector consisting of a set of fermions (dark “quarks”) charged under a non-Abelian

gauge group G which becomes confining below some critical temperature Tc. At

temperatures T . Tc, when the theory is in the confining phase, the physical degrees

of freedom are composite states (dark “hadrons”). Another well-motivated type of

DDM ensemble consists of the bulk (i.e., closed-string) states in Type I string theories.

Such bulk states are typically neutral with respect to all brane gauge symmetries, and

interact with those brane states only gravitationally. As such, from the perspective

of brane-localized observers, these bulk states too are dark matter.

At first glance, these two latter types of ensembles may seem to have little in

common with each other. Indeed, many aspects of the detailed phenomenologies as-

sociated with these ensembles will be completely di↵erent. However, they nevertheless

exhibit certain underlying model-independent commonalities which are relevant for

their viability as DDM ensembles. Indeed, these features are identical to those which

characterize the “visible” sector of ordinary hadrons, namely

• mass distributions which follow linear Regge trajectories (i.e., ↵
0
M

2

n
⇠ n where

↵
0 is a corresponding Regge slope), and

• exponentially growing (“Hagedorn-like”) degeneracies of states (i.e., gn ⇠ e
p

n
⇠

e

p
↵0Mn).

These features — especially the appearance of an exponential scaling of the state

degeneracies with mass — represent a behavior which is markedly di↵erent from that

exhibited by DDM ensembles with polynomial scaling relations. For example, as a

result of their exponentially growing densities of states, such ensembles have a critical

temperature [58] beyond which their partition functions diverge.

In this chapter, we shall study the generic properties of DDM ensembles which



54

exhibit the two features itemized above. We shall calculate the e↵ective equations

of state we↵(t) for such ensembles, and subject these ensembles to those immediate

model-independent observational constraints that follow directly from these equations

of state. We shall therefore be able to place zeroth-order model-independent bounds

on some of the quantities that parametrize these features, such as the e↵ective Regge

slope as well as the rate of exponential growth in the state degeneracies. Our primary

motivation is to understand the phenomenology that might apply to strongly-coupled

dark sectors in their confined (“hadronic”) phase, imagining nothing more than that

our DDM ensemble resembles the visible hadronic sector in the two respects itemized

above. However, the results of such analyses might also be useful in constraining the

bulk sector of various classes of string theories, since these bulk sectors also give rise

to ensembles of dark-matter states which share these two grossest features. We shall

therefore aim to keep our discussion as model-independent as possible, subject to our

assumption of the above two properties itemized above. In this way, our analysis and

the constraints we obtain can serve as useful phenomenological guides in eventually

building realistic dark-matter models of this type.

This chapter is organized as follows. In Sect. 4.1, we begin by reviewing the

properties that we shall assume for the mass spectrum and density of states of our

DDM dark “hadron” ensemble. We shall also discuss the physical interpretations

of these properties in terms of a variety of underlying flux-tube models and string

theories. This section will also serve to establish our conventions and notation. Then,

in Sect. 4.2, we discuss how the required balancing between lifetimes and abundances

naturally arises for such DDM ensembles. In particular, we examine the mechanism

through which primordial abundances for these hadron resonances are generated,

and we determine how these abundances scale across the ensemble as a function of

the hadron mass. We also discuss the scaling behavior of the decay widths that

characterize the decays of the hadronic ensemble constituents to SM states, as well

as the assumptions that enter into such calculations. In Sect. 4.3, we then derive

expressions for the total abundance ⌦tot(t), the tower fraction ⌘(t), and the e↵ective

equation-of-state parameter we↵(t) for these DDM ensemble as functions of time. As



55

discussed in Refs. [40, 43] and reviewed in Sect. 4.3, these three functions characterize

the time-evolution of DDM ensembles and allow us to place a variety of general,

model-independent constraints on such ensembles. In Sect. 4.4, we then present the

results of our analysis of the phenomenological viability of such DDM ensembles,

identifying those regions of the corresponding parameter space which lead to the

most promising ensembles and uncovering generic phenomenological behaviors and

correlations across this space. One of our key findings is that these DDM ensembles

can satisfy our constraints across a broad range of energy scales ranging from the

GeV scale all the way to the Planck scale, but that the present-day cosmological

abundance of the dark sector must be distributed across an increasing number of

di↵erent states in the ensemble as the fundamental mass scales associated with the

ensemble are dialed from the Planck scale down to the GeV scale. Finally, in Sect. 4.5,

we summarize our results and discuss possible avenues for future work.

4.1 DDM ensembles of dark hadrons: Fundamental assumptions

As discussed in above, in this chapter we are primarily concerned with the properties

of DDM ensembles whose constituents are the “hadronic” composite states or reso-

nances of a strongly-coupled dark sector. As has been well known since the 1960’s,

many of the attributes of such an ensemble can be successfully modeled by strings.

These attributes include linear Regge trajectories, linear confinement, an exponential

rise in hadron-state degeneracies, and s- and t-channel duality. It is not a complete

surprise that there is a deep connection between hadronic spectroscopy and the spec-

tra of string theory. Hadronic resonances (particularly mesons) can be viewed as

configurations of dark “quarks” linked together by flux tubes. The spectrum of ex-

citations in such a theory therefore corresponds to the spectrum of fluctuations of

these flux tubes. However, it is well known that these flux tubes can be modeled as

non-critical strings. Thus string theory can provide insight into the properties of such

collections of composite states.

In what follows, we shall use this analogy between hadronic physics and string

theory to motivate our parametrization for the mass spectrum and for the density of
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states of our dark-“hadronic” DDM ensembles. We shall also make recourse to mod-

ern string technology, when needed, for refinements of our basic picture. Throughout,

however, we shall attempt to keep our parametrizations as general as possible so that

they might apply to the widest possible set of DDM ensembles sharing these prop-

erties. As discussed in the Introduction, this will allow our analysis and eventual

constraints to serve as useful guides in future attempts to build realistic models ex-

hibiting these features.

4.1.1 The mass spectrum: Regge trajectories

The first feature that we shall assume of our hadronic dark sector is a mass spectrum

consistent with the existence of Regge trajectories. The existence of such trajectories

follows directly from nothing more than our assumption that our dark-sector bound

states can be modeled by dark quarks connected by the confining flux tube associated

with a strong, attractive, dark-sector interaction. Taking meson-like configurations as

our guide and temporarily assuming massless quarks, it can easily be shown that the

mass Mn associated with a relativistic rotating flux tube scales with the corresponding

total angular momentum n as n ⇠ ↵
0
M

2

n
, where ↵

0 is the so-called Regge slope. In

the visible sector, this successfully describes the so-called leading Regge trajectory

of the observed mesons, with ↵
0
⇠ 1 (GeV)�2 appropriate for QCD. Moreover, there

also exist subleading (parallel) Regge trajectories of observed mesons which have the

same Regge slope but di↵erent intercepts: n ⇠ ↵
0
M

2

n
+ ↵0.

Regge trajectories of this form, both leading and subleading, also emerge in string

theory. For example, the perturbative states of a quantized open bosonic string have

masses M and spins J = 0, 1, ..., Jmax which satisfy Jmax = ↵
0
M

2 + 1 where ↵
0 is now

the Regge slope associated with string theory [typically assumed to be ⇠ (MPlanck)�2].

The states with J = Jmax thus sit along the leading Regge trajectory, while those with

smaller values of J sit along the subleading Regge trajectories. Similar results also

hold for superstrings and heterotic strings.

Given these observations, in this chapter we shall assume that the states of our
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dark “hadronic” DDM ensemble have discrete positive masses Mn of the general form

M
2

n
= nM

2

s
+ M

2

0
. (4.1)

where n is an index labeling our states in order of increasing mass. Here Ms ⌘ 1/
p

↵0

is the corresponding “string scale”, while M0 represents the mass of the lightest

“hadronic” constituent in the DDM ensemble. Indeed, since we do not expect to

have any tachyonic states in our DDM ensemble, we shall assume throughout this

chapter that M
2

0
� 0. We shall avoid making any further assumptions about the

nature of the dark sector by treating both Ms and M0 as free parameters to be

eventually constrained by cosmological data.

Our choice of sign for M
2

0
perhaps deserves further comment. For the visible

sector, most hadrons lie along Regge trajectories with M
2

0
� 0. While there do

exist Regge trajectories with M
2

0
< 0, the lowest states in such trajectories are of

course absent. In string theory, by contrast, all Regge trajectories have M
2

0
< 0.

However, just as in the hadronic case, all tachyonic states which might result for

small n are ultimately removed from the string spectrum by certain “projections”

which are ultimately required for the self-consistency of the string. In other words,

for Regge trajectories with M
2

0
< 0, one could equivalently relabel our remaining

states by shifting n ! n � 1 and thereby obtain an “e↵ective” M
2

0
� 0. This is not

normally done in string theory because in string theory the index n is correlated with

other physical quantities such as the spin of the state. However we are making no

such assumption for the states of our dark sector, and are treating the index n as a

mere labelling parameter. Our assumption of a tachyon-free dark sector then leads

us to take M
2

0
� 0.

There is also another motivation for taking M
2

0
� 0. All of the above results

which treat n as an angular momentum assume massless quarks at the endpoints

of the flux tube. However, while such an approximation holds well for the lightest

states in the visible sector, we do not wish to make such an approximation for our

unknown dark sector. We shall therefore assume M
2

0
� 0 in what follows, recognizing
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that this parameter may in principle also implicitly include the positive contributions

from dark quark masses as well.

4.1.2 Degeneracy of states: Exponential behavior

The second generic feature associated with hadronic spectroscopy is the well-known

exponential rise in the degeneracies of hadrons as a function of mass: gn ⇠ e
p

n. This

behavior was first predicted and observed for hadrons (both mesons and baryons) in

Ref. [58], and also holds as a generic feature for both bosonic and fermionic states in

string theory [23–26].

In general, we can understand this behavior as follows. If we model our hadrons

as quarks connected by flux tubes, the degeneracy gn of hadronic states at any mass

level n can be written as the product of two contributions: one factor  representing

a multiplicity of states due to the degrees of freedom associated with the quarks

(such as the di↵erent possible configurations of quantities like spin and flavor), and a

second factor ĝn representing the multiplicity of states due to the degrees of freedom

associated with the flux tube. We thus have

gn ⇡  ĝn . (4.2)

While  is a constant which is independent of the particular mass level n, the remain-

ing degeneracy factor ĝn counts the rapidly increasing number of ways in which a state

of given total energy n can be realized as a combination of the vibrational, rotational,

and internal excitations of the di↵erent harmonic oscillators which together comprise

a quantized string. It is this quantity which grows exponentially with mass, and in

string theory the leading behavior of ĝn for large n generally takes the form [23–26]

ĝn ⇡ An
�B

e
C

p
n as n ! 1 , (4.3)

where A, B, C are all positive quantities which depend on the particular type of

string model under study. Indeed, for any B and C, it turns out that the proper
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normalization for ĝn in string theory is given by

A =
1

p
2

✓
C

4⇡

◆2B�1

. (4.4)

Thus our asymptotic degeneracy of states is parametrized by two independent quan-

tities B and C, and we shall assume that this continues to be true in our dark sector

as well.

The most salient property of the expression in Eq. (4.3) is that it rises exponen-

tially with
p

n, or equivalently with the mass Mn of the corresponding state. This

represents a crucial di↵erence relative to the KK-inspired DDM ensembles previously

considered in Refs. [40, 43, 44] (or even the purely four-dimensional DDM ensembles

considered in Refs. [56, 57]). For example, the KK states corresponding to a single

flat extra spacetime dimension have degeneracies ĝn which are constant, or which be-

come so above the n = 0 level. The key di↵erence here is that the degrees of freedom

associated with our flux tube consist of not only KK excitations (if the flux tube

happens to be situated within a spacetime with a compactified dimension), but also

so-called oscillator excitations representing the internal fluctuations of the flux tube

itself. It is these oscillator excitations which give rise to the exponentially growing

degeneracies and which are a direct consequence of the non-zero spatial extent of

the flux tube. As such, they are intrinsically stringy and would not arise in theories

involving fundamental point particles.

Unfortunately, the asymptotic form in Eq. (4.3) is not su�cient for our purposes.

Although we are interested in the behavior of all states across the DDM ensemble,

it is the lighter states rather than the heavier states which are most likely to have

longer lifetimes and therefore greater cosmological abundances. Thus, even though

we want to keep track of all of the states in our ensemble, we need to be particularly

sensitive to the degeneracies of the lighter states, i.e., the states with smaller values

of n. This poses a problem because the asymptotic expression in Eq. (4.3) is fairly

accurate in the large-n limit but is not especially accurate in the small-n limit.

Fortunately, for values of B and C which correspond to self-consistent strings (to
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be discussed below), the tools of modern string technology (specifically conformal

field theory and modular invariance) furnish us with a more precise approximation

for ĝn which remains accurate even for very small values of n. This expression is given

by [59–62]

ĝn ⇡ 2⇡

✓
16⇡2

n

C2
� 1

◆ 1
4�B

I|2B� 1
2 |

 
C

r
n �

C2

16⇡2

!
, (4.5)

where I⌫(z) denotes the modified Bessel function of the first kind of order ⌫. Use of

the approximation I⌫(z) ⇡ e
z
/
p

2⇡z for z � 1 then reproduces the result in Eq. (4.3).

However, the expression in Eq. (4.5) remains valid to within only a few percent all the

way down to n = 1, assuming C  4⇡ (so that the argument of the Bessel function

remains real even for n = 1).

In what follows, we therefore shall adopt the expression in Eq. (4.5) as our general

parametrization for the degeneracy of states ĝn for arbitrary values of B and C  4⇡

and for all n � 1. For values of B and C corresponding to bona-fide string theories,

this expression yields results for the state degeneracies which, though not necessarily

integral, are highly accurate for all values of n � 1. An explicit example of this will be

provided below. More generally, however, this expression is smooth and well-behaved

for all values of the B and C parameters, and in all cases exhibits the exponential

Hagedorn-like behavior whose primary e↵ects we seek to analyze in this chapter. For

n = 0, by contrast, we shall define ĝ0 ⌘ 1, representing the unique ground state of

our flux tube.

4.1.3 Physical interpretation of ensemble parameters

Thus far we have introduced four parameters to describe our dark “hadron” DDM en-

semble: Ms, M0, B, and C. The first two parameters have immediate interpretations:

M0 is the mass of the lightest state in the DDM ensemble, while Ms parametrizes

the splitting between the states. We would now like to develop analogous physical

interpretations of B and C.

Clearly B and C describe the dynamics of the flux tube. However, in the case of the

ordinary strong interaction, many possible theories governing this dynamics have been
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proposed. These range from early examples such as the scalar (Nambu) string [63],

the Ramond string [64], and the Neveu-Schwarz (NS) string [65] to more modern

examples such as Polyakov’s “rigid string” [66], Green’s “Dirichlet string” [67], and

the Polchinski-Strominger “e↵ective string” [68]. Many other possibilities and variants

have also been proposed.

All of these theories begin by imagining a one-dimensional line of flux energy (i.e.,

a string) which sweeps out a two-dimensional flux-sheet (or worldsheet) as it sweeps

through an external D-dimensional spacetime. Here D is the number of spacetime

dimensions which are e↵ectively uncompactified with respect to the fundamental en-

ergy scale Ms associated with the flux tube. As such, as it propagates, our string/flux

tube is free to fluctuate into any of the D? ⌘ D � 2 spatial dimensions transverse to

the string. We can describe such fluctuations by specifying D? embedding functions

X
i(�1, �2), i = 1, .., D?, which are nothing but the transverse spacetime locations of

any point on the flux-tube worldsheet with coordinates (�1, �2). As such, these embed-

ding functions may be regarded as fields on the two-dimensional flux-tube worldsheet.

The dynamics of this system is then governed by the Polyakov action

S ⇠ M
2

s

Z
d

2
�

D?X

i=1

✓
@

@�↵
X

i

◆✓
@

@�↵

X
i

◆
. (4.6)

Minimizing this action is classically equivalent to minimizing the area of the flux-tube

worldsheet.

By itself, the expression in Eq. (4.6) describes the action of the so-called D?-

dimensional “scalar” string. In some sense this theory provides the simplest possible

description of a strongly-interacting flux tube, with the term in Eq. (4.6) represent-

ing the bare minimum that must always be present for any flux-tube description.

The various possible refinements of this basic theory then di↵er in the extra terms

that might be added to this action. Some of these theories mentioned above intro-

duce extra terms which correspond to additional, purely internal degrees of freedom

[e.g., additional fields analogous to X
i(�1, �2) but without interpretations as the co-

ordinates of uncompactified spacetime dimensions] on the flux-tube worldsheet. By
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contrast, other theories introduce extra interaction terms for the X
i-fields which alter

their short-distance behavior.

The action in Eq. (4.6) can be interpreted as that of a two-dimensional (2D)

field theory (where the two dimensions are those of the flux-tube worldsheet), and

we immediately see that it is endowed with a 2D conformal symmetry. There are

good reasons to expect that the long-distance limit of any self-consistent flux-tube

theory should exhibit such a symmetry, since we expect the physics of this system to

be invariant under reparametrizations of our flux-tube worldsheet coordinates. As a

result, those flux-tube theories that augment the scalar string by introducing extra

purely internal degrees of freedom on the flux-tube worldsheet must not break this

conformal symmetry; this requirement constrains what kinds of terms can be added.

By contrast, the theories that introduce extra interaction terms for the X
i fields do

break this conformal symmetry, but they do so only in the short-distance limit. The

2D conformal symmetry of the long-distance limit is then preserved as an e↵ective

symmetry.

In any 2D conformal field theory, either exact or e↵ective, the total number of

degrees of freedom is encoded within the so-called central charge c. Each X
i field

contributes a central charge c = 1, and thus the minimal scalar-string action in

Eq. (4.6) describes a theory with central charge c = D?. However the introduction

of additional degrees of freedom on the flux-tube worldsheet will necessarily increase

the central charge, producing a theory with c > D?.

Given a particular action for our flux-tube dynamics, it is straightforward to

quantize the fields in question. In this way, we can determine the corresponding

spectrum of the theory at all mass levels. These calculations are standard in string

theory (see, e.g., Ref. [23–26]), and ultimately one obtains [60–62] asymptotic state

degeneracies ĝn of the forms given in Eq. (4.3) or Eq. (4.5). Remarkably, one finds a

relatively straightforward connection between the parameters (B, C) appearing in our

state degeneracies and the parameters (D?, c) of our underlying flux-tube theory [59–
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62]: 8
><

>:

B = 1

4
(3 + D?)

C = ⇡

p
2c/3 .

(4.7)

Indeed, for any value of B and C, we may regard the total central charge c as having

two contributions: one contribution cfluc = D? associated with the degrees of freedom

associated with the transverse uncompactified spacetime fluctuations of the flux tube,

and a remaining contribution

cint ⌘ c � D? ⌘
3C2

2⇡2
� 4B + 3 (4.8)

associated with those additional, purely internal degrees of freedom which might also

exist within the full flux-tube theory (including those associated with any compactified

spacetime dimensions which may also exist).

At first glance, it might seem that our dark sector must have D? = 2, just as

does our visible sector. This would certainly be true if our dark-sector flux tube

were to experience the same spacetime geometry as does the visible sector. However,

we emphasize that in a string-theoretic or “braneworld” context, the dark sector

could correspond to physics in the “bulk” — i.e., physics perpendicular to the brane

on which the visible-sector resides. The degrees of freedom in the bulk would then

be able to interact with those on the brane at most gravitationally, and would thus

constitute dark matter by construction. However, the geometric properties of the bulk

will generally di↵er from those of the brane — the bulk might contain not only extra

spacetime dimensions which are e↵ectively large (i.e., uncompactified) with respect

to the fundamental string scale, but also extra spacetime dimensions which are small

(i.e., compactified). The bulk may also be populated by additional fields with no

spacetime interpretations at all. It is for this reason that we make no assumptions

about the values of c or D? associated with the dark sector.

Once our flux-tube theory is specified and the corresponding values of B and C

determined, we may calculate the corresponding e↵ective static-quark potential V (R)
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between two quarks a distance R apart. We find [59]

V (R) =

✓
Ms

2⇡

◆p
(MsR)2 � (C/2)2

⇡
M

2

s
R

2⇡
�

C
2

16⇡

1

R
+ ... for R � M

�1

s
. (4.9)

The first term in the final expression indicates a linear confinement potential, as

expected; this is nothing but the classical energy in the flux tube. By contrast,

the second term resembles a Coulomb term but is actually an attractive universal

quantum correction (or Casimir energy) which arises due to the transverse zero-point

vibrations of the flux tube.

For visible-sector hadrons, it is natural to take D = 4. As a result, the D? = 2

scalar string with cint = 0 (corresponding to B = 5/4 and C = 2⇡/
p

3 ⇡ 3.63) is

the “minimal” string that we expect to underlie all descriptions of the actual visible-

sector QCD flux tube. In fact, it has been shown in Ref. [59] that this minimal

D? = 2 scalar string with  = 36 provides an excellent fit to hadronic data, both

for low energies (which are sensitive to the Casimir energy within the confinement

potential) as well as high energies (which are governed by the asymptotic degeneracy

of hadronic states and the corresponding Hagedorn temperature). As discussed in

Ref. [59], this success — coupled with the appearance of the same quantity C in both

places — provides a highly non-trivial test of the classical conformal invariance of the

QCD string.

In this chapter, we shall imagine that our DDM ensemble of dark-sector hadrons

mimics that of the visible-sector hadrons to the extent that it corresponds to a set

of masses Mn and state degeneracies ĝn parametrized by the functional forms given

in Eqs. (4.1) and (4.5). However, we shall not insist on an actual string interpre-

tation governing our dark-sector confinement dynamics, and as discussed above we

shall therefore regard B and C as free parameters which may be adjusted at will

(subject to certain constraints to be discussed below). Nevertheless it is only when

B and C correspond to appropriate values of D? and c via the relations in Eq. (4.7)

that we may describe our resulting spectrum as corresponding to that of a classically
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self-consistent string moving in a specific geometry. Moreover, motivated by our expe-

rience with visible-sector hadrons, we shall continue to regard the special scalar-string

case with B = 5/4 and C = 2⇡/
p

3 as our “minimal” theory, corresponding to the ac-

tion in Eq. (4.6) with D? = 2. Adjusting the value of B above or below 5/4 can then

be interpreted as changing the e↵ective number of uncompactified spacetime dimen-

sions felt by our dark-sector flux tube (i.e., the number of uncompactified spacetime

dimensions into which it can experience fluctuations), while increasing the value of

C beyond 2⇡/
p

3 corresponds to introducing additional purely internal degrees of

freedom with central charge cint into our flux-tube theory.

Note, in this regard, that the degrees of freedom associated with fluctuations into

extra compactified spacetime dimensions count towards cint rather than D?. Thus, in

terms of its e↵ects on the dark sector, the act of compactifying a spacetime dimension

to a radius below the associated string scale preserves the central charge c (and thus

the coe�cient C) and merely shifts the associated degrees of freedom from D? to cint.

The resulting change in the asymptotic state degeneracies ĝn due to the change in

B then reflects the appearance of new Kaluza-Klein resonances in the total flux-tube

spectrum.

4.1.4 Constraints on parameters

Even though Ms, M0, B, and C are henceforth to be viewed as unrestricted quantities

parametrizing our hadron-like DDM ensemble, they are nevertheless subject to certain

self-consistency constraints.

First, we note that while the asymptotic form for ĝn in Eq. (4.5) is remarkably

accurate within those regions of (B, C) parameter space for which actual string re-

alizations exist, there are other regions of (B, C) parameter space within which this

approximation provides unphysical results. For example, given that the expression

for ĝn in Eq. (4.5) multiplies a growing Bessel function against a falling monomial, for

any given value of B it is in principle possible for there to exist a critical value of C

below which ĝn is not always monotonically increasing for all n � 0. Such a situation

is clearly unphysical, implying that the number of accessible flux-tube states fails to
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grow with the total energy in the flux tube. We therefore demand that

ĝn+1 > ĝn for all n � 0 . (4.10)

Given that we have taken ĝ0 = 1, it turns out throughout the parameter range of

interest that this requirement is tantamount to demanding

ĝ1 > 1 . (4.11)

If we further wish to demand that our ensemble of dark “hadrons” admit a string-

theoretic description, then certain additional consistency conditions on the param-

eters B and C must be satisfied as well. For example, since D? 2 ZZ > 0 in any

self-consistent string construction, we must have

B 2 ZZ/4 > 3/4 . (4.12)

Likewise, as discussed above, any self-consistent string theory will also have c � D?

(or cint � 0), which in turn implies

C
2

�
2⇡2

3
(4B � 3) . (4.13)

There are, of course, further string-derived constraints that might be imposed. For

example, the allowed set of worldsheet central charges c that can be realized in such

non-critical string theories depends crucially on the types of string models under study

and the types of conformal field theories used in their constructions. However, the

constraints in Eqs. (4.12) and (4.13) can be taken as a minimal model-independent

set of constraints that must be satisfied as a prerequisite to any possible string inter-

pretation.

In Fig. 4.2, we indicate the region of (B, C) parameter space which is consistent

with the constraints in Eqs. (4.11), (4.12), and (4.13). We emphasize that the first of

these constraints must always be satisfied as a matter of internal self-consistency. By
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Figure 4.2: The region of (B, C) parameter space of interest for a DDM ensemble of dark
“hadrons.” The red shaded region is excluded by the theoretical self-consistency condition
ĝ1 � 1. By contrast, the blue shaded regions are excluded by the constraint B > 3/4 as
well as by the constraint in Eq. (4.13), and thus correspond to regions in which it would
not be possible to interpret the ensemble constituents as the states of a quantized string.
Note that locations for which B 62 ZZ/4 would also su↵er from this di�culty. Within the
(unshaded) string-allowed region, we have indicated contours of D?, c, and cint, as defined
in Eqs. (4.7) and (4.8). The black dot indicates the point in parameter space corresponding
to the minimal D? = 2 scalar string with cint = 0. As demonstrated in Ref. [59], this model
provides the best fit to the visible hadron spectrum.

contrast, as discussed above, the latter two conditions need to be satisfied only if one

imposes the additional stipulation that our ensemble of dark “hadrons” admit a string-

theory description. We observe in this connection that the first constraint is always

weaker than the remaining string-motivated constraints. In other words, a string-

based description with B 2 ZZ/4 � 1 is always guaranteed to have monotonically

growing degeneracies ĝn. In Fig. 4.2 we also highlight the point (B, C) = (5/4, 2⇡/
p

3)

corresponding to the “minimal” D? = 2 scalar string. While this theory need not

necessarily provide the best-fit description for our dark hadrons (as it does for the

visible hadrons), its minimality nevertheless provides a useful benchmark for exploring

the parameter space of our DDM model. Finally, we observe from Fig. 4.2 that our
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combined constraints imply that

C >
⇠ 1.693 . (4.14)

Indeed, this is the allowed range in C for which ĝ1 > 1 when B = 3/4.

As an illustration of the results of this section, let us focus further on this “min-

imal” D? = 2 scalar string. As noted above, the action for this string is given in

Eq. (4.6). Quantizing this theory then gives rise to a discrete spectrum of states

whose exact degeneracies are1
ĝn�0 = {1, 2, 5, 10, 20, 36, 65, 110, 185, ...}. Indeed it is

only because of the existence of a quantized string formulation that we are even able to

calculate the degeneracies of the corresponding ensemble from first principles. How-

ever, as we have asserted, these degeneracies are extremely well approximated by the

expression in Eq. (4.5) with (B, C) = (5/4, 2⇡/
p

3). This is shown in Fig. 4.3, where

we plot both the discrete exact degeneracies ĝn and the approximate functional form

in Eq. (4.5). As evident from Fig. 4.3, our functional form matches these discrete

values of ĝn extremely well for all values of n � 0 — even though the degeneracies ĝn

are necessarily integers and even though our functional form was originally designed

to be accurate only in the asymptotic n ! 1 limit! Indeed, as claimed above, this

functional form is accurate to within two percent over the entire range of n. This

demonstrates the power of the functional form we have adopted, as well as the utility

of an underlying string formulation for our flux tube.

4.2 Lifetimes and cosmological abundances for hadronic DDM ensembles

In the previous section, we discussed the spectra of our dark “hadronic” DDM ensem-

bles. Our next step, then, is to consider the lifetimes and cosmological abundances

of the individual states within these ensembles.

1These degeneracies ĝn may be extracted as the coe�cients of q
n in a small-q power-series ex-

pansion of the infinite product
Q

n(1 � q
n)�2. With only minor modifications and a proper physical

definition for q, this infinite product turns out to be the partition function of the D? = 2 scalar
string theory in Eq. (4.6).



69

1 2 3 4 5 6
n

10

20

30

40

50

60

g̀n

Figure 4.3: State degeneracies ĝn for the D? = 2 scalar-string flux-tube model of Eq. (4.6)
(red circles), with the asymptotic functional form in Eq. (4.5) superimposed (blue line). It
is clear that our asymptotic functional form succeeds in modelling the state degeneracies
extremely accurately all the way down to the ground state, as we shall require for our
analysis.

4.2.1 Cosmological abundances

As we have seen, the degeneracy of states gn for our ensemble of dark “hadrons”

grows exponentially with the mass of the state, with asymptotic behavior gn ⇠ e
p

n
⇠

e
Mn/Ms . This exponential rise in the state degeneracies places severe constraints on

the possible, physically consistent cosmological production mechanisms by which the

corresponding abundances ⌦n might be established. Indeed, unless the corresponding

abundances ⌦n fall su�ciently rapidly with n, our ensemble is likely to encounter

severe phenomenological di�culties.

Fortunately, our interpretation of the individual components of such an ensem-

ble as dark hadrons suggests a natural mechanism through which the corresponding

abundances ⌦n are generated with an exponential suppression factor capable of over-

coming this exponential rise in gn. As we have discussed, we have been imagining

that these dark “hadrons” emerge as the result of a dark-sector confining phase tran-

sition triggered by the strong interactions of some dark-sector gauge group G. This

phase transition occurs when the temperature T in the dark sector drops below the

critical temperature Tc associated with this phase transition. This event marks the

time tc at which the primordial abundances of our individual hadrons are established.

Moreover, it is reasonable to assume that residual G interactions establish thermal
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equilibrium among these hadrons at T ⇠ Tc. Thus, the primordial abundances ⌦n of

our hadrons can be assumed to follow a Boltzmann distribution at t = tc:

⌦n(tc) ⌘
⇢n(tc)

⇢crit(tc)
=

1

3fM2

P
H(tc)2

Z
d

3p

(2⇡)3
Ep e

�Ep/Tc (4.15)

where Ep ⌘
p

p · p + M2
n

and ⇢crit(t) ⌘ 3fM2

P
H(t)2 where fMP ⌘ MP /

p
8⇡ =

1/
p

8⇡GN is the reduced Planck mass and H(t) the Hubble parameter. Indeed,

we may equivalently regard these abundances as emerging from an infinitely rapid

succession of thermal freeze-outs. Evaluating Eq. (4.15) explicitly, we find

⌦n(tc) = X

⇢
(MnTc)

2
K2(Mn/Tc)

+1

2
M

3

n
Tc


K1(Mn/Tc) + K3(Mn/Tc)

��
(4.16)

where K⌫(z) are modified Bessel functions of the second kind and where X ⌘

[6⇡2fM2

P
H(tc)2]�1 is a common overall multiplicative factor.

In general, a given state with mass M produced at temperature Tc will be non-

relativistic (behaving like massive matter) if Tc
<
⇠ M and relativistic (behaving like

radiation) otherwise. In such limiting cases, the abundances in Eqs. (4.15) and (4.16)

take the simplified forms

⌦n(tc) ⇡

8
><

>:

p
⇡/2 XMn(MnTc)3/2

e
�Mn/Tc non-rel

6XT
4

c
rel .

(4.17)

At first glance, it may seem that any value for Tc might be phenomenologically

permissible. However, this production mechanism can only be self-consistent if it in-

jects a finite total energy density into our system. In other words, as a bare minimum,

we must require that

⌦tot(tc) ⌘

1X

n=0

gn⌦n(tc) < 1 . (4.18)

However, this condition is sensitive to the behavior of the abundances ⌦n(tc) for

extremely large n, corresponding to states which are non-relativistic. For such states,
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we see from Eq. (4.17) that ⌦n(tc) ⇠ e
�Mn/Tc . With gn ⇠ n

�B
e

C
p

n as n ! 1, we

find using Eqs. (4.1) and (4.15) that Eq. (4.18) can only hold if

Tc

Ms


1

C
. (4.19)

This then becomes a hard bound on the allowed values of Tc, one which ensures that

the Boltzmann exponential suppression factor in Eq. (4.15) ultimately overcomes the

exponential rise in the degeneracy of states gn. Indeed, Eq. (4.19) reflects nothing

more than the statement that Tc  TH , where TH ⌘ Ms/C is the Hagedorn tempera-

ture of our dark ensemble. For the visible hadronic sector, one often assumes that Tc

and TH are related to each other parametrically, with Tc either directly identified as

TH or positioned not too far below TH . We shall implicitly make the same assumption

for the dynamics of our dark sector as well.

The next question is to determine which of our ensemble components are produced

relativistically or non-relativistically at T = Tc. To do this, we shall henceforth

assume that Tc, Ms, M0 > TMRE where tMRE and TMRE are the time and temperature

associated with matter-radiation equality. This assumption, which parallels what

occurs for the hadrons of the visible sector, ensures that our abundances ⌦n(t) are

established during the radiation-dominated era prior to matter-radiation equality and

that all ensemble constituents have become e↵ectively non-relativistic by tMRE. Note

that the assumption that Tc > TMRE follows from our expectation that our dark

degrees of freedom prior to tc (i.e., prior to “hadronization” in the dark sector) are

likely to be relativistic, thereby reinforcing the radiation-dominated nature of the

era prior to TMRE and making matter-radiation equality impossible to achieve using

only visible-sector matter, as would have been required had we taken Tc < TMRE.

Similarly, the assertion that Ms > Tc follows directly from our assumption that

Tc > TMRE, given the constraints in Eqs. (4.14) and (4.19). Finally, although it

is not impossible to imagine self-consistent scenarios in which M0 < TMRE, taking

M0 > TMRE also helps to preserve tMRE at its standard cosmological value. We shall

nevertheless make no assertion regarding the relative sizes of M0 and Tc.
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The above assumptions enable us to determine which of the components of our

ensemble are relativistic or non-relativistic at T = Tc. To do this, we simply com-

pare Tc against the ensemble masses Mn given in Eq. (4.1). Given the constraint in

Eq. (4.19), it is straightforward to demonstrate that

Tc 
Ms

C


M1

C
. (4.20)

Since C > 1 [as follows from Eq. (4.14)], we conclude that all of our ensemble com-

ponents with n � 1 are necessarily non-relativistic at t = tc. By contrast, the n = 0

component will be relativistic at t = tc if Tc
>
⇠ M0, and non-relativistic otherwise.

Eq. (4.15) describes the abundances of our dark-sector hadrons at the time tc when

these hadrons come into existence as the result of a dark-sector confining transition.

However, once established, these abundances then evolve non-trivially with time as

a result of two e↵ects. The first of these is Hubble expansion; the second is particle

decay. We shall treat each of these e↵ects separately.

In order to evaluate the e↵ect of Hubble expansion on the abundances ⌦n(t), we

shall assume a standard cosmological history in which the universe remains radiation-

dominated (RD) from very early times up to the time tMRE of matter-radiation equal-

ity. We shall also approximate the universe as matter-dominated (MD) throughout

the subsequent epoch. In general, we recall that the abundance ⌦(t) of non-relativistic

matter scales as t
1/2 during an RD epoch but remains constant in an MD epoch; by

contrast, the abundance of relativistic matter remains constant during an RD epoch

but scales as t
�2/3 during an MD epoch. Likewise, we recall that the temperature T

of the universe scales as T ⇠ t
�1/2 during RD but T ⇠ t

�2/3 during MD. Thus any

ensemble component of mass M which is “born” relativistic at T = Tc � M will

eventually transition to non-relativistic behavior as the temperature ultimately drops

below T ⇠ M .

Collecting these observations, we then find that the net e↵ect of Hubble expansion

is to rescale the original abundance of given state of mass M by a factor which

depends on whether that state was non-relativistic or relativistic at the time tc of its
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production:

⌦(t) = ⌦(tc) ⇥

8
><

>:

p
tMRE/tc non-rel

p
tMRE/tM rel

(4.21)

where tM denotes the time at which T = M . Note that this result is valid for any

time t � tMRE. Since it follows from our assumptions that tc, tM < tMRE, we see that

the abundances of all of our ensemble states are necessarily enhanced before reaching

the current MD era. However, as evident from Eq. (4.21), these abundances are not

enhanced equally: the abundance of a non-relativistic component is enhanced more

greatly than that of any relativistic component of mass M a factor
p

tM/tc.

We have already seen that the states with n � 1 are all non-relativistic, while the

n = 0 ground state is either relativistic or non-relativistic depending on the value of

M0/Tc. Thus, putting all of the pieces together, we find for all n � 1 that

⌦n(t) =

r
⇡

2
X Mn(MnTc)

3/2
e

�Mn/Tc

r
tMRE

tc

=

r
⇡

2
X

✓
gc

gMRE

◆1/4 (MnTc)5/2

TMRE

e
�Mn/Tc

=

r
⇡

72

1

g
3/4

c g
1/4

MRE

M
5/2

n

T
3/2

c TMRE

e
�Mn/Tc .

(4.22)

Note that in passing to the second line we have exploited the standard

time/temperature relationship suitable for an RD epoch, specifically2

t =

r
⇡

32
g⇤(T )�1/2

MP

T 2
, (4.23)

where g⇤(T ) tallies the number of e↵ectively relativistic degrees of freedom driving

the Hubble expansion at any temperature T , with g↵ ⌘ g⇤(T↵). Likewise, in passing

to the final line of Eq. (4.22) we have recognized that H = 1/(2t) for an RD epoch,

from which it follows that X = 1/(6gcT
4

c
).

2 Note that the factor of
p

⇡/32 in Eq. (4.23) is consistent with our adoption of Boltzmann

statistics in Eq. (4.15); for Bose-Einstein statistics this would instead become
p

45/16⇡3.
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For n = 0, however, the corresponding cosmological abundance is given by

⌦0(t) =

8
>>>>>>><

>>>>>>>:

r
⇡

72

1

g
3/4

c g
1/4

MRE

M
5/2

0

T
3/2

c TMRE

e
�M0/Tc Tc

<
⇠ M0

1

gc

✓
gM0

gMRE

◆1/4✓
M0

TMRE

◆
Tc

>
⇠ M0 .

(4.24)

As expected, the cosmological abundances in Eqs. (4.22) and (4.24) depend non-

trivially on the three mass scales which parametrize our dark-hadron mass spectrum,

namely M0, Tc, and Ms (the latter appearing implicitly through Mn). They also

depend on the fixed mass scale TMRE. However, if we disregard the numerical g-

factors which appear in these results and which only serve to parametrize the external

time/temperature relationship, we see that the ratios between these abundances de-

pend only on the ratios between our input mass scales. In particular, such abundance

ratios are no longer anchored to a fixed external mass scale such as TMRE. To make

this point explicit, let us define the dimensionless quantities

r ⌘
M0

Ms

and s ⌘
Tc

Ms

(4.25)

and imagine that g⇤(T )1/4 does not change significantly between Tc and M0. (Note,

indeed, that g
1/4 varies much more slowly than g.) We then find from Eqs. (4.22) and

(4.24) that

⌦n�1(t)

⌦0(t)
=

8
>>>>><

>>>>>:

(n + r
2)5/4

r5/2
e

�(
p

n+r2�r)/s
s <

⇠ r

r
⇡

72

(n + r
2)5/4

r s3/2
e

�
p

n+r2/s
s >

⇠ r .

(4.26)

Thus, up to an overall rescaling factor ⌦0, we see that all of our abundances ⌦n

depend purely on the dimensionless ratios r and s. It then follows that the cosmo-

logical abundance of each state in our dark-hadron ensemble is determined once ⌦0

is anchored to a particular numerical value and specific values of r and s are chosen.
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This observation will be important in what follows.

4.2.2 Lifetimes and decays

As indicated above, our derivation of the dark-sector cosmological abundances ⌦n(t)

has thus far disregarded the e↵ects of particle decays. In other words, we have

implicitly assumed that each ensemble component is absolutely stable once produced

at Tc. As our final step, we shall therefore now incorporate the e↵ects of such decays

into our analysis. In doing so, we shall make several simplifying assumptions. First,

we shall assume that the net injection of energy density in the form of radiation

from these decays has a negligible e↵ect on the total radiation-energy density of the

universe. Hence, this e↵ect decouples from the e↵ect of Hubble expansion. Second,

we shall further assume that the contribution to the total decay width �n of each

ensemble constituent from intra-ensemble decays is negligible. In other words, we

shall assume that �n is dominated by decays to visible-sector final states which do not

include lighter ensemble constituents. We shall discuss the consequences of relaxing

this assumption in Sect. 4.5. Third, we shall assume that all states at a given mass

level n share a common decay width �n, and that this width scales with n across our

dark-hadron ensemble according to

�n = �0

✓
Mn

M0

◆⇠

(4.27)

where Mn are the dark-hadron masses in Eq. (4.1) and where �0 (or, equivalently, the

corresponding lifetime ⌧0) and the scaling exponent ⇠ > 0 are taken to be additional

free parameters of our model. Thus each state in our dark-sector ensemble has a

lifetime ⌧n ⌘ 1/�n given by

⌧n = ⌧0

⇣
n

r2
+ 1
⌘�⇠/2

. (4.28)

Finally, for simplicity, we shall imagine that all states with lifetimes ⌧n indeed actually

decay at t = ⌧n.
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Under these assumptions, the abundance ⌦n(t) of any ensemble constituent at

any time t � tc is given by the expressions quoted above, but now multiplied by an

additional decay factor

e
�(t�tc)/⌧n ⇡ e

�(
p

n+r2/r)
⇠
t/⌧0 (4.29)

where we have approximated t � tc. For s <
⇠ r, we thus have

⌦n�1(t) = ⌦(NR)

0
(t)

(n + r
2)5/4

r5/2
E

(NR)

n
(t) (4.30)

where

E
(NR)

n
(t) ⌘ e

�(
p

n+r2�r)/s�[(
p

n+r2/r)
⇠�1]t/⌧0 (4.31)

and where

⌦(NR)

0
(t) =

r
⇡

72

1

g
3/4

c g
1/4

MRE

⇣
r

s

⌘3/2
✓

M0

TMRE

◆
e

�r/s�t/⌧0 . (4.32)

By contrast, for s >
⇠ r, we have

⌦n�1(t) =

r
⇡

72
⌦(R)

0
(t)

(n + r
2)5/4

r s3/2
E

(R)

n
(t) (4.33)

where

E
(R)

n
(t) ⌘ e

�
p

n+r2/s�[(
p

n+r2/r)
⇠�1]t/⌧0 (4.34)

and where

⌦(R)

0
(t) =

1

gc

✓
gM0

gMRE

◆1/4✓
M0

TMRE

◆
e

�t/⌧0 . (4.35)

4.3 Cosmological constraints on the dark-hadron ensemble

Having determined the abundances and lifetimes of each of the individual components

of our dark-hadron DDM ensemble, we now proceed to study the overall properties of

our ensemble and its behavior as a function of time. However, as we shall see, many

of the phenomenological properties and constraints that apply to such an ensemble

do not rest upon the properties of the individual ensemble components per se, but
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rather upon various aggregate quantities that collectively describe the ensemble as

a whole. Accordingly, in this section we shall begin by describing three aggregate

quantities which ultimately play the most important roles in characterizing and con-

straining such dark-hadron DDM ensembles. We shall then discuss of some of the

most immediate cosmological constraints that can be placed upon these quantities.

4.3.1 Total abundance, tower fraction, and e↵ective equation of state

Perhaps not surprisingly, the first aggregate property of a given dark-hadron DDM

ensemble that shall concern us is its total abundance

⌦tot(t) ⌘

1X

n=0

gn ⌦n(t) = 

1X

n=0

ĝn⌦n(t) . (4.36)

Given our results in Eqs. (4.30) and (4.33), this total abundance takes the form

⌦tot(t) =8
>>>><

>>>>:

⌦(NR)

0
(t)

"
1 +

1X

n=1

ĝn

(n + r
2)5/4

r5/2
E

(NR)

n
(t)

#
s <

⇠ r

⌦(R)

0
(t)

"
1 +

r
⇡

72

1X

n=1

ĝn

(n + r
2)5/4

r s3/2
E

(R)

n
(t)

#
s >

⇠ r

(4.37)

where ⌦(NR,R)

0
(t) are given in Eqs. (4.32) and (4.35). Indeed, we further note from

Eqs. (4.32) and (4.35) that

⌦(NR,R)

0
(t) = e

�(t�tnow)/⌧0 ⌦(NR,R)

0
(tnow) (4.38)

where tnow ⇡ 4 ⇥ 1017 s denotes the current age of the universe. We thus see from

Eqs. (4.37) and (4.38) that the overall magnitude of ⌦(NR,R)

tot (t) can be viewed as being

set by the single number ⌦(NR,R)

0
(tnow).

In characterizing the properties of our DDM ensemble and how they evolve with

time, we are certainly interested in tracking ⌦tot(t). However, we are also interested
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in tracking the distribution of this total abundance among the individual ensemble

constituents. One quantity of particular interest that provides essential information

about this distribution is the so-called “tower fraction” 0  ⌘(t)  1 originally

introduced in Ref. [40]. This quantity is typically defined in the DDM literature as

the fraction of the abundance carried by all ensemble components other than the

dominant component, where the dominant component is the one making the largest

individual contribution to ⌦tot(t). As such, the quantity ⌘ tracks the degree to which

a single component carries the bulk of the total abundance. When ⌘ is close to zero,

our ensemble e↵ectively resembles a traditional single-component dark-matter setup.

By contrast, when ⌘ di↵ers significantly from zero, our ensemble is more truly “DDM-

like”, with many of the ensemble constituents playing a non-trivial role in together

shaping the properties of the dark sector.

Such a definition for ⌘ is appropriate in cases in which each ensemble constituent

has a unique mass and lifetime. Indeed, this has often been the case for the types of

DDM ensembles previously studied. However, for the dark-hadron DDM ensembles

on which we are focusing here, the states at a given Regge level n have been assumed

to have essentially equal masses and lifetimes. Thus, in this chapter, we shall adopt

a modified definition for ⌘(t) in which the comparison is made between the aggre-

gate abundance contributions that accrue level by level rather than state by state.

Specifically, we define

b⌦n(t) ⌘ gn⌦n(t) (4.39)

as the aggregate cosmological abundance arising from all states at a particular oscil-

lator level n. In terms of these aggregate abundances, we then define

⌘(t) ⌘ 1 �
maxn{

b⌦n(t)}

⌦tot(t)
. (4.40)

Thus we continue to have 0  ⌘(t)  1, with ⌘ ⇡ 0 signifying a dark sector resembling

traditional single-component dark matter and ⌘ > 0 indicating (and quantifying) a

DDM-like departure from this traditional scenario.

At first glance, one might assume that the n = 0 ground state(s) must always yield
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the largest aggregate abundance b⌦n(t) because the primordial abundances ⌦n(t) for

the states at all higher levels n > 0 are exponentially suppressed by the corresponding

Boltzmann factor in Eq. (4.15). However, for the DDM ensembles of dark hadrons

studied here, it often turns out that the Hagedorn-like exponential growth of the

degeneracies gn as a function of n can more than compensate for the Boltzmann

suppression for small values of n. Indeed, this is true even for combinations of the

ensemble parameters B, C, r, and s which satisfy the consistency conditions discussed

in Sect. 4.1 and which yield a finite value of ⌦tot(tc). As a result of this net balanc-

ing between these two competing exponential e↵ects, the level carrying the greatest

aggregate cosmological abundance b⌦n(t) need not always be the n = 0 ground state.

It need not even be fixed as a function of time. This possibility must therefore be

taken into account when evaluating ⌘(t).

Finally, another important quantity which can be taken to characterize our dark

sector is the so-called equation-of-state parameter w. For a single-component dark

sector, this quantity is nothing but the ratio between the pressure p and energy

density ⇢ of the dark component: p = w⇢. However, we are dealing here with a multi-

component dark sector in which each component has its own individual lifetime and

abundance. As a result, the total energy density and pressure associated with our dark

sector will generally experience a rather non-trivial time dependence which causes our

ensemble as a whole to behave collectively as if it had a non-trivial w — even if each

individual component is taken to be pure matter with w = 0.

To describe these collective e↵ects, we therefore define [40] an e↵ective equation-

of-state parameter we↵(t) which describes the behavior of our ensemble as a single

collective entity:

we↵(t) ⌘ �

✓
1

3H

d log ⇢tot

dt
+ 1

◆
. (4.41)

Here H is the Hubble parameter and ⇢tot = 3fMP H
2⌦tot is the total energy density of

the ensemble. Note that the definition in Eq. (4.41) is nothing but the usual definition

of w prior to any assumptions of dark-sector minimality. As discussed above, we are

primarily concerned with the evolution of the ensemble during the present matter-
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dominated epoch, within which H(t) ⇡ 2/(3t). Thus, the e↵ective equation-of-state

parameter for our DDM ensemble within this epoch is given by

we↵(t) = �
t

2⌦tot

d⌦tot(t)

dt
. (4.42)

As discussed in Sect. 4.2, the only explicit dependence of ⌦tot(t) on t within a matter-

dominated epoch is due to the exponential decay factor (4.29) within each individual

abundance ⌦n(t). We thus find that

we↵(t) =
t

2⌧0⌦tot(t)

1X

n=0

gn

 p
n + r2

r

!⇠

⌦n(t) . (4.43)

Note that even though each of the individual components of our ensemble has been

taken to be matter-like (with w = 0), the collective equation-of-state parameter we↵(t)

for our ensemble as a whole is positive, reflecting the fact that the ensemble as a whole

is continually losing abundance as its individual components decay. Indeed, it is only

in the ⌧0 ! 1 limit that we↵(t) ! 0. As we shall see in Sect. 4.3.2, we↵(t) plays an

important role in constraining the parameter space of these DDM ensembles.

4.3.2 Cosmological constraints

Given our time-dependent aggregate quantities ⌦tot(t), ⌘(t), and we↵(t), we now turn

to the cosmological constraints that bound these functions. In this way, we shall

ultimately be placing non-trivial constraints on the parameter space underlying these

hadronic DDM ensembles.

In this connection, we again stress that our aim in this chapter is not to perform

a detailed analysis of the astrophysical and/or cosmological constraints on this pa-

rameter space. Such a detailed analysis would clearly be an important but extensive

task which is beyond the scope of this chapter. Moreover, such an analysis would re-

quire a host of further assumptions concerning the particular nature of our ensemble,

the specific decay modes of its constituents into SM states, and so forth. Rather, in

this chapter, our goal is to simply to obtain a rough initial sense of those regions of
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parameter space in which a DDM ensemble of dark “hadrons” might have at least

the potential of phenomenological viability. Accordingly, in what follows, we shall

put forth a set of requirements which directly constrain the fundamental quantities

⌦tot(t), ⌘(t), and we↵(t) we have defined above, but which do not require any further

information concerning these hadronic ensembles beyond those properties already dis-

cussed. In some sense, then, these might be viewed as the immediate “zeroth-order”

model-independent constraints that any DDM ensemble of this sort must satisfy.

Our first constraint is an obvious one: despite the presence of an infinite tower

of dark-hadronic resonances, each with its own cosmological abundance and lifetime,

we shall demand that

⌦tot(tnow) = ⌦CDM ⇡ 0.26 . (4.44)

This requirement is clearly predicated on the assumption that our dark-hadronic

ensemble represents the totality of the dark sector; for other cases we would simply

require that ⌦tot(tnow) <
⇠ 0.26. As we shall see, in either situation this is a severe and

unavoidable constraint which ultimately “anchors” our entire construction in terms

of actual numbers and mass scales.

Second, we may also consider the time-variation of ⌦tot(t). The time-variation of

this total abundance is constrained by experimental probes which yield information

about the dark-matter abundance during di↵erent cosmological epochs. For example,

CMB data [5] provides information about the dark-matter abundance around the

time of last scattering — i.e., at a redshift z ⇡ 1100, or equivalently a time of

roughly 2.7 ⇥ 10�5
tnow. On the other hand, observational data on baryon acoustic

oscillations [69] and the relationship between luminosity and redshift for Type Ia

supernovae [70] provide information about H(t) and the dark-energy abundance ⌦⇤

at subsequent times, down to redshifts of around z ⇡ 0.5. Within the context of

the ⇤CDM cosmology, the agreement between these di↵erent measurements implies

that the dark-matter abundance has not changed dramatically since the time of last

scattering.

In order be consistent with this result, we shall therefore demand that the total
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abundance of our DDM ensemble not vary by more than 5% between an early “look-

back” time tLB and today:

⌦(t) � ⌦(tnow)

⌦(tnow)
 0.05 for all tLB  t  tnow . (4.45)

In what follows, we shall choose a look-back time tLB = 10�6
tnow, which lies comfort-

ably before the recombination epoch.

In addition to these constraints on the time-variation of the dark-matter abun-

dance, there are further considerations which constrain the decays of the DDM-

ensemble constituents more directly. These constraints depend on the decay proper-

ties of the dark-sector particles and are thus ultimately model-dependent. However,

for those rather general cases in which the ensemble constituents can decay to final

states involving visible-sector particles, one must ensure that these decay products

not disrupt big-bang nucleosynthesis [71], not produce observable distortions in the

CMB [72, 73], not reionize the universe [74], and not violate current limits on the

fluxes of photons or other cosmic-ray particles [75, 76]. Indeed, even if the ensemble

constituents decay exclusively into other, lighter dark-sector particles, such decays

can nevertheless leave observable imprints on small-scale structure [77, 78], alter the

scale- and redshift-dependence of the cosmological gravitational-lensing power spec-

trum [79], and a↵ect the luminosity-redshift relation for Type Ia supernovae [80, 81].

Since these e↵ects all arise from the decays of ensemble constituents, non-observation

of these e↵ects also leads to constraints on the time-variation of ⌦tot.

Some of these latter constraints admittedly depend on model-dependent aspects

of the decay kinematics of the dark-ensemble constituents. However the strongest

and most general of these constraints e↵ectively amount to limits on the variation of

⌦tot(t) within the recent past — i.e., for redshifts 0 . z . 3. Therefore, in addition

to our look-back-time constraint in Eq. (4.45), we shall also impose an additional

constraint on our e↵ective equation-of-state parameter:

we↵(tnow)  0.05 . (4.46)
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Through Eq. (4.42), this thus becomes a constraint on the present-day time-derivative

of ⌦tot(t). It is important to stress that this constraint is independent of that in

Eq. (4.45): while Eq. (4.45) constrains accumulated changes in ⌦tot(t) over a relatively

long interval, Eq. (4.46) constrains the time-variation of ⌦tot(t) near the present time.

Other considerations will also guide our interest in certain regions of parameter

space. For example, from a DDM-inspired standpoint, we are particularly interested

in scenarios for which

⌘(tnow) ⇠ O(1) , (4.47)

i.e., scenarios in which the present-day value of ⌘ is significantly di↵erent from zero.

This ensures that a sizable number of ensemble constituents continue to survive and

contribute meaningfully to ⌦tot at the present time, with dark-matter decays occurring

throughout the present epoch and not just in the distant past or future. Although

Eq. (4.47) is not a strict requirement for phenomenological consistency, this condition

guides the degree to which we may regard our ensemble as being fully DDM-like, with

a significant portion of the ensemble playing a non-trivial role in the phenomenology

of the dark sector. For example, this condition rules out regions of parameter space

in which ⌧n ⌧ ⌧0 for all n � 1, with ⌧1 ⌧ tLB. In such regions of parameter space,

all excited dark-hadronic states have decayed prior to our look-back time, leaving

us with a single dark-hadronic ground state in the present epoch. Such a scenario

trivially satisfies all of our phenomenological constraints on the time-variations of the

total dark-sector abundance, but is e↵ectively no di↵erent from that of a traditional,

single-component dark sector. It is thus less interesting from a DDM perspective.

There are two further phenomenological constraints which will be useful for us to

consider in the following. First, we shall demand that ⌧0 � tnow. Although we do not

necessarily require ⌧0 ⇡ 109
tnow as in traditional single-component dark sectors, we

generally expect that ⌧0 must exceed tnow by at least several orders of magnitude in

order to satisfy look-back and we↵ constraints. This assumption will be discussed

further in Sect. 4.4. Likewise, although we have thus far assumed M0 � TMRE

throughout our analysis, we actually must impose the somewhat stronger bound
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M0
>
⇠ O(103)TMRE ⇡ O(keV) in order to satisfy BBN and structure-formation con-

straints. This last requirement implicitly assumes that our lightest ensemble compo-

nent carries the largest cosmological abundance (or at least a sizable fraction of the

total cosmological abundance), but we shall see in Sect. 4.4 that this turns out to be

true for the vast majority of phenomenologically interesting cases.

Finally, we shall also make certain simplifying assumptions. First, for concrete-

ness, we shall restrict our attention to situations with ⇠ = 3. In other words, we

shall assume that the dominant contributions to the decay lifetimes ⌧n of our DDM

constituents �n scale as ⌧n ⇠ 1/M3

n
across the DDM ensemble. Decay widths of

the form �n ⇠ M
3

n
/⇤2 emerge naturally from operators such as �nFµ⌫F

µ⌫
/⇤ where

⇤ parametrizes the energy scale associated with such couplings and where F
µ⌫ de-

notes a field-strength tensor associated with either the visible-sector (SM) photon

or a dark-radiation photon associated with an additional Abelian gauge group un-

der which the ensemble constituents are not charged. The contributions from such

operators will dominate the decays of our DDM constituents in scenarios in which

our DDM ensemble is uncharged with respect to all SM symmetries, and in which

intra-ensemble decays can be neglected. Likewise, we shall also make the simplifying

assumption that  = 1 in Eq. (4.2). This restricts us to the bare “minimal” case in

which we do not ascribe non-trivial degrees of freedom to our dark-sector quarks, and

thereby focus exclusively on the ensemble of states generated by our infinite tower of

hadronic resonances. Finally, throughout our analysis, we shall continue to impose

the self-consistency constraints listed in Eqs. (4.10) [or equivalently (4.11)], (4.12),

(4.13), and (4.19).

Thus, going forward, the free parameters governing our dark-hadron DDM en-

semble may be tallied as follows. First, there are the two parameters {B, C} which

govern the individual state degeneracies ĝn according to Eq. (4.5). Second, there are

the four parameters {r, s, M0, ⌧0} which govern the individual abundances ⌦n(t) in

Eqs. (4.29) through (4.35). However, imposing Eq. (4.44) as an overall normalization

condition allows us to remove M0 as a free parameter. Thus, for the rest of this

chapter, we shall consider our DDM ensembles as functions of their locations within
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the five-dimensional parameter space corresponding to the variables {B, C, r, s, ⌧0}

where B � 1, C
2

� 2⇡2(4B � 3)/3, and s  1/C.

4.4 Results

In general, we seek to determine which values of our defining parameters

{B, C, r, s, ⌧0} lead to self-consistent and potentially viable dark sectors — i.e., sectors

which satisfy our abundance, look-back, and we↵ constraints in Eqs. (4.44), (4.45),

and (4.46) respectively, along with our M0 > O(keV) constraint. For each such set,

we also seek to determine the corresponding values of relevant mass scales such as the

string scale Ms. We also seek to determine the extent to which the corresponding en-

semble is truly DDM-like, with a relatively large number of component states playing

a significant role in the phenomenology of the dark sector and contributing to ⌦tot at

the present time. In general, the larger the value of ⌘(tnow), the more DDM-like the

corresponding ensemble.

At first glance, it might seem rather daunting to orient ourselves within the five-

dimensional {B, C, r, s, ⌧0} parameter space. However, there are really two sepa-

rate parts to our analysis — one part which depends only on relative mass scales,

and one part which makes explicit reference to absolute mass scales. It is clear

from Eqs. (4.37) and (4.38) that once we know {B, C, r, s, ⌧0}, we can determine the

function ⌦(R,NR)

tot (t) up to an overall multiplicative constant ⌦(R,NR)

0
(tnow). Setting

⌦(R,NR)

tot (tnow) = ⌦CDM ⇡ 0.26 therefore immediately determines a required numerical

value of ⌦(R,NR)

0
(tnow). This also determines the corresponding values of ⌘(tnow) and

we↵(tnow). Up to this point, we have not yet anchored our results in terms of abso-

lute mass scales. However, this can also easily be done: we simply set our required

numerical value of ⌦(R,NR)

0
(tnow) to the expression in either Eq. (4.32) or Eq. (4.35).

This then determines an absolute value for the mass scale M0, whereupon we find

that Ms = rM0 and Tc = (s/r)M0. Thus, in this way, we can extract the values for

Ms and ⌘(tnow) corresponding to every point in the {B, C, r, s, ⌧0} parameter space.

Certain observations can be made rather rapidly. For example, given Eq. (4.44),

it immediately follows that ⌦0(tnow) <
⇠ 0.26 — a bound which can be saturated only
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when ⌘(tnow) = 0. More generally and more schematically, we might write this

constraint in the rough order-of-magnitude form

⌦0(tnow) <
⇠ O(0.1) . (4.48)

However, let us now consider the expression in Eq. (4.35) for ⌦0(t) in the relativistic

case. Since ⌧0 must significantly exceed tnow by at least several orders of magnitude,

as discussed in Sect. 4.3, we see that the exponential factor e
�t/⌧0 is essentially 1.

Likewise we recall that M0/TMRE � O(103), as also discussed in Sect. 4.3. Let us

assume that this bound is saturated, so that M0/TMRE = O(103). We therefore find

that Eq. (4.48) can be satisfied only if gc ⇠ 104. This would in turn require a mass

scale Tc which at the very minimum exceeds the TeV scale (thereby introducing a hi-

erarchy between Tc and M0 which is at least a factor of 106) and which actually must

be so high that there are at least ten times as many e↵ectively relativistic degrees of

freedom below this scale than are known to exist below the TeV scale — a rather un-

likely proposition resting entirely on currently unknown physics. Considering greater

values of M0/TMRE only worsens this situation and requires even greater values of

gc. Therefore, although there might exist finely tuned slivers of parameter space in

which one might manage to achieve a balancing between gc and M0/TMRE su�cient

to satisfy Eq. (4.48), we shall abandon any further consideration of the relativistic

case in what follows.

This situation changes dramatically when we turn to the non-relativistic case in

Eq. (4.32). In this case, we continue to find that e
�tnow/⌧0 ⇡ 1. However, the presence

of the factor (r/s)3/2
e

�r/s allows us greater freedom in satisfying the constraint in

Eq. (4.48). Indeed, the first thing we learn is that our system is going to be very

sensitive to the ratio r/s — not surprising, given that this was already the radio that

determined the extent to which our lightest mode was relativistic or non-relativistic.

However, we now see that r/s is also going to play a large role in governing the

allowed values of the overall mass scales in our system, with greater (lesser) values of

r/s generally corresponding to higher (lower) absolute mass scales for our ensemble.
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Figure 4.4: A survey of physics in the (r, s) plane, with B, C, and ⌧0 set to the “bench-
mark” values shown. Left panel : The thin black line labeled ‘1’ indicates the contour with
r/s = 1; this is thus the dividing line between the region in which the lightest state is rela-
tivistic (left of this line) versus non-relativistic (right of this line). The blue curves indicate
contours of ⌘(tnow), while the magenta lines indicate contours of Ms and are labelled by
the value of log10(Ms/GeV). The red region is excluded by look-back and we↵ constraints,
while the pale green region is excluded by the constraint M0

>
⇠ O(keV) which is saturated

along the single green contour. Increasing (decreasing) the value of ⌧0 does not a↵ect the
Ms or ⌘(tnow) contours, and simply shifts the red exclusion region to the left (right). Right
panel : Same as left panel, but with features plotted relative to the variables r and r/s. The
entire region shown in this panel corresponds to the non-relativistic case.

We shall therefore proceed through our parameter space as outlined above, paying

special attention to the values of r and s and in particular to the ratio r/s. Specifically,

for each value of {B, C, r, s, ⌧0}, we shall determine whether our internal consistency

constraints B � 1, C
2

� 2⇡2(4B � 3)/3, and s  1/C are satisfied and whether

the phenomenological consistency constraints in Eqs. (4.45) and (4.46) are satisfied.

If so, we shall then determine the corresponding values of Ms and ⌘(tnow), with the

overall goal of understanding which regions of parameter space potentially lead to

viable ensembles and which subregions correspond to ensembles which are particularly

DDM-like.

Because of the somewhat natural and intuitive role played by the D? = 2 scalar

flux tube, as discussed in Sect. 4.1, we shall adopt the values

B = 5/4 , C = 2⇡/

p
3 ⇡ 3.63 (4.49)

as “benchmark” values and begin our exploration within (r, s) space. Taking ⌧0 =
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109
tnow, we find the results shown in Fig. 4.4.

Let us first concentrate on the left panel of Fig. 4.4. The red region indicates

those values of (r, s) which are excluded by look-back and we↵ constraints, while

the pale green region is excluded by the requirement that M0
>
⇠ O(keV). The blue

curves indicate contours of ⌘(tnow) and the magenta curves indicate contours of Ms,

labelled by values of log
10

(Ms/GeV). The single green curve indicates the contour

with M0 = 1 keV. The thin black curve indicates the contour with r/s = 1, and thus

serves as the nominal dividing line between the regions in which the lowest ensemble

state is relativistic (above and to the left) or non-relativistic (below and to the right).

Several things are immediately apparent from this figure. First, we see that the

portion of the parameter space corresponding to the relativistic case is excluded by

our constraint on M0. This is entirely in keeping with our conclusions already reached

above. Nevertheless, we also see that beyond this region there exists an entire area

of parameter space in which all of our constraints are satisfied. Moreover, within this

region we see that Ms varies from the keV/MeV-range all the way to the Planck scale.

Likewise, ⌘(tnow) varies through all of its possible values. This is therefore not only

an allowed region, but one which is likely to be exceedingly rich in phenomenology.

Indeed, given the contours plotted in this figure, we see that the “sweet spot” within

the (r, s) parameter space lies roughly within the range

8
><

>:

1 <
⇠ r <

⇠ 6

0.05 <
⇠ s <

⇠ 0.18 .

(4.50)

This is the region of (r, s) parameter space where the plotted blue and magenta

contours intersect each other and form a “cross-hatched” region, as illustrated in the

left panel of Fig. 4.4. This sweet spot is therefore the region that will be of maximum

interest to us. Indeed, within this region, we observe from the left panel of Fig. 4.4

that ⌘(tnow) increases if either r or s is increased, while Ms increases in the former

case but decreases in the latter.

The right panel of Fig. 4.4 focuses on this sweet-spot region and shows the same
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Ms and ⌘ contours, only now plotted with respect to the variables r/s and s using a

linear rather than logarithmic axis. The fact that the Ms contours are approximately

vertical in this region indicates that Ms is dominantly determined by the ratio r/s,

exactly as anticipated above, with increasing values of r/s corresponding to increasing

values of Ms. Indeed, we see from the right panel of Fig. 4.4 that Ms increases

extremely rapidly as a function of r/s, in keeping with the exponential dependence

in Eq. (4.32). Likewise, increasing the value of r/s while holding r fixed tends to

decrease the value of ⌘(tnow). Thus, for fixed r, we find that Ms and ⌘(tnow) tend

to vary inversely with respect to each other as functions of r/s, with our ensembles

becoming less DDM-like at higher mass scales and more DDM-like at lower mass

scales. Likewise, for fixed r/s, we find that increasing r tends to increase ⌘(tnow), as

already evident from the left panel of Fig. 4.4.

It is easy to understand these results physically. For fixed r, increasing r/s cor-

responds to decreasing s. This lowers the critical temperature Tc at which our initial

cosmological abundances are established, which has the e↵ect of decreasing the abun-

dances of the heavier states relative to the lighter states. This therefore decreases

the value of ⌘(tnow). By contrast, holding r/s fixed and increasing r corresponds to

increasing s as well. The increase in r renders all of the ensemble states more massive

but provides a smaller proportional mass increase for the heavier states than for the

lighter states. Thus the mass ratios between heavier and lighter states decreases,

which tends to increase the value of ⌘(tnow). Likewise, as discussed above, increasing

s also tends to increase the value of ⌘(tnow). These two e↵ects then tend to reinforce

each other, as evident in Fig. 4.4.

Having identified our sweet-spot region in (r, s) parameter space, we now investi-

gate how these values of Ms and ⌘(tnow) vary as our other parameters B, C, and ⌧0

are varied. To do this, we study variations in these parameters relative to an (r, s)

“benchmark”

r = 3.5 , r/s = 30 , (4.51)

which we henceforth take as representative of our sweet-spot region in the (r, s) plane.
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Figure 4.5: Contours of ⌘(tnow) (blue curves) and Ms (magenta curves), labelled as in
Fig. 4.4 and plotted in three di↵erent planar “slices” through the (B, C, r, s) parameter
space. The top two panels show these contours plotted in the (r, C) and (s, C) planes,
respectively, while the bottom panel shows these contours plotted in the (B, C) plane. In
all panels, colored shaded regions are excluded by either string consistency constraints (blue
shaded regions), internal consistency constraints (red region in lower panel), or phenomeno-
logical look-back, we↵ , or M0

>
⇠ O(keV) constraints (pale green regions as well as the red

region along the right edge of the upper right panel). As in Fig. 4.4, the thin black vertical
r/s = 1 contour (visible at the extreme left of the upper left panel) continues to represent
the boundary between the regions in which the lightest state is either relativistic (left of
the line) or non-relativistic (right of the line).

In Fig. 4.5 we illustrate the e↵ects of variations in B and C relative to this benchmark,

plotting contours of Ms and ⌘(tnow) in the (r, C) plane (upper left panel), the (s, C)

plane (upper right panel), and the (B, C) plane (lower panel). Note that since we

must always have s  1/C, it is actually the normalized product s ·C which captures

the dependence on s in situations where C might also be varied. In the upper right

panel we therefore plot our contours relative to s · C rather than s alone. Likewise,

in the lower panel of Fig. 4.5 we have continued to indicate our allowed regions of B
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and C as in Fig. 4.2, where the dot continues to represent the D? = 2 scalar-string

benchmark values in Eq. (4.49).

Together, the three panels of Fig. 4.5 tell a consistent story. First, with r and s

held fixed, we see from the upper left and lower panels of Fig. 4.5 that increasing C

generally tends to increase ⌘(tnow). This result makes sense: increasing C corresponds

to increasing the degeneracies of the heavier states relative to the lighter states.

However, with s held constant, each of these heavier states continues to accrue the

same abundance as before. Thus increasing C increases the total abundance carried

by the heavier states relative to that carried by the lighter states, thereby increasing

⌘(tnow). Second, we see from the lower panel of Fig. 4.5 that while our values of Ms

and ⌘(tnow) are quite sensitive to C, they are far less sensitive to B. This too makes

sense, since C governs the exponential rate of growth in the state degeneracies while

B governs only the subleading polynomial behavior. Third, in each of the above two

cases, we also note that increasing C while holding r or B fixed also corresponds to

decreasing Ms. Thus, once again, we see that Ms and ⌘(tnow) tend to vary inversely

with each other, giving rise to more DDM-like ensembles at lower energy scales and

more traditional ensembles at higher energy scales.

Finally, we see from the upper right panel of Fig. 4.5 that our values of ⌘(tnow) are

largely insensitive to variations in C as long as s ·C is held fixed. However, this too is

easy to understand. Increasing C while holding s ·C fixed corresponds to decreasing s

as we increase C. Increasing C induces an exponential increase in the degeneracy of

each massive state, while decreasing s decreases the critical temperature Tc, thereby

inducing a corresponding exponential decrease in the abundance associated with each

such state. Thus, to first approximation, these two e↵ects tend to mitigate each other:

they produce more states, but also cause each state to carry a correspondingly smaller

abundance.

Thus far we have not discussed the e↵ects of varying our remaining free parameter

⌧0. Varying ⌧0 does not a↵ect the degeneracies of states or their cosmological abun-

dances. Indeed, variations in ⌧0 a↵ect only the lifetimes of these states. In principle,

this has the potential to a↵ect the values of quantities such as ⌘(tnow) since the deter-
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Figure 4.6: Contours of the minimum value of ⌧
min

0
consistent with the look-back and we↵

constraints discussed in the text, plotted in the (r, s) plane (left panel) and in the (B, C)
plane (right panel).

mination of ⌘(tnow) requires totalling the abundances of only those states which have

not yet decayed at the present time. However, under the assumption that ⌧0 � tnow

(or under the equivalent assumption that our scenario already satisfies the look-back

and we↵ constraints), we know that ⌦tot(tnow) is not changing rapidly at the present

time. In other words, the total abundances of those states which are decaying at

the present time is relatively small. In such cases, the Ms and ⌘(tnow) contours are

therefore largely insensitive to ⌧0. Indeed, in Fig. 4.4, the sole e↵ect of varying ⌧0 is

therefore merely to “slide” the red exclusion regions in Fig. 4.4 horizontally relative to

the rest of the plot: these exclusion regions move to the right (and therefore become

more threatening to our sweet-spot region) if ⌧0/tnow is decreased, and move to the

left (and therefore become even less of a concern) if ⌧0/tnow is increased.

While this is entirely as expected, the natural question then arises: for any values

of {B, C, r, s}, what is the minimum value of ⌧0 that can be tolerated before violat-

ing our look-back and we↵ constraints? Contours indicating the resulting minimum

values ⌧
min

0
are plotted in Fig. 4.6 in both the (r, s) and (B, C) planes, taking our

“benchmark” values in Eqs. (4.51) and (4.49) respectively. In general, we see from

Fig. 4.6 that a wide variety of values of ⌧
min

0
are possible, depending on our specific

location in parameter space, with larger values of ⌧
min

0
corresponding to very small

values of r or relatively large values of s or C. However, for our sweet-spot bench-
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mark values in Eqs. (4.49) and (4.51), we see from Fig. 4.6 that ⌧
min

0
can be as small

as approximately 102
tnow.

This, too, is not entirely a surprise. After all, a bound on the lifetime of the

longest-lived DDM constituent on the order ⌧0/tnow ⇠ O(100) is roughly on the

same order as the most conservative bounds on the lifetime ⌧� of a traditional single-

component dark-matter candidate which decays into other purely dark-sector states.

Indeed, model-independent bounds on decaying dark matter in traditional single-

component models in which the dark-matter particle carries essentially all of the

observed dark-matter abundance and decays into dark radiation have been derived

by a number of groups (see, e.g., Refs. [81–84]). Depending on the assumptions in-

herent in the various analyses and on the breadth of cosmological data incorporated,

such studies place a bound on the lifetime of such a dark-matter candidate on the

order of ⌧�/tnow & O(10 � 100). Thus, a bound on ⌧0 in this range is a priori rea-

sonable — especially since our analysis in Fig. 4.6 determines the value of ⌧
min

0
based

only on cosmological look-back and we↵ constraints. Of course, if the ensemble con-

stituents decay into visible-sector particles with a non-negligible branching fraction,

the constraints on ⌧0 are expected to increase significantly. Indeed, the most stringent

bounds on a single dark-matter particle � which decays primarily into visible-sector

radiation require that this particle be hyperstable, with ⌧� ⇠ 109
tnow.

Despite the possibilities for lowering ⌧0 a↵orded by the results in Fig. 4.6, we shall

continue to retain our benchmark value ⌧0 = 109
tnow. We do this in order to be

consistent with the most conservative decay scenarios possible. Although this value

for ⌧0 is quite large, we emphasize that this is only the lifetime of the lightest ensemble

constituent, and that a significant fraction of the ensemble constituents will generally

have lifetimes much less than ⌧0. Moreover, even in cases for which the majority of the

ensemble is long-lived, DDM ensembles can nevertheless yield striking astrophysical

signatures [47, 49, 50] which di↵er from those of traditional dark-matter candidates.

Thus, even with such values of ⌧0, the phenomenology of the resulting ensemble can

di↵er significantly from that of traditional dark-matter candidates.

Having explored the relevant {B, C, r, s, ⌧0} parameter space of our ensemble and
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identified our sweet-spot region, we now examine the characteristics of the corre-

sponding ensembles in more detail. In particular, we seek to understand what these

ensembles look like, and how their overall structure evolves with time. As discussed in

Sect. 4.3.1, the most relevant aggregate properties of any dark-sector ensemble are its

total cosmological abundance ⌦tot(t), its e↵ective equation-of-state parameter we↵(t),

and its tower fraction ⌘(t), each of which is generally time-dependent. We therefore

begin by examining how each of these quantities evolves with time for ensembles in

and near our sweet spot.

This information is shown in Fig. 4.7. In this figure, we consider a “benchmark”

ensemble with B = 5/4, C = 2⇡/
p

3, r = 3.5, s = 3.5/30, and ⌧0 = 109
tnow, as well as

nearby ensembles in which ⌧0 is varied (top row), r is varied (second row), s is varied

(third row), C is varied (fourth row), and B is varied (fifth row). In each case, we plot

the corresponding total cosmological abundance ⌦tot (left column), equation-of-state

parameter we↵ (middle column), and tower fraction ⌘ (right column) as functions

of time. Note that in each case the overall abundance is normalized through an

appropriate choice of Ms such that ⌦(tnow) = ⌦CDM ⇡ 0.26, as required.

In each panel of Fig. 4.7 (except for those along the bottom row), the blue curve

corresponds to our “benchmark” point. We therefore begin by focussing on these

benchmark curves. The curve for ⌦tot(t) appears nearly constant at ⌦CDM ⇡ 0.26

for all of the cosmological history plotted (which we assume to have been matter-

dominated), including the present time tnow. Indeed, this behavior continues all the

way into the future until t ⇡ 109
tnow, at which point ⌦tot(t) begins to decline gently

to ⌦tot = 0. This behavior is matched by we↵(t), which remains near zero for most

its cosmological evolution before gently rising to we↵ > 0 at t ⇡ 109
tnow. This makes

sense, since Eq. (4.42) tells us that we↵(t) is proportional to the time-derivative of

⌦tot(t). Finally, we see that ⌘(t) remains more or less fixed at approximately ⌘ ⇡ 0.72

during most of its cosmological history before smoothly dropping to ⌘ = 0.

This behavior is easy to understand. If this has been a traditional ensemble with

a single dark-matter component whose decay we could model as essentially instan-

taneous (just as we are assuming for the individual components of our dark-matter



95

-5 0 5 10
log10(t/tnow)

0

0.1

0.2

0.3

0.4

0.5

+
to

t(t)

=0=102 tnow

=0=1013/3 tnow

=0=1020/3 tnow

=0=109 tnow

B=5/4
C=2:/31/2

r=3.5
s=3.5/30

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

w
ef

f(t)

=0=102 tnow

=0=1013/3 tnow

=0=1020/3 tnow

=0=109 tnow

B=5/4
C=2:/31/2

r=3.5
s=3.5/30

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

2
(t)

=0=102 tnow

=0=1013/3 tnow

=0=1020/3 tnow

=0=109 tnow

B=5/4
C=2:/31/2

r=3.5
s=3.5/30

-5 0 5 10
log10(t/tnow)

0

0.1

0.2

0.3

0.4

0.5

+
to
t(t
)

r=0.001
r=0.01
r=0.1
r=3.5

B=5/4
C=2:/31/2

s=3.5/30
=0=10

9tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

w
ef
f(t
)

r=0.001
r=0.01
r=0.1
r=3.5

B=5/4
C=2:/31/2

s=3.5/30
=0=10

9tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

2
(t)

r=0.001
r=0.01
r=0.1
r=3.5

B=5/4
C=2:/31/2

s=3.5/30
=0=10

9tnow

-5 0 5 10
log10(t/tnow)

0

0.1

0.2

0.3

0.4

0.5

+
to

t(t)

s=0.42/C
s=0.95/C
s=0.99/C
s=1/C

B=5/4
C=2:/31/2

r=3.5
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

w
ef

f(t)

s=0.42/C
s=0.95/C
s=0.99/C
s=1/C

B=5/4
C=2:/31/2

r=3.5
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

2
(t)

s=0.42/C
s=0.95/C
s=0.99/C
s=1/C

B=5/4
C=2:/31/2

r=3.5
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.1

0.2

0.3

0.4

0.5

+
to

t(t)

C=2:/31/2

C=6
C=7.5
C=8.571

B=5/4
r=3.5
s=3.5/30
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

w
ef

f(t)

C=2:/31/2

C=6
C=7.5
C=8.571

B=5/4
r=3.5
s=3.5/30
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

2
(t)

C=2:/31/2

C=6
C=7.5
C=8.571

B=5/4
r=3.5
s=3.5/30
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.1

0.2

0.3

0.4

0.5

+
to

t(t)

B=1
B=5/4
B=7/4
B=9/4

C=7
r=3.5
s=3.5/30
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

w
ef

f(t)

B=1
B=5/4
B=7/4
B=9/4

C=7
r=3.5
s=3.5/30
=0=109 tnow

-5 0 5 10
log10(t/tnow)

0

0.2

0.4

0.6

0.8

1

2
(t)

B=1
B=5/4
B=7/4
B=9/4

C=7
r=3.5
s=3.5/30
=0=109 tnow

Figure 4.7: Total cosmological abundances ⌦tot (left column), equation-of-state param-
eters we↵ (middle column), and tower fractions ⌘ (right column) for our DDM ensembles,
plotted as functions of time when all input variables are held fixed at their “benchmark”
values except for ⌧0 (top row), r (second row), s (third row), C (fourth row), and B (bottom
row). In all panels the blue curve corresponds to our “benchmark” point with B = 5/4,
C = 2⇡/

p
3, r = 3.5, s = 3.5/30, and ⌧0 = 109

tnow, while the curves of other colors indicate
departures away from this point. For reasons discussed in the text, the bottom row illus-
trates variations in B along a line that does not include the benchmark point. Note that,
as expected, some variations away from the benchmark point violate our look-back, we↵ ,
or M0 constraints. However, our internal self-consistency constraints are always satisfied,
with ⌦tot(tnow) = ⌦CDM ⇡ 0.26 in all cases.
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ensembles), our curve for ⌦tot(t) would have been fixed precisely at its present value

⌦CDM ⇡ 0.26 over the entire range shown until suddenly dropping (essentially dis-

continuously) to ⌦tot = 0 when the single dark-matter particle decays at t ⇡ 109
tnow.

Likewise, we↵(t) would have been strictly fixed at we↵ = 0 during the cosmological

evolution, while ⌘(t) would have been fixed at zero all along. However, this is not

a traditional dark-matter setup: this is a DDM ensemble in which the present-day

cosmological abundance ⌦tot(tnow) ⇡ 0.26 is spread across a relatively large number

of individual components with di↵erent masses and di↵erent lifetimes. It is thus the

continued, ordered, sequential decays of these di↵erent components which produce

the softer, gentler drop in ⌦tot(t) as t approaches t ⇡ 109
tnow. In fact, ⌦tot(t) is

actually falling slightly throughout the cosmological evolution shown; this behavior

is not visible in Fig. 4.7 only because at early times prior to t ⇡ 109
tnow the states

which are decaying are extremely heavy and thus carry extremely small abundances.

By contrast, at late times approaching t ⇡ 109
tnow, the states which are decaying are

relatively low-lying and carry more significant abundances. This is also evident in

our curve for ⌘(t): for most of the cosmological history, the value ⌘ ⇡ 0.72 tells us

that only approximately 28% of the total dark-sector cosmological abundance is car-

ried by the dominant (lightest) state in the ensemble, even at early times, while the

remaining 72% of the abundance is carried by the more massive states — particularly

those which, though more massive, are nevertheless relatively low-lying. As a result

of the sequential decays of such states, ⌘(t) — like ⌦tot(t) — is also actually falling

slightly throughout the cosmological evolution shown. It is only due to the decays of

the relatively low-lying states near t ⇡ 109
tnow that ⌘(t) ultimately falls gently but

noticeably to zero.

At first glance, it may seem surprising that all three of our primary quantities ⌦tot,

we↵ , and ⌘ are nearly constant at t ⇡ tnow. However, this is ultimately the direct

consequence of our benchmark choice ⌧0 = 109
tnow: with this choice, those states

within the ensemble which are decaying today are all extremely massive and thus

carry very little abundance. The DDM nature of such an ensemble is nevertheless

clear from its ⌘-value, which is as high as 0.72 even at the present time. In this
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connection, we again emphasize that taking ⌧0 = 109
tnow was merely a conservative

choice which is not by itself intrinsic to the DDM framework; indeed we learned from

Fig. 4.6 that we could easily have chosen ⌧0 as small as ⌧0 ⇡ 102
tnow without running

afoul of our look-back and we↵ constraints. Indeed, without further details concerning

the precise nature of these ensembles (including, most critically, the ultimate decay

products of their constituents), such small values for ⌧0 would have been equally

viable.

This observation is illustrated along the top row of Fig. 4.7, where we show the

evolution of our blue “benchmark” curves as we vary ⌧0 between our conservative

value ⌧0 ⇡ 109
tnow and the more extreme value ⌧0 ⇡ 102

tnow. In general, changing ⌧0

does not a↵ect the internal structure of the ensemble — it merely a↵ects the lifetimes

of the individual ensemble constituents, rescaling them all up or down together. Since

it is these lifetimes which produce the non-trivial time-dependence for ⌦tot, we↵ , and

⌘, we expect that changing ⌧0 should preserve the general shapes of these curves and

merely translate these curves along the time axis. This behavior is verified in the

panels along the top row of Fig. 4.7. Indeed, we can even see from these panels why

⌧0 ⇡ 102
tnow is the minimum value of ⌧0 that may be chosen for our benchmark point:

choosing ⌧0 any smaller would shift our curves even further towards earlier times,

whereupon ⌦tot(t) would begin to experience significant variations within the interval

10�6
tnow

<
⇠ t <

⇠ tnow and we↵(tnow) would begin to deviate significantly from zero. Such

behavior would then violate our look-back and we↵ constraints, respectively.

Let us now turn to the behavior of our ⌦tot, we↵ , and ⌘ curves as we vary r, as

shown in the panels along the second row of Fig. 4.7. Two observations underlie the

behavior shown. First, we note that changing r changes the lifetimes of the states

at each mass level according to Eq. (4.28), with ⌧n/⌧0 ! 0 as r ! 0. This result

is simple to understand: as r ! 0, the n = 0 states become hierarchically lighter

than the n � 0 states and thus the n > 0 states have hierarchically shorter lifetimes.

Second, we note that changing r also changes the relative abundances which are
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generated at tc according to

⌦n(tc)

⌦0(tc)
=

(n + r
2)5/4

r5/2
exp

 
�

p
n + r2 � r

s

!
. (4.52)

This quantity is non-monotonic as a function of r, first dropping as r is reduced from

large values and ultimately hitting a minimum before increasing again and diverging

as r ! 0. Indeed, for n = 1 and s set to its benchmark value s = 3.5/30 ⇡ 0.117,

this minimum occurs at r ⇡ 0.4.

These two e↵ects are responsible for the behaviors shown in the second row of

Fig. 4.7. As r decreases from its benchmark value with ⌧0 held fixed, the excited states

with n > 0 start decaying earlier and earlier. Rescaling our overall abundances in

order to keep ⌦tot(tnow) = ⌦CDM produces the e↵ects shown in the left panel. Indeed,

we see from this panel that the case with r = 0.001 actually violates our look-back

and we↵ constraints, as already evident from Fig. 4.4. Even the ⌦tot(t) curve with

r = 0.01 is tightly constrained: shifting ⌧0 towards any smaller values below 109
tnow

(i.e., shifting this curve further towards the left) also leads to violations of our look-

back and we↵ constraints, as already anticipated in the left panel of Fig. 4.6. Likewise,

as a result of the observations below Eq. (4.52), the relative sizes of the abundances

⌦n associated with the excited n > 0 states relative to the abundance ⌦0 associated

with the n = 0 ground state vary non-monotonically with r, shrinking as r drops

from 3.5 to approximately 0.4, and then growing again as r drops still further. This

then explains the non-monotonic behavior for ⌘(t) as a function of r, as shown in the

right panel.

By contrast, the e↵ects of varying s and C are shown along the third and fourth

rows of Fig. 4.7, respectively. While the quantity s governs the exponential rate at

which the Boltzmann suppression of the abundances of the ensemble constituents

decreases with n, the quantity C governs the exponential rate at which the the de-

generacy of states for the ensemble grows with n. As a result, the e↵ects of decreasing

s or increasing C are largely similar to each other as far as ⌦tot(t) is concerned, as

evident in Fig. 4.7: both tend to increase the primordial aggregate abundances b⌦n
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of the heavier states in the ensemble. This e↵ect causes ⌦tot(t) to begin to decline

earlier and earlier as these heavier states are the first to decay. By contrast, it is

important to note that increasing C and decreasing s nevertheless have opposite ef-

fects on the value of ⌘(tnow): the former increases ⌘(tnow), as anticipated in Fig. 4.5,

while the latter decreases ⌘(tnow), as anticipated in Fig. 4.4. This di↵erence occurs

because increasing C merely increases the state degeneracies ĝn of the heavy states,

thereby injecting more abundance into the heavy states relative to the light states,

while decreasing s has the e↵ect of increasing the abundances of all of our states,

including the abundance of the dominant abundance-carrier at n = 0. This causes

the total abundance of the ensemble to grow more rapidly than the abundances of

the excited n > 0 states alone, thereby decreasing ⌘(tnow).

One important feature to note from these plots is the appearance of a Hagedorn

instability as s ! 1/C (or equivalently as C ! 1/s). In these limiting cases, the total

energy density ⌦tot injected into the system through our confining phase transition at

t = tc diverges, violating the constraint in Eq. (4.18). Such cases therefore violate our

look-back and we↵ constraints, as evident in Fig. 4.7. Indeed, the Hagedorn instability

is a critical feature of theories with exponentially growing degeneracies of states [58].

Finally, we turn to the fifth and final row of Fig. 4.7. Note that in order to remain

within the self-consistency bound in Eq. (4.13), it is not possible to increase B above

our benchmark value 5/4 when C = 2⇡/
p

3. For this reason, we have chosen to hold

C fixed at a greater value, specifically C = 7, when exploring the e↵ects of varying

B. Unfortunately, we see that variations in B are barely distinguishable in these

plots, even when B is varied all the way from B = 1 (corresponding to D? = 1) to

B = 9/4 (corresponding to D? = 6). This tells us that the sorts of abundance-based

or equation-of-state-based analyses we are doing here are relatively insensitive to the

number of uncompactified transverse spacetime directions into which our dark-sector

flux tube can vibrate, as long as C (related to the total central charge of the degrees

of freedom on the flux-tube worldsheet) is held fixed. Of course, in a realistic setting,

there are likely to be many other more specific probes of D?, including probes that

are based on specific properties of the dark-sector dynamics. Our result here merely



100

-5 0 5 10
log10(t/tnow)

10-6

10-4

10-2

100

+̂
n
(t

)

n=0
n=1
n=2
n=3
n=10
n=30

B=5/4
C=2:/31/2

r=3.5
s=3.5/30
=0=10

9tnow

Figure 4.8: The level-by-level aggregate cosmological abundances b⌦n ⌘ gn⌦n of our bench-
mark DDM model, plotted as functions of time for a series of low-lying mass levels n. We
see that the lightest states decay later and carry the largest cosmological abundances, while
the heavier states decay earlier and carry smaller cosmological abundances — a key feature
of the DDM framework. As required, the sum of all abundance contributions at t = tnow is
⌦tot(tnow) = ⌦CDM ⇡ 0.26.

indicates that studies based on cosmological abundances alone are not likely to be

the most useful in this regard.

We have seen in Fig. 4.7 how the total abundances ⌦tot of our DDM ensembles vary

as a function of time. However, it is also interesting to understand how the individual

aggregate abundances b⌦n(t) at each mass level n contribute to this behavior. The

result is shown in Fig. 4.8 for our benchmark DDM model. As we see from Fig. 4.8,

there are many mass levels n whose states contribute to ⌦tot(tnow): states with smaller

values of n carry larger abundances and have longer lifetimes, persisting into later

times before decaying, while those with larger values of n carry smaller abundances

and have shorter lifetimes, decaying earlier. Indeed, this balancing between lifetimes

and abundances is a fundamental hallmark of the DDM framework. Although the

sum of these abundances at t = tnow is fixed at ⌦tot(tnow) = ⌦CDM ⇡ 0.26, we see

that even states with relatively large values of n have lifetimes ⌧n exceeding tnow and

thus contribute non-trivially to ⌦tot(tnow). Indeed, for our benchmark model, we find

that there are no fewer than seven distinct mass levels contributing more than 0.01

to ⌦tot(tnow) and no fewer than ten distinct mass levels contributing more than 1%
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Figure 4.9: Left panel : Present-time aggregate abundance fractions b⌦n(tnow)/⌦tot(tnow),
plotted as functions of r/s. As r/s increases, the n = 0 state carries an increasingly large
fraction of the total abundance, resulting in scenarios which have smaller values of ⌘ and
which are therefore less DDM-like. By contrast, for smaller r/s, we see that the lightest
state carries a smaller proportional fraction of the total abundance and in fact may not
even be the dominant state for su�ciently small r/s. Right panel : A zoom-in of the left
panel, illustrating how the level n of the states carrying the largest collective abundance
⌦n(tnow) shifts as a function of r/s. For example, for r/s = 15, all states carry relatively
small abundances and it is actually the n = 23 states which collectively carry the largest
collective abundance at the present time. Such scenarios are therefore extremely DDM-like.

of ⌦tot(tnow).

It is also interesting to examine how these results vary as a function of the ratio

r/s which, as we have seen, governs the overall mass scales associated with these

DDM ensembles. The results are shown in Fig. 4.9, where we plot the aggregate

fractions b⌦n(tnow)/⌦tot(tnow) for a variety of di↵erent mass levels n as a function of

r/s. As evident in Fig. 4.9, the lighest state carries a larger and larger fraction of

the total abundance as r/s increases, resulting in scenarios which have smaller values

of ⌘ and which are therefore less DDM-like. By contrast, the lightest state carries

a smaller proportional fraction of the total abundance as r/s decreases, and in fact

may not even be the dominant state for su�ciently small r/s. Indeed, for r/s = 15,

we find that all states carry relatively small abundances, and it is actually the states

at the n = 23 mass level which collectively carry the largest individual abundance at

the present time. Such scenarios are therefore extremely DDM-like.

Putting all the pieces together, we can summarize our results as in Figs. 4.10

and 4.11. Fig. 4.10 consists of a sequence of dark-matter pie charts showing the
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relative contributions to ⌦tot(tnow) = ⌦CDM ⇡ 0.26 from the lowest-lying states for

r = 3.5 (top row) and r = 4 (bottom row), with r/s = {25, 30, 50, 65} across each

row. Within each pie, we illustrate the corresponding collective abundances b⌦n(tnow)

as separate slices, one for each value of n, while the numbers listed within each slice

indicate the number of individual states ĝn contributing at that mass level. For each

pie chart we have also shown the corresponding values of M0, Tc, and Ms. For these

calculations we have used the input values TMRE = 0.7756 eV, gMRE = 3.36, and

gc = {10.75, 61.75, 106.75, 106.75}, respectively, for r/s = {25, 30, 50, 65}. We have

also assumed our standard benchmark values B = 5/4, C = 2⇡/
p

3, and ⌧0 = 109
tnow.

Let us begin by focusing on the “benchmark” pie chart within Fig. 4.10 corre-

sponding to r = 3.5 and r/s = 30. For this pie chart, we see that the largest pie

slice corresponds to the abundance contribution from the n = 0 mass level, while the

successively smaller pie slices progressing in a clockwise fashion within the pie chart

correspond to the abundance contributions from successively higher mass levels. For

this pie chart, we find that M0 ⇡ 532 GeV, Tc ⇡ 18 GeV, and Ms ⇡ 152 GeV. Note

that this value for Ms is in agreement with the Ms contours shown in Fig. 4.4. We

also see geometrically from this pie chart that ⌘ ⇡ 0.72, in agreement with the results

shown in Figs. 4.4, 4.5, and 4.7.

Given this, we can now investigate how this benchmark pie chart deforms as a

function of r/s and r. Results are illustrated in the other pie charts shown in Fig. 4.10.

We see in general that increasing r from 3.5 to 4.0 (i.e., passing from the top row of

pie charts in Fig. 4.10 to the bottom row) has the net e↵ect of shifting cosmological

abundance away from the ground state, thereby increasing ⌘ and generally making

each pie slice smaller while simultaneously lowering the corresponding mass scales.

This is in complete accord with the results shown in Fig. 4.4. Likewise, decreasing or

increasing r/s (i.e., moving left or right along either row) has the e↵ect of increasing

or decreasing ⌘ while decreasing or increasing our corresponding mass scales. Indeed,

we see that the variable r/s allows us to interpolate between two extremes: traditional

ensembles with high mass scales at large r/s versus DDM-like ensembles with smaller

mass scales at small r/s. We further observe that for su�ciently small r/s, the largest
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pie slice is no longer the n = 0 slice (labelled ‘1’ in each pie chart) — as r/s decreases,

this honor gradually shifts towards the pie slices corresponding to higher mass levels.

This is in accordance with the results in Fig. 4.9.

Fig. 4.11 is similar to the top row of Fig. 4.10, except that we have now increased

our values of C and B to
p

2⇡ and B = 3/2, respectively. These new values maintain

cint = 0 and correspond to the D? = 3 scalar string. These changes in C and B

increase the degeneracies ĝn of states at each mass level, with the new values indicated

within the corresponding pie slices. Although the cosmological abundances per state

are not a↵ected by the changes in C and B, these increased degeneracies result in

ensembles which are even more DDM-like and which have correspondingly smaller

mass scales than those along the top row of Fig. 4.10. These results are consistent

with those shown in Fig. 4.5.

We see, then, that a tremendous variety of DDM ensembles exist which have

the two fundamental features outlined in the Introduction — Regge trajectories and

exponentially rising degeneracies of states. These ensembles are consistent with our

look-back and we↵ constraints, and thus satisfy the zeroth-order constraints that

may be imposed on such ensembles on the basis of their total energy densities and

equations of state alone. We also observe an important feature, a inverse correlation

between the tower fraction ⌘ (which governs the extent to which our ensemble is truly

DDM-like) and the magnitude of its underlying mass scales. Indeed, we have seen

that while traditional ensembles typically have high corresponding mass scales, our

ensembles become increasingly DDM-like for lower mass scales — all while remaining

consistent with our look-back and we↵ constraints. These observations will likely be an

important guide and ingredient in any future attempts to build realistic dark-matter

models of this type.
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4.5 Conclusions

In this chapter, we have investigated the properties of a hitherto-unexplored class of

DDM ensembles whose constituents are the composite states which emerge in the con-

fining phase of a strongly-coupled dark sector. In ensembles of this sort, the masses

of the constituent particles lie along well-defined Regge trajectories and the density

of states within the ensemble grows exponentially as a function of the constituent-

particle mass. This exponential growth is ultimately compensated by a Boltzmann

suppression factor in the primordial abundances of the individual constituents, re-

sulting in a finite total energy density ⌦tot(t). We also showed that such ensembles

can naturally exhibit a balancing between lifetimes and cosmological abundances of

the sort required by the DDM framework.

For each such ensemble, we calculated the corresponding e↵ective equation-of-state

parameter we↵(t) as well as the tower fraction ⌘(t). We also imposed a number of

zeroth-order model-independent phenomenological constraints which follow directly

from knowledge of ⌦tot(t), we↵(t), and ⌘(t). In general, we found that the imposition

of such constraints tends to introduce correlations between the di↵erent underlying

variables which parametrize our DDM ensembles, so that an increase in one variable

(such as, e.g., the exponential rate of growth in the state degeneracies) requires a

corresponding shift in another variable (in this case, an increase in the lifetime of the

lightest state in the ensemble, as indicated in the right panel of Fig. 4.6). Perhaps

one of our most important results is the existence of an inverse correlation between

the tower fraction ⌘(t) associated with a given DDM ensemble and its corresponding

fundamental mass scales, so that the present-day cosmological abundance of the dark

sector must be distributed across an increasing number of di↵erent states in the

ensemble as these fundamental mass scales are dialed from the Planck scale down to

the GeV scale.

We are certainly not the first to consider dark-matter scenarios in which the dark

matter is composite. Indeed, within the context of traditional dark-matter models,

it has been appreciated for some time that the dark-matter particle could be a com-
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posite state. For example, the lightest technibaryon in technicolor theories was long

ago identified as a promising dark-matter candidate [85, 86], and mechanisms [87]

were advanced by which this particle could be rendered su�ciently light so as to

be phenomenologically viable. Indeed, several explicit models [88] have been devel-

oped along these lines. Other more exotic baryon-like composites have also been

advanced as potential dark-matter candidates [89]. Lattice studies of baryon-like

states in the confining phases of both SU(3) and SU(4) gauge theories have also been

performed [90–92].

A variety of scenarios in which a long-lived meson-like state which appears in the

confining phase of a strongly-coupled hidden sector have been developed as well (for a

review see, e.g., Ref. [93]). These include scenarios in which the dark-matter particle

is a pseudo-Nambu-Goldstone boson (PNGB) stabilized by a dark-sector analogue of

flavor symmetry [94–98] or G-parity [99], or alternatively by some other symmetry of

the theory with no SM analogue [100–103]. Complementary lattice studies of strongly-

coupled dark-sector scenarios in which the dark-matter candidate is a PNGB have

been performed as well [104, 105]. Scenarios in which the dark-matter candidate is

not a PNGB, but rather a bound state of one heavy quark and one light quark, have

also received recent attention [106–108], primarily due to the non-standard direct-

detection phenomenology to which they give rise, as have scenarios in which the

dark-matter candidate is a bound state of heavy quarks alone [109]. More general

studies of composite hidden-sector theories which give rise to meson-like or baryon-

like dark-matter candidates within di↵erent regions of parameter space have also been

performed [110, 111].

Composite hidden-sector states consisting of non-Abelian gauge fields alone (so-

called “glueball” states) have also long been recognized as promising dark-matter

candidates [112, 113] — a possibility which has received renewed attention [114,

115] as well. Indeed, hidden sectors involving cosmologically stable dark glueball

states arise naturally in a variety string constructions [116, 117], as well as in certain

anomaly-mediated supersymmetry-breaking scenarios [118].

In addition, the possibility that composite states in the dark sector could them-
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selves form bound states (so-called “dark nuclei”) has also been studied [119, 120], as

has the possibility that these nuclei themselves could combine to form dark “atoms”

or even dark “molecules” [121, 122]. Indeed, lattice studies [119, 123] corroborate

the existence of stable dark nuclei states even within simple, two-flavor models with

SU(2) as the confining gauge group. In such models, a dark-sector equivalent of BBN

serves as the mechanism for abundance generation. Such models can have interest-

ing phenomenological consequences, especially in the regime in which a significant

fraction of the dark-matter abundance is contributed by nuclei with large nucleon

numbers [124, 125].

Composite dark-matter models are interesting from a phenomenological perspec-

tive as well. For example, the states of a strongly-coupled hidden sector provide

a natural context [126] for strongly-interacting massive particle (SIMP) dark mat-

ter [127, 128] models, in which 3 ! 2 processes rather than 2 ! 2 processes play

a dominant role in determining the dark-matter abundance. Indeed, a number of

explicit models along these lines have been constructed [129–132]. One of the most

interesting ramifications of SIMP models is that they naturally give rise to dark-

matter self-interactions with cross-sections su�ciently large that dark-matter scat-

tering can have an observable impact on structure formation [133]. Such composite

dark-matter models can have other phenomenological consequences as well, both at

indirect-detection experiments [134, 135] and at colliders [136–139]. Finally, the pres-

ence of additional non-Abelian gauge sectors, each with their own analogue of the

QCD ⇥-angle, could have potential implications for the physics of axions and axion-

like particles [140].

While all of these represent theoretically viable possibilities for the dark sector, the

dark ensemble we have considered in this chapter is unique for several important rea-

sons. In traditional composite dark-matter models, it is usually a single bound state

(usually the lightest bound state) which serves as the primary dark-matter candidate

and which therefore carries the full dark-matter abundance ⌦CDM. While there may

be several other dark states to which this bound state couples — and which may play

a role in determining the abundance of the dark-matter candidate — it is neverthe-
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less true that only one (or a few) composite states carry the dark-matter abundance

⌦CDM and thereby play a significant role in dark-sector phenomenology. By contrast,

within the DDM framework, the dark-matter abundance is potentially spread across

a relatively large set of composite states with various masses and lifetimes. Thus the

usual required stability of the traditional dark-matter candidate is not a required fea-

ture of the DDM ensemble, thereby allowing the associated dark-matter abundance

⌦CDM(t) and dark-matter equation-of-state parameter we↵(t) to vary with time —

even during the current, matter-dominated era.

Moreover, because the DDM framework requires an enlarged viewpoint in which

the entire spectrum of composite states are potentially relevant for determining the

properties of the dark sector, features that describe the entire composite spectrum

suddenly become relevant for determining dark-sector phenomenology — features

which would not have been relevant for previous studies within more traditional

frameworks. These features include the fact that the masses of such bound states

actually lie along Regge trajectories, and that the densities of such bound states

experience a Hagedorn-like exponential growth as a function of mass. Indeed, these

features do not play a role within traditional studies of composite dark states, but they

have been the cornerstones of the analysis we have presented here. In this context, we

note that a similar approach was also adopted in Ref. [124] with regard to ensembles of

dark nuclei whose abundances are generated via a dark-sector analogue of BBN. This

is indeed another context in which the full ensemble of dark-sector states plays an

important role in dark-matter phenomenology.

Given the initial steps presented here, there are many avenues for future research.

For example, in this chapter we have primarily focused on the phenomenology asso-

ciated with the “sweet-spot” region in Eq. (4.50), as this region gives rise to a rich

spectrum of associated mass scales and DDM-like behaviors. However, other regions

may also be relevant for di↵erent situations, including the case of dark ensembles

emerging from the bulk sectors of actual critical Type I string theories. Indeed,

such theories typically have significantly larger central charges and values of D? than

those corresponding to the D? = 2 flux tube, and thus correspond to values of (B, C)
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which are very far from the “benchmark” values in Eq. (4.49). Such strings also

likely correspond to values of (r, s) which are far from those in Eq. (4.50). Likewise,

in our analysis we have taken  = 1 and ⇠ = 3. Although these simple choices

were well-motivated and conservative, it would certainly be interesting to explore the

consequences of alternative choices. It would also be of interest to explore the ramifi-

cations of relaxing some of the approximations we have made in our analysis. These

include the “instantaneous freeze-out” approximation that underpins the Boltzmann

suppression factor in Eq. (4.15), as well as our implicit assumption that the Hubble

expansion within which our calculations have taken place is una↵ected by potential

gravitational backreaction from our continually evolving dark sector. While these

approximations may certainly be justified to first order, a more refined calculation is

still capable of altering our results numerically if not qualitatively.

It would also be interesting to subject the DDM ensembles we have studied here

to more detailed phenomenological constraints. The constraints we have studied

here, such as our look-back and we↵ constraints, are those that follow directly (and

in a completely model-independent manner) from knowledge of ⌦tot(t) and we↵(t)

alone, and as such we have seen that they are su�cient to rule out vast regions of

parameter space. It is nevertheless true that a plethora of additional constraints

could be formulated once a particular scenario with a particular particle content is

specified, and that imposing such additional constraints could potentially narrow our

viable parameter space still further.

Finally, and perhaps most importantly, in this chapter we have assumed that the

e↵ects of intra-ensemble decays on the decay widths of the ensemble constituents are

negligible. Such an assumption is certainly consistent with our other assumptions

about the structure of the theory. In general, following our string-based approach

to understanding the dynamics of these bound-state flux tubes, we may regard the

strength of the interactions among the di↵erent dark hadrons in our DDM model as

being governed by an additional parameter, a so-called “string coupling” gs, which

we have not yet specified but which does not impact any of the results we have

presented thus far. In general, gs can be di↵erent from the coupling which governs
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the decays of our ensemble states to SM states and which is thus embedded within

⌧0. In an actual string construction, the value of gs is determined by the vacuum

expectation value (VEV) of the dilaton field, but the dynamics that determines this

VEV is not well understood. In general, however, intra-ensemble decays will provide

an additional contribution to the total decay widths �n, especially for the heavier

ensemble constituents, and the decays of these heavier constituents can serve as an

additional source for the abundances of the lighter constituents. The e↵ects of such

intra-ensemble decays will be discussed in more detail in Ref. [15].
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Chapter 5

Deciphering the Archaeological Record:

Cosmological Imprints of Non-Minimal Dark Sectors

In the previous chapter, we have seen that instead of having a single WIMP, dark

matter can in general have multiple di↵erent components with di↵erent masses, life-

times and cosmological abundances. We have also seen that dark matter models

which belong to the framework of DDM rely on a balance between the lifetimes and

abundances across the entire dark sector. Although it seems less elegant to introduce

more particles, many theories beyond the Standard Model do naturally o↵er a vast

number of di↵erent particles with appropriate scaling relations between the masses

and the decay widths [13, 40, 43, 44, 56, 57]. With minimal assumptions, those models

can be every bit as predictive as the traditional WIMP scenarios [44, 46, 47, 49–52].

The cosmological constraints of these multi-component dark-matter models are

usually obtained by studying the abundances of each state. In previous DDM models,

it is often assumed that the decays of each dark-matter component produce predom-

inantly the SM particles, or other states that live outside the dark ensemble, such as

dark radiation. Therefore, the constituents in the ensemble can be simply organized

by balancing their cosmological abundances against their SM decay widths. While

such assumption is valid in all the previously considered DDM models, in principle,

decays from the heavier states to the lighter states within the dark ensemble might

also occur. In some scenarios, similar to the decays of QCD hadrons in the Standard

Model, such intra-ensemble decays might even be dominant.

Similar to those scenarios in which decays of dark-matter components produces

solely the SM final states, intra-ensemble decays would not only change the abundance

distribution across the dark ensemble, but would also change the evolution of the total

abundance of the ensemble. The di↵erence is that, this is not done by leaking energy
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into other sectors, but via converting the mass energy of the dark ensemble into its

own kinetic energy. Therefore, even though the energy is conserved during each decay,

the way the total energy density scales is changed. For example, when non-relativistic

particles decay and produce relativistic decay products, the way the energy density

scales changes from a
�3 to a

�4 until the expansion of the universe makes the decay

products non-relativistic.

Beyond the consideration on the total dark-matter abundance and the distribu-

tion of it across all the dark-matter components, intra-ensemble decays could also

lead to unique imprints in late-time phenomenology even when there is only a sin-

gle ensemble constituent left in the dark sector today. This may seem bizarre at

first sight. However, the phase-space distribution of the lightest constituent result-

ing from intra-ensemble decays would in general be non-thermal and could even be

highly non-trivial. The non-trivial phase-space distribution would subsequently exert

its influence during structure formation and could possibly leave some imprints on

the large-scale structure of the universe [141, 142]. In general, the way such decays

leave their imprints in the late-time universe comprises two steps:

1. States with larger masses decay into states with smaller masses and give them

momenta which are determined by the decay kinematics. Since the injection

of momenta depends specifically on the decay channels, and at the same time

the momenta are redshifted due to the expansion of the universe, in general,

the phase-space distributions of the lighter states would be di↵erent from the

thermal phase-space distributions.

2. In the second step, the kinetic energy obtained from the decays allows dark-

matter particles to free-stream, and thus potentially weakening the gravitational

potential as regions of higher density tend to have a larger out-going particle

flux. When structure starts to form, such weakening of gravitational potential

would slow down the growth of density perturbation, preventing structures be-

low certain scales to form. The phase-space distributions contain information

about particles’ velocities, and hence the distances those particles could travel
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and the scales they could suppress. Therefore, the phase-space distribution will

give rise to observable features in the large-scale structure. Such features can

be detected by measuring the matter power spectrum.

Essentially, studying the relation between the dark-matter phase-space distribution

and the large scale structure would enable us to learn about dark matter from its

gravitational interaction only. It also provides a way to learn about the dark sector

even when the dark sector is not talking to the SM sector at all, other than via gravity!

Therefore, in this chapter, we are interested in the whole physical processes from

the details of the decays to the resulting phase-space distribution, and eventually to

the observational signatures on the matter power spectrum. For concreteness, we

shall for simplicity assume all the intra-ensemble-decay processes take place within

the RD epoch and only the lightest state is left to play the role of the dark mat-

ter that we observe today. In addition, we shall assume that, when intra-ensemble

decays start, all the constituents of the dark ensemble have already kinetically decou-

pled from the rest of the cosmic plasma (or they have never been in equilibrium) and,

for consistency, the decay products cannot re-couple with the thermal bath. In prin-

ciple, it is possible for particles to establish kinetic equilibrium through scatterings

with themselves and obtain a thermal distribution. However, such a scenario pre-

vents us from connecting late-time observation with the early-universe processes and

would only produce observable signatures that are indistinguishable from those of the

traditional thermal dark-matter scenarios. Therefore, we shall also require for consis-

tency that the particle scatterings among the ensemble constituents are not su�cient

enough to smear the phase-space distribution established after the intra-ensemble

decays. We shall see that the characteristic features in the phase-space distribution

indeed produce interesting patterns in the matter power spectrum. In the end, to

avoid studying hot dark-matter scenarios which are obviously ruled out by current

observations, we shall require that the lightest constituent becomes non-relativistic

before matter-radiation equality. The ultimate goal of this chapter is to build a map

between the particle-physics model which governs the dynamics of the intra-ensemble

decay process and the present-day observational signatures on the large-scale struc-
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ture via the phase-space distribution. We shall see that though the forward mapping

is straightforward by numerically solving the Boltzmann equations, the attempt to

invert the mapping is extremely di�cult due to fact that distinct features in phase-

space distribution are usually blurred in the matter power spectrum. Nevertheless,

we shall also see that qualitative features can be obtained which allow us to partially

decipher the information about the early-universe processes.

This chapter is structured as follows. In Sec. 5.1, we first develop a theoretical

understanding on the way non-trivial phase-space distributions are generated via the

interplay between the decay branching ratio, the kinematics and the expansion of

the universe. Then, we study the structure formation using free-streaming analysis

and construct a map between the phase-space distribution and the shape of the cor-

responding the matter power spectrum. In Sec. 5.2, we present the study of a toy

model. We obtain the phase-space distributions by solving a large set of Boltzmann

equations, and use them to obtain the matter power spectra. We then apply the tech-

niques developed in the previous section to demonstrate the mapping. In Sec. 5.3, we

conclude.

5.1 From Intra-Ensemble Decays to Structure Formation

As is mentioned at the beginning of this chapter, the physics of intra-ensemble de-

cays consists of two steps. The first step concerns the production of non-thermal

distribution via the decays, while the second step concerns the relation between the

phase-space distribution and the matter power spectrum. In the following subsec-

tions, we shall study the two steps one by one.

5.1.1 Packets to Packets, Dust to Dust: Evolution of Phase-Space Dis-

tributions

For a non-minimal dark sector, the phase-space distribution function fi(~x, ~p, t) con-

tains all information pertinent to the cosmological evolution of a particular constituent

i in the dark sector. To zeroth order, our universe is homogeneous and isotropic, and
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therefore the spatial and directional dependence are usually dropped from the distri-

bution function, i.e. fi(~x, ~p, t) ⇡ fi(p, t), where p ⌘ |~p|. The zeroth-order number

density ni, energy density ⇢i, pressure Pi and the equation of state (EoS) parameter

wi for any species i are defined as follows:

ni(t) ⌘ gi

Z
d

3
p

(2⇡)3
fi(p, t) , (5.1)

⇢i(t) ⌘ gi

Z
d

3
p

(2⇡)3
Efi(p, t) , (5.2)

Pi(t) ⌘ gi

Z
d

3
p

(2⇡)3

p
2

3E
fi(p, t) , (5.3)

wi(t) ⌘
Pi(t)

⇢i(t)
, (5.4)

where E =
p

p2 + m
2

i
, and gi stands for the internal degrees of freedom. Obvi-

ously, for ultra-relativistic species (E ⇠ p), we have wi ⇡ 1/3, whereas, for non-

relativistic species (E ⇠ mi � p), we have wi ⇡ 0. If a species in consideration is

in kinetic equilibrium, fi(p, t) would take the form of a Bose-Einstein or Fermi-Dirac

distribution fi(p, t) = 1/(exp(E/T ) ± 1) with “�” for bosons and “+” for fermions.

It is useful to study the way the distribution function evolves with time. According

to the FRW metric (see Eq. (2.2)), as the universe expands, the physical distance

x(t) between two otherwise stationary points at time t is related to that at time t
0 by

x(t) = x(t0)a(t)/a(t0), where a is the scale factor. To maintain the Poisson bracket

{x, p} = 1, the momentum p therefore has to evolve inversely with respect to the

coordinate, i.e. p(t) = p(t0)a(t0)/a(t). This describes the redshift of momentum due

to the expansion of the universe. We thus have

dp(t)

dt
=

d

dt

✓
p(t0)

a(t0)

a(t)

◆
= � H(t)p

)
d log p

dt
= �H(t) , (5.5)

where H ⌘ ȧ/a is the Hubble parameter. Thus time evolution corresponds to

additive shifts in the value of log p. This makes log p a particularly convenient variable
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for studying time revolution. Assuming spatial homogeneity and isotropy of the

phase-space distribution, we can therefore write

n(t) ⇠

Z
d

3
p f(p, t) ⇠

Z
dp p

2
f(p, t) ⇠

Z
d log p p

3
f(p, t) . (5.6)

Thus, the proper phase-space distribution with respect to log p is p
3
f . Given the

manner in which x(t) rescales under time evolution, we know that n must scale under

time evolution as a
�3. Moreover, since log p merely accrues an additive shift under

time evolution, d log p is invariant. Therefore, p
3
f scales as a

�3. For this reason,

it proves convenient to define the invariant quantity g(p, t) ⌘ a(t)3
p

3
f(p, t) which

therefore satisfies1

g(p(t), t) = g(p(t0), t0) . (5.7)

Thus, if we plot g(p) versus log p, the total area under the curve is proportional to

the dark-matter particle number N ⇠ na
3, and under time evolution and barring

any further dark-matter creation, the curve for g(p) merely slides towards smaller

values of log p without distortion, as if carried along on a “conveyor belt” moving

with velocity H(t).

In this paper, we shall be concerned with the manner in which a dark-matter

distribution g(p) is created as a result of physical processes that occur during cosmo-

logical evolution. In general, various processes can create dark matter and thereby

make di↵erent contributions to g(p) as the universe evolves. Our goal is ultimately

to understand what kinds of cosmological history can give rise to non-trivial features

in the resulting g(p) distribution, and perhaps even to approach the inverse prob-

lem of determining the extent to which a determination of the late-time dark-matter

distribution g(p) can be used to constrain the cosmological history that give rise to

it.

To help simplify and conceptualize the processes in play, we shall begin by consid-

ering an actual physical conveyor belt that moves with constant velocity v in the �x̂

direction. The coordinate x(t) of an object on the conveyor belt at time t is therefore

1We are neglecting e↵ects from particle interactions here.
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related to its coordinate at an earlier time t
0 by

x(t) = x(t0) � v(t � t
0) . (5.8)

At time t, one can measure the number distribution of objects N(x) as a function of

location x. In general, there are many ways in which a given object distribution N(x)

at time t might be generated as the result of objects having been deposited onto the

conveyor belt at di↵erent locations y � x and at di↵erent times t
0

 t. Indeed, we

can formally write N(x) at any time t as an integral over time which sums over all

the deposits:

N(x) =

Z
t

dt
0 �(x + v(t � t

0), t0) , (5.9)

where �(x, t
0) indicates the deposit profile at time t

0 which gives the rate at which

objects are being deposited at any specific location and time, and where the integral

is understood to extend from an early “primordial” time prior to all deposits. If the

deposits occur at discrete times ti prior to t, the rate function can be expressed as

�(x, t
0) =

X

i

�i(x)�(t0 � ti) , (5.10)

in which �i(x) is the spatial distribution of the deposit at ti. Substituting this into

Eq. (5.9), we see that

N(x) =
X

i

�i(x + v(t � ti)) (5.11)

which clearly shows the distribution of objects along the entire conveyor belt at any

moment t is an accumulative result of all the deposits at previous times.

An example of this is illustrated in Fig. 5.1, in which packets are dropped on a

left-moving conveyor belt. The packets shaded in black at positions A/B and E are

related to the packets in red at C/D and G at t2 through the horizontal flow of the

conveyor belt. In turn, the packets in red consists of packet D which is translation of

the packet F at t1 as well as packets C and G which are deposited right at t2. Using
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flow of conveyor belt

deposit at t1

deposit at t2 deposit at t2

A B C D E F G

Figure 5.1: Sketch of the cosmological “conveyor belt” at three di↵erent times: an early
time t1 (blue) at which wavepacket F is deposited, a later time t2 (red) at which wavepackets
C and G are deposited, and a final time (black). The horizontal axis is log p, and the area
of the packets are associated with the comoving number density g(p, t). During the time
interval between t1 and t2, wavepacket F has redshifted to position D, where it overlaps
with the newly deposited wavepacket C. By contrast, after time t2, both the combined
wavepacket C/D and the wavepacket G continue to redshift into their final positions A/B

and E. In the absence of further information, knowledge of the final wavepackets A/B and
E allows us to resurrect only a portion of this cosmological history.

the formulas that we have just developed above, the rate function is

�(x, t
0) = �F (x)�(t0 � t1) + [�C(x) + �G(x)] �(t0 � t2) , (5.12)

and the final distribution at time t can be expressed as

N(x) = �F (x + v(t � t1)) + �C(x + v(t � t2)) + �G(x + v(t � t2)) . (5.13)

Note that the distribution “observed” at any moment t depends on the entire history

of the deposits before t. It would be ideal if one can recover the previous history of

deposits by looking at a snapshot of the distribution at a certain moment. However,
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without further information, only a portion of this history can be resurrected. For

example, even if we know packets A, B and E are translated from C, D and G, we

cannot tell if packet D is deposited right at t2 or it is produced at position F at t1.

In fact, the two di↵erent processes can produce exactly the same final phase-space

distribution. So, when one measures the distribution, it is only the summation over

the history that is measurable — what happened at a specific location on the conveyor

belt prior to the measurement have already been integrated out.

Let us map our conveyor-belt analogy back to the phase-space evolution in cos-

mology We can interpret the packets in Fig. 5.1 as the phase-space distribution of

the dark-matter particles. The deposits thus correspond to early-universe processes

that produce those dark-matter particles. And the flow of the conveyor belt is just

the redshift e↵ect which manifests as a translation of the phase-space distribution

in the direction of lower momentum (to the left). Therefore, we have the following

dictionary:

x ! p ,

x + v(t � t
0) ! p

a(t)

a(t0)
,

N(x) ! g(p) . (5.14)

Using this map in Eq. (5.9), and let �(p, t) indicate the profile of the dark-matter

deposit rate at time t, we have

g(p) =

Z
t

dt
0 �

✓
p

a(t)

a(t0)
, t

0
◆

. (5.15)

Likewise, if deposits occur at discrete times ti, i.e.

�(p, t0) =
X

i

�i(p)�(t0 � ti) , (5.16)

then

g(p) =
X

i

�i

✓
p

a(t)

a(ti)

◆
. (5.17)
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Therefore, all the information about the early-universe processes are encoded in the

deposit profile �(p, t0). However, it is only the phase-space distribution, which is the

integral of �(p, t0), that can be measured.

For concreteness, let us study a scenario in which the deposits occur via decays.

Assuming the existence of some parent packets labelled by ` which decay instanta-

neously at moments T` and produce packets in the phase-space distribution of dark

matter, then the deposit profile can be expressed as

�(p, t0) =
X

parent `

Z
d log p` g`(p`)P`!0(p`, p)�(t0 � T`) , (5.18)

in which g`(p`) is the phase-space distribution of the packet ` when it decays at time

T`, and P`!0(p`, p) is the probability that the decay of the momentum slice at p` would

produce a dark-matter particle with momentum p normalized by the multiplicity of

the decay. Substituting this expression into Eq. (5.15), we then have

g(p) =
X

parent `

Z
d log p` g`(p`)P`!0

✓
p`, p

a(t)

a(T`)

◆
. (5.19)

In general, the parent packets ` could be descendants from some grandparent packets

k, which in turn could also be descendants from some grand-grandparent packets and

so on. Therefore, we can recursively add all the previous decays which eventually

gives

g(p) =
X

{a,b,...,k,`}

Z
d log p`

Z
d log pk· · ·

Z
d log pb

Z
d log pa ga(pa)

⇥ Pa!b

✓
pa, pb

a(Tb)

a(Ta)

◆
Pb!c

✓
pb, pc

a(Tc)

a(Tb)

◆
. . . Pk!`

✓
pk, p`

a(T`)

a(Tk)

◆

⇥ P`!0

✓
p`, p

a(t)

a(T`)

◆
, (5.20)

where {a, b, . . . , k, `} denotes the summation over all the decay chains of the packets

that produce dark matter, Pi!j is defined in the same way as P`!0(p`, p), Ti is the

instant when the packet i decay, and it is defined to be Ti ⌘ T
(a)

0
+ ⌧a + ⌧b + · · · + ⌧i
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Figure 5.2: One possible scenario leading to a non-trivial distribution a
3
p
3
f0(p) at late

times through a sequence of successive “deposits” of the sort sketched in Fig. 5.1. An excited
state is created with a thermal distribution at level ` = 2 (blue) and redshifts towards smaller
momenta before undergoing a two-body decay 2 ! 1 + 0. Each of these distributions then
redshifts until the daughter at level ` = 1 undergoes its own decay 1 ! 0+0. The resulting
distributions combine and continue to redshift, ultimately producing a final distribution
a

3
p
3
f0(p) (black).

in the instantaneous decay limit in which ⌧i is the lifetime of the packet i, and T
(a)

0

is the time of production of the earliest ancestor a.

Fig. 5.2 is an example of having two decay chains in a three-state system. At the

very beginning, an excited state is created with a thermal distribution at level ` = 2

(blue) and redshifts towards smaller momenta before undergoing a two-body decay

with daughter states at levels ` = 1 and ` = 0 (green). Each of these distributions

then redshifts until the daughter at level ` = 1 undergoes its own decay into two

kinematically identical grand-daughters at ` = 0 (orange). The new-born orange

packet happens to have a non-negligible overlap with the redshifted green packet

(dashed green). Therefore, they superpose, and the resulting distributions continue

to redshift, ultimately producing a final distribution a
3
p

3
f0(p) (black) which resembles

wavepackets A/B in Fig. 5.2.
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Figure 5.3: The process through which a parent packet (blue) decays into a daugh-
ter packet (green) in an expanding FRW cosmology, with intermediate steps indicated
(red/pink). Each momentum slice of the parent packet experiences a di↵erent time-dilation
factor which not only extends the the lifetime associated with that slice but also increases
the total accumulated cosmological redshift experienced by that momentum slice prior to
decay. The sequential decays of these redshifted momentum slices of the parent then make
sequential contributions to the daughter packet, with each contribution extending over an
increasingly broad range of momenta and experiencing its own cosmological redshift imme-
diately upon production. This process ends with the decay of the last momentum slice of
the parent, thereby completely depleting the parent packet (blue) and yielding the total
daughter packet (green).

Note that, although the original parent has a thermal distribution with relatively

small width �p, each decay to successive generations (blue, then green, then orange)

produces o↵spring whose distributions have not only greater central momenta but

also greater widths. Likewise, the superposition of results from the two di↵erent

decay channels 2 ! 0 and 2 ! 1 ! 0 produces the final distribution a
3
p

3
f0(p) which

is non-thermal and in fact multi-modal.

The process by which a parent packet decays into a daughter packet is surprisingly

subtle within an expanding cosmology. These subtleties arise due to the relativistic

e↵ects which emerge if the momenta involved are large compared to the mass of the

parent, and are sketched in Fig. 5.3. Let us assume that the parent species has mass

m and is produced at some time t = t0 with a phase-space distribution a
3
p

3
f0(p)
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as measured in the lab frame. Let us also assume that the parent species has decay

width �, and for simplicity we shall further assume that the decays of the parent occur

promptly at ⌧ ⌘ 1/�, as measured in the parent rest frame. Because the parent packet

a
3
p

3
f(p) stretches across a non-zero range of momenta, each momentum slice of the

parent packet will experience a di↵erent time-dilation factor. Then then increases

the e↵ective lifetime of the slice prior to decay, causing slices with larger momenta

to decay later than those with smaller momenta. However, during the time interval

prior to decay, each momentum slice also experiences a cosmological redshift. This

redshift decreases the momentum of each slice and thereby partially mitigates the

time-dilation e↵ect. Indeed, combining both e↵ects, we see that each momentum

slice with initial momentum p0 at t = t0 will decay at

tdecay(p0) =

Z
t0+⌧

t0

dt
0
p

p
2

0
(t0/t0)2/3 + m2

m
, (5.21)

where we have assumed an FRW cosmology with the Hubble factor scaling as

H ⇠ /3t. Likewise, the momentum of this slice at the time of its decay is given

by

pdecay(p0) = p0


t0

tdecay(p0)

�/3

, (5.22)

where tdecay(p0) is given in Eq. (5.21).

As we move upwards within the parent packet towards momentum slices with

increasing values of p0, the time-dilation factor increases but this also provides a

longer time interval during which cosmological redshifting occurs. It is therefore im-

portant to understand the extent to which this extra redshifting might compensate

for the higher original momentum of the momentum slice. Indeed, it is even possible

that momentum slices with greater initial momenta p0 might have smaller final mo-

menta pdecay when they actually decay. However, it is straightforward to verify that

dpdecay(p0)/dp0 > 0. Thus, momentum slices with greater initial momenta p0 continue

to have greater momenta when they each decay. However, it is also straightforward

to verify that dpdecay(p0)/dp0 < 1. Thus, any two momentum slices whose original

momenta p0 di↵er by an amount �p0 will have decay momenta pdecay di↵ering by
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an amount �pdecay < �p0. This “momentum compression” is illustrated along the

top portion of Fig. 5.3, where the relative horizontal spacings between the original

(blue) momentum slices labelled A, B, and C are larger than the relative horizontal

spacings between the corresponding redshifted (red/pink) momentum slices which are

sketched at the (di↵erent) times of their decays.

The decay of each momentum slice of the parent then yields a contribution to

the emerging phase-space distribution a
3
p

3
f0(p) of the daughter. In general, the

shapes of these contributions depend on the details of the decay process. However,

two features tend to be rather general and will be assumed here. To explain these

features, we first note that because the combined masses of the daughters are generally

less than the mass of the parent, each daughter will always be produced with a non-

zero momentum in the rest frame of the parent. Likewise, because the direction of the

daughter momentum in the parent rest frame is uncorrelated with the direction of the

momentum of the parent in the lab frame, the magnitude of the momentum of each

daughter — a quantity which is uniquely determined in the rest frame of the parent

— is broadened by the boost of the parent into a range of momentum magnitudes as

measured in the lab frame.

These observations tell us that the magnitudes of the daughter momenta emerging

from the decay of each parent momentum slice will generally exhibit two character-

istics: they will fall within a range of momenta which grows as a function of pdecay,

and this range of momenta will be “centered” around a non-zero value which we may

identify as the daughter momentum that would emerge even if pdecay were zero. Thus,

the contribution to the daughter packet which comes from the decay of a momentum

slice of the parent with momentum pdecay will extend horizontally across di↵erent

momenta, spanning a range that grows with pdecay and therefore with p0. We fur-

ther note, of course, that the total area associated with each such contribution will

generally be proportional to the total area of the original decaying momentum slice

of the parent, with the proportionality constant signifying the number of daughters

produced through the decay of each parent.

These features can easily be understood in the case of a simple two-body decay
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of the form X ! Y Y with parent and daughter masses mX and mY respectively,

where mY < mX/2. The energy of each daughter in the rest frame of the parent is

simply mX/2, and likewise the magnitude of the momentum of each daughter in the

rest frame of the parent is given by
p

(mX/2)2 � m
2

Y
. Indeed, this is the non-zero

momentum that is imparted to the daughters in the lab frame when the parent is at

rest. However, if the parent has momentum pX in the lab frame at the time of its

decay, then the energy of each daughter in the lab frame is given by

EY =
1

2

q
m

2

X
+ p

2

X
+

pX

2

q
1 � 4m2

Y
/m

2

X
cos ✓ (5.23)

where ✓ is the angle between the daughter momentum in the parent rest frame and the

parent momentum. Given that the angle ✓ is unfixed by the kinematics of the decay,

these daughter energies EY will therefore vary within a total range of magnitude

�EY = E
(max)

Y
� E

(min)

Y
= pX

q
1 � 4m2

Y
/m

2

X
. (5.24)

Likewise, for any daughter with energy EY within this range, the corresponding

daughter momentum in the lab frame is simply given by pY =
p

E
2

Y
� m

2

Y
; thus

the existence of a range of possible energies for the daughters implies the existence

a corresponding range of daughter momenta. Moreover, we see that daughter energy

range �EY — and indeed the corresponding daughter momentum range �pY — both

increase as functions of pX , as claimed.

These features are illustrated in the lower (red/pink) portion of Fig. 5.3. For visual

simplicity, we have sketched each contribution to the daughter packet as a “brick”

whose height does not vary with momentum, but of course this precise shape will

generally depend on the detailed kinematics associated with the decay. However, we

observe as a general result that our bricks are deposited in order of increasing width

along the momentum axis. Moreover, because our original parent packet a
3
p

3
f1(p) has

a profile which first rises and then falls as a function of momentum, the total areas of

the bricks that are deposited first grow and then shrink as the decay process proceeds.

Finally, in making this sketch we have assumed that the mass of the parent greatly
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exceeds the combined masses of the daughters. It is for this reason that we have

sketched our bricks as having momenta which greatly exceed pdecay. Likewise, while

we have accurately indicated the relative areas of each brick in making this sketch,

in the interests of generality we have not assumed a particular daughter multiplicity

associated with this decay. Indeed, it is only through such a multiplicity that we

would be able to assign a relative normalization between the area of each brick and

that of the corresponding momentum slice of the parent prior to decay.

The final stage of the evolution from parent to daughter packet once again involves

cosmological redshifting. Because the narrowest “bricks” are deposited first, they

begin redshifting towards smaller momenta before the subsequent, wider “bricks” have

even been deposited. Thus the narrowest “bricks” experience the largest redshifts, a

fact which tends to cause the emerging daughter packet to experience a “tilt” towards

smaller momenta — an e↵ect which is particularly pronounced when the daughter

particles are originally relativistic when produced.

Ultimately, the final shape of the daughter packet — i.e., the final phase-space

distribution of the daughter — is then given by the sum of these di↵erent bricks at the

time when the final brick is deposited. The resulting packet then simply continues to

redshift intact along the momentum conveyor belt towards lower momenta without

any further changes to its shape.

Looking over the entire process shown in Fig. 5.3, we see that each vertical mo-

mentum slice in the original parent packet ultimately gives rise to a horizontal slice

in the daughter packet. Thus, while the resulting shape of the daughter packet is ulti-

mately sensitive to many kinematic details associated with the decay process, certain

general conclusions can be drawn. For example, the widths of the daughter packet

are correlated with the redshifted momenta of the individual momentum slices of the

parent at the times when they decay, with the maximum width along the “base”

of the daughter packet corresponding to the right-most of these momentum slices

within the parent packet and the narrowest width (which governs the shape of the

“peak” of the daughter packet) corresponding to the left-most of the parent momen-

tum slices. In a similar fashion, as discussed above, the ascending and descending
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slopes of the daughter packet are correlated with the vertical heights of the corre-

sponding deposited bricks, yet these are correlated with the area of each brick which

is in turn correlated with the area of the originally decaying momentum slice of the

parent and thus with the corresponding value of a
3
p

3
f1(p). In this way, many gross

features concerning the shape of the daughter packet can be directly connected to the

shape of the parent packet.

Notice that, even though our example in Fig. 5.3 involves only two packets, the

dynamics of decay is already very complicated, not to say that we have made the

assumptions that all the momentum slices of the parent packet were created at the

same time, and that decays occur instantaneously. In reality, di↵erent parts of the

parent packet might be produced through di↵erent processes at di↵erent moments,

and decays occur continuously. Therefore, even the particles belonging to the same

momentum slice should not be expected to decay at the same time. Given this

complexity, it is important to study examples numerically by exactly solving the

Boltzmann equations of some toy models. In Fig. 5.4 we show the phase-space dis-

tributions of the ground state from a 3-component system right at the moment when

intra-ensemble decays end (i.e. when the comoving number density of the ground state

reaches 99.5% of its final asymptotic value). The masses of the states are m2 = 7m0

and m1 = 3m0 , where m0 is the mass of the ground state. The initial condition

is that the heaviest state is the only state populated and has a Boltzmann-like dis-

tribution f2 ⇠ exp(�E/T0) (black, upper panel), with T0 = m0/20. We present

five di↵erent cases which produce five di↵erent decay histories and thus five di↵erent

ground-state phase-space distributions:

• �200 = 1, �211 = 0, �100 = 0 (blue):

The heaviest state decays into the ground state directly. This is e↵ectively a

2-component system. By setting �200 = 1, all the other decay widths are

normalized by this case.

• �200 = 0, �211 = 1, �100 = 0.01 (jade):

The direct decay into the ground state is forbidden. The decays have to go
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Figure 5.4: Phase-space distributions of the ground state right after intra-ensemble decays
complete. Five cases are shown with di↵erent partial decay widths indicated in the legend.
The vertical axis is normalized randomly, but the relative area of each packet is directly
proportional to the corresponding comoving particle number. The decay widths are made
dimensionless and normalized such that �200 ⇠ H(t0)/10. The final time tF is chosen at
the moment when the comoving number density of the ground state reaches 99.5% of its
final asymptotic value. Since the total decay width varies in each case, these cases do not
necessarily end at the same time.

through two steps to reach the ground state — 2 ! 1+1, and then 1 ! 0+0.

However, as compared with the first step, the decay rate of the second step is

much slower. Therefore, the energy from the state 2 can be stored in the state

1 before the state 1 eventually decays into the ground state.

• �200 = 0, �211 = 1, �100 = 1 (green)

Similar to the last case, but the decay rate from 1 to 0 is the same with the

decay rate from 2 to 1. Therefore, when the energy of state 2 is transferred to

the state 1, it is also gradually transferred to the state 0.

• �200 = 0, �211 = 1, �100 = 10 (orange)

Similar to the previous two cases, but with a much faster second step. There-

fore, as soon as the energy is transferred from state 2 to state 1, it is almost

immediately dumped into the ground state.
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• �200 = 1, �211 = 1, �100 = 0.01 (red)

Two decay chains to the ground state. It can be seen as the (weighted) combi-

nation of the blue and the jade case cases. Therefore, packets are deposited to

the ground state at two di↵erent time scales.

We see that, though the initial distribution of the parent state is the same,

the phase-space distribution of the ground state after going through di↵erent de-

cay histories can be quite di↵erent. Let us first compare the number of particles

produced in each case by looking at the decay topology and the area under each

curve. Denoting the area under the black curve Ablack, we see Ablue = 2Ablack,

Ajade = Agreen = Aorange = 4Ablack and Ared = 3Ablack. This is consis-

tent with decay topology, since one direct decay produces two ground-state parti-

cles (2 ! 0 + 0), whereas a two-step decay produce four ground-state particles

(2 ! 1 + 1 ! 0 + 0 + 0 + 0).

The shape of the ground-state distributions can be understood using what we

have learnt from Figs. 5.1 - 5.3. Let us first focus on the jade, green and orange

cases, since they only di↵er in the decay width of the last step. The overall width

of the orange packet is the largest among the three. This is not surprising. Indeed,

in the orange case, particles in the state 1 can decay as soon as they are produced,

which means they have larger momenta when decaying. Therefore, their products

obtain a larger range of momenta, and make the width of the packet larger, and the

height smaller. However, this argument does not quite apply when comparing the

green case with the jade case, as the jade packet appears to have a smaller height. To

understand this, one needs to keep in mind that 1) the decay is not a instantaneous

process, 2) these snapshots of phase-space distributions are not taken at the same

time — they are taken right at the moment when intra-ensemble decays just finish.

Comparing with the green case, the jade case has a very slow second step, and thus

the snapshot is taken at a much later time. Its earliest deposits in the ground state

therefore experience a larger amount of redshift, making the left edge very extended.

This explains why the bottom part of the jade packet is wider than the green packet,

and why its height is smaller.
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In the end, the red case has two available decay chains for the heaviest state to

decay into the ground state which make it a “superposition” of the blue and the jade

case. Indeed, the resulting phase-space distribution is multi-modal. It is a weighted

sum of the blue and the jade packets with packet at lower momentum corresponding

to the blue packet, and the packet at higher momentum corresponding to the jade

packet. Besides, since the value of �100 is the same in both the jade and the red cases,

the decays in both cases complete at the same time. Therefore, we see the second

packet in the red case aligns perfectly with packet in the jade case.

To conclude, we have seen that intra-ensemble decays can in general produce

non-thermal and sometimes multi-modal phase-space distributions. The shape of the

final phase-space distribution of the ground state depends on many factors, such as

the decay kinematics, the phase-space distribution of the parent, the available decay

chains, and the branching ratios, etc. Since there might be di↵erent ways to produce

the same ground-state phase-space distribution, knowing its shape only allows us

to partially resurrect the decay history. The process of a simple direct decay like

the one depicted in Fig. 5.3 is surprisingly subtle. And we have seen in Fig. 5.4

that adding just one intermediate state is enough to make the analysis much more

complicated. In later sections, when dealing with a large number of constituents in

the dark ensemble, we shall therefore rely on numerical simulation to obtain the full

evolution of phase-space distributions.

5.1.2 Structure Formation

The previous subsection enables us to understand how decays in a non-minimal dark

sector a↵ect the phase-space distribution of the ground state. We have seen that,

highly non-trivial multi-modal phase-space distributions can easily emerge even from

a simple 3-component system. In this subsection we try to develop tools useful for

analyzing the observational e↵ects from those general non-trivial distribution func-

tions.

So far, the phase-space distributions we have been studying are assumed to be

homogeneous and isotropic. However, the structures that we have observed across
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various scales today imply the existence of perturbations to the homogeneous back-

ground in the early universe. Indeed, in the early universe, the primordial perturba-

tions emerge as overdense or underdense regions. The overdense regions have stronger

gravitational pull and tend to attract more and more matter. As a result, those ini-

tially small perturbations can be amplified by gravity and eventually form complex

structures.

The perturbation to the energy density is usually written in the form below

�(~x, t) ⌘
�⇢(~x, t)

⇢̄(t)
=

⇢(~x, t) � ⇢̄(t)

⇢̄(t)
, (5.25)

where ⇢̄ is the zeroth-order, unperturbed energy density which depends on time only,

and ⇢(~x, t) ⌘ (1/(2⇡)3)
R

d
3
pfi(~x, ~p, t) is the actual energy density that varies in

space. It is often convenient to switch to the Fourier modes using

�(~x, t) =
1

(2⇡)3

Z
d

3
k �k(t) exp

"
�

i~k · ~x

a(t)

#
, (5.26)

where ~k is the comoving wavenumber. The formation of structures is essentially

related to the evolution of the density perturbation modes �k.2 A complete study of

this requires solving the Einstein’s equation, which is very complicated. We shall do

that numerically using existing packages later. Normally, it is easy to read o↵ some

characteristic physical behaviors using the Jeans ’ equation, which is appropriate for

perturbation modes whose spatial scales are smaller than the size of the Hubble

horizon H
�1:

�̈k + 2
ȧ

a
�̇k +

✓
�

2
k

2

a2
� 4⇡G⇢̄

◆
�k = 0 , (5.27)

where the quantity � is the adiabatic sound speed (� ⌘
p

(@P/@⇢)ad) that describes

the reaction of pressure due to the change of energy density for collisional fluid, such

as photons and baryons, or the velocity dispersion (� ⌘

q�
hv2i � hvi

2
�
/3) that

describes particle free-streaming for collisionless fluid. For dark-matter particles that

2Of course there are also perturbations to the metric, velocity, etc. These are all necessary ingre-
dients in solving the Einstein’s equation, but we are ignoring the details here.
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have already decoupled from the rest of the thermal bath, it is more appropriate

to consider them as collisionless. The usual Jeans’ analysis is done by studying the

expression in the brackets. The first term is always positive, which describes the

resistance to gravitational collapse from the velocity of the particles. The second

term is the gravitational term — the minus sign in front of it suggests that gravity

is always driving the growth of perturbations. Therefore, by setting the expression

in the brackets equal to zero, one can obtain a critical wavenumber, the Jeans’ scale,

that separates the gravitationally stable and unstable modes:

kJ ⌘

r
4⇡G⇢̄a2

�2
=

3

2

aH

�
. (5.28)

For modes with k � kJ , the solutions are oscillatory, which means the growth of

perturbations is impeded, whereas, for those with k ⌧ kJ , growing solutions exist,

and perturbations can grow.

Note that, the Jeans’ scale evolves. The velocity dispersion (or sound speed) �

does not redshift in the ultra-relativistic regime, whereas it falls as � ⇠ 1/a once

the particles become non-relativistic. The scaling of Hubble parameter depends on

its energy content since H ⇠
p

⇢̄. In the RD epoch, H ⇠ a
�2, while in the MD

epoch, H ⇠ a
�3/2 (we neglect the recent ⇤-dominated epoch since this has little

e↵ect on our results). Therefore, for viable dark-matter candidates which become

non-relativistic during the RD epoch, kJ takes its minimum value around the matter-

radiation equality. Thus, kJ(teq) often serves as a rough estimate for the largest

suppression scale at the present day.

Despite being time dependent, a single quantity kJ is su�cient for most traditional

scenarios where the dark-matter phase-space distribution a
3
p

3
f(p, t) is thermal and

unimodal, i.e., there is a single local maximum at a given time. In these cases,

the velocity dispersion is a useful indicator of the actual speed of particles in the

distribution. This is important, since, in the traditional free-streaming analysis, all

information regarding a
3
p

3
f(p, t) is reduced down and carried by the velocity dis-

persion. However, the phase-space distribution resulting from intra-ensemble decays
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can easily be non-trivial and even be multi-modal. For these situations, the velocity

dispersion can only capture the gross feature of the phase-space distribution but fail

to retain all the information.

To keep the full information from the phase-space distribution, one might attempt

to treat each momentum slice in the phase space as an “e↵ective” dark-matter species

and make use of the multi-species Jeans’ equations [22]:

�̈↵,k + 2
ȧ

a
�̇↵,k +

 
�

2

↵
k

2

a2
�↵,k � 4⇡G⇢̄

X

�

✏���,k

!
= 0 . (5.29)

In the above expression, subscripts ↵ and � are used to denote di↵erent species

(momentum slices), ✏↵ ⌘ ⇢̄↵/⇢̄ is the fraction of energy density contributed by the

species ↵, and �↵,k is redefined to be the fractional density perturbation of the species

itself �↵,k ⌘ (�⇢↵/⇢̄↵)k. The summation
P

�
✏���,k therefore reflects the fact that

the gravitational potential is built up by density perturbations from all the species.

Following the analysis of Eq. (5.28), we can also set the expression in the brackets in

Eq. (5.29) to zero and obtain a Jeans’ scale for each species:

kJ,↵ ⌘

s
4⇡G⇢̄a2

P
�
✏���,k

�2
↵
�↵,k

= k↵

s
✏↵ +

X

� 6=↵

✏�

��,k

�↵,k

, (5.30)

where k↵ ⌘
p

4⇡G⇢̄a2/�2
↵

is the would-be Jeans scale in a single-species scenario.

Clearly, the evolution of the Jeans’ scale for any individual species depends on an

intricate interplay between all the species through gravity. If the species in considera-

tion dominates the energy density as well as the perturbation to it, we see kJ,↵ ⇡ k↵.

However, if the species is not dominating, but have �↵,k � ��,k, then kJ,↵ < k↵ —

the perturbation in this species is dampened by the other species. On the contrary,

if �↵,k ⌧ ��,k, kJ,↵ > k↵ — the perturbations in other species are driving the per-

turbation in the species ↵. Thus, we see, the analysis relies highly on the knowledge

of each �↵,k, which is not clear if there is no numerical results, and could be highly

non-trivial, for example, when �↵,k is close to zero or even becomes negative. It is

also not clear what the velocity dispersion is for a single momentum slice. Besides,
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the entire discussion above assumes that dark matter dominates the universe. In re-

ality, other species such as photons and baryons should also be included in Eq. (5.29),

which further complicates the analysis. Therefore, it is not advantageous to study

the Jeans’ scales for scenarios involving non-trivial phase-space distributions.

5.1.2.1 Free-Streaming Horizon

It is therefore very important to find a quantity that can be attributed to each packet

or even each momentum slice in the phase-space distribution and at the same time

do not have non-trivial time evolution. Indeed, there exists a quantity that has these

advantages, i.e., the free-streaming horizon [141]:

dFSH(vnow) ⌘ anow

Z
tnow

tP

v(t)
dt

a
= anow

Z
anow

aP

v

aH

da

a
. (5.31)

The expression above gives the maximum distance that a particle with speed v can

traverse from the time tP when it was produced to the present time tnow, therefore it

is straightforward to map it uniquely into the phase space. Since the horizon is an

integrated quantity with a positive integrand, it grows in time monotonically. The

horizon grows di↵erently depending on the type of energy which dominates the epoch,

so the integral is split up as

dFSH

anow

=

radiation epoch

Z
aeq

aP

v

a2H
da +

matter epoch

Z
anow

aeq

v

a2H
da

⇡

Z
aeq

aP

vda

a2
eq

Heq

+

Z
anow

aeq

r
aeq

a

vda

a2
eq

Heq

, (5.32)

in which one can set the present-day scale factor anow = 1, and hence the scale

factor and the Hubble parameter at the MRE take the values aeq ⇡ 2.84 ⇥ 10�4,

Heq ⇡ H0(anow/aeq)
3
2 ⇡ 69.70 h/Mpc. Additionally, we have used that H / 1/a2 dur-

ing radiation domination and H / 1/a3/2 during matter domination. Assuming that

dark-matter particles become non-relativistic before matter-radiation equality, the
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horizon is then approximately

dFSH

anow
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Z
aeq

aP

pnowp
p2

now
+ (ma)2

da

a2
eq

Heq

+

Z
anow

aeq

(pnow/m)da

(aaeq)
3
2 Heq

, (5.33)

where pnow is the present-day momentum. Performing the integrals, and using

anow � aeq, we find our expression for the present-day free-streaming horizon:

dFSH/anow ⇡
pnow/m

a2
eq

Heq

"
2 + arctanh

mp
m2 + p2

eq

� arctanh
mp

m2 + p
2

P

#
, (5.34)

in which we have used pnow/aeq = peq and pnow/aP = pP which are the momenta at

matter-radiation equality and the production time. The free-streaming wavenumber

kFSH associated with the free-streaming horizon is defined as [143]

kFSH(vnow) ⌘
anow

dFSH(vnow)
. (5.35)

With this, one can calculate the kFSH for each momentum slice in the phase-space,

which gives the largest scale that particles with certain momentum are able to reach.

We shall see later that, at a particular scale k, particles with present-day velocity

vnow ⌘ pnow/Enow are able to suppress the corresponding perturbation mode if

kFSH . k (or dFSH/anow & 1/k), otherwise they should leave no impact.
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Figure 5.5: Present-day velocity and the associated free-streaming wavenumber kFSH.
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To see why the free-streaming wavenumber captures the physics, consider a plane

wave with wavenumber k whose physical wavelength at time t is �(t) ⌘ 2⇡a(t)/k.

On this scale, the overdense region and underdense regions are centered around the

maxima and minima of the wave which are separated by a spatial distance �/2 =

⇡a/k. To be able to suppress the perturbation, particles in overdense regions must

be able to travel to the underdense regions. This gives a physical length scale of the

order a/k. Therefore, particles that are able to leave a trace at a comoving scale k

today have to have dFSH = anow/kFSH & anow/k.

A map between kFSH and the present-day velocity vnow is shown in Fig. 5.5. We

shall make use of the free-streaming wavenumbers in the subsequent discussion on

matter power spectrum.

5.1.2.2 Matter Power Spectrum

The growth of structure is eventually reflected in the matter power spectrum. The

matter power spectrum can be defined through the average of the density perturba-

tion:
⌦
�(x)2

↵
=

1

V

1

(2⇡)3

Z
d

3
k P(k) , (5.36)

in which h. . .i indicates the average over a space with physical volume V , which is

usually taken to be our entire universe. After some algebra, it is easy to show that

P(k) ⌘
���2

k

�� . (5.37)

We shall demonstrate the connection of the phase-space distribution today

p
3

now
f(pnow) to the matter power spectrum P(k).3 In order to do this, let us con-

struct some simple artificial phase-space distributions that are easy to identify. This

will have the advantage of not only controlling the spectrum of kFSH, but also getting

an intuitive grasp for how the p
3

now
f(pnow) �! P(k) mapping works, beyond critical

wavenumbers.

Let us first define a form for the phase-space distributions. In non-minimal sce-

3To simplify the notation, we make us of the convention anow = 1.
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narios, it is common to have a large number of decay channels with wildly di↵erent

decay widths. Therefore, the injection of particles could occur at time scales that are

widely separated. Since particles redshift, the packets generated at logarithmically

di↵erent time scales are thus also naturally separated logarithmically in the momen-

tum space. Based on these considerations, for our artificial distribution functions, we

choose the form such that quantity p
3

now
f(pnow) is constructed by a combination of

Gaussians on a logarithmic scale. We define this as a log-normal distribution:

p
3

now
f(pnow) ⌘

A
p

2⇡�
exp

(
�

1

2�2


log

✓
pnow

hpnowi

◆
+

1

2
�

2

�2
)

, (5.38)

for which � is the width of the distribution. Note that, even on log-scale, the central

value of such a distribution is not located at log pnow = log hpnowi. Instead, the

distribution is symmetric about log hpnowi � �
2
/2. Besides, the distribution function

is normalized such that
R

p
2

now
f(pnow)dpnow = A. Therefore, we can easily vary the

width and average momentum of the distribution while retaining a fixed dark-matter

abundance.

There exit several public numerical packages for computing the matter power

spectrum. Since it is our purpose to study matter power spectrum from various

non-trivial phase-space distribution, we choose to use the famous CLASS4 code, which

allows us to input phase-space distribution of our dark-matter candidate.

In the following, we shall use the artificial distribution functions to learn about the

relation between phase-space distribution and matter power spectrum. For simplicity,

the mass of the dark-matter particle is set to m = 10 keV which is a typical mass

scale for warm dark matter.

A Single Packet

To understand the cosmological consequences of having a non-trivial phase-space

distribution, let us start by looking at the e↵ects from a single packet. We shall

let that the packet carries a certain fraction of the total dark-matter abundance,

4The “Cosmic Linear Anisotropy Solving System”, see [144–147]



139

while the rest of dark matter are perfectly cold with zero velocity. The perfectly cold

dark-matter component will be referred to as the CDM component.

In the upper left panel of Fig. 5.6, we show several cases in which we vary the

height of each packet while keeping the width fixed. The fraction of the dark-matter

abundance carried by each packet, which is proportional to the area under the packet,

is therefore also varied. In the upper right panel, we plot the ratio P(k)/PCDM(k), in

which P(k) is the matter power spectrum obtained from each phase-space distribution

in the left panel, and PCDM(k) is the standard case which is obtained by assuming

the entirety of dark matter is perfectly cold.5 The e↵ects of dark matter being not

perfectly cold, can be seen from the deviation of the ratio from 1. In the same

panel, we also plot the phase-space distribution p
3

now
f(pnow) against the free-streaming

wavenumber kFSH using Eq. (5.35). The benefit is that, at any k, the amount of

particles having kFSH = k can be easily read from the plot.

We first notice in the right panel that the locations of the peaks on the k-axis,

which correspond to the free-streaming wavenumber of the average velocity, accu-

rately predict the point at which the matter power spectra start to deviate from the

standard case. Indeed, in these cases that we show, the phase-space distributions are

su�ciently sharp such that the average velocity has nicely captured the features in

the distribution functions.

Beyond this, the amount of drop is related to the abundance carried by the packet.

Having more abundance in the packet means more particles can free-streaming out of

the overdense regions and less particles are aggregating to build up the gravitational

potential. Therefore, a larger area under the packet leads to a stronger suppression.

Interestingly, for all the cases, we see some wiggles in the matter power spectrum and

this e↵ect seems to become more distinct as we increase the abundance carried by

the packet. This is in fact due to the acoustic oscillation of the packet component

which we will explain later.

Besides the area under the packet, we are also interested in how the shape of

the packet a↵ects matter power spectrum. In the lower panels of Fig. 5.6, we fix

5This ratio is often referred to as the squared transfer function.
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Figure 5.6: Di↵erent ways of varying a single Gaussian packet with the same average ve-
locity fixed at hvnowi = 10�6. Upper panels: The width � = 0.05 is fixed, but the height
of the packet varies, which changes the dark matter abundance carried by each packet.
The total dark-matter abundance is fixed by adding a complementary CDM component,
i.e. ⌦packet + ⌦CDM = ⌦DM = 0.26. The ratio between the matter power spectrum as-
sociated with each case and the standard CDM matter power spectrum is shown in the
right panel. We also plot in the same panel the phase-space distribution against kFSH using
Eq. (5.35). Lower panels: The area of each packet is fixed, so that the abundance carried
by each packet is set to 3⌦DM/4. The distributions di↵er in their widths and heights.

the abundance of the packet to be 3/4 of the total DM abundance, and vary the

width of the packet. In the lower right panel, once again, the location of each peak

still matches well with the point where the ratio P/PCDM start to deviate from 1.

Beyond this point, the general trend is very similar in each case. However, small

di↵erences do exist. For wider distributions, since they have more particles at larger

velocities, the deviation actually starts at slightly smaller k. At the same time,

since wider distribution functions also means more particles at lower velocities, their
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power is slightly larger at larger k. Besides, just like before, wiggles show up around

k ⇠ 2 � 6 h/Mpc. However, this e↵ect is weaker as the width gets larger, and the

power at larger k seems to be insensitive to the variation in width.
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Figure 5.7: Evolution of perturbation modes k = 3.5, 3.7 and 4.0 h/Mpc. For each
mode, the dashed and the dotted curves stand for the perturbation in the CDM component
and the packet component, respectively. The total dark-matter perturbation is represented
by the solid curves. The left panel shows the case with � = 0.05, while the right panel is
associated with � = 0.4.

To understand the emergence of the wiggles, we pick out several perturbation

modes k = 3.5, 3.7 and 4.0 h/Mpc in the two cases with � = 0.05 and 0.4, and look

at their evolution in time. In Fig. 5.7, we separate the total dark-matter perturbation

into the perturbation of the packet component and the CDM component.6 Naively,

in this regime, one would expect the present-day perturbation amplitude to decrease

monotonically as k increases. However, while this is true in the right panel, it is

not true in the left panel as we see �k=4.0 > �k=3.7 > �k=3.5 in the small window.

Looking back in time, we find that this is because these two cases have di↵erent

initial conditions at the beginning of MD epoch which is labelled by the vertical

dashed lines in the panels. In the left panel, the modes of the packet component have

experienced suppression and have su↵ered from acoustic oscillation in the RD epoch

after they enter horizon. During the oscillation, these modes actually have changed

sign once which means overdense regions can change into underdense regions and

vice versa. Since the CDM component dominates gravity and its perturbation modes

6The total dark-matter perturbation is a weighted sum over di↵erent components:
�DM ⌘

P
j ✏j�j , where ✏j ⌘ ⇢̄j/⇢̄DM.
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never change sign, the packet component have to flip the sign again before its final

growing phase in the MD epoch. It turns out that, in this small regime, the larger

modes of the packet component which experience suppression earlier also have larger

frequencies such that they cross zero and start to grow at an earlier time in the MD

epoch. This gives the larger modes an opportunity to have a larger amplitude than

the shorter modes today which explains the emergence of wiggles.

The situation is a bit di↵erent in the right panel. The packet component has also

experienced suppression. However, the suppression is not strong enough to flip the

sign of the perturbation modes. In other words, the acoustic oscillation never has the

chance to complete one full cycle. Therefore, larger modes cannot have the advantage

to grow first in the MD epoch.

The observation that a sharper packet tends to cause a stronger suppression than

a wider packet does lead us to an very intuitive explanation. In this small regime

of k, almost all the particles in the sharper packet have their free-streaming horizon

larger than 1/k in the RD epoch, whereas the particles from the lower-momentum

part of the wider packet are not able to free-stream a distance large enough to cause

suppression. These slower particles therefore protect the gravitational potential and

prevent the packet component from being significantly suppressed. This picture is

also consistent with the behavior at both smaller and larger k values. For smaller k,

particles in either packet are not fast enough to reach these scales, whereas for larger

k, particles in both packets are able to free-stream through them.

Finally, let us summarize the points that we have learnt from the single-packet

case:

• The largest length scale (smallest k) that a packet suppress agrees with the

free-streaming wavenumber kFSH associated with the packet.

• The “strength” of the suppression depends on the area (the abundance) of the

packet. A larger area corresponds to a stronger suppression.

• The width of the packet also matters. A sharper packet tends to create wiggles

in the matter power spectrum while a wider packet gives rise to a more smooth
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spectrum. The wiggles are more distinct when the area of the packet is larger.

Double Packets

Beyond a single packet, the next more complicated cases are distribution functions

with two packets. We shall let the two packets carry the entire dark-matter abun-

dance together, but at the same time, vary the fraction taken by each individual

packet. We show these cases in the left panel of Fig. 5.8. We shall call the packet at

larger momentum the warm packet, and the one at lower momentum the cold packet.

The fraction of dark-matter abundance carried the cold and the warm packets are

{5%, 95%}, {50%, 50%} and {95%, 5%}, respectively. For each distribution function,

both packets have the same width. The solid curves stands for sharp distributions

with � = 0.05, while the dashed curves represent wide distributions with � = 0.7.
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Figure 5.8: Various abundance arrangements for the double-packet distribution. All the
distributions in the left panel have two peaks with the same width whose average are
hvnowi = 10�5 and hvnowi = 10�7, respectively. There three types of partitioning of the
abundance between the two packets — {5%, 95%}, {50%, 50%} and {95%, 5%}, which are
represented by di↵erent colors. The width of the distribution is � = 0.05 for the sharp
packets (solid curves), and � = 0.7 for the wide packets (dashed curves). The matter
power spectrum associated with each distribution is shown in the right panel. The vertical
dashed lines indicate the values of kFSH which correspond to the average velocity of each
packet.

In the right panel, we see from the ratio P/PCDM that the first vertical line which

corresponds to the free-streaming wavenumber associated with the warm packet nicely
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predicts the beginning point of deviation. The size of the first packet determines the

amount of initial drop after passing by the first free-streaming wavenumber, which

is consistent with what we have learnt from Fig. 5.6. The second drop in P/PCDM

happens after passing by the second vertical line which indicates the free-streaming

wavenumber associated with the average velocity of the cold packet. Likewise, the

second drop is bigger when the cold packet is larger. In the blue cases, since the

warm packet takes a large portion of abundance, the ratios take a big drop right

after passing the first vertical line, which makes the second drop di�cult to see.

However, in the orange and green cases, the two-step drop is quite distinct as we see

the ratios slowly decrease between the two vertical lines and only drop significantly

after passing the second vertical line. Moreover, just as in Fig. 5.6, when the warm

packet is very sharp and carries a sizable abundance, wiggles caused by acoustic

oscillations could show up. In the blue and orange cases (solid curves), this happens

even before reaching the second vertical line. Such e↵ect is completely smoothed out

when packets are wide. This is because the tails of the packets are able to extend to

very small momentum and protect the gravitational potential. Despite the wiggles,

we also notice that, before reaching the second vertical line, the general trend in

both the case with wide packets and the case with sharp packets is quite similar. The

curves are almost overlapping when the warm packet is small, and their di↵erence gets

larger as the area of the warm packet increases. Even in the blue case, the solid curve

starts to follow the dashed curve before they approach the second vertical line. Such

behavior is consistent with our physical picture — after passing the first vertical line,

the contribution to the gravitational potential from the warm packet gets smaller and

smaller, while the amount of cold particles that protect the gravitational potential

becomes similar in both cases.

To understand the role played by each packet and the interplay between them

in more detail, we once again look at the evolution of the perturbations of di↵erent

components in the phase-space distribution at several scales. In Fig. 5.9, the orange

case is the same with the solid orange curve in Fig. 5.8 which has two identical packets

with hvnowi = 10�5 and hvnowi = 10�7. We compare it with the blue case which
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Figure 5.9: ‘Single packet + CDM’ vs ‘double packets’. In the top left panel, the blue curve
has one sharp packet with hvnowi = 10�5 which carries half of the dark-matter abundance
while the other half is in a CDM component. The orange curve has the same packet
at vnow = 10�5 while another packet which has the same shape has hvnowi = 10�7 and
carries the other half of the dark-matter abundance. The ratio P/PCDM is shown in the
top middle panel where the two vertical lines indicates the free-streaming wavenumber
kFSH associated with the two characteristic velocities. The top right panel shows the free-
streaming wavenumbers that particles with vnow = 10�7 or vnow = 10�5 can reach at
di↵erent epochs in the history of the universe. The dotted vertical lines in this panel and
the lower panels marks the location of aeq. The lower panels show the evolution of |�k| at
3 di↵erent scales, k = 0.05, 0.5, and 10 h/Mpc. The dotted curve stands for the warm
packet, the dash-dotted curve represents the cold packet, and the dashed curve represents
the CDM component. The evolution in the standard CDM case is plotted with the dashed
black curve.

has exactly the same warm packet with hvnowi = 10�5, but with the cold packet

replaced by a CDM component with the same abundance. The power-spectrum ratio

in the top middle panel exhibit very interesting behavior. For both cases, the first

drop takes place at exactly the same place, which is precisely predicted by the free-

streaming wavenumber associated with the warm packet (the left vertical line) which

we refer to as k
warm

FSH
. After that, the power at larger k is exactly the same in those two

di↵erent cases until the free-streaming wavenumber associated with the cold packet

(we shall refer to it as k
cold

FSH
) is reached. The two cases only start to deviate after

passing by k
cold

FSH
.
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Such behavior can be explained by looking at the evolution of density perturba-

tions of di↵erent components (i.e. the packet components and the CDM component)

as well as the entire dark matter. In the lower panels, we show the evolution at three

di↵erent scales.

For k = 0.05 h/Mpc, all the perturbations have almost exactly the same growth

with the standard CDM case in the MD epoch. Indeed, the wavenumber is smaller

than k
warm

FSH
. And we also see from the top right panel that particles with vnow = 10�5

can never free-stream to this scale. Therefore, at this scale, both the packet at

vnow = 10�7 and the packet at vnow = 10�5 behave like a CDM component, and

the power is not suppressed as compared with the standard CDM case (black dashed

curve).

The bottom middle panel shows the mode k = 0.5 h/Mpc which is just between

k
warm

FSH
and k

cold

FSH
. We notice that, despite having a slower growth compared with the

standard CDM case, the total perturbations in both the orange and the blue case

are exactly the same. This is not surprising as we see the perturbations of the warm

packets in both cases receive the same amount of suppression, and at the same time,

the perturbation of the cold packet in the orange case has the same growth as the

CDM component in the blue case. Indeed, as one can check again in the top right

panel, while particles from the warm packet are able to free-stream to this scale within

the RD epoch, particles from the cold packet can never travel such a distance.

In the bottom right panel, since k = 10 h/Mpc > kcold

FSH
, the total perturbation

in the blue and the orange cases start to bifurcate. The perturbations of the warm

packets in both cases are damped completely and start acoustic oscillation during

the RD epoch. The di↵erence comes from the cold packet in the orange case and

the CDM component in the blue case. While the perturbation of CDM component is

only suppressed by free-streaming e↵ects from the warm packet, the perturbation of

the cold packet su↵ers additionally from the free-streaming of itself. This makes total

perturbation in the orange case smaller and explains the bifurcation of the orange

and blue curves beyond k ⇠ 3 in the top middle panel.

Both Fig. 5.8 and Fig. 5.9 tell us that, when two packets are present, the matter
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power spectrum can be separated into three di↵erent regimes by the free-streaming

wavenumbers associated with each peak: 1) k . k
warm

FSH
, 2) k

warm

FSH
. k . k

cold

FSH
,

3) k & k
cold

FSH
. The first regime corresponds to length scales beyond the reach of

all the components. Therefore all the components behave like cold dark matter, and

the total perturbation is not suppressed. In the second regime, the perturbation is

damped due to the free-streaming of the particles associated with the warm packet

while the free-streaming e↵ects from the cold packet can not a↵ect this scale. This

gives rise to a initial deviation from the standard CDM case, and the amount of

deviation depends on the size and shape of the warm packet. In the third regime, the

perturbation is suppressed by the free-streaming of the particles from both packets

which leads to a further drop beyond k
cold

FSH
.

We thus conclude the underlying physics that we have learnt from this set of

examples here:

• The suppression of power at a particular scale k is determined by the part

of phase-space distribution that has particles with free-streaming horizon

dFSH & 1/k(or kFSH . k).

• The part of phase-space distribution that corresponds to particles whose

kFSH & k has negligible e↵ect on scales larger than 1/k. On these scales

those particles behave exactly like perfectly cold dark matter. Therefore, the

shape of the distribution of this “cold part” does not matter.

• The matter power spectrum is fully suppressed only at scales where a large

fraction of dark-matter particles are able to free-stream through.

Multiple Packets

So far we have only looked at the e↵ects from a single packet or widely separated

isolated packets. However, in some scenarios, the distribution generated from decays

can be more like a continuum. To gradually develop our understanding from the

discrete limit to the continuum limit, in Fig. 5.10, we start with the double packet

scenario that we have studied before, in which two identical packets are located at
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vnow = 10�7 and vnow = 10�5, and each carries half of the entire dark-matter abun-

dance. We gradually “flatten” this distribution by adding packets with the same

widths in between. The new distribution functions after adding more packets have

multiple identical packets evenly distributed on a logarithmic scale, while the total

area, i.e. the total dark-matter abundance is kept fixed. The examples of having

npac = 2, 3, 4, 5 packets are shown in the left panel, and eventually we show the case

with npac = 100 which is a very good approximation of the npac ! 1 continuum

limit.
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Figure 5.10: Picket Fence vs Wall: In the left panel, narrow packets with � = 0.05 are
distributed evenly on logarithmic scale between vnow = 10�7 and vnow = 10�5. The height
of the packets are adjusted so that the entire dark-matter abundance is evenly distributed
among the packets. The ratio P/PCDM associated with each case is shown on the right panel,
where the dashed vertical lines mark kFSH associated with the peaks in the npac = 2, 3, 4, 5
cases. The phase-space distributions are also plotted against k in the right panel. Their
heights are lowered to avoid intersecting the matter-power-spectrum curves.

The ratio P(k)/PCDM(k) associated with each case is shown in the right panel.

Just like before, all the cases start to deviate from the standard CDM case after

reaching the kFSH associated with the warmest packet. However, the amount of

initial drop is decreased after adding more packets, since the height of the warmest

packet is reduced. Therefore, we see the order of the curves right after the initial

deviation goes like npac = 100, 5, 4, 3, 2 from the highest to the lowest. As we pass by

the subsequent kFSH’s associated with the intermediate packets, which are marked out

by the vertical lines, we see this flattening tend to reshu✏e the order of the curves.
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For example, we see the red curve is approaching and eventually crossing the green

curve, and the green curve is doing the same to the orange curve. Comparing with

the other curves, the purple curve, which is associated with the continuum limit,

starts with the largest power, smoothly turns down, and eventually ends with the

smallest power. This is due to the fact that the fraction of the cold part (kFSH & k)

and the warm part (kFSH . k) of the purple distribution successively changes as k

increases — it starts with the largest fraction of cold particles at small k, but end

with the largest fraction of warm particles at large k. In the end, shortly after passing

by the last vertical line, the order of the curves are completely inverted. The blue

curve is on top because its phase-space packet at vnow = 10�7 is the largest, while

the purple curve is at the bottom since it has the least cold particles. Therefore,

we see that ‘flattening’ a distribution tend to change the amount of suppression in

di↵erent regimes. It makes the decrease of power as k increases more gradual and

successive. Besides, the wiggles created by acoustic oscillations which can be seen

when the distribution function consists of a small number of isolated sharp packets

become less distinct as we insert more packets. They are eventually smoothed out as

we approach the continuum limit.

All the above observations tell us an important message: As we track along the

matter power spectrum P(k) (or the ratio P/PCDM) in the direction of increasing k,

we are also e↵ectively scanning over the phase-space distribution from larger momen-

tum to smaller momentum. This motivate us to define a quantity which scans the

fraction of dark matter that can be e↵ectively treated as a CDM component at a

particular scale k:

F (k) ⌘

R
pnow(k)

0
p

2

now
f(pnow)dpnowR1

0
p2

now
f(pnow)dpnow

, (5.39)

where pnow(k) is the momentum that maps to the free-streaming wavenumber k. One

can obtain it by inverting Eq. (5.35). We shall make use of this fraction function to

analyze the results in the next section.

To conclude this subsection, we emphasize that there is an infinite number of way

to modify the shape of a phase-space distribution. We have shown cases in which
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we vary the height and width of a single packet, as well as cases where there is

more than one packet. Although there is no way to be all-inclusive, the fact that the

free-streaming wavenumber kFSH can be attributed to each individual momentum slice

allows us to use these fundamental examples to at least qualitatively study the matter

power spectrum from any kind of phase-space distribution. We shall demonstrate this

in the next section in which we are going to study the matter power spectra obtained

from “real” distributions shaped by intra-ensemble decays.

5.2 Toy Model

5.2.1 Parametrization of the Ensemble

Thus far, we have only discussed how phase-space distribution can be a↵ected by

decays within a multi-component dark sector, as well as the relation between phase-

space distribution and the suppression pattern on matter power spectrum. We have

not yet specified anything about the dark sector itself. In general, we can imagine

an dark ensemble consisting of all kinds of particles with di↵erent spin, masses and

couplings, just like the Standard Model. However, the main point of this chapter is to

study the dynamics of intra-ensemble decays in terms of the flow, redistribution and

redshift of energy densities across the ensemble, and the cosmological implications of

a non-trivial relic phase-space distribution. Studying a system that is too complicated

would only obscure our understanding of physics, not to say it might also be extremely

computationally expensive.

As a toy model, we assume the dark sector consists of an ensemble of N + 1 real

scalar fields �j neutral to the Standard Model gauge interactions, where the index

j = 0, 1, . . . , N labels the constituents in order of increasing mass mj. The number of

constituents in the ensemble depends on the mathematical structure of the underlying

theory — it can be a large finite integer, like those from a large gauge group [57],

or even infinity, such as those from extra-dimension theories [40, 43] and strongly-

coupled dark sectors [13]. Here, instead of taking a top-down perspective, we shall

simply take some reasonable finite integer N without looking at the fundamental
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theory. For concreteness, the mj is assumed to scale across the ensemble according

to the relation

mj = m0 + j
��m , (5.40)

where the mass m0 of the lightest ensemble constituent, the scaling exponent �, and

the mass-splitting parameter �m are taken to be free parameters of the model. We

shall also assume that these fields couple to each other through a trilinear Lagrangian

coupling which leads to decays of the form ` ! i + j. For simplicity, we assume

that the partial widths of all other decay channels are negligible. Thus, the e↵ective

Lagrangian relevant for the period of intra-ensemble decays can be taken to be

L =
NX

`=0

✓
1

2
@µ�`@

µ
�` �

1

2
m

2

`
�

2

`
�

`X

i=0

iX

j=0

c`ij�`�i�j

◆
+ . . . . (5.41)

In the above expression, “. . . ” includes all the other terms, such as quardrilinear

terms and other higher-order terms which help stabilize the vacuum. Those terms

might be important at earlier times if the ensemble constituents were in equilibrium

with each other. However, since we assume intra-ensemble decays occur while all the

constituents have already decoupled, those terms are not relevant during the period

of intra-ensemble decays. The coupling coe�cients c`ij (with dimensions of mass)

follow the scaling relation

c`ij = c0µR`ij

✓
m` � mi � mj

�m

◆r ✓
1 +

mi � mj

�m

◆�s

. (5.42)

Here, µ is the energy scale corresponding to the Lagrangian, and c0, r, and s are

taken to be dimensionless free parameters, and

R`ij ⌘

8
>>>>><

>>>>>:

6 all indices di↵erent

3 only two indices equal

1 all indices equal .

(5.43)

The expressions in Eqs. (5.40) and (5.42) are su�cient to specify the total decay
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widths of the �` and branching fractions BR(` ! i+j) for individual decay channels.

The two factors r and s in Eq. (5.42), can be explained as follows. The first factor

r represents the dependence of the coupling on the fraction of the energy released

in �` decay that goes into the kinetic energies, rather than the mass energies, of the

daughter particles �i and �j. Note that the sums in Eq. (5.41) are defined such that

m` � mi � mj. Thus, the greater the exponent r, the more decays are dominated

by processes involving final states with proportionally smaller masses. Indeed, as the

value of r is increased, decay processes in which the decay products behave more like

“radiation” and less like “matter” are increasingly preferred. By contrast, the second

factor s in some sense reflects the degree of “symmetry” between the daughter-particle

masses. In particular, it depends on how symmetrically the total mass energy of the

daughter particles is partitioned between them. Note that, the negative sign in front

of s in Eq. (5.42) implies that, for s > 0, the decays of �` are dominated by processes

in which the daughter-particle masses are similar, while, for s < 0, these decays are

dominated by those in which the daughter-particle masses are significantly di↵erent.

For a two-body decay process ` ! i + j, the center-of-mass momentum of the

decay products is

|~p| =

q⇥
m

2

`
� (mi + mj)

2
⇤ ⇥

m
2

`
� (mi � mj)

2
⇤

2m`

. (5.44)

The associated width is

�`!i+j = |M`!i+j|
2

|~p|

8⇡m
2

`

⇥(m` � mi � mj) . (5.45)

where |~p| is given by Eq. (5.44), |M`!i+j|
2 refers to the amplitude, and ⇥(m` � mi �

mj) is a unit step-function that ensures the kinematic accessibility. For simplicity, we

shall only show the results from a linear mass spectrum in the following.

Fig. 5.11 shows the total intra-ensemble decay width of each state with j > 0

for various combinations of r and s. The curves with the same r have the same color,

whereas those with the same s have the same line style. We have chosen a linear
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Figure 5.11: Total decay width at each tower level for various combinations of r and s.
The decay widths are normalized by the width of the 9 ! 0 + 0 channel in the r = 0, s = 0
case. The curves with the same r have the same color, while curves with the same s have
the same line style.

mass spectrum, in which � = 1 and �m = 2m0. Note that, �1 always has the

same decay width for the same r, since the only decay channel available is symmetric

1 ! 0 + 0. This channel seems to decrease as r increases. However, this is not

general. As we can see from Eq. (5.42), this is simply due to our choice of this mass

spectrum such that m1 � 2m0 = m0 < �m = 2m0.

For fixed r, the total decay width decreases as s increases. This is because the

couplings in Eq. (5.42) are invariant under the change of s for the symmetric decay

channels. Therefore, varying the value of s only changes the decay widths of the

asymmetric channels. Consequently, as symmetry is more and more favored when

s is increased, asymmetric channels close up, which results in a net decrease in the

total decay width.

The dependence on r is more subtle. Eq. (5.42) and Eq. (5.45) tell us that the

decay widths depend not only on the couplings but also the kinematics. Besides,

varying r changes the branching ratios across the accessible decay channels — it

opens certain decay channels while closing the others. For example, whereas the

decay channels that have a larger mass di↵erence between the parent state and the

daughter states are enhanced when increasing r, those with a smaller mass di↵erence
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are weakened. Therefore, it is not straightforward to determine how the total decay

widths when adjusting r.

Besides, not all the decay widths increases with the tower level j. For the curves

with s � 0 and r  0, the total width can even go down at higher levels. The

blue dotted curve shows the extreme case when radiation is disfavored and symmetry

strongly enforced. In that case, only the odd levels can produce a symmetric and

kinematically accessible channel that minimize the radiation, therefore it exhibits

oscillating behavior between the odd and the even levels.

Fig. 5.12 uses �9 as an example to show how r and s a↵ect the branching ratio

as well as the overall size of each partial decay width. In each panel, the color of

each pixel indicates the decay width of one particular channel 9 ! i + j, which is

normalized by the �(9 ! 0 + 0) in the r = 0, s = �4 case. As expected, varying

r from negative to positive amounts to changing the preference over various decay

channels from marginal to energetic. Therefore, when s is fixed, we see the hot region

moves from the northwest-southeast diagonal to the lower left corner. Moreover, when

symmetry is preferred (s > 0), the decays along the southwest-northeast diagonal

(which is symmetric in i and j) are enhanced; whereas when symmetry is disfavored

(s < 0), the channels far away from this diagonal are enhanced. The r = 0, s = 0

neutral case shows a very democratic distribution where all the partial widths are

around the same order of magnitude. It is also clear that the decay width of a single

channel as well as the total decay width also vary with r and s.

Besides the total decay width of each state and the partial width of a particular

decay channel, we are also interested in the “decay chains”, i.e. the paths that a

heavy state takes to decay into the lightest state. In Fig. 5.13, we present the major

decay chains of the heaviest state from a system with N + 1 = 10 states. The

vertical axis shows the tower level, while the horizontal axis indicates the number

of ‘hops’ that the initial state has taken to reach a particular tower level. The line

segments illustrate the hops from one parent state to one daughter state. However,

for a particular hop, if a final state is produced less than 5% of all the products from

the parent, the corresponding chain is ignored such that we can keep clear track of
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Figure 5.12: Partial decay widths of �9. The widths are normalized by the 9 ! 0 + 0
channel in the r = 0, s = 0 case. Each panel corresponds to one combination of r and s,
while other parameters are kept fixed. The horizontal and vertical axes indicate the final
products. In each panel, the blank space is due to the redundancy in permuting i and j.
The gray shaded region corresponds to channels that are kinematically inaccessible. Note
that adjusting these r and s not only changes the branching ratios, but also changes the
overall decay width of each channel.
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the tower level ` of a parent particle. The horizontal axis is the number of “hops” that the
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one hop to the ground state, whereas decay chain 9 ! 8 + ..., 8 ! 4 + ..., 4 ! 0 + ...
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each hop, if a particular daughter state is produced less than 5% of what its parent can
produce in total, the corresponding decay chain is ignored.
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the major decay chains. The color coding shows how fast a final state is produced

from a parent, which we define as the “production rate”:

Pr(` ! i) ⌘

P
↵
N

(↵)

`i
�(↵)

`iP
↵
N

(↵)

9,0
�(↵)

9,0

. (5.46)

For our toy model, the summation over various decay channels ` ! i + j is just

a summation over the decay partner j, and thus we have N
(↵)

`i
= 1 if i 6= j,

and N
(↵)

`i
= 2 if i = j. Note that we have normalized the production rate in

Eq. (5.46) using the the production rate of the lightest state from the direct decays of

the heaviest state in each case. At a first glance, this normalization may seem bizarre.

But it actually enables us to compare the production rate between direct decays and

cascades. The time scale of each decay chain can be inferred by adding the inverse

of the production rates. Since the color-coding is on log-scale, we can easily tell the

time scales of each decay chain by simply inverting the “slowest” color.

For the four panels around the upper right corner, the ground state is produced

around one single time scale since the lines going to the ground state all have similar

colors. For the other five panels, we see that the hops to the ground state are colored

by yellow, green and/or blue which suggests that they have two or more di↵erent

time scales for the decay chains to the ground state. According to the previous

discussion using the analogy of a conveyor belt, we can predict that the former cases

tend to produce distribution functions with simple structure, while the latter cases

tend to produce more complicated multi-modal distributions. We will see later that

the results in Fig. 5.19 agree with our prediction. The color and line structure also

give out the information about the dynamics of the intermediate steps. For example,

in the upper right panel, the heaviest state tends to go fast through intermediate

states with ` = 4, 2, 1 before eventually reaching the ground state. This is easy to

understand, since with r = � 3, s = 4, decays tend to go in a symmetric way and

minimize the kinetic energy. Therefore, decay chains like 9 ! 4 + 4, 4 ! 2 + 2,

2 ! 1+1 and 1 ! 0+0 are strongly favored. For the bottom panels and the panel

on the left, a significant part of the decays goes directly into the ground state, while a
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non-negligible portion of the energy can be stored in some intermediate states which

decay into the ground state later. In some of the cases, the decays go through many

di↵erent intermediate steps while others just have a few channels e↵ectively working.

The upper middle panel shows the case in which the heaviest state essentially goes

through all the possible decay chains to the ground state. We shall see later that the

structure of the major decay chains here allows us to somewhat predict the results

from solving the Boltzmann equations.

5.2.2 Dynamical Quantities

For a generic multi-component system, the quantities of cosmological interest, such

as those defined in Eqs. (5.1)-(5.4), can be applied to each individual constituent as

well as the entire ensemble. The total number density, energy density and pressure

is simply a sum of the individual ones:

ntot(t) ⌘

NX

j=0

nj(t) , ⇢tot(t) ⌘

NX

j=0

⇢j(t) , Ptot(t) ⌘

NX

j=0

Pj(t) . (5.47)

The equation of state parameter of the entire ensemble, on one hand, is defined to be

the ratio between the total pressure and the total energy density,

wtot(t) ⌘
Ptot(t)

⇢tot(t)
=

NX

j=0

⇢j(t)

⇢tot(t)
wj(t) , (5.48)

which can also be expressed as a weighted sum of each individual wj(t). On the other

hand, from the conservation of energy in a comoving volume d(a3
⇢tot) = �pd(a3), we

see [40]

wtot(t) = �

✓
1

3H

d log ⇢tot

dt
+ 1

◆
. (5.49)

Therefore, wtot really indicates how the total energy density of the entire ensemble

scales with time. Essentially, since the kinetic energy dilutes faster than the mass

energy in an expanding universe, wtot can be seen as a measure of the kinetic energy

in the ensemble.
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Following Ref. [40], we define the tower fraction that characterizes the non-

minimal nature of the dark sector:

⌘(t) ⌘ 1 �
max{⇢j(t)}

⇢tot(t)
. (5.50)

The tower fraction ⌘ shows how much energy density is NOT taken by the most

dominant constituent in the ensemble. If ⌘ ! 1, the total abundance is spread across

the entire ensemble, and even the dominating constituent is not taking a significant

share. However, if ⌘ ! 0, the ensemble is dominated by a single constituent as the

abundances of the other constituents are much smaller than the dominant one. To

easily visualize how ⌘ is built up, we also define the partial tower fraction

⌘j(t) ⌘ 1 �
⇢j(t)

⇢tot(t)
, (5.51)

so that ⌘(t) = min{⌘j(t)}.

5.2.3 Numerical Study: Initial Conditions

To simulate the evolution, we must first specify the initial conditions for the ensemble

constituents, both in terms of their cosmological abundances and in terms of their

phase-space distributions. The starting point of the simulation is assumed to be at

a moment deep within the RD epoch when the only e�cient processes left in the

dark sector are just decays that occur entirely within the dark ensemble. In other

words, we assume at the beginning of the simulation, all the constituents of the dark

ensemble have already decoupled from both the SM thermal bath and the species in

the dark sector. It is also possible that they have never been in equilibrium with any

other species.

Depending on the dark-matter production mechanisms, the initial conditions for

the simulation can vary a lot. For example, for dark matter produced from ther-

mal freeze-out, the constituents were all in thermal equilibrium before freeze-out,

and therefore the distribution functions right at that moment of decoupling would
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be Fermi-Dirac or Bose-Einstein: fj(p) = 1/(exp(E/Tj) ± 1). After all the con-

stituents decouple, the distribution functions just redshift. Therefore, the shape of

the distribution function is kept fixed in the comoving momentum space, and one can

specify the initial condition for each constituent by giving each of them an e↵ective

temperature Tj. For dark matter produced from vacuum misalignment, such as the

scenarios considered in Ref. [40, 43] in which the dark sector consists of an infinite

tower of Kaluza-Klein states, the initial abundance of each constituent depends on

the mixing between the KK eigenstates and mass eigenstates. The initial phase-space

distribution of each constituent in such a scenario is a �-function: fj(~p) ⇠ �
(3)(~p),

and one just need to specify an overall constant for each constituent that gives the

correct number density.

While each scenario is interesting and important by itself, it is not the purpose of

this dissertation to study all the possible initial conditions. Without loss of generality,

we assume that the initial abundance of the dark ensemble is completely dominated

by the heaviest state, and the initial shape of the distribution function of the heaviest

state is Boltzmann-like. Therefore,

fN(p, tic) = A exp(�Ej/T0) ,

fj(p, tic) = 0, if j 6= N , (5.52)

where tic is the cosmological time at which the initial condition is taken, A is an

overall factor that determines the initial cosmological abundance, and T0 ⌧ m0 can

be viewed as the initial temperature of the dark sector.

Note that, as long as the initial condition is su�ciently “cold” and the condition

fj ⌧ 1 is satisfied for all the states throughout the simulation, the exact initial

shape of the distribution function will not significantly a↵ect our general results.

This is because of the following facts: 1) When fj ⌧ 1, the factors from the phase-

space distribution will not significantly change the decay widths. Therefore, the

timescales at which packets are deposited in the phase space of the ground state,

i.e. the “conveyor belt”, are not significantly changed. 2) When the initial condition
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is cold, all the parent particles are approximately at rest at the beginning of the

intra-ensemble decay process. Thus, no matter how the phase-space distribution of

the parent particles changes, the first decay products will be created with roughly the

same momenta around which similar narrow packets would form in the phase space

of the daughter particles. This means, the phase-space distribution of the daughter

particles are not very sensitive to the change of the initial phase-space distribution

of their parent. As the decays go on further, the phase-space distributions of the

subsequent decay products will also lose the sensitivity to the initial phase-space

distribution.

The above discussion tells us that we can freely choose any T0 as long as it is

much smaller than the lightest mass in the ensemble. The factor A can also be left

as a free parameter as long as fj ⌧ 1 can be satisfied throughout the simulation.

Indeed, as we can see from Eq. (A.0.11), as long as fj ⌧ 1 is satisfied all the time,

the Boltzmann equation system is e↵ectively invariant under an overall rescaling of

fj.

The initial time tic corresponds to an initial temperature Tic of the SM thermal

bath. They can be related using the standard time-temperature relation in the RD

epoch:

t =

r
45

2⇡2
g⇤(T )�1/2

MP

T 2
, (5.53)

where g⇤(T ) is the e↵ective relativistic degrees of freedom, and MP = 1/
p

8⇡G is

the reduced Planck mass. However, when actually solving the Boltzmann equa-

tion, instead of using the cosmological time t, we use a dimensionless time variable

t̃ 2 [t̃ic, t̃f ], where t̃ic and t̃f correspond to the beginning time and the end time of

the simulation. To map the dimensionless time variable t̃ into cosmological time t,

we first notice that, since H = 1/(2t) in the RD epoch, the Boltzmann equation

system Eq. (A.0.11) is also invariant under a rescaling of the time variable. Therefore,

essentially, t̃ and the real cosmological time t only di↵er by a multiplicative factor.

To find this multiplicative factor, we actually fix Tic first. Then the cosmological time
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at the beginning of simulation is

tic = � ·
MP

T
2

ic

, (5.54)

where � =
p

45/(2⇡2)g⇤(Tic)�1/2 depends only on the initial temperature of the SM

thermal bath. By matching tic to the starting time of the simulation t̃ic, we find their

ratio is

⇣ ⌘
t̃ic

tic
= t̃ic ·

T
2

ic

�MP

. (5.55)

This ratio is fixed between any t and t̃, so, the conversion is

t =
t̃

⇣
= t̃ ⇥

�MP

t̃icT
2

ic

. (5.56)

One can also view �MP /(T 2

ic
t̃ic) as the unit of t̃ when mapping the timeline of the

simulation into the real history of the universe. There is a caveat here. Since by

choosing di↵erent model parameters, decays would proceed with di↵erent rates, the

entire intra-ensemble decay process in general does not all end uniformly at t̃f . Just

like Sec. 5.1.1, we can define a t̃end at which all the decays within the ensemble have

e↵ectively ended. Therefore, when mapping the time variable t̃ in the simulation to

the real cosmological time t, it is only necessary to map the “physical” part of it,

namely, from t̃ic to t̃end.

With the freedom in choosing the initial temperature Tic and rescaling f , our

simulation can be mapped to a wide range of possible scenarios. We explain our

procedure in the following. We first pick up a set of dimensionless model parameters

{�m/m0, �, r, s} together with the initial shapes of the distributions, and then evolve

the Boltzmann equation system until only the lightest constituent exists. From here

we can obtain the average momentum in the units of the lightest mass at the end of the

intra-ensemble decay process, i.e., hpi
end

/m0 at t̃end. We then match it with a scenario

in which there is a dark matter mass m0, a present-day relic density ⇢DM(tnow) as well

as an average momentum hpi
now

. Since the zeroth order distribution function simply

redshifts after the intra-ensemble decay process, matching the present-day average
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momentum amounts to a simple shift in the momentum space. So, the first thing

we do is redshifting hpi
end

to match hpi
now

, and then we rescale f0 to match the relic

density. As long as fj ⌧ 1 is still satisfied after the rescaling, this procedure is

self-consistent.

We conclude this subsection by mentioning some additional consistency checks.

First of all, although tic can be any moment after the decoupling of dark matter, it

should be significantly smaller than the lifetime of the most short-lived constituent.

Otherwise, some constituents in the ensemble would have already been decaying when

our simulation starts Moreover, since it is our assumption that intra-ensemble decays

occur within the RD epoch, consistency requires aend < aeq. Using p / 1/a, we have

anow

aend

=
hpi

end

hpi
now

. (5.57)

Therefore, the condition translates into hpi
end

/ hpi
now

> anow/aeq ⇠ 3400. Since

anow/aend can be easily determined while matching the average momentum, it is

straightforward to determine the temperature Tend and Tic numerically, using the

entropy conservation and the time-temperature relation in Eq. (5.53).

5.2.4 Numerical Study: Evolution Picture

After specifying the initial conditions, we also need to specify the choice of parameters.

In principle, the parametrization of the ensemble has a huge e↵ect on the dynamics.

For example, the mass spectrum determines the decay kinematics, and the choice of

r and s controls the branching ratio as well as the overall decay widths. However, it

is not the purpose of this chapter to explore the entire parameter space and establish

various bounds. Our goal is to show examples in which various non-trivial phase-

space distributions can be generated, and study how these distributions leave their

imprints on matter power spectrum. Therefore, we shall take only one simple linear

mass spectrum, with � = 1, �m = 2m0. For r and s, we study all the combinations

of r 2 {�3, 0, 3} and s 2 {�4, 0, 4}, which covers most of the characteristic scenarios.

For the number of constituents, we choose N + 1 = 10, which is large enough to show
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complex dynamics, and, at the same time, computationally a↵ordable. The range of

the time variable t̃ is chosen to be [10�6
, 106], and it is sliced into 200 log-spaced time

blocks. The momentum space is discretized logarithmically with 300 momentum bins.

Since there are N + 1 = 10 states, the system consists of 300 ⇥ 10 = 3000 mutually

coupled di↵erential equations.

Number Density

Fig. 5.14 shows the evolution of comoving number density of each state. The vertical

axis is normalized by the initial total comoving number density, with aic being the

scale factor at the beginning of the simulation. We see that, as soon as the heaviest

state starts to decay, the lighter states start to populate. As we have seen before,

di↵erent cases end up with di↵erent number of ground-state particles. In general,

the cases with larger r tend to have smaller particle number in the end because more

mass energy is converted into kinetic energy and get redshifted away.

In the left column, we have s = �4, and the decay rate of the heaviest state is

relatively fast. Since negative s prefers decay products with di↵erent mass, it allows

intermediate states to populate one after another. When r = �3, decay chains tend

to minimize kinetic energy, thus allowing the states right below the heaviest state

to dominate. Therefore we see a series of peaks popping out from i = 8, 7 . . . to

i = 1 in the upper left panel. As r increases, products with smaller masses become

favored, thus the first peak becomes i = 7 when r = 0, and i = 4 when r = 3. Before

proceed to the next column, we remind the readers here that the cases in the upper

and bottom left panel violate the consistency requirement since the heaviest state has

already started decaying at the initial time of the simulation. We nevertheless study

these cases by pretending the associated initial conditions exist.

In the middle column, the heaviest state lives relatively longer, and all the lower

states start to populate at similar times as we see the peaks are packed up together.

Just like before, we see heavier states, such as i = 5, 6, 7, 8 are able to have a non-

vanishing population when r = �3, 0. But when r = 3, only states with smaller

masses are able to populate.
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Figure 5.14: The evolution of the comoving number density nia
3 for each state. The

curves are normalized by the total initial comoving number density.

In the right column, since s = 4, strong preference in symmetry severely reduces

the number of decay products whose mass is larger than half of the mother particle.

Among relatively lighter states, a smaller r favors the heavier ones, while a larger r

favors the lighter ones.

In general, by comparing with Fig. 5.13, we see that the cases with simpler decay-

chain structure tend to have less states populating, i.e. the decay products tend to

be produced with widely di↵erent number densities. On the contrary, in the cases

where heavier states can cascade through various di↵erent decay chains, the evolution

history becomes very rich, in which multiple di↵erent state are able to populate before

decaying.
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Figure 5.15: Comoving energy density of each state as well as the total energy density
normalized by the initial total comoving energy density.

Energy Density

Fig. 5.15 shows the evolution of comoving energy density ⇢ia(t̃)3 for each state. The

total comoving energy density ⇢tota(t̃)3 of the entire ensemble is represented by the

dashed black curve. The general behavior for each state is similar to Fig. 5.14.

However, the energy density takes into account not only the mass energy but also the

kinetic energy. Therefore, when a constituent is very energetic, it is able to have a

large energy density with a small number density.

For the total energy density, we know that ⇢ ⇠ a
�3 if the entire ensemble is overall

cold, while ⇢ ⇠ a
�4 if the ensemble is relativistic. Since the initial distribution is cold,

the energy is initially stored almost entirely within the heaviest particle’s mass. If

there is no intra-ensemble decay at all, the total energy within a comoving volume a
3

would stay constant. However, decays convert mass energy into kinetic energy and
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change the way the total energy scales. When decays are actively occurring, we see the

comoving energy density ⇢tota
3 decreases, which means the energy density of the entire

ensemble is diluting faster than a
�3 as kinetic energy is redshifted away. Therefore,

the evolution of the total comoving energy density reveals how much “radiation” are

being produced during the decay history — the comoving energy density decreases

faster when there is more radiation, and it stays constant when the mass energy is

dominant.

Obviously, the cases with larger r always end up with smaller comoving energy

since a larger r indicates a larger portion of the initial mass energy can be converted

into radiation via decays. Eventually, as the kinetic energy redshifts away, the total

energy density is stored completely within the mass of the lightest state. Having a

larger r therefore also means having a smaller number of ground state particles and

vice versa. This is consistent with what we have seen in Fig. 5.14.

Tower Fraction

The evolution of tower fractions ⌘i(t̃) and ⌘(t̃) are shown in Fig. 5.16. As we have said

before, ⌘ is a measure of the non-minimal nature of the dark sector. A large ⌘ means

the dynamics is controlled by multiple states in the ensemble, while a vanishing tower

fraction means there exists a single state which takes most of the total abundance.

In our initial condition, we have set the heaviest constituent to dominate at the

beginning. As the heaviest state starts to decay, lower states start to populate.

Therefore, we see ⌘ always increases right from the start. In the r = �3, 0, s = �4

cases, the dark sector is consecutively dominated by the intermediate states. This

makes ⌘ show some oscillatory behavior. For the r = �3, 0, s = 0 and r = 0, s = 4

cases, the heaviest state dominates for a long time until the ground state takes over.

For the intermediate states, though none of them has ever dominated the dark sector,

their population is still large enough to keep ⌘ su�ciently far away from zero before

they decay. When r = �3, s = 4, since radiation is disfavored and symmetry is

enhanced, the dark sector is shortly taken over by the state i = 4 before it is eventually

dominated by th ground state. For the r = 3 s = 0, 4 cases, ⌘ can even grow after
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Figure 5.16: Evolution of the tower fraction ⌘ (dashed black curve) and the partial tower
fraction ⌘i (solid curves).

the ground state has dominated the dark sector. This is because, 1) at the beginning,

there is a lot of kinetic energy in the ground state, and therefore they lose their

energy rapidly through redshift; 2) at the same time, there exists a relatively long-

lived competing state — the i = 1 state in the r = 3, s = 0, 4 cases, which has less

kinetic energy than the ground state and is able to hold its energy for a long time

before decaying. Therefore, before the competing state decays, the energy density of

the ground state decreases faster than the competing state, making the fraction of

abundance carried by the ground state decrease. In the r = 3, s = 0 case, the i = 1

state even shortly dominates the dark sector.

In general, during intra-ensemble decays the evolution of ⌘ can be highly non-

trivial. However, in this work, such non-trivial behaviors only occur within the RD

epoch. Once intra-ensemble stops, only the lightest state will be propagating, and
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Figure 5.17: The equation of state parameter of each constituent and of the whole en-
semble.

therefore ⌘ will eventually decrease to zero.

Equation of State Parameter

The evolution of the equation of state parameter of each state as well as the entire

ensemble is shown in Fig. 5.17. As is easily seen from Eq. (5.4) and Eq. (5.48),

the equation of state reveals the “warmness” of a certain energy component in the

universe. For the heaviest constituent, since it starts cold and its kinetic energy can

only decrease, w9 stays close to zero all the time. On the contrary, the lower states

start empty. Therefore, as soon as the heaviest state decays, the lower states acquire

kinetic energy, which results in a positive wi for i < N . The value of wi depends on

how relativistic the corresponding particles are when they are produced. Therefore,

we see in most of the cases, the wi’s are roughly ordered by their masses at the

beginning.
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For the left column, since the heaviest state has a relatively short lifetime, a lot of

kinetic energy are released early, leaving enough time for the lighter states to redshift

and cool down, thus wi’s go down in general.

For the middle and right columns, the decay of the heaviest state persists for a

longer time, thus all the lower states are able to maintain almost constant wi for quite

a while.

For a particular state i, after the heaviest state decays, if there is no more decay

from the intermediate states, the wi simply decreases due to redshift. However, if

some of the states are able to retain a non-negligible amount of energy and release

later, peaks or wiggles might emerge in the equation of state of the products. For

example, in the lower left panel, multiple wiggles and peaks show up in w1 and w2

because of the later decays of intermediate states.

The total equation of state parameter wtot is a weighted sum of each individual wi.

It is thus sensitive to decays as long as the state decaying has a non-negligible fraction

of energy density. Therefore, the peaks and wiggles in wtot reveals the moments when

decays take place. In most of the cases, wtot peaks at the moment when the heaviest

state decays. The only exception is the case in the upper right panel in which only

the decay of certain intermediate states like i = 4, 2 are able to produce a significant

amount of radiation.

In the end, notice that in the upper middle, upper right, middle center and middle

right panels, there are curves are not smooth when approaching the end of the simula-

tion. These are numeric artifacts, and they only emerge when the corresponding state

takes a vanishing fraction of the total abundance. Therefore, we see the smoothness

of wtot is not a↵ected.

Phase-Space Evolution

Finally, we show the evolution of the phase-space distribution a
3
p

3
f(p, t̃) of the ground

state in Fig. 5.18. We first specify t̃end — the time at which intra-ensemble decays

end, by looking at the comoving number number density of the lightest particle. We

set t̃end to be the moment at which the comoving number density reaches 99.9% of its
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asymptotic value. Among all the cases we are considering, t̃end ranges from O(100)

to O(105). We pick out five snapshots which are evenly spaced on logarithmic time

scale between t̃ic and t̃end to exhibit the evolution.
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Figure 5.18: Snapshots of phase-space distribution during intra-ensemble decays. For each
panel, five time slices that are evenly spaced in log-scale between t̃ic and t̃end are chosen to
show the evolution of phase-space distribution. Here, � = (1/5) log10(t̃end/t̃ic). Therefore
the corresponding time slices are t̃l = t̃ic ⇥ 10l�, where l = 1, . . . 5. Di↵erent colors are used
to distinguish di↵erent times slices. The vertical and horizontal axes are chosen such that
the area under each curve is proportional to the comoving number density. The average
momentum at the end of the intra-ensemble decay process is also shown in each case.

For the four panels around the upper right corner, the distribution functions take

a simple unimodal form. Despite various decay-chain structures that we have seen

in Fig. 5.13, this is simply due to the fact that the majority of decays to the ground

state all occur around the same time scale, and the expansion of the universe are not

able to separate di↵erent “deposits”. The other panels, however, have decay chains

to the ground state that di↵er by several orders of magnitude in time. Therefore,
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the universe can expand and redshift old deposits to lower momenta before new

deposits come in. As a result, these cases tend to give rise to multi-modal phase-

space distributions.

The phase-space distributions allow us to calculate the average momentum hpi
end

at the end of the intra-ensemble decay process. It seems that the unimodal cases

in general have a relatively higher average momentum right after the intra-ensemble

decay process. Indeed, since decays in these cases tend to occur around the same

time scale, at t̃end, the ground state particles are relatively “fresh” — they are newly

produced, and their kinetic energy has not been redshifted away much.

5.2.5 Numerical Study: Matter Power Spectrum

In this section, we would like to look at the matter power spectrum resulting from the

phase-space distribution that we have obtained in the toy model. We have mentioned

in the previous subsection that, by choosing di↵erent parameters, the toy model will

end up with di↵erent particle number. This means, if we start our model with certain

common initial condition, not all of our cases under study would end up generating

the desired relic density. While this is indeed true, our freedom in rescaling the

distribution function fj and the time variable t̃ allows us to obtain the correct dark

matter abundance in all the cases, up to the self-consistency requirements. Therefore,

in this subsection, we shall make use of this freedom. Instead of fixing the initial

condition and looking for regions in the parameter space that satisfies all sorts of

phenomenological constraints, we shall alter our perspective and ask “What if the

dark matter we observe today had a phase space distribution like those produced after

intra-ensemble decays? What can we see in the matter power spectrum that relates to

the features in the phase-space distribution?”

Following the procedure laid out in Sec. 5.2.3, we first pick up a mass for the

lightest constituent by setting m0 = 10 keV, a typical mass scale for warm dark

matter. Then we redshift the distribution functions in all the cases so that they

have the desired average momentum today, which we set to be hpnowi = 100 TCMB,

where TCMB ⇡ 0.23 ⇥ 10�3eV is the present-day CMB temperature. This also
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Figure 5.19: Phase-space distribution p
3
nowf0(pnow) for all the cases normalized to have

the correct present-day DM energy density. The distributions are also redshifted so that
the average momentum at the present epoch is 100 times the CMB temperature. The mass
of the ground state is taken to be m0 = 10 keV. Each panel corresponds to one choice of r

and s.

means the present-day average velocity is hvi
now

⇠ 2.3 ⇥ 10�6. In the end,

we rescale f0(pnow, tnow) to match the present day dark matter energy density

⇢DM ⇠ 0.27 ⇥ 10�5
h

2 GeV cm�3. After doing so, we obtain the phase-space distribu-

tions in Fig. 5.19. One might have noticed that the blue curve in the lower panel once

again violates a consistency requirement as it has to f0 > 1 in the lower-momentum

region. However, this can be easily alleviated by slightly increasing both m0 and

hpnowi while keeping the average velocity today hvnowi unchanged. Such change has

no visible e↵ect on the matter power spectrum. Therefore, we shall nevertheless show

the matter power spectrum generated from this distribution function.

Since we now know both hpi
end

and hpnowi, we are able to calculate the temperature
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r

s
-4 0 4

-3 Tic = 0.1 MeV Tic = 1.0 MeV Tic = 11.0 MeV
Tend = 11.2 eV Tend = 65.2 eV Tend = 59.0 eV

0 Tic = 0.8 MeV Tic = 5.3 MeV Tic = 13.1 MeV
Tend = 12.3 eV Tend = 75.1 eV Tend = 140.9 eV

3 Tic = 6.5 MeV Tic = 7.5 MeV Tic = 5.2 MeV
Tend = 13.4 eV Tend = 15.2 eV Tend = 11.3 eV

Table 5.1: SM temperature at the beginning and the end of the intra-ensemble decay
process, after shifting the phase-space distributions to hpnowi = 100 TCMB.

of the SM sector at the beginning and the end of the intra-ensemble decay process

using entropy conservation. The results are collected in Tab. 5.1. Roughly speaking,

by choosing m0 = 10 keV and hpnowi = 100 TCMB, intra-ensemble decays start

at Tic ⇠ O(1 � 10) MeV and end at Tend ⇠ O(10 � 100) eV. Since hpendi /m0 is

fixed no matter how we rescale the time parameter (see Fig. 5.18), it is essentially the

present-day velocity hvnowi ⇡ hpnowi /m0 that determines the number of expansions

the universe has gone through after the intra-ensemble decay process. Therefore, if

a larger mass m0 or a smaller hpnowi is chosen, hvnowi can be made smaller, which

allows a lager number of expansions between today and the end of the intra-ensemble

decay process. In this way, both Tic and Tend would be pushed further back in the

history of the universe.

The matter-power-spectrum ratios P(k)/PCDM(k) obtained from the phase-space

distributions in Fig. 5.19 are presented in Fig. 5.20. As we have discussed in

Sec. 5.1.2.2, traversing along the matter power spectrum in the direction of increasing

k amounts to “scanning” the phase-space distribution in the direction of decreasing

momentum/velocity. Though the panels in Fig. 5.20 has one-to-one correspondence

to the panels in Fig. 5.19, in order to show how this scanning works, we also plot

in each panel the present-day phase-space distribution as a function of k. There-

fore, at each k, one can easily tell which momentum slice is just reaching this scale.

In order to guide our eyes in this “scanning”, we also use a color code based on

Eq. (5.39). One can refer to the colorbar to tell the fraction of dark matter that can

be considered e↵ectively as CDM component at each scale. The four dotted verti-
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Figure 5.20: The matter-power-spectrum ratios P(k)/PCDM(k) as a scan over the phase-
space distribution. The color coding follows Eq. (5.39), which shows the fraction of particles
that have kFSH > k. The phase-space distribution p

3
nowf(pnow) of each case is plotted

against the free-streaming wavenumber by converting p to the corresponding kFSH using
Eq. (5.35). The dashed black vertical line corresponds to the free-streaming wavenumber
associated with the average momentum today. The four dotted vertical lines from left to
right indicate the free-streaming wavenumbers associated with vnow = 10�5

, 10�6
, 10�7

,

and 10�8, respectively.

cal lines from left to right indicates the free-streaming wavenumbers associated with

vnow = 10�5
, 10�6

, 10�7
, 10�8, respectively. The dashed vertical line marks the free-

streaming wavenumber corresponding to the present-day average momentum hpnowi.

We expect the power starts to be suppressed around there. Indeed, it gives a good

estimate. However, notice that many of the phase-space distributions actually extend

themselves beyond vnow ⇠ 10�5. We can see that the transition of color from purple

to blue which suggests a non-vanishing fraction of particles is able to free-streamed to

that scale actually gives a even better prediction on the starting point of deviation.
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This is more obvious if the vertical axis is on linear scale.

The non-trivial phase-space distribution also gives more information beyond a

simple deviation from CDM. For example, the P/PCDM curves in the upper center,

upper right, middle center and middle right all exhibit a sharp drop. This is simply

due to the single narrow packet in their phase-space distribution which carries the

entire DM abundance. As we can see from the scan over the phase-space in Fig. 5.20,

in all the cases, when k >
⇠ 1, there is no much CDM fraction left to provide gravi-

tational potential, which explains the sharp drop. The lower center and lower right

panels also show interesting behaviors. Instead of being strongly suppressed, the ratio

P/PCDM seem to approach a constant slope as we scan over the first packet. This is

consistent with our previous findings, since the CDM fraction is not changing a lot

as both distribution functions have a large packet located in the lower momentum

region around vnow ⇠ 10�7
� 10�8. Consequently, they both exhibit a sharp turn

after scanning the last packet. On the contrary, the cases in the upper left and middle

left panels show a more smooth turning because their distribution functions are very

spread-out instead of consisting of isolated peaks. The color coding also tells us the

change of CDM fraction as k increases in these two cases is more gradual compared

with the previous two cases. In the end, the the P/PCDM curve in lower left panel

seems to have a constant slope after it first deviate from 1. As we see in the scan, the

distribution function is very extended. After passing the first two peaks, there is still

⇠ 30 � 40% of dark matter that has not been scanned and acts as an e↵ective CDM

component. This non-negligible CDM component protects the gravitational potential

and prevents further suppression in the matter power spectrum, therefore giving rise

to a nearly constant slope.

Besides identifying the features in the phase-space distribution with the features

in the matter power spectrum, one can also sort of invert this mapping to make qual-

itative predictions about the phase-space distribution based on an observed matter

power spectrum. For example, if the power-spectrum ratio P/PCDM sharply decreases

right after the first deviation, we can expect a narrow packet in the phase-space dis-

tribution that holds a large fraction of dark-matter abundance. If the ratio seems
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to reach a constant slope, then beside the packet that causes the first drop, a non-

negligible part of the distribution must be located at regions of su�ciently small

momentum which can be considered as an e↵ective CDM component. For the power-

spectrum ratio that gradually turns, the phase-space distribution is likely to extend

over a large range of momentum scales. Moreover, if the ratio reaches a constant

slope and suddenly turns down, then the associated distribution function might con-

sist of at least two isolated major packets. One can then use the scales at which

these features emerge to predict the locations of the packets in the phase-space. A

potentially possible way of reconstructing the phase-space distribution is to make use

of the “packet + CDM” cases that we have shown in Sec. 5.1.2.2. One can simulate

the actual packet by trying Gaussian packets with di↵erent widths and heights, and

check if features in the matter power spectrum can be reproduced.

In the end, we emphasize that, while certain predictions about the phase-space

distribution can be made by analyzing the matter power spectrum, an actual inverted

map is extremely di�cult if not entirely impossible. It is not clear whether there

exists an one-to-one map. And even if it does exist, the detailed features on the

matter power spectrum can be very subtle. For instance, the P/PCDM curves in the

upper left and middle left panels are almost indistinguishable. The only predictions

we can make are just the average velocity of the first packet, and that the entire phase-

space distribution function is not sharp but extended. It is very di�cult to obtain

additional information beyond these. The same argument also applies to the upper

middle, upper right, middle center and middle right panels. In reality, the observed

matter power spectrum is also blurred by observational uncertainties. Therefore, a

systematic exploration of how phase-space distribution can be reconstructed from

matter power spectrum is beyond the scope of this dissertation.

5.3 Conclusion

In this chapter, we have studied the cosmological imprints from non-minimal dark

sectors. In particular, we have presented a thorough study on the phase-space dis-

tribution generated from the decays within a non-minimal dark sector. As a first
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step, we analyzed how the decay processes a↵ect the phase-space distribution of the

decay products. In general, this dynamical process in the phase space of a particular

constituent consists of three parts, 1) packets redshift due to the expansion of the

universe; 2) packets disappearing due to the decay of itself; 3) packets growing due

to the decay from higher states. We have found that the shape of a newly-formed

packet is related to the shape of the decaying packet of the parent. When multiple

decay channels are available, each packet works like a single “brick” that drops on

the “conveyor belt” at di↵erent times and builds up the distribution function of the

daughter particles. The whole intra-ensemble decay process eventually left its im-

prints as a set of packets stacking up together in the phase space of the lightest state.

Depending on the parameters that controls the decay widths and branching ratios,

the resulting phase-space distribution could be wildly di↵erent. We have found that,

for scenarios in which major decay chains from the heaviest state are separated by

di↵erent timescales, the phase-space distribution of the ground state will naturally

be multi-modal. However, if a single decay chain dominates, or if all the major decay

chains reach the ground state at the same timescale, the shape of the phase-space

distribution will be relatively simple. When the intra-ensemble decay process is over,

the phase-space distribution of the relic simply redshifts. Therefore, the nontrivial

shape of the momentum distribution molded by the decays will not change in the

comoving momentum space until the structure formation starts.

We further studied the relation between the phase-space distribution and the

structure formation by looking at the suppression patterns in matter power spectrum.

Traditionally, the Jeans’ scale which is obtained from the velocity dispersion or the

sound speed is used to give an estimate on the scale at which the structure formation

is suppressed. However, the story it tells is far from complete. First of all, the

Jeans’ scale is time dependent and reaches its maximum not at today, but around

the epoch of matter-radiation equality. Second, it only vaguely separates modes that

are oscillatory from the modes that are growing. The growing modes near the Jeans’

scale can also be suppressed if free-streaming e↵ects are not completely negligible.

Besides, the velocity dispersion can well characterize the phase-space distribution only
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when the distribution is unimodal. However, the sort of phase-space distributions

derived from decays can easily be multi-modal and even feature a combination of

isolated packets and extended continuum. Therefore in those cases a single velocity

dispersion is not enough to capture all the features. We found it very useful to

use the free-streaming horizon to analyze the e↵ects from phase-space distribution.

The free-streaming horizon is an integrated quantity which gives the largest distance

that particles with certain velocity have traveled today. Thus, it naturally gives

the largest scale those particles can impact. Besides, since particles can have more

than one characteristic velocities if the distribution function is non-trivial, using free-

streaming horizon allows us to associate particles with any velocity to a corresponding

length scale and identify the possible e↵ects from them.

We have subsequently studied the matter power spectra resulting from di↵erent

types of distribution functions and compared them with the standard CDM scenario.

To be specific, we looked at the ratio P(k)/PCDM(k) and studied the way deviation

from the standard scenario occurs as well as all the features beyond the deviation

point. We learnt that, as we move along the matter-power-spectrum ratio in the

direction of increasing k, we are also e↵ectively “scanning” the phase-space distri-

bution in the direction of decreasing particle velocity. The matter power spectrum

starts to deviate from the standard CDM scenario at the location where there is a

non-negligible fraction of dark-matter particles able to free-stream to this scale. Be-

yond this initial deviation, the way the power decreases as k increases depends on the

details in the distribution function. In general, at a particular k, we found it useful to

separate the entire dark matter into two parts – an e↵ective warm component, who

has its kFSH > k, and an e↵ective cold component whose kFSH < k. We found

the suppression patterns are sensitive to the phase-space distribution of the warm

component, while only sensitive to the abundance of the cold component. Since the

exact shape of its phase-space distribution does not matter, the cold component can

be well approximated by a CDM component with the same abundance. The way the

warm component exert its influence is by smoothing out its inhomogeneities in the

RD epoch, and thus weakening the gravitational potential. On the contrary, the cold
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component always protects the gravitational potential and resists the dampening from

the warm component. The evolution of the total matter perturbation thus depends

on the interplay between the two. We then qualitatively identified the features in the

phase-space distribution p
3

now
f(pnow) with the features in the matter-power-spectrum

ratio P(k)/PCDM(k) using several sets of characteristic examples.

To show the application of our analysis, we chose to study a DDM-motivated toy

model with N + 1 = 10 constituents. We presented the parametrization of the mass

spectrum and the couplings through which we can easily vary the total decay width,

as well as the branching ratios. We have also showed the way the decay chains change

while varying the ensemble parameters. We then presented the results from solving

Boltzmann equations at the level of the phase-space distribution fi(p, t̃). With all

the information obtained from the phase-space distribution, we presented the non-

trivial evolution of the number density, the energy density, the tower fraction and

the equation of state. We saw that, by going through di↵erent decay chains, the

final yield of ground-state particles can be quite di↵erent. This is because kinetic

energy scales di↵erently from the mass energy, and the amount of kinetic energy

that is produced during decays varies in di↵erent cases. In the same way, the total

energy density also scales di↵erently in di↵erent cases. When decays are not occurring

and particles have cooled down, ⇢tot ⇠ a
�3. However, when particles are actively

decaying and producing energetic daughter particles, ⇢tot dilutes faster. In general,

when r is bigger, more radiation is produced and more energy is lost in the end

due to redshift. The tower fraction which indicates the non-minimality of the dark

ensemble also evolves in a highly non-trivial way when decays occur. In some cases,

intermediate states are able to shortly dominate the dark sector before they decay,

while in others, the heaviest state can quickly transfer its energy to the ground state.

In all the cases, ⌘ are able to stay significantly away from zero, which means the dark

sector is in general far away from the single-particle picture. The equation of state

parameter for the entire dark sector, which is built up from that of each constituent,

also works as a indicator of the amount of kinetic energy in the dark sector. When

decays occur, the equation of state parameter will increase because of the injection of



181

momentum. When decays end, it will decrease as the injected momentum redshifts

away. Therefore, the fluctuations in the equation of state parameter also reveal the

time when decays occur.

We further showed the evolution of phase-space distribution from the beginning

to the end of the intra-ensemble decay process. Just as expected, the phase-space

distribution can have multi-modal structure when there exist multiple decay chains

with di↵erent timescales. However, unimodal structure can also be obtained when

decays to the ground state tend to occur around the same time. We made use of the

freedom in rescaling the time variable and the distribution function to make the phase-

space distributions have the same average momentum and to make them have the

correct dark-matter relic abundance. By fixing the present-day average momentum to

hpnowi = 100 TCMB, we were able to calculate the temperature scale of the universe

when intra-ensemble decays begin and complete. Roughly, the cases that we studied

have Tic ⇠ O(1 � 10) MeV and Tend ⇠ O(10 � 100) eV. But this can be modified

by choosing other parameters.

In the end, we showed the matter power spectra generated from CLASS by in-

puting the “real” phase-space distributions. We were able to use the conclusions

from Sec. 5.1.2.2 to qualitatively map certain features in the distribution functions to

the patterns in the matter-power-spectrum ratio P(k)/PCDM(k). However, it is very

di�cult if not completely impossible to invert the mapping. Nevertheless, limited

but perhaps valuable information about the phase-space distribution is able to be

obtained by studying the matter-power-spectrum ratio.

Finally, let us discuss some of the explicit assumptions that have been made in this

work. First, we have assumed that the dark matter obtains non-thermal phase-space

distribution only from decays that occur completely within the dark sector. Other

decay scenarios can also be considered. For instance, decays from heavier dark-matter

states to lighter dark-matter states can be accompanied by one or more SM final

states. In these cases, in addition to the suppression of structure, if such decays occur

at late time, they might give rise to visible signals that explain the PAMELA positron

excess [148] or give rise to interesting direct detection signals due to the existence of
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the excited states [149]. Besides being produced from dark-sector particles or other

particles in the BSM sector, dark matter can also obtain non-thermal phase-space

distribution from decays of the SM particles. For example, Ref. [150] explored the

scenario in which the SM photons obtain an in-medium plasma mass and decay into

the dark-matter particles. In general, there are various early-universe processes that

are able to produce non-thermal phase-space distributions, and it is possible that

multiple processes need to be taken into account in the simulation. It would be useful

to summarize all the possible patterns associated with each specific type of process

using techniques similar to the analysis of decay chains.

Second, in the numerical study, we have required that our phase-space density

fj ⌧ 1. This is due to the fact that the decay term and the feed term in the

Boltzmann equations receive strong Bose enhancement once fj & 1(see Eq. (A.0.7)

and Eq. (A.0.9)). For axion-like particles whose masses are extremely small, e↵ects

from such enhancement could be huge and would easily dominate the decay-width

calculations which lead to severe sti↵ness problem in numerics. However, in these

cases, e↵ects from inverse decays also need to be taken into account and might be the

key to a computationally a↵ordable code. We shall leave it for future work.

Last but not the least, we have assumed that intra-ensemble decays complete

before the MRE. This is a very conservative choice since we do not want to inject too

much kinetic energy during the structure formation in the MD epoch. Nevertheless,

we have seen in Refs. [151–155] that dark matter decaying into dark radiation between

the recombination and the present epoch could help alleviate the Hubble tension [156]

and the �8 tension [157]. Since intra-ensemble decays essentially transform the dark-

matter mass energy into the radiation energy and change the expansion history, it

might provide an alternative approach in alleviating these tensions. We shall also

leave this for future work.
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Chapter 6

Conclusions

In this dissertation, we have studied some cosmological aspects of non-minimal dark

sectors. We have seen that the phenomenology of non-minimal dark sectors is just not

relying on the properties of one or a few constituents — it depends on the properties

of all the constituents within the dark sector.

In scenarios like the DDM, the dark sector often consists of a large number or even

an infinite number of dark-matter components. Therefore, it is the collective behavior

of those components that governs the cosmological evolution of dark matter. In the

first part of this dissertation, we have explored the possibility of constructing DDM

models using an ensemble of dark hadrons or gauge-neutral bulk states of Type I string

theories. In both constructions, the mass spectrum of the dark-matter components

follows the linear Regge trajectory, and the density of states in the dark ensemble

grows exponentially with mass, which is called the Hagedorn behavior. Therefore

both scenarios share the same parametrization, and we have studied them together.

We started by examine the internal consistency of the models, and investigated the

ways to properly organize the dark-matter components so that one can obtain the cor-

rect total relic abundance and have the desired balance between the SM decay widths

and the cosmological abundances of the dark-matter components. We subsequently

studied the evolution of the total dark-matter abundance, the e↵ective equation of

state as well as the tower fraction. We have seen that their evolution picture is very

dynamical as the decays of the dark-matter components result in additional time-

dependence beyond those normally associated with the expansion of the universe.

We further demonstrated the phenomenological viability of such models using the

constraints that follow directly from the evolution picture. Surprisingly, we found

these preliminary constraints not only allow the dark sector to remain non-minimal

today, but also tend to introduce correlations between various properties of these
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DDM ensembles such as their associated mass scales, lifetimes, and abundance dis-

tributions. For example, the fundamental mass scales and the diversity of the dark

sector today are inversely correlated — while the energy scales of the DDM ensemble

are allowed to range from the GeV scale all the way to the Planck scale, the total

present-day cosmological abundance of the dark sector must be spread across an in-

creasing number of di↵erent states in the ensemble as these energy scales are dialed

from the Planck scale down to the GeV scale.

In other scenarios, the dynamics in non-minimal dark sectors could leave behind

only a single dark-matter candidate. Therefore, the phenomenology of those scenarios

depends heavily on the processes that have taken place in the early universe. We

focused on processes that leave non-trivial imprints on the phase-space distribution

of the resulting dark-matter particles. In particular, we found that decays from the

heavier constituents to the lighter constituents in a non-minimal dark sector could give

rise to non-thermal or even multi-modal phase-space distributions. In general, such

the non-trivial multi-modal distributions can be easily obtained by having di↵erent

decay chains from heavier states that reach the ground state at highly separated

timescales. We then investigated the cosmological consequences of having such non-

trivial phase-space distribution by examining the suppression patterns in the shape of

the resulting matter power spectrum. We found it particularly useful to analyze the

matter power spectrum with the free-streaming horizon — particles can only suppress

density perturbations at scales smaller than their free-streaming horizon, otherwise,

they behave like perfectly cold dark matter. We then established a qualitative map

from the features in phase-space distribution to the changes in the shape of the matter

power spectrum. Finally, we also demonstrated the application of those techniques by

studying a toy model with N+1 ensemble constituents. We have shown that, while the

forward map from the phase-space distribution to the matter power spectrum works

very well, the inverse map is much more di�cult. However, in some circumstances,

qualitative information can be learnt and might actually reveal valuable information

about the early-universe processes.

In the end, we emphasize that the scenarios that we have considered in this dis-
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sertation are at the certain extremes of a general non-minimal dark-sector scenario.

In principle, both the decays that produce final states external to the dark ensemble

and the intra-ensemble decays may play a non-negligible role in the evolution of the

dark sector. There could also be decay channels that produce both the intra-ensemble

states and the states outside the dark ensemble. In the most general context, pro-

cesses like scatterings, annihilations and coannihilations also need to be taken into

account, and they might smear the phase-space distribution produced via the decays,

or even reestablish the equilibrium either within the dark sector or with the other sec-

tors. Such e↵ects are highly model-dependent. Instead of taking realistic models and

establish various phenomenological bounds, the goals of the two works are to provide

a proof-of-principle study, to show a viable framework in which specific models can

be constructed and studied in future work.
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Appendix A

Boltzmann Equations

In this appendix, we present a full derivation of the Boltzmann equations for the dis-

tribution functions when decays entirely within the ensemble are taken into account.

In general, the evolution of phase-space distribution is subject to three e↵ects – the

dilution due to the expansion of the universe, the loss due to the decay of the particle

itself and the gain from the decays of other heavier particles. Let us begin the deriva-

tion by considering only one species and ignoring any interactions. The conservation

of comoving particle number density d(na
3)/dt = 0 gives

dn

dt
= � 3Hn . (A.0.1)

As universe expands, particles redshift. In a FRW universe, the momentum redshifts

as
dp

dt
= �Hp, (A.0.2)

which means the particles with momentum p at time t will have momentum p
0 at a

later time t
0 which satisfies

p
0 = p · e

�
R

t
0

t
Hdt

= p ·
a(t)

a(t0)
. (A.0.3)

In a comving volume a
3, the redshift e↵ect can be seen as a continuous flow of particles

in the momentum space – particles that were in the momentum interval [p, dp] at time

t, flow into the interval [p0
, p

0 + dp
0] at a later time t

0 with the speed dp/dt = �Hp.

Therefore, the continuity equation applies:

@

@t

�
a

3
p

2
f
�

+
@

@p

�
�Hp · a

3
p

2
f
�

= 0 , (A.0.4)
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in which we have properly taken in to account the expansion of the universe by

multiplying the factor a
3 in each term. After some simplification, we find

@f

@t
= Hp

@f

@p
, (A.0.5)

which is the Boltzmann equation for the distribution functions in the absence of

interactions. To check the result, one can integrate both sides and obtain

Z
dp

p
2

2⇡2

@f

@t
= H

Z
dp

p
3

2⇡2

@f

@p

@

@t

Z
dp

p
2

2⇡2
f = �3H

Z
dp

p
2

2⇡2
f

✓
dn

dt

◆

exp

= �3Hn , (A.0.6)

where, in the second line, integration by parts is used, and the subscript ‘exp’ means

the change of particle number density due to the expansion of the universe only. The

result is consistent with Eq. (A.0.1).

Now let us consider an ensemble with multiple constituents, and assume that de-

cays can occur completely within the ensemble. For the ith (i = 0, 1, 2, . . . ) ensemble

constituent, its decay width for a general decay channel ↵ : i ! j + k + . . . is

�(↵)

i
(pi, t) =

1

2Ei

Z
[d⇡j(1 ± fj)][d⇡k(1 ± fk)] . . . |M|

2
, (A.0.7)

where d⇡i = d
3
pi/[(2⇡)22Ei], |M| is the corresponding amplitude, and +/� is chosen

for bosons/fermions, respectively. The change of number density due to the decays

is, ✓
dni

dt

◆

dec

= �

Z
dpi

2⇡2
p

2

i
fi

X

↵

�(↵)

i
. (A.0.8)

While one constituent is decaying, heavier constituents can also decay into the con-
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stituent in consideration. The rate of change due to this feeding e↵ect is

✓
dni

dt

◆

feed

=
X

`,↵

N
(↵)

`i

Z
[d⇡`f`][d⇡i(1 ± fi)]

N
(↵)
`i

(
Y

m 6=i

[d⇡m(1 ± fm)]N
(↵)
`m

)
|M|

2
.

(A.0.9)

Here, N
(↵)

`i
is the multiplicity of the particle i from the decay of ` in the channel

↵ : ` ! i + . . .

Putting all the relevant sources together, the change of particle number density

when intra-ensemble decays are present is

✓
dni

dt

◆
=

✓
dni

dt

◆

exp

+

✓
dni

dt

◆

dec

+

✓
dni

dt

◆

feed

. (A.0.10)

We can then write everything in terms of the phase-space distribution fi(p, t) and

reach the master equation:

@fi

@t
= Hpi

@fi

@pi

� fi

X

↵

�(↵)

i

+
(1 ± fi)

2Ei

X

`,↵

N
(↵)

`i

Z
[d⇡`f`][d⇡i(1 ± fi)]

N (↵)
`i

�1

⇥

(
Y

m 6=i

[d⇡m(1 ± fm)]N
(↵)
`m

)
|M|

2
. (A.0.11)

Therefore, for each constituent i, and for each point pi in the momentum space, there

is a Boltzmann equation that governs the evolution of fi(pi, t). And this evolution

depends on the full information of all the distribution functions in the ensemble. In

other words, the evolution of each individual distribution function is tightly coupled

to the evolution of the entire ensemble.
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Appendix B

Relativistic Kinematics

For Boltzmann equations in the form of Eq. (A.0.11), all the information about the

kinematics is encoded in the second term and the third term on the right-hand side of

the equation, which we shall refer to as the decay term and the feed term, respectively.

In this appendix, we shall show detailed calculations for these two terms separately.

B.1 Decay Term

Consider the case in which particle i with momentum pi decays into particle j and k

with with momentum pj and pk at moment t. The explicit expression for decay width

is

�i

(jk)
(t, ~pi) =

|Mi!j+k|
2

2Ei

Z
d

3
pj

(2⇡)32Ej

d
3
pk

(2⇡)32Ek

⇥(1 ± fj(~pj, t))(1 ± fk(~pk, t))

⇥(2⇡)4
�
(4)(pi � pj � pk) , (B.1.1)

where we use “+” for bosons and “�” for fermions. The reason for the fermionic case

is such: were the particle a fermion, the probability that the momentum eigenstate

|~pii is not occupied is 1 � fi(~pi, t) (recall that the occupation number can only be

0 or 1). For bosons, fi(~pi, t) is the occupation number of the state |fi(~pi, t)i with

momentum ~pi. It is straightforward that

a
†
~pi

|fi(~pi, t)i =
p

1 + fi(~pi, t) |1 + fi(~pi, t)i . (B.1.2)

Therefore the transition rate into the state |1 + fi(~pi, t)i is enhanced by the occupation

number of this state as compared with that into |0i. We shall take “+” signs from

now on since we are dealing with bosons.
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Integrating over one of the momentum, say ~pk, we get

�i

(jk)
(t, pi) =

|Mi!j+k|
2

32⇡2Ei

Z
d

3
pj

EjEk

(1 + fj(|~pj|, t))

⇥ (1 + fk(|~pi � ~pj|, t))�(Ei � Ej � Ek) . (B.1.3)

We shall use pi for |~pj| from here on whenever there is no confusion. Since

Ek =
q

p
2

i
+ p

2

j
� 2pipj cos ✓j + m

2

k
, the delta function is now a function of pj and

cos ✓j, where ✓j is the angle between ~pi and ~pj. This means there are two di↵er-

ent ways to integrate the delta function – integrate with the angle fixed or with the

momentum fixed.

Angle fixed

Let’s first assume ✓j is fixed and rewrite the delta function in terms of momentum pj

�(Ei � Ej � Ek) =
X

l

�(pj � p
l

j
)

����
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����
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E
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j
E
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k

|pl

j
Ei � piE

l

j
cos ✓j|

, (B.1.4)

where l denotes di↵erent solutions. We will see below that the solutions depend on

the angle and there might be one or two solutions at each angle in di↵erent situations.

Substituting this in the previous formula, we get

�i

(jk)
(t, pi) =

|Mi!j+k|
2

32⇡2Ei

X

l

Z
d

3
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�(pj � p
l

j
)

|pl

j
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cos ✓j|
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2

16⇡Ei
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d cos ✓j(1 + fj(p
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j
, t))(1 + fk(p

l

k
, t))
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p

l

j

2

|pl

j
Ei � piE

l

j
cos ✓j|

(B.1.5)

Let us calculate the solution p
l

j
. Let us first set up a frame where ~pi is in ẑ

direction, and ~pj, ~pk are in the polar angles ✓j, ✓k, respectively. According to the

conservation of energy Ei = Ej + Ek, we can solve for pj :
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pj =
(m2

i
+ m

2

j
� m

2

k
)pi cos ✓j ± 2Ei

q
m

2

i
p⇤2 � m

2

j
p

2

i
sin2

✓j

2(m2

i
+ p

2

i
sin2

✓j)
, (B.1.6)

where p
⇤ is the solution in the rest frame, namely, the expression in Eq. (5.44). pk

can be solved easily by

pk =
q

p
2

i
+ p

2

j
� 2pipj cos ✓j. (B.1.7)

So, in each angle ✓j, there could be two solutions for pj. However, we need to carefully

classify di↵erent cases and pick up the correct solution.

• mip
⇤

 mjpi

This is the case where the parent has a relatively large momentum. To make

sure this solution is physical, we need the part in the square root to be positive,

i.e. sin ✓j  mip
⇤
/(mjpi)  1. So, there is a maximum angle ✓j  ⇡/2 for

the daughter j, and both solutions must be kept. We can easily understand

this by rewriting the condition as pi/mi > p
⇤
/mj – this means the parent has

a larger velocity than what the daughter j would have if the decay happens

in a rest frame. So, all the decay products will go in the forward direction,

i.e. we need to boost all the solutions in the backward direction in the rest

frame to the forward direction, and thus there have to be two solutions at each

possible angle. In such a situation the integration with respect to cos ✓j goes

from
p

1 � (mip
⇤/mjpi)2 to 1.

• mip
⇤

> mjpi

In this case, ✓j is allowed to take value from [0, ⇡], and therefore, at each angle,

there exists only one solution. We shall therefore take the + sign in this case,

and the integration bound is [�1, 1].

This approach is clear physically. However, in numerical computation, there exists

a pole in the first case. One can easily show that, when cos ✓j =
p

1 � (mip
⇤/mjpi)2,
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i.e. right on the boundary of integration, the denominator in Eq. (B.1.5) vanishes.

Thus, we shall resort to the next approach whenever necessary.

Momentum fixed

The second approach is to fix the magnitude of momentum pj first and look for

solutions in cos ✓j in the equation Ei � Ej � Ek = 0:

cos ✓j =
2EiEj � (m2

i
+ m

2

j
� m

2

k
)

2pipj

, (B.1.8)
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@ cos ✓j
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@ cos ✓j

=
pipj
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, (B.1.9)

�(Ei � Ej � Ek) =
E

0
k

pipj

�(cos ✓j � cos ✓
0
j
) , (B.1.10)

where the “prime” stands for the existing solution for certain momentum magnitude.

So the decay rate can be rewritten as:
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where p
min

j
and p

max

j
are the lower and upper bounds of integration, respectively. This

is because pi determines how much the system is boosted and hence the maximum

and minimum momentum of the daughter j. On one hand, p
max

j
is obtained by setting

✓j = 0 in the “+” solution of Eq. (B.1.6):

p
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. (B.1.12)

On the other hand, the expression for p
min

j
depends on di↵erent situations. In the

case where mip
⇤
/mjpi > 1, p

min

j
corresponds to ✓j = ⇡:
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min

j
=

�(m2

i
+ m

2

j
� m

2

k
)pi + 2Eimip

⇤

2m2

i

; (B.1.13)



193

whereas, in the case where mip
⇤
/mjpi  1, p

min

j
corresponds to setting ✓j = 0 in

the “�” solution:

p
min

j
=

(m2

i
+ m

2

j
� m

2

k
)pi � 2Eimip

⇤

2m2

i

. (B.1.14)

Obviously, the second approach can’t be used in numerical calculation when pi = 0.

Therefore, one needs to switch between two approaches whenever necessary.

B.2 Inverse Decay Term

When decays exist, in principle, inverse decays should also exist. Here we shall prove

that inverse decays can be safely neglected. Consider two beams of particles j and k

collide and produce particles i, i.e. j + k ! i. The volume of interaction in a unit

time is V = vA, where A is the cross-sectional area of the two beams, and v is the

relative velocity. Let us first take the rest frame of particle k. The possibility that

particles j and k will collide is equal to Nk�/A, where � is the cross section, and Nk

is the number of particles k in the interaction volume. The number of production

events per unit volume then is

NjNk�

V A
=

njnk�V

A

= njnk�v

= njnk�|~vj � ~vk| , (B.2.1)

where nj, nk are the number density of each particle, and, in the third line, we have

switched to a general frame, so the relative velocity becomes the general expression

|~vj � ~vk|.

The above analysis applies to the case where the two bunches of particle have well

defined unique momenta. However, in our cosmic collider, particles travel in all the

di↵erent directions. Therefore, we have to generalize Eq. (B.2.1). In our study of the

Boltzmann equations of distribution functions, we are interested in the production

rate of the particle i with a specific momentum pi, so that we can calculate the time
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evolution of fi(pi, t). So, in the above equation, the cross section � should be the

di↵erential cross section of particles j, k with momenta ~pj, ~pk producing the particle

i with the momentum ~pi, which is

d�(~pj, ~pk ! ~pi) =
d

3
pi

(2⇡)32Ei

|M|
2

(2Ej)(2Ek)|~vj � ~vk|

⇥ (2⇡)4
�
(4)(pj + pk � pi) . (B.2.2)

Besides, nj and nk should really be the number density of these two particles with

momenta ~pj and ~pk, which are

d
3
pj

(2⇡)3
fj(~pj, t) ,

d
3
pk

(2⇡)3
fk(~pk, t) , (B.2.3)

respectively. So, the production rate of particle i due to this particular inverse-decay

channel is

@ni

@t

����
inv.dec

=

Z
d

3
pi

(2⇡)3
(1 + fi(pi, t))

|Mj+k!i|
2

2Ei

⇥

Z
d

3
pj

(2⇡)3(2Ej)

Z
d

3
pk

(2⇡)3(2Ek)
fj(pj, t)fk(pk, t)

⇥ (2⇡)4
�
(4)(pj + pk � pi) , (B.2.4)

where we have dropped the vector by assuming isotropy. Also note that we add a

1 + f term in the integration due to the Bose enhancement e↵ect. In Boltzmann

equations of the phase-space distribution, we can simply put this in after striping

down the integration
R

d
3
pi/(2⇡)3. This is very similar with Eq. (B.1.1) with the

(1 + fj)(1 + fk) term replaced by fjfk. As long as f` ⌧ 1, 8 `, this production

rate can be safely ignored from the Boltzmann equaion for fi during the period of

intra-ensemble decays.

Other than contributing to the particle i, the inverse decays give rise to a particle

loss term in the Boltzmann equations of fj (and fk), To study this term, we can



195

rearrange the integration is Eq. (B.2.4):

@nj

@t

����
inv. dec

=

Z
d

3
pj

(2⇡)3
fj(pj, t)

|Mj+k!i|
2

2Ej

Z
d

3
pi

(2⇡)3(2Ei)
(1 + fi(pi, t))

⇥

Z
d

3
pk

(2⇡)3(2Ek)
fk(pk, t)(2⇡)4

�
(4)(pj + pk � pi) . (B.2.5)

Therefore, by similar argument, as long as f` ⌧ 1, 8 `, this term is much smaller

than the feed term which are discussed in what follows. This means we can also

ignore it.

Moreover, the e↵ects from the scattering processes (i+j ! k+`) induced by the

trilinear coupling in Eq. (5.41) can also be neglected due to the same argument – they

are all suppressed by the phase-space factors. In addition, they are also suppressed

by an additional coupling constant. Therefore, during intra-ensemble decays, the

scattering rates among the ensemble constituents through the trilinear term would

be much smaller than decay rates, and thus it is safe to ignore the scatterings if they

can only proceed through the trilinear couplings.

B.3 Feed Term

Let us now consider the contribution from the process i ! j + k to fj(pj, t). The

exact form of the feed term is

Z
d

3
pi

(2⇡)32Ei

fi(pi, t)|Mi!j+k|
2

Z
d

3
pj

(2⇡)32Ej

d
3
pk

(2⇡)32Ek

(1 + fj(pj, t))(1 + fk(pk, t))

⇥ (2⇡)4
�
(4)(pi � pj � pk)

=

Z
d

3
pj

(2⇡)3

1 + fj(pj, t)

2Ej

|Mi!j+k|
2

16⇡2

Z
d

3
pi

EiEk

fi(pi, t)(1 + fk(|~pi � ~pj|, t))

⇥ �(Ei � Ej � Ek) , (B.3.1)

before removing the integration with respect to pj. Similar to the decay term, we

need to develop two equivalent ways to calculate the integral since Ei � Ej � Ek is a

function of both pi and the angle ✓i between ~pi and ~pj.
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Angle fixed

Let us rewrite the �-function by fixing ✓i first:

�(Ei � Ej � Ek) =
X

l

�(pi � p
l

i
)El

i
E

l

k

|pl

i
Ej � pjE

l

i
cos ✓i|

. (B.3.2)

Substituting this in Eq. (B.3.1) and ripping o↵
R

d
3
pj/(2⇡)3, we have

1 + fj(pj, t)

2Ej

|Mi!j+k|
2

16⇡2

Z
d

3
pi

EiEk

fi(pi, t)(1 + fk(|~pi � ~pj|, t))�(Ei � Ej � Ek)

=
1 + fj(pj, t)

16⇡Ej

|Mi!j+k|
2
X

l

Z
d cos ✓idpifi(pi, t)(1 + fk(|~pi � ~pj|, t))

⇥
p

2

i
�(pi � p

l

i
)

|pl

i
Ej � pjE

l

i
cos ✓i|

=
1 + fj(pj, t)

16⇡Ej

|Mi!j+k|
2
X

l

Z
d cos ✓ifi(p

l

i
, t)(1 + fk(p

l

k
, t))

p
l

i

2

|pl

i
Ej � pjE

l

i
cos ✓i|

.

(B.3.3)

Let us assume the momentum ~pj, is in the ẑ direction, while ~pi and ~pk form angles

✓i and ✓k with respect to it, respectively. We can use the conservation of energy to

solve for pi:

pi =
(m2

i
+ m

2

j
� m

2

k
)pj cos ✓i ± 2miEj

q
p⇤2 � p

2

j
sin2

✓i

2(E2

j
� p

2

j
cos2 ✓i)

. (B.3.4)

We can now study di↵erent cases:

• p
⇤

< pj

Once again, in order for the solution to be physical, we need sin ✓i < p
⇤
/pj.

This makes sense because you can only obtain pj > p
⇤ in the forward

direction(forward with respect to the parent particle). Both solutions must

be kept in this case – one from boosting a forward direction decay in the rest

frame, the other from boosting a decay in backward direction. In this case, the

integration of cos ✓i goes from
p

1 � (p⇤/pj)2 to 1.
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• p
⇤

� pj

This is the case in which the daughter j is relatively slow. There is no constraint

on the ✓j. We take the upper sign in this case, since the lower sign leads to

unphysical solution when cos ✓i becomes negative. The solution in backward

direction (✓i < ⇡/2) corresponds to a “slow” parent producing a daughter

particle backwards, while a forward direction solution (✓i � ⇡/2) comes from

boosting a backward solution in the rest frame with a large velocity. In this

case, the integration bound is [�1, 1].

Just like before, whenever there are two solutions at the same angle, there exists

a pole in E.q.(B.3.2) when cos ✓i =
p

1 � (p⇤/pj)2. Therefore, the other approach

with momentum fixed first is still necessary.

Momentum fixed

Let us repeat the previous calculations by fixing pj first and solve for cos ✓j in the

equation Ei � Ej � Ek = 0:

cos ✓i =
2EiEj � (m2

i
+ m

2

j
� m

2

k
)

2pipj

(B.3.5)

@(Ei � Ej � Ek)

@ cos ✓i

= �
@Ek

@ cos ✓i

=
pipj

Ek

(B.3.6)

�(Ei � Ej � Ek) =
E

0
k

pipj

�(cos ✓i � cos ✓
0
i
) (B.3.7)

Inserting these in Eq. (B.3.1), the feed term becomes:

1 + fj(pj, t)

2Ej

|Mi!j+k|
2

16⇡2

Z
d

3
pi

EiEk

fi(pi, t) (1 + fk(|~pi � ~pj|, t))
E

0
k

pipj

�(cos ✓i � cos ✓
0
i
)

=
1 + fj(pj, t)

16⇡Ej

|Mi!j+k|
2

Z
p

max

i

p
min

i

dpi

pi

pjEi

fi(pi, t)(1 + fk(p
0
k
, t)) . (B.3.8)

For di↵erent cases, the bounds for integration are taken di↵erently:
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• p
⇤

< pj

p
min

i
=

(m2

i
+ m

2

j
� m

2

k
)pj � 2miEjp

⇤

2m2

j

, (B.3.9)

p
max

i
=

(m2

i
+ m

2

j
� m

2

k
)pj + 2miEjp

⇤

2m2

j

, (B.3.10)

• p
⇤

� pj

p
min

i
=

�(m2

i
+ m

2

j
� m

2

k
)pj + 2miEjp

⇤

2m2

j

, (B.3.11)

p
max

i
=

(m2

i
+ m

2

j
� m

2

k
)pj + 2miEjp

⇤

2m2

j

. (B.3.12)

Those are the formulas that we explicitly use in the code.



199

References

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B716, 1 (2012),
arXiv:1207.7214 [hep-ex] .

[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B716, 30 (2012),
arXiv:1207.7235 [hep-ex] .

[3] S. Weinberg, Phys. Rev. D13, 974 (1976).

[4] C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006), arXiv:hep-ex/0602020
[hep-ex] .

[5] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016),
arXiv:1502.01589 [astro-ph.CO] .

[6] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018).

[7] A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998),
arXiv:astro-ph/9805201 [astro-ph] .

[8] S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565
(1999), arXiv:astro-ph/9812133 [astro-ph] .

[9] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).

[10] R. D. Peccei and H. R. Quinn, Phys. Rev. D16, 1791 (1977).

[11] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

[12] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[13] K. R. Dienes, F. Huang, S. Su, and B. Thomas, Phys. Rev. D95, 043526 (2017),
arXiv:1610.04112 [hep-ph] .

[14] K. R. Dienes, F. Huang, S. Su, and B. Thomas, Proceedings, Workshop on
Neutrino Physics: Session of CETUP* 2016: Lead/Deadwood, South Dakota,
USA, Jule 6-July 17, 2016, AIP Conf. Proc. 1900, 040003 (2017).

[15] J. K. S. S. K. R. Dienes, F. Huang and B. Thomas, .

[16] S. Alam et al. (BOSS), Mon. Not. Roy. Astron. Soc. 470, 2617 (2017),
arXiv:1607.03155 [astro-ph.CO] .

[17] A. G. Riess et al., Astrophys. J. 826, 56 (2016), arXiv:1604.01424 [astro-ph.CO]
.

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://dx.doi.org/10.1103/PhysRevD.13.974
http://dx.doi.org/10.1103/PhysRevLett.97.131801
http://arxiv.org/abs/hep-ex/0602020
http://arxiv.org/abs/hep-ex/0602020
http://dx.doi.org/10.1051/0004-6361/201525830
http://arxiv.org/abs/1502.01589
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1086/300499
http://arxiv.org/abs/astro-ph/9805201
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1086/307221
http://arxiv.org/abs/astro-ph/9812133
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevD.16.1791
http://dx.doi.org/10.1103/PhysRevLett.40.223
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://arxiv.org/abs/1610.04112
http://dx.doi.org/10.1063/1.5010121
http://arxiv.org/abs/1607.03155
http://dx.doi.org/10.3847/0004-637X/826/1/56
http://arxiv.org/abs/1604.01424


200

[18] A. Berlin, D. Hooper, and G. Krnjaic, Phys. Rev. D94, 095019 (2016),
arXiv:1609.02555 [hep-ph] .

[19] A. Berlin, D. Hooper, and G. Krnjaic, Phys. Lett. B760, 106 (2016),
arXiv:1602.08490 [hep-ph] .

[20] J. T. Giblin, G. Kane, E. Nesbit, S. Watson, and Y. Zhao, Phys. Rev. D96,
043525 (2017), arXiv:1706.08536 [hep-th] .

[21] L. Heurtier and F. Huang, .

[22] E. W. Kolb and M. S. Turner, Front. Phys. 69, 1 (1990).

[23] M. B. Green, J. H. Schwarz, and E. Witten, SUPERSTRING THEORY.
VOL. 1: INTRODUCTION , Cambridge Monographs on Mathematical Physics
(1988).

[24] M. B. Green, J. H. Schwarz, and E. Witten, SUPERSTRING THEORY. VOL.
2: LOOP AMPLITUDES, ANOMALIES AND PHENOMENOLOGY (1988).

[25] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string ,
Cambridge Monographs on Mathematical Physics (Cambridge University Press,
2007).

[26] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond , Cambridge
Monographs on Mathematical Physics (Cambridge University Press, 2007).

[27] C. Rovelli, Living Rev. Rel. 1, 1 (1998), arXiv:gr-qc/9710008 [gr-qc] .

[28] A. Ashtekar, M. Bojowald, and J. Lewandowski, Adv. Theor. Math. Phys. 7,
233 (2003), arXiv:gr-qc/0304074 [gr-qc] .

[29] A. Ashtekar and P. Singh, Class. Quant. Grav. 28, 213001 (2011),
arXiv:1108.0893 [gr-qc] .

[30] O. Wantz and E. P. S. Shellard, Phys. Rev. D82, 123508 (2010),
arXiv:0910.1066 [astro-ph.CO] .

[31] F. Zwicky, Helv. Phys. Acta 6, 110 (1933), [Gen. Rel. Grav.41,207(2009)].

[32] F. Zwicky, Astrophys. J. 86, 217 (1937).

[33] V. C. Rubin and W. K. Ford, Jr., Astrophys. J. 159, 379 (1970).

[34] M. Milgrom, Astrophys. J. 270, 365 (1983).

[35] M. Milgrom, Astrophys. J. 270, 371 (1983).

[36] S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez, and M. Bradac,
Astrophys. J. 679, 1173 (2008), arXiv:0704.0261 [astro-ph] .

http://dx.doi.org/10.1103/PhysRevD.94.095019
http://arxiv.org/abs/1609.02555
http://dx.doi.org/10.1016/j.physletb.2016.06.037
http://arxiv.org/abs/1602.08490
http://arxiv.org/abs/1706.08536
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/superstring-theory-volume-1
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/superstring-theory-volume-1
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/superstring-theory-volume-2
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/superstring-theory-volume-2
http://dx.doi.org/10.1017/CBO9780511816079
http://dx.doi.org/10.1017/CBO9780511618123
http://dx.doi.org/10.12942/lrr-1998-1
http://arxiv.org/abs/gr-qc/9710008
http://dx.doi.org/10.4310/ATMP.2003.v7.n2.a2
http://dx.doi.org/10.4310/ATMP.2003.v7.n2.a2
http://arxiv.org/abs/gr-qc/0304074
http://dx.doi.org/10.1088/0264-9381/28/21/213001
http://arxiv.org/abs/1108.0893
http://dx.doi.org/10.1103/PhysRevD.82.123508
http://arxiv.org/abs/0910.1066
http://dx.doi.org/10.1007/s10714-008-0707-4
http://dx.doi.org/10.1086/143864
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/161130
http://dx.doi.org/10.1086/161131
http://arxiv.org/abs/0704.0261


201

[37] B. J. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama, Phys. Rev. D81, 104019
(2010), arXiv:0912.5297 [astro-ph.CO] .

[38] S. Profumo, An Introduction to Particle Dark Matter (World Scientific, 2017).

[39] A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, JCAP 0903, 005 (2009),
arXiv:0808.3902 [hep-ph] .

[40] K. R. Dienes and B. Thomas, Phys. Rev. D85, 083523 (2012), arXiv:1106.4546
[hep-ph] .

[41] K. R. Dienes and B. Thomas, Proceedings, Workshop on Dark Matter, Unifi-
cation and Neutrino Physics (CETUP* 2012): Lead/Deadwood, South Dakota,
USA, July 10-August 1, 2012, AIP Conf. Proc. 1534, 57 (2012).

[42] K. R. Dienes and B. Thomas, Proceedings, 36th International Conference on
High Energy Physics (ICHEP2012): Melbourne, Australia, July 4-11, 2012,
PoS ICHEP2012, 452 (2013).

[43] K. R. Dienes and B. Thomas, Phys. Rev. D85, 083524 (2012), arXiv:1107.0721
[hep-ph] .

[44] K. R. Dienes and B. Thomas, Phys. Rev. D86, 055013 (2012), arXiv:1203.1923
[hep-ph] .

[45] K. R. Dienes and B. Thomas, Proceedings, 36th International Conference on
High Energy Physics (ICHEP2012): Melbourne, Australia, July 4-11, 2012,
PoS ICHEP2012, 460 (2013).

[46] K. R. Dienes, J. Kumar, and B. Thomas, Phys. Rev. D86, 055016 (2012),
arXiv:1208.0336 [hep-ph] .

[47] K. R. Dienes, J. Kumar, and B. Thomas, Phys. Rev. D88, 103509 (2013),
arXiv:1306.2959 [hep-ph] .

[48] K. R. Dienes, J. Kumar, and B. Thomas, Proceedings, Workshop on Dark
Matter, Neutrino Physics and Astrophysics CETUP* 2013: 7th International
Conference on Interconnection between Particle Physics and Cosmology (PPC
2013): Lead/Deadwood, South Dakota, USA, July, 8-13, 2013, AIP Conf. Proc.
1604, 22 (2014).

[49] K. K. Boddy, K. R. Dienes, D. Kim, J. Kumar, J.-C. Park, and B. Thomas,
Phys. Rev. D94, 095027 (2016), arXiv:1606.07440 [hep-ph] .

[50] K. K. Boddy, K. R. Dienes, D. Kim, J. Kumar, J.-C. Park, and B. Thomas,
Phys. Rev. D95, 055024 (2017), arXiv:1609.09104 [hep-ph] .

[51] K. R. Dienes, S. Su, and B. Thomas, Phys. Rev. D86, 054008 (2012),
arXiv:1204.4183 [hep-ph] .

http://dx.doi.org/10.1103/PhysRevD.81.104019
http://dx.doi.org/10.1103/PhysRevD.81.104019
http://arxiv.org/abs/0912.5297
http://dx.doi.org/10.1142/q0001
http://dx.doi.org/10.1088/1475-7516/2009/03/005
http://arxiv.org/abs/0808.3902
http://dx.doi.org/10.1103/PhysRevD.85.083523
http://arxiv.org/abs/1106.4546
http://arxiv.org/abs/1106.4546
http://dx.doi.org/10.1063/1.4807343
http://dx.doi.org/10.1103/PhysRevD.85.083524
http://arxiv.org/abs/1107.0721
http://arxiv.org/abs/1107.0721
http://dx.doi.org/10.1103/PhysRevD.86.055013
http://arxiv.org/abs/1203.1923
http://arxiv.org/abs/1203.1923
http://dx.doi.org/10.1103/PhysRevD.86.055016
http://arxiv.org/abs/1208.0336
http://dx.doi.org/10.1103/PhysRevD.88.103509
http://arxiv.org/abs/1306.2959
http://dx.doi.org/10.1063/1.4883409
http://dx.doi.org/10.1063/1.4883409
http://dx.doi.org/10.1103/PhysRevD.94.095027
http://arxiv.org/abs/1606.07440
http://dx.doi.org/10.1103/PhysRevD.95.055024
http://arxiv.org/abs/1609.09104
http://dx.doi.org/10.1103/PhysRevD.86.054008
http://arxiv.org/abs/1204.4183


202

[52] K. R. Dienes, S. Su, and B. Thomas, Phys. Rev. D91, 054002 (2015),
arXiv:1407.2606 [hep-ph] .

[53] K. R. Dienes, S. Su, and B. Thomas, Proceedings, Workshop on Neu-
trino Physics : Session of CETUP* 2015 and 9th International Confer-
ence on Interconnections between Particle Physics and Cosmology (PPC2015):
Lead/Deadwood, South Dakota, USA, July 6-17, 2015, AIP Conf. Proc. 1743,
020013 (2016).

[54] D. Curtin et al., (2018), arXiv:1806.07396 [hep-ph] .

[55] D. Curtin, K. R. Dienes, and B. Thomas, Phys. Rev. D98, 115005 (2018),
arXiv:1809.11021 [hep-ph] .

[56] K. R. Dienes, J. Fennick, J. Kumar, and B. Thomas, Phys. Rev. D97, 063522
(2018), arXiv:1712.09919 [hep-ph] .

[57] K. R. Dienes, J. Fennick, J. Kumar, and B. Thomas, Phys. Rev. D93, 083506
(2016), arXiv:1601.05094 [hep-ph] .

[58] R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965).

[59] K. R. Dienes and J.-R. Cudell, Phys. Rev. Lett. 72, 187 (1994), arXiv:hep-
th/9309126 [hep-th] .

[60] G. H. Hardy and S. Ramanujan, Proc. London Math. Soc. 17, 75 (1918).

[61] I. Kani and C. Vafa, Commun. Math. Phys. 130, 529 (1990).

[62] K. R. Dienes, Nucl. Phys. B429, 533 (1994), arXiv:hep-th/9402006 [hep-th] .

[63] Y. Nambu, unpublished (1970).

[64] P. Ramond, Phys. Rev. D3, 2415 (1971).

[65] A. Neveu and J. H. Schwarz, Nucl. Phys. B31, 86 (1971).

[66] A. M. Polyakov, Nucl. Phys. B268, 406 (1986).

[67] M. B. Green, Phys. Lett. B266, 325 (1991).

[68] J. Polchinski and A. Strominger, Phys. Rev. Lett. 67, 1681 (1991).

[69] L. Anderson et al. (BOSS), Mon. Not. Roy. Astron. Soc. 441, 24 (2014),
arXiv:1312.4877 [astro-ph.CO] .

[70] N. Suzuki et al. (Supernova Cosmology Project), Astrophys. J. 746, 85 (2012),
arXiv:1105.3470 [astro-ph.CO] .

[71] R. H. Cyburt, J. Ellis, B. D. Fields, F. Luo, K. A. Olive, and V. C. Spanos,
JCAP 0910, 021 (2009), arXiv:0907.5003 [astro-ph.CO] .

http://dx.doi.org/10.1103/PhysRevD.91.054002
http://arxiv.org/abs/1407.2606
http://arxiv.org/abs/1806.07396
http://dx.doi.org/10.1103/PhysRevD.98.115005
http://arxiv.org/abs/1809.11021
http://arxiv.org/abs/1712.09919
http://arxiv.org/abs/1601.05094
http://dx.doi.org/10.1103/PhysRevLett.72.187
http://arxiv.org/abs/hep-th/9309126
http://arxiv.org/abs/hep-th/9309126
http://dx.doi.org/10.1112/plms/s2-17.1.75
http://dx.doi.org/10.1007/BF02096934
http://dx.doi.org/10.1016/0550-3213(94)90153-8
http://arxiv.org/abs/hep-th/9402006
http://dx.doi.org/10.1103/PhysRevD.3.2415
http://dx.doi.org/10.1016/0550-3213(71)90448-2
http://dx.doi.org/10.1016/0550-3213(86)90162-8
http://dx.doi.org/10.1016/0370-2693(91)91048-Z
http://dx.doi.org/10.1103/PhysRevLett.67.1681
http://dx.doi.org/10.1093/mnras/stu523
http://arxiv.org/abs/1312.4877
http://dx.doi.org/10.1088/0004-637X/746/1/85
http://arxiv.org/abs/1105.3470
http://arxiv.org/abs/0907.5003


203

[72] W. Hu and J. Silk, Phys. Rev. D48, 485 (1993).

[73] W. Hu and J. Silk, Phys. Rev. Lett. 70, 2661 (1993).

[74] T. R. Slatyer, Phys. Rev. D87, 123513 (2013), arXiv:1211.0283 [astro-ph.CO] .

[75] L. Accardo et al. (AMS), Phys. Rev. Lett. 113, 121101 (2014).

[76] A.-. Collaboration (AMS), (April 15-17, 2015).

[77] A. H. G. Peter, C. E. Moody, and M. Kamionkowski, Phys. Rev. D81, 103501
(2010), arXiv:1003.0419 [astro-ph.CO] .

[78] M.-Y. Wang, A. H. G. Peter, L. E. Strigari, A. R. Zentner, B. Arant,
S. Garrison-Kimmel, and M. Rocha, Mon. Not. Roy. Astron. Soc. 445, 614
(2014), arXiv:1406.0527 [astro-ph.CO] .

[79] M.-Y. Wang and A. R. Zentner, Phys. Rev. D82, 123507 (2010),
arXiv:1011.2774 [astro-ph.CO] .

[80] Y. Gong and X. Chen, Phys. Rev. D77, 103511 (2008), arXiv:0802.2296 [astro-
ph] .

[81] G. Blackadder and S. M. Koushiappas, Phys. Rev. D93, 023510 (2016),
arXiv:1510.06026 [astro-ph.CO] .

[82] S. De Lope Amigo, W. M.-Y. Cheung, Z. Huang, and S.-P. Ng, JCAP 0906,
005 (2009), arXiv:0812.4016 [hep-ph] .

[83] B. Audren, J. Lesgourgues, G. Mangano, P. D. Serpico, and T. Tram, JCAP
1412, 028 (2014), arXiv:1407.2418 [astro-ph.CO] .

[84] E. Aubourg et al., Phys. Rev. D92, 123516 (2015), arXiv:1411.1074 [astro-
ph.CO] .

[85] S. Nussinov, Phys. Lett. 165B, 55 (1985).

[86] S. M. Barr, R. S. Chivukula, and E. Farhi, Phys. Lett. B241, 387 (1990).

[87] S. B. Gudnason, C. Kouvaris, and F. Sannino, Phys. Rev. D73, 115003 (2006),
arXiv:hep-ph/0603014 [hep-ph] .

[88] T. A. Ryttov and F. Sannino, Phys. Rev. D78, 115010 (2008), arXiv:0809.0713
[hep-ph] .

[89] K. Harigaya, T. Lin, and H. K. Lou, JHEP 09, 014 (2016), arXiv:1606.00923
[hep-ph] .

[90] T. Appelquist et al. (Lattice Strong Dynamics (LSD)), Phys. Rev. D89, 094508
(2014), arXiv:1402.6656 [hep-lat] .

http://dx.doi.org/10.1103/PhysRevD.48.485
http://dx.doi.org/10.1103/PhysRevLett.70.2661
http://dx.doi.org/10.1103/PhysRevD.87.123513
http://arxiv.org/abs/1211.0283
http://dx.doi.org/10.1103/PhysRevD.81.103501
http://dx.doi.org/10.1103/PhysRevD.81.103501
http://arxiv.org/abs/1003.0419
http://dx.doi.org/10.1093/mnras/stu1747
http://dx.doi.org/10.1093/mnras/stu1747
http://arxiv.org/abs/1406.0527
http://dx.doi.org/10.1103/PhysRevD.82.123507
http://arxiv.org/abs/1011.2774
http://dx.doi.org/10.1103/PhysRevD.77.103511
http://arxiv.org/abs/0802.2296
http://arxiv.org/abs/0802.2296
http://dx.doi.org/10.1103/PhysRevD.93.023510
http://arxiv.org/abs/1510.06026
http://dx.doi.org/10.1088/1475-7516/2009/06/005
http://dx.doi.org/10.1088/1475-7516/2009/06/005
http://arxiv.org/abs/0812.4016
http://arxiv.org/abs/1407.2418
http://dx.doi.org/10.1103/PhysRevD.92.123516
http://arxiv.org/abs/1411.1074
http://arxiv.org/abs/1411.1074
http://dx.doi.org/10.1016/0370-2693(85)90689-6
http://dx.doi.org/10.1016/0370-2693(90)91661-T
http://dx.doi.org/10.1103/PhysRevD.73.115003
http://arxiv.org/abs/hep-ph/0603014
http://dx.doi.org/10.1103/PhysRevD.78.115010
http://arxiv.org/abs/0809.0713
http://arxiv.org/abs/0809.0713
http://dx.doi.org/10.1007/JHEP09(2016)014
http://arxiv.org/abs/1606.00923
http://arxiv.org/abs/1606.00923
http://dx.doi.org/10.1103/PhysRevD.89.094508
http://dx.doi.org/10.1103/PhysRevD.89.094508
http://arxiv.org/abs/1402.6656


204

[91] T. Appelquist et al., Phys. Rev. D92, 075030 (2015), arXiv:1503.04203 [hep-ph]
.

[92] T. Appelquist et al., Phys. Rev. Lett. 115, 171803 (2015), arXiv:1503.04205
[hep-ph] .

[93] G. D. Kribs and E. T. Neil, Int. J. Mod. Phys. A31, 1643004 (2016),
arXiv:1604.04627 [hep-ph] .

[94] C. Kilic, T. Okui, and R. Sundrum, JHEP 02, 018 (2010), arXiv:0906.0577
[hep-ph] .

[95] T. Hur and P. Ko, Phys. Rev. Lett. 106, 141802 (2011), arXiv:1103.2571 [hep-
ph] .

[96] M. Holthausen, J. Kubo, K. S. Lim, and M. Lindner, JHEP 12, 076 (2013),
arXiv:1310.4423 [hep-ph] .

[97] H. Hatanaka, D.-W. Jung, and P. Ko, JHEP 08, 094 (2016), arXiv:1606.02969
[hep-ph] .

[98] Y. Ametani, M. Aoki, H. Goto, and J. Kubo, Phys. Rev. D91, 115007 (2015),
arXiv:1505.00128 [hep-ph] .

[99] Y. Bai and R. J. Hill, Phys. Rev. D82, 111701 (2010), arXiv:1005.0008 [hep-ph]
.

[100] M. R. Buckley and E. T. Neil, Phys. Rev. D87, 043510 (2013), arXiv:1209.6054
[hep-ph] .
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