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Abstract

The third law of black hole thermodynamics is violated in the test fluid approximation for
the process of phantom energy accretion onto a rotating or an electrically charged black hole.
The black hole mass is continuously decreasing but the angular momentum or electric charge
is remaining constant in this process. As a result, a black hole reaches the extreme state
during a finite time with a threat of black hole transformation into the naked singularity and
violation of the cosmic censorship conjecture. We demonstrate this by using new analytical
solutions for spherically symmetric stationary distribution of a test perfect fluid with an
arbitrary equation of state in the Reissner-Nordström metric. Our speculative assumption,
however, is that the cosmic cosmic censorship conjecture remains valid even for phantom
energy case, if one takes into account the back reaction of an accreting fluid onto a near
extreme black hole. Some hint for the validity of this hypothesis comes from the specific
case of the ultra-hard fluid accretion onto the rotating black hole. In this case the energy
density of an accreting fluid diverges at the event horizon of an extreme black hole, thus
violating the test fluid approximation.

1 Introduction

The problem of matter accretion onto the compact objects in the Newtonian gravity was formu-
lated in a self-similar manner by Bondi [1]. In the framework of General Relativity a steady-state
accretion of test gas onto a Schwarzschild black hole was investigated by Michel [2]. The de-
tailed studies of spherically symmetric accretion of different types of fluids onto black holes were
further undertaken in a number of works, see e. g. [3]. In [4] (see also [5] for further discussion)
it was shown that accretion of a phantom fluid onto the Schwarzschild black hole results in
a diminishing of black hole mass due to a negative flux of energy through the event horizon.
Usually in the General Relativity it is assumed that matter has a suitable form. By suitable,
one can imply that the stress-energy tensor of matter satisfy particular energy conditions, i.e.
the weak energy condition (see for details, e.g. [6]). Meanwhile the phantom energy violates by
definition the weak energy condition ρ+p < 0, where ρ is an energy density and p is a pressure.
It is believed that phantoms generically contain ghosts [7] and thus should be denied as non-
physical. It turns out, however, that it is possible to construct a physically reasonable model
of phantom, which is stable in the ultraviolet limit, thus giving no catastrophic instabilities of
vacuum [8]. Thus the study of phantoms seems to be not fully meaningless from the physical
point of view. Violation of weak energy condition by phantom brings unusual consequences:
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in the cosmological context the Big Rip singularity can be formed [9]; while the accreting of
phantom leads to the diminishing of a black hole mass [4, 5].

In this paper, we find a solution for the steady-state accretion of a test perfect fluid with
an arbitrary equation of state, p = p(ρ), onto the charged black hole, when the event horizon
for the Reissner-Nordström metric exists, m2 > e2. A similar analysis was performed in [10].
We show that a phantom energy accretion leads to the decreasing of a black hole mass. This
result is consistent with [4] for Schwarzschild case. On the other hand, we show that when the
Reissner-Nordström metric describes a naked singularity with m2 < e2, a perfect fluid does not
accrete at all onto the the naked singularity, instead, a static atmosphere is formed.

As we show below, when neglecting the gravitational back reaction of the accreting fluid
on the background metric, the extreme state of electrically charged black hole is reached by
phantom energy accretion during the finite time. It is natural to ask then, whether it is possible
to convert a Reissner-Nordström black hole into a naked singularity by accretion of phantom
fluid. When phantom accretes onto a Schwarzschild black hole, the latter becomes smaller and
smaller with time and might completely disappear, i.e. in the Big Rip scenario. However,
in the case of phantom energy accretion onto a charged black hole, when the mass becomes
smaller than the charge, m2 < e2, we might naively think that black hole transforms to a naked
singularity by phantom energy accretion. This would also imply that the third law of black
hole thermodynamics breaks down as well [11]. Such a process of a Kerr-Newman black hole
transformation into a naked singularity by accretion of phantom energy was first discussed in
[12].

The key conjecture of general relativity is the cosmic censorship by R. Penrose [13] prohibit-
ing the appearance of naked singularity in the gravitational collapse of suitable matter. At the
same time, the inevitable formation of singularity inside a black hole horizon is guaranteed by
singularity theorems [14, 15]. It is worthwhile to note that by “usual means” it seems to be
impossible to make a naked singularity from a black hole. For example, the Kerr-Newman black
hole cannot be transformed into a naked singularity by capturing test particles with an electrical
charge or orbital angular momentum [11, 16] and can be only approached to the extreme state
in a limiting process.

We argue, however, that a test fluid approximation is inevitably violated when the Reissner-
Nordström black hole or naked singularity is near to the extreme state. If this true, the back
reaction of the accreting fluid on the background geometry may prevent black transformation
into the naked singularity.

The paper is organized as follows. In Sec. 2 we construct a general formalism for the steady-
state spherically symmetric accretion of a test perfect fluid onto the Reissner-Nordström black
hole. In Sec. 3 we apply these results to the the particular examples of perfect fluids, the
linear equation of state and the Chaplygin gas. The formation of fluid atmosphere around
naked singularities is described in Sec. 4. The approaching to the extremal case by accretion of
phantom and a possible violation of the third law of thermodynamics is studied in Sec. 5. We
conclude and discuss the obtained results of the paper in Sec. 6.

2 Steady-state accretion of perfect fluid

In this Section we consider the steady-state accretion of a test perfect fluid with equation of
state, p = p(ρ), onto Reissner-Nordsröm black hole. We will closely follow the approach of
Ref. [4] with the necessary modifications when needed.

The Reissner-Nordsröm metric is given by,

ds2 = fdt2 − f−1dr2 − r2(dθ2 + sin2θ dφ2), (1)

where

f(r) = 1 − 2m

r
+

e2

r2
. (2)
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In the case of m2 > e2 the are two roots of the equation f = 0:

r± = m ±
√

m2 − e2, (3)

The larger root r = r+ corresponds to the event horizon of the Reissner-Nordsröm black hole.
The opposite case, m < |e|, corresponds to the naked singularity without the event horizon.
The marginal case m = |e| corresponds to the extreme black hole.

The energy-momentum of a perfect fluid is

Tµν = (ρ + p)uµuν − pgµν , (4)

where ρ and p are a fluid energy density and a pressure correspondingly, and uµ = dxµ/ds is a
fluid four-velocity with normalization, uµuµ = 1. We assume that the pressure, is an arbitrary
function of density only, p = p(ρ). To find the integrals of motion we first use a projection of
energy-momentum conservation on the four-velocity, uµT µν

;ν = 0. This gives an equation for
“particle” conservation,

uµρ,µ + (ρ + p)uµ
;µ = 0. (5)

Integrating Eq. (5) we find the first integral of motion (the energy flux conservation):

ur2 exp





ρ
∫

ρ∞

dρ′

ρ′ + p(ρ′)



 = −Am2, (6)

where u < 0 in the case of inflow motion, and a dimensionless constant A > 0 is an integration
constant which is related to the energy flux.

Integration of the time component of energy-momentum conservation law T µν
;ν = 0 gives

the second integral of motion for stationary spherically symmetric accretion in the Reissner-
Nordsröm metric (the relativistic Bernoulli energy conservation equation):

(ρ + p)(f + u2)1/2r2u = C1, (7)

where u = dr/ds and C1 is an integration constant. From (6) and (7) one can easily obtain:

(ρ + p)(f + u2)1/2 exp



−
ρ

∫

ρ∞

dρ′

ρ′ + p(ρ′)



 = C2, (8)

where C2 ≡ −C1(Am2)−1 = ρ∞ + p(ρ∞).
Equations (6) and (8) along with an equation of state p = p(ρ) describe a solution for

accretion flow onto the Reissner-Nordström black hole. These equations are valid for a perfect
fluid with an arbitrary equation of state p = p(ρ) and may be applied, in particular, for the
accretion of Chaplygin gas [17] or dark energy described by the generalized linear equation of
state [18].

Note that while the constant C2 is fixed simply by the boundary conditions at the infinity,
the numerical constant A in Eq. (6) is fixed by an additional physical requirement of the smooth
transition through the critical sound point. This provides a continuous solution for an accretion
from infinity down to the black hole horizon. Following to Michel [2], we finds relations at the
critical point:

u2
∗ =

mr∗ − e2

2r2
∗

, c2
s(ρ∗) =

mr∗ − e2

2r2
∗ − 3mr∗ + e2

, (9)

where cs(ρ) ≡ (∂p/∂ρ)1/2 is a sound velocity, and the subscript ’∗’ means that the values are
estimated at the critical point. From (9) one can find:

r
(±)
∗

m
=

1 + 3c2
s∗

4c2
s∗

{

1 ±
[

1 − 8c2
s∗(1 + c2

s∗)

(1 + 3c2
s∗)

2

e2

m2

]1/2
}

, (10)
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where cs∗ ≡ cs(r∗). From this equation it follows that in general there are two critical (sound)
surfaces. The critical points exist only if,

e2

m2
≤

(

1 + 3c2
s

)2

8c2
s (1 + c2

s)
. (11)

It is worthwhile to note that in contrast to the case of accretion onto a Schwarzschild black
hole, there are formally two different critical points, with plus and minus signs in Eq. (10). The

limit e → 0 suggests that the point inner critical point, r
(−)
∗ , is unphysical, since r

(−)
∗ = 0 in

the limit e = 0. Note, that in a general case e ≤ m the inner critical point is in between of

two horizons, r+ ≥ r
(−)
∗ ≥ r−. The point r∗ with the plus sign, r

(+)
∗ , is a physical one, since it

corresponds to the critical point. It is easy to see that r
(+)
∗ ≥ r+ for e ≤ m.

One can see that for c2
s < 1 there is a range of parameter e, such that the solution r

(±)
∗ is

real even for a naked singularity, e2 > m2. However, as we will see below, the existence of this
point does not mean that the steady-state accretion actually takes place. In fact, there is no
steady-state accretion onto naked singularity.

For accretion of a “superluminal” fluid [19], with cs > 1, the critical point is inside the black
hole horizon. It is interesting to note that for the extreme black hole, e = m, a critical point
for “superluminal” fluid is always coincides with the horizon, r∗(cs > 1) = m. For a naked
singularity, e2 > m2, a critical point exists only for the limiting range of cs∗.

Using (10) and (9) one can find ρ∗ from Eq. (8). Then for any equation of state, p = p(ρ),
the energy density at critical point ρ∗ can be found from (6) and (9), and finally the parameter
A is fixed.

From (6) and (8) one can find relations for a fluid velocity u+ = u(r+) and density ρ+ =
ρ(r+) at the event horizon:

A
m2

r2
+

[

ρ+ + p(ρ+)

ρ∞ + p(ρ∞)

]

= exp



2

ρ+
∫

ρ∞

dρ′

ρ′ + p(ρ′)



 . (12)

The black hole mass changes at a rate ṁ = −4πr2T r
0 due to the fluid accretion. With the help

of (6) and (8) this expression may be written as

ṁ = 4πAm2[ρ∞ + p(ρ∞)]. (13)

From this equation it is clear that accretion of a phantom energy, defined by a condition
ρ∞ + p(ρ∞) < 0, is always accompanied with a diminishing of the black hole mass. This is in
accordance with previous findings [4]. The result is valid for any equation of state p = p(ρ)
with ρ + p(ρ) < 0.

3 Analytic solutions

In this Section we present several analytic solutions for the steady-state accretion of a perfect
fluid onto a charged black hole (for more details see [24]).

3.1 Generalized linear equation of state

As a first example we consider the case of the generalized linear equation of state,

p = α(ρ − ρ0), (14)

where α and ρ0 are constants. This equation was introduced in [4] (see also [18]) to avoid
hydrodynamical instability for a perfect fluid with the negative pressure. One can easily see
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that the constant α in (14) is the square of the sound speed of small perturbations, α = c2
s, and

it must be positive to avoid catastrophic hydrodynamical instability. Using (9) and (10), one
can calculate from (6) the dimensionless constant A for the linear equation of state

A = α1/2 r2
∗

m2

(

2αr2
∗

mr∗ − e2

)

1−α
2α

. (15)

To find the velocity and energy density profile versus r in the model (14) we need the joint
solution of equations (6) and (8):

f + u2 =

(

−ux2

A

)2α

,
ρ + p

ρ∞ + p(ρ∞)
=

(

− A

ux2

)1+α

. (16)

It is possible to find analytical solutions of these equations for specific values of α, namely,
α = 1/4, 1/3, 1/2, 2/3, 1 and 2. For example, for α = 1/3 we find for a radial distribution of
energy density

ρ =
ρ0

4
+

(

ρ∞ − ρ0

4

)

(

1 + 2z

3f

)2

, (17)

where

z =



















cos
2π − β

3
, r+ ≤ x ≤ r∗;

cos
β

3
, x > r∗

(18)

and

β = arccos

(

1 − 27

2
A2 f 2

x4

)

. (19)

Phantom energy in this particular case corresponds to ρ0 > 4ρ∞. At the horizon x = x+ =
r+/m we have

ρ+ =
ρ0

4
+

(

ρ∞ − ρ0

4

) A2

x4
+

. (20)

Analogously, in the case of ultra-hard equation of state with α = 1 we have

u2 =
(x − x−)x4

+

(x + x+)(x2 + x2
+)x2

; (21)

ρ =
ρ0

2
+

(

ρ∞ − ρ0

2

) (x + x+)(x2 + x2
+)

(x − x−)x2
, (22)

where x = r/m. Now at the horizon we find

ρ+ =
ρ0

2
+

(

ρ∞ − ρ0

2

) 2x+√
m2 − e2

. (23)

From this equation it is seen that in the case of ultra-hard fluid an energy density at the
horizon ρ+ is diverging at e → m. As a result, the test fluid approximation is violated in the
limit e → m.

3.2 Chaplygin gas

As an other solvable example we consider the Chaplygin gas with an equation of state,

p = −α

ρ
, (24)
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Figure 1: Examples of the radial energy density distribution of the Chaplygin gas accreting onto
the Schwarzschild (e = 0) extreme Reissner-Nordström black hole (e = m). The horizontal lines
ρ(r) = ρ∞ corresponds to the vacuum energy density (ξ = 1).

where constant α > 0 corresponds to the hydrodynamically stable fluid. The Chaplygin gas
with ρ2 < α represents a phantom energy with superluminal speed of sound. Respectively, the
case of ρ2 > α corresponds to a dark energy with ρ + p > 0 and 0 < c2

s < 1.
In the Reissner-Nordström metric with an equation of state (24) we find for the critical

point:

f∗ =
ξ − 1

ξ
, r∗ = ξ

[

1 ±
(

1 − 1

ξ

e2

m2

)1/2
]

, A =
x2
∗

ξ1/2
, (25)

where ξ = ρ2
∞/α. The sonic point exists if ξ ≥ ξmin = (e/m)2. At ξ < ξmin the accretion is

subsonic and the value of A is indefinite. The minimum value of A for a supersonic accretion
is Amin = (e/m)3, corresponding to r∗ = ξmin. For a radial dependence of dimensional energy
density y = ρ/ρ∞ and radial 4-velocity u we find

ρ

ρ∞
=

[

f + A(1 − ξ)x−4

(1 − ξ) + ξf

]1/2

, u = − A

x2

[

1 − ξ

1 − ξ(ρ/ρ∞)2

]1/2

. (26)

The value of energy density at the event horizon is ρ(r+)/ρ∞ = Am2/r2
+. Solution (26) in the

specific case ξ = 1 corresponds to the vacuum state with p = −ρ = −ρ∞ and u = 0. See in Fig.
1 some examples of radial energy density distribution of accreting Chaplygin gas around black
hole.
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In the case e2 > m2, by putting u = A = 0 in the equation (26), we obtain the static
Chaplygin gas energy density distribution around the naked singularity (without the influx).

4 Lightweight atmosphere around naked singularity

In contrast to the case of the Reissner-Nordström black hole, there is no stationary accretion
of a perfect fluid onto a naked singularity with e2 > m2. Formally this happens because
no stationary solution for the accretion onto the naked singularity exists. Instead, a static
atmosphere of lightweight perfect fluid around the Reissner-Nordström naked singularity is
established with a zero influx. Assuming u = 0 from Eq. (8) we find a static distribution of a
test perfect fluid with an arbitrary equation of state p = p(ρ) around the Reissner-Nordström
naked singularity

ρ + p

ρ∞ + p(ρ∞)
exp



−
ρ

∫

ρ∞

dρ′

ρ′ + p(ρ′)



 = f−1/2. (27)

In a particular case of linear equation of state (14) we obtain for the static atmosphere

ρ(r) =
αρ0

1 + α
+

(

ρ∞ − αρ0

1 + α

)

f −1+α
2α . (28)

In Fig. 2 the distribution of energy density for the thermal radiation (α = 1/3, ρ0 = 0) and the
phantom energy (α = 1/3, ρ0 = 6ρ∞) around the Reissner-Nordström naked singularity with
e = 2m is shown. For an ordinary matter with ρ0 = 0 and α > 0 the energy density tends to
zero at the singularity, ρ ∝ r1+1/α at r → 0. In the case of phantom, the energy density is finite
at r = 0, and so phantom fluid overcomes the naked singularity repulsiveness.

5 Approaching to extreme state

An approaching to the extreme black hole state by capturing of particles with an electric
charge and/or angular momentum is possible only in the limiting process during an infinite time
[11, 20, 21]. At the same time, during accretion of a neutral phantom energy the electric charge
of the Reissner-Nordström BH is unchanged, e = const, while a black hole mass diminishes.
As a result the black hole is approaching to the near extreme state due to the growing of ratio
e/m(t). In the test fluid approximation, a black hole reaches the extreme state after the finite
time t = tNS, defined by e = m(tNS). Using Eq. (13), the time tNS for a black hole BH with
initial mass m = m(0) and electric charge e = const may be calculated from relation:

∫ tNS

0
ṁ dt = e − m(0). (29)

If we neglect the cosmological evolution of ρ∞, then from (13), (15) and (29) for a particular
case of a stationary phantom energy with the ultra-hard equation of state (with cs = 1) we
obtain

tNS =
q3 − 3q2 + 2 − 2(1 − q2)3/2

3q4
τ, (30)

where q = e/m(0) and τ = −{4π[ρ∞ + p(ρ∞)]m(0)}−1 is a characteristic accretion time. A
corresponding relation for time tNS needed to bring the Kerr black hole with an angular mo-
mentum J = const to the near extreme state by accretion of phantom energy in the test fluid
approximation is

∫ tNS

0
ṁ dt =

√
J − m(0). (31)
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Figure 2: An example of energy density distribution for the thermal radiation (α = 1/3, ρ0 = 0)
and the phantom energy (α = 1/3, ρ0 = 6ρ∞) in a static atmosphere around the Reissner-
Nordström naked singularity with e = 2m. The inverse energy density profile of thermal
radiation near the singularity is a manifestation of the repulsive character of naked singularity.

From this relation in a case of accretion of phantom energy with the ultra-hard equation of
state (cs = 1) by using (13) and (31) with A = 2r+/m from [22] we find

tNS =
1

6ã1/2

[

1− 1 −
√

1−ã2

ã3/2
+2F (

1

2
arccos ã, 2)

]

, (32)

where ã = J/m2(0) and F (φ, k) is an elliptic integral of the first kind.
According to [22] an energy density of the accreting fluid with cs = 1 at the event horizon

of the Kerr black hole is
[

ρ+ − ρ0/2

ρ∞ − ρ0/2

]

=
1

r2
+ + a2 cos2 θ

(

4r2
+m√

m2 − a2
− a2 sin2 θ

)

, (33)

where ρ+ = ρ(r+). This energy density is diverging at a → m. The similar energy density in
the case of Reissner-Norsdström:

ρ =
ρ0

2
+

(

ρ∞ − ρ0

2

) r4 − B2m4

r2(r2 − 2mr + e2)
, (34)

where B = r+. The energy density at the horizon of near extreme Reissner-Norsdström black
hole is

ρ+ =
ρ0

2
+

(

ρ∞ − ρ0

2

) 2r+√
m2 − e2

→ ±∞ at m → e. (35)
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Respectively, it can be easily verified from (27), (28) and (33) that energy density of light
atmosphere around the near extreme electrically charged or rotating naked singularity with
ε � 1 is also diverging at r = m. Thus the test fluid approximation breaks down in the case
α = 1 (i.e., cs = 1). This divergent behavior of the energy density is remained also in a more
general case α > 1. Indeed, the corresponding values of u and ρ at the horizon in the case of a
linear equation of state are according to (16) are

u+ =

(

A

x2
+

)α/(α−1)

, ρ+ =
α

α + 1
ρ0 +

[

ρ∞− α

α+1
ρ0

](

x2
+

A

)(α+1)/(α−1)

. (36)

It can be seen from (15) that A → (4ε)1/4 at ε → 0, where the extreme parameter ε =
(m2 − e2)/m2. As a result at the horizon u → 0 and ρ → ∞ in the limit e → m.

Analogous violation of a test fluid approximation occurs at a radius r = m in a static
atmosphere around the near extreme naked singularity with −ε � 1 due to divergence of the

energy density. Namely, from (28) it can be verified that ρ(m) ∝ [ρ∞ − αρ0/(1 + α)] |ε|−
1+2α
4α

at −ε � 1. Additionally, for phantom energy case, when [ρ∞ − αρ0/(1 + α)] < 0, the strong
energy domination condition is violated, ρ(m) → −∞ at −ε → 0. A similar divergence of
energy density occurs at radius r = m in a stationary atmosphere around the near extreme
Kerr naked singularity [23].

Meanwhile, in the case of 0 < α < 1 the energy density of the accreting fluid remains finite
even for the extreme black hole. Nevertheless, the validity of the test fluid approximation is
still questionable. We assume, however, that back reaction of the accretion flow will prevent the
transformation of black hole into the naked singularity. Similar idea of the importance of back
reaction was proposed in [25] for absorption of scalar particles with large angular momentum
by a near extreme black hole.

6 Conclusion and discussion

In this paper we considered the stationary distribution of the test perfect fluid with an arbitrary
equation of state, p = p(ρ), in the Reissner-Nordström metric. Similarly to the well-known case
of the stationary accretion of perfect fluid onto the Schwarzschild black hole, the corresponding
solution for the accretion exists also in the case of Reissner-Nordström black hole. On the
contrary, there is no stationary accretion of the perfect fluid onto the Reissner-Nordström
naked singularity, e > m. Instead, the static atmosphere of the fluid is formed around the
naked singularity. In both cases of the black hole and the naked singularity we found the
analytical solution to the problem of the steady state configurations of the perfect fluids with
an arbitrary equation of state, p = p(ρ). As the particular cases, we considered fluid with the
linear equation of state, p = α(ρ − ρ0) and the Chaplygin gas, p = α/ρ.

When the accreting fluid is phantom, ρ + p < 0, the mass of the Reissner-Nordström
black hole decreases. This result is in the agreement with the previous findings [4, 5]. This
immediately leads us to the question, whether it is possible to transform the Reissner-Nordström
black hole into the naked singularity by by accretion of phantom. Formally it seems so, since
the accreting phantom decreases the black hole mass, while the electric charge of the black hole
remains the same. Thus, one can expect that at some finite moment of time a black hole will
turn into the naked singularity. Indeed, as we have shown in Sec. 5, it takes the finite time for
the Reissner-Nordström black hole to reach the extreme case. The similar result also holds for
the Kerr black hole.

However, this naive picture, taken out in the test fluid approximation, does not seem realized
if one takes into account the back reaction of perfect fluid onto the background metric. First of
all, in the case of ultra-hard equation of state, p = ρ, the fluid density diverges at the horizon,
r = r+, when black hole is approaching to the extremal state, m → e. Thus, the test fluid
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approximation breaks down and the results is not applicable. In other cases, when c2
s 6= 1, the

situation is more subtle and beyond the scope of this paper. Our preliminary investigations
show, however, that in a general case, the test fluid approximation breaks down at the extreme
case. We expect that black hole cannot be converted into the naked singularity even by the
accretion of phantom energy, and thus the third law of thermodynamics is not violated in this
case.

We would like to stress, that although the test fluid approximation seems to break down for
the near-extreme state of the black hole/naked singularity, for the far-from-the-extreme state
black hole (in particular, for the Schwarzschild solution), the parameters of the perfect fluid
and the boundary condition at the infinity can be tuned so, that the test fluid approximation
describes well the problem under consideration. In particular, we stress, that the phantom
energy accretion indeed leads to decreasing of the black hole mass.

If the back reaction does not prevent the process of phantom accretion onto a charged black
hole or rotating black hole, then it is a way to violate the cosmic censorship. Otherwise, the
phantom energy must be totally forbidden on the more fundamental basis, as for instance, a
quantum instability.
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