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Abstract
According to strange matter hypothesis (SMH), strange quark matter (SQM) may be the
true ground state of strongly interacting matter. Such hypothesis opens up new possibilities
as stable SQM would have several implications in astrophysics. One of such possibilities is
related to the existence of strange stars (SSs). SQM plays an important role in the context
of SSs and cosmic rays (CR). Several exotic events with the unusual charge to mass (or,
baryon number) ratio have been reported in CR experiments which can’t be explained by
our knowledge of known nuclei. But such events can be explained with strangelets, small
lumps of SQM. Recent numerical simulations of SS merger in a compact binary stellar
system show that some SQM material will be ejected from the tip of tidal arms formed
during the merging process, and such ejected material can fragment into strangelets and
mix with CR to provide the strangelet abundance in CR. Space-borne detectors such as
PAMELA, AMS-02 are now engaged in searching for strangelets in galactic cosmic rays
(GCR). Hence, in the present context, it is quite important to estimate the possible flux
of strangelets in the solar neighborhood and that is the key motivation behind this work.
In this work, we have provided a possible production scenario of the galactic strangelets
and determine the plausible baryon number (or, mass) distribution of such strangelets by
invoking the statistical multifragmentation model (SMM) often used in nuclear systems.
The strangelets originated in binary SS mergers are then likely to be accelerated by the
shock waves generated in such mergers and they attain a power-law spectrum with a
spectral index close to -2. We then apply the standard diffusive propagation model to
describe the propagation of the strangelets through the randomly oriented magnetic field
of the interstellar medium (ISM) and finally estimate the flux of the strangelets near the
vicinity of the Sun. We have also compared our theoretical estimates with the upper limits
of fluxes of strangelets reported by PAMELA. We have seen that our theoretical estimates
are consistent with the observation of PAMELA, and such estimates are also useful for
AMS-02 and other future experiments to vindicate the SMH.
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Chapter 1

Introduction and overview

1.1. Prelude

“Twinkle, twinkle, little star,
How I wonder what you are!
Up above the world so high,
Like a diamond in the sky.
.....................................

Twinkle, twinkle, little star.”
Jane Taylor [1]

Even to-date, those wonderful lines from the poem “The Star” direct the joyful attention
of the children to the sparkling “diamonds” in the night sky. That attention, perhaps,
creates a lasting impression in the minds of at least some of those children who become
inspired enough to scientifically probe into those heavenly objects after they grow up to
maturity. In fact, from the ancient times, human beings have encountered various celestial
objects and events such that a drive for self-protection from the possible inauspicious events
seemingly associated with those phenomena, accompanied by a natural inquisitiveness,
have compelled them to ponder over the reasons for those occurrences that eventually gave
birth to the specialized discipline of astronomy and astrophysics. This discipline got an
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1. Introduction and overview

impetus from the advent of modern optical telescopes that were first used to observe the
sky by Galileo Galilei in the early seventeenth century. At the present epoch, the highly
sophisticated space and ground based telescopes span our field of view from the gamma
rays to the radio wavelengths. Instruments are being developed that can even detect highly
relativistic, almost non-interacting neutrinos and the gravitational radiations coming from
far away corners of the universe. Those modern ‘observing’ equipments are able to resolve
distant objects with unprecedented accuracy thus helping us enormously to understand the
issues related to the origin, evolution, structure and constituents of the universe having an
unimaginable extent.
With the above advancements in astronomy and astrophysics, along with the advances in

nuclear and particle physics accompanied by the tremendous improvements in the observa-
tional, experimental and the computational resources, the scientific community has reached
some consensus about the origin of the universe. The currently prevailing view is that we
live in a flat, homogeneous and isotropic universe that originated in a hot (and dense) “Big
Bang” about some fourteen billion years ago and it is possibly evolving through an accel-
erating phase of expansion at its present epoch [2]. Moreover, there is perfect unanimity
among the physicists regarding the “standard model of particle physics” that informs us
that the fermions, called the quarks and the leptons, along with their antiparticles (hav-
ing oppositely signed electric charge as well as all the oppositely signed flavor quantum
numbers or lepton numbers barring the mass and the total angular momentum or the spin
which do not change their signs), are the basic constituent particles of any form of known
matter. A list of all the quarks and leptons as well as the quanta (ie., the bosons) of the
three fundamental (ie., the strong, weak and the electromagnetic) forces of nature in this
standard model of particle physics, along with their crucial properties, are summarized in
Fig. 1.1 [3]. According to this standard model, quarks are bound either in the baryons
(ie., protons, neutrons, atomic nuclei and the hyperons) or in the mesons (eg., pions, kaons
etc.); see Fig. 1.2 [4] for the various possible forms of matter constituted by the two or
three of the “light quarks” (ie., the up, down and the strange quarks) and their antiquarks
with three different “color quantum numbers” that we will touch upon in Sec. 1.4 below.
Quarks can interact via. the so-called “strong force (or, the strong interaction)” and the
gluons are the mediator of such a force. The so-called “weak interaction” (the famous

2



1. Introduction and overview

Figure 1.1.: The fundamental particles as well as the quanta of the three fundamental force-fields
that act upon those particles according to the Standard model of particle physics [3].

example of which is the beta-decay) involving leptons are mediated by the 𝑍0 and the
𝑊± bosons while the electromagnetic interactions are mediated by the photons. Fig. 1.1,
given above, provides a pictorial representation of these quanta of the three fundamental
(excluding gravity) force-fields. Fig. 1.2, displayed below, shows that both the baryons
and the mesons together are classified as the hadrons. According to the modern nuclear
and particle physics, protons and neutrons (together, they are known as the nucleons) are

3



1. Introduction and overview

Figure 1.2.: Various combinations of quarks in the hadrons are shown in the figure. Ordinary
matter (ie., the nuclear matter) are formed out of the nuclei consisting of the two
lightest quarks, namely, the 𝑢 and the 𝑑 quarks. The combinations of three quarks (or,
their antiquarks) are called the baryons (such as the nucleons) and the combinations
of only one quark and an antiquark are called the mesons (such as the 𝜋-meson). The
heavier 𝑠 quarks (or, their antiquarks 𝑠) have, so far, been found only in unstable
particles, ie., in heavier mesons and in hyperons, such as the K-mesons and the
lambda particles respectively, as shown in the figure. Each of the nucleons retains its
individuality in ordinary nuclear matter. On the other hand, individual hadrons lose
their identity (ie., the hadrons are so close to each other that their separate boundaries
get dissolved and the quark degrees of freedom dominate) in the hypothesized SQM
that may exist as a more stable form of matter than the nuclear matter [4].

the basic constituents of all the atomic nuclei, that are found to prevail in the terrestrial
environment. The nuclear matter is also believed to constitute all the stars - including
both the “twinkling" (or, the luminous) stars [5] and the so-called “dead stars”, the latter
consisting mainly of the white dwarfs (WDs), neutron stars (NSs) and the black holes
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(BHs) [6, 7, 8]; see, Sec. 1.2 for more details about those objects. Some hyperons (such as
the lambda particles in Fig. 1.2) may also be present in their metastable state under the
extreme conditions of temperature and pressure that are likely to prevail in the interior of
the NSs [6, 7]. The galactic cosmic rays (GCR) - the mysterious high energy corpuscular
radiation (see Sec. 1.3 for more detail), that possibly originate from some violent stellar
explosions called the supernovae (SNe; see Sec. 1.3) in our Galaxy, before arriving at the
top of the Earth’s atmosphere are also found to be dominated by the protons, neutrons
and the atomic nuclei (along with some unstable mesons, unstable hyperons and also some
leptons, of course) thus giving evidence of the predominant presence of the baryons in the
Galaxy. However, several past and contemporary records, such as the Price’s event [9] and
the AMS-01 [10] experiment (see Sec. 1.7 for a brief account of several such events) have
indicated the possible existence of certain exotic particles with unusual (in comparison
with the normal nuclei) charge to mass ratio in the observations of GCR and their ground-
based counterparts, namely, the “secondary cosmic rays” or the “atmospheric cosmic rays”
(arising out of the interactions of GCR with the Earth’s atmosphere), which can not be
explained away in terms of the known baryons, mesons or the leptons. Small lumps of a
novel form of yet hypothesized matter, namely the “Strange Quark Matter (SQM)” [11, 12],
may, in fact, be the potential candidates of such unusual events in GCR; see Secs. 1.5 and
1.6 for some more detail. A possible mode of origin of such strangelets in GCR and the
theoretical possibility of their detection by the space-borne detectors above the atmosphere
of the Earth is the subject matter of the present thesis.
The topic of this thesis is, in fact, based on the conjecture, known as the “strange matter

hypothesis (SMH)” [11, 12], that arose from the realization that the standard model of
particle physics allows the existence of a new form of matter, namely the SQM, with the
strange (𝑠) quarks being one of its essential ingredients that make it more stable than the
normal nuclear matter such as a gas of neutrons [13]. This matter is obviously colorless
and a baryon number may be attached to it so that they are sometimes called the “quasi-
baryonic matter” [4] in the literature. SMH, in fact, claims that the SQM, on its own right,
may be the true ground state of hadronic matter instead of the hitherto experienced most
stable form of hadronic matter, namely, the 56Fe nuclei; SQM is incorporated in Fig. 1.2
above, along with the other known forms (viz. baryons and mesons) of hadrons, for the
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sake of completeness.
The SQM was originally proposed to be a possible candidate for the cosmological dark

matter - the yet unidentified form of matter that fails to absorb or emit electromagnetic
radiation but still accounts for about 27% of all the matter and energy in the universe [14].
Some authors [15, 16] are of the opinion that the SQM might had been produced during
the cosmological quark-hadron phase transition in the early universe, ie., some 10−5 s after
the Big Bang [17], even if such a phase transition were not of the first order. Some chunks
of those originally produced SQM may still survive in the present epoch of the universe
to potentially account for the cosmological dark matter problem [16]. The above idea,
though not at all ruled out, is seldom found to appear in the recent literature [18]. In this
thesis, we, therefore, leave that (albeit important) particular issue aside without further
justification. Even without that aspect, the SMH has other astrophysical implications,
perhaps the most important of them being the possible existence of stable, self-bound
strange stars (SSs) with vanishing external pressure on the surface of those stars [6, 7, 11,
19, 20]. A theoretical examination of the possible consequences of this implication and the
simultaneous experimental efforts to find the signatures of those consequences are necessary
to ultimately vindicate the SMH. The present thesis focuses on such astrophysical relevance
of SMH in the light of modern experimental observations.
The remaining part of this introductory chapter is essentially an outline describing some

of the basic concepts used later in this thesis. There, we would review the basic facts
about the compact stars and the cosmic rays (CR). We would also review those properties
of the SQMs that have some bearings on our theoretical calculations elaborated in the
subsequent chapters of this thesis. In the following sections of this chapter, we would also
outline the possible astrophysical production scenario of the small lumps of SQM, namely
the strangelets, and briefly mention the current experimental searches for those strangelets
in the galactic and atmospheric CR.

1.2. Compact stars

The compact stars are like the corpses of once luminous stars. They are, in fact, the
remnant cores of the dead stars that have already completed their lifetimes of about a few
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tens to a few thousands of million years [6] as bright objects undergoing nuclear fusion
reactions.
Nuclear fusion reactions occur in the interior of all luminous stars. In such reactions,

hydrogen gets converted to heavier elements during the luminous lifetimes of the stars.
For the massive (𝑀star & 8𝑀⊙ with 𝑀⊙ ≈ 2 × 1033 gm being the solar mass) stars, the
end point (called the iron point) of the exothermal nuclear fusion reaction is reached when
the star finally gets transformed to an NS after passing through several complex stages of
its evolutionary track [6]. For the light (𝑀star . 8𝑀⊙) stars, the combustion process is
incomplete in the sense of not reaching the iron point. The star is generally converted to a
WD [6] in this particular situation. The black holes (BHs), on the other hand, are believed
to form mostly from the stars that were initially more massive (𝑀star & (20 − 30) 𝑀⊙)
than the NS progenitors. In such BHs, the material of the stellar core collapses under its
self-gravity to such a high density that its escape velocity reaches the speed of light. It
should, however, be borne in mind that such categorization of the end states of the stars
according to their progenitor masses alone cannot be in complete agreement with reality
as it leaves out many other important parameters of the stars.
Apart from the BHs, the WDs and NSs are the two major groups in the family of

compact stars. WDs are composed of the nuclei immersed in a degenerate electron gas.
This degenerate gas provides the necessary inward gradient of the Fermi pressure to support
the WD against collapse under its self-gravity [6, 8]. In contrast, the protons and electrons
supposedly fuse together to form neutrons under the force of gravity in the dense core of
an NS. The outwardly directed radial gradient of the neutron degeneracy pressure inside
the NS, along with its inwardly directed self-gravity, principally maintains the equilibrium
of an NS [6]. They are supposedly composed mainly of the nucleons and the hyperons
but, in some cases, the core of an NS may also contain the strange quark matter [6]. It
follows that, apart from their conventional form that gives them their name, the NSs can
theoretically take several other forms like the hyperon stars, hybrid stars and the strange
stars (SSs) [6]. If SMH is true, then the SSs (ie., the stars comprising almost entirely of
SQM except perhaps a thin crust made out of the ordinary nuclei [6]) would be the most
likely fate of the NSs so that all the existent NSs would ultimately be transformed into the
SSs. Various routes for such NS to SS conversion process have been put forward by different
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authors [21, 22]. Without going through a detailed review of all such processes, we simply
note that, according to most of those authors, the time scale for the possible conversion
processes is at the most of the order of a few seconds to a few minutes [21, 22] which is, in
fact, minuscule in comparison with the luminous life-time of the star or with the present age
of the universe. Therefore, we are, perhaps, justified in assuming that, a very large number
(if not all) of the supposed NS candidates in our galaxy are, in reality, the already converted
SSs. Similarly, the majority of the compact binary stellar systems in the Galaxy, that are
believed to consist of two NSs, may actually be comprised of two SSs. In this context,
it is important to note that it may be quite difficult, if not impossible, to observationally
confirm whether a star is an SS or an NS. A few plausible diagnostic tools, arising out of the
preliminary numerical simulations, have, however, been suggested to distinguish a merger
event between two NSs from the one between two possible SSs in a compact binary stellar
system [23, 24]. Firstly, the characteristic frequencies of the gravitational wave-signals
generated during the simulated merger events are found to be different in the two cases
mentioned above [23, 24]. Secondly, the quasistatic evolution of the combined system after
merger has been found to be very different in the two cases [23, 24] so that they might
be observationally distinguishable. Finally, a simulated tidal interaction between two SSs
has been found to spew appreciable SQM material out of the gravitational influence of
the merged system for the standard values of the quantum chromodynamical (QCD) bag
constant 𝐵 (see Sec. 1.4 for more details), which is a crucial parameter in the theoretical
description of the SSs [23]. The above numerical simulations further predict that the SQM,
thus ejected in an SS merger event, would eventually fragment into charged strangelets of
various sizes to mix with the GCR, the detection of which in the vicinity of the solar system
might provide us with a decisive proof of the existence of SSs in the compact binary stellar
systems of the Galaxy thus, in turn, vindicating the SMH [23, 24, 25].

1.3. Connection between cosmic rays (CR) and strangelets

Several authors [26, 27, 28, 29, 30] have pointed out the possibility of detecting strangelets
in the observations of the CR both above and within the Earth’s atmosphere. Recent
simulations of SS mergers (see Sec. 1.8 for detail) in the compact binary stellar systems
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have predicted the formation of tidal arms and the ejection of appreciable amounts of
SQMs from the tips of those tidal arms in a number of such merger events [23, 24] that are
likely to fragment into strangelets to eventually mix with the GCR [23]. In this section, we
would, therefore, like to provide a very brief account of the CR before we actually discuss
the possibility of finding strangelets in CR.

Figure 1.3.: Observed differential spectrum of CR above the Earth’s atmosphere [31].

Fig. 1.3 [31] shows the differential spectrum (ie., the ratio between the differential change
in the flux of CR particles for an infinitesimal increment in the energy per nucleon of those
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particles and the aforesaid increment in energy as plotted against the energy per nucleon
of CR particles) of CR above the Earth’s atmosphere that indicates that the CR has a
very wide range of energy, from ∼ 109 eV/nucleon to 1020 eV/nucleon. CR particles,
having energies (per nucleon) . 1018 eV [32] are most likely to be the GCR, while those
having their energies above this limit are supposed to come from the extragalactic sources
[33, 34]. In this thesis, we would confine our attention to GCR alone. The GCR particles
are energetic, ionized nuclei that consist mostly of protons along with a small fraction of
alpha particles and the heavier nuclei [33]. GCR presumably originates at the SNe [35] and
gets accelerated at the shock waves associated with those SNe [33, 36]. In the following
paragraph, we provide a very brief account of the SNe and the particle acceleration at the
shocks associated with them as we would use very similar concepts for the acceleration of
strangelets in Chap. 5 of this thesis.
SNe [35] are among the most energetic phenomena in the Galaxy in which the outer

crusts of the luminous stars are ejected at almost relativistic speeds either due to sudden
re-ignition of nuclear fusion in a degenerate star owing to the accretion of new material from
its binary companion or due to the sudden gravitational collapse of the core of a massive
star at the end of its luminous life time. The ejected material would then collide either with
the interstellar medium (ISM) or with the wind generated by the parent star that creates a
powerful shock wave [31]. GCR particles originating at the ejected material of the SNe are
presumably accelerated at this shock by the first order Fermi acceleration mechanism [33,
37], in which the particles cross the shock front several times in the course of their random
thermal motion in the vicinity of the shock. After gaining sufficient energy, the particles
leave their sites of generation and they are accelerated to get injected in the ISM with
their energies following a characteristic power law distribution; note the approximate power
law behavior of the differential flux of GCR with energy in Fig. 1.3. The accelerated and
charged GCR particles then propagate randomly in the inhomogeneous magnetic field of the
ISM before they arrive in the solar neighborhood. In Chap. 5 of this thesis, we would adopt
a somewhat similar mechanism for the production and acceleration of galactic strangelets
and their eventual propagation in the ISM so that we can approximately determine the
flux of those strangelets in the vicinity of the solar system. There, we consider that the
strangelets originate from fragmentation of the SQM material tidally released out of the
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coalescence of two SSs in a compact binary stellar system. The produced strangelets are
likely to be adjacent to the shock front that has been generated by the merger process itself,
perhaps by the impact of the tidally released matter with the ISM. Due to their random
motion in the inhomogeneous magnetic field of the ISM, the charged strangelets cross this
shock front several times so that they are accelerated by the first order Fermi mechanism
in a way similar to the GCR particles. Apart from the possibility of obtaining strangelets
from SS mergers as suggested above, a few authors have proposed that some SQMs might
get mixed with the material ejected in certain core-collapse SNe [38], that should also
contribute to the galactic strangelet-flux above the Earth’s atmosphere. In that particular
scenario, a detonation wave should be triggered during the conversion of nuclear matter to
SQM in the NS core of an SN with a massive (> 8𝑀⊙) progenitor star. The detonation
front would propagate from the center of the core towards its surface. This detonation wave
is supposedly energetic enough to catch up with the original SN shock thus contaminating
the initial SN ejecta with SQM due to turbulent mixing [39]. In Ref. [25], J. Madsen,
however, opined that the possible flux of strangelets, that may be available near the solar
system from such core-collapse SNe, would probably be insignificant in comparison with
the one arising from the possible SS merger events. Moreover, recent three dimensional
hydrodynamical simulations of the NS to SS combustion [40] process have also shown that
the resulting conversion front may stop well before it reaches the surface of the core of the
NS thus suggesting that the mixing of SQM with the SNe ejecta is quite unlikely. In this
thesis, we, therefore, leave such possibility of obtaining strangelets from the SNe ejecta out
of our consideration in favor of the possibility of their production in stellar mergers alone.
The model of SQM fragmentation, that we develop in this thesis, is, however, generalized
enough to be useful in the former scenario as well. To work out the detailed consequences of
the particular production scenario endorsed in this thesis, we are now required to filter out
the most relevant features from our phenomenological knowledge of the strong force (see
Sec. 1.1 above) binding the quarks together thus enabling us to mathematically describe
the approximate properties of strange matters and their fragmentation into strangelets
of a wide array of sizes in a satisfactory way. Such an identification of the important
aspects of QCD (that is the fundamental theory of the strong force) and the choice of a
simple mathematical model simulating those aspects into a description of SQM and its
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fragmentation is undertaken in the next section of this introductory chapter.

1.4. Quantum Chromodynamics (QCD) & the MIT bag model of

SQM

Quarks are bound together in hadrons by the so-called strong force in such a manner that
a single quark alone can never escape from those multiquark systems. The strong force
binds only the quarks together and does not affect the leptons. The resulting interaction
between the quarks under this force-field is called the strong interaction. The strength
of this strong force varies with distance. This distance dependence is much stiffer than
the one for gravity or the electromagnetic force which obey the inverse-square law. The
strong force effectively disappears once the quarks are separated by more than about
1 fm (= 10−13 centimetre), which is approximately the radius of a nucleon. QCD is the
theory that is supposed to describe the properties of this strong interaction between quarks.
However, this theory is so complex that it is amenable neither to an analytical approach nor
to some form of numerical computations that are suitable for providing an insight into the
“working” of this theory from its basic principles at the relevant energy scale (& 1 GeV). As
a consequence of the above, even though QCD is claimed to be the fundamental theory for
the strong interaction, many basic questions regarding the detailed nature of such strong
interaction inside the hadrons remain yet unanswered. As a result of this complexity of
the theory of strong force, although a broad range of physical properties of the strongly
interacting systems are now tentatively understood, only a very few results have actually
been rigorously proved within the QCD framework. For example, according to QCD, each
quark carries a color quantum number. Baryonic systems, in particular, seem to be made
of the combinations of three different colored quarks, usually denoted as the red, green
and the blue quarks with their antiquarks having the corresponding anticolors, so that
the whole system becomes color-neutral. A single quark can not fulfil the criteria of color
neutrality which introduces the concept of spatial and color confinement of the quarks thus
explaining the fact that no isolated or free quark has, so far, been detected in the past
efforts and also in the presently performed experiments.
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As we are unable to derive the physical properties of strongly interacting systems from
first principles, a different route is usually taken by exploiting the phenomenological knowl-
edge of QCD. One may thus construct models so that they resemble the true theory as
closely as possible. The standard MIT bag model [41] is one of such phenomenological
models that we use in this work.

Figure 1.4.: A pictorial representation of the MIT bag model showing free quarks inside the bag
that can not escape from the bag. The quarks are confined inside the bag due to the
pressure exerted on them by the QCD vacuum from outside the bag boundary on the
system of quarks inside the bag [42].

In 1974, the standard MIT bag model was proposed by a group of physicists of the
Massachusetts Institute of Technology, USA to explain the properties of hadrons. In this
model, the spatial and color confinement of QCD in long distance scales (& 1 fm) is phe-
nomenologically modelled by a ‘bag’ that acts as an enclosure for the color-constituents
(ie., the quarks) of the strongly interacting systems such that they can not escape from
those systems as shown in Fig. 1.4 [42]. The relativistic quarks are, however, free to move
inside the bag thus simulating the “asymptotic freedom” of the quarks in QCD at small
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(< 1 fm) distances as measured from the centre of the hadrons. The bag constant 𝐵 is the
major parameter in this model that may be physically realized as the pressure exerted by
the surrounding non-perturbative QCD vacuum outside the bag boundary on the quarks
inside the bag. The bag provides a barrier for the color-constituents and hence mimics the
spatial and color confinement of a strongly bound system. Apart from the bag parameter,
other parameters in the MIT bag model are the current mass (𝑚𝑠) of the 𝑠 quarks and
the interaction strength (𝛼𝑠) representing the force exerted by the perturbative (QCD)
vacuum inside the bag on the multiquark system. The parameter 𝛼𝑠 has uncertain values
but, fortunately, we can approximately handle it by choosing 𝛼𝑠 = 0. This is because of
the fact that the effect of finite 𝛼𝑠 may, to a reasonable approximation, be absorbed into
the bag constant (𝐵) [12] which itself is an uncertain parameter and, therefore, must be
kept flexible within certain empirically determined range of values. With the above simpli-
fication, the properties and stability of the hadrons in the MIT bag model are determined
only by the bag constant (𝐵) and current-mass 𝑚𝑠 of the 𝑠 quarks. Although the MIT
bag model addresses only selective features of QCD, namely, the asymptotic freedom and
the confinement property of strongly interacting systems, it has become successful in in-
terpreting the mass spectrum of the light hadrons (except that it fails to explain the mass
of pions) and various other experimental results related to the properties of those hadrons
[43]. In this thesis, we do not take into account the contribution of zero-point energy (it
is also ignored by several authors to study the properties of strangelets [42, 44, 45]), a
phenomenological term originally introduced in the MIT bag model to fit the properties of
light hadrons, which vanishes rapidly (compared to other finite size effects, such as surface
and curvature, in strangelets) with increasing radius (ie., the zero-point energy is inversely
proportional to radius) of the bag [42].
In this thesis, we have used the MIT bag model to describe the physical properties

of SQM as well as those of the strangelets. This is because of the fact that, we are
primarily interested in the fragmentation of SQM into strangelets with a wide array of
their possible baryon numbers (𝐴 is denoted as baryon number) in this thesis. To describe
such fragmentation pattern for the first time in the literature, we find it convenient to
distil two essential features of the complex QCD theory into our modelling. Firstly, we are
required to exploit the property of asymptotic freedom of the quarks well inside each of
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the strangelets so that we may approximate those quarks as belonging to a free, relativistic
fermi gas within that strangelet. Secondly, we exploit the spatial and color confinement of
the quarks within each of the myriad number of strangelets that may be obtained from the
thermodynamically motivated reorganization of the quarks originally residing inside the
dilute and warm bulk strange matter before fragmentation. We believe that the resultant
simple, two parameter MIT bag model of SQM would be able to provide us some physical
insight into the trend in the fragmentation pattern that would not have been available
by straight way employing more complex, multiparameter models of SQM, such as, the
effective field theoretical models or the Nambu-Jona-Lasinio (NJL) models [46]. On the
other hand, once the basic trend in the fragmentation pattern of SQM and the nature of its
dependence on various physical parameters, such as the bag constant (𝐵), the mass (𝑚𝑠)
of the 𝑠- quarks and also the temperature (𝑇 ), representing thermodynamic equilibrium of
the fragmenting complex, are already known from the MIT bag model, it would perhaps
be useful to investigate how such basic pattern is changed by using more complex QCD-
motivated models. In the next section, we, therefore, give an outline of the properties of
SQM within the framework of the MIT bag model.

1.5. Strange quark ma�er (SQM)

Within the framework of the MIT bag model [41], the SQM may be considered to be a
large collection of comparable numbers of up (𝑢), down (𝑑) and strange (𝑠) quarks enclosed
in a bag. These quarks can move around freely inside the enclosure (ie., the bag) that does
not allow the quarks to escape thus forming a multiquark bound system (see Fig. 1.4 [42]).
In our everyday experience, we confront stable baryonic matter, ie., the nuclei of our

familiar matter, that consists of the nucleons (protons and neutrons) - each of which may
be envisaged as consisting of three of the two types of the lightest quarks, namely the 𝑢
and the 𝑑 quarks, enclosed in an MIT bag. We may, therefore think that it is quite unlikely
to find stable bags consisting of more than three quarks. Consider, for example, a stable
deuteron nucleus comprising of a proton and a neutron that are, in fact, two adjacent but
distinct quark bags according to the MIT bag model. We have no evidence, whatsoever, of
any stable system, consisting of the 𝑢 and the 𝑑 quarks, in which a single quark bag holds
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all those six quarks simultaneously - still having an energy per baryon that is lower than
that for the deuteron nucleus.
A.R. Bodmer [47] was the first person to theoretically envisage the possibility of the

existence of the nuclei of a new form of matter in which the s quarks are added to the
quark bag consisting of the 𝑢 and the 𝑑 quarks. According to his proposal, such a novel
form of nuclei may exist as the long-lived exotic nuclei under large pressure within the
cores of the compact stars with the sizes of their bag (ie., the sizes of the exotic nuclei)
being more compressed than those for the ordinary nuclei.

Figure 1.5.: The presence of an additional Fermi well lowers the energy per baryon of a 3-flavor
system in comparison with the 2-flavor system [49].

Later, S.A. Chin and A.K. Kerman [48], and independently, L.D. Mclerran and J.D.
Bjorken [26], came up with some general arguments in support of the possibility of having
stable hadronic states consisting of three quark flavors even at zero external pressure [49].
The postulates given by them regarding such a stable system are stated as in the following.

1. In such a configuration, the weak decay of an 𝑠 quark into a 𝑑 quark would be
forbidden due to the unavailability of the lowest single quark states as all those
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states may be occupied.

2. The 𝑠 quark mass * would be less than the Fermi energy of the 𝑢 and the 𝑑 quarks
in such a system. The 𝑠 flavor, being different from the 𝑢 and the 𝑑 flavor, would
insert an additional Fermi well in the system. Thus, the system would lower its
overall Fermi energy by distributing the quarks in all the three Fermi wells (shown
in Fig. 1.5 [49]).

According to this picture, an SQM is likely to be charge-neutral as any net charge arising
from the difference between the number of the massive s quarks and the (equal) numbers of
each of the (almost) massless 𝑢 and the 𝑑 quarks would be neutralized by electrons residing
inside the SQM. If we ignore the mass of the 𝑠 quarks, then the numbers of the 𝑢, 𝑑 and
the 𝑠 quarks should be exactly equal so that the SQM becomes absolutely charge-neutral
without the necessity of having electrons in the system.
In 1984, E. Witten [11] resurrected the above ideas in his seminal paper in which he

had put forward the conjecture that a system of 3𝐴 (𝐴 being the baryon number of the
SQM) quarks consisting of roughly equal numbers of the 𝑢, 𝑑 and the 𝑠 quarks may have
an energy per baryon that is lower than that of the normal nuclear matter (ie., a gas of
neutrons, say) with a mass number 𝐴 [11]. The SQM may even be more stable than the
iron nuclei. A SQM blob of a reasonably large baryon number 𝐴 (so that the finite size
effects remain reasonably small; see the next section) would, therefore, represent the true

*Here, the mass of each of the quark-flavors is considered to be its current quark-mass, ie., the mass of
the bare quark, as considered in the MIT bag model [18]. The actual mass of a quark in a hadron,
which is its constituent quark-mass in that hadron, may be much larger than its current quark-mass
due to various QCD effects that have not been taken into account in the MIT bag model [6, 12, 18, 24].
We, therefore, do not consider such constituent quark-mass in this thesis. The current quark-mass
of the 𝑢, 𝑑 and the 𝑠 quarks are 𝑚𝑢 ≈ 3 MeV, 𝑚𝑑 ≈ 5 MeV and 𝑚𝑠 ≈ 100 MeV, respectively.
The chemical potentials of the 𝑢, 𝑑 and the 𝑠 quarks at 𝑇 = 0, that are the highest energies of
those quarks in their respective Fermi-wells at chemical equilibrium at zero temperature, are given by
𝜇𝑢 ≈ 𝜇𝑑 ≈ 𝜇𝑠 ∼ 300 MeV. A quark can be considered as massless if the square of the ratio of its
current quark-mass to its chemical potential is much smaller than one. This approximation seems to
be a reasonable one for the 𝑢 and the 𝑑 quarks but it seems to break down for the heavier 𝑠 quarks. In
Chaps. 2 and 3 of this thesis, we have, however, considered 𝑚𝑢 ≈ 𝑚𝑑 ≈ 𝑚𝑠 ≈ 0 as a simplifying first
approximation that is hoped to serve as a guidance to our further complicated calculations presented
later in Chaps. 4 and 5 of this thesis. Similar approximations have earlier been considered by various
authors [6, 18] to get a feeling for the physical nature of their complicated results obtained later with
more realistic parameter values.
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ground state of hadronic matter. This hypothesis of Witten (1984) is known as the strange
matter hypothesis (SMH) in the literature that forms the basis of the present thesis. In
the next section, we would like to discuss the thermodynamic properties of such an SQM.

1.6. Properties of Strange Quark Ma�er (SQM)

1.6.1. Bulk SQM

Bulk SQM can be considered to be a free Fermi gas of a large total number (3𝐴) of the
𝑢, 𝑑 and the 𝑠 quarks under spatial and color confinement in a quark bag that separates
the gas from the QCD vacuum by a phase boundary. In this case, as the volume of the
system is sufficiently large, the finite size contributions, such as the contributions from
the surface and curvature of the bag, to the system’s thermodynamic potential may be
ignored as a first approximation in comparison with the contribution from its volume.
Actually, if we consider the energy per baryon of SQM, then the volume, surface and
the curvature contributions vary with its baryon number as independent of 𝐴, 𝐴−1/3 and
𝐴−2/3 respectively [18]. For bulk approximation (ie., 𝐴 → ∞), the surface and curvature
contributions are, therefore, much smaller than the volume contribution, so that, we can
ignore the surface and curvature contributions altogether in comparison with the volume
(or, the bulk) term. For the sake of simplification, we here consider this bulk matter to
be at zero temperature and zero external pressure (apart from the bag pressure). Due to
the presence of the 𝑠 quarks, the bulk SQM is relatively more stable than a collection of
the 𝑢 and the 𝑑 quarks having the same baryon number 𝐴. If we further consider the 𝑠
quarks to be massless (ie., 𝑚𝑠 = 0), then the identical number (ie., 𝑛𝑢 = 𝑛𝑑 = 𝑛𝑠) of each
of the three quark-flavors makes for a perfect charge-cancellation (ie., 2

3
𝑛𝑢− 1

3
𝑛𝑑− 1

3
𝑛𝑠 = 0)

in the bulk matter. If, on the other hand, we consider a finite mass (𝑚𝑠 ̸= 0) of the 𝑠
quarks, then the number of those quarks is somewhat lesser than the number of each of
the massless 𝑢 and 𝑑 quarks inside the SQM at a specific baryon number (𝐴) of the bulk
matter. In this situation, the small positive charge arising from such an imbalance in the
numbers of different quark-flavors is neutralized by the presence of electrons inside the
bulk matter. Chemical equilibrium in the system (chemical potential can be associated
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with each flavor of the quark, electron, and neutrino) is maintained by weak interactions
through the following flavor conversions:

𝑑↔ 𝑢+ 𝑒− + 𝜈𝑒 (1.1a)

𝑠↔ 𝑢+ 𝑒− + 𝜈𝑒 (1.1b)

𝑢+ 𝑠↔ 𝑑+ 𝑢. (1.1c)

Here, the contribution from the neutrinos (actually those are antineutrinos) in the above
reactions is not taken into account as those neutrinos leave the system after their production
in the above reactions without any further interactions with the quarks inside the bag. In
Secs. 1.4 and 1.5, we have provided heuristic arguments in favor of the hypothesis that
the bulk SQM can become more stable in comparison with the nuclear matter, or even in
comparison with the iron nuclei, for a certain region of the two dimensional parameter (𝐵
and 𝑚𝑠) space. If we further consider the s quarks to be massless, the bulk SQM would
then be absolutely stable (ie., more stable than the 56Fe nuclei) for the values of the bag
parameter lying within a range given by [18]

145 MeV . B1/4 . 163 MeV. (1.2)

Here, the lower limit of 𝐵1/4 corresponds to the minimum of the physically significant val-
ues for the bag constant (𝐵). For 𝐵1/4 < 145 MeV, the calculated values of the energy per
baryon of the bulk SQM would become more than that for a bulk matter consisting of the
𝑢 and the 𝑑 quarks alone. In that case, the SQM would be spontaneously converted to an
ud quark matter which would become the most stable configuration of hadronic matter for
such values of the bag constant. As for an example, the deuteron nucleus, consisting of one
proton and one neutron, would spontaneously convert to a large conglomeration of three 𝑢
quarks and three 𝑑 quarks within a single QCD bag for such low values of the bag constant
𝐵. Such possibility is, however, in disagreement with our everyday experience and must,
therefore, be ruled out. On the other hand, the upper limit of 𝐵1/4 in the above inequality
corresponds to the maximum possible value of the bag constant for which the bulk SQM
remains absolutely stable, ie., its energy per baryon remains lower than that for the iron
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nuclei. This, in turn, implies that SMH is inapplicable for values of 𝐵1/4 that are more
than the above upper limit. The above arguments in favor of the possible window of abso-
lute stability (expressed by the inequality 1.2) of an SQM in terms of the values of its bag
constant 𝐵 in the simplifying case 𝑚𝑠 = 0 have, in fact, been analytically demonstrated
in Ref. [18], that is not reproduced again in this thesis. More detailed calculations have
shown that the above range of plausible values of the bag constant 𝐵 is not significantly
altered even when we incorporate the finite size effects in our calculations to consider the
exotic nuclei of small 𝐴 values that we would classify as the strangelets [18]. The upper
bound of 𝐵 in the inequality (1.2) is, however, found to decrease as we take a finite mass
(𝑚𝑠 ̸= 0) of the s quarks into account [18].

1.6.2. Strangelets

Small lumps of SQM, whose baryon numbers usually satisfy the condition 𝐴 ≪ 107, are
classified as the strangelets. The dimension of such a lump is simply given by ∼ 𝑟0𝐴

1/3,
where 𝑟0 ≈ 1 fm [45] is the radius parameter of the strangelet. For a baryon number
𝐴 ∼ 107, the size of the strangelet turns out to be ∼ 215 fm, which is less than an order
of magnitude smaller than the Compton wavelength of the electrons given by ∼ ℎ

𝑚𝑒𝑐
∼

2478 fm, where ℎ, 𝑚𝑒 and 𝑐 are the Planck’s constant, the mass of the electron and the
speed of light, respectively. Unlike in the case of the bulk SQM with 𝑚𝑠 ̸= 0 (described in
the previous section), in which the localized electrons within the SQM ensure its charge-
neutrality, the charge-neutrality of the strangelets can no longer be maintained by the
electrons that now reside well-outside the strangelets. Due to this fact, the strangelets
would be slightly positively charged in the case 𝑚𝑠 ̸= 0. The charge (𝑍) of the strangelets
is, however, very small such that 𝑍/𝐴 ≪ 1/2, this being the key diagnostic feature for
the strangelets, that makes them different from the normal cosmic rays nuclei, for which
𝑍/𝐴 ∼ 1/2. In the case of a strangelet, the finite size effects (ie., the contributions from its
surface and curvature to its total energy) and the internal coulomb interactions between the
charged quarks inside that strangelet (the effect of which is usually smaller than the surface
and the curvature effects) will come into play that would try to destabilize the strangelet
by tending to increase its energy per baryon above that for the iron nucleus or even those
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for the nucleons. For the same values of the bag constant and the strange quark mass,
a strangelet of an arbitrary baryon number may, therefore, be unstable even though the
corresponding bulk SQM is absolutely stable. The strangelets of a specific baryon number
(𝐴) may still be absolutely stable for certain specific intervals of values of the bag constant
(𝐵) and the mass of the strange quarks (𝑚𝑠) [12, 18, 50] in those strangelets. Strangelets
can be studied by the Shell model (analogous to the case of the normal nuclei) [12, 51,
52, 53]. It is known from the literature that the calculations performed by using the shell
model, though tedious, usually provide more rigorous and detailed results [18] regarding
the properties of an individual strangelet. In this thesis, we, however, have to deal with
a collection of strangelets consisting of a vary large number of the strangelet-species, each
of them having different values of the baryon number and the charge, so that it would,
perhaps, be adequate to find the average properties of each species that are found to be
satisfactorily provided by the so-called liquid drop model [18] of the strangelets. Finite
size effects, such as the surface tension and the curvature coefficients stemming from the
depletion of the surface and curvature density of states due to the finite value of𝑚𝑠, are here
derived by using the multiple reflection expansion procedure [54] within the frameworks of
the liquid drop model and the standard MIT bag model [18].

1.6.3. Color Flavor Locked (CFL) SQM and the corresponding strangelets

The SQM described in the item number 1.6.1 of section 1.6 above may be termed as the
“ordinary” or the “unpaired” SQM. This is in contrast with the other variant of SQM in
which the quarks of three different flavors with their different color (see Fig. 1.6 [55])
quantum numbers form condensates [55] near the Fermi surface of the SQM with the
SQM now showing new properties that are somewhat analogous to the appearance of
superconductivity due to the BCS-pairing (eg. electrons in metals, 3He atoms etc. [55]) in
solid state physics. Such SQMs are called the color-flavor-locked (CFL) SQM. This variety
of SQM has been shown by Rajagopal and Wilczek [56] to be feasible for quite a significant
ranges of values of the chemical potential (representing the values of the bag constant 𝐵)
and the mass of the strange quarks (𝑚𝑠). The bulk CFL SQM is electrically neutral even
without having to have electrons inside that bulk matter unlike in the case of SQM of the
ordinary variety; see item 1.6.1 above. This charge-neutrality is the outcome of the “BCS-
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Figure 1.6.: CFL phase is shown in the figure in which the quarks of all the flavors (u, d and s)
and the colors (red, green and blue) in an SQM together form the condensates with
a common Fermi momentum 𝑝𝐹 [55].

like pairing” between quarks of distinctly different flavors and the color quantum numbers
having zero net momentum inside the SQM with the energy of the paired system being
minimized only if the Fermi momenta of those quarks are equal [57]. One important aspect
of the CFL phase is that the CFL SQM is denser and more stable than the corresponding
ordinary SQM. The lower limit of bag constant for stable CFL SQM corresponds to 𝐵1/4 &

156 MeV, below which the strange matter decays to a two flavor color-superconducting
phase in which only the two, instead of the three colors of the 𝑢 and the 𝑑 quarks are paired
up. The upper limit of the bag constant for the CFL SQM has been found theoretically
to approximately corresponds to 𝐵1/4 ∼ 180 MeV for 𝑚𝑠 = 0 with a typical value of
the pairing or the gap energy (ie., the strength of the pairing of quarks [55]) being ∼
100 MeV [57]. As in the case of the unpaired or the ordinary SQM, finite 𝑚𝑠 lowers the
upper limit of bag constant for CFL SQM also. Similar to the situation found in the
case of ordinary strangelets, finite size effects increase the energy per baryon of the CFL
strangelets [11, 12, 47, 48, 50, 51, 57, 58, 59] simultaneously yielding a small positive charge
for those strangelets [59]. The charge to mass ratio for CFL strangelets with the electric
charge number being 𝑍 ∼ 0.3𝐴2/3 [25], is, however, significantly different from those of
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the ordinary strangelets. This difference in the charge to mass ratio may provide us with
a diagnostic tool to test the existence of the CFL strangelets as opposed to the ordinary
strangelets in the cosmic rays. The possible existence of CFL SQM in the stellar core is
supposed to have significant consequences for the physics of the compact stars [60]. Here,
we would like to add that a finite value of the temperature would increase the energy (per
baryon) of both of the normal and the CFL strangelets [45, 61].
Having discussed the possibility of the existence of strange matter and strangelets (in

Secs. 1.4-1.6) as the true ground state of hadronic matter, we must now find a satisfactory
answer to the fundamental question as to why the various known baryonic forms of matter
in our part of the universe have not already decayed to their natural ground state, namely,
the SQM. One straightforward answer to this question is that such a decay to the SQM
phase would require the presence of a significant fraction of 𝑠 quarks in this part of the
universe. The conversion of an iron nucleus with 𝐴 = 56 into a strangelet, for example,
would require a very high order of weak interactions for the simultaneous conversions of
a large number of the 𝑢 and the 𝑑 quarks (ie., roughly 56 𝑢 and 𝑑 quarks) into the 𝑠
quarks. The probability of such simultaneous conversions is very rare in nature unless the
environment in which such conversion might take place is already rich in its strangeness
content (ie., a large fraction of the 𝑠 quarks are already present in the environment) like
the situation that possibly prevails in the interior of the neutron stars. For lower 𝐴 values,
however, lower order weak interaction is needed for the conversion, but finite size effects will
also make the system unstable [18] in that situation. A simple calculation has estimated
that in the normal environment, nuclei with 𝐴 & 6 can exist for more than 1060 years [7]
before its possible conversion to a strangelet. From the above arguments, we can conclude
that, the stability of SQM does not contradict with our everyday experience of baryonic
matter (ie., composed with ordinary nuclei) in the visible universe.
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1.7. Experimental searches for strangelets and a few possible

evidences of their existence

1.7.1. Experimental searches

Experimental physicists have been searching for the evidence of SQM, the hypothesized
ground state of hadronic matter, over the past three decades. Despite the fact that several
strangelet-like exotic events have been reported within this time span, scientists could not
draw any firm conclusion regarding the existence of strangelets from all those events. Such
experimental searches for exotic particles fall mainly in two different categories, namely,
1) the attempts to produce strangelets in the Heavy-ion collision experiments [7] and 2)
the searches for strangelets in CR. In the following, we mention a few selected experiments
belonging to each of those categories, along with Table 1.1 [7], in which we provide a concise
list of all those searches known to us.

1.7.1.1. Heavy-ion collision experiments

High energy physicists are often of the opinion that strangelets of very low baryon numbers
might actually be formed in the ultrarelativistic heavy-ion collision (UHIC) experiments.
Even if we accept this possibility as being a plausible one, the finite size effects on the
strangelets produced in that way are likely to destabilize those light strangelets. Apart
from such finite-size effects, the ambient temperature of the region within the experimental
set-up, in which the strangelets are formed, are likely to be high enough to severely reduce
the stability of the produced strangelets so that those unstable or metastable strangelets
would possibly decay into nuclei within about a weak interaction time-scale. Here, we
would like to add that a number of such accelerator or collider-based experiments have, in
fact, been already performed to produce strangelets in the laboratory, all of which have,
however, ended up with null results [72].
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1.7.1.2. Search for strangelets in CR

• Alpha Magnetic Spectrometer (AMS)

Figure 1.7.: The picture shows the cargo bay of the Discovery space shuttle in which AMS-01
detector was placed at the tail part of the cargo bay [64].

The Alpha Magnetic Spectrometer (AMS) is a space based particle tracker and de-
tector, in which different charged particles follow different trajectories due to the
applied magnetic field so that those charged particles are separated from each other
depending on their charges and their baryon numbers.

In June 1998, the space shuttle ‘Discovery’ flew with a prototype of a particle detector
(AMS-01) (see Fig 1.7 [64]) [65]. The analysis of data collected from that mission has
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given the hints of a few events with unusually low Z/A ratio. One of such events had
a signature of 𝑍 = 2 and a mass of about 16.5 GeV. From the detector sensitivity,
AMS-01 has predicted the flux of the order of 1.5x103 m−2sr−1yr−1 [10] for those
particles.

Figure 1.8.: The picture shows the AMS-02 detector (shown in the red circle). The detector has
been installed at the International Space Station (ISS) [66].

Recently, a second generation detector of AMS, namely the AMS02, has been suc-
cessfully installed at the International Space Station (ISS) (as shown in Fig 1.8 [66]).
One of its many scientific goals is to search for strangelets in GCR. The sensitivity
of the AMS-02 detector (for 𝑍 . 30 and 𝐴 . 103) is about 1 particle m−2sr−1yr−1

[67].

• PAMELA
Like the AMS, the Payload for Antimatter Matter Exploration and Light-nuclei As-
trophysics (PAMELA) is another space-borne detector which was launched by the
European space agency. It also contains a magnetic spectrometer that can detect
unusual events with low Z/A in GCR. Based on the null result of their attempt to
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detect strangelets with their detector, the PAMELA collaboration has recently pro-
vided an upper limit for the possible flux of strangelets with their charge numbers
being in the range 1 ≤ 𝑍 ≤ 8 [68]. In Chap. 5, we will compare our theoretically
determined strangelet flux with the aforesaid upper limit of the flux reported by the
PAMELA collaboration.

• LSSS
The surface layer of the moon is known to have a large cosmic ray exposure time of
around 500 million years. Due to the absence of a magnetosphere of the moon, the
expected strangelet concentration on the surface of the moon would be some four
orders of magnitude larger than the one on the Earth [69]. The Lunar Soil Strangelet
Search (LSSS) was, therefore, conducted to find the evidence of strangelets in a
sample of about 15 grams of lunar soil, that is the part of a larger sample brought
by the Apollo 11 mission from the moon. The analysis of the above sample was done
by using the tandem accelerator at the Wright Nuclear Structure Laboratory at Yale
University [69]. The analysis covered the charge numbers 6, 8 and 9, respectively in
a mass range of about (42-70) amu (ie., atomic mass unit). From the null results
of the above search, the upper limit of strangelet flux in the vicinity of the Earth is
calculated to be about ∼ 102 m−2sr−1yr−1 [69].

• SLIM
Assuming that the strangelets are more likely to be found in CR at the mountain
altitude, where they are less likely to interact with a very large number of atmospheric
particles, the SLIM experiment was carried out at the Mt. Chacaltaya High Altitude
Laboratory (5230 m above the sea level (asl)) at Bolivia during the years 2001-2005.
In this experiment, some 427 m2 wide array of nuclear track detectors in the modules
of 24x24 cm2 area each was laid exposed to the atmospheric CR for 4.22 years. The
detectors were then etched and analyzed at the laboratory of Bologna, Italy resulting
in null results. From such results, the upper limit of the possible strangelet flux in
CR at the Mt. Chacaltaya altitude was estimated to be ∼ 4.1x10−4 m−2sr−1yr−1 [70].

• Indian experiment for searching strangelets in CR
Like the experimentalists of the SLIM experiment, the researchers from the Centre
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for Astroparticle Physics and Space Science (CAPSS) of Bose Institute, Kolkata and
Darjeeling, India, have also been involved in a project sponsored by the Department
of Science and Technology (DST), Govt. of India, with a goal to detect strangelets in
atmospheric cosmic rays at the mountain altitudes of Darjeeling (2042 m asl), Ooty
(2240 m asl) and Hanle (4500 m asl) in India. In this particular experiment, the
detectors are made out of a low-cost polymer, namely the polyethylene terepthalate
(PET), that is being used as the passive solid-state nuclear track detector (SSNTD)
systems. Normally, a charged CR particle would leave behind it a narrow damaged
trail during its passage through the SSNTD [82]. As the damaged trails are chemically
more reactive than the undamaged parts of the detectors, those trails are etched out
with the help of chemical reagents. A detailed study of the geometry of the etch-pits
is expected to reveal the identity of the charged particles [82, 83] that caused the
damages. In the first half of the project, the PET detectors were exposed to known
ion beams available at different particle accelerator facilities in India and abroad
to study the charge response of PET and the detectors were calibrated accordingly.
The aim of the currently ongoing second stage of the project is to identify anomalous
events in CR and to determine their approximate 𝑍/𝐴 ratio with the help of the
calibration curve drawn during the first half of the project. Some anomalous events
in CR have, so far, been detected by using the above detectors, a detailed analysis
of which is presently in order [83]. It is, however, important to note that the choice
of the detector material (ie. its sensitivity on the charge and the kinetic energy of
the desired strangelets) in the above experiment has been, to some extent, motivated
by a plausible theoretical model [4] regarding the interaction of strangelets with the
atmospheric molecules that may, as well, limit the validity of the above experiment
only to a certain class of events. Also, at least an approximate theoretical estimate
of the plausible flux of strangelets above the Earth’s atmosphere, along with the
theoretical model given in Ref. [4], may be necessary for a better assessment of the
results obtained from the experiment under consideration. The work presented in
this thesis is, in fact, a preliminary attempt towards that particular direction.
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Table 1.1.: A list of experiments involved in the search of strangelets.

Experiment References
Search for strangelets at Heavy-ion experiments:
Strangelet searches E864, E878,
E882-B, E896-A, E886 [62]
Pb+Pb collisions [63]
Cosmic ray searches for strangelets:
Alpha Magnetic Spectrometer (AMS) [10, 65, 67, 71,

72]
PAMELA [68]
LSSS [69]
SLIM [70]
Cosmic Ray And Strange Hadronic matter (CRASH) [30, 73, 74]
Extremely-heavy Cosmic-ray Composition Observer
(ECCO)

[75]

HADRON [76]
Irvine Michigan Brookhaven proton-decay detector
(IMB)

[77]

Japanese-American Cooperative Emulsion Chamber Ex-
periment (JACEE)

[78, 79]

Monopole, Astrophysics and Cosmic Ray Observatory
(MACRO)

[80]

Extreme Universe Space Observatory will be accommo-
dated in Japanese Experimental Module (JEM-EUSO)

[81]

Strangelet search with passive detector (PET) [83]
Search for strangelets in terrestrial matter [84]
Tracks in ancient mica [27, 85]
Rutherford backscattering [86]

1.7.2. Existing reports of exotic events

In the context of the possibility of detection of strangelets in CR, that is the subject
matter of this particular thesis, we should also mention a number of observed events, with
unusually small charge to mass ratios in comparison with the ones for the ordinary nuclei,
that have, so far, been reported in the CR observations. These events are listed in the
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following.

Figure 1.9.: Three unusual events detected in CR, along with normal CR nuclei like O, Fe, Pb
and U, are displayed in the 𝑍 vs. 𝐴 diagram [89].

The earliest recorded account of the observation of an anomalous event detected in the
atmospheric CR is perhaps the famous ‘Price’s Event’ [9]. This particular event, that has
been associated with an unusual particle with a charge number 𝑍 ∼ 46 and a baryon
number 𝐴 ∼ 1000, was recorded in a 1978 CR observation. Almost around the same
time, a few more events, known as the ‘Centauro cosmic ray events’ [87], were detected
in emulsion exposures in an experiment carried out by a joint Brazil-Japan collaboration
group at the observing station at Mt. Chacaltaya, Bolivia. The Centauro events are
particularly interesting as the recorded events contained hundreds of baryons with almost
no 𝜋0 and the 𝛾 photons associated with them which is not normally observed in ground
based CR detectors.
In 1990, Saito et al. [30] analyzed the data collected from the HECRO-81 balloon borne

experiment equipped with Cherenkov and scintillation counters. These authors claimed to
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have identified two unusual events with 𝑍 ∼ 14 and 𝐴 ∼ 370 that could not be explained
in terms of any nuclei that are known to be available in CR. Fig 1.9 [89] displays three
events in a 𝑍 vs 𝐴 diagram along with a few normal nuclei like O, Fe, Pb and U to show
the unusual nature of the above three events and their difference from the ordinary nuclei.

Table 1.2.: A list of strange matter phenomenology.

Phenomenon References
Centauro cosmic ray events [26, 29, 48, 87,

88]
High-energy gamma ray sources:
Cyg X-3 and Her X-3 [90]
Strange matter hitting the Earth:
Strange meteors [27]
Nuclearite-induced earthquakes [27, 91]
Unusual seismic events [92]
Strange nuggets in cosmic rays [28, 89, 93]
Strange matter in supernovae [94]
Strange star phenomenology [7, 20, 95, 96]
Strange dwarfs:
Static properties and stability [96, 97, 98]
Thermal evolution [99]
Strange planets [96, 97]
Strange MACHOS [100]
Strangeness production in dense stars [101]
Burning of neutron stars to strange stars [102]
Gamma-ray bursts, Soft Gamma Repeaters [19, 103]
Cosmological aspects of strange matter [11, 104]
Strange matter as compact energy source [105]
Strangelets in nuclear collisions [49, 106]

In 1993, an ‘exotic track event’ with 𝑍 ∼ 20 and 𝐴 ∼ 460 was reported by Ichimura et al.
[74] after the analysis of a balloon borne experiment performed in the year 1989 in which
CR39 (Columbia Resin 39) was used as the SSNTD. Recently, the AMS-01 (see Fig 1.7
[64]) experiment has reported two events (apart from the one discussed in Sec. 1.7.1.2) with
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their charge numbers and the baryon numbers being given as 𝑍 ∼ 8, 𝐴 ∼ 20 and 𝑍 ∼ 4,
𝐴 ∼ 50 [10], respectively. Additionally, several exotic events have also been reported with
their baryon numbers lying in the range 𝑍 ∼ (10 − 20) and 𝐴 ∼ (350 − 500) in the CR
experiments [9, 74, 78, 107, 108]. A compact list of such unusual events, detected in the
CR experiments, has been displayed in Table 1.2 [7]. A synopsis of all such unusual events,
along with the observed ranges of their masses (baryon number) and the charge numbers,
is presented in Table 1.3 [4]). Here, we may note that all the events presented in Table 1.3
are characterized by their small (𝑍/𝐴≪ 1/2) charge to mass ratio, that is supposed to be
the characteristic feature of the strangelets; see Sec. 1.6.
Although the above observations have been performed by different experimental groups

at different times, the agreement on their possible connection with the existence of SQM
is almost unequivocal. The aforesaid observational results were, however, shredded with a
lot of uncertainties, such as the ambiguities related to the calibration of Cherenkov counter
output, detector noises, dead times etc. that differed from one experiment to the other
so that the existence of SQM could not, so far, be confirmed from those experiments. We
are hopeful that the ongoing and the upcoming experimental projects will be able to draw
some decisive conclusions regarding this matter.

Table 1.3.: Summary of Z vs A in different CR experiments.

Event Charge (Z) Mass
(Baryon
Number)
(A)

Counter Experiments
([107])

14 350-450

Exotic Track ([74]) 20 460
Price’s Event [9] 46 1000
Balloon Experiment
([78, 108])

14 370

AMS 01 ([10]) 4 50
8 20
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The discussion presented in this section seems to suggest that the astrophysical or cosmic
ray observations, particularly at high altitudes or above the Earth’s atmosphere, perhaps
offer a better possibility of the detection of strangelets in comparison with their possible
production in various accelerator or collider based experiments. This is the reason for
our emphasis on the astrophysical scenario of production of strangelets in the present
thesis. In the next section, we would present a brief review of the results from some of the
recent numerical simulations, that are concerned with the possibility of the production of
strangelets in the merger between two SSs in the compact binary stellar systems of the
galaxy. The strangelets, thus produced, would possibly propagate in the random magnetic
field of the galaxy to ultimately arrive in the vicinity of the solar system where they may
be detected in the CR by the detector systems installed on-board various space-based
observing stations. An approximate estimate of the flux of such strangelets of an wide
array of plausible sizes in GCR in the solar neighborhood is the actual aim of this thesis.

1.8. A possible scenario for the production of astrophysical

strangelets

Apart from the normal NSs and WDs, SMH predicts the existence of an additional family
of compact stars, namely the SSs [6, 7, 19, 20, 109] (see the discussion in Sec. 1.2). Further-
more, most of the WDs and the NSs are likely to convert into their stable SS counterparts
within time-scales that are much shorter in comparison with the luminous life times of
their progenitor stars. A likely scenario for the production of galactic strangelets is that
those strangelets are possibly the debris of collisions between the SSs in the compact bi-
nary stellar systems of the Galaxy. Recent simulations of SS mergers have demonstrated
the formation of tidal arms during many of such merger processes (as shown in Fig.1.10
[23]). Fig. 1.10 [23], in fact, shows the different steps of a typical binary SS merger event,
obtained in the numerical simulations of the coalescence between a 1.2 𝑀⊙ and a 1.35 𝑀⊙

companion SSs in a compact binary stellar system at different time steps of its evolution.
The upper left panel of the figure shows the inspiral phase of the companion stars. In
this phase, the binary SSs, rotating in counter-clockwise direction with respect to each
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Figure 1.10.: Different possible stages of a binary SS merger are shown in the figure that actually
displays the quark matter density contours at different time steps obtained in the
simulations of such merger between two model SSs. The formation of the tidal arms
is shown at the bottom left panel of the diagram. A fraction of the strange matter
located at the tips of those tidal arms becomes gravitationally unbound of the merged
stellar remnant to escape freely in the ISM [23].

other, lose angular momentum and energy due to gravitational wave emission which leads
to their shrinking orbits until the SSs finally merge (shown in the upper right panel of
the Fig 1.10) to each other. The above simulations of SS mergers have also demonstrated
the formation of tidal arms during that merger process (shown in the bottom left panel of
the Fig.1.10). A fraction of the SQM, located near the tips of those tidal arms, become
gravitationally unbound to get injected in the ISM [23, 24]. Most of the SQM in the spiral
arms is, however, gravitationally bound thus ending up in an orbit around the remnant of
the combined (ie., merged) stellar system (shown in the bottom right of the Fig.1.10) by
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forming a geometrically thin accretion disc around that merged stellar system. The ejected
SQM, on the other hand, may be further fragmented to form strangelets of a large array of
sizes (or, masses) such that the produced fragments would eventually mix with the GCR
particles and propagate in the stochastic magnetic field of the galaxy to ultimately arrive
in the vicinity of the solar system. J. Madsen [25] predicted the flux of such strangelets,
produced in stellar mergers, above the Earth’s atmosphere by assuming all the strangelets,
fragmented out of the tidally released bulk SQM, to be of equal sizes. In this thesis, we,
however, assume that the initial SQM would produce strangelets of a large distribution
of sizes after fragmentation. In the next section, we would briefly mention the statistical
multifragmentation model (SMM), that we adopt in this thesis, for the description of the
system, that is about to be permanently fragmented into strangelets of large an array of
sizes at its thermodynamic equilibrium at freeze-out.

1.9. Statistical multifragmentation model (SMM)

For the determination of the mass spectrum (or, the baryon number distribution) of
strangelets, we adopt a statistical multifragmentation model (SMM), which is also known
as the ‘Copenhagen model for nuclear fragmentation’ in the literature. The model is often
used to explain the experimental data related to the distribution of the lighter nuclei, that
are the results of collisions between two heavier nuclei. In nuclear SMM [110, 111, 112],
it is primarily assumed that an initially compressed warm nuclear matter, containing 𝑁 ′

o

neutrons and 𝑍 ′
o protons with a total baryon number 𝐴0 = 𝑁 ′

o + 𝑍 ′
o, evolves in quasi-

thermodynamic equilibrium. The expanding matter undergoes disassembly when it reaches
the ‘freeze-out volume’ at a constant temperature 𝑇 over the volume of the fragmenting
system, so that the residual strong interactions between the neighboring fragments cease
(see Fig. 1.11 [110]) to exist. Here, the fragmenting system (ie., the expanding nuclear
matter) is assumed to expand quasi-statically [113], for which the expansion time scale of
the fragmenting complex is much larger in comparison with the relaxation time-scale of
that complex. In the statistical disassembly model, the total charge and the baryon num-
ber of the fragmenting system are conserved. Thermodynamic equilibrium also implies
chemical equilibrium, so that the chemical potentials of protons (𝜇𝑝) and neutrons (𝜇𝑛)
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Figure 1.11.: A schematic diagram depicting the process of fragmentation, in which a warm and
excited nuclear or strange matter expands in quasi-thermodynamic equilibrium and
cools down simultaneously. Fluctuations in the bulk matter produce fractures that
develop into lumpy structures (or, the quasi-fragments) with the further expansion
of the fragmenting system. At the freeze out, the residual strong interactions be-
tween those lumpy structures cease to exist so that the fully developed fragments
are produced [110].

attain their constant values throughout the body of the fragmenting system at freeze-out.
At such freeze-out, the system is also assumed to have achieved its mechanical equilibrium
under zero external pressure so that there can not be any radial collective flow in the frag-
menting system at this particular state. The total thermodynamic potential of the system
at freeze-out may then be written as [112, 114, 115]

Ω = 𝐸 − 𝑇𝑆 −
𝑁 ′

𝑠∑︁
𝑖=1

𝜇𝑖𝜔𝑖. (1.3)

Here, 𝐸 and 𝑆 are, respectively, the internal energy and the entropy of the fragmenting
system. In Eq. (1.3), 𝑖 denotes a particular fragment species with multiplicity 𝜔𝑖 and
chemical potential 𝜇𝑖 = 𝑍𝑖

𝑝𝜇p + 𝑁 𝑖
𝑛𝜇n; 𝑍𝑖

𝑝 and 𝑁 𝑖
𝑛 being the numbers of protons and

neutrons in each fragment belonging to the 𝑖th species. Moreover, 𝑁 ′
𝑠 is the total number

of all the species available in fragmentation. The results obtained from this model correlates
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extremely well with the relevant experimental observables [110].
The minimization of total thermodynamics potential in Eq. (1.3) leads to the occupancy

function of a particular fragment-species. A phase-space integration of this occupancy
function ultimately yields an expression for the multiplicity [112] of that particular species.
This expression is given by [112, 115]

𝜔𝑖 =
2𝒱√
𝜋(ℒ𝑖)3

∞∑︁
𝑗=0

𝑔𝑖𝑗𝐽
+
1/2(𝜂

𝑖
𝑗), (1.4)

or,

𝜔𝑖 = 𝑔𝑖0
1

(𝑒−𝜂
𝑖
0 − 1)

+
2𝒱√
𝜋(ℒ𝑖)3

∞∑︁
𝑗=0

𝑔𝑖𝑗𝐽
−
1/2(𝜂

𝑖
𝑗), (1.5)

depending on whether the species is a fermion or a boson. The first term on the right hand
side of Eq. (1.5) represents the contribution from the Bose-condensation. In Eqs. (1.4) and
(1.5), 𝒱 is the available volume (ie., freeze-out volume minus the volume of the produced
fragments) and ℒ𝑖 = ℎ/

√
2𝜋𝑚𝑖𝑇 is the thermal de Broglie wavelength of the 𝑖th species;

𝑚𝑖 being the effective mass of a fragment belonging to that species and ℎ is the Planck’s
constant. We can consider 𝑚𝑖 ≈ 𝑚n𝐴

𝑖, where, 𝐴𝑖 is the baryon number of the 𝑖𝑡ℎ species
and 𝑚n = 938 MeV is the average nucleon mass. In Eqs. (1.4) and (1.5), the freeze-out
volume may be considered as a free parameter in the model. It is normally taken as about
3-10 times the initial volume of the fragmenting system [116]. In the above equations, the
summation over 𝑗 implies the summation over all the possible energy states of the fragment
including the ground state and 𝑔𝑖𝑗 is the degeneracy of the states. In Eqs. (1.4) and (1.5),
𝐽±
1/2(𝜂

𝑖
𝑗) denotes the Fermi or the Bose Integral; ie. [112],

𝐽±
1/2(𝜂

𝑖
𝑗) =

∫︁ ∞

0

(𝑥𝑖)1/2

𝑒𝑥
𝑖−𝜂𝑖𝑗 ± 1

𝑑𝑥𝑖, (1.6)

where, 𝑥𝑖 = (𝑝𝑖)2

2𝑚𝑖𝑇
, 𝑝𝑖 being the momentum of 𝑖th species [112]. The ‘fugacity’ 𝜂𝑖𝑗 can be

designated as [115]

𝜂𝑖𝑗 = (𝜇𝑖 − 𝐸𝑖
𝑗)/𝑇 (1.7)

with 𝐸𝑖
𝑗 is the energy of the 𝑖th species in the 𝑗th state.
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If 𝜂𝑖𝑗 < 0 and |𝜂𝑖𝑗| ≫ 1, then 𝐽±
1/2 ≃ (

√
𝜋/2)𝑒𝜂

𝑖
𝑗 ; Eqs. (1.4) and (1.5) can then be rewritten

as the Maxwell-Boltzmann distribution for the fragments; ie. [115],

𝜔𝑖 =
𝒱

(ℒ𝑖)3
𝑒𝜇

𝑖/𝑇

∞∑︁
𝑗=0

𝑔𝑖𝑗𝑒
−𝐸𝑖

𝑗/𝑇 . (1.8)

The sum in Eq. (1.8) can be correlated with the total canonical partition function 𝒵 𝑖 of the
fragment of 𝑖th species and defined as 𝒵 𝑖 = 𝑒−𝐹

𝑖/𝑇 , where, 𝐹 𝑖 is the Helmholtz free-energy
of the 𝑖th species. The expression for the multiplicity of the 𝑖th species may, therefore, be
reframed as [115, 117]

𝜔𝑖 =
𝒱

(ℒ𝑖)3
𝑒(𝜇

𝑖−𝐹 𝑖)/𝑇 =
𝒱

(ℒ𝑖)3
𝑒(−Ω𝑖/𝑇 ), (1.9)

in which Ω𝑖 is the thermodynamic potential of the 𝑖th fragment.
In this thesis, we adopt SMM to obtain a plausible size (or, the baryon number) distribution
of strangelets resulting from the fragmentation of strange matter tidally released due the
SS merger. In that particular application, 𝑖 denotes the strangelet-species with baryon
number 𝐴𝑖 and 𝑚𝑖 is the mass of that species. For massless quarks, the chemical potential
of 𝑖th species can be denoted as 𝜇𝑖 =

∑︀
𝑓 𝜇𝑓𝑁

𝑖
𝑓 , where, 𝑓 denotes the flavor of the quark

and 𝑁 𝑖
𝑓 is the number of quarks of 𝑓 th flavor in the 𝑖th species. This simple expression

of 𝜇𝑖 is modified for massive 𝑠 quarks and the consequent presence of the electrons in the
SQM (see Chap. 4). For massless antiquark, the number density of that antiquark (of a
particular flavor) is proportional to 𝑇 3𝑒−𝜇𝑞/𝑇 [118], where, −𝜇𝑞 is the chemical potential
of antiquark. The production of antiquark, for the temperature range we consider in this
thesis, is negligible. For this reason, we do not consider the numbers of antiquarks and
antibaryons in this thesis.

1.10. The outline of the thesis

The content of this thesis is organized as the following. In Chap. 2, we examine the
thermodynamic properties of bulk SQM as well as those of the finite-sized strangelets
by using the multiple reflection expansion procedure within the theoretical framework of
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the MIT bag model with the additional assumption of massless quark-flavors within the
MIT bag. In that chapter, we also provide a fragmentation model of the bulk SQM with
massless quarks to find out the size distribution of the resulting strangelets and their
approximate flux in the vicinity of the solar system. We hope that, the simplifying zero
quark-mass approximation would provide us with some insight regarding the basic nature
of the distribution pattern of the strangelets of varying sizes that may fragment out of the
bulk matter tidally released in stellar merger. Some objections to this basic fragmentation
pattern have recently been raised in Ref. [119] in which it has been claimed that, the
fragmentation pattern would be altogether different from the one given in Chap. 2, if the
color superconductivity of strange matter and the finite mass of strange quarks are taken
into account in the calculations. In this thesis, we separate out the influences of those
two factors on the fragment-size distribution of SQM. In Chap. 3, we examine the effect
of the color-flavor-locking (CFL) alone on the fragmentation pattern of SQM in the limit
of vanishingly small quark-masses. There, we find that the incorporation of the effect
of color superconductivity of quark matter does not fundamentally change the nature of
variation of the fragmentation pattern with the changes in the basic physical parameters
of the problem. We, however, do not pursue the question of fragmentation of CFL matter
in any more detail in this thesis. This is because of the fact that the recent theoretical
research, along with the results obtained from numerical simulations, seems to suggest the
near impossibility of obtaining CFL strangelets out of the stellar merger events. These
reasons have been touched upon by us particularly in the concluding section of Chap. 3.
The possibility of obtaining ordinary or unpaired strangelets in GCR seems, on the other
hand, to be quite promising. In this thesis, we, therefore, confine ourselves mostly to those
ordinary strangelets. In Chap. 4, we discuss the influence of finite mass of the 𝑠 quarks on
the fragment-size distribution of those ordinary strangelets. There, we find that the basic
nature of the dependence of the fragmentation-pattern on various parameter values remains
practically unaltered in the case of massive 𝑠 quarks from the 𝑚𝑠 = 0 case described earlier
in Chap. 2. The numerical values of the sizes would, however, depend on specific value of
𝑚𝑠 chosen so that we have considered the current experimental estimate of a such value
in Chap. 4. In Chap. 5, we used the fragment-size distributions obtained in Chap. 4 as
inputs in a diffusive model of galactic propagation of strangelets to find an approximate
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integral flux of galactic strangelets in the neighborhood of the Sun. There, we also compare
the theoretically determined strangelet flux with the possible upper limit of the integral
flux determined from the null results obtained, so far, in the PAMELA strangelet search
experiment. In Chap. 6, we summarize the important features of the results obtained in
this thesis. The future outlook for the theoretical strangelet research is also presented in
that final chapter of the thesis. Throughout this work, we choose natural units such that
~ = 𝑐 = 𝑘B = 1, where, ~ is the reduced Planck’s constant, 𝑐 is the speed of light and 𝑘B
is the Boltzmann constant.
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Chapter 2

A preliminary calculation for fragmentation of

astrophysical SQM

In a paper written in the year 2005, J. Madsen [1] first attempted to arrive at a theoretical
estimate for the possible flux of strangelets in GCR at the top of the Earth’s atmosphere.
There, J. Madsen considered the strange matter, released in the tidal disruptions of SSs
in compact binary stellar systems of the Galaxy, and the subsequent fragmentations of
that matter to be the principal source of possible galactic strangelets in the neighbor-
hood of the solar system. In that paper, J. Madsen assumed that the strange matter,
tidally released in the merger between two SSs, would possibly fragment into strangelets
of roughly equal baryon numbers (or, sizes). From thermodynamic considerations, it is,
however, more natural to think that a dilute warm matter, such as the tidally released
warm SQM in this particular case, would reduce its free energy by cooling and condensing
into fragments of wide range of sizes [2, 3] than to disintegrate into approximately equal
sized fragments. Such a plausible size (or, baryon number) distribution, ie., the mass spec-
trum, of astrophysical strangelets has not been satisfactorily treated in the literature so
far. The principal aim of this chapter is, therefore, to find a suitable approach to calculate
a tentative size distribution of strangelets that might fragment out of the hot strange mat-
ter possibly released in the tidal interactions between two SSs in a compact binary stellar
system of the Galaxy. For such a purpose, we here adopt the SMM, as discussed in Sec.
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1.9 in the previous chapter, that is often used in the analysis of disassembly of hot nuclear
matter both in laboratory nuclear physics and in the astrophysical contexts [4, 5, 6]. The
calculated size distribution is then used as an input in rather simple a galactic propagation
model of charged CR to arrive at least at an initial estimate of the flux of those strangelets
in GCR in the vicinity of the solar system.
For the purpose of such a calculation, we are required to begin from the SMH. If SQM

is absolutely stable in accordance with the claim made by this hypothesis, then all the
compact stars are likely to convert into SSs [7, 8] within a very short time-scale of the
order of not more than a few seconds to a few minutes [9, 10]. A majority of the so-
called NSs in our Galaxy may thus actually be the already converted SSs. A potentially
important source for the possible production of strangelets in our Galaxy is, therefore,
the merger of those SSs in the compact binary stellar systems [1, 11, 12, 13]. Recent
numerical simulations [12, 13] show that at least many of such merger events are likely
to produce tidal arms and the strange matter ejected from the tips of those arms may
become gravitationally unbound to propagate in the ISM. Such simulations also show the
formation of small condensations (or, lumps) in the ejected SQM that may be a signature of
the initial formation of strangelet-clusters. It is perhaps reasonable to assume that further
fragmentations and separations of those lumps, as the ejected material approaches its
thermodynamic equilibrium, would ultimately develop into a strangelet-mass distribution
that contributes to GCR [14]. By combining the plausible population-averaged ejected mass
of 10−4𝑀⊙ per binary interaction [12] found in their simulations and a possible SS merger
rate of about 10−6−10−4 yr−1 [15], that is suggested from modern observations, we arrived
at a tentative production rate ∼ 10−10 − 10−8𝑀⊙ yr−1 for the SQM mass in our Galaxy.
Here, we note that, in a recent communication, L. Paulucci et al. [16] provided a somewhat
different scenario for the galactic production of strangelets from the fragmentation of SQM
ejected by shock waves during the SN-II explosions. Fragmentation of SQM is a common
feature in both the above scenarios and, therefore, the present treatment of fragmentation
would possibly be valid for the SN-II scenario as well. In this chapter, we would simply
consider the bulk SQM, initially ejected by stellar mergers, as given and calculate the size
distribution of strangelets resulting from the fragmentation of that initial bulk SQM. In Sec.
2.1, we invoke the formalism of SMM to find the size distribution of strangelets. Discussion
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of the numerically obtained mass spectra or the size distribution of the strangelets and their
observational relevance are presented in Sec. 2.2.

2.1. Mass-spectrum of strangelets

We would use Eq. (1.9) ie. [14, 17],

𝜔𝑖 =
𝒱

(ℒ𝑖)3
𝑒(𝜇

𝑖−𝐹 𝑖)/𝑇 =
𝒱

(ℒ𝑖)3
𝑒(−Ω𝑖/𝑇 ), (2.1)

to find the size (ie., the baryon number) distribution of the strangelets that arise from
the fragmentation of the SQM in thermodynamic equilibrium at the freeze-out volume
at a certain temperature 𝑇 . The parametric form of the mass (𝑚𝑖) of a strangelet of
the 𝑖th species was given in Ref. [18] for various values of the bag constant (𝐵) and the
mass (𝑚𝑠) of the strange quarks at 𝑇 = 0. In this initial treatment of the fragment-
size distribution of astrophysical strangelets, we consider the simplifying assumption that
the quarks are massless, ie., 𝑚𝑠 = 0. As a consequence, each of the strangelets now
contains exactly equal numbers of 𝑢, 𝑑 and 𝑠 quarks, each having the same quark chemical
potential 𝜇𝑞 at freeze-out. It also follows from the above assumption that the strangelets are
chargeless so that the Coulomb interactions among strangelets are absent in this particular
situation. Following SMM, the strangelets are assumed to have no strong interactions
among themselves at freeze-out [4]. For thermodynamic equilibrium of the fragmenting
system, we further require that each strangelet is in mechanical equilibrium ie., its internal
quark pressure exactly balances the bag pressure. Such a condition demands that each of
the 𝑖th species of the strangelets satisfies a condition [14, 18, 19] (see Eq. (A.5) of Sec. A.1
in Appendix A)

𝐵𝑉 𝑖 = [(19𝜋2/36)𝑇 4 + (3/2)𝜇2
𝑞𝑇

2 + (3/4𝜋2)𝜇4
𝑞]𝑉

𝑖

−[(41/216)𝑇 2 + (1/8𝜋2)𝜇2
𝑞]𝐶

𝑖, (2.2)

where, 𝐶𝑖 = 8(3𝜋2𝑉 𝑖/4)1/3 and 𝑉 𝑖 = 4𝜋𝑟3o𝐴
𝑖/3 [14] are respectively the curvature and the
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volume of a strangelet of the 𝑖th species with 𝑟o being its radius parameter, the value of
which is calculated (using Eqs. (2.2) and (2.4) (see below)) to be 0.96 fm [14] for the entire
range of parameter values considered in this chapter.
For three massless quark flavors having equal chemical potentials, the expressions for the

thermodynamic potential Ω𝑖 and the baryon number 𝐴𝑖 of a strangelet of the 𝑖th species
in the thermodynamically equilibrated strangelet-cluster may be written as [14, 18, 19]

Ω𝑖 = [(41/108)𝑇 2 + (1/4𝜋2)𝜇2
𝑞]𝐶

𝑖, (2.3)

and

𝐴𝑖 = [𝜇𝑞𝑇
2 + (1/𝜋2)𝜇3

𝑞]𝑉
𝑖 − (1/4𝜋2)𝜇𝑞𝐶

𝑖, (2.4)

respectively (see Eqs. (A.2) and (A.6) of Sec. A.1 in Appendix A).
By using Eqs. (2.1-2.4) and also by imposing the condition for the conservation of baryon

number 𝐴b of the initial bulk SQM, namely [14]

𝐴b =
∑︁
𝑖

𝐴𝑖𝜔𝑖(𝐴𝑖), (2.5)

we may calculate the mass-spectrum of the strangelets for the values of temperature (T) in
the range ∼ 0.001−1 MeV (ie., 1 keV - 1 MeV). The lower limit (∼ 1 keV) is approximately
the lower bound of temperatures of the accretion disks of X-ray binary systems [20] and
the upper limit of the temperature (∼ 1 MeV) corresponds to the typical temperatures
of the tidally released material found in the simulations of mergers between two NSs [21],
although the temperature of the material ejected in SS mergers is not explicitly mentioned
in the published simulation results [12, 13]. In our calculations, 𝐴b = 1× 1053 corresponds
to the average mass of about 10−4 𝑀⊙ ejected during each merger-event between two SSs
[12, 13, 14] for a typical value of the bag constant that corresponds to 𝐵1/4 = 145 MeV.
The range of values for the available volume 𝒱 is taken to be 2𝑉b-9𝑉b [14] in agreement
with its standard value considered in the calculations of nuclear fragmentation. Here,
𝑉b = 4𝜋𝑟3b𝐴b/3 is the volume of the bulk SQM before fragmentation, where 𝑟3b = 3/(4𝜋𝑛B);
𝑛B = 0.7𝐵3/4 being the typical baryon number density of that initial SQM [18]. In this
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Figure 2.1.: Variation of 𝑙𝑛 𝜔(𝐴) with the variation in 𝐴 for the strangelets at different tempera-
tures for a fixed value of the available volume 𝒱 = 5𝑉b are displayed for (a) the full
range of the available baryon numbers and (b) for a limited range of baryon numbers
of the strangelets. Here, 𝐴b = 1× 1053.
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Figure 2.2.: 𝑙𝑛 𝜔 vs. 𝐴 for different values of the available volumes 𝒱 are shown for (a) the full
range of the available baryon numbers and (b) for a limited range of baryon numbers
of the strangelet-fragments. Temperature is taken as 10 keV. Here, 𝐴b = 1× 1053.
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chapter, we have considered all available positive integer values for 𝐴𝑖 of the fragment of
𝑖th species to obtain the multiplicity (ie., the number of the fragments) belonging to each
such species.
Figs. 2.1(a,b) display the size distribution of strangelets at 𝒱 = 5𝑉b and at three dif-

ferent temperatures at freeze-out, namely 𝑇 = 1 keV, 10 keV and 1 MeV, respectively.
Enhanced production of lighter (ie., lower baryon number) fragments and a suppression
of heavier (ie., higher baryon number) fragments is found at an increased temperature.
An enhancement in the multiplicity of smaller fragments and a reduction in the case of
larger fragments is also observed in Figs. 2.2 (a,b) as the available volume 𝒱 is enhanced
at a fixed temperature (𝑇 = 10 keV). Such patterns of fragmentation [14] is well-known in
nuclear multifragmentation models; eg., [5].
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Figure 2.3.: Energy per baryon (𝐸/𝐴) vs. baryon number (𝐴) of the strangelets at 𝑇 = 1 MeV
but for a fixed value of the available volume 𝒱 = 5𝑉b. The solid horizontal line
indicates the 𝐸/𝐴 of 56Fe (ie., 930 MeV). The strangelets having 𝐸/𝐴 . 930 MeV
are considered to be absolutely stable.

To address the question of stability of the produced strangelets, we plot the energy per
baryon (𝐸𝑖/𝐴𝑖 with 𝐸𝑖 = 4𝐵𝑉 𝑖 [14, 18]) of the strangelets against their baryon number 𝐴𝑖
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at 𝑇 = 1 MeV and at 𝒱 = 5𝑉b; stability of the strangelets is known to increase at lower
temperatures [14, 22]. In Fig. 2.3, we find that the strangelets with 𝐴𝑖 < 4 tend to have
larger energies per baryon than that (930 MeV) of the 56Fe nuclei. Such strangelets are
possibly the metastable or the unstable ones that are likely to decay into the normal nuclei
[14]. Similar problems with the stability of light (𝐴 ≤ 6) strangelets was mentioned in Ref.
[23].

2.2. Discussion

In this chapter, our purpose was to find a trend in the baryon number distribution of a
simplified model of strangelets with massless quarks that may fragment out of the warm
strange matter produced in the merger between SSs in the compact binary stellar systems
of the Galaxy. The following observations are, however, relevant to the fragmentation
model presented above.
An important observation relating to the value of the quark chemical potential 𝜇𝑞 must

be mentioned in this context. An analytical calculation at 𝑇 = 0 by considering the
condition of the strict positivity for the number of quarks in a strangelet necessitates
(4𝜋2𝐵/3)1/4 < 𝜇𝑞 < (4𝜋2𝐵)1/4 [14] (see Eqs. (A.10) and (A.11) in Sec. A.2 of Appendix
A). By substituting 𝐵1/4 = 145 MeV, we ultimately obtain 275.5 MeV < 𝜇𝑞 < 362.5 MeV

(see Eq. (A.12) in Sec. A.2 of Appendix A) [14]. Earlier, several authors have pointed
out that the value of 𝜇𝑞 should be around 300 MeV [23, 24]. Thus, the magnitude of
chemical potential, that we obtain in our self-consistent calculations at finite temperature,
is in consonance with the above estimates.
The assumption of thermodynamic equilibrium for the fragmenting SQM plays a crucial

role in the theory of fragmentation. A preliminary investigation of the recent simulations
on SS merger [12, 13] suggests that the relative velocity between the end points of the
tidal arm of an average length ∼ 100 km, that is found to be produced during a binary SS
merger [13], may be 𝑣 ∼ 2𝜋× 20 km (ms)−1 ∼ 105 km s−1 [14]. Also, the distance between
the centers of the SSs in a binary stellar system of orbital period ∼ 1 ms, appears to be
about 20 km at about the moment of triggering of the tidal interactions [13, 14] between
the SSs. We now consider the relative motion between any two neighboring elements of the
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tidal arm [14]. By ‘neighboring elements’, we mean the elements separated by distances
of about 10 − 100 times the approximate collisional mean free-path of the fragmenting
strangelets that is possibly just about a few fm [14]. On the other hand the relative rate
of separation between such neighboring regions of the ejected matter thus seems to be
. (105/100) × 10−16 ∼ 10−13 km s−1 [14] that is orders of magnitude smaller than the
thermal velocity ∼ 5 × 103 km s−1 for the strangelets of an assumed average size 𝐴𝑖 ∼ 10

at a temperature 𝑇 ∼ 1 MeV [14]. In view of the above arguments, the assumption of
quasi-static evolution of the tidally released SQM towards its thermodynamic equilibrium
considered in the above calculations seems to be justified.
In case of finite temperature (T > 0), the quarks are statistically distributed over energy

levels and so the color singlet condition becomes applicable. Such condition increases the
energy (per baryon) of a strangelet with a fixed entropy and thus the number of stable
configurations of the strangelet are reduced [18, 19, 25]. In this chapter, we, however, do
not take the color singlet condition into consideration as it may not produce appreciable
effect at temperatures . 10 MeV [14, 18, 19].
Finally, the assumption of massless quarks, as a consequence of which we get electrically

neutral strangelets, does not allow us to directly use the size distribution obtained in this
chapter in a realistic galactic propagation model. We can, nevertheless, obtain a very rough
estimate for the possible galactic flux of the strangelets of a certain baryon number if we
assume that the strangelets with massless quarks are only a limiting case of the strangelets
having a small charge due to minute differences in their numbers of u, d and s quarks. For
the purpose of the present article, we further assume that such minute difference between
the numbers of quark-flavors does not appreciably change the derived size distribution
of strangelets. The slightly charged strangelets may then be assumed to propagate in
the inhomogeneous magnetic field of the ISM of the Galaxy so that we can perhaps use
a diffusion approximation [26, 27] to describe their random motion in the ISM. In this
diffusion approximation, we assume that apart from certain specific aspects, such as their
unusually high mass to charge (𝐴/𝑍) ratio compared to the normal nuclei, the strangelets
would in many ways behave like the ordinary cosmic ray nuclei [1] that are considered to
be formed predominantly near the galactic plane and the galactic center and then they
diffuse towards the boundaries of the galactic halo [26]. An order of magnitude estimate

59



2. A preliminary calculation for fragmentation of astrophysical SQM

for the total flux ℱ(𝐴𝑖) of the strangelets with baryon number 𝐴𝑖 at the solar distance
𝑅𝑠 ≈ 8 kpc from the galactic center is then given by [14, 26]

ℱ(𝐴𝑖) = 𝐷.
𝑑𝑛(𝐴𝑖, 𝑟𝑑)

𝑑𝑟𝑑
.4𝜋𝑅2

𝑠

∼ 𝐿2ℛm𝜔
𝑖(𝐴𝑖)

2𝑉𝐺𝑅𝑠

.4𝜋𝑅2
𝑠 particles s−1. (2.6)

Here, 𝑛(𝐴𝑖, 𝑟𝑑) is the number density of strangelets of size 𝐴𝑖 at a distance 𝑟𝑑 from the
galactic center, an average value of which may be given by 𝑛avg(𝐴

𝑖) ≈ ℛm𝜏𝜔
𝑖(𝐴𝑖)/𝑉𝐺

with ℛm being the rate of merger between the SSs in the binary stellar systems, 𝜏 the
confinement time and 𝑉𝐺 the effective confining volume of strangelets in the Galaxy. In
Eq. (2.6), 𝐷 is the diffusion coefficient of the strangelets and 𝐿 = (2𝐷𝜏)1/2 is the root
mean square distance travelled by the strangelets within their confinement time (𝜏) [26].
After the substitution of 𝐿 ∼ 10 kpc (1 kpc = 3.08 × 1019 m) [18], 𝑉𝐺 ∼ 1000 kpc3 [1] and
ℛ𝑚 ≈ 10−5 yr−1 [12, 13, 15], we finally obtain an estimate for the intensity of strangelets
of size 𝐴𝑖 in the neighborhood of the Sun. This intensity is given by [14]

𝐼(𝐴𝑖) ∼ 5 × 10−48𝜔𝑖(𝐴𝑖) particles m−2 sr−1yr−1 (2.7)

with 𝜔𝑖(𝐴𝑖) given in Eq. (2.1) above and ‘sr’ denotes the unit of solid angle. Considering
all the stable strangelets with 𝐴𝑖 ≥ 4, the range of values for the integrated strangelet
intensity turns out to be ∼ (103 − 105) m−2 sr−1 yr−1 for the entire range of temperatures
considered in this chapter. Here, the order of magnitude of the upper limit of the integrated
intensity is comparable with the intensity obtained by J. Madsen [1]. We, however, note
that the detailed processes, such as the ionization energy loss, decay, spallation and the re-
acceleration mechanisms [1] for the strangelets in the Galaxy are absent in this simplified
treatment of intensity presented above. Also, the effect of solar modulation as well as
the effect of the geomagnetic rigidity cut-off on the strangelets [1] have not been taken
into account in this simplified treatment of the galactic propagation of strangelets. In
Chap. 4, we plan to incorporate the effect of the finite mass of strange quarks to examine
the effect of finite charge on the size distribution of strangelets. It would be seen there
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2. A preliminary calculation for fragmentation of astrophysical SQM

that the simple model of SQM-fragmentation and the resulting trend in size distribution
of strangelet-fragments, that we present in this chapter, would essentially provide useful
guidance in the correct direction for such more involved calculations.
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Chapter 3

A trend in fragmentation pattern in CFL SQM

In Sec. 1.6.3, we already mentioned that the quark matter at high density may be in
its color-flavor-locked (CFL) phase, in which the quarks of three different flavors and
three different color quantum numbers (see Sec. 1.4) may form CFL condensates [1, 2,
3, 4, 5, 6, 7], that are somewhat analogous to the electrons forming BCS-pairings in the
laboratory condensed matter physics [8]. Considering the potentially novel properties of
the hypothesized CFL strange matter, we would examine the possible fragmentation of
CFL SQM into CFL strangelets in this chapter. Here, we would also examine whether
it would be at all possible to obtain such particular variety of strangelets in GCR. The
CFL strange matter is supposed to have excess binding energy in comparison with the
ordinary (ie., unpaired) SQM for the same values of their temperatures, baryon numbers
and their associated bag constants, although the range of possible values for the uncertain
bag parameter is somewhat different in the case of stable CFL SQM (see Sec. 1.6.3),
still having considerable overlap with the ones allowed for stable unpaired SQM. In the
context of SMH, such additional binding energy signifies that the CFL SQM, rather than
the unpaired SQM, perhaps constitute the true ground state of hadronic matter [1, 4]. A
somewhat naive interpretation of SMH would then imply that all compact stars, including
the so-called NSs and pulsars, are either CFL stars (CFLSs) or they are likely to convert
into their stable CFLS ground states within a short time-scale, perhaps within seconds
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3. A trend in fragmentation pattern in CFL SQM

to hours. A rigorous study of the phase transition of unpaired SQM into CFL matter is,
however, yet to be performed. If we accept the above interpretation of SMH, an argument
similar to the one presented in Chap. 2 for unpaired strangelets would then suggest that
the fragmentation of the CFL material, possibly ejected in the tidal disruptions of two
CFLSs, might produce CFL strangelets. It would thus be of some interest to see how the
fragmentation pattern of the CFL strange matter depends on various physical parameters
and the possible influence of that fragmentation pattern on the predicted flux of CFL
strangelets at the location of the solar system. This chapter is aimed at such findings.
The present work is also necessitated by the recent claim in Ref. [9] that, it might be

hard to obtain stable strangelets with small baryon numbers (with 𝐴𝑖 ∼ 100, say) in the
vicinity of the solar system unless the enhanced stability property of CFL matter is taken
into consideration. The authors of Ref. [9] further suggest that, the incorporation of color-
flavor locking in the calculations of fragmentation may drastically alter that fragmentation
pattern in a manner quite dissimilar to the one obtained in Chap. 2 for the unpaired
SQM. As for an example, the effect of color flavor locking might result in a temperature
dependence of the fragmentation pattern that is opposite to the one shown in Chap. 2, so
that, heavier fragments, as opposed to the lighter ones (as in Fig. 2.1), might prevail at
an enhanced temperature. A detailed examination of the dependence of the fragmentation
pattern of CFL SQM on various parameters, therefore, is in order. Here, we would also
like to compare the possible flux of CFL strangelets with the ones for unpaired strangelets
predicted in the previous chapter, both being determined under the same assumption of
massless quarks inside strangelets by using a simple diffusion model for the propagation of
those strangelets in the ISM.
The chapter is organized as follows. In the next section, we will add a few comments on

the possible production scenario of CFL strangelets. In Sec. 3.2, we present an outline of
the disassembly model used by us to describe the fragmentation of the initial CFL matter
thus leading to the formation of CFL strangelets. Sec. 3.3 is related to the equilibrium
properties of a single CFL strangelet in the fragmenting complex in equilibrium at freeze-
out. Numerical results for the mass distribution of strangelet fragments and its dependence
on various physical parameters are described in Sec. 3.4. In Sec. 3.5, we provide an order of
magnitude estimate for the possible galactic flux of CFL strangelets in the neighborhood
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of the Sun by using the derived mass distribution of those strangelets. Summary of main
results presented in this chapter and our conclusive comments regarding the feasibility of
obtaining CFL strangelets in GCR in view of the relevant theoretical and numerical studies
performed, so far, have been presented in Sec. 3.6.

3.1. Possible production scenario of CFL strangelets

The above scenario for the production of astrophysical CFL strangelets from the merger
between two CFLSs (in the line of the one presented in Chap. 2 for unpaired strangelets)
may appear to be oversimplified in the light of the recent proposition [10, 11, 12] that bare
CFLSs, with their interior temperatures being less than about 10 keV, may rapidly spin
down by loosing their angular momentum and rotational kinetic energy due to instabilities
coupled with gravitational radiation from those stars. This, in turn, seems to suggest that
at least some classes of the compact stars, such as the rapidly rotating old millisecond
pulsars observed in the low mass X-ray binaries (LMXBs) with their internal temperatures
in the above range, may not possibly be pure CFLSs [11, 12]. This is in contradiction with
the naive interpretation of SMH mentioned in the introduction of this chapter. The issue,
however, seems to be yet unsettled in view of the complexities in determining non-linear
instabilities in the presence of dissipation in CFLSs and other high density compact stars,
that is an area of active research till this date; eg., [13, 14, 15]. In this chapter, we therefore
retain the scenario of strangelet production through binary collisions of pure CFLSs with
their companion stars, at least as a simplified representation of a possibly more complex
reality. We further note that several authors [13, 14, 16] are of the opinion that, even if cold
CFLSs are inconsistent with certain pulsar observations, fast rotating CFLSs are likely to
possess a window of stability at temperatures of about tens of MeV, typically obtained
by the newly formed young pulsars. Possible mechanism for the formation of such a hot
CFLS from the phase conversion of the dense core of a sufficiently massive (𝑀NS > 1.5𝑀⊙)
NS under certain favorable conditions has been discussed in Ref. [17]. In this scenario, an
unconverted NS may coexist to form a compact binary system with a rapidly rotating hot
CFLS if the mass of the NS is insufficient for its core to achieve nuclear deconfinement
density or if the initial seeding of SQM is not available to its core [18]. Possible existence
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3. A trend in fragmentation pattern in CFL SQM

of those particular compact binary stellar systems in the Galaxy allows one to consider
an alternative production scenario for the CFL strangelets via. fragmentation of the CFL
material tidally released during the coalescence between a CFLS and an NS [17]. The
condition for such tidal disruption of a CFLS due to the force exerted by its NS companion
was given in Ref. [19]. In this chapter, we adopt the above scenario to compare an ap-
proximate magnitude of the possible galactic strangelet flux obtained by us with an earlier
estimation of such flux given in Appendix A of Ref. [17], the detailed analytical calculation
and numerical simulation in support of which are, however, unavailable. The possible fate
of a hot CFLS, as it cools down to temperatures below 0.01 MeV, is also not commented
upon in Ref. [17].

3.2. Quantum statistical multifragmentation model for CFL

strangelets

In similarity with the assumptions considered in the previous chapter in the case of unpaired
strangelets, we here assume the quarks to be massless and consider every strangelet in the
fragmenting assembly to contain equal numbers of up, down and strange quarks, each
having the same quark number chemical potential 𝜇𝑞. To obtain the multiplicity 𝜔𝑖 of
the CFL strangelets of a particular species ‘𝑖’ with a specific baryon number 𝐴𝑖 in the
fragmenting complex, that is in thermodynamic equilibrium at temperature 𝑇 , we further
assume that the strangelet assembly is in chemical equilibrium with the value of 𝜇𝑞 being the
same throughout the (freeze-out) volume of the complex [20]. The multiplicities obtained
by adopting nuclear multifragmentation models [20, 21, 22, 23, 24] are then given by (see
Eqs. (B.1) and (B.2) of Sec. B.1 in Appendix B)

𝜔𝑖 =
2𝒱√
𝜋(ℒ𝑖)3

𝐽+
1/2(𝜂

𝑖
0)𝜑

𝑖(𝑇 ), for odd 𝐴𝑖 (3.1a)

and

𝜔𝑖 = 𝑔𝑖0
1

(𝑒−𝜂
𝑖
0 − 1)

+
2𝒱√
𝜋(ℒ𝑖)3

𝐽−
1/2(𝜂

𝑖
0)𝜑

𝑖(𝑇 ), for even 𝐴𝑖. (3.1b)
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The CFL strangelets with odd 𝐴𝑖 are considered to obey Fermi statistics; those with even
𝐴𝑖 obey Bose-Einstein statistics. In Eqs. (3.1a) and (3.1b), 𝜑𝑖(𝑇 ) is the internal partition
function of the fragments of the 𝑖th species that are excited but particle stable [23], ie.,

𝜑𝑖(𝑇 ) =
∑︁
𝑗

𝑔𝑖𝑗𝑒
−𝐸*𝑖

𝑗 /𝑇 = 𝑒−𝐹
*𝑖/𝑇 , (3.1c)

where, 𝐹 *𝑖 is the internal free energy that pertains to the excited states of the 𝑖th species. In
Eq. (3.1c), 𝑔𝑖𝑗 and 𝐸*𝑖

𝑗 are, respectively, the degeneracy and excitation energy of the 𝑗th state
pertaining to the 𝑖th species relative to the ground state. The ground state is represented
by 𝑗 = 0 and 𝐸*𝑖

0 = 0. The mass of the species of baryon number 𝐴𝑖 is (assumed to be)
𝑚𝑖 = 930𝐴𝑖 MeV [25] and their thermal de Broglie wavelength is ℒ𝑖 = ℎ/

√
2𝜋𝑚𝑖𝑇 . Here,

𝒱 is the available volume, ie., the freeze-out volume minus the volume of the produced
fragments and 𝐽±

1/2(𝜂
𝑖
0) designate the Fermi or the Bose integral [20] (see Secs. B.2 and

B.3 in Appendix B for the estimation of the Bose and the Fermi integrals). In the absence
of observational or theoretical models for the spin states of the strangelets, we assume,
although somewhat arbitrarily, for the sake of simplicity 𝑔𝑖𝑗 = 1 for bosons and 𝑔𝑖𝑗 = 2

for fermions. In Eqs. (3.1a, b), the quantity 𝜂𝑖0 is the fugacity of the ground state, ie.,
𝜂𝑖0 = (𝜇𝑖+ℬ𝑖)/𝑇 , where ℬ𝑖≡ −𝐸𝑖

0 is the binding energy of the ground state. The excitation
spectrum of strangelets is still an ill-known entity; furthermore, since we would be dealing
with temperatures 𝑇 ∼ (0.001- 1) MeV, after some algebra, we write the multiplicities as
[26](see Eqs. (B.1), (B.2), and (B.3) in Sec. B.1 of Appendix B)

𝜔𝑖 =
2𝒱√
𝜋(ℒ𝑖)3

𝐽+
1/2(𝜂

𝑖), for odd 𝐴𝑖 (3.2a)

and

𝜔𝑖 =
1

(𝑒−𝜂
𝑖
0 − 1)

+
2𝒱√
𝜋(ℒ𝑖)3

𝐽−
1/2(𝜂

𝑖), for even 𝐴𝑖, (3.2b)

where, the total fugacity 𝜂𝑖 may now be written as

𝜂𝑖 = (𝜇𝑖 − 𝐹 𝑖)/𝑇 = −Ω𝑖/𝑇, (3.2c)
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𝐹 𝑖 being the total (ie., including the ground state energy 𝐸𝑖
0) free energy of the 𝑖th species.

Here, 𝜇𝑖 = 3𝜇𝑞𝐴
𝑖 is the chemical potential and Ω𝑖 is the thermodynamic potential of

the 𝑖th species. The first term on the right of Eq. (3.2b) represents the Bose-Einstein
condensation. The relative magnitude of this term in comparison with the second term on
the right of Eq. (3.2b), representing the non-Bose-condensate fragments, is ∼ 𝒱−1𝑇−3/2. In
view of the enormously large value of 𝒱 in the specific astrophysical situation considered in
this chapter, we may ignore the contribution from the Bose-Einstein condensation term to
the multiplicities of strangelet fragments even in the case of appreciably low temperature
of the SQM ejecta undergoing disassembly at freeze-out. We further note that the terms
containing 𝑇 2 and 𝑇 4 begin to dominate the expression of Ω𝑖 [27] at increasing temperature
such that |𝜂𝑖| ≫ 1, 𝐽±

1/2 ≃ (
√
𝜋/2)𝑒𝜂

𝑖 (𝜂𝑖 < 0) at large 𝑇 . Eqs. (3.2) then attain their
classical limit [24]

𝜔𝑖 =
𝒱

(ℒ𝑖)3
𝑒(−Ω𝑖/𝑇 ), (3.3)

which is the same as Eq. (2.1), that we used in Sec. 2.1 of the previous chapter to determine
the size distribution of unpaired strangelets. For the purpose of the present chapter, we,
however, use Eqs. (3.2), that are derived directly from quantum statistics, to evaluate the
multiplicities of CFL strangelets. As in Chap. 2, we consider the freeze-out temperatures
in the range 1 keV to 1 MeV here also.

3.3. Equilibrium equations for a CFL strangelet

To find the equilibrium equations for a CFL strangelet of arbitrary size, we confine ourselves
to the multiple reflection expansion [28] as applied to the MIT bag model supplemented
by a condensating interaction [3]. The thermodynamic potential of the CFL strangelets
with baryon number 𝐴𝑖 may then be written as [3, 4, 5, 6, 7]

Ω𝑖 = Ω𝑖
𝑓 + Ω𝑖

pair +𝐵𝑉 𝑖, (3.4)

where, Ω𝑖
𝑓 is the thermodynamic potential (minus the contribution from the bag) of non-

CFL strangelet, Ω𝑖
pair is the binding energy from the color superconducting condensates
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and 𝐵 is the bag constant. In zero quark-mass assumption, the expression for Ω𝑖
𝑓 is given

(for Ω𝑖
pair = 0 and without the 𝐵𝑉 𝑖 term, Eq. (A.1) in Appendix A is same as Ω𝑖

𝑓 in Eq.
(3.4)) as [26, 27, 29]

Ω𝑖
𝑓 = −

[︁19𝜋2

36
𝑇 4 +

3

2
𝜇2
𝑞𝑇

2 +
3

4𝜋2
𝜇4
𝑞

]︁
𝑉 𝑖

+
[︁41

72
𝑇 2 +

3

8𝜋2
𝜇2
𝑞

]︁
𝐶𝑖. (3.5)

As in Chap. 2 (see the discussion following Eq. (2.2)), the quantities 𝑉 𝑖 and 𝐶𝑖 are respec-
tively the volume and the curvature coefficient of the (assumed) spherical strangelet with 𝑟o
being its radius parameter. We here note that, in Eq. (3.5), the thermodynamic potential
of the unpaired strangelet does not have any contribution from the surface 𝑆𝑖 = 4𝜋𝑟2o(𝐴

𝑖)2/3

of the 𝑖th species. Absence of such surface effects (represented by the term ∝ (bag radius)2)
and the important role of curvature (represented by the term ∝ (bag radius)) for a con-
fined gas of massless, non-interacting quarks, described within the framework of the MIT
bag model, was noted earlier by numerous authors for both the vanishingly small and fi-
nite values of the temperature of the system; eg., Refs. [27, 30, 31, 32]. The question of
“intrinsic surface tension” of strangelets has been recently re-examined in Ref. [33] without
considering the curvature term but by taking the effect of Debye screening (see Chap. 4)
into account. A model independent theoretical framework has been considered by those
authors to determine the detailed equilibrium structure and stability of a single, large
strangelet. There, it has been claimed that a large strangelet would be unstable with re-
spect to fission instability to ultimately fragment into smaller strangelets if the value of
the surface tension between the quark matter and the vacuum is less than a certain critical
value that depends on the charge density and the electric charge susceptibility of quark
matter on the surface of the strangelet. We, however, note that this critical value of surface
tension approaches zero in the limit of massless strange quarks; cf. Ref. [33]. The authors
of Ref. [33] further observed that the Cooper-like condensates between quarks of all the
three colors and flavors in CFL strangelets make them electromagnetic insulators, ie., a
relatively large CFL strangelet may be considered to be nearly neutral in comparison with
the slightly positively charged large unpaired strangelets. As a consequence, a finite-sized
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CFL matter may, perhaps be considered as stable against fission instability even in the
case of an arbitrarily small value of the surface tension of those strangelets. It is, however,
interesting to note that several authors [34, 35, 36], working either with lattice QCD or with
theoretical models such as the NJL model or the Linear Sigma Model (LSMq) model, have
predicted non-vanishing surface tension at the vacuum-SQM interface. Being motivated by
such results, Bjerrum-Bohr et al. [35] have recently considered an arbitrary but appreciable
surface energy term in the energy expression of finite-sized quark-gluon plasma droplets
with massless quarks to describe the deconfinement-hadronization transition process in the
early universe or in a large hadron collider, while still working within the framework of the
MIT bag model. In this work, we, however, confine ourselves entirely to the standard bag
model in the multiple reflection expansion framework in which we do not consider such
additional surface tension in our analysis for the sake of the internal consistency of the
MIT bag model. We further note that, Refs. [35] have associated their additional surface
energy of the QGP droplet to the gradients in the number of diquark condensates that
may set themselves up between the regions internal and external to the droplet. In the
context of the CFL strangelets, the effects of such conventional diquark condensates are,
however, expected to be much less than the effect of the dominant CFL condensates [8].
The (color superconducting) pairing (ie., the color condensate) energy term in Eq. (3.4)

is written as [3, 4, 5, 6, 7]

Ω𝑖
pair ≈ − 3

𝜋2
∆2(𝑇 )�̄�2𝑉 𝑖 = − 3

𝜋2
∆2(𝑇 )𝜇2

𝑞𝑉
𝑖 (3.6)

with �̄� = 𝜇𝑞 being the average chemical potential of the quarks over their three flavors
and ∆(𝑇 ) being the (color superconducting) pairing energy gap. The above expression for
pairing energy is true for a bulk system [1, 4]; for a finite strangelet, it is an approximation.
For strangelets with finite baryon number, the mass-dependent higher order terms (such as
the curvature) in the pairing energy have been ignored. This approximation is only valid
as long as Ω𝑖

pair is itself a perturbation to Ω𝑖
𝑓 [1, 4]. In Eq. (3.6) [26],

∆(𝑇 ) = 2−1/3∆o

[︁
1 −

(︁ 𝑇
𝑇𝑐

)︁2]︁1/2
(3.7)

with ∆o being a constant parameter and 𝑇𝑐 = 21/3× 0.57∆o being the critical temperature
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above which the system can no longer support pairing between quarks [7, 8, 37]. For
strongly interacting quark system, the value of the gap parameter ∆o is usually suggested
to be in the range 10 MeV . ∆o . 100 MeV [1, 4, 5, 38], but much higher values, about
200 MeV or even larger, have sometimes been considered in the literature [6, 39, 40, 41, 42].
With the choice ∆o = 100 MeV, for example, we get 𝑇𝑐 ≈ 72 MeV. For the values
of temperature within the range 1 keV to 1 MeV, so that 𝑇/𝑇𝑐 ≪ 1, Eq. (3.7) yields
∆(𝑇 ) ≈ ∆ = 2−1/3∆o ≈ 79 MeV.
Using Eqs. (3.4), (3.5) and (3.6), the total thermodynamic potential of CFL-strangelets

of the 𝑖th species is then written as [26]

Ω𝑖 = −
[︁19𝜋2

36
𝑇 4 +

3

2
𝜇2
𝑞𝑇

2 +
3

4𝜋2
𝜇4
𝑞 +

3

𝜋2
∆2(𝑇 )𝜇2

𝑞

− 𝐵
]︁
𝑉 𝑖 +

[︁41

72
𝑇 2 +

3

8𝜋2
𝜇2
𝑞

]︁
𝐶𝑖. (3.8)

For thermodynamic equilibrium, the strangelet fragments, in addition to being in chem-
ical equilibrium are in mechanical equilibrium; their internal quark pressure thus exactly
balances the external bag pressure, ie., −

(︁
𝜕Ω𝑖

𝜕𝑉 𝑖

)︁
𝑇,𝜇𝑞

= 0. From Eq. (3.8), one then gets [26]

𝐵𝑉 𝑖 =
[︁19𝜋2

36
𝑇 4 +

3

2
𝜇2
𝑞𝑇

2 +
3

4𝜋2
𝜇4
𝑞 +

3

𝜋2
∆2(𝑇 )𝜇2

𝑞

]︁
𝑉 𝑖

−
[︁ 41

216
𝑇 2 +

1

8𝜋2
𝜇2
𝑞

]︁
𝐶𝑖. (3.9)

In the particular case of bulk (𝐴𝑖 → ∞, 𝐶𝑖 = 0) CFL SQM, Eq. (3.9) reduces to a quadratic
equation in 𝜇2

𝑞 that agrees (at 𝑇 = 0) with the equilibrium criterion in Ref. [5] after we
ignore the terms involving finite mass of strange quarks and an additional external pressure
on the SQM. The approximate solutions of the quadratic equation are given by

𝜇𝑞 ≈ (𝜋𝑇 )
[︁
− 1 +

{︁
1 +

(︁ 4𝐵

3𝜋2𝑇 4

)︁}︁1/2]︁1/2
, if ∆o = 0, 𝑇 ̸= 0 (3.10a)

and
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𝜇𝑞 ≈
√

2∆
{︁

1 +
(︁𝜋2𝑇 2

2∆2

)︁}︁1/2{︁
− 1 +

[︁
1 +

(︁𝜋2𝐵

3∆4

)︁
×
{︁

1 −
(︁𝜋2𝑇 2

∆2

)︁}︁]︁1/2}︁1/2

, if ∆o ̸= 0, 𝑇 ̸= 0,

(3.10b)

provided that
(︁
𝜋2𝑇 2

2Δ2

)︁
≪ 1. At 𝑇 = 0 and for

(︁
𝜋2𝐵
3Δ4

)︁
≪ 1, Eq. (3.10b) reduces to 𝜇𝑞 ≈ 𝜋

√
𝐵√

3Δ

that agrees with Ref. [6] in the case of the so-called ‘slet-3’ (ie., a solution of chemical
potential, obtained from the mechanical equilibrium of CFL strangelet, is related to the
nearly charge-neutral CFL strangelet [6]) CFL strangelets, a detailed discussion of which
is beyond the scope of the present discussion. We will use Eqs. (3.10) for an approximate
estimates of the quark chemical potential in the fragmenting complex at freeze-out.
Using Eq. (3.8), we may also obtain an expression for the baryon number −1

3

(︁
𝜕Ω𝑖

𝜕𝜇𝑞

)︁
𝑇,𝑉 𝑖

of a CFL strangelet at equilibrium. This expression reads [26]

𝐴𝑖 =
[︁
𝜇𝑞𝑇

2 +
1

𝜋2
𝜇3
𝑞 +

2

𝜋2
∆2(𝑇 )𝜇𝑞

]︁
𝑉 𝑖 − 1

4𝜋2
𝜇𝑞𝐶

𝑖. (3.11)

Eqs. (3.8), (3.9) and (3.11) further allow us to determine the total energy of a CFL
strangelet in mechanical equilibrium with the help of the thermodynamic relations 𝐸𝑖 =

Ω𝑖 + 3𝜇𝑞𝐴
𝑖 + 𝑇𝑆𝑖, where the entropy is 𝑆𝑖 = −

(︁
𝜕Ω𝑖

𝜕𝑇

)︁
𝑉 𝑖,𝜇𝑞

. We thus obtain [26]

𝐸𝑖 =
(︁19𝜋2

12
𝑇 4 +

9

4𝜋2
𝜇4
𝑞 +

3

𝜋2
∆2(𝑇 )𝜇2

𝑞

+
9

2
𝜇2
𝑞𝑇

2 − 3

0.41𝜋2
𝜇2
𝑞𝑇

2 +𝐵
)︁
𝑉 𝑖

−
(︁41

72
𝑇 2 +

3

8𝜋2
𝜇2
𝑞

)︁
𝐶𝑖

= 4𝐵𝑉 𝑖 − 6

𝜋2
∆2(𝑇 )𝜇2

𝑞𝑉
𝑖 − 3

0.41𝜋2
𝜇2
𝑞𝑇

2𝑉 𝑖. (3.12)

Here, the term − 3
0.41𝜋2𝜇

2
𝑞𝑇

2𝑉 𝑖 arises from the quantity 3
𝜋2𝜇

2
𝑞𝑉

𝑖
(︁
𝜕Δ2(𝑇 )
𝜕𝑇

)︁
𝜇𝑞 ,𝑉 𝑖

in the volume

entropy of the strangelet [7]. The contribution from this additional stabilizing term in
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energy is, however, expected to be rather small for the range of temperatures considered in
this article. Eq. (3.12) agrees with the expression for the energy of CFL SQM (at 𝑇 = 0)
given in Ref. [5] provided that the external pressure considered there is set equal to zero.
We would use Eq. (3.12) to examine the stability of strangelet fragments in the following
section. We also note that, from Eqs. (3.9) and (3.11), it is straightforward to derive an
algebraic expression for the radius parameter 𝑟o that in general depends on 𝜇𝑞, 𝐵, 𝑇 and
∆o but does not have an explicit dependence on the baryon number 𝐴𝑖. An approximate
estimate for the radius parameter is obtained by retaining only the bulk term (ie., ignoring
the contribution of curvature) in the above expression and by setting 𝑇 ≈ 0. Thus [26]

𝑟3𝑏 ≈
3𝜋

4

(︁
𝜇3
𝑞 + 2∆2𝜇𝑞

)︁−1

, (3.13)

where 𝑟𝑏 is the bulk radius parameter. Upon appropriate substitutions of 𝜇𝑞 from Eqs. (3.10),
Eq. (3.13) provides us with an approximate value 𝑉𝑏 = 4𝜋

3
𝑟3𝑏𝐴𝑏 for the volume of the initial

bulk CFL SQM with 𝐴𝑏 being the baryon number of such SQM. It is also to be noted
that, at 𝑇 = 0 and under the assumption 𝜋2𝐵

3Δ4 ≪ 1, Eq. (3.13) simplifies to 𝑟𝑏 ≈ ( 3
√
3

8Δ
√
𝐵

)1/3

obtained in Ref. [6] for the radius parameter of the ‘slet-3’ CFL strangelets. We further
add that, from Eqs. (3.8), (3.9), (3.11) and (3.12), the equilibrium properties of ordinary
strangelets, described in Chap. 2, are assured in the case ∆o = 0 provided that we ignore
the additional contribution from entropy in Eq. (3.12).

3.4. Mass spectra of CFL strangelets

In this section, our purpose is to examine the influence of variations of the bag and the
gap parameters as well that of the temperature at freeze-out on the size distribution and
stability of CFL strangelets.
Eqs. (3.2), (3.8), (3.9), (3.11), (3.13), with the added condition for the conservation

of the baryon number 𝐴𝑏, given already in Eq. (2.5) of the previous chapter, allow us
to evaluate the mass spectra of CFL strangelets for the values of temperature in the
range (0.001 − 1) MeV at freeze-out. The available volume 𝒱 , which is a free parameter
in the problem, is chosen as 5𝑉𝑏. This is consistent with the range (2 − 9)𝑉𝑏 usually
considered in nuclear fragmentation models; eg., Ref. [22], see also the discussion following
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3. A trend in fragmentation pattern in CFL SQM

Eq. (2.5) in Chap. 2. For the baryon number of the initial bulk CFL matter, we choose
𝐴𝑏 = 1 × 1052 for the purpose of demonstration; this corresponds to the lowest value
in the range (10−5 − 10−2) 𝑀⊙ of tidally ejected mass noted earlier in the simulations
of NS merger [25]. Such ejected mass is also at the limit of mass-resolution of the recent
simulations of SS merger [18, 43]. In this context, it is also important to note that, we have
chosen the values of the bag parameter satisfying 𝐵1/4 > 156 MeV (for ∆o ≈ 100 MeV,
𝑇 ≪ 𝜇𝑞) in this chapter for modelling CFL SQM unlike in the case of the unpaired
SQM (discussed in Chap. 2), for which we chose 𝐵1/4 ≥ 145 MeV. This is to avoid the
spontaneous decay of the ordinary nuclei into two-flavored color superconducting states.
Such requirement of a higher bag value, as the color superconductivity is taken into account
in the calculations of SQM, was discussed in detail in Ref. [4].
Fig. 3.1(a) compares the mass distributions of the (∆o = 100 MeV) CFL fragments for

two different values of the bag parameter at the same temperature 𝑇 = 10 keV. Here,
we find that an increasing bag value leads to the suppression of lighter fragments along
with an enhanced production of heavier fragments from the disintegrating CFL SQM. For
example, the multiplicity (𝜔𝑖) for the fragments of size 𝐴𝑖 = 3000 is enhanced by about
100%, whereas, such multiplicity for 𝐴𝑖 = 10 is suppressed by about 27% as the value of
𝐵1/4 is increased from 160 MeV to 180 MeV. The reason for such change in fragmentation
lies in a complex interplay of several factors. Eq. (3.10b) predicts an increase in the quark
chemical potential 𝜇𝑞 with an increase in the bag value. For 𝑇 ≪ 𝜇𝑞, the curvature energy
of strangelets at mechanical equilibrium varies as 𝜇2

𝑞 [44], as a consequence of which more
energy is required to produce smaller fragments out of the initial bulk CFL SQM at a
higher bag value. This tendency to produce larger fragments is further facilitated by a
reduction in 𝑟𝑏 (see Eq. (3.13)) thus causing almost 30% reduction in the available volume
𝒱 (= 5𝑉𝑏) of the fragmenting strangelets. We here note that the association of fragment
sizes with the volume available for fragmentation was discussed earlier in Fig. 2.2 (a, b),
Chap. 2 (see also Ref. [20]) of this thesis in the context of the fragmentation of ordinary
SQM.
Fig. 3.1(b) demonstrates the influence of the variation of ∆o on the fragmentation of

strange matter for a fixed value of the bag parameter 𝐵1/4 = 160 MeV at a specific
temperature 𝑇 = 10 keV at freeze-out. In this figure, we find that an increment in the
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3. A trend in fragmentation pattern in CFL SQM

value of ∆o from 10 MeV to 140 MeV is associated with about 96% suppression of 𝜔𝑖

for strangelets of size 𝐴𝑖 = 3000 and the corresponding ∼ 9% enhancement of 𝜔𝑖 for the
fragments of size 𝐴𝑖 = 10. A reduction in the value of 𝜇𝑞 due to an enhanced value of the
gap parameter ∆o, in accordance with Eq. (3.10b), with corresponding reduction in the
curvature energy favors the production of lighter fragments in this particular case. This
tendency is further supported by slight increase in 𝑟𝑏, in accordance with Eq. (3.13), with
corresponding increase in the available volume of the strangelets.

1 500 1,000 1,500 2,000 2,500 3,000 3,500
0

20

40

60

80

100

120

Baryon Number (A)

ln
 ω

 

 

B
1/4

 = 180 MeV, ∆
o
 = 100 MeV

B
1/4

 = 160 MeV, ∆
o
 = 100 MeV

 T = 10 keV

(a)

1 500 1,000 1,500 2,000 2,500 3,000 3,500
0

20

40

60

80

100

120

Baryon Number (A)

ln
 ω

 

 

B
1/4

 = 160 MeV, ∆
o
 = 10 MeV

B
1/4

 = 160 MeV, ∆
o
 = 140 MeV

 T = 10 keV

(b)

Figure 3.1.: Variation of (ln𝜔) of CFL strangelets with the variation in their baryon number (𝐴)
for (a) fixed value of the gap parameter Δo but two different values of the MIT bag
parameter 𝐵 and for (b) fixed value of the bag parameter but two different values of
the gap parameter as indicated in the diagrams. The available volume is chosen to
be 𝒱 = 5𝑉b in both the figures at 𝑇 = 10 keV at freeze-out. Here, 𝐴b = 1× 1052.

Fig. 3.2(a) displays the size distributions for the (𝐵1/4 = 160 MeV, ∆o = 100 MeV) CFL
strangelets at three different temperatures, namely 𝑇 = 1 keV, 10 keV and 1 MeV, respec-
tively. The figure shows a clear tendency towards the suppression of heavier fragments and
enhanced production of lighter fragments with increasing temperature. Average fragment
size decreases from 𝐴 ≈ 170 at 1 keV through 𝐴 ≈ 65 at 10 keV to 𝐴 ≈ 10 at 1 MeV. The
changes in the fragmentation pattern, that are demonstrated in this figure, are due to the
consequent reduction in the curvature free energy of strangelets at higher temperatures
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Figure 3.2.: (a) Variations of ln𝜔 vs. baryon number (𝐴) of CFL strangelets for the available
volume 𝒱 = 5𝑉b at three different temperatures at freeze-out are indicated in the
diagram. (b) Difference between the logarithm of multiplicities of CFL strangelets,
determined separately from quantum and classical formulae, is shown for a limited
range of values of the baryon number of strangelets and only for the lowest tempera-
ture 𝑇 = 1 keV at freeze-out considered in (a). Available volume and the remaining
parameters, considered to draw this diagram, are the same as in (a). In both the
figures, 𝐴b = 1× 1052.

[7]. Here, it is important to note that the variation in fragmentation pattern of the CFL
SQM with changing temperature, that we find in this chapter, seems to contradict the
results obtained recently in [9] that predicts heavier fragments to prevail at an enhanced
temperature at freeze-out. Our results, presented here, are however in perfect consonance
with the changing fragmentation pattern found by us in the case of unpaired strangelets
in Fig. 2.1, Chap. 2 of this thesis. As was mentioned in Chap. 2, this behavior of the
fragmentation pattern, that we find consistently in the present thesis, is also in agreement
with the well-known results in nuclear fragmentations.
In our numerical results displayed in Fig. 3.2(b), we find a decreasing deviation be-

tween the multiplicities determined by using classical (ie., by using Eq. 3.3) and quantum
(ie., by using Eqs. 3.2) distributions with increasing temperature that is not included in
Fig. 3.2(a) for the sake of clarity. Such deviations are expected from similar discrepancies
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Figure 3.3.: Energy per baryon (𝐸/𝐴) vs. baryon number (𝐴) of strangelets with their parameter
values being indicated in the diagram. Here, the available volume is taken as 𝒱 = 5𝑉b

at 𝑇 = 10 keV at freeze-out. Also, 𝐴b = 1× 1052.

between classical and quantum results found earlier [45] in nuclear systems. In Fig. 3.2(b),
we display these deviations between classical and quantum systems for limited range of
values of the baryon number only at temperature 𝑇 = 1 keV for the sake of demonstra-
tion. We have checked that the said discrepancy is not more than about 26% even for
such low temperature and for the largest available values of the baryon number of the
fragments. Having very small multiplicities, such large fragments are, however, found to
have insignificant contribution to the possible galactic strangelet flux in the neighborhood
of the Sun. Significant contribution to this strangelet flux is expected to come from much
lighter fragments, for which the discrepancies between fragment multiplicities arising from
quantum and classical distributions are found to be much less than 1%. Due to such
small deviation between the results obtained from the Maxwell-Boltzmann (MB) and the
Fermi-Dirac (FD)/ Bose Einstein (BE) distributions in the regions of practical interest in
the fragmentation pattern, we hereafter use only the classical (MB) distribution to obtain
results in the rest of this thesis.
To probe the stability of the produced fragments, we examine the energy per baryon
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(𝐸𝑖/𝐴𝑖) of each species of those fragments against its baryon number 𝐴𝑖. Here, 𝐸𝑖 is
determined from Eq. (3.12). Fig. 3.3 shows an example of such investigation at a particular
temperature of the strangelet assembly, namely 𝑇 = 10 keV. An examination of Fig. 3.3
shows that a reasonable approximation for the energy per baryon of CFL fragments with
large baryon numbers at sufficiently low (𝑇 ≪ 𝜇𝑞) temperatures may be given by their
bulk limit (at 𝑇 ≈ 0) 𝐸𝑖/𝐴𝑖 ≈ 3𝜇𝑞 [5, 6], 𝜇𝑞 being approximately given in Eq. (3.10b).
For small 𝐴𝑖, on the other hand, curvature of the fragments introduces a minimum baryon
number 𝐴min for their absolute (𝐸𝑖/𝐴𝑖 < 930 MeV) stability [4, 7, 27, 29, 46]. The value of
𝐴min depends on 𝐵 and ∆o of the initial bulk CFL matter but does not change appreciably
with temperature (at freeze-out) that lies within the range of values considered in this
work. We here note that similar variation of 𝐴min with temperature was obtained by us in
Fig. 2.3 in the case of normal strangelets.
In Fig. 3.3, we find that the (𝐵1/4 = 180 MeV, ∆o = 100 MeV) strangelets of arbitrary

size are metastable (ie., 930 MeV< 𝐸𝑖/𝐴𝑖 < 1116 MeV) [29]; 𝜇𝑞 is about 325 MeV in
that case. Strangelets with so large a bag value are absolutely stable for ∆o & 150 MeV.
We also note that extremely large values of the gap parameter, such as ∆o & 230 MeV,
are required for the stability of CFL strangelets with 𝐵1/4 ≈ 200 MeV. We do not consider
such extreme values of the pairing energy gap in this chapter. Fig. 3.3 further shows that,
while the (𝐵1/4 = 160 MeV, ∆o = 10 MeV) strangelets of sizes 𝐴𝑖 & 63 are marginally
stable (ie., 𝐸𝑖/𝐴𝑖 . 930 MeV) with 𝜇𝑞 ≈ 305 MeV, the (𝐵1/4 = 160 MeV, ∆o = 100 MeV)
strangelets, having 𝐴min < 10, are absolutely stable with 𝜇𝑞 ≈ 285 MeV. It is thus apparent
from Fig. 3.3 that, at low temperatures, an enhanced bag value of the initial bulk CFL
matter with fixed ∆o tends to yield comparatively less stable CFL strangelets; whereas,
an enhanced value of the (color superconducting) gap parameter of the bulk SQM with
its bag value remaining the same, tends to yield more stable fragments. Together with
Figs. 3.1-3.3, the results presented in this section would suggest that absolutely stable
CFL strangelets of wide array of sizes, in the range 10 . 𝐴𝑖 . 104, might have some
possibilities to form as a consequence of tidal disruption and consequent mass-shedding of
a CFLS during its merger with either another CFLS or an NS provided that the CFLS is
not too compact to compel the entire merger-product to promptly collapse into BH before
the tidal forces have sufficient time to spew appreciable CFL matter out of the gravitational
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influence of the coalescing system. Preliminary simulations [18, 43] of SS mergers have,
in fact, indicated the possibility of such collapse with little or no mass-shedding in the
case of large bag values that, in turn, imply highly compact nature of the colliding stars.
We here note that, due to their additional binding energy as well as the requirement of
larger bag values for their absolute stability [4] than the ones that would have pertained
to the normal SSs, the CFLSs may be particularly vulnerable to rapid collapse. In this
chapter, we, therefore, considered a conservative estimate ∼ 10−5𝑀⊙ for the average CFL
mass ejected per binary collision in comparison with a population-averaged mass∼ 10−4𝑀⊙

ejected per simulated SS collision [18, 43] in the particular case of 𝐵1/4 ≈ 145 MeV. Further
high-resolution simulations of compact binary stellar mergers, by incorporating the effect
of color superconductivity in the equations of state of their constituent SQM and also by
considering full effects of general relativity as well as the differential rotation of the stars
are, however, necessary to arrive at definite conclusions regarding the amount of CFL mass
ejected due to tidal disruption of a CFLS during binary stellar collisions.

3.5. An approximate estimate for the flux of CFL strangelets in

the vicinity of the solar system

To obtain a rough estimate for the possible flux of CFL strangelets in solar neighborhood
within the framework of the simplified model with massless quarks considered in this chap-
ter, we are required to take resort to the approximate formula for such flux as adapted
in Eq. (2.6), Sec. 2.2 of Chap. 2. To use Eq. (2.6) for our present purpose, we require to
substitute ℛ𝑚 by a suitable merger rate for the compact binary companion stars in the
Galaxy. Considering the appreciable uncertainty (see, Sec. 3.1) regarding the production
scenario of CFL strangelets through binary stellar collisions, we may choose a conservative
estimate, namely, ℛ𝑚 ∼ 10−7yr−1 Galaxy−1 which is the lower limit of a possible range of
values of the galactic CFLS-NS merger rate estimated in Ref. [17]. As was mentioned in
Sec. 3.1, the model provided in Ref. [17] has been claimed to be free from the controversy
regarding the r-mode instability in cold CFLSs. With the above value of ℛ𝑚, the substi-
tution of 𝐿 ≈ 10 kpc for the root mean square distance travelled by the CFL strangelets

80



3. A trend in fragmentation pattern in CFL SQM

within their typical confinement volume 𝑉𝐺 ≈ 1000 kpc3 in the Galaxy ultimately yields
an approximate estimate for the intensity of the CFL strangelets of a particular species 𝑖
with multiplicity 𝜔𝑖 and baryon number 𝐴𝑖. This estimate reads [20]

𝐼(𝐴𝑖) ∼ 5 × 10−50𝜔𝑖 particles m−2 sr−1yr−1 (3.14)

with 𝜔𝑖 given in Eqs. (3.2). While applying Eq. (3.14) to the particular case of absolutely
stable CFL strangelets, we find that, in the absence of experimental results, the values of
the characteristic parameters 𝐵 and ∆o of those strangelets are still unsettled. Despite
such uncertainty, we prefer a “not-unreasonable” [3] value ∆o = 100 MeV for the gap
parameter of a typical CFL strangelet. Values of the remaining parameter may then be
chosen as 𝐵1/4 ≈ 160 MeV from the requirement of the absolute stability (see Fig. 3.3) of
CFL fragments. We further checked that, for an assumed fixed amount of tidally released
CFL mass, a consideration of larger values, such as 𝐵1/4 = 180 MeV and ∆o = 150 MeV
for example, does not appreciably change the order of magnitude of the total (for all sizes)
strangelet flux calculated in the following except that the strangelet fragments with their
masses ranging from 𝐴𝑖 ≈ 10 to about 50 are now metastable due to higher bag values.
Consider then the (𝐵1/4 = 160 MeV, ∆o = 100 MeV) stable strangelets of size 𝐴𝑖 ≈

10. Those strangelets have multiplicities 𝜔𝑖 (𝐴𝑖 = 10) ≈ 6.1 × 1046, 1.3 × 1048 and
8.2 × 1049 at temperatures 𝑇 = 1 keV, 10 keV and 1 MeV, respectively. We here assumed
an average tidally released CFL mass . 10−5 𝑀⊙ per stellar merger as in Figs. 3.1 and
3.2; this amount of mass-loss has been reported to be at the limit of resolution of the
recent numerical simulations of the SS merger events [18, 43]. Corresponding intensities
of the 𝑖th species of CFL strangelets with 𝐴𝑖 = 10 in the neighborhood of the Sun, that
were originally formed at the above three temperatures at freeze-out, are derived from
Eq. (3.14) as 𝐼(𝐴𝑖 = 10) . 3×10−3, 6.3×10−2 and 4.1 particles m−2 sr−1yr−1, respectively.
Similarly, 𝐼(𝐴𝑖 = 100) . 1.7 × 10−2, 4.3 × 10−2 and 1.5 × 10−9 particles m−2 sr−1yr−1 at
the above three temperatures at freeze-out. Fragment sizes as large as 𝐴𝑖 = 103 are not
available at a freeze-out temperature 1 MeV (see Fig. 3.2(a) above). Intensities of those
large strangelets at temperatures 𝑇 = 1 keV and 10 keV (at freeze-out) are also small,
being 𝐼(𝐴𝑖 = 103) . 10−6 and 10−15 particles m−2 sr−1yr−1, respectively. It is important
to note that, all but one of the intensities determined above are orders of magnitude
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smaller than the typical threshold sensitivity ∼ 1 particle m−2 sr−1yr−1 of the modern
detector-systems employed in recent space-based strangelet-search experiments, such as
the one used in the AMS-02 experiment. The above estimates for the intensities of CFL
strangelets of different sizes, determined from a preliminary model of those strangelets
with massless quarks, seem to suggest that we may obtain low (𝐴𝑖 ∼ 10) mass, stable
CFL strangelets in the vicinity of our solar system only for rather narrow ranges of values
of the three important model parameters, namely the bag constant, the pairing energy
gap and the formation temperature of those strangelets. Considering all the stable CFL
strangelets with 𝐴𝑖 & 10, the integrated intensity for those strangelets in the neighborhood
of the Sun may be determined by integrating Eq. (3.14) over the strangelets of relevant
sizes. Such intensity turns out to be about 10 particles m−2 sr−1yr−1, that is applicable
for the entire range of their formation temperatures considered in this chapter. This
possible integrated intensity of stable CFL strangelets in the vicinity of the Sun is only
about an order of magnitude larger than the above threshold sensitivity of the modern
detector systems but depends sensitively on the uncertain values of the average mass-loss
in a single CFLS-NS merger event. An assumption of an average mass-loss ∼ 10−7 𝑀⊙

per stellar merger, for example, would reduce all the above intensity estimates roughly
by two orders of magnitude. Detailed high resolution simulations of the mergers between
the rapidly rotating hot CFLSs with their NS companions in the compact binary stellar
systems in the galaxy are, therefore, required to settle this particular issue of the population
averaged amount of tidally released CFL mass, that might be actually be ejected outside
the gravitational influence of such a merging stellar system.

3.6. Discussion

In this chapter, we have extended the work presented in Chap. 2 to the case of multi-
fragmentation of CFL SQM to examine the possible size-distribution of the resulting CFL
strangelets. This study was motivated by the recent work in Ref. [9], that applied a slightly
different version of the nuclear multifragmentation models to the case of CFL SQM. The
authors of Ref. [9] could not find substantial fragmentation out of the initial bulk CFL
matter that led them to conclude that the incorporation of color-superconductivity in the
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equation of state of the strange matter might substantially alter the basic fragmentation
pattern from the one obtained in Chap. 2, for example, in the case of unpaired SQM. Those
authors have claimed that the variations of the size-distribution of CFL fragments with
changing temperature (at freeze-out) would exhibit a tendency, that is opposite to the one
obtained in the case of normal strangelets in Chap. 2. They have further commented that
one cannot expect substantial strangelet flux above the atmosphere of the Earth unless
one considers the additional binding energy of the color superconducting strangelets. In
the present chapter, we have carefully examined those important conclusions drawn by
the authors of Ref. [9] in their study. In our present calculations, we, however, confine
ourselves to the simplifying assumption of massless quarks in the CFL SQM. The results
of this study show that, in contradiction to the claims made in Ref. [9], the incorporation
of color superconductivity in the equation of state of the initial SQM before fragmentation
does not qualitatively change the nature of the fragmentation pattern of that SQM from
the one shown in Chap. 2 in the case of ordinary SQM. Here, the nature of variation of
the size-distribution of CFL strangelets with increasing temperature (at freeze-out) is also
found to be similar to the one obtained in the previous chapter that has already been re-
ported to be in consonance with the well-known results in nuclear disassembly models. By
employing a simple diffusion model for the propagation of CFL strangelets in the galactic
magnetic field, we, however, find that the approximate estimates of the possible fluxes of
stable CFL strangelets in the neighborhood of the Sun are orders of magnitude smaller
than the ones found in Chap. 2 in the case of unpaired strangelets. Such lower fluxes of
the CFL strangelets, as opposed to the normal ones, are mainly the consequence of the
requirement of slightly higher bag values for the stability of those strangelets as was men-
tioned earlier in Sec. 3.4 of this chapter. In the preceding section, we have also found that,
depending on the uncertain values of the tidally released strange matter in a CFLS-NS
merger event, such flux estimates may even be several orders of magnitude lower than
the threshold sensitivity of the modern detector systems designed to search for the astro-
physical strangelets. Recent simulations [18, 43] of the merger between two normal SSs
have further suggested that the amount of such tidally released mass, that may eventually
become gravitationally unbound from the merged stellar system, is expected to altogether
vanish in cases in which the SSs are so massive and compact so that the time taken by the
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merged system to collapse to a BH is much shorter than the time required for the tidal arms
to form during the merger process. Moreover, in the context of the coalescence between
a CFLS and its NS companion, the possibility of the NS turning into another CFLS, that
is supposed to be more compact than a normal SS, may not be altogether ruled out. In
the case of such a conversion, two hot and rapidly rotating CFLSs are likely to collapse to
a BH without spewing any mass in the ISM. We may expect little or no mixture of CFL
strangelets in GCR in that particular case. Considering such uncertainties regarding the
availability of CFL strangelets in GCR, we do not further discuss the possible formation of
CFL strangelets and their tentative flux in the neighborhood of the Sun in this thesis. In
the rest of this thesis, we, therefore, confine our attention only to the plausible formation
of the normal strangelets and to the estimation of their possible fluxes in the vicinity of
the solar system.
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Chapter 4

An improved fragment distribution for unpaired SQM

In an exploratory analysis in Chap. 2, we obtained the basic nature of the size distribution
of normal strangelets and the variations of that size distribution with changing parameter
values by assuming the quarks to be massless for the sake of simplicity. In this chapter,
we retain the assumption of massless 𝑢 and 𝑑 quarks, but assume the 𝑠 quarks to be
massive (see the footnote in Sec. 1.5, Chap. 1, for a justification) to obtain an improved
fragmentation pattern of those strangelets. For quite long a time, the value of the current
quark-mass (𝑚𝑠) of the 𝑠 quarks used to be believed to lie somewhere within a wide range
∼ (100 − 300) MeV [1, 2, 3]. After a number of sophisticated experiments followed by
several high precision estimates [4, 5], the scientists have now agreed upon a value of 𝑚𝑠

lying within a much narrower interval of ∼ (82−100) MeV with the mostly accepted value
being 𝑚𝑠 = 95 ± 5 MeV [5].
As mentioned in Sec. 1.6, a finite 𝑚𝑠 allows each of the strangelets to possess a small

but finite electric charge that depends on the baryon number of that strangelet. This finite
electric charge would, in turn, influence the binding energy of the strangelet through the
destabilizing effect of the internal Coulomb repulsion of that strangelet. According to the
standard MIT bag model [6, 7, 8, 9], a non-zero value for 𝑚𝑠 would further make the 𝑠
quarks “less relativistic” in comparison with the lighter (𝑢 and 𝑑) quarks, so that, the heavier
𝑠 quarks would tend to confine themselves to the interior of the strangelets - away from the
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surface of those strangelets [8]. The resulting depletion of the surface density of states of the
massive 𝑠 quarks within the strangelets would contribute a “quark mode surface tension"
to those strangelets. This quark-mass dependent surface tension, that is often referred
to as the “dynamical surface tension” [6, 7, 8, 9] in the literature, did not appear in the
expression of the thermodynamic potential of a strangelet with massless quarks obtained
earlier in Eq. (2.3) of Chap. 2 or in Eq. (3.5) of Chap. 3. The absence of such dynamical
surface tension in the case of strangelets with massless quarks was also pointed out in the
discussion following Eq. (3.5). If we assume a chemical potential 𝜇𝑠 ∼ 300 MeV for the 𝑠
quarks, the magnitude of such dynamical surface tension turns out to be ∼ 9 MeV fm−2

at zero temperature and for 𝑚𝑠 ∼ 95 MeV as mentioned in the previous paragraph. This
value of the dynamical surface tension of the strangelets, as determined from the MIT bag
model, is consistent with the surface tension 𝜎𝑠 ∼ (5−20) MeV fm−2 calculated recently in
Refs. [10] by adapting sophisticated QCD models, such as the linear sigma model (coupled
with constituent quarks; LSMq) [11] or the NJL model [12], of strangelets although the
origin of the surface tension is different in the MIT bag model from the ones appearing in
those latter models. Apart from the speculated [13] fundamental change in the nature of
the fragmentation pattern from the ones found earlier in Chaps. 2 and 3 of this thesis, a
consideration of the finite charge and the dynamical surface tension, arising from a non-
zero current-mass of the 𝑠 quarks within the strangelets, would also tend to make those
strangelets unstable by increasing their energies per baryon above the one for the 56Fe nuclei
or even above the ones for the nucleons, so that, very few or no strangelets may be available
in GCR in the vicinity of the Sun - far away from the regions in which the strangelets are
formed by fragmentation of the bulk SQMs ejected due to the SS merger events. It is,
therefore, important to investigate the effect of such dynamical surface tension and the
electric charge, associated with 𝑚𝑠 ̸= 0, on the fragmentation pattern and the stability of
strangelets. Such an investigation has been undertaken in the present chapter, in which we
also provide a revised order of magnitude estimate for the integrated (over baryon numbers)
flux of stable strangelets of various possibly available sizes in the solar neighborhood.
The chapter is organized along the following line. In Sec. 4.1, we briefly review the SMM,

originally presented in Sec. 1.9, Chap. 1. Sec. 4.2 contains the equations representing the
thermodynamic equilibrium of a single strangelet. In Sec. 4.3, we apply the formalism of
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SMM to find the fragment-size distribution of strangelets. The stability of the produced
fragments, that may be available in GCR in the solar neighborhood, is studied in Sec. 4.4.
In Sec. 4.5, we will discuss the results and their observational implications.

4.1. The multifragmentation model

In Chap. 2, we have used a classical (MB) version of SMM to predict the size distribution
of normal strangelets. In Chap. 3, on the other hand, we found that the calculated multi-
plicities of strangelet-fragments, that are obtained by using a quantum statistical version
of the SMM, do not differ substantially from the ones obtained by using MB statistics,
even at considerably low temperatures at freeze-out except for the multiplicities of the
fragments with very large baryon numbers, the contributions from which to the integrated
fluxes of strangelets were found to be insignificant. In this chapter, we therefore con-
fine ourselves only to the classical version of the SMM to find the mass spectrum of the
strangelet-fragments in equilibrium at freeze-out.
While applying SMM to the bulk SQM before fragmentation, that is supposed to be

tidally released in the merger between two SSs, we assume that original SQM to have
rather large (but finite) a volume such that the finite-size effects, like the surface and the
curvature effects, of that bulk matter could be ignored. Similar assumption was also con-
sidered in Chaps. 2 and 3 in the case of the SQM with vanishingly small quark-masses.
As discussed in Secs. 1.5 and 1.6, the bulk SQM, mentioned above, is also considered to
be globally charge-neutral due to the presence of electrons inside that SQM. We further
assume that the initial average temperature of the tidally released SQM might have ex-
ceeded the value corresponding to its binding energy (about 10 MeV [14]) per nucleon
during the coalescence phase of the stellar merger, so that, considerable degree of den-
sity fluctuations (or, fractures) could be developed in that warm and excited SQM. After
the ejected matter becomes gravitationally unbound from its parent system of the merged
SSs [15], the initially fractured SQM undergoes quasi-static evolution, during which it tries
to minimize its free energy by cooling and expanding while the initial fractures develop
into more or less well-defined lumps of different baryon numbers (or sizes) still interact-
ing among themselves. The globally charge-neutral and beta-equilibrated lumpy matter
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eventually occupies a freeze-out volume at thermodynamic equilibrium at a certain tem-
perature 𝑇 . This freeze-out volume is assumed to be much larger than the original volume
of the initially ejected and gravitationally unbound SQM. It is further assumed that, at this
freeze-out volume, both the strong and the electromagnetic interactions between the even-
tually well-developed, locally charge-neutral lumps, each consisting of a strangelet within
its own electron environment, cease to exist. The equilibrium temperature 𝑇 at freeze-out
is also considered to be lower than the initial temperature of the original SQM at the time
of its ejection by the tidal forces arising from the merger process.
In the following, we adopt SMM to find a plausible mass (or, the baryon number) distri-

bution of strangelets in the fragmenting system (at freeze-out), that is often referred to as
the “strangelet-complex" in this chapter. This strangelet-complex is supposed to be a glob-
ally charge-neutral blob of highly inhomogeneous quark matter accompanied by electrons,
the volume of which is sufficiently large so that the finite-size effects of this strangelet-
complex can be ignored. The blob with a constant total baryon number 𝐴𝑏 consists of finite
domains that are going to be permanently segregated into numerous sparsely distributed,
positively charged, finite-sized strangelets. Each of those strangelets is embedded in a
charge-neutralizing cloud of degenerate electrons having a volume that is much larger than
the volume of the strangelet. At freeze-out, the average distance between the strangelets
is assumed to be so large so that the residual strong interactions between those strangelets
may be taken to be insignificant. The globally charge-neutral strangelet-complex, con-
sisting of the positively charged strangelets being immersed in an electron gas, is in ther-
modynamic and chemical equilibrium (including the beta-equilibrium) at freeze-out. For
thermodynamic equilibrium, the temperature (𝑇 ) must be constant throughout the vol-
ume of the strangelet-complex. The number density (𝑛𝑖𝑒(𝑟)) of electrons in this complex
has spatial variations with their typical length scale being comparable to (or even shorter)
than the Debye screening length 𝜆𝐷 = ( 𝜋

8𝛼
)1/2 1

𝜇𝑞
≈ 7.33

𝜇𝑞
∼ 5 fm [16, 17, 18, 19, 20, 21] (see

Sec. C.1 of Appendix C) inside each individual strangelet-fragment, where, 𝑟 is the radial
distance from the centre of the (assumed spherical) strangelet of the 𝑖th species character-
ized by its baryon number 𝐴𝑖. Here, 𝜇𝑞 (≫ 𝑇 ) is the quark number chemical potential [22]
of the strangelet-complex at thermodynamic and chemical equilibrium at freeze-out and
𝛼(= 1

137
) is the fine structure constant. By definition, the quark number chemical potential
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𝜇𝑞 is equal to one third of the baryon number chemical potential [22] of the strangelet-
complex. A constant baryon number at thermodynamic equilibrium demands that 𝜇𝑞 is
constant over the volume of the strangelet-complex [21]. Except its small-scale spatial
variations as stated above, the distribution of electrons (as viewed over length scales that
are orders of magnitude longer than 𝜆𝐷) in the strangelet-complex should otherwise be
uniform, as demanded by the condition of the global equilibrium, with constant number
density 𝑛𝑒 [21]. As a consequence of the above condition, the electron chemical poten-
tial 𝜇𝑒 ≈ (3𝜋2𝑛𝑒)

1/3 is also a global constant, satisfying 𝜇𝑒 . 𝑚2
𝑠

4𝜇𝑞
, over the entire volume

of the strangelet-complex [21]. The above upper limit of 𝜇𝑒 corresponds to the electron
chemical potential in a globally charge-neutral, cold (𝑇 = 0) and uniform bulk SQM at
zero pressure [18, 19, 20, 22, 23]. This limit of 𝜇𝑒 is derived by considering the lowest
non-trivial order of 𝑚𝑠 and assuming 𝜇2

𝑞 ≫ 𝑚2
𝑠, that may be justified for 𝑚𝑠 ≈ 95 MeV and

𝜇𝑞 ∼ 300 MeV. In view of a number of uncertain physical parameters used for the purpose
of modelling in the particular problem discussed in this thesis, we have to be satisfied here
only with the order of magnitude estimates for the possible sizes of the strangelets and
their plausible approximate flux in the neighborhood of the solar system. For the purpose
of such rough estimations, it is perhaps sufficient to consider 𝜇𝑒 ≈ 𝑚2

𝑠

4𝜇𝑞
in the calculations

presented in this chapter for the sake of simplicity.
The weak interaction processes, as shown in Eqs. (1.1) of Sec. 1.6.1, Chap. 1, maintain

the chemical equilibrium of the strangelet-complex. These processes demand that the
chemical potential 𝜇𝑓 of the quarks of the 𝑓 th flavor (𝑓 = 𝑢, 𝑑, 𝑠) in the strangelet-complex
should satisfy the relations [22]:

𝜇𝑢 = 𝜇𝑞 −
2

3
𝜇𝑒

𝜇𝑑 = 𝜇𝑞 +
1

3
𝜇𝑒

𝜇𝑠 = 𝜇𝑞 +
1

3
𝜇𝑒

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.1)

thus implying the fact that, except for the small scale local variations of 𝜇𝑖𝑓 (𝑟) with a
typical length scale . 𝜆𝐷 inside each individual strangelet, the value of 𝜇𝑓 of an arbitrary
quark-flavor ‘𝑓 ’ should be uniform throughout the volume of the strangelet-complex.
In Eqs. (4.1), the chemical potential of the neutrinos is ignored as they are likely to
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contribute very little to the energy density and pressure of the strangelet-complex in equi-
librium at freeze-out [6] (see Sec. 1.6 of Chap. 1). It is also to be noted that, over length
scale . 𝜆𝐷 inside a strangelet of the 𝑖th species, the equilibrium conditions, as stated in
Eq. (4.1), transform into a relation between the local (ie., position dependent) chemical
potentials, ie.,

𝜇𝑖𝑓 (𝑟) + 𝑞𝑓𝜇
𝑖
𝑒(𝑟) = 𝜇𝑞. (4.2)

In Eq. (4.2), 𝑞𝑓 is the charge of a quark of the 𝑓 th flavor, ie., (𝑞𝑢, 𝑞𝑑, 𝑞𝑠) = (2
3
, −1

3
, −1

3
)

in the unit of 𝑒, e being the magnitude of the electronic charge. Eq. (4.2) couples the
equilibrium distribution of quarks inside a particular strangelet to the charge-neutralizing
electron cloud surrounding that strangelet through the non-zero values of the local elec-
trostatic potentials 𝜇𝑖𝑒(𝑟)/𝑒 [18, 19, 20] at different positions inside that same strangelet.
This coupling gives rise to the phenomenon of Debye screening [16, 17, 18, 19, 20] inside a
strangelet in thermodynamic, electrostatic and chemical equilibrium with its electron en-
vironment. In Sec. 4.2 of this chapter, we will discuss Debye screening in somewhat more
detail. There, we will also use the formulae (ie., Eqs. (4.7) and (4.8)), obtained by earlier
authors [16, 17, 18], for the expressions of two integrated (over the radial coordinate 𝑟)
quantities, namely, the total electric charge and the Coulomb energy of an individual frag-
ment in the strangelet-complex. Those formulae are derived by making use of the concept
of Debye-screening inside an individual fragment. It is, however, important to note that,
in this chapter, our sole purpose is to obtain the equilibrium size-distribution of numerous
newly-born strangelets (with their associated charge-neutralizing electron clouds) located
randomly within the freeze-out volume of the strangelet-complex in equilibrium at freeze-
out. For such a purpose, we would use the position independent and uniform values of 𝜇𝑒,
𝜇𝑓 and 𝜇𝑞, that are the chemical potentials characterizing the global equilibrium config-
uration of the strangelet-complex (at freeze-out), instead of the position-dependent local
chemical potentials of the quarks and electrons pertaining to each individual strangelet-
fragment. Those local potentials enter in our analysis only indirectly, ie., through the
integrated properties of each individual strangelet as mentioned above. In principle, such
local and global chemical potentials should be connected through the appropriate bound-
ary conditions on the surface of each individual strangelet. Examples of such boundary

94



4. An improved fragment distribution for unpaired SQM

conditions have been provided in Refs. [18, 19, 20], in which substantially rigorous cal-
culations (by using the solutions of two separate Poisson’s equations inside and outside
the strangelet that match on its surface) have been considered to numerically determine
the equilibrium radial distributions of the charge density and other physical properties
inside and outside an individual strangelet embedded in an inhomogeneous but spherically
symmetric electron cloud. From those calculations, we obtain some physical insight into
the phenomenon of Debye screening. Such rigorous calculations to find the detailed radial
structure of each of the almost innumerable strangelets of various sizes in equilibrium with
its charge-neutralizing electron environment are, however, not attempted in this chapter.
As mentioned above, the strangelet-complex is considered here to be in thermodynamic

equilibrium at a certain temperature (𝑇 ) at freeze-out. In the absence of any clue regarding
the actual values of the temperature at which the strangelets may be formed, we here choose
a plausible range of such values, namely (0.001 ≤ 𝑇 ≤ 1.0) MeV, somewhat arbitrarily.
The justification of choosing such a particular range of values for the temperature of the
strangelet-complex in thermodynamic equilibrium at freeze-out was given earlier in the
Sec. 2.1, Chap. 2 of this thesis.
At freeze-out, the multiplicity (𝜔𝑖) of the strangelets of the ‘𝑖th’ species can be written

as (see Eq. (1.9) in Chap. 1) [21, 24, 25, 26, 27, 28]

𝜔𝑖 =
𝒱

(ℒ𝑖)3
𝑒(𝜇

𝑖−𝐹 𝑖)/𝑇 . (4.3)

In Eq. (4.3), 𝒱 is the available volume of the strangelet-complex in thermodynamic equi-
librium at freeze-out as was defined earlier in Sec. 1.9 of Chap. 1 of this thesis. In this
particular case of the disassembly of SQM with massive 𝑠 quarks, the value of 𝒱 is to
be determined self-consistently from the condition of the global charge-neutrality of the
fragmenting system as opposed to the case considered earlier in Chaps. 2 and 3, in which
the value of 𝒱 was simply taken to be a free parameter of the problem. In Eq. (4.3),
𝜇𝑖(=

∑︀
𝑓 𝜇𝑓𝑁

𝑖
𝑓 + 𝜇𝑒𝑁

𝑖
𝑒) is the chemical potential of a strangelet of the 𝑖th species with a

volume V𝑖 and 𝑁 𝑖
(𝑓,𝑒) =

(︁
−

𝜕Ω𝑖
(𝑓,𝑒)

𝜕𝜇(𝑓,𝑒)

)︁
V𝑖,𝑇

being either the number of quarks of the 𝑓 th flavor

(𝑓 = 𝑢, 𝑑, 𝑠) or the number of electrons constituting that strangelet; their corresponding
thermodynamic potentials are Ω𝑖

(𝑓,𝑒). The thermal de Broglie wavelength of a strangelet of
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the 𝑖th species can be defined as ℒ𝑖 = ℎ/
√

2𝜋𝑚𝑖𝑇 where 𝑚𝑖 is the mass of the strangelet.
For an approximate value of 𝑚𝑖, we use the mass-formulae as derived in Refs. [9, 29] by
taking into account a bulk approximation to the baryon number chemical potential of the
strangelet-fragment at 𝑇 = 0. The mass of a strangelet with 𝑚𝑠 = 95 MeV is obtained
by means of an interpolation between the masses derived in Ref. [29] for different values
of 𝑚𝑠. Moreover, the masses of strangelets corresponding to various bag values can be
obtained by using a scaling law derived in Ref. [9]. Here, 𝐹 𝑖(= Ω𝑖 + 𝜇𝑖 + 𝐸𝑖

C) denotes the
Helmholtz free energy of the 𝑖th species while Ω𝑖 is its thermodynamic potential and 𝐸𝑖

C is
its Coulomb energy. 𝐹 𝑖 may be rewritten as 𝐹 𝑖 = Ω𝑖

tot +𝜇𝑖, where, Ω𝑖
tot = Ω𝑖 +𝐸𝑖

C. Thus,
Eq. (4.3) can be reframed as [21, 24, 27]

𝜔𝑖 =
𝒱

(ℒ𝑖)3
𝑒−Ω𝑖

tot/𝑇 . (4.4)

We will use Eq. (4.4) to determine the multiplicities of various strangelet-fragments in
the strangelet-complex after specifying the thermodynamic quantities that represent the
overall behavior of an individual strangelet in that complex in equilibrium at freeze-out.

4.2. Thermodynamics of a strangelet

For the calculation of the thermodynamic potential of the strangelet of a particular species,
we shall use the multiple reflection expansion method [30] with smoothed density of states
as applied to the standard MIT bag model [6, 9, 29]. The approach, that we here consider in
modelling a strangelet, is analogous to the “liquid drop model” in the context of theoretical
nuclear physics [9]. This approach has earlier been found to satisfactorily reproduce the
average properties of the strangelets obtained from the mode-filling calculations of the
shell model [2, 31]. Here, the strangelets are assumed to be spherical for the sake of
simplicity. Radius of such a spherical strangelet of the 𝑖th species is 𝑅𝑖 = 𝑟𝑖o(𝐴

𝑖)1/3, where,
𝑟𝑖o is its radius parameter. Volume, surface and curvature of a strangelet are denoted as
V𝑖 = 4

3
𝜋(𝑅𝑖)3, S𝑖 = 4𝜋(𝑅𝑖)2 and C𝑖 = 8𝜋𝑅𝑖, respectively. Thermodynamic potential of a

strangelet of the 𝑖th species is written as [21, 24, 27]
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Ω𝑖 =
∑︁
𝑓

Ω𝑖
𝑓 + Ω𝑖

𝑒 + Ω𝑖
gluon +𝐵V𝑖 = Ωo

VV
𝑖 + Ωo

SS
𝑖 + Ωo

CC
𝑖 +𝐵V𝑖, (4.5)

where, the contribution Ω𝑖
gluon (thermodynamic potential for gluons) is obtained from

Ref. [9]. In Eq. (4.5) [21, 24] (see Sec. C.2 of Appendix C for the approach used for
the calculations),

Ωo
V = −37

90
𝜋2𝑇 4 −

(︁𝜇2
𝑢 + 𝜇2

𝑑

2

)︁
𝑇 2 −

(︁𝜇4
𝑢 + 𝜇4

𝑑

4𝜋2

)︁
− 𝜇4

𝑠

4𝜋2

[︃(︁
1 − 5

2
𝜆2𝑠

)︁√︀
1 − 𝜆2𝑠

+
3

2
𝜆4𝑠 ln

(︃
1 +

√︀
1 − 𝜆2𝑠
𝜆𝑠

)︃
+ 2𝜋2

(︁ 𝑇
𝜇𝑠

)︁2√︀
1 − 𝜆2𝑠 +

7𝜋4

15

(︁ 𝑇
𝜇𝑠

)︁4 (1 − 3
2
𝜆2𝑠)

(1 − 𝜆2𝑠)
3/2

]︃

− 𝜇4
𝑒

12𝜋2
, (4.6a)

Ωo
S =

3

4𝜋
𝜇3
𝑠

[︃
(1 − 𝜆2𝑠)

6
− 𝜆2𝑠

3
(1 − 𝜆𝑠) −

1

3𝜋

{︃
tan−1

(︃√︀
1 − 𝜆2𝑠
𝜆𝑠

)︃
+ 𝜆3𝑠 ln

(︃
1 +

√︀
1 − 𝜆2𝑠
𝜆𝑠

)︃

−2𝜆𝑠
√︀

1 − 𝜆2𝑠

}︃
+
𝜋

3

(︁ 𝑇
𝜇𝑠

)︁2{︃𝜋
2
− tan−1

(︃√︀
1 − 𝜆2𝑠
𝜆𝑠

)︃}︃
+

7𝜋3

180

(︁ 𝑇
𝜇𝑠

)︁4 𝜆3𝑠
(1 − 𝜆2𝑠)

3/2

]︃
(4.6b)

and

Ωo
C =

19

36
𝑇 2 +

(︁𝜇2
𝑢 + 𝜇2

𝑑

8𝜋2

)︁
+

𝜇2
𝑠

8𝜋2

[︃
1

𝜆𝑠

{︃
𝜋

2
− tan−1

(︃√︀
1 − 𝜆2𝑠
𝜆𝑠

)︃}︃
+
(︁𝜋2

𝜆𝑠

)︁(︁ 𝑇
𝜇𝑠

)︁2
×

{︃
𝜋

2
− tan−1

(︁√︀1 − 𝜆2𝑠
𝜆𝑠

)︁}︃
+ 𝜆2𝑠

{︃
𝜋 + ln

(︃
1 +

√︀
1 − 𝜆2𝑠
𝜆𝑠

)︃}︃

−3𝜋

2
𝜆𝑠 −

(︁2𝜋2

3

)︁(︁ 𝑇
𝜇𝑠

)︁2 1√︀
1 − 𝜆2𝑠

− 7𝜋4

60

(︁ 𝑇
𝜇𝑠

)︁4 𝜆2𝑠(1 + 𝜆2𝑠)

(1 − 𝜆2𝑠)
5/2

]︃
(4.6c)

with Ωo
V, Ωo

S and Ωo
C being the thermodynamic potential densities connected with the
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volume, surface and the curvature of the strangelets. The quantity Ωo
S can be denoted as

the quark mode surface tension while the quantity Ωo
C is defined as the curvature coefficient

of the strangelet. In Eqs. (4.6), 𝜆𝑠 = 𝑚𝑠

𝜇𝑠
and 𝐵 is the bag pressure. For 𝑚𝑠 → 0, we obtain

𝜆𝑠 → 0 and 𝜇𝑢 = 𝜇𝑑 = 𝜇𝑠 = 𝜇𝑞. In this limit 𝑚𝑠 → 0, charge-neutrality of the strangelet-
complex no longer requires the presence of electrons in that complex so that 𝜇𝑒 → 0

as 𝑚𝑠 → 0. We have checked that Eqs. (4.5) and (4.6) reduce to the thermodynamic
potential of an isolated (ie., not embedded in an electron cloud) strangelet, as described
in Chap. 2 (see Eq. A.1 in Sec. A.1 of Appendix A), in this limit of massless quarks
inside the strangelet. For 𝑇 = 0, on the other hand, the thermodynamic potential of cold
strangelets with finite 𝑚𝑠 [9] is restored from Eqs. (4.5) and (4.6) except for an additional
term involving 𝜇4

𝑒 in Eq. (4.6a). This term was ignored in Ref. [9] while discussing the
thermodynamics of a small, isolated strangelet (not embedded in a charge-neutralizing
background of electrons) so that 𝜇𝑒 = 0 for that strangelet. In this chapter, we, however,
take the presence of those charge-neutralizing electrons surrounding the strangelet into
account.
It is apparent from Eqs. (4.5) and (4.6b) that, in the limit 𝑚𝑠 → 0, the quark mode sur-

face energy, proportional to (𝑅𝑖)2, vanishes in the traditional MIT bag model of strangelets [6,
7]. Advanced QCD models, such as the LSMq and the NJL models, of SQM, however, pre-
dict non-vanishing surface tension (at the vacuum-quark matter phase boundary) even in
this case of massless quarks constituting the SQM [10]. Such absence of a surface tension
in the traditional MIT bag model in the limit 𝑚𝑠 → 0 seems to be a direct consequence of
ignoring the effects of the dynamical (or explicit) chiral symmetry breakdown in the QCD
vacuum in that model. According to the Nambu-Goldstone theory of chiral symmetry, such
a breakdown would essentially lead to a qualitative re-arrangement of the QCD vacuum
by enabling it to host strong condensates of quark-antiquark pairs [32, 33, 34]. A strong
quark-mass independent surface tension is supposed to arise due to the discontinuities of
such condensates across the bag surface which may be determined from the sum of those
quark condensates [32]. Despite the above inability of the MIT bag model in taking the
dynamical (or the explicit) breaking of QCD chiral symmetry into consideration, we still
use this model in the present thesis for its mathematical and conceptual simplicity in mod-
elling the consequences of selected features in QCD, namely the short distance (< 0.1 fm)
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asymptotic freedom as well as a perfect spatial and color confinement of the quarks at long
(> 1 fm) distance scales by the bag pressure (𝐵), which is assumed in this model to include
all the non-perturbative effects from the QCD vacuum on the quarks inside the bag [34].
As we have discussed in Secs. 1.4 and 1.5, the above simplicity of the standard MIT bag
model proves to be convenient for a preliminary investigation of the multifragmentation
of the original bulk SQM into myriads of strangelets. The mathematically harder tasks
of describing multifragmentation within the framework of more sophisticated theoretical
models of SQM, such as the LSMq and the NJL models, or the chirally invariant bag
models (eg., [32, 35]), will be a major step forward beyond the basic analysis presented in
this thesis.
While the traditional MIT bag model of strangelets with massless quarks yields a van-

ishing surface tension at the vacuum-quark matter boundary, it nevertheless provides for
a positive curvature coefficient (Eq. (4.6c)) 𝜎𝑐 = Ωo

C = (3/8𝜋2)𝜇𝑞
2 ∼ 17 MeV fm−1 (at

zero temperature and for 𝜇𝑞 ∼ 300 MeV) [9, 36] of the strangelets. This curvature coef-
ficient arises from finite-size corrections to the quark density of states that are required
to match the quark wave functions to the bag boundary conditions [36]. In analogy with
the quark mode surface tension, we may refer to this (curvature) coefficient as the “quark
mode curvature coefficient" of the strangelets. In spite of the important distinction be-
tween the energies associated with them (which scale differently with the baryon number
𝐴𝑖; see Eq. (4.5)), the surface tension and the curvature coefficient play somewhat similar
roles in the multifragmentation of SQM. Both these quantities require additional energy
to produce a large number of smaller fragments at the expense of a few large fragments
as we will find in Sec. 4.3. Apart from that, both the surface tension and the curvature
coefficient tend to destabilize finite-sized fragments by increasing their energies per baryon;
see Sec. 4.4. In view of the above, we may like to investigate into the relative magnitude of
the quark mode curvature energy (in the limit of massless quarks in the MIT bag model) of
the strangelets vis-a-vis their surface energy determined in Refs. [10] from the LSMq and
the NJL models. For a strangelet having 𝐴𝑖 ∼ 10, the value of the curvature energy (per
baryon) turns out to be 𝜎𝑐C𝑖/𝐴𝑖 ∼ 100 MeV, whereas, the value of the surface energy (per
baryon) determined in Refs. [10] lies in the range 𝜎𝑠S𝑖/𝐴𝑖 ∼ (30−120) MeV. For 𝐴𝑖 ∼ 100,
the values of these energies are ∼ 20 MeV and ∼ (10 − 50) MeV, respectively. Similarly,
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these quantities take on values ∼ 4 MeV and ∼ (6 − 25) MeV for 𝐴𝑖 ∼ 103. In the above,
we have considered 𝑚𝑠 = 0, 𝑟𝑖o ∼ 1 fm [37], 𝑇 = 0 and 𝜇𝑞 ≈ 300 MeV to calculate the
curvature energies of strangelets by using the MIT bag model. Above comparisons reveal
that, for an approximate range of most of the fragment-sizes (10 . 𝐴𝑖 . 103) obtained (in
Sec. 4.3) in this chapter, the magnitude of curvature energy of strangelets (with massless
quarks in the MIT bag model) is more-or-less compatible at least with the lower bound
of the surface energy determined in Refs. [10] by using various QCD models of strangelets
that are supposed to be more sophisticated than the MIT bag model. Numerical examples
presented above seem to suggest that, notwithstanding the absence of a surface energy for
massless quarks in the MIT bag model, it is perhaps not unreasonable to use this model
(having a positive curvature coefficient) for the sake of a rudimentary analysis of multifrag-
mentation of SQM. Such an analysis, undertaken originally in Chaps. 2 and 3 of this thesis,
provides us with some basic idea regarding the trend in the fragment-size distribution of
the strange matter that, in fact, serves as an useful guidance in the calculations presented
in this chapter. Hopefully, the same analysis would even be useful in guiding the computa-
tions of multifragmentation in other sophisticated models of SQM as well. We further add
that the present chapter, that employs MIT bag with 𝑚𝑠 ̸= 0, is relatively less vulnerable
to the afore said drawback of the traditional MIT bag model with massless quarks as, along
with a positive curvature coefficient, the model presented in this chapter also predicts a
positive dynamical surface tension whose magnitude is found to be compatible with the
ones in Refs. [10] in the introductory section of this chapter.
In Eqs. (4.5) and (4.6), we have considered the fact that 𝜇𝑒 ≪ 𝜇𝑓 ; 𝑓 = (𝑢, 𝑑, 𝑠). We,

therefore, take into account only the leading order contribution from the electron chemical
potential in Ωo

V in Eq. (4.6a). We also assume that, even though the electron chemical
potential is non-zero inside strangelets, the sizes of those strangelets are too small to have
electrons physically localized inside them, so that, the contribution of those electrons to
the thermodynamic potentials associated with the surface and the curvature of a strangelet
(Eqs. (4.6b) and (4.6c)) need not be taken into account. The electric charge of a strangelet
is given by that of the quark matter alone in the case of such small strangelets [18].
Moreover, as the 𝑠 quarks are massive, the number of those quarks is less than the numbers
of quarks of other (viz. 𝑢 and 𝑑) flavors inside the strangelet. A strangelet of the 𝑖th species
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possesses a positive charge number 𝑍𝑖 in this situation [6, 16, 18]. It was pointed out
in Refs. [6, 7, 16] that the approximation of no localized electrons inside strangelets may
be justified when 𝐴𝑖 . 105, so that, the radius of a strangelet satisfies the condition
𝑅𝑖 . 46 fm < 𝑎B/𝑍

𝑖 ∼ 253 fm < 2𝜋/𝑚e ∼ 2.4 × 103 fm. Here, 𝑎B = 1/(𝛼𝑚e) is the Bohr
radius; 𝑚e is the mass of the electron and 2𝜋/𝑚e is the electron Compton wavelength in
the units considered in this chapter. In the above, 𝜇𝑢 ∼ 𝜇𝑑 ∼ 𝜇𝑠 ∼ 𝜇𝑞 ∼ 300 MeV [6, 16]
and 𝑍𝑖 ≤ 214 (see Eq. (4.7) below). We have checked that the above condition for the
absence of localized electrons inside strangelets is satisfied by all the fragments in the
strangelet-complex that we finally obtain in Sec. 4.3. The charge-neutralizing electron
cloud surrounding such a strangelet has been treated here within the framework of the
Wigner-Seitz approximation as described in a later paragraph of this section.
In this chapter, we take the effect of Debye screening [16, 17, 18, 19, 20] on the charge

distribution inside relatively larger (𝑎B/𝑍𝑖 > 𝑅𝑖 > 𝜆D) strangelets into account. Equilib-
rium of the quarks in the electrostatic field inside such a strangelet, that is given by the
solution of Eq. (4.2) in Sec. 4.1 above [16, 18], bar its core from having a positive electric
charge density, ie. the deep interior of that strangelet is charge neutral. The positive charge
density inside that strangelet is confined within a layer of thickness ∼ 𝜆𝐷 from its surface.
In this situation, the total charge and the Coulomb energy of the strangelet are obtained
by integrating over the radial coordinate (𝑟) measured from its centre. The expressions of
these integrated quantities are given as [16, 17, 18]

𝑍𝑖 ≈ 𝑚2
𝑠

4𝛼𝜇𝑞
𝑅𝑖

[︃
1 − tanh(𝑅𝑖/𝜆𝐷)

(𝑅𝑖/𝜆𝐷)

]︃
(4.7)

and

𝐸𝑖
C ≈ 𝑚4

𝑠

32𝛼𝜇2
𝑞

𝑅𝑖

[︃
1 − 3

2

tanh(𝑅𝑖/𝜆𝐷)

(𝑅𝑖/𝜆𝐷)

+
1

2

{︃
cosh(𝑅𝑖/𝜆𝐷)

}︃−2]︃
. (4.8)

In reality, after the application of statistical multifragmentation model to the initial bulk
SQM, we would have rather large an array of strangelets of various sizes. Many of those
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strangelets may not be large enough to satisfy the condition of charge-screening. Whatever
may be the case, Eqs. (4.7) and (4.8) are generalized enough to equally account for the
large (𝑅𝑖 > 𝜆𝐷) as well as the small (𝑅𝑖 . 𝜆𝐷) strangelets. In the following, we, therefore,
adopt those two equations to proceed with the calculations.
The entropy of a strangelet of the 𝑖th species is 𝒮 𝑖 = −

(︁
𝜕Ω𝑖

𝜕𝑇

)︁
V𝑖,𝜇𝑖

. Thus, the total energy

of a strangelet may be written as

𝐸𝑖 = 𝑇𝒮 𝑖 + 𝜇𝑖 + Ω𝑖
tot

= 𝑇𝒮 𝑖 + 𝜇𝑖 + Ω𝑖 + 𝐸𝑖
C. (4.9)

For thermodynamic equilibrium, the strangelet-fragments, in addition to being in elec-
trostatic and chemical equilibrium (including beta-equilibrium) are also in mechanical equi-
librium, ie., 𝑃 𝑖

ext = −
(︁
𝜕Ω𝑖

tot

𝜕Vi

)︁
𝑇,𝜇𝑖

; 𝑃 𝑖
ext being the external pressure (as distinct from the bag

pressure) on a strangelet of the 𝑖th species. This pressure is assumed to be exerted by 𝑍𝑖

charge-neutralizing relativistic electrons residing outside the 𝑖th fragment but within the
Wigner-Seitz cell * surrounding that particular fragment. Following Ref. [39], a strangelet-
fragment of the 𝑖th species is approximated to be a point-like (ie., V𝑖 ≪ 𝑉 𝑖

cell; 𝑉 𝑖
cell being

the volume of the 𝑖th Wigner-Seitz cell) positive charge (𝑍𝑖) surrounded by the spherical
Wigner-Seitz cell containing electrons of uniform number density 𝑍𝑖

𝑉 𝑖
cell

= 𝑁total
𝑒

𝒱 = 𝑛𝑒 ≈
𝑚6

𝑠

192𝜋2𝜇3𝑞
; 𝑁 total

𝑒 being the total number of electrons in the strangelet-complex. We choose

𝑉 𝑖
cell = 𝑍𝑖∑︀

𝑖 𝑍
𝑖𝜔𝑖𝒱 so that it satisfies the condition

∑︀
𝑖 𝜔

𝑖𝑉 𝑖
cell = 𝒱 . The expression for the

pressure of relativistic electrons on the strangelet may then be written as [21, 39]

*Wigner-Seitz cell is a special type of primitive-cell which contains one lattice point, and volume of the
cell encloses all neighboring points in space which are closer to this particular lattice point [38].
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𝑃 𝑖
ext ≈ (3𝜋2)1/3

[︁(𝑛e)
4/3

4

]︁
+
(︁𝜋2

2

)︁[︁ 𝑇 2

(3𝜋2)1/3

]︁
(𝑛e)

2/3

−
(︁ 3

10

)︁(︁4𝜋

3

)︁1/3
𝛼(𝑍𝑖)2/3(𝑛𝑒)

4/3

−
(︁1

6

)︁(︁324

175

)︁(︁ 4

9𝜋

)︁2/3
(3𝜋2)1/3(𝑍𝑖)4/3𝛼2(𝑛𝑒)

4/3

+
(︁ 1

8𝜋

)︁
𝛼(3𝜋2)1/3(𝑛𝑒)

4/3 − 0.062

6
𝛼2𝑚𝑒𝑛𝑒. (4.10)

In Eq. (4.10), the first two terms on the right hand side represent the pressure of a de-
generate Fermi gas of non-interacting, relativistic electrons at temperature 𝑇 . The third
term stands for the Coulomb interactions between the point-like strangelet and the uni-
formly distributed electrons as well as the electron-electron interactions. The fourth term
in Eq. (4.10) represents the Thomas-Fermi correction that results from first order deviation
of the electron distribution from uniformity. This deviation is obtained by expanding the
relativistic electron kinetic energy about its value given by the uniform approximation and
then assuming that the ratio of the Coulomb potential energy of the electron to the electron
Fermi energy to be of the same order as the deviation in the electron distribution. The
fifth term arises due to the interactions between the relativistic electrons via. transverse
electromagnetic field while the sixth term represents the influence of the electric field of
ions on the above interactions between electrons. Here, it is important to note that an ana-
lytical expression for the electron pressure, that is similar to the one in Eq. (4.10), has also
been derived in Ref. [20] by using a “low pressure approximation", in which the electrons
may be assumed to have an uniform number density inside the Wigner-Seitz cell pertaining
to a strangelet. In Ref. [20], the said approximation was found to be justified in the case
𝑎B/𝑍

𝑖 > 𝑅𝑖
cell ≫ 𝑅𝑖 with 𝑅𝑖

cell = ( 3
4𝜋
𝑉 𝑖
cell)

1/3 being the radius of the spherical Wigner-Seitz
cell. We have verified that the above criterion is satisfied by all the Wigner-Seitz cells
associated with the charged fragments in the strangelet-complex, that are obtained nu-
merically in Sec. 4.3 by using the relations 𝜇𝑒 ≈ 𝑚2

𝑠

4𝜇𝑞
and 𝑛𝑒 ≈ 𝜇3𝑒

3𝜋2 mentioned in Sec. 4.1
above. The authors of Ref. [20] determined the pressure of the charge-neutralizing elec-
trons on a strangelet by considering the contributions from the degeneracy pressure (at
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zero-temperature) of electrons along with that from the Coulomb interactions between the
strangelet and the electrons as well as a contribution from the finite electron-mass (𝑚𝑒)
within the framework of the low pressure approximation described above. We have checked
that the discrepancy between the numerical values of multiplicities of strangelets, obtained
(in Sec. 4.3) by using Eq. (4.10) and then by using the expression in Ref. [20], is not more
than about 0.01% for the ranges of values of temperature, bag parameter and fragment-size
considered in this chapter.
With the definitions given in Eqs. (4.5), (4.6), (4.7), (4.8) and (4.10), the condition

for mechanical equilibrium mentioned above ultimately yields an expression for the total
thermodynamic potential Ω𝑖

tot of the strangelet at thermodynamic equilibrium at freeze-
out. This expression is [21]

Ω𝑖
tot = (−Ωo

V −𝐵)V𝑖
(︁Ωo

SS
𝑖 + 2Ωo

CC
𝑖 + 3𝐸𝑖

C − ∆𝐸𝑖
𝐶 − 3𝑃 𝑖

extV
𝑖

2Ωo
SS

𝑖 + Ωo
CC

𝑖 + ∆𝐸𝑖
𝐶 + 3𝑃 𝑖

extV
𝑖

)︁
, (4.11)

where,

∆𝐸𝑖
𝐶 ≈ 𝑚4

𝑠

32𝛼𝜇2
𝑞

𝑅𝑖

[︃
1 − cosh−2

(︁𝑅𝑖

𝜆𝐷

)︁{︃
1 +

(︁𝑅𝑖

𝜆𝐷

)︁
tanh

(︁𝑅𝑖

𝜆𝐷

)︁}︃]︃
. (4.12)

In the following, we will use Eqs. (4.11) and (4.12) to evaluate the multiplicities of strangelets
of the 𝑖th species as defined in Eq. (4.4). For doing this, we require an additional relation

𝑁 𝑖
𝑢 = 𝐴𝑖 + 𝑍𝑖, (4.13)

that is obtained from the definitions of the baryon number and the charge of a strangelet
with 𝑁 𝑖

𝑢 being the number of the 𝑢 quarks in that strangelet. In Eq. (4.13), we have
assumed that no electrons are localized inside strangelets. This equation may be rewritten
in the form of a transcendental equation, by using the definition 𝑁 𝑖

𝑢 =
(︁
− 𝜕Ω𝑖

𝑢

𝜕𝜇𝑢

)︁
𝑇,V𝑖

along

with Eq. (4.7) for 𝑍𝑖, that involves the radius parameter 𝑟𝑖o as defined in the discussion
preceding Eq. (4.5). This transcendental equation is solved iteratively to obtain the radius
parameter of a particular species of strangelets corresponding to each trial value of the
quark number chemical potential (𝜇𝑞) of the strangelet-complex in equilibrium at freeze-
out.
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4. An improved fragment distribution for unpaired SQM

4.3. Mass spectra of strangelets

In this section, we will explain the procedure adopted by us for the numerical determi-
nation of multiplicities of various species of strangelets in the strangelet-complex in ther-
modynamic equilibrium at freeze-out. For that purpose, we first examine the condition
of global charge-neutrality in the strangelet-complex. This condition can be written as
[21, 24]

∑︁
𝑖

𝜔𝑖

𝒱
𝑍𝑖 =

∑︁
𝑖

𝑛𝑖𝑍𝑖 = 𝑛𝑒 ≈
𝑚6
𝑠

192𝜋2𝜇3
𝑞

, (4.14)

where, 𝑛𝑖 = 𝜔𝑖

𝒱 is the multiplicity density of strangelet-fragments of the 𝑖th species. For
the derivation of Eq. (4.14), we have used the approximation for the electron chemical
potential, ie., 𝜇𝑒 ≈ 𝑚2

𝑠

4𝜇𝑞
(see the third paragraph of Sec. 4.1), in the strangelet-complex.

The values of 𝑛𝑖 for arbitrary positive integer values of 𝐴𝑖 are determined after we self-
consistently solve the system of equations, ie., Eq. (4.4), along with Eqs. (4.6)-(4.8) and
(4.10)-(4.14), for 𝜇𝑞 in the strangelet-complex in thermodynamic equilibrium at freeze-out.
The next step is to determine the value of the available volume (𝒱) of the strangelet-

complex. This can be achieved by using the condition for the conservation of the initial
baryon number 𝐴𝑏 [25] of the SQM that is released in a SS merger event. This condition
is written in the following form [21, 24]

𝒱 =
𝐴𝑏∑︀
𝑖𝐴

𝑖𝑛𝑖
. (4.15)

The value of 𝜔𝑖 of strangelets of the 𝑖th species can now be easily determined from the
known values of 𝑛𝑖 and 𝒱 . We choose 𝐴𝑏 = 1 × 1053, that corresponds to the population
averaged tidally released mass 𝑀ejected ≈ 10−4 𝑀⊙ [15] per binary SS merger obtained in
the simulations with the model SSs having a bag value 𝐵1/4 ≈ 145 MeV. Keeping in mind
the limited accuracy of the MIT bag model, we may, consider 𝐵1/4 = 145 MeV as the
most favourable choice of the bag constant for which the ordinary nuclei can decay into
their strange quark phases only on a time-scale longer than the age of the universe [40]. In
Chap. 2, we considered only this value of the bag constant to find the basic size distribution
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4. An improved fragment distribution for unpaired SQM

of the strangelets. For the calculations in this chapter, we, however, consider the fact that
the value of the bag constant for unpaired SQM lies within the range 145 MeV ≤ 𝐵1/4 ≤
158 MeV; see the subsection 1.6.1 and the inequality relation (1.2) for a justification of
considering the above limiting values for the bag constants in the standard MIT bag model.
It is also important to note that, in Chaps. 2 and 3, the condition of the global charge-

neutrality (Eq. (4.14)) of the strangelet-complex was not required to obtain the size dis-
tribution of strangelets with 𝑚𝑠 = 0. We, therefore, took 𝒱 as a free parameter in Chap.
2. In that particular case, we chose 𝒱 = (2 − 9)𝑉𝑏 = (2 − 9) × (4𝜋

3
𝑟3𝑏𝐴𝑏) by following the

standard practice in the computations in nuclear fragmentation models [26, 41, 42, 43],
where, 𝑉𝑏 is the initial volume of the ejecta with 𝑟𝑏 as its bulk radius parameter. For an
approximate estimate of 𝑉𝑏, we there considered 𝑟𝑏 ≈ ( 3

4𝜋𝑛𝑏
)1/3 [9] at zero temperature

and zero pressure with 𝑛𝑏 being the baryon number density in the bulk SQM before frag-
mentation. Following Ref. [9], baryon number density of the bulk SQM corresponding to
𝑚𝑠 → 0 and 𝑇 = 0 was denoted as 𝑛𝑏 = 0.7𝐵3/4[25]. In this chapter, it is possible to
self-consistently determine an unique numerical value of 𝒱 by considering the condition
of global charge-neutrality (Eq. (4.14)) along with the condition of the baryon number
conservation (Eq. (4.15)) in the strangelet-complex with massive 𝑠 quarks. Here, 𝑛𝑏 is
approximated as 𝑛𝑏 ≈ 1

3

[︁
2𝜇3𝑏
𝜋2 +

𝜇3𝑏
𝜋2 (1 − 𝜆2𝑠𝑏)

3/2
]︁
[9], where 𝜆𝑠𝑏 = 𝑚𝑠

𝜇𝑏
. Approximately, 𝜇𝑏 (ie.,

the value of the quark number chemical potential of the initial bulk SQM) can be taken as
one third of the parametrized form of its energy (𝐸𝑏) per baryon at 𝑃 𝑖

ext = 0 and 𝑇 = 0, ie.,
𝜇𝑏 = 1

3
(𝐸𝑏/𝐴𝑏) [9, 29]. The procedure for the calculation of 𝐸𝑏 has been outlined in the dis-

cussion preceding Eq. (4.4) in Sec. 4.1. Following the above prescription, an approximate
value of 𝑉𝑏 of the initial bulk SQM with 𝑚𝑠 ̸= 0 may easily be determined. If 𝐴𝑏 = 1×1053,
the numerical value of the available volume turns out to be 𝒱 ≈ 4×1050 MeV−3 ≈ 8×103𝑉𝑏

[21]. We also find that 𝒱 remains nearly the same for different bag values and for different
values of the temperature (at freeze-out) chosen in this chapter. The available volume is,
however, found to scale linearly with the values of 𝐴𝑏.
Before the presentation of the numerical results, we would like to add that, similar to the

case of the nuclear disassembly models, the derived size distribution of strangelet fragments
is also sensitive to channel selection (ie., the selection of their baryon numbers). In this
chapter, we consider all possible positive integer values of 𝐴𝑖 of the fragment-species to
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4. An improved fragment distribution for unpaired SQM

obtain the number of fragments (ie., the multiplicity) pertaining to each species. During the
selection of those channels, we also take the charge numbers of strangelets into account.
For this, we round off the real values obtained from Eq. (4.7) to their nearest positive
integers. The lower cut-off in the baryon number of a strangelet with 𝑚𝑠 = 95 MeV is
chosen so that the corresponding 𝑍𝑖 = 1 after rounding off [21].
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Figure 4.1.: Multiplicity (ln𝜔) distribution of strangelets for massless (𝑚𝑠 = 0) and massive (𝑚𝑠 =
95 MeV) 𝑠 quarks both for a fixed value of the bag parameter (𝐵1/4 = 145 MeV)
at a specific temperature (𝑇 = 10 keV) at freeze-out. The 𝑢 and the 𝑑 quarks are
considered to be massless in both cases. The results are displayed for (a) the full range
of the available baryon numbers and (b) for a limited range of baryon numbers of the
strangelet-fragments. Fig. 4.1(b) is included to focus on the lower cut-off (𝐴 ≈ 11 for
𝑚𝑠 = 95 MeV) in the baryon numbers as well as the baryon number (𝐴 ≈ 4) at which
the peak of the distribution (for 𝑚𝑠 = 0) is obtained. Available volume is determined
to be 𝒱 ≈ 8× 103𝑉𝑏, 𝐴b = 1× 1053.

In Fig. 4.1(a), we have compared the multiplicities of strangelets in two cases, namely
𝑚𝑠 = 0 and 𝑚𝑠 = 95 MeV, for a fixed bag value (𝐵1/4 = 145 MeV) at 𝑇 = 10 keV at freeze-
out. Fig. 4.1(b) also displays the same in truncated baryon number range (ie., a limited
range of baryon numbers). These figures show that the effect of 𝑚𝑠 ̸= 0 on the multiplicity
distribution is not equivalent to an enhanced Boltzmann suppression as seems to have
been recently suggested in Ref. [13]. The distribution for 𝑚𝑠 = 0 starts from 𝐴𝑖 ≈ 1; the
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strangelets are charge-neutral in this particular case. On the other hand, the distribution
for 𝑚𝑠 ̸= 0 starts from 𝐴𝑖 ≈ 11 which corresponds to 𝑍𝑖 ≈ 1. The difference in the nature
of the distribution in the two cases arises from a complex interplay of several factors.
The dynamical surface tension arises due to finite 𝑚𝑠 and vanishes for massless 𝑠 quarks
according to the standard MIT bag model [6, 7, 9]. This surface term can be considered
as the energy required for creating the surface whereas the curvature term represents the
energy required for bending it [44]. Due to the presence of an additional surface term
for 𝑚𝑠 ̸= 0, the total (surface + curvature) requirement of the energy is more than the
energy required for curvature alone in the particular case 𝑚𝑠 = 0. This implies that more
energy is required to produce small fragments out of the bulk SQM in the case of massive
𝑠 quarks. At fixed temperature, this energy has to be supplied from the limited reserve of
thermal energy of the strangelet-complex. In SMM, an increment in the total (surface +

curvature) requirement of energy (at a fixed temperature) to form light strangelets leads
to the production of heavier fragments at the cost of lighter fragments so that the total
baryon number is conserved. These features (or patterns) of multifragmentation, appears
consistently in our results both in Chap. 2 and in this chapter. Such features of the
disassembly model are independent of whether we consider massless or massive quarks.
They are also independent of the choice of CFL or the unpaired strangelets (see Chap. 3).
The size distributions of strangelet-fragments for a fixed bag value (𝐵1/4 = 145 MeV) at

three different temperatures, namely 𝑇 = 1 keV, 𝑇 = 10 keV and 𝑇 = 1 MeV, respectively,
are displayed in Figs. 4.2(a,b). The variation of size distribution with changing temperature
is in qualitative agreement with the one obtained in Chap. 2. Enhanced production of
lighter fragments and suppression of heavier fragments with increasing temperature are
noted for both 𝑚𝑠 = 0 [25] and 𝑚𝑠 ̸= 0 [21, 24, 27]. Such features of the fragmentation
pattern are commonplace in the case of nuclear fragmentation [26, 42, 43].
It is known that the surface free energies and the curvature free energies of both the

baryonic (ie., the nuclei) and the quasi-baryonic (ie., the SQM) fragments decrease with
increasing temperature [45, 46]. This fact has also been noticed in our numerical calcu-
lations. The above fact implies that the total requirement of (surface + curvature) free
energy to produce small size strangelets out of the initial bulk SQM is reduced at higher
temperature. This reduced requirement of free energy is easily met by a larger reserve of
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Figure 4.2.: ln𝜔 vs. 𝐴 for the strangelet-fragments with 𝐵1/4 = 145 MeV and 𝑚𝑠 = 95 MeV at
three different temperatures at freeze-out. Variations are displayed for (a) the full
range of possible baryon numbers and for (b) a limited range of baryon numbers of
the fragments.

thermal energy of the strangelet-complex at a higher temperature [21]. This, along with
the condition for the conservation of baryon number, ensure an enhanced production of
lighter fragments and suppressed production of heavier fragments with increasing temper-
ature. The patterns, as shown in Figs. 4.2(a,b), are in consonance with the standard
results of nuclear fragmentation models [42, 43, 47]. However, recent discussion on frag-
mentation in Ref. [13] obtains an opposite tendency in the variation of size distribution
of CFL strangelets with changing temperature. The authors of Ref. [13] attribute this
behavior of the size distribution to finite 𝑚𝑠 combined with the color-superconductivity
of the strangelets. We would like to point out that an earlier exploratory work in Chap.
3 found that the changes in the size distribution of CFL strangelets [28], having massless
quarks, with changing temperature are in qualitative agreement with Figs. 4.2(a,b).
In Figs. 4.3(a,b), we study the effect of bag values on the size distribution (or, the baryon

number distribution) of strangelets for𝑚𝑠 = 95 MeV at 𝑇 = 10 keV (at freeze-out). If other
parameters are fixed, an enhanced bag value increases the quark number chemical potential
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Figure 4.3.: Variations of ln𝜔 vs. 𝐴 for strangelets with 𝑚𝑠 = 95 MeV at a specific temperature
(𝑇 = 10 keV) but at two different bag values have been shown for (a) the full range
of possible baryon numbers and for (b) a limited range of baryon numbers of the
fragments. Approximate value of the quark number chemical potential (𝜇𝑏) of the
initial bulk matter before fragmentation, that corresponds to each value of the bag
parameter at zero external pressure and zero temperature, is also displayed.

in the strangelet-complex that, in turn, increases the surface and curvature energies of the
strangelet-fragments. Due to the enhancement in the requirement of the energy for the
formation of lighter fragments, the formation of heavier fragments at the cost of the lighter
ones is preferred. In Figs. 4.3(a,b), the lower cut-off (corresponding to 𝑍𝑖 ≈ 1) in the baryon
number of the strangelet-fragment distributions changes from 𝐴𝑖 ≈ 11 for 𝐵1/4 = 145 MeV
(corresponding to 𝜇𝑏 ≈ 284 MeV) to 𝐴𝑖 ≈ 14 for 𝐵1/4 = 158 MeV (corresponding to
𝜇𝑏 ≈ 309 MeV).
In Figs. 4.3(a,b), the results are obtained (for both the bag constants) by considering

the same mass ejection (ie., 10−4𝑀⊙) in a SS merger event. Numerical simulations [15]
of SS merger, however, find no mass ejection in the case 𝐵1/4 ≈ 158 MeV due to the
compactness of the merging SSs. These simulations may seem to indicate that, for 𝐵1/4 ∼
158 MeV, the merged system collapses into a BH faster than the time required for the
formation of the tidal arms. Although the actual simulations in Ref. [15] were done only
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at two nearly extreme bag values in the range 145 MeV . 𝐵1/4 . 158 MeV, the authors
performing those simulations expected that the population averaged ejecta mass (𝑀ejected)
for any intermediate bag value within the above interval would lie somewhere in the range
10−4𝑀⊙ > 𝑀ejected & 0 with lesser amount of ejected mass corresponding to a larger bag
constant. We have checked that the shape of the fragmentation pattern corresponding
to a particular bag value remains almost invariant for any reduced value of the mass of
the initially released bulk SQM except that all the multiplicities are now reduced by an
appropriate factor from the ones obtained for 𝑀ejected = 10−4𝑀⊙ (ie., 𝐴𝑏 = 1 × 1053) [21].
Such scaling makes it convenient to estimate the possible fluxes of strangelets in GCR for
different amounts of strange matter being tidally released by the merger of two SSs with
different values of the bag constants being assigned in their modelling.

4.4. Stability of the produced fragments

In this section, we will investigate the stability of the fragments that are produced due to
the fragmentation of the initial bulk SQM. This investigation is important as our ultimate
aim is to estimate the flux of absolutely stable strangelets in the vicinity of the Sun. The
strangelets having energy per baryon (𝐸𝑖/𝐴𝑖) less than 930 MeV belong to this category of
the absolutely stable strangelets. Those strangelets are possibly the only ones to survive
during the plausible confinement-time (∼ 107 yr [48]) of strangelets in the Galaxy and
are easily detectable in GCR in the solar neighborhood. It was, however, pointed out in
Ref. [40] that, in view of the uncertainties in the accuracy of the results derived from the
MIT bag model, the strangelets having their energy per baryon in the vicinity of that
of the nucleons cannot be discarded. In fact, precise values of 𝐸𝑖/𝐴𝑖 of strangelets, ie.,
whether they lie marginally above the nucleon mass or below the energy per nucleon in
56Fe, is a matter that involves only ∼ 1% deviation in numerical calculations and the
deviation of such magnitude may be insignificant for the results derived from the MIT bag
model. Keeping this issue in mind, we study the values of 𝐸𝑖/𝐴𝑖 of strangelet fragments
as a function of their baryon number 𝐴𝑖 for three different values of the bag constant at
a temperature 𝑇 = 1 MeV at freeze-out. As we know that the stability of the strangelets
decreases with increasing temperature [37], we investigate the stability of strangelets at 𝑇 =
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Figure 4.4.: Variation of the energy per baryon (𝐸/𝐴) against changing baryon number (𝐴) of
the strangelet-fragments (with 𝑚𝑠 = 95 MeV) for three different values of the bag
parameter at a specific temperature (𝑇 = 1 MeV) at freeze-out. Corresponding
value of the quark number chemical potential (𝜇𝑏) of the initial bulk matter at zero
pressure (𝑃ext = 0) and zero temperature is displayed against each bag value for the
sake of comparison. The solid (red) horizontal lines mark the energies per baryon of
56Fe, nucleon and Λ0-hyperon, respectively, that delineate the thresholds for absolute
stability, metastability and instability of the fragments.

1 MeV, the highest temperature considered in our case. The results of such investigation
are shown in Fig. 4.4. In Fig. 4.4, the solid (red) horizontal lines denote the values of
the energy per baryon of 56Fe (𝐸/𝐴 = 930 MeV) nucleus, nucleons (𝐸/𝐴 = 939 MeV)
and Λ0-hyperons (𝐸/𝐴 = 1116 MeV), respectively. Here, we simply look for fragment-
sizes satisfying the stability criterion in Ref. [40], according to which the strangelets are
stable if their energy per baryon is below the energy per baryon of nucleon (within 1%

of 930 MeV) for each value of 𝐵1/4 (or, 𝜇𝑏) displayed in Fig. 4.4. In the Fig. 4.4, we
find that all the strangelets having 𝐴𝑖 & 11 are stable relative to the 56Fe nucleus for
𝐵1/4 = 145 MeV (ie., 𝜇𝑏 ≈ 284 MeV). For 𝐵1/4 = 155 MeV (ie., 𝜇𝑏 ≈ 303 MeV) and
𝐵1/4 = 158 MeV (ie., 𝜇𝑏 ≈ 309 MeV), the strangelets having their sizes in the respective
ranges 𝐴𝑖 & 23 and 𝐴𝑖 & 90 are stable relative to the nucleons.
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It is also relevant to take note of an altogether different scenario of fragmentation of
a (positively charged) strangelet (embedded in a charge-neutralizing cloud of electrons),
with its radius satisfying 𝑅 ≫ 𝜆𝐷, through the “fission instability" proposed in Refs. [18,
19, 20, 23] within a model-independent theoretical framework. This instability affects
even the cold (𝑇 = 0) strangelets and this instability depends crucially on the surface
tension (𝜎𝑠) at the boundary of the quark matter. Instability sets in whenever 𝜎𝑠 < 𝜎crit,
where, 𝜎crit is a critical surface tension whose values have been determined in Ref. [18] in
the case of MIT bag model for a wide range of 𝑚𝑠 along with different values of 𝜇𝑏 of the
absolutely stable, charge-neutral bulk SQM at zero external pressure and zero temperature.
For 𝜇𝑏 = 305 MeV, for example, 𝜎crit takes on values in the range 0.1 MeV fm−2 ≤
𝜎crit . 2.7 MeV fm−2 for the mass of the 𝑠 quarks lying in the range 100 MeV ≤ 𝑚𝑠 ≤
240 MeV [18]. The value of 𝑚𝑠 has recently been estimated to be 𝑚𝑠 . 100 MeV with
reasonable accuracy. Hence, the possible value of 𝜎crit in the MIT bag model (estimated
from Fig. 3 in Ref. [18]) seems to be 𝜎crit ∼ 0.1 MeV fm−2 for values of 𝜇𝑏 lying in the
range (284 − 309) MeV (corresponds to the whole range of the bag constant, see Fig.
4.4). Such value of 𝜎crit is at least an order of magnitude smaller than the typical values
of the quark mode surface tension (𝜎𝑠 ∼ (5 − 10) MeV fm−2) in the MIT bag model of
strangelets. Above comparison seems to suggest that the stable strangelets, with their sizes
in the range 𝑅𝑖 ∼ (0.4-2.2)𝜆𝐷 that we obtain in this chapter, are also stable against the
fission instability proposed in Refs. [18, 19, 20, 23]. In the next section, we will use those
stable strangelets to estimate the possible integrated (over baryon numbers) intensity of
strangelets in the vicinity of the solar system.

4.5. Discussion

In this section, we mainly aim at the debris produced due to possible collisions between
SSs that may be a major source of strangelets in GCR [9, 15, 48, 49]. Earlier in Chap.
2, we attempted to estimate the integrated (sum over baryon numbers) intensity of those
strangelets in GCR by employing a diffusion approximation [50] and considering the limit
𝑚𝑠 → 0. In this section, we will use the same diffusion approximation and try to improve
upon the estimate by incorporating the effects of finite 𝑚𝑠 and a wider range of permissible
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values of bag constant. We assume strangelets, possibly produced in merger of binary SS
having a merger rate ∼ 10−5 yr−1 [15, 51] in each Galaxy, spread homogeneously in a
galactic halo of radius ∼ 10 kpc [9] within their galactic confinement time. Therefore, an
approximate intensity of strangelets of the 𝑖th species in the solar neighborhood can be
written, as in Ref. [25] (see also Eq. (2.7)),

𝐼(𝐴𝑖) ∼ 5 × 10−48𝜔𝑖 particles m−2 sr−1yr−1. (4.16)

Here, numerical values of 𝜔𝑖 have been determined in Sec. 4.3 using the thermodynamic
properties of strangelets and satisfying the conditions of charge-neutrality and the baryon
number conservation in the strangelet-complex.

Table 4.1.: Expected ranges of the integrated (over baryon number) intensity of stable strangelets
in the solar neighborhood for different intervals of plausible bag values and for the
corresponding ranges of the (tentatively) estimated tidally released mass per SS merger.
The estimations of ejected masses are inspired by the recent simulations [15] of SS
mergers in binary systems in which the limit of mass-resolution was ∼ 10−5𝑀⊙ [21].

𝐵1/4

(MeV)
𝜇𝑏 (MeV) Mass of strange mat-

ter released per SS
merger (𝑀⊙)

Estimated integrated inten-
sity of stable strangelets
(particles m−2 sr−1 yr−1)

145 ≈ 284 ∼ 10−4 ∼ (2 − 5) × 104

(146−150) ≈ (286 −
294)

∼ (0.01 − 1.0) × 10−4 ∼ (2 − 500) × 102

(151−158) ≈ (296 −
309)

∼ (0.0 − 1.0) × 10−6 ∼ (0 − 2) × 102

Approximation (4.16) provides only an order of magnitude estimate of integrated in-
tensity of strangelets in GCR. In this section, we did not consider the important issue of
the acceleration of the strangelets by the astrophysical shock waves and the dependence of
diffusion coefficient on kinetic energies of the accelerated (by the shock wave) strangelets.
A more rigorous estimate of flux of galactic strangelets will be provided in the next chapter
by incorporating those effects. Moreover, the present estimate does not take the effects
of possible interaction of strangelets with ISM (still now it is very poorly known) the ge-
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omagnetic field and the solar modulation into consideration. The simulations find, for
𝐵1/4 ≈ 145 MeV, a population averaged tidally released mass 𝑀ejected ≈ 10−4 𝑀⊙ per SS
merger. The integrated intensity of galactic strangelets in the solar neighborhood is esti-
mated from the approximation (4.16) by considering all the values of 𝜔𝑖 for all the stable
(𝐴𝑖 & 11) fragments as obtained from the results displayed in Figs. 4.2 and 4.4. The esti-
mated values of this intensity lie within the range ∼ (2 − 5) × 104 particles m−2 sr−1yr−1.
These results depend on the formation temperature of the strangelets. Increment in the
value of bag constant within the range 145 MeV < 𝐵1/4 . 158 MeV has a significant
effect. In that case, the results of recent numerical simulations of coalescence of SSs in-
dicate that the average tidally released mass per SS merger would be within the range
10−4 𝑀⊙ > 𝑀ejected & 0. However, it should be noted that those simulations were per-
formed only at two extreme ends of the aforesaid interval of the bag value. Hence, precise
value of tidally ejected mass for any intermediate bag constant cannot be determined from
those simulations. Such uncertainty notwithstanding, in Table 4.1 [21], we display the es-
timated ranges of integrated strangelet flux in the solar neighborhood for tentative ranges
of values of the average mass (𝑀ejected) released per SS merger corresponding to different
intervals of bag constants with the caveat that the amounts of ejected mass quoted in Table
4.1 for intermediate bag values are presented only for the sake of an illustration. The actual
amount of this ejected mass for an intermediate bag value can only be determined through
detailed high resolution simulations of SS merger for a number of bag values lying within
the range 145 MeV < 𝐵1/4 < 158 MeV. Such detailed high resolution simulations are yet to
be performed. In Table 4.1, large dispersions in the estimated fluxes for different bag values
actually reflect the limitation of the recent simulations in scanning the parameter space
as well as the limited mass-resolution of the present simulations. They also indicate the
theoretical uncertainty in predicting the formation temperature of the strangelets. In the
case 𝐵1/4 ∼ 158 MeV, the simulated results predict that almost no mass would be ejected
in SS merger which points out the vanishing strangelet flux in the solar neighborhood. On
the other hand, for an assumed tidally ejected mass 𝑀ejected ∼ 10−6𝑀⊙ per stellar merger
(that is an order of magnitude smaller than the limit of mass-resolution of the existing
simulations), the approximation (4.16), yields an integrated flux ∼ 1 particle m−2 sr−1yr−1

at a sufficiently low temperature (𝑇 ∼ 1 keV) at freeze-out in this particular case. Such
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4. An improved fragment distribution for unpaired SQM

integrated flux is, in principle, measurable in the observations with the AMS-02 experiment
at the present level of its sensitivity [52].
The ultimate vindication of SMH would depend on the detection of strangelets in GCR.

In this section, we have studied a plausible model of the rate of injection of strangelets
in the Galaxy. A more sophisticated galactic propagation model for the strangelets is
required to arrive at a definite conclusion of strangelet-flux in GCR for AMS-02 [52] and
other potential experiments.
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Chapter 5

Estimation of flux of galactic strangelets in the solar

neighborhood

In each of the previous chapters (ie., Chap. 2. - Chap. 4), we have estimated an order of
magnitude of the integrated intensity (ie., the sum of the intensity of each stable strangelet
of all possible baryon numbers) of galactic strangelets with the help of simple diffusion
approximation. The diffusion coefficient in those cases does not depend on kinetic energies
of the strangelets. In this chapter, our goal is to obtain a more realistic estimate of the flux
(ie., the kinetic energy dependence of flux) of galactic strangelets in the solar neighborhood
which would be useful for the ongoing and future experiments involved in the search of
strangelets in GCR. For such estimate, we need to take into account the acceleration of the
strangelets at the site of the SS merger in the binary stellar system and the propagation of
those accelerated strangelets in the ISM. In Sec. 5.1 of this chapter, we will consider the
first order Fermi acceleration and the standard diffusive propagation of strangelets in the
ISM. Results are shown in Sec. 5.2. Sec. 5.3 contains the discussion part.

5.1. Acceleration and propagation of galactic strangelets

In the previous chapter (ie., Chap. 4), we have seen that strangelets carry positive charges
(see Eq. (4.7)). Due to this characteristic, strangelets may be compared with CR. Being
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5. Estimation of flux of galactic strangelets in the solar neighborhood

charged particles, CR move along the randomly oriented magnetic field lines in the ISM
which would re-enter in the vicinity of the accelerating site of CR due to which CR interact
with the SN shock front and they are accelerated by the SN shock following first order
Fermi acceleration mechanism [1, 2] (see also the brief discussion in Sec. 1.3 of Chap. 1).
Finally, such accelerated CR propagate far away from their site of acceleration following the
randomly oriented magnetic field lines in the ISM. Similar to CR, the strangelet-fragments,
after originating from the SS merger events, are expected to undergo first-order Fermi
acceleration mechanism by interacting with shock wave produced either directly from the
SS collisions or from the collision of the tidally ejected mass with its surrounding ISM [3].
Shock waves, thus generated, are likely to be relativistic as indicated by the observations
of the gamma ray bursts (GRBs) * [4] that are believed to occur in the mergers of two
compact stellar objects. Typically, 1−10% of the shock energy is considered to be used for
CR acceleration [7, 8] in SNe shocks. Since strangelets are heavier (ie., more massive) than
protons, we will consider lower (ie., 1%) conversion efficiency (ie., 1% of the shock energy
is used for acceleration) for our calculation. Due to lack of observations and simulations
of coalescence of SSs, we have considered that 1% of the shock energy ∼ 1049 ergs (lower
limit of the ejected kinetic energy as obtained in the simulations of binary NS mergers)
[9] is used for the acceleration purpose of the strangelets produced in each binary SS
merger. The resultant energy spectrum of all the strangelets, summed over their species,
is expected to be a power law 𝑑𝒩 (ℰ)/𝑑ℰ = 𝒩𝑜ℰ−𝛼 [3]. Here, 𝒩 (ℰ)𝑑ℰ is the (assumed)
number of strangelets with their kinetic energies being in the range [ℰ , ℰ + 𝑑ℰ ] with 𝒩𝑜

being a normalization constant. The spectral index, for lower kinetic energies (ie., the
kinetic energy range of GCR; see Sec. 1.3 of Chap. 1), is assumed to have a value around
𝛼 ≈ 2.2 [3, 10] in this chapter. We, further, consider the propagation of these accelerated
strangelets through the ISM by taking into account a standard diffusive propagation model.
In the standard diffusive propagation model, we need to consider the diffusive transport

of the strangelets from a source (ie., SSs in a binary stellar system), located at a position
�⃗�𝑠𝑜 = (𝑥𝑠𝑜, 𝑦𝑠𝑜, 𝑧𝑠𝑜) (ie., the position coordinate of the site of the merger event or simply
the position coordinate of the compact remnant existing after the merger event and it is

*GRBs are considered as the extremely energetic explosions and possibly the brightest electromagnetic
events which are known to occur in the universe [5]. These events can last from ten milliseconds to
several hours [6].
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assumed to be a point-like source for the sake of simplification), that injects strangelet
spectrum (ie., the spectrum is assumed to follow a power-law distribution after shock
acceleration), at a time 𝑡𝑠𝑜. Hence, the diffusive transport equation for 𝑖th species can be
written as [8]

𝜕𝑛𝑖𝑠𝑡
𝜕𝑡

= ∇i
[︁
𝐷𝑖∇i𝑛𝑖𝑠𝑡

]︁
− Γ𝑖𝑠𝑝𝑛

𝑖
𝑠𝑡 + 𝒩 𝑖

𝑠𝑡𝛿(𝑡− 𝑡𝑠𝑜)𝛿
3(𝑟𝑖 − �⃗�𝑠𝑜), (5.1)

where, 𝑡, 𝑛𝑖𝑠𝑡, 𝑟𝑖 and Γ𝑖𝑠𝑝 are any arbitrary time, the number density and the position
vector of accelerated strangelets and the rate of spallation † of 𝑖th species respectively. The
injection spectrum of 𝑖th species is denoted as 𝒩 𝑖

𝑠𝑡 = 𝑑𝒩 𝑖

𝑑ℰ𝑖 = ℰ0 𝜔𝑖

6
∑︀

𝑖 𝜖
𝑖
min𝜔

𝑖 (ℰ 𝑖)−2.2 (see Eq. (D.8)
in Appendix D). Here, 𝜖𝑖min = 1

2
𝑚𝑖

0𝛽
2
min [3] with 𝛽min = 𝑣min/𝑐 = 0.15 (c is the speed of

light) [3, 9], for the minimum initial speed (𝑣min) at which the strangelets are injected in
the Galaxy. 𝑚𝑖

0 denotes the rest mass energy (here it is taken in GeV unit) of the strangelet
of 𝑖𝑡ℎ species which is same as 𝐸𝑖 in Eq. (4.9), Chap. 4. Along with this, ℰ 𝑖 and 𝜔𝑖 are
the kinetic energy and multiplicity (see Eq. (4.4) in Chap. 4) of 𝑖th species respectively.
ℰ0 is considered as the effective kinetic energy used by the shock waves to accelerate the
strangelets. For our calculation, we have considered ℰ0 = 6.25 × 1049 GeV (ie., 1% of the
1049 erg [9]; 1 erg = 625 GeV). In Eq. (5.1), we have used the energy dependent diffusion

coefficient, 𝐷𝑖 = 3× 1028
(︁

ℰ𝑖

1GeV 𝑍𝑖

)︁0.5
cm2/s [11] which is assumed to be spatially constant

and ℰ 𝑖 =
√︀

(ℛ𝑖)2(𝑍𝑖𝑒)2 + (𝑚𝑖
0)

2 −𝑚𝑖
0, where, rigidity (ℛ𝑖, in unit of GV) for a particular

charged species (𝑍𝑖) is ℛ𝑖 =
𝑚𝑖

0

𝑍𝑖𝑒
𝛽𝑖√

1−(𝛽𝑖)2
(𝑒 is the magnitude of the electronic charge) with

𝑣𝑖 (= 𝛽𝑖𝑐) being their (assumed) speed in the vicinity of the Sun.
Our Galaxy can roughly be described as a cylindrical disc with a thickness of about ∼

600 pc which is much shorter than its radius𝑅𝑑 ∼ 15 kpc (1 kpc = 1000 pc= 3.08×1021 cm).
For the diffusive transport of strangelets, we may also assume a cylindrical diffusion region
(including the galactic plane) of radius 𝑅𝑑 and half-height 𝐻 [12] (see Fig. 5.1 [12]).
We further assume that the diffusion coefficient is constant in that cylindrical region [8].
We have also considered that strangelets can escape only through the upper and lower
boundaries of the cylindrical region which can be modelled by assuming 𝑛𝑖𝑠𝑡 = 0 at 𝑧𝑖 =

†A process in which CR interact with the matter of ISM or with other CR and light elements such as
lithium, boron etc. are produced. For strangelets, spallation process is poorly known.
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Figure 5.1.: A model to study the propagation of strangelets in the Milky Way Galaxy [12]. In
the schematic diagram, 𝐻 and ℎ are half-height of the cylinder and half-thickness of
the central plane respectively.

±𝐻 [8] and the escape flux of strangelets through the surfaces 𝑧𝑖 = ±𝐻 is denoted by
𝐷𝑖 𝜕𝑛

𝑖
𝑠𝑡

𝜕𝑧𝑖
|𝑧𝑖=±𝐻 [8].

The free Green function (ie., without considering any boundary conditions) of Eq. (5.1)
can be written as [8]

𝒢𝑖𝑓𝑟𝑒𝑒(𝑟𝑖, 𝑡; �⃗�𝑠𝑜, 𝑡𝑠𝑜) =
𝒩 𝑖
𝑠𝑡

[4𝜋𝐷𝑖𝜏 ]3/2
exp(−Γ𝑖𝑠𝑝𝜏) exp

[︁
− (𝑟𝑖 − �⃗�𝑠𝑜)

2

4𝐷𝑖𝜏

]︁
, (5.2)

where, 𝜏 = 𝑡− 𝑡𝑠𝑜. The actual Green function, ie., the Green function that satisfies the
correct boundary condition at 𝑧𝑖 = ±𝐻, can be evaluated by using the method of image
charges and can be denoted as [8]

𝒢𝑖(𝑟𝑖, 𝑡; �⃗�𝑠𝑜, 𝑡𝑠𝑜) =
𝒩 𝑖
𝑠𝑡

[4𝜋𝐷𝑖𝜏 ]3/2
exp(−Γ𝑖𝑠𝑝𝜏) exp

[︁
− (𝑥𝑖 − 𝑥𝑠𝑜)

2 + (𝑦𝑖 − 𝑦𝑠𝑜)
2

4𝐷𝑖𝜏

]︁
×

𝑛=+∞∑︁
𝑛=−∞

(−1)𝑛 exp
[︁
− (𝑧𝑖 − 𝑧′𝑛)2

4𝐷𝑖𝜏

]︁
, (5.3)

where, 𝑧′𝑛 = (−1)𝑛𝑧𝑠𝑜 + 2𝑛𝐻 are related to the 𝑧 coordinates of the image sources and 𝑛
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being the number of image sources.

5.2. Estimation of flux of galactic strangelets

For our case, we have considered that all sources of strangelets, ie., SSs in the binary stellar
systems, are located over the galactic disc (ie., 𝑧𝑠𝑜 = 0) [3]. Due to lack of observational
evidence and experimental data, it is very difficult to predict the actual distribution of the
sources of strangelets. For the sake of simplicity, we have taken the homogeneous model ie.,
we have considered that sources of strangelets are distributed uniformly over the galactic
disc. Along with, we ignore the spallation of strangelets. As we are going to consider only
stable strangelets and interactions of strangelets with normal nuclei are still very poorly
known, we can ignore spallation for the first calculation. The differential flux (ie., the
number of strangelets per unit area, time, kinetic energy and solid angle) (at the center of
the disc) of (stable) strangelets of 𝑖th species obtained from the merger of binary SSs with
a merger rate ℛ𝑚 is the following (using Eq. (5.3) and Refs. [3, 8])

Φ𝑖
𝑠𝑡 =

𝛽𝑖𝑐

4𝜋

∫︁ ∞

0

𝑑𝜏

∫︁ 𝑅𝑑

0

𝑑𝑟𝑖
2𝜋𝑟𝑖

𝜋𝑅2
𝑑

𝒩 𝑖
𝑠𝑡ℛ𝑚

[4𝜋𝐷𝑖𝜏 ]3/2
exp
[︁
− (𝑟𝑖)2

4𝐷𝑖𝜏

]︁ 𝑛=+∞∑︁
𝑛=−∞

(−1)𝑛 exp
[︁
− (2𝑛𝐻)2

4𝐷𝑖𝜏

]︁
. (5.4)

In Eq. (5.4), 𝜏 is the confinement time for the strangelets in the Milky Way Galaxy which
is quite large such as 106 to 107 years if taken as the same to that of GCR. So, the upper
(integration) limit of 𝜏 may be taken as infinity without causing any significant error as
𝒢𝑖(𝑟𝑖, 𝑡; �⃗�𝑠𝑜, 𝑡𝑠𝑜) decreases sharply with 𝜏 . After carrying out the integration on 𝜏 first and
then on 𝑟𝑖, Eq. (5.4) becomes [8]

Φ𝑖
𝑠𝑡 =

𝛽𝑖𝑐

4𝜋

𝒩 𝑖
𝑠𝑡ℛ𝑚[︁

2𝜋𝐷𝑖𝑅𝑑

]︁ 𝑛=+∞∑︁
𝑛=−∞

(−1)𝑛
[︁√︂

1 +
(︁2𝑛𝐻

𝑅𝑑

)︁2
−
√︂(︁2𝑛𝐻

𝑅𝑑

)︁2]︁
. (5.5)

For 𝐻 ≪ 𝑅𝑑, the sum over 𝑛 gives ∼ 𝐻/𝑅𝑑 [8] and Eq. (5.5) becomes

Φ𝑖
𝑠𝑡 =

𝛽𝑖𝑐

4𝜋

𝒩 𝑖
𝑠𝑡ℛ𝑚

2𝜋𝑅2
𝑑

𝐻

𝐷𝑖
. (5.6)

126



5. Estimation of flux of galactic strangelets in the solar neighborhood

As
∫︀

Φ𝑖
𝑠𝑡𝑑ℰ 𝑖 denotes the integral flux (ie., the number of strangelets per unit area, time,

and solid angle but above some threshold kinetic energy or rigidity), therefore, integral
flux of 𝑖th species can be written as

ℐ 𝑖 = 2.85
𝜔𝑖∑︀

𝑖 𝜖
𝑖
min𝜔

𝑖
(𝑍𝑖)1.5

(︁𝐻
𝑅𝑑

)︁
×
∫︁ ℛ𝑖

max

ℛ𝑖
min

(𝛽𝑖)2(Λ𝑖)−2.7𝑑ℛ𝑖 cm−2sr−1yr−1 (5.7)

= 2.85 × 104 𝜔𝑖∑︀
𝑖 𝜖
𝑖
min𝜔

𝑖
(𝑍𝑖)1.5

(︁𝐻
𝑅𝑑

)︁
×
∫︁ ℛ𝑖

max

ℛ𝑖
min

(𝛽𝑖)2(Λ𝑖)−2.7𝑑ℛ𝑖 m−2sr−1yr−1, (5.8)

where, 𝑐, in Eq. (5.7), is in unit of cm/s and ℛ𝑚 ≈ 10−6yr−1 [13]. The half height can be
considered to be 𝐻 ∼ 0.3 − 1 kpc [14] (ie., 𝐻 ≪ 𝑅𝑑 limit is valid) and Λ𝑖 = (ℛ

𝑖𝑍𝑖𝑒
𝛽𝑖 −𝑚𝑖

0).

The minimum rigidity for any 𝑍𝑖 can be represented as ℛ𝑖
min = 1

𝑍𝑖𝑒

√︂(︁
ℰ 𝑖min

)︁2
+ 2𝑚𝑖

0ℰ 𝑖min,

where, ℰ 𝑖min is the minimum kinetic energy of 𝑖th strangelet and for any species of strangelet
ℛ𝑖

max = ℛmax = 103 GV [15]. The initial value of the ℛ𝑖
min, for a particular 𝑍𝑖 and 𝐴𝑖,

can be calculated by setting ℰ 𝑖min = 1 GeV. ℛ𝑖
min is then varied and ℐ 𝑖 is calculated for

particular value of 𝑍𝑖 and 𝐴𝑖. Although the strangelet flux, given in Eqs. (5.7) and (5.8),
is evaluated at the centre of the galactic disc, it is to be expected that the diffusive system
would ultimately attain a steady state at which the time averaged strangelet fluxes from
all the sources on the galactic plane would be equal at all the points on that plane.
In Figs. 5.2(a,b) and 5.3(a,b), we have compared the estimated integral fluxes (ℐ 𝑖 ) of

strangelets (formed at three different temperatures at freeze-out, namely, 𝑇 = 1 MeV,
𝑇 = 10 keV and 𝑇 = 1 keV) with the possible upper limits of the integral fluxes (with
95% confidence level [15]) obtained from the PAMELA [15] experiment for two different
values of 𝐻, the baryon numbers (𝐴𝑖) and the corresponding values of 𝑍𝑖. The 𝐴𝑖 for each
𝑍𝑖 is chosen such that it is stable for the temperature range we have considered here and
has maximum multiplicity (𝜔𝑖) for the corresponding 𝑍𝑖 at each 𝑇 so that we can obtain
maximum integral flux for the corresponding 𝑍𝑖. The multiplicities at different temper-
atures are calculated by using Eq. (4.4) (see Chap. 4) by considering 𝐵1/4 = 145 MeV,
𝑚𝑠 = 95 MeV and average mass ejection ∼ 10−4𝑀⊙. Only at 𝑇 = 1 MeV, the maximum
integral flux at lowest rigidity for 𝐴𝑖 = 11, 𝑍𝑖 = 1 and 𝐻 = 1 kpc (as shown in Fig 5.2(a))
is very close to the upper limit of integral flux as reported by PAMELA. Otherwise for both
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(b)

Figure 5.2.: Integral flux vs. rigidity of the strangelet-fragments with 𝐵1/4 = 145 MeV and 𝑚𝑠 =
95 MeV that are formed at three different temperatures at freeze-out. Comparisons
with PAMELA results [15] are displayed for (a) 𝐴 = 11, 𝑍 = 1 and 𝐻 = 1 kpc, and
for (b) 𝐴 = 30, 𝑍 = 2 and 𝐻 = 1 kpc.
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Figure 5.3.: Integral flux vs. rigidity of the strangelet-fragments with 𝐵1/4 = 145 MeV and 𝑚𝑠 =
95 MeV that are formed at three different temperatures at freeze-out. Comparisons
with PAMELA results [15] are displayed for (a) 𝐴 = 11, 𝑍 = 1 and 𝐻 = 0.3 kpc, and
for (b) 𝐴 = 30, 𝑍 = 2 and 𝐻 = 0.3 kpc.
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the values of 𝐻, the theoretical integral fluxes for 𝐴𝑖 = 11, 𝑍𝑖 = 1 and 𝐴𝑖 = 30, 𝑍𝑖 = 2 are
found to fall below the possible upper limit of the (integral) flux of the strangelet which
is reported recently from the null observations of strangelets with the PAMELA detector
system. We have also checked the integral fluxes for other 𝑍𝑖(= 3 to 8) values and we have
obtained that such fluxes are also below the upper limits of (integral) fluxes of strangelets
as given in Ref. [15]. Our results, presented in this section, seem, therefore, to justify the
null results obtained from the PAMELA experiment [15]. The theoretical estimates of the
integral flux also indicate that the integral fluxes for 𝑇 = 1 MeV, 𝐴𝑖 = 30, 𝑍𝑖 = 2 and for
both the values of 𝐻 are quite below the sensitivity limit (ie., 1 particle m−2sr−1yr−1 [16])
of AMS-02. But for the other two temperatures and the same set of 𝐴𝑖 and 𝑍𝑖 integral
fluxes go below the sensitivity limit of AMS-02 at the higher rigidities (see Figs. 5.2(b) and
5.3(b)). On the other hand, integral fluxes, at various temperatures, for 𝐴𝑖 = 11, 𝑍𝑖 = 1

are within the sensitivity limit of AMS-02 for a broad range of rigidity as shown in the
Figs. 5.2(a) and 5.3(a).

5.3. Discussion

Previously, J. Madsen estimated the (differential and integral) flux of strangelets consid-
ering the acceleration and propagation of strangelets [10]. But, he assumed that all the
strangelets, produced in the merger of binary SSs, have the same size (or, baryon number)
which is an oversimplified assumption [10]. In this chapter, we have estimated the flux of
strangelets using the size (or, baryon number) distribution, as obtained in Chap. 4, at the
site of merger along with the Fermi acceleration mechanism and the diffusive propagation
model. In this present work, we have used the Green’s function formalism to describe the
propagation of strangelets from their sources. The sources, in the formalism, are modelled
as discrete point-like sources in space and time with a spatial distribution [8]. However,
in our final calculation, we have considered the homogeneous distribution of sources as
the source distribution of SSs in the binary stellar systems is not well established. Our
calculation, as presented in this chapter, is meant for the Milky Way Galaxy, but the same
procedure is applicable for any other Galaxy if possibly having binary SS systems.
In Chap. 4, we have seen that the stability of strangelet decreases (see Fig. 4.4) with
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the increase in bag value. For 𝐵1/4 = 158 MeV, the stable (at least stable than nucleon)
strangelets have 𝐴𝑖 & 90 and 𝑍𝑖 & 4. Numerical simulations of coalescence of SSs predict
that the mass ejection in binary SS merger for much higher bag value is quite small or
nothing. Hence, we mainly presented the integral fluxes for 𝐵1/4 = 145 MeV for which the
estimated average mass ejection is 10−4𝑀⊙

‡. The results, shown in this chapter, however,
do not depend on the amount of the ejected mass as the ratio of the numerator and the
denominator of 𝜔𝑖∑︀

𝑖 𝜖
𝑖
𝑚𝑖𝑛𝜔

𝑖 remains same for different mass ejection, and for a fixed value of
bag and 𝛽min.
In our calculation, we, however, do not take into account spallation, solar modulation, S

and geomagnetic rigidity cut-off ¶. Normally, spallation and solar modulation will suppress
the flux of strangelets at lower kinetic energies or rigidities. As the effect of solar modula-
tion dominates highly in the kinetic energy range of ∼ 1 GeV or below, we have considered
ℰ 𝑖min & 1 GeV. From the point of view of diffusive propagation model, the calculation in
this chapter may be close to GALPROP [17] or similar galactic propagation codes if we
include spallation model for strangelets and a boundary condition such that free escape
may happen at some finite radius along the lateral sides of the cylinder [8]. Hence, the
diffusive propagation model, presented here, may be further improved by using more so-
phisticated galactic propagation models incorporating the spallation, solar modulation and
geomagnetic rigidity cut-off. However, considering the fact that the PAMELA observations
were mostly conducted during the period of minimum solar activity time cycle (ie., solar
modulation is not significant), the Eqs. (5.7) and (5.8) give a reasonable approximation
of the integral flux of strangelets. Hence, our results are consistent with the null result as
obtained by PAMELA collaboration. The integral flux which we have estimated in this
chapter can be treated as the flux at the top of the atmosphere (TOA). We would further
consider the propagation of strangelets, using the flux at the TOA, through the Earth’s

‡We have checked the integral fluxes for 𝐴𝑖 = 90, 𝑍𝑖 = 4, 𝐵1/4 = 158 MeV and ejected mass of 10−4𝑀⊙,
keeping the other parameters same as denoted in this chapter. Such integral fluxes are well below the
upper limit of integral fluxes as reported in Ref. [15].

SGCR flux, at the outskirts of the solar system, is modulated due to interaction with solar wind (ie.,
GCR are scattered by the magnetic field frozen in the solar wind plasma) which is originated from the
corona of the Sun. This phenomenon is known as solar modulation. This type of modulation would
also happen for strangelets.

¶This is a quantitative measure of the shielding against charged particles which is provided by the Earth’s
magnetic field.
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atmosphere which would provide an estimate of the flux of strangelets at the mountain
altitude or at the sea level (see also the discussion in Chap. 6). Such estimated values of
flux would also be useful for ground-based detectors which are searching strangelets in the
atmospheric CR. It is, therefore, expected that present results would serve as a benchmark
for further theoretical calculations and will be useful for AMS-02 and other future exper-
iments with more sensitive and sophisticated detectors which may detect strangelets and
ultimately vindicate the SMH.
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Chapter 6

Summary and future outlook

The existence of SQM, a theorized ground state of strongly interacting matter, is still a
mystery. For more than three decades, after E. Witten put forward the conjecture about
SQM, experimentalists are searching for the signature of SQM, but apart from a few
unusual events, no conclusive evidence has been found yet. Still, SQM, a novel form of
matter, is a fascinating and intriguing subject for research as the stable SQM has several
important consequences in astrophysics. Moreover, ongoing experiments such as PAMELA
and AMS-02 with sophisticated detectors have been searching for strangelets, small lumps
of SQM, in GCR. Hence, in the present context, it is important to investigate the possible
production scenario of galactic strangelets and estimate the flux of such galactic strangelets
in the solar neighborhood that would be useful for the ongoing as well as for the upcoming
experiments which are the key motivations behind this thesis.
The entire work of this thesis is based on the SMH which would support the possible

existence of SSs in compact binary stellar systems. A brief overview on compact stars
has been outlined at the beginning of the thesis. Most of the events which support the
(possible) existence of strangelets were obtained in the experiments related to CR. Hence,
a preliminary idea about CR and the possible connection between CR and strangelets
has also been discussed in the introductory chapter. Basic properties of bulk SQM and
strangelets (both unpaired and CFL) are also discussed within the framework of MIT bag
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model. In the present work, our main focus is on the astrophysical production of unpaired
and CFL strangelets which may arise due to subsequent fragmentation of ejected matter in
binary SS and CFLS-NS mergers, respectively. Various experiments involved in the search
for these exotic particles (ie., strangelets) and the events with unusual 𝑍/𝐴 (ie., charge to
baryon number ratio), a distinguishable signature for strangelets, are also discussed here.
In that chapter, we have introduced the SMM that has been adopted by us to study the
fragmentation of SQM. Actually, we have used the SMM to obtain the plausible mass
spectrum of strangelets originated at the different sites of the binary SS mergers.
In Chap. 2, we have implemented SMM in SQM system to derive the mass spectrum (or,

size distribution) of astrophysical strangelets with the simplified assumption that all quark
flavors are massless. Numerical simulations of coalescence of SSs predict a fraction of SQM,
a self-bound matter, would possibly be ejected from the tip of the spiral arms originated in
such merger events. Subsequent fragmentation of such gravitationally unbound ejecta (ie.,
ejected SQM) has been studied by invoking the SMM. In that chapter, we have considered
a standard bag value, ie., 𝐵1/4 = 145 MeV, and shown the variation of multiplicities of
strangelets with the baryon numbers for the plausible available volumes and for a wide
range of temperatures which would possibly be attained by strangelet-fragments at the
freeze-out. We have inferred that lighter (or, lower baryon number) fragments are increased
in number with the increase in temperature which is a very common scenario in cases when
SMM is applied to explain the experimental data of nuclear collision experiments. The
results for the variation of multiplicities with the baryon numbers for different available
volumes are also consistent with the results obtained in cases of nuclear fragmentation.
The plot of energy per baryon vs. baryon number shows the stability of strangelets which
originate from the fragmentation of ejected SQM in binary SS mergers. Along with this,
we have also estimated an order of magnitude of the integrated intensity of stable galactic
strangelets near the vicinity of the Sun using the simple diffusion approximation and the
results are consistent with the previous prediction.
Chap. 3 is related to the fragmentation of CFL SQM (with the assumption of massless

quarks) which possibly originates from the merger of CFLS and NS in a binary system.
CFL SQM is more stable than normal SQM due to the Cooper-like pairing between quarks
of different flavors and colors and for that reason the upper stability limit of bag value
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for CFL SQM would be higher than the predicted value of normal (or, unpaired) SQM.
In that chapter, we have studied the fragmentation patterns using the quantum statistical
expressions of SMM rather than classical one which was used in Chap. 2. In that chapter,
we have also discussed the production scenario of CFL SQM and shown the variation of
multiplicity with baryon number for different parameters such as temperatures at freeze-
out, different bag values, and gap parameters (pairing energy gaps). In a recent work, L.
Paulucci et al. [1] showed the fragmentation patterns of CFL SQM which were dissimilar
to those obtained in Chap. 2 and they suggested that the incorporation of color flavor
locking in the calculations might be the cause of different behavior of the fragmentation
patterns. But, we did not find any drastic change in the nature of the mass spectrum
of CFL strangelets. The fragmentation patterns related to the variation of fragment size
distributions with temperatures are similar to the patterns obtained in Chap. 2. We have
also compared the fragment size distributions coming from quantum statistical expressions
and approximate classical (or, Maxwell-Boltzmann) expression, and we have seen that the
results do not differ very much, and we can apply expression of classical approximation
for the temperature range we have considered in this work. However, a point should be
noted that the coalescence between a CFLS and its companion NS is quite uncertain as
the possibility of NS turning into a CFLS may not be ruled out. In that case, both CFLS
may collapse to BH without spewing any CFL SQM in the ISM which indicates a very
little or no mixture of CFL strangelets in GCR. Considering such uncertainty regarding the
production of CFL strangelets, we did not further discuss the formation of CFL strangelets
or estimate the tentative flux of CFL strangelets in this thesis.
In Chap. 4, we have tried to obtain a more realistic mass spectrum of strangelets. Unlike

the previous two chapters, in that chapter we have taken the finite mass of strange quarks
(ie., 𝑚𝑠) into account whereas the up and down quarks are still considered to be massless.
Finite mass of 𝑠 quarks introduces the surface tension, finite charge and Coulomb energy
terms in the system. Surface tension and Coulomb energy terms try to destabilize the
system by increasing the energy per baryon of the system. Hence, stability analysis of
strangelets is quite important for estimation of the possible flux of strangelets in the solar
neighborhood as only stable strangelets are considered to contribute in the estimation of
flux. In that chapter, we have considered the same scenario, as discussed in Chap. 2, for the
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production of astrophysical strangelets and fragmentation of SQM is obtained by invoking
the SMM. We have also discussed the necessary modifications, due to finite 𝑚𝑠, needed for
the adoption of SMM in our system. In that chapter, available volume is not taken as a free
parameter; rather it has been calculated self-consistently by satisfying the global charge-
neutrality and baryon number conservation in the strangelet-complex. The mass spectra
of strangelets for different temperatures at freeze-out are displayed in that chapter. Mass
spectra for different bag values are also shown there. The patterns of the mass spectra for
the variation of temperatures are similar to the patterns obtained in Chap. 2 and Chap. 3.
Hence, we can substantially conclude that the patterns of the fragment size distributions
for the variation of temperatures do not substantially depend on 𝑚𝑠 and type (ie., CFL or
unpaired) of the strangelets. The stability of the strangelet fragments is then discussed,
and integrated intensity of the stable strangelets, using the diffusion approximation, is also
estimated in that chapter.
In Chap. 5, we have tried to obtain a more realistic estimate of the flux of galactic

strangelets. In that chapter, we have also compared our results with the upper bounds
of fluxes of strangelets as reported by PAMELA collaboration. For our calculations, we
have compared the strangelets with CR. We have obtained the integral flux of galactic
strangelets by using the first order Fermi acceleration mechanism and the standard diffusive
propagation model. In that standard diffusive propagation model, we have used a diffusion
coefficient that depends on the kinetic energy of the strangelet. We have also considered
that strangelets, produced due to fragmentation of SQM (we have used the mass spectra
of strangelets which we have obtained in Chap. 4), are accelerated by the shock waves
generated in binary SS mergers and they attain a power-law spectrum. Those accelerated
strangelets will further propagate through the ISM of the MilkyWay, and we have estimated
the integral flux of stable galactic strangelets in the solar neighborhood by solving the
diffusive transport equation. For the estimates, we do not take spallation, solar modulation,
and geomagnetic rigidity cut-off into account. The theoretical estimates are then compared
with the upper limits of integral fluxes of strangelets reported by PAMELA collaboration.
The comparisons show that our estimated fluxes for different 𝑍 (ie., charge) values are
consistent with the recent findings of the PAMELA experiment. Moreover, the results
would also be useful for the ongoing AMS-02 and other future experiments.
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In a nutshell, we can say that in this work we have provided a possible production sce-
nario of astrophysical strangelets and tried to obtain a more realistic mass spectrum (or,
baryon number distribution) at the site of the binary SS mergers. With the help of that
mass spectrum, and using Fermi first order acceleration mechanism and the standard dif-
fusive propagation model, we have estimated the integral flux of stable galactic strangelets.
Such estimated integral flux is then compared with the upper limit of the integral flux of
strangelets as obtained by PAMELA which is based on the null detection of strangelets.
The comparisons of our theoretical estimates with the results of PAMELA indicate that our
theoretical estimates are consistent with the results reported by PAMELA and hopefully
these would also be useful for the prediction of the flux of strangelets in AMS-02.
The possible modifications and the future extensions of our work are stated below.

• We have used the standard MIT bag model for the present work which is based on
the asymptotic freedom and confinement of quarks in the hadrons. However, it does
not incorporate the effects of dynamical (or, explicit) chiral symmetry breakdown
in QCD vacuum (see the discussion in Sec. 4.2 of Chap. 4). One of the possible
extensions of our work is to study the bulk properties of unpaired and CFL SQM
and also the strangelets by using more sophisticated theoretical models of hadrons
such as chirally invariant bag models [2]. Moreover, the mass spectrum of strangelets
would also be studied by invoking SMM in these more advanced models.

• In the standard diffusive propagation model (as discussed in Chap. 5) we did not
take into account the spallation, solar modulation, and geomagnetic cut-off. For
spallation, we need to study the plausible interaction processes of strangelets with
ordinary nuclei which are still not well known. The authors in Ref. [3] have out-
lined some plausible interaction processes of strangelets with ordinary nuclei. Hence,
Ref. [3] would be the starting point to obtain useful interaction processes during the
propagation of strangelets through ISM. Solar modulation and geomagnetic cut-off
are studied in Ref. [4]. A possible spallation model for strangelets, solar modulation,
and geomagnetic cut-off would, therefore, improve the present propagation (through
ISM) model (see Chap. 5) of strangelets and more refined flux of strangelets would
then be achieved.
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6. Summary and future outlook

• We have already calculated the integral fluxes of strangelets at the TOA. Hence,
our present work can be extended further by considering the propagation of those
strangelets (ie., the strangelets those reached at the TOA after being accelerated
from the site of the SS merger and propagated through ISM) in the Earth’s atmo-
sphere. For such purpose, a model for the propagation of strangelets through the
Earth’s atmosphere has to be constructed by incorporating a model of possible inter-
actions of strangelets [3] with the Earth’s atmosphere and considering all the previous
propagation (through the Earth’s atmosphere) models [5, 6]. Using this improved
propagation model the flux of strangelets would then be estimated that would be
useful for ground-based detectors such as the PET detector used by the researchers
at Bose Institute in their project (see Sec. 1.7.1.2 of Chap. 1) to search strangelets
in atmospheric CR.

• Numerical simulations [7] of coalescence of SSs in a compact binary stellar system
indicate that the characteristic frequency of gravitational wave emitted by SS mergers
may be considered as a signal that may distinguish SS merger events from NS mergers.
Numerical simulations also show that the maximum frequency during the inspiral
phase and the frequency of the ringdown of the postmerging remnant are higher [7]
for coalescence of SSs in comparison to NSs. The current gravitational wave detectors
such as Laser Interferometer Gravitational-Wave Observatory (LIGO) [8] and VIRGO
[9] and the upcoming detectors like Einstein telescope [10] and DUAL detector [11]
are sensitive enough to detect the characteristic frequency of the gravitational wave
that has been predicted in the simulation results. Hence, these highly sophisticated
detectors may find out the actual source of the gravitational wave ie., whether it is
originated due to SS merger or NS merger.

Finally, we can conclude that the results presented by us in this thesis could be taken as
a guide for future theoretical calculations. These results would also be useful for ongoing
experiments such as PAMELA, AMS-02 and for future experiments, involved in search of
strangelets in GCR, which would ultimately vindicate the SMH.
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Appendix A

Calculations of thermodynamic quantities (𝑚𝑠 = 0)

The content of this appendix is based on the Ref. J. Madsen, in: J. Cleymens (Ed.),
Lecture Notes in Physics: Physics and Astrophysics of Strange Quark Matter, vol. 516,
Springer Verlag, Heidelberg, 1999, p. 162, arXiv: 9809032v1(astro-ph), (1998).

A.1. Standard thermodynamic quantities of strangelets (𝑚𝑠 = 0)

In Chap. 2, we have assumed that all quark flavors are massless and the chemical potential
of each quark flavor is same, ie., 𝜇𝑞. Along with we have also considered that the number
of quarks of each flavor is same in a strangelet. With these assumptions, we can write
down the following thermodynamic quantities of the strangelets.
The thermodynamic potential of 𝑖th species is given by

Ω𝑖 = −[(19𝜋2/36)𝑇 4 + (3/2)𝜇2
𝑞𝑇

2 + (3/4𝜋2)𝜇4
𝑞]𝑉

𝑖

+[(41/72)𝑇 2 + (3/8𝜋2)𝜇2
𝑞]𝐶

𝑖 +𝐵𝑉 𝑖. (A.1)
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A. Calculations of thermodynamic quantities (𝑚𝑠 = 0)

Total number of quarks in 𝑖th species is∑︁
𝑓

𝑁 𝑖
𝑓 = 3𝐴𝑖 = [3𝜇𝑞𝑇

2 + (3/𝜋2)𝜇3
𝑞]𝑉

𝑖 − (3/4𝜋2)𝜇𝑞𝐶
𝑖, (A.2)

where, 𝑁 𝑖
𝑓 denotes the number of quarks of 𝑓 th flavor in 𝑖th species and 𝐴𝑖 is the baryon

number of 𝑖th species. Here,
∑︀

𝑓 𝑁
𝑖
𝑓 = −

(︁
𝜕Ω𝑖

𝜕𝜇𝑞

)︁
𝑇,𝑉 𝑖

. The expressions for Helmholtz free

energy and total energy of 𝑖th species are

𝐹 𝑖 = Ω𝑖 +
∑︁
𝑓

𝑁 𝑖
𝑓𝜇𝑞, (A.3)

and
𝐸𝑖 = 𝐹 𝑖 + 𝑇𝒮 𝑖 = Ω𝑖 +

∑︁
𝑓

𝑁 𝑖
𝑓𝜇𝑞 + 𝑇𝒮 𝑖, (A.4)

where, 𝒮 𝑖 = −
(︁
𝜕Ω𝑖

𝜕𝑇

)︁
𝜇𝑞 ,𝑉 𝑖

is the entropy of the 𝑖th species. The condition for mechanical

equilibrium is 𝑃ext = 0 = −
(︁
𝜕Ω𝑖

𝜕𝑉 𝑖

)︁
𝑇,𝜇𝑞

, where, 𝑃ext is the external pressure. The condition

for mechanical equilibrium gives

𝐵𝑉 𝑖 = [(19𝜋2/36)𝑇 4 + (3/2)𝜇2
𝑞𝑇

2 + (3/4𝜋2)𝜇4
𝑞]𝑉

𝑖

−[(41/216)𝑇 2 + (1/8𝜋2)𝜇2
𝑞]𝐶

𝑖. (A.5)

Using Eq. (A.5), Eq. (A.1) can be written as

Ω𝑖 = [(41/108)𝑇 2 + (1/4𝜋2)𝜇2
𝑞]𝐶

𝑖. (A.6)
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A. Calculations of thermodynamic quantities (𝑚𝑠 = 0)

A.2. Analytical approach to estimate the range of 𝜇𝑞

At 𝑇 = 0, Eq. (A.5) becomes

𝐵𝑉 𝑖 = (3/4𝜋2)𝜇4
𝑞𝑉

𝑖 − (1/8𝜋2)𝜇2
𝑞𝐶

𝑖

⇒
[︁
(1/8𝜋2)𝜇2

𝑞

]︁
8𝜋𝑅𝑖 =

[︁
(3/4𝜋2)𝜇4

𝑞 −𝐵
]︁4𝜋

3
(𝑅𝑖)3

⇒ 𝑅𝑖 =

⎯⎸⎸⎷3𝜇2
𝑞

4𝜋2

1(︁
3𝜇4𝑞
4𝜋2 −𝐵

)︁ , (A.7)

where, 𝑅𝑖 is the radius of the strangelet of 𝑖th species. Using Eq. (A.7), Eq. (A.6) (at
𝑇 = 0) can be written as

Ω𝑖 =
2𝜇2

𝑞

𝜋

1√︁
𝜇2
𝑞 − 4𝜋2𝐵

3𝜇2𝑞

. (A.8)

Now, the total number of quarks in a strangelet must be positive which implies (from
Eq. A.8)

−𝜕Ω𝑖

𝜕𝜇𝑞
> 0

⇒ − 1

𝜋
(︁
𝜇2
𝑞 − 4𝜋2𝐵

3𝜇2𝑞

)︁3/22
[︁
𝜇3
𝑞 −

4𝜋2𝐵

𝜇𝑞

]︁
> 0. (A.9)

The condition in Eq. (A.9) holds for

−
[︁
𝜇3
𝑞 −

4𝜋2𝐵

𝜇𝑞

]︁
> 0

⇒ 𝜇𝑞 <
(︁

4𝜋2
)︁1/4

𝐵1/4, (A.10)
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A. Calculations of thermodynamic quantities (𝑚𝑠 = 0)

and (︁
𝜇2
𝑞 −

4𝜋2𝐵

3𝜇2
𝑞

)︁3/2
> 0

⇒ 𝜇𝑞 >
(︁4𝜋2

3

)︁1/4
𝐵1/4. (A.11)

From Eqs. (A.10) and (A.11), we obtain

1.9𝐵1/4 MeV < 𝜇q < 2.5B1/4 MeV. (A.12)
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Appendix B

Calculation of Fermi & Bose integrals

B.1. Expressions of Fermi and Bose integrals used in the

expression of multiplicity

From Eqs. (1.4) and (1.5) (Sec. 1.9, Chap. 1), we can write

∞∑︁
𝑗=0

𝑔𝑖𝑗𝐽
±
1/2(𝜂

𝑖
𝑗) =

∞∑︁
𝑗=0

𝑔𝑖𝑗

∫︁ ∞

0

(𝑥𝑖)1/2

𝑒(𝑥
𝑖−𝜂𝑖𝑗) ± 1

𝑑𝑥𝑖. (B.1)
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B. Calculation of Fermi & Bose integrals

For low 𝑇 and 𝜂𝑖𝑗 < 0, (𝑥𝑖 − 𝜂𝑖𝑗) ≫ 1. Eq. (B.1) can be written as

∞∑︁
𝑗=0

𝑔𝑖𝑗𝐽
±
1/2(𝜂

𝑖
𝑗) ≈

∞∑︁
𝑗=0

𝑔𝑖𝑗

∫︁ ∞

0

(𝑥𝑖)1/2𝑒−(𝑥𝑖−𝜂𝑖𝑗)𝑑𝑥𝑖

=
∞∑︁
𝑗=0

𝑔𝑖𝑗

∫︁ ∞

0

(𝑥𝑖)1/2𝑒
−
(︁
𝑥𝑖−

(𝜇𝑖−𝐸𝑖
𝑗)

𝑇

)︁
𝑑𝑥𝑖

=
∞∑︁
𝑗=0

𝑔𝑖𝑗

∫︁ ∞

0

(𝑥𝑖)1/2𝑒
−
(︁
𝑥𝑖−

[𝜇𝑖−(𝐸𝑖
0+𝐸*𝑖

𝑗 )]

𝑇

)︁
𝑑𝑥𝑖

=
∞∑︁
𝑗=0

𝑔𝑖𝑗𝑒
−

𝐸*𝑖
𝑗
𝑇

∫︁ ∞

0

(𝑥𝑖)1/2𝑒
−
(︁
𝑥𝑖− (𝜇𝑖−𝐸𝑖

0)

𝑇

)︁
𝑑𝑥𝑖

=
∞∑︁
𝑗=0

𝑔𝑖𝑗𝑒
−

𝐸*𝑖
𝑗
𝑇

∫︁ ∞

0

(𝑥𝑖)1/2𝑒−(𝑥𝑖−𝜂𝑖0)𝑑𝑥𝑖

≈ 𝐽±
1/2(𝜂

𝑖
0)𝜑

𝑖(𝑇 ). (B.2)

For low 𝑇 and 𝜂𝑖 < 0, (𝑥𝑖 − 𝜂𝑖) ≫ 1. Fermi and Bose integrals can be written as

𝐽±
1/2(𝜂

𝑖) ≈
∫︁ ∞

0

(𝑥𝑖)1/2𝑒−(𝑥𝑖−𝜂𝑖)𝑑𝑥𝑖

=

∫︁ ∞

0

(𝑥𝑖)1/2𝑒
−
(︁
𝑥𝑖− (𝜇𝑖−𝐹𝑖)

𝑇

)︁
𝑑𝑥𝑖

=
∞∑︁
𝑗=0

𝑔𝑖𝑗𝑒
−

𝐸*𝑖
𝑗
𝑇

∫︁ ∞

0

(𝑥𝑖)1/2𝑒
−
(︁
𝑥𝑖− (𝜇𝑖−𝐸𝑖

0)

𝑇

)︁
𝑑𝑥𝑖

≈ 𝐽±
1/2(𝜂

𝑖
0)𝜑

𝑖(𝑇 ). (B.3)
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B. Calculation of Fermi & Bose integrals

B.2. Mathematical expressions of Bose & Fermi integrals

Reference: E. W. Ng, C. J. Devine and R. F. Tooper, Math. Comp. 23, 639 (1969).
Integral representation of Bose-Einstein function (of order 𝑝) can be written as

𝐵𝑝(𝜓, 𝑢
′) =

1

Γ(𝑝+ 1)

∫︁ 𝑢′

0

𝑥𝑝

𝑒𝑥−𝜓 − 1
𝑑𝑥, (B.4)

where, 𝜓 and 𝑢′ may be complex. Now,

𝐵𝑝(𝜓) ≡ lim
𝑢′→∞

𝐵𝑝(𝜓, 𝑢
′). (B.5)

For 𝜓 < 0,

𝐵𝑝(𝜓) =
∞∑︁
𝑘′=1

𝑒𝑘
′𝜓

(𝑘′)𝑝+1
. (B.6)

Bose integral can be written as

𝐽−
𝑝 (𝜓) = Γ(𝑝+ 1)𝐵𝑝(𝜓). (B.7)

Relation between polylogarithm function 𝐿𝑖𝑝(𝜓) and 𝐵𝑝(𝜓) is

𝐿𝑖𝑝(𝜓) = 𝐵𝑝−1(ln𝜓). (B.8)

If 𝑝→ 𝑝+ 1 and 𝜓 → 𝑒𝜓, Eq. (B.8) becomes

𝐵𝑝(𝜓) = 𝐿𝑖𝑝+1(𝑒
𝜓). (B.9)

Hence, the Bose integral can be written as

𝐽−
𝑝 (𝜓) = Γ(𝑝+ 1)𝐿𝑖𝑝+1(𝑒

𝜓). (B.10)

Similarly, Fermi integral can be written as

𝐽+
𝑝 (𝜓) = Γ(𝑝+ 1)

[︁
𝐿𝑖𝑝+1(𝑒

𝜓) − 1

2𝑝
𝐿𝑖𝑝+1(𝑒

2𝜓)
]︁
. (B.11)
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B. Calculation of Fermi & Bose integrals

For 𝑝 = 1/2, Bose and Fermi integrals become

𝐽−
1/2(𝜓) = Γ(3/2)𝐿𝑖3/2(𝑒

𝜓) (B.12)

and
𝐽+
1/2(𝜓) = Γ(3/2)

[︁
𝐿𝑖3/2(𝑒

𝜓) − 1√
2
𝐿𝑖3/2(𝑒

2𝜓)
]︁

(B.13)

respectively.

B.3. MATLAB codes for calculation of Bose & Fermi integrals

Listing of three MATLAB codes, namely bose_int.m, fermi_int.m and polylog.m, are
provided. bose_int.m and fermi_int.m calculate the Fermi and Bose integrals with the
help of polylog.m code.
F bose_int.m

1 % The program i s bose_int .m
2 % To c a l c u l a t e s the Bose i n t e g r a l us ing po ly l og .m
3 c l c
4 format long
5 nn=−200.0:0 .04:−0.001;
6 b=3/2;
7 n=exp (nn) ;
8 y = po ly l og (b , n) ;
9 g = gamma(b) .∗ y

10 be=[nn ; g ] ;
11 f i d = fopen ( ’ Bose_integra l_table . txt ’ , ’w ’ ) ;
12 f p r i n t f ( f i d , ’ %10.8 e %10.8 e\n ’ , be ) ;
13 f c l o s e ( f i d ) ;

F fermi_int.m

1 % The program i s fermi_int .m
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B. Calculation of Fermi & Bose integrals

2 % To c a l c u l a t e s the Fermi i n t e g r a l us ing po ly l og .m
3 c l c
4 format long
5 nn=−200.0:0 .04:−0.001;
6 b=3/2;
7 n1=exp (nn) ;
8 y = po ly l og (b , n1 ) ;
9 r1= y ;

10 n2=exp ( 2 . 0 . ∗ nn) ;
11 y = po ly l og (b , n2 ) ;
12 r2=y ;
13 g = gamma(b) ∗( r1 − ( r2 /2^(1/2) ) )
14 f e =[nn ; g ] ;
15 f i d = fopen ( ’ Fermi_integra l_table . txt ’ , ’w ’ ) ;
16 f p r i n t f ( f i d , ’ %10.8 e %13.11 e\n ’ , f e ) ;
17 f c l o s e ( f i d ) ;

F polylog.m
Ref.: https://in.mathworks.com/matlabcentral/ fileexchange/37229-enhanced-computation-
of-polylogarithm-aka-de-jonquieres-function/ content/polylog.m

1 % Function f i l e po ly l og .m
2 f unc t i on [ y e r r o r s ] = po ly l og (n , z )
3 %% po ly l og − Computes the n−based po ly logar i thm of z : Li_n( z )
4 % Approximate c l o s ed form exp r e s s i on s f o r the Poly logar i thm aka

de
5 % Jonquiere ’ s f unc t i on are used . Computes reasonab ly f a s t e r than

d i r e c t
6 % ca l c u l a t i o n given by SUM_{k=1 to In f } [ z^k / k^n ] = z + z^2/2^n

+ . . .
7 %
8 % Usage : [ y e r r o r s ] = PolyLog (n , z )
9 %
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B. Calculation of Fermi & Bose integrals

10 % Input : z < 1 : r e a l /complex number or array
11 % n > −4 : base o f po ly logar i thm
12 %
13 % Output : y . . . va lue o f po ly logar i thm
14 % e r r o r s . . . number o f e r r o r s
15 %
16 % Approximation should be c o r r e c t up to at l e a s t 5 d i g i t s f o r | z |

> 0 .55
17 % and on the order o f 10 d i g i t s f o r | z | <= 0 . 5 5 !
18 %
19 % Please Note : z vec to r input i s p o s s i b l e but not recommended as

p r e c i s i o n
20 % might drop f o r b ig ranged z inputs ( unreso lved Matlab i s s u e

unknown to
21 % the author ) .
22 %
23 % fo l l ow i ng V. Bhagat , e t a l . , On the eva lua t i on o f g en e r a l i z e d
24 % Bose E in s t e in and Fermi Dirac i n t e g r a l s , Computer Phys ics

Communications ,
25 % Vol . 155 , p . 7 , 2003
26 %
27 % v3 20120616
28 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

29 % Copyright ( c ) 2012 , Maximilian Kuhnert
30 % Al l r i g h t s r e s e rved .
31 %
32 % Red i s t r i bu t i on and use in source and binary forms , with or

without
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B. Calculation of Fermi & Bose integrals

33 % modi f i ca t i on , are permitted provided that the f o l l ow i n g
cond i t i on s are

34 % met :
35 %
36 % Red i s t r i bu t i on s o f source code must r e t a i n the above

copyr ight
37 % not ice , t h i s l i s t o f c ond i t i on s and the f o l l ow i ng

d i s c l a ime r .
38 % Red i s t r i bu t i on s in binary form must reproduce the above

copyr ight
39 % not ice , t h i s l i s t o f c ond i t i on s and the f o l l ow i ng

d i s c l a ime r in the
40 % documentation and/ or other mat e r i a l s provided with the

d i s t r i b u t i o n .
41 %
42 % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS
43 % IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO,
44 % THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR
45 % PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER

OR
46 % CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL,
47 % EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO,
48 % PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE, DATA,

OR
49 % PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF
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B. Calculation of Fermi & Bose integrals

50 % LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT (
INCLUDING

51 % NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS

52 % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
53 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

54

55 i f narg in~=2
56 e r r o r s =1;
57 e r r o r ( ’ [ Error in : po ly l og func t i on ] Inappropr ia t e number o f

input arguments ! ’ )
58 end
59

60 i f ( i s r e a l ( z ) && sum( z ( : )>=1)>0) % check that r e a l z i s not
b igge r than 1

61 e r r o r s =1;
62 e r r o r ( ’ [ Error in : po ly l og func t i on ] | z | > 1 i s not a l lowed ’ )
63 e l s e i f i s r e a l ( z )~=1 && sum( abs ( z ( : ) )>1)>0 % check that imaginary

z i s de f i ned on un i t c i r c l e
64 e r r o r s =1;
65 e r r o r ( ’ [ Error in : po ly l og func t i on ] | z | > 1 i s not a l lowed ’ )
66 e l s e i f n<=−4 % check that n i s not too l a r g l y negat ive ( s ee paper

)
67 e r r o r s =1;
68 e r r o r ( ’ [ Error in : po ly l og func t i on ] n < −4 might be

inaccu ra t e ’ )
69 end
70

71 % di sp l ay more d i g i t s in Matlab te rmina l :
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72 %format long
73

74 alpha = −l og ( z ) ; % see page 12
75

76 % i f | z | > 0 .55 use Eq . (27) e l s e use Eq . (21) :
77 i f abs ( z ) > 0.55
78 preterm = gamma(1−n) . / alpha .^(1−n) ;
79 nominator = b (0) + . . .
80 − alpha . ∗ ( b (1 ) − 4∗b (0) ∗b (4) /7/b (3 ) ) + . . .
81 + alpha .^2 .∗ ( b (2 ) /2 + b (0) ∗b (4) /7/b (2 ) − 4∗b (1) ∗b (4) /7/b

(3 ) ) + . . .
82 − alpha .^3 .∗ ( b (3 ) /6 − 2∗b (0) ∗b (4) /105/b (1 ) + b (1) ∗b (4)

/7/b (2 ) − 2∗b (2) ∗b (4) /7/b (3 ) ) ;
83 denominator = 1 + alpha .∗4∗b (4) /7/b (3 ) + . . .
84 + alpha .^2 .∗b (4) /7/b (2) + . . .
85 + alpha .^3 .∗2∗b (4) /105/b (1 ) + . . .
86 + alpha .^4 .∗b (4) /840/b (0 ) ;
87 y = preterm + nominator . / denominator ;
88 e l s e
89 nominator = 6435∗9^n .∗S(n , z , 8 ) − 27456∗8^n∗z .∗S(n , z , 7 ) + . . .
90 + 48048∗7^n∗z .^2 .∗S(n , z , 6 ) − 44352∗6^n∗z .^3 .∗S(n , z , 5 ) +

. . .
91 + 23100∗5^n∗z .^4 .∗S(n , z , 4 ) − 6720∗4^n .∗ z .^5 .∗S(n , z , 3 ) +

. . .
92 + 1008∗3^n∗z .^6 .∗S(n , z , 2 ) − 64∗2^n∗z .^7 .∗S(n , z , 1 ) ;
93 denominator = 6435∗9^n − 27456∗8^n∗z + . . .
94 + 48048∗7^n∗z .^2 − 44352∗6^n∗z .^3 + . . .
95 + 23100∗5^n∗z .^4 − 6720∗4^n∗z .^5 + . . .
96 + 1008∗3^n∗z .^6 − 64∗2^n∗z .^7 + . . .
97 + z .^8 ;
98 y = nominator . / denominator ;
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99 end
100

101 % de f i n e b :
102 f unc t i on out = b( i )
103 out = zeta (n−i ) ;
104 end
105 % de f i n e S as p a r t i a l sums o f Eq . 12 :
106 f unc t i on out = S(n , z , j )
107 out =0;
108 f o r i =1: j
109 out = out + z .^ i . / i ^n ;
110 end
111 end
112 f unc t i on [ out ] = zeta (x )
113 %% Zeta Function
114 % Eq . 18
115 % fo l l ow i ng V. Bhagat , e t a l . , On the eva lua t i on o f

g en e r a l i z e d
116 % Bose E in s t e in and Fermi Dirac i n t e g r a l s , Computer

Phys ics Communications ,
117 % Vol . 155 , p . 7 , 2003
118 %
119 % Usage : [ out ] = zeta (x )
120 % with argument x and summation from 1 to j
121 %
122 % MK 20120615
123

124 p r e f a c t o r = 2^(x−1) / ( 2^(x−1)−1 ) ;
125 numerator = 1 + 36∗2^x∗ eta (x , 2 ) + 315∗3^x∗ eta (x , 3 ) +

1120∗4^x∗ eta (x , 4 ) + . . .
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126 + 1890∗5^x∗ eta (x , 5 ) + 1512∗6^x∗ eta (x , 6 ) + 462∗7^x∗ eta
(x , 7 ) ;

127 denominator = 1 + 36∗2^x + 315∗3^x + 1120∗4^x + 1890∗5^x
+ 1512∗6^x + . . .

128 + 462∗7^x ;
129 out = p r e f a c t o r ∗ numerator / denominator ;
130

131 f unc t i on [ out ] = eta (x , j )
132 %% Eta Function
133 % Eq . 17 ( p a r t i a l sums )
134 % fo l l ow i ng V. Bhagat , e t a l . , On the eva lua t i on o f

g en e r a l i z e d
135 % Bose E in s t e in and Fermi Dirac i n t e g r a l s , Computer

Phys ics Communications ,
136 % Vol . 155 , p . 7 , 2003
137 %
138 % Usage : [ out ] = eta (x , j )
139 % with argument x and summation from 1 to j
140 %
141 % MK 20120615
142

143 out=0;
144 f o r k=1: j
145 out = out + (−1)^(k+1) . / k .^x ;
146 end
147 end
148 end
149 end
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Appendix C

Debye screening and thermodynamic potential

C.1. Debye screening in strangelet

This section is based on the Refs. R. Jensen, Searches for Strange Quark Matter : Masters
Thesis, University of Aarhus, Denmark, 2006. https://dcwww.fysik.dtu.dk/robertj/
speciale.pdf; H. Heiselberg, Phys. Rev. D 48, 1418 (1993). Here, we would try to give a
most simple description of Debye screening in strangelet.

In most of the cases, strangelet is considered to be uniformly charged ie., charge is
uniformly distributed throughout the body of the strangelet. But such scenario is not
consistent as a smooth distribution of charge would provide an electric field along the
radial direction of the strangelet and that electric field would exert an electric force on
each of the quark inside the strangelet. If the quarks are free to move inside the strangelet
(ie., quarks behave like electrons in conductor), the quarks will move along the direction
of the electric field. This motion of the quarks will continue until there is no net force on
any of the quark. Generally, the final charge distribution inside the strangelet varies on
a length scale which is termed as Debye screening length (𝜆𝐷) of the strangelet. Hence,
in this scenario strangelet behaves like a conductor with a charged skin (near the surface
of the strangelet) of length 𝜆𝐷 and a neutral interior. The expression of Debye screening
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length of the 𝑖th species is the following

𝜆−2
𝐷 = 4𝜋

∑︁
𝑓

𝑞2𝑓

(︁𝜕𝑛𝑖𝑓
𝜕𝜇𝑖𝑓

)︁
𝑛𝑖
𝑗,𝑗 ̸=𝑓

, (C.1)

where, 𝑓 indicates particular flavor (ie., 𝑢, 𝑑 and 𝑠) of the quark and 𝑗 is a dummy index
for flavor. 𝑛𝑖𝑓 is the number density of quarks of 𝑓 th flavor in 𝑖th species and 𝑞𝑓 is the
charge (in unit of 𝑒) of the quark of 𝑓 th flavor. For the calculation, we consider 𝜇𝑖𝑓 = 𝜇𝑞,
𝜕𝑛𝑖

𝑢

𝜕𝜇𝑞
=

𝜕𝑛𝑖
𝑑

𝜕𝜇𝑞
= 𝜕𝑛𝑖

𝑠

𝜕𝜇𝑞
, 𝑇 = 0, and ignore the surface and curvature contributions of strangelets.

Now, we can write

𝜆−2
𝐷 =

(︁8𝛼

𝜋

)︁
𝜇2
𝑞. (C.2)

C.2. An approach to calculate thermodynamic potential for

𝑚𝑠 ̸= 0

The discussion in this section is based on the Refs. P.B. Pal , An introductory course
of statistical mechanics, Narosa, India (2008); J. Madsen, in: J. Cleymens (Ed.), Lecture
Notes in Physics: Physics and Astrophysics of Strange Quark Matter, vol. 516, Springer
Verlag, Heidelberg, 1999, p. 162, arXiv: 9809032v1(astro-ph), (1998).

In Chap. 4 we have used the expression of the thermodynamic potential of s flavor
(𝑚𝑠 ̸= 0). The outline of the calculation is given here.
Thermodynamic potential of s flavor in 𝑖th species can be written as

Ω𝑖
⃒⃒⃒
s flavor

= −𝑔𝑇
∫︁ ∞

0

𝑑𝑘
𝑑𝑁 𝑖

𝑠

𝑑𝑘
ln
[︁
1 + exp

(︁
− (𝜀(𝑘) − 𝜇𝑠)/𝑇

)︁]︁
, (C.3)

where, 𝑔 is the degeneracy, 𝑘 is the momentum, ie., 𝑘 =
√︀
𝜀2 −𝑚2

𝑠, 𝜀 is the energy of s
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quarks. 𝑑𝑁 𝑖
𝑠

𝑑𝑘
is the density of states of 𝑠 quarks in 𝑖th species and it can be written as

𝑑𝑁 𝑖
𝑠

𝑑𝑘
=

𝑘2

2𝜋2
Vi +

[︁
− 1

8𝜋

{︁
1 − 2

𝜋
tan−1

(︁ 𝑘

𝑚𝑠

)︁}︁]︁
𝑘Si

+
1

12𝜋2

[︁
1 − 3𝑘

2𝑚𝑠

{︁𝜋
2
− tan−1

(︁ 𝑘

𝑚𝑠

)︁}︁]︁
Ci. (C.4)

At low temperature limit, ie., 𝜇𝑠−𝑚𝑠

𝑇
≫ 1, thermodynamic quantities can be expressed

as power series in temperature and only leading order temperature dependent terms can
be kept.
Now, if the thermodynamic quantities (for 𝑠 flavor) have the generic form like the following

𝐼0 =

∫︁ ∞

𝑚𝑠

𝑑𝜀 𝜈(𝜀)𝑄(𝜀), (C.5)

for some function 𝑄, then after integration by parts we have

𝐼0 = 𝜈(𝜀)𝐺(𝜀)
⃒⃒⃒∞
𝑚𝑠

−
∫︁ ∞

𝑚𝑠

𝑑𝜀
𝑑𝜈

𝑑𝜀
𝐺(𝜀), (C.6)

where,

𝐺(𝜀) =

∫︁ 𝜀

𝑚𝑠

𝑑𝜀′ 𝑄(𝜀′). (C.7)

In Eq. (C.6), the first term goes to zero as 𝜈(𝜀) = 0 when 𝜀 → ∞ (𝜈(𝜀) has the form of
Fermi distribution function) and 𝐺 = 0 when 𝜀 = 𝑚𝑠. At low temperature limit, 𝑑𝜈

𝑑𝜀
is

non-zero only in a small region near 𝜇𝑠. Taylor series expansion of 𝐺(𝜀) can be written as

𝐼0 = −
∫︁ ∞

𝑚𝑠

𝑑𝜀
𝑑𝜈

𝑑𝜀

∞∑︁
𝑟′=0

1

𝑟′!
𝐺(𝑟′)(𝜇𝑠)(𝜀− 𝜇𝑠)

𝑟′ , (C.8)

where, 𝐺(𝑟′)(𝜇𝑠) = 𝑑(𝑟
′)𝐺(𝜀)

𝑑𝜀(𝑟
′)

⃒⃒⃒
𝜀=𝜇𝑠

. Eq. (C.8) can be rewritten as

𝐼0 =
∞∑︁
𝑟′=0

1

𝑟′!
𝐺(𝑟′)(𝜇𝑠)𝐽𝑟′ , (C.9)
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where,

𝐽𝑟′ = −
∫︁ ∞

𝑚𝑠

𝑑𝜀
𝑑𝜈

𝑑𝜀
(𝜀− 𝜇𝑠)

𝑟′ . (C.10)

Now, 𝐽𝑟′ vanishes if 𝑟′ is odd. For 𝑟′ = 0, 𝐽0 = 1. For even 𝑟′ Eq. (C.10) becomes

𝐽𝑟′ = 2𝑇 𝑟
′ × Γ(𝑟′ + 1)

(︁
1 − 1

2𝑟′−1

)︁ ∞∑︁
𝜁=1

1

𝜁𝑟′
, (C.11)

where, 𝑇 is the temperature. We have calculated the volume, surface and curvature parts
of thermodynamic potential for 𝑚𝑠 ̸= 0 using the procedure given in Eqs. (C.5 - C.11).
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Appendix D

Calculations related to estimation of flux of strangelets

We can consider that accelerated CR follow a power-law distribution, 𝑑𝒩
𝑑ℰ = 𝒩0ℰ−2.2. If

the effective kinetic energy is ℰ0 which is used to accelerate the CR, then

ℰ0 =

∫︁ 𝜖max

𝜖min

ℰ 𝑑𝒩
𝑑ℰ

𝑑ℰ

≈ 𝒩0
𝜖−0.2
min

0.2
. (D.1)

In the above equation, we have assumed 𝜖max ≫ 𝜖min, where 𝜖max and 𝜖min are the possible
maximum and minimum kinetic energies of CR respectively. Now, we can write,

𝒩0 =
ℰ0
5
𝜖0.2min. (D.2)

The total number of particles which can be accelerated by the shock wave and with
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kinetic energy above 𝜖min is

𝒩tot =

∫︁ 𝜖max

𝜖min

𝑑𝒩
𝑑ℰ

𝑑ℰ

≈ 𝒩0

1.2
𝜖−1.2
min

=
ℰ0

6𝜖min

. (D.3)

In our case, shock wave, generated by the merger of SSs in the binary system, can accelerate
different species of strangelet. Hence, we have modified the Eq. (D.3) by the following
form

𝒩tot =
ℰ0

6 < 𝜖min >
, (D.4)

where, < 𝜖min > is the average of minimum kinetic energy of all the species and it can be
represented as

< 𝜖min >=

∑︀
𝑖 𝜖
𝑖
min𝜔

𝑖∑︀
𝑖 𝜔

𝑖
. (D.5)

𝜖𝑖min is the minimum kinetic energy of 𝑖th species for a particular 𝛽min = 𝑣min/𝑐 (c is the
speed of light) with 𝑣min being the minimum initial speed at which the strangelets are
injected in the Galaxy. For a particular species, the power law distribution of strangelets
can be written in a form

𝑑𝒩 𝑖

𝑑ℰ 𝑖
= 𝒩 𝑖

0(ℰ 𝑖)−2.2. (D.6)
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We can write,

𝒩 𝑖
0 ∝ 𝜔𝑖

⇒ 𝒩 𝑖
0 = 𝑘𝜔𝑖

⇒
∑︁
𝑖

𝒩 𝑖
0 = 𝑘

∑︁
𝑖

𝜔𝑖

⇒ 𝒩tot = 𝑘
∑︁
𝑖

𝜔𝑖

⇒ 𝑘 =
𝒩tot∑︀
𝑖 𝜔

𝑖

⇒ 𝑘 =
ℰ0

6 < 𝜖min >
∑︀

𝑖 𝜔
𝑖
. (D.7)

Eq. (D.6) can be rewritten as

𝑑𝒩 𝑖

𝑑ℰ 𝑖
=

ℰ0
6 < 𝜖min >

∑︀
𝑖 𝜔

𝑖
𝜔𝑖(ℰ 𝑖)−2.2

=
ℰ0 𝜔𝑖

6
∑︀

𝑖 𝜖
𝑖
min𝜔

𝑖
(ℰ 𝑖)−2.2. (D.8)

163


