
Scuola Internazionale Superiore di Studi Avanzati

Doctoral Thesis

Probing the Possible TeV Scale See-saw Origin
of Neutrino Masses with Charged Lepton

Flavour Violation Processes and Neutrino Mass
Spectroscopy Using Atoms

Author:

Dinh Nguyen Dinh

Supervisor:

Prof. S. T. Petcov

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in

Elementary Particle Physics

Trieste - September 2013





SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

Abstract

Elementary Particle Physics

Doctor of Philosophy

Probing the Possible TeV Scale See-saw Origin of Neutrino Masses with

Charged Lepton Flavour Violation Processes and Neutrino Mass

Spectroscopy Using Atoms

by Dinh Nguyen Dinh

In the first part of this thesis, we perform a detailed analysis of lepton flavour violation

(LFV) within minimal see-saw type extensions of the Standard Model (SM), which give

a viable mechanism of neutrino mass generation and provide new particle content at the

electroweak scale. We focus, mainly, on predictions and constraints set on each scenario

from muon and tau decays (µ → eγ, µ → 3e, τ → (µ, e)γ and τ → 3µ) and µ − e

conversion in the nuclei. In particular, we show that in some regions of the parameters

space of type I and type II see-saw models, the Dirac and Majorana phases of the

neutrino mixing matrix, the ordering and hierarchy of the light neutrino mass spectrum

as well as the value of the reactor mixing angle θ13 may considerably affect the size

of the LFV observables. Besides, the possibilities to observe the LFV processes in the

present and future experiments are also considered. The analytic results of the LFV

rates might help to discriminate between the three types of neutrino mass generation

models considered.

In the second part of the thesis, we study a process of collective de-excitation of atoms

in a metastable level into emission mode of a single photon plus a neutrino pair, called

radiative emission of neutrino pair (RENP). This process is sensitive to the absolute

neutrino mass scale, to the neutrino mass hierarchy and to the nature (Dirac or Majo-

rana) of massive neutrinos. We investigate how the indicated neutrino mass and mixing

observables can be determined from the measurement of the corresponding continuous

photon spectrum on the example of a transition between specific levels of the Yb atom.

The possibility of determining the nature of massive neutrinos and, if neutrinos are Ma-

jorana fermions, of obtaining information about the Majorana phases in the neutrino

mixing matrix, is analyzed in the cases of normal hierarchical, inverted hierarchical and
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quasi-degenerate types of neutrino mass spectrum. We find, in particular, that the

sensitivity to the nature of massive neutrinos depends critically on the atomic level

energy difference relevant in the RENP.
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Chapter 1

Introduction

It is well established at present that the flavor neutrino oscillations observed in the

experiments with solar, atmospheric, reactor and accelerator neutrinos (see [1] and the

references quoted therein) are caused by the existence of nontrivial neutrino mixing in

the weak charged current interaction Lagrangian:

LCC = − g√
2

∑
ℓ=e,µ,τ

ℓL(x) γανℓL(x)W
α†(x) + h.c. , νℓL(x) =

n∑
j=1

UℓjνjL(x), (1.1)

where νℓL(x) are the flavour neutrino fields, νjL(x) is the left-handed (LH) component of

the field of the neutrino νj having a massmj , and U is a unitary matrix - the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix [2–4], U ≡ UPMNS . The data

imply that among the neutrinos with definite mass at least three, say ν1, ν2 and ν3, have

masses m1,2,3 . 1 eV, i.e., are much lighter than the charged leptons and quarks.

The mixing of the three light neutrinos is described to a good approximation by 3 × 3

unitary PMNS matrix. In the widely used standard parametrization [1], UPMNS is

expressed in terms of the solar, atmospheric and reactor neutrino mixing angles θ12,

θ23 and θ13, respectively, and one Dirac - δ, and two Majorana [5] - α21 and α31, CP

violation (CPV) phases:

UPMNS = ŨP , P = diag(1, ei
α21
2 , ei

α31
2 ) , (1.2)

where Ũ is a CKM-like matrix containing the Dirac CPV phase δ,

Ũ =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (1.3)



2 Chap. 1: Introduction

In eq. (1.3) we have used the standard notations cij = cos θij , sij = sin θij , the angles

θij = [0, π/2], δ = [0, 2π] and, in general, 0 ≤ αj1/2 ≤ 2π, j = 2, 3 [6]. If CP invariance

holds, we have δ = 0, π, and [7–9] α21(31) = k(
′) π, k(

′) = 0, 1, 2, 3, 4.

In the recent years, the neutrino oscillation parameters were gradually measured with

increasing precisions. The Super-Kamiokande collaboration established that the atmo-

spheric neutrino mass squared splitting is |∆m2
A| ∼ O(10−3 eV2) and that the corre-

sponding mixing angle is large, possibly maximal θ23 ∼= π/4 [10]. The data from SNO,

Super-Kamiokande and KamLAND experiments [11–13] allowed to establish the large

mixing angle solution as a unique solution of the long standing solar neutrino problem,

with a solar neutrino mass squared splitting ∆m2
⊙ ∼ O(10−5 eV2) and mixing angle

θ12 ∼= arcsin(
√
0.3). A series of subsequent experiments, using reactor and accelerator

neutrinos, have pinned down the atmospheric and solar neutrino oscillation parameters

with a few to several percent accuracy.

Furthermore, in June of 2011 the T2K collaboration reported [14] evidence at 2.5σ for

a non-zero value of the angle θ13. Subsequently the MINOS [15] and Double Chooz [16]

collaborations also reported evidence for θ13 ̸= 0, although with a smaller statistical

significance. Global analyzes of the neutrino oscillation data, including the data from

the T2K and MINOS experiments, performed in [17, 18] showed that actually sin θ13 ̸= 0

at ≥ 3σ. The first data of the Daya Bay reactor antineutrino experiment on θ13 [19]

and the RENO experiment [20] reports are also consistent with the none vanishing of

sin2 2θ13 with rather high precisions at 5.2σ and 4.9σ, respectively.

The current best fit values of these parameters, obtained in [21] from fitting the global

neutrino oscillation data, read:

∆m2
21 = 7.54× 10−5 eV2 , |∆m2

31(32)| = 2.47 (2.46)× 10−3 eV2 , (1.4)

sin2 θ12 = 0.307 , sin2 θ13 = 0.0241 (0.0244) , sin2 θ23 = 0.386 (0.392) , (1.5)

where the values (values in brackets) correspond to ∆m2
31(32) > 0 (∆m2

31(32) < 0), i.e., to

neutrino mass spectrum with normal ordering (NO), m1 < m2 < m3 (inverted ordering

(IO), m3 < m1 < m2)
1 (see, e.g., [1]). We will use these values in our numerical

analyzes. Similar results have been obtained in the analyzes of the global neutrino

oscillation data in [22].

1As is well known, depending on the value of the lightest neutrino mass, the spectrum can also be
normal hierarchical (NH), m1 ≪ m2 < m3; inverted hierarchical (IH): m3 ≪ m1 < m2; or quasi-
degenerate (QD): m1

∼= m2
∼= m3, m

2
j ≫ |∆m2

31(32)|. The QD spectrum corresponds to mj ∼> 0.10 eV,
j = 1, 2, 3.
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Despite the precise measurements of the parameters responsible for the oscillations of

neutrinos, there are still many fundamental questions regarding directly or indirectly

the neutrinos that need to be answered.

Firstly, from neutrino oscillation experiments, we know quite well the neutrino mass

squared differences and mixing angles. However other properties, such as the absolute

neutrino mass scale or the hierarchy of the neutrino mass spectrum, are still unknown.

At present, information about the neutrino mass scale is obtained in the beta β-decays

experiments. The Mainz-Troitsk experiment, after analyzing data of beta β-decays of

trititum atoms, has set an upper bound of 2.2 eV for the electron antineutrino mass.

With the upcoming experiments experiments KATRIN [23], it is planned to search for

a mass bigger than 0.2 eV. Data from cosmological observations were used to set much

tighter upper bounds on the sum of the light neutrino masses [24, 25]. For example, the

Planck collaboration reported in March of 2013 an upper limit on that sum of the three

light neutrino masses of 0.23 eV [25].

Besides probing neutrino mass scale and their mass hierarchy, we still need to understand

the nature of neutrinos - whether they are Dirac or Majorana particles - and measure

the value of the CPV Dirac phase, or of both Dirac and Majorana phases, if neutrinos

are Majorana particles. The hierarchy of neutrino mass spectrum and the CPV Dirac

phase can be determined in the long base-line neutrino oscillation experiments (see,

e.g. [26, 27]). The only known feasible experiments which can reveal the Majorana

nature of massive neutrinos are the searches for the process of neutrinoless double beta

(ββ)0ν-decay: (A,Z) → (A,Z + 2) + e− + e− [28, 29]. It is impossible to make progress

in our understanding of the origin of neutrino masses and mixing without determining

the nature - Dirac or Majorana - of massive neutrinos. There are a large number

of the neutrinoless double beta (ββ)0ν-decay experiments of a new generation which

take data or are under preparation at present: GERDA, EXO, KAMPLAND-ZEN,

COURE, SNO+, MAJORANA, etc. These experiments will be sensitive to values of

the neutrinoless double beta (ββ)0ν-decay effective Majorana mass (see, e.g, [30–36])

|⟨m⟩ee| ∼ (0.01− 0.05) eV.

Secondly, in spite of the compelling evidence for nonconservation of the leptonic flavour

in neutrino oscillations, reflected in the neutrino mixing present in eq. (1.1), all searches

for lepton flavour violation (LFV) in the charged lepton sector have produced negative

results so far. The most stringent upper limits follow from the experimental searches for

the LFV muon decays µ+ → e+γ and µ+ → e+e−e+,

BR(µ+ → e+γ) < 5.7× 10−13 [37] , (1.6)

BR(µ+ → e+e−e+) < 1.0× 10−12 [38] , (1.7)
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and from the non-observation of conversion of muons into electrons in Titanium,

CR(µ− +Ti → e− +Ti) < 4.3× 10−12 [39] . (1.8)

Besides, there are stringent constraints on the tau-muon and tau-electron flavour viola-

tion as well from the non-observation of LFV tau decays [40]:

BR(τ → µγ) < 4.4× 10−8 , (1.9)

BR(τ → eγ) < 3.3× 10−8 , (1.10)

BR(τ → 3µ) < 2.1× 10−8 . (1.11)

The role of the experiments searching for lepton flavour violation to test and constrain

low scale see-saw models will be significantly strengthened in the next years. Searches for

µ−e conversion at the planned COMET experiment at KEK [41] and Mu2e experiment

at Fermilab [42] aim to reach sensitivity to CR(µAl → eAl) ≈ 10−16, while, in the

longer run, the PRISM/PRIME experiment in KEK [43] and the project-X experiment

in Fermilab [44] are being designed to probe values of the µ − e conversion rate on Ti,

which are by 2 orders of magnitude smaller, CR(µTi → eTi) ≈ 10−18 [43]. There are

also plans to perform a new search for the µ+ → e+e−e+ decay [45], which will probe

values of the corresponding branching ratio down to BR(µ+ → e+e−e+) ≈ 10−15, i.e., by

3 orders of magnitude smaller than the best current upper limit, eq. (1.7). Furthermore,

searches for tau lepton flavour violation at superB factories aim to reach a sensitivity

to BR(τ → (µ, e)γ) ≈ 10−9, while a next generation experiment on the τ → 3µ decay is

expected to reach sensitivity to BR(τ → 3µ) = 10−10 [46].

It is also important to note that the recently measured value of θ13 in eq. (1.5) will have

far reaching implications for the program of research in neutrino physics. A relatively

large value of sin θ13 ∼ 0.15 opens up the possibilities, in particular, i) for searching for

CP violation effects in neutrino oscillations experiments with high intensity accelerator

neutrino beams (like T2K, NOνA, etc.); ii) for determining the sign of ∆m2
32, and thus

the type of neutrino mass spectrum, which can be with normal or inverted ordering (see,

e.g. [1]), in the long baseline neutrino oscillation experiments at accelerators (NOνA,

etc.), in the experiments studying the oscillations of atmospheric neutrinos (see, e.g.

[47–50]), as well as in experiments with reactor antineutrinos [51–53]. It has important

implications for the neutrinoless double beta (ββ)0ν-decay phenomenology in the case

of neutrino mass spectrum with normal ordering (NO) [54]. A value of sin θ13 ∼> 0.09

is a necessary condition for a successful “flavoured” leptogenesis when the CP violation
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required for the generation of the matter-antimatter asymmetry of the Universe is pro-

vided entirely by the Dirac CP violating phase in the neutrino mixing matrix [55, 56]. 2

As was already discussed to some extent in the literature and we will see further, in

certain specific cases a value of sin θ13 ∼ 0.15 can have important implications also for

the phenomenology of the lepton flavour violation (LFV) processes involving the charged

leptons in theories incorporating one of the possible TeV scale see-saw mechanisms of

neutrino mass generation.

Concerning the issue of LFV in the charged lepton sector, in a minimal extension of

the Standard Model with massive neutrinos [58, 59], in which the total lepton charge

L is conserved (L = Le + Lµ + Lτ Lℓ, ℓ = e, µ, τ , being the individual lepton charges)

and the neutrinos with definite mass are Dirac particles, the rates of the LFV violating

processes involving the charged leptons are extremely strongly suppressed, BR(µ →
e+γ) ∼ 10−55 . This branching ratio, of course, satisfies the current experimental upper

limit quoted in eq. (1.6), however, the model [58, 59] does not give any insight of why the

neutrino masses are so much smaller than the masses of the charged leptons and quarks.

The enormous disparity between the magnitude of the neutrino masses and the masses

of the charged fermions suggests that the neutrino masses are related to the existence

of new mass scale Λ in physics, i.e., to new physics beyond the Standard Model (SM).

A natural explanation of the indicated disparity is provided by the see-saw models of

neutrino mass generation. In these models the scale Λ is set by the scale of masses of the

new degrees of freedom present in the models. In the case of the type I and III see-saw

scenarios, these are the masses of the heavy (right-handed (RH)) Majorana neutrinos. In

the Higgs Triplet Model (HTM), which is often called also “type II see-saw model”, the

scale Λ is related to the masses of the new physical neutral, singly and doubly charged

Higgs particles.

The scale Λ at which the new physics, associated with the existence of neutrino masses

and mixing, manifests itself can, in principle, have an arbitrary large value, up to the

GUT scale of 2 × 1016 GeV and even beyond, up to the Planck scale. An interesting

possibility, which can also be theoretically and phenomenologically well motivated (see,

e.g., [60–62]), is to have the new physics at the TeV scale, i.e., Λ ∼ (100 − 1000)

GeV. In the TeV scale class of see-saw models the flavour structure of the couplings of

the new particles to the charged leptons is basically determined by the requirement of

reproducing the data on the neutrino oscillation parameters [60–63]. As a consequence,

the rates of the LFV processes in the charged lepton sector can be calculated in terms

of a few parameters. These parameters are constrained by different sets of data such as,

e.g., data on neutrino oscillations, from EW precision tests and on the LFV violating

2If indeed sin θ13 ∼= 0.15 and the neutrino mass spectrum is with inverted ordering (IO), further
important implications for “flavoured” leptogenesis are possible [57].
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processes ℓ → ℓ′ + γ, ℓ → 3ℓ′, µ− − e− conversion in nuclei, etc. Nevertheless, the

predicted rates of the LFV charged lepton decays ℓ→ ℓ′+γ, ℓ→ 3ℓ′ and of the µ−− e−

conversion are within the reach of the future experiments searching for lepton flavour

violation even when the parameters of the model do not allow production of the new

particles with observable rates at the LHC [62].

As parts of the present thesis, we investigate the LFV processes of lepton decays, such

as ℓ→ ℓ′ + γ (ℓ = µ and ℓ′ = e, or ℓ = τ and ℓ′ = µ, e), µ→ 3e and τ → 3µ, and µ→ e

conversion in certain nuclei. These LFV processes are considered in the frameworks of

the TeV scale type I see-saw, Higgs Triplet and type III see-saw models of neutrino mass

generation. We derive predictions for the rates of the indicated LFV processes in the

models of interest and analyze the possibilities to observe them in present and planned

future experiments. Moreover, results of analyzing the behaviors of the LFV rates in

each type of see-saw scheme could be used to determine the real scenario of neutrino

mass generation in the nature.

Turning to the issues of the still unknown neutrino properties - the absolute neutrino

mass scale, the type of spectrum the neutrino masses obey, the nature of massive neu-

trinos - all of them might be determined, in principle, by using a phenomenon, called

radiative emission of neutrino pair (RENP), which is assumed to occur in atoms or

molecules [64–66]. Atoms have a definite advantage over conventional target of nuclei:

their available energies are much closer to neutrino masses. The new atomic process of

RENP has a rich variety of neutrino phenomenology, since there are six independent

thresholds for each target choice, having a strength proportional to different combina-

tions of neutrino masses and mixing parameters. In the numerical results presented

further we will show the sensitivity of the RENP related photon spectral shape to vari-

ous observables; the absolute neutrino mass scale, the type of neutrino mass spectrum,

the nature of massive of neutrinos and the Majorana CPV phases in the case of massive

Majorana neutrinos.

The present thesis is organized as follows. In Chapter 2, we review the main features of

the three types of the see-saw mechanisms and introduce the formulae of FLV rates of

the interested processes for each type of light neutrino mass generation scheme. Then

we discuss for each scenario the predictions and experimental constraints on the relevant

parameter spaces arising from muon FLV processes in Chapter 3 and tau LFV processes

in Chapter 4, respectively. In Chapter 5, after an introduction of the RENP spectral

rate formula, its physical potential of measuring the absolute neutrino mass scale, de-

termining the type of neutrino mass spectrum (or hierarchy) and the nature (Dirac or

Majorana) of massive neutrino will be discussed in detail. Besides, there is a conclusion

at the end of every chapter; and an overall conclusion is in Chapter 6.



Chapter 2

See-saw Type Models and Rates

of LFV Processes

2.1 See-saw Type I and LFV Rates

2.1.1 See-saw Type I at TeV Scale

In the standard type I see-saw scenario [67–70], the Standard Model (SM) is expanded

by adding k heavy right-handed (RH) neutrino fields νaR, a = 1, ..., k, k ≥ 2, which are

singlets with respect to the SM gauge symmetry group. The neutrino mass term in the

considered model is written as:

Lν = −νℓL(MD)ℓανaR − 1

2
νCaL(MN )abνbR + h.c., (2.1)

where νCaL ≡ CνaR
T , C is the charge conjugation matrix, MN is the RH neutrino mass

matrix, which is k × k symmetric matrix, and MD is the Dirac mass matrix. Then, the

full mass matrix of neutrinos has following form

M =

(
0 MD

MT
D MN

)
. (2.2)

This matrix, whose elements are complex in general, can be block-diagonalized by a

(3 + k)× (3 + k) unitary matrix Ω [71]

ΩT

(
0 MD

MT
D MN

)
Ω =

(
U∗m̂U † 0

0T V ∗M̂V †

)
, (2.3)
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where m̂ ≡ diag(m1,m2,m3) is a diagonal form of the light neutrino mass matrix, while

M̂ ≡ diag(M1,M2, ...,Mk) is the diagonal matrix of the heavy neutrinos. One should

keep in mind that the matrix 0 in the two sides of the above equation have different

dimensions. The null matrix in the left-hand side is a 3× 3 matrix, while the matrix in

the right-hand side is of 3× k dimensions.

The diagonalization matrix Ω can be expressed in terms of the exponential of a 3 × k

complex matrix R:

Ω = exp

(
0 R

−R† 0

)
=

(
1− 1

2RR
† R

−R† 1− 1
2R

†R

)
+O(R3). (2.4)

The above equation is obtained by assuming that R is small. As one will see below that

the assumption is relevant when deriving the well-known Pontecorvo, Maki, Nakgawa,

Sakata (PMNS) neutrino mixing matrix:

UPMNS = U †
ℓ (1 + η)U, (2.5)

where

η = −1

2
RR† = −1

2
(RV )(RV )† = η†, (2.6)

U and Uℓ diagonalize the LH neutrino mass matrix and the charged lepton mass matrix,

respectively. As being easy to be seen, the matrix η characterises the deviations from

unitarity of the PMNS matrix. The elements of UPMNS are determined in experiments

studying the oscillations of the flavour neutrinos and antineutrinos, νℓ and ν̄ℓ, ℓ = e, µ, τ ,

at relatively low energies. In these experiments, the initial states of the flavour neutrinos

produced in some weak process, are coherent superpositions of the states of the light

massive Majorana neutrino χi only. The states of the heavy Majorana neutrino Nj are

not present in the superpositions representing the initial flavour neutrino states and this

leads to deviations from unitarity of the PMNS matrix.

In the framework of this thesis, we work in the basis in which the charged lepton mass

matrix is diagonal, then Uℓ is set as unity. The charged and neutral current weak

interactions involving the light Majorana neutrinos χi have the form:

LνCC = − g√
2
ℓ̄ γα νℓLW

α + h.c. = − g√
2
ℓ̄ γα ((1 + η)U)ℓi χiLW

α + h.c. , (2.7)

LνNC = − g

2cw
νℓL γα νℓL Z

α = − g

2cw
χiL γα

(
U †(1 + η + η†)U

)
ij
χjL Z

α . (2.8)

Moreover, the matrix η can be expressed in terms of a matrix RV whose elements

(RV )ℓk determine the strength of the charged current (CC) and neutral current (NC)

weak interaction couplings of the heavy Majorana neutrinos Nk to the W±-boson and
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the charged lepton ℓ, and to the Z0 boson and the left-handed (LH) flavour neutrino

νℓL, ℓ = e, µ, τ :

LNCC = − g

2
√
2
ℓ̄ γα (RV )ℓk(1− γ5)NkW

α + h.c. , (2.9)

LNNC = − g

4cw
νℓL γα (RV )ℓk (1− γ5)Nk Z

α + h.c. . (2.10)

As the consequences of the unobservable signal from the heavy Majorana neutrinos and

low energy data by the present experiments, (RV ) (or η) should be constrained.

Let us continue by considering the constraints on (RV ) from the experimental data of

neutrino oscillations and absolute scale of neutrino masses. Expanding two sides of eq.

(2.3) then using expression in eq. (2.4) and keeping only the leading order in R, one

gets:

MD −R∗MN ≃ 0 , (2.11)

−MDR
† −R∗MT

D +R∗MNR
† ≃ mν = U∗m̂U † , (2.12)

MN +RTMD +MT
DR− V ∗M̂V † ≃ 0 . (2.13)

Extracting MD from eq. (2.11) then insert it into (2.12) and (2.13):

mν = U∗m̂U † = −R∗MNR
† ≃ −(RV )∗M̂(RV )† , (2.14)

V ∗M̂V † ≃MN +RTR∗MN +MNR
†R . (2.15)

Using the current upper limits on the absolute scale of neutrino masses and the data

obtained in neutrino oscillation experiments, it is relevant to give an approximation

|(mν)ℓ′ℓ| . 1eV, ℓ, ℓ′ = e, ν, τ , which leads to:

|
∑
k

(RV )∗ℓ′k Mk (RV )†kℓ| . 1 eV , ℓ′, ℓ = e, µ, τ . (2.16)

This inequality can be satisfied in several cases, for example |(RV )ℓk| ≪ 1 for all ℓ

and k. However, this scenario is not interesting and thus will not be considered in

the thesis, since it can not render any observable effect at low energy, or possibility to

probe the heavy RH neutrinos at the LHC. In this work, we take care a circumstance of

having two heavy RH neutrinos (called N1, N2) with opposite CP parities and possessing

approximately same masses. The pair of the RH neutrinos forms a pseudo-Dirac, then

the eq. (2.16) is naturally fulfilled with sizable |RV |, provided:

(RV )ℓ2 = ±i(RV )ℓ1

√
M1

M2
. (2.17)
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In this class of type I see-saw models with two heavy Majorana neutrinos we are con-

sidering (see, e.g., [72–80]), one of the three light (Majorana) neutrinos is massless and

hence the neutrino mass spectrum is hierarchical. Two possible types of hierarchical

spectrum are allowed by the current neutrino data (see, e.g., [1]): i) normal hierarchical

(NH), m1 = 0, m2 =
√

∆m2
⊙ and m3 =

√
∆m2

A , where ∆m2
⊙ ≡ m2

2 − m2
1 > 0 and

∆m2
A ≡ m2

3 −m2
1; ii) inverted hierarchical (IH), m3 = 0, m2 =

√
|∆m2

A | and m1 =√
|∆m2

A | −∆m2
⊙
∼=
√

|∆m2
A |, where ∆m2

⊙ ≡ m2
2−m2

1 > 0 and ∆m2
A = m2

3−m2
2 < 0.

In both cases, we have: ∆m2
⊙/|∆m2

A | ∼= 0.03 ≪ 1.

We assume that the heavy RH neutrinos N1,2 have masses in the range (100 - 1000)

GeV, which makes possible, in principle, to be produced at LHC. To have large enough

the CC and NC couplings such that RH neutrino signals could be observed at LHC

in this considering type I seesaw scenario, the two RH Majorana neutrinos must be

almost degenerate in mass. Suppose M2 > M1 > 0, M2 can be expressed in form

M2 = (1 + z)M1, z > 0. Using the experimental limit on the neutrinoless double beta

decay (ββ)0µ, we can set an upper limit z . 10−3 (10−2) for M1 ∼ 102 (103) GeV.

Upper bounds on the couplings of RH neutrinos with SM particles can be also obtained

from the low energy electroweak precision data on lepton number conserving processes

like π → ℓνℓ, Z → νν and other tree-level processes involving light neutrinos in the final

state [81–83]. These bounds read:

|(RV )e1|2 . 2× 10−3 , (2.18)

|(RV )µ1|2 . 0.8× 10−3 , (2.19)

|(RV )τ1|2 . 2.6× 10−3 . (2.20)

Let us go further by expressing the RH neutrino mixing matrix participating into the

CC and NC weak interactions in terms of low energy neutrino oscillation parameters,

the light and heavy neutrino masses. We start by taking eq. (2.12) in [62]:

RV = −iUPMNS

√
m̂O∗

√
M̂−1 , (2.21)

where O is a complex orthogonal matrix. In the scheme with two heavy RH Majorana

neutrinos and NH mass spectrum of the light neutrinos, O-matrix can be written in
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form:

O =
eiθ̂

2


0 0

1 ∓i
i ±1

+
e−iθ̂

2


0 0

1 ±i
−i ±1

 = O+ +O−, (NH) (2.22)

O =
eiθ̂

2


1 ∓i
i ±1

0 0

+
e−iθ̂

2


1 ±i
−i ±1

0 0

 , (IH) (2.23)

where θ̂ = ω − iξ .

Without loosing the generality, taking ξ > 0, to have sizable couplings between the heavy

Majorana neutrinos and the charged leptons or gauge bosons, we need large enough ξ.

In the limit of large ξ, in the case of NH neutrino mass spectrum, it is relevant to use

the approximation:

O ≈ O+ =
eiωeξ

2


0 0

1 ∓i
i ±1

 . (2.24)

Using (2.21) and (2.24), we can express the matrix RV as:

RV ≈ −e
−iωeξ

2

√
m3

|M1|


(Ue3 + i

√
m2/m3Ue2) ±i(Ue3 + i

√
m2/m3Ue2)/

√
1 + z

(Uµ3 + i
√
m2/m3Uµ2) ±i(Uµ3 + i

√
m2/m3Uν2)/

√
1 + z

(Uτ3 + i
√
m2/m3Uτ2) ±i(Uτ3 + i

√
m2/m3Uτ2)/

√
1 + z

 .

(2.25)

A similar formula could be obtained for the case of IH neutrino mass spectrum by

replacing m2,3 → m1,2 and Uℓ2,ℓ3 → Uℓ1,ℓ2 (ℓ = e, µ, τ). So that, for both types of

neutrino mass spectrum, one has the relation:

(RV )ℓ2 = ±i(RV )ℓ1/
√
1 + z ℓ = e, µ, τ , (2.26)

which is consistent with eq. (2.21). The above equation holds only for M1M2 > 0; when

M1 and M2 have different signs, it becomes (RV )ℓ2 = ∓(RV )ℓ1/
√
1 + z .

Finally, using the relation

y2v2 ≡ max{eig(MDM
†
D)} = max{eig(

√
m̂OM̂O†√m̂)} =

1

4
e2ξM1(m2 +m3)(2 + z) ,

(2.27)

in which y is the largest eigenvalue of Yukawa coupling matrix, v = 174 GeV, the CC

and NC weak interaction couplings with participation of the heavy Majorana neutrinos
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can be expressed as:

|(RV )ℓ1|
2 =

1

2

y2v2

M2
1

m3

m2 +m3

∣∣∣Uℓ3 + i
√
m2/m3Uℓ2

∣∣∣2 , NH , (2.28)

|(RV )ℓ1|
2 =

1

2

y2v2

M2
1

m2

m1 +m2

∣∣∣Uℓ2 + i
√
m1/m2Uℓ1

∣∣∣2 , IH . (2.29)

The numerical results present further will be obtained employing the standard parametriza-

tion for the unitary matrix U :

U = V (θ12, θ23, θ13, δ)Q(α21, α31) . (2.30)

Here (see, e.g., [1])

V =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 , (2.31)

where we have used the standard notations cij ≡ cos θij , sij ≡ sin θij , δ is the Dirac CP

violation (CPV) phase and the matrix Q contains the two Majorana CPV phases 1 [5],

Q = diag(1, eiα21/2, eiα31/2) . (2.32)

We recall that UPMNS = (1+η)U . Thus, up to corrections which depend on the elements

of the matrix η whose absolute values, however, do not exceed approximately 5× 10−3

[81], the values of the angles θ12, θ23 and θ13 coincide with the values of the solar

neutrino, atmospheric neutrino and the 1-3 (or “reactor”) mixing angles, determined in

the 3-neutrino mixing analyzes of the neutrino oscillation data.

Given the neutrino masses and mixing angles, the TeV scale type I see-saw scenario

we are considering is characterized by four parameters [62]: the mass (scale) M1, the

Yukawa coupling y, the parameter z of the splitting between the masses of the two

heavy Majorana neutrinos and a phase ω. The mass M1 and the Yukawa coupling y

can be determined, in principle, from the measured rates of two lepton flavor violating

(LFV) processes, the µ → eγ decay and the µ − e conversion in nuclei, for instance.

The mass splitting parameter z and the phase ω, together with M1 and y, enter, e.g.,

into the expression for the rate of (ββ)0ν-decay predicted by the model. The latter was

discussed in detail in [62].

1 In the case of the type II see-saw mechanism, to be discussed in Section 2.2, we have η = 0 and
thus the neutrino mixing matrix coincides with U : UPMNS = U . We will employ the parametrization
(2.30) - (2.32) for U also in that case.
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2.1.2 Calculation of LFV Rates

For more convenient in further discussion, in this section, we are going to summary or

derive the rates of FLV processes of interest, such as µ → e conversion, ℓ → ℓ′ + γ and

ℓ → 3ℓ′, in the scenario of the type I see-saw model. In the type I see-saw, the above

FLV processes can not happen in the tree-level, but in one-loop diagrams, whose form

factors are calculated in the App. A.

Ignoring the subdominant contribution of the term proportional to ml′ (supposes ml ≫
ml′), eq. (A.32) can be rewritten in form:

− e Γ(γ)
α (l̄l′γ) =

g2.e

32π2M2
w

[
F ll

′
γ (q2γα − q̂qα)PL − iml G

ll′
γ σαβq

βPR

]
, (2.33)

where

F ll
′

γ =

3+k∑
i=1

UliU
∗
l′iFγ(λi) , Gll

′
γ =

3+k∑
i=1

UliU
∗
l′iGγ(λi) .

2 (2.34)

Here, Fγ(λi) and Gγ(λi) are defined in eqs. (A.27) and (A.27). The effective Lagrangian

derived from (2.33) reads:

L(γ)
eff =

g2.e

32π2M2
w

[
(eQψ)F

ll′
γ (ψ̄γαψ)(l̄′γ

αPLl) +
Gll

′
γ

2
ml

(
l̄′σαβPRl

)
Fαβ

]
, (2.35)

where Qψ is electric charge of ψ, which is quark (for µ → e conversion) or lepton (for

l → 3l′ decay).

Similarly, from eqs. (A.57), (A.64) and (A.71), we have effective Lagrangians from box

and Z boson exchange diagrams:

L(z)
eff =

g4

32π2M2
w

F ll
′

z

(
ψ̄γα(I

3
ψPL −Qψ sin

2 θW )ψ
)
(l̄′γαPLl) , (2.36)

L(Box)
eff =

g4

64π2M2
w

F ll
′ψψ

Box

(
ψ̄γαPLψ

)
(l̄′γαPLl) . (2.37)

Here, I3ψ is the weak isospin of the field ψ, while F ll
′

z and F ll
′ψψ

Box are expressed as:

F ll
′

z =
3+k∑
i,j=1

UliU
∗
l′j (δijFz(λi) + CijGz(λi, λj)) , (2.38)

2In this Subsection and the appendix A, U is understood as the full neutrino mixing matrix in the
see-saw type I, which is of (3 + k)× (3 + k) dimensions.
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F ll
′ψψ

Box =

3+k∑
i=1

∑
j

UliU
∗
l′iVψχj

V ∗
ψχj

FBox(λi, λj) for Qψ > 0 , (2.39)

F ll
′ψψ

Box =
3+k∑
i=1

∑
j

UliU
∗
l′iVψχj

V ∗
ψχj

FXBox(λi, λj) for Qψ < 0 . (2.40)

It is useful to note that Vψχj
is quark or neutrino mixing matrix according to whether ψ

is quark or lepton. If ψ is u quark, χj are (d, s, b) quarks; while, in the case where ψ is

d quark or one of the charged leptons (e−, µ−, τ−), χj are (u, c, t) quarks or neutrinos

(both the heavy and light neutrinos), respectively.

Using eq. (2.35), the ratio of the decay rates Γ(l → l′γ) and Γ(l → νll
′νl′), can be

written as [59, 62, 84, 85]:

Γ(l → l′γ)

Γ(l → νll′νl′)
=

3αem

2π
|Gll′γ |2 =

3αem

32π
|T(ll′)|2 , (2.41)

where

T(ll′) ≈
3+k∑
i=4

(U)∗l′i(U)li [G(xi)−G(0)] , (2.42)

G(x) =
10− 43x+ 78x2 − 49x3 + 4x4 + 18x3 lnx

3(x− 1)4
, (2.43)

and xi = m2
i /M

2
w .

We have also obtained the l → 3l′ decay rate by adapting the result of the calculation

of the µ → 3e decay rate performed in [86] in a scheme with heavy RH neutrinos and

type I seesaw mechanism of neutrino mass generation. After applying the form factors

introduced above and neglecting the corrections ∼ ml′/ml, the decay branching ratio is

expressed as:

BR(l → 3l′) =
α2
em

64π2 sin4 θW
|Cl3l′ |2 × BR(l → l′ν̄l′νl) , (2.44)

|Cl3l′ |2 = 2

∣∣∣∣12F ll′l′l′Box + F ll
′

z − 2 sin2 θW (F ll
′

z − F ll
′

γ )

∣∣∣∣2 + 4 sin4 θW

∣∣∣F ll′z − F ll
′

γ

∣∣∣2
+16 sin2 θWRe

[
(F ll

′
z +

1

2
F ll

′l′
Box)G

ll′
γ

∗
]
− 48 sin4 θWRe

[
(F ll

′
z − F ll

′
γ )Gll

′
γ

∗]
+32 sin4 θW |Gll′γ |2

(
log

m2
l

m′2
l

− 11

4

)
, (2.45)

where Gll
′
γ , F ll

′
γ , F ll

′l′l′
Box and F ll

′
z have been defined above.

In writing the expression for BR(l → 3l′) in eq. (2.44), we have used for the decay rate

Γ(l → l′ν̄l′νl) = G2
Fm

5
l /(192π

3).
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Finally, we are going to calculate µ − e conversion rate using the effective Lagrangian

in (2.35), (2.36), (2.37) and the general formula reported in [87]. Since the quark axial

vector current q̄γαγ5q does not contribute to the µ−e conversion, the effective Lagrangian
L(µ−e)
eff reads:

L(µ−e)
eff =

g2.e

32π2M2
W

Gµeγ
2
mµ (ēσαβPRµ)F

αβ +
g4

32π2M2
W

F̃µeq (q̄γαq) (ēγ
αPLµ) , (2.46)

where

F̃µeq = Qq sin
2 θW (Fµeγ − Fµez ) +

1

4
(2I3F

µe
z + FµeqqBox ) . (2.47)

Using the result in [87], the conversion rate is easy to be obtained

Γconv = 2G2
F

∣∣∣∣ e.D32π2
Gµeγ +

g2

4π2

{
(2F̃µeu + F̃µed )V (p) + (F̃µeu + 2F̃µed )V (n)

}∣∣∣∣2 . (2.48)

Here, the parameters D, V (p) and V (n), with V (p)/Z = V (n)/N , represent overlap in-

tegrals of the muon and electron wave functions and are related to the effective dipole

and vector type operators in the interaction Lagrangian, respectively (see, e.g. [87]).

In the case of a light nucleus, i.e. for Z . 30, one has with a good approximation

D ≃ 8
√
4παem V

(p), with the vector type overlap integral of the proton, V (p), given by

[87]:

V (p) ≃ 1

4π
m5/2
µ α3/2

em Z2
eff Z

1/2 F (−m2
µ) . (2.49)

Using the formulae quoted above, we have the final expression for the conversion rate

Γconv =
G2
Fm

5
µα

2
Wα

3

8π4
Z4
eff

Z
F 2(q2)

∣∣∣ZGµeγ sin2 θW + Z(2F̃µeu + F̃µed ) +N(F̃µeu + 2F̃µed )
∣∣∣2

=
G2
Fm

5
µα

2
Wα

3

8π4
Z4
eff

Z
F 2(q2)

∣∣Z(2Fµeu + Fµed ) +N(Fµeu + 2Fµed )
∣∣2 , (2.50)

in which

Fµeq = Qq sin
2 θW (Fµeγ − Fµez +Gµeγ ) +

1

4
(2I3F

µe
z + FµeqqBox ) . (2.51)

In eqs. (2.49) and (2.50), Z is the proton number of the nucleus N , θW is the weak

mixing angle, sin2 θW = 0.23, F (q2) is the nuclear form factor as a function of transferred

momentum q, and Zeff is an effective atomic charge.
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2.2 See-saw Type II (Higgs Triplet Model) and LFV Rates

2.2.1 See-saw Type II (Higgs Triplet Model) at TeV Scale

We will introduce briefly in this section the type II see-saw [88–90] extension of the SM

for the generation of the light neutrino masses. In its minimal formulation it includes

one additional SU(2)L triplet Higgs field ∆, which has weak hypercharge YW = 2:

∆ =

(
∆+/

√
2 ∆++

∆0 −∆+/
√
2

)
. (2.52)

The Lagrangian of the type II see-saw scenario, which is sometimes called also the “Higgs

Triplet Model” (HTM), reads 3:

LII
seesaw = −M2

∆Tr
(
∆†∆

)
−
(
hll′ ψClL iτ2∆ψl′L + µ∆H

T iτ2∆
†H + h.c.

)
, (2.53)

where (ψlL)
T ≡ (νTlL lTL), ψ

C
lL ≡ (− νTlLC

−1 − lTLC
−1), and H are, respectively,

the SM lepton and Higgs doublets, C being the charge conjugation matrix, and µ∆

is a real parameter characterising the soft explicit breaking of the total lepton charge

conservation. We are interested in the low energy see-saw scenario, where the new

physics scale M∆ associated with the mass of ∆ takes values 100 GeV .M∆ . 1 TeV,

which, in principle, can be probed by LHC [93–96].

The flavour structure of the Yukawa coupling matrix h and the size of the lepton charge

soft breaking parameter µ∆ are related to the light neutrino mass matrix mν , which is

generated when the neutral component of ∆ develops a “small” vev v∆ ∝ µ∆ . Indeed,

setting ∆0 = v∆ and HT = (0 v)T with v ≃ 174 GeV, from Lagrangian (2.53) one

obtains:

(mν)ll′ ≡ mll′ ≃ 2hll′ v∆ . (2.54)

The matrix of Yukawa couplings hll′ is directly related to the PMNS neutrino mixing

matrix UPMNS ≡ U , which is unitary in this case:

hll′ ≡ 1

2v∆

(
U∗ diag(m1,m2,m3)U

†
)
ll′
. (2.55)

An upper limit on v∆ can be obtained from considering its effect on the parameter

ρ =M2
W /M

2
Z cos2 θW . In the SM, ρ = 1 at tree-level, while in the HTM one has

ρ ≡ 1 + δρ =
1 + 2x2

1 + 4x2
, x ≡ v∆/v. (2.56)

3We do not give here, for simplicity, all the quadratic and quartic terms present in the scalar potential
(see, e.g., [91, 92]).
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The measurement ρ ≈ 1 leads to the bound v∆/v . 0.03, or v∆ < 5 GeV (see, e.g., [97]).

As we will see, the amplitudes of the LFV processes µ→ eγ, µ→ 3e and µ+N → e+N in

the model under discussion are proportional, to leading order, to a product of 2 elements

of the Yukawa coupling matrix h. This implies that in order for the rates of the indicated

LFV processes to be close to the existing upper limits and within the sensitivity of the

ongoing MEG and the planned future experiments forM∆ ∼ (100−1000) GeV, the Higgs

triplet vacuum expectation value v∆ must be relatively small, roughly v∆ ∼ (1 − 100)

eV. In the case of M∆ ∼ v = 174 GeV we have v∆ ∼= µ∆, while if M2
∆ >> v2, then

v∆ ∼= µ∆v
2/(2M2

∆) (see, e.g., [91, 92, 97]) with v
2/(2M2

∆)
∼= 0.015 for M∆ = 1000 GeV.

Thus, in both cases a relatively small value of v∆ implies that µ∆ has also to be small.

A nonzero but relatively small value of µ∆ can be generated, e.g., at higher orders in

perturbation theory [98] or in the context of theories with extra dimensions (see, e.g.,

[99]).

The physical singly-charged Higgs scalar field practically coincides with the triplet scalar

field ∆+, the admixture of the doublet charged scalar field being suppressed by the

factor v∆/v. The singly- and doubly- charged Higgs scalars ∆+ and ∆++ have, in

general, different masses [98, 100–102]: m∆+ ̸= m∆++ . Both situations m∆+ > m∆++

and m∆+ < m∆++ are possible. In some cases, for simplicity, we will present numerical

results for m∆+
∼= m∆++ ≡ M∆, but one must keep in mind that m∆+ and m∆++ can

have different values.

2.2.2 Calculation of LFV Rates

In the mass eigenstate basis, the effective charged lepton flavour changing operators

arise at one-loop order from the exchange of the singly- and doubly-charged physical

Higgs scalar fields, whose form factors are detail calculated in App. B. The effective

low energy LFV Lagrangian corresponding to eqs. (B.74) and (B.75) can be written in

forms:

Leff = − 4
eGF√

2

(
mlAR l′ σ

αβ PR l Fβα + h.c.
)

− e2GF√
2

AL(q2) l′ γα PL l ∑
Q=u,d

qQQγαQ + h.c.

 , (2.57)

where e is the proton charge, and qu = 2/3 and qd = −1/3 are the electric charges of

the up and down quarks (in units of the proton charge). The form factors AR,L have
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expressions:

AR = − 1√
2GF

(
h†h
)
l′l

48π2

(
1

8m2
∆+

+
1

m2
∆++

)
, (2.58)

AL(q
2) = − 1√

2GF

h∗kl′hkl
6π2

(
1

12m2
∆+

+
1

m2
∆++

f

(
−q2

m2
∆++

,
m2
k

m2
∆++

))
. (2.59)

Here, (ml, mk) are the masses of the charged lepton (l, k), (l, k) = e, µ, τ and q is the

momentum carried by the photon.

In the limit where the transition is dominated by the exchange of a virtual doubly

charged scalar ∆++, these expressions reduce to those obtained in [102–105]; to the best

of our knowledge the expression of AL(q
2) for the general case is a new result. The

term with the form factor AR in eq. (2.57) generates the µ → eγ decay amplitude. It

corresponds to the contribution of the one loop diagrams with virtual neutrino and ∆+

[106] and with virtual charged lepton and ∆++ [104, 105] (see also [28]). The second

term involving the form factor AL, together with AR, generates the µ − e conversion

amplitude. The loop function f(r, sl) is well known [102, 103]:

f(r, sl) =
4sl
r

+ log(sl) +

(
1− 2sl

r

) √
1 +

4sl
r

log

√
r +

√
r + 4sl√

r −
√
r + 4sl

, (2.60)

where r = m2
µ/M

2
∆ and sl = m2

l /M
2
∆.

Notice that in the limit in which the charged lepton masses ml are much smaller than

the doubly-charged scalar mass m∆++ , one has f(r, sl) ≃ log(r) = log(m2
µ/m

2
∆++). For

m∆++ = (100 − 1000) GeV, this is an excellent approximation for f(r, se), but cannot

be used for f(r, sµ) and f(r, sτ ). The ratios f(r, se)/f(r, sµ) and f(r, se)/f(r, sτ ) change

relatively little when m∆++ increases from 100 GeV to 1000 GeV, and at m∆++ =

100 (1000) GeV take the values: f(r, se)/f(r, sµ) ∼= 1.2 (1.1) and f(r, se)/f(r, sτ ) ∼=
2.1 (1.7). More generally, f(r, sl), l = e, µ, τ , are monotonically (slowly) decreasing func-

tions of m∆++
4: for m∆++ = 100 (1000) GeV we have, e.g., f(r, se) ∼= −13.7 (−18.3).

In the Higgs triplet model considered, the l → l′+γ decay amplitude receives at leading

order contributions from one loop diagrams with exchange of virtual singly and doubly-

charged Higgs scalars. A detailed calculation of these contributions leads to the result

[91, 92, 106, 107]:

BR(l → l′γ) ∼= 384π2 (4π αem) |AR|2 × BR(l → νl l
′ νl′)

=
αem

192π

∣∣(h†h)
ll′

∣∣2
G2
F

(
1

m2
∆+

+
8

m2
∆++

)2

BR(l → νl l
′ νl′) , (2.61)

4Note that we have f(r, sl) < 0, l = e, µ, τ .
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where l = µ and l′ = e, or l = τ and l′ = µ, e.

Similarly, the leading contribution in the l → 3l′ decay amplitude in the TeV scale HTM

is due to a tree level diagram with exchange of the virtual doubly-charged Higgs scalar

∆++. The corresponding l → 3l′ decay branching ratio is given by [104, 105] (see also,

e.g., [28, 92]):

BR(l → 3l′) =

∣∣h∗l′l′hll′∣∣2
G2
F m

4
∆++

BR(l → l′ν̄l′νl) =
1

G2
F m

4
∆++

∣∣m∗
l′l′mll′

∣∣2
16v4∆

BR(l → l′ν̄l′νl) .

(2.62)

We consider next the µ − e conversion in a generic nucleus N using the effective La-

grangian introduced in eq. (2.57). In the same way has done in Sector 2.1.2, we

parametrize the corresponding conversion rate following the effective field theory ap-

proach developed in [87]. Taking into account the interaction Lagrangian (2.57), we get

in the type II see-saw scenario

CR(µN → eN ) ∼= (4παem)
2 2G2

F

Γcapt

∣∣∣∣AR D√
4π αem

+ (2 qu + qd)AL V
(p)

∣∣∣∣2 . (2.63)

Using the properties D ∼= 8e V (p), V (p)/Z = V (n)/N = m
5/2
µ α3/2Z2

effZ
−1/2F (q2)/4π,

eqs. (2.58), (2.59) and (2.49), the conversion rate (2.63) reads

CR(µN → eN ) ∼=
α5
em

36π4
m5
µ

Γcapt
Z4
eff Z F

2(−m2
µ)

∣∣∣∣(h†h)eµ
[

5

24m2
∆+

+
1

m2
∆++

]

+
1

m2
∆++

∑
l=e,µ,τ

h†el f(r, sl)hlµ

∣∣∣∣∣∣
2

, (2.64)

where Γcapt is the experimentally known total muon capture rate.

2.3 See-saw Type III Model

Now, we turn to the study of the type III see-saw [108, 109] extensions of the SM. In

the scenarios under discussion, the SM particle content is enlarged by adding SU(2)L-

triplets of fermions, F jR ≡
(
F 1
jR, F

2
jR, F

3
jR

)
, j ≥ 2, possessing zero weak hypercharge

and a mass Mk at the electroweak scale: Mk ≈ (100 − 1000) GeV. The corresponding

interaction and mass terms in the see-saw Lagrangian read:

LIII
seesaw = −λℓj ψℓL τ H̃ · F jR − 1

2
(MR)ij F

C
iL · F jR + h.c. , (2.65)

where τ ≡ (τ1, τ2, τ3), τa being the usual SU(2)L generators in the fundamental repre-

sentation.
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It is convenient in the following discussion to work with the charge eigenstates F±
jR ≡

(F 1
jR ∓ iF 2

jR) and F
0
jR ≡ F 3

jR. Then, the physical states in the above Lagrangian corre-

spond to electrically charged Dirac and neutral Majorana fermions, which are denoted

as Ej and Nj , respectively:
5

Ej ≡ F−
jR + F+C

jL Nj ≡ F 0C
jL + F 0

jR . (2.66)

In the basis in which the charged lepton mass matrix is diagonal, the CC and NC weak

interaction Lagrangian of the light Majorana neutrino mass eigenstates χj read:

LνCC = − g√
2
ℓ̄ γα ((1− η)U)ℓi χiLW

α + h.c. , (2.67)

LνNC = − g

2cw
χiL γα

(
U †(1 + 2 η)U

)
ij
χjL Z

α . (2.68)

Similarly to the type I see-saw scenario discussed earlier, the heavy Majorana mass

eigenstates Nk might acquire a sizable coupling to the weak gauge bosons through the

mixing with the light Majorana neutrinos:

LNCC =
g

2
√
2
ℓ̄ γα (RV )ℓk(1− γ5)NkW

α + h.c. , (2.69)

LNNC = − g

4cw
νℓ γα (RV )ℓj(1− γ5)Nj Z

α + h.c. . (2.70)

In the expressions given above, the non-unitary part of the neutrino mixing matrix, i.e.

the matrix η, and the matrix R are defined as in the type I see-saw scenario discussed in

Section 2.1 (see eq. (2.6)), while V in this case diagonalizes the symmetric mass matrix

MR in eq. (2.65): MR
∼= V ∗diag(M1,M2, . . .)V

†.

The neutrino Yukawa couplings λℓj can be partially constrained by low-energy neutrino

oscillation data and electroweak precision observable (see, e.g. [110, 111]). Notice that,

unlike the type I see-saw extension of the Standard Model, now we have flavour changing

neutral currents (FCNCs) in the charged lepton sector. The latter are described by the

interaction Lagrangian:

LℓNC =
g

2cw

(
ℓL γα (1− 4 η)ℓℓ′ ℓ

′
L − 2 s2w ℓ γα ℓ

)
Zα . (2.71)

Finally, 6 the interactions of the new heavy charged leptons, Ej , with the weak gauge

bosons at leading order in the mixing angle between the heavy and the light mass

5In the following we will denote as Ej and Nj the mass eigenstates obtained from the diagonalization
of the full charged and neutral lepton mass matrices.

6Flavour changing couplings between the charged leptons and the SM Higgs boson H arise as well
in the TeV-scale type III see-saw scenarios [111] which enter at one-loop in the lepton flavour violating
processes (see next subsection).
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eigenstates read:

LECC = − g Ej γαNjW
α + g Ej γα (RV )ℓj ν

C
ℓRW

α + h.c. , (2.72)

LENC = g cw Ej γαEj Z
α − g

2
√
2cw

(
ℓ γα (RV )ℓj(1− γ5)Ej Z

α + h.c.
)
. (2.73)

To obtain eqns. from 2.67 to 2.73, we have used the results reported in [111] and taken

into account the equalities:

ϵ ≡ (RV )(RV )† = −2η , (2.74)

(RV ) ≡ v√
2
Y †
ΣM

−1
Σ , (2.75)

which are easy to be seen by comparing our expression for the matrix used to diagonalize

the neutrino mass matrix and those in [111]. Here, ϵ and Y †
ΣM

−1
Σ v/

√
2 are two notations

appearing in [111].

2.4 Chapter Conclusion

In this chapter, we have introduced LFV processes in the class of models, whose effective

Majorana mass term for the light left-handed active neutrinos is generated after elec-

troweak symmetry breaking due to the decoupling of additional “heavy” scalar and/or

fermion representations. We have analyzed in full generality the phenomenology of the

three different and well-known (see-saw) mechanisms of neutrino mass generation, in

their minimal formulation: i) type I see-saw models, in which the new particle content

consist of at least 2 RH neutrinos, which are not charged under the SM gauge group; ii)

type III see-saw models, where the RH neutrinos are taken in the adjoint representation

of SU(2)L with zero hypercharge; iii) type II see-saw (or Higgs triplet) models, where

the scalar sector of the theory is extended with the addition of at least one scalar triplet

of SU(2)L coupled to charged leptons.

In the models considered, the scale of new physics associated with the existence of

nonzero neutrino masses and neutrino mixing is assumed to be in the range of ∼ (100−
1000) GeV. In the type I and III see-saw scenarios, this scale is determined by the masses

of the heavy Majorana neutrinos, while in the Higgs Triplet model it corresponds to the

masses of the new singly charged, doubly charged and neutral physical Higgs particles.

In the type I and III see-saw classes of models of interest, the flavour structure of the

couplings of the new particles - the heavy Majorana neutrinos Nj - to the charged leptons

and W±-boson and to the flavour neutrino fields and the Z0-boson, (RV )lj , l = e, µ, τ ,

are basically determined by the requirement of reproducing the data on the neutrino

oscillation parameters (see, e.g., [62]). In the Higgs Triplet model the Yukawa couplings
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of the new scalar particles to the charged leptons and neutrinos are proportional to the

Majorana mass matrix of the LH active flavour neutrinos.

As a consequence, the rates of the LFV processes in the charged lepton sector can

be calculated in the considered models in terms of a few unknown parameters. These

parameters are constrained by different sets of data such as, e.g., data on neutrino

oscillations, from EW precision tests, on the LFV processes µ → e + γ, µ → 3e, etc.

In the TeV scale type I and III see-saw scenarios considered, all the constraints can be

satisfied for sizeable values of the couplings |(RV )lj | with two heavy Majorana neutrinos

N1,2, in which the latter have close masses forming a pseudo-Dirac state,M2 =M1(1+z),

M1,2, z > 0, z ≪ 1. In those schemes the lightest neutrino mass m0 = 0 and the neutrino

mass spectrum is either normal hierarchical (NH) or inverted hierarchical (IH).



Chapter 3

LFV µ Processes in TeV Scale

See-saw Type models

The content of this chapter is based on the results obtained in [107]. We have used the

most updated data of the neutrino oscillation parameters at the given time, which are

reported in [17, 19, 20]. The value of sin2 2θ13 was measured with a rather high precision

and was found to be different from zero at 5.2σ [19]:

sin2 2θ13 = 0.092± 0.016± 0.005 , 0.04 ≤ sin2 2θ13 ≤ 0.14 , 3σ . (3.1)

The results of the analysis [17], in which ∆m2
21 ≡ ∆m2

⊙ and |∆m2
31| ≡ |∆m2

A| were
determined as well, are shown in Table 3.1. The best fit values of neutrino parameters,

summarized in the Table 3.1, in fact, are different very little from the current best

fit values (see, e.g., [21], eqs. (1.4) and (1.5)), therefore the results of analyzing LFV

rates of the processes interested with new and old neutrino oscillation data are not very

different.

Table 3.1: The best-fit values and 3σ allowed ranges of the 3-neutrino oscillation
parameters, derived from a global fit of the current neutrino oscillation data, including
the T2K and MINOS (but not the Daya Bay) results (from [17]). The Daya Bay data
[19] on sin2 θ13 is given in the last line. The values (values in brackets) of sin2 θ12 are

obtained using the “old” [112] (“new” [113]) reactor ν̄e fluxes in the analysis.

Parameter best-fit (±1σ) 3σ

∆m2
⊙ [10−5 eV2] 7.58+0.22

−0.26 6.99 - 8.18

|∆m2
A| [10−3 eV2] 2.35+0.12

−0.09 2.06 - 2.67

sin2 θ12 0.306+0.018
−0.015 0.259(0.265) - 0.359(0.364)

sin2 θ23 0.42+0.08
−0.03 0.34 - 0.64

sin2 θ13 [17] 0.021(0.025) +0.007
−0.007 0.001(0.005) - 0.044(0.050)

sin2 θ13 [19] 0.0236 ±0.0042 0.010 - 0.036
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3.1 TeV Scale Type I See-Saw Model

3.1.1 The µ → eγ Decay

In this subsection we update briefly the discussion of the limits on the parameters of

the TeV scale type I see-saw model, derived in [62] using the experimental upper bound

on the µ → eγ decay rate obtained in 1999 in the MEGA experiment [114]. After the

publication of [62], the MEG collaboration reported a new more stringent upper bound

on the µ → eγ decay rate [37] given in eq. (1.6). Such an update is also necessary in

view of the relatively large nonzero value of the reactor angle θ13 measured in the Daya

Bay and RENO experiments [19, 20]. As was discussed in [62], in particular, the rate of

the µ → eγ decay in the type I see-saw scheme considered can be strongly suppressed

for certain values of θ13.

Following eq. (4.3), the µ → eγ decay branching ratio in the scenario under discussion

is given by [58, 59, 85]:

BR(µ→ eγ) =
Γ(µ→ eγ)

Γ(µ→ e+ νµ + νe)
=

3αem

32π
|T(µe)|2 , (3.2)

where αem is the fine structure constant and [62]

|T(µe)| ∼=
2 + z

1 + z

∣∣(RV )∗µ1 (RV )e1
∣∣ |G(x)−G(0)| . (3.3)

In deriving the expression for the matrix element T(µe), eq. (3.3), we have used eq.

(4.2) and assumed that the difference between M1 and M2 is negligibly small and used

M1
∼=M2. It is easy to verify that G(x) (see, eq. (2.43)) is a monotonic function which

takes values in the interval [4/3, 10/3], with G(x) ∼= 10
3 − x for x≪ 1.

Using the expressions of |(RV )µ1|2 and |(RV )e1|2 in terms of neutrino parameters,

eqs. (2.28) and (2.29), we obtain the µ → eγ decay branching ratio for the NH and

IH spectra:

NH : BR(µ→ eγ) ∼=
3αem

32π

(
y2v2

M2
1

m3

m2 +m3

)2 ∣∣∣∣Uµ3 + i

√
m2

m3
Uµ2

∣∣∣∣2 ∣∣∣∣Ue3 + i

√
m2

m3
Ue2

∣∣∣∣2 [G(X)−G(0)]2 ,(3.4)

IH : BR(µ→ eγ) ∼=
3αem

32π

(
y2v2

M2
1

1

2

)2

|Uµ2 + iUµ1|2 |Ue2 + iUe1|2 [G(X)−G(0)]2 . (3.5)
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The data on the process µ → eγ set very stringent constraints on the TeV scale type

I see-saw mechanism. The upper bound on BR(µ → eγ) was obtained in the MEG

experiment at PSI [37] and is given in eq. (1.6). It is an improvement by a factor of

21 of the upper limit of the MEGA experiment, published in 1999 [114]. The projected

sensitivity of the MEG experiment is BR(µ→ eγ) ∼ 10−13 [37, 115]. ForM1 = 100 GeV

(M1 = 1 TeV) and z ≪ 1 we get the following upper limit on the product |(RV )∗µ1(RV )e1|
of the heavy Majorana neutrino couplings to the muon (electron) and the W± boson

and to the Z0 boson from the the upper limit eq. (1.6):

∣∣(RV )∗µ1 (RV )e1
∣∣ < 0.39× 10−4 (0.15× 10−4) , (3.6)

where we have used eqs. (3.2) and (3.3). This can be recast as an upper bound on the

neutrino Yukawa coupling y. Taking, e.g., the best fit values of the solar and atmospheric

oscillation parameters given in Table 3.1, we get:

y . 0.024 (0.15) for NH with M1 = 100GeV (1000GeV) and sin θ13 = 0.1 , (3.7)

y . 0.018 (0.11) for IH with M1 = 100GeV (1000GeV) and sin θ13 = 0.1 . (3.8)

The constraints which follow from the current MEG upper bound on BR(µ → eγ) will

not be valid in the case of a cancellation between the different terms in one of the factors

|Uℓ3 + i
√
m2/m3Uℓ2|2 and |Uℓ2 + iUℓ1|2, ℓ = e, µ, in the expressions (3.4) and (3.5) for

BR(µ → eγ). Employing the standard parametrisation of U , eqs. (2.30) - (2.32), one

can show that in the case of NH spectrum we can have |Ue3 + i
√
m2/m3Ue2| = 0 if

[62] (see also [63]) sin(δ + (α21 − α31)/2) = 1 and tan θ13 = (∆m2
⊙/∆m

2
A )1/4 sin θ12.

Using the 3σ allowed ranges of ∆m2
⊙, ∆m

2
A and sin2 θ12 given in Table 3.1, we find that

the second condition can be satisfied provided sin2 θ13 ∼> 0.04, which lies outside the 3σ

range of allowed values of sin2 θ13 found in the Daya Bay experiment [19] (see eq. (3.1)).

In the case of IH spectrum, the factor |Ue2+ iUe1|2 can be rather small for sin(α21/2) =

−1: |Ue2 + iUe1|2 = c213(1− sin 2θ12) ∼= 0.0765, where we have used the best fit values of

sin2 θ12 = 0.306 and sin2 θ13 = 0.0236. It is also possible to have a strong suppression of

the factor |Uµ2 + iUµ1|2 [62]. Indeed, using the standard parametrisation of the matrix

U , it is not difficult to show that for fixed values of the angles θ12, θ23 and of the phases

α21 and δ, |Uµ2 + iUµ1|2 has a minimum for

sin θ13 =
c23
s23

cos 2θ12 cos δ sin
α21
2 − cos α21

2 sin δ

1 + 2c12 s12 sin α21
2

. (3.9)
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At the minimum we get:

min
(
|Uµ2 + iUµ1|2

)
= c223

(
cos δ cos α21

2 + cos 2θ12 sin δ sin
α21
2

)2
1 + 2c12 s12 sin α21

2

. (3.10)

Notice that, from the equation above, the µ→ eγ branching ratio is highly suppressed if

the Dirac and Majorana phases take CP conserving values, mainly: δ ≃ 0 and α21 ≃ π.

In this case, from eq. (3.9) we get the lower bound sin θ13 & 0.13, which is in agreement

with the Daya Bay measurement reported in Tab. 3.1. On the other hand, assuming

CPV phases, we still may have min(|Uµ2 + iUµ1|2) = 0, provided θ12 and the Dirac

and Majorana phases δ and α21 satisfy the following conditions: cos δ cos(α21/2) +

cos 2θ12 sin δ sin(α21/2) = 0 and sgn(cos δ cos α21
2 ) = −sgn(sin δ sin α21

2 ). Taking cos δ > 0

(cos δ < 0) and using tan δ = − tan(α21/2)/ cos 2θ12 in eq. (3.9), we get the relation

between s13, δ and cos 2θ12, for which min(|Uµ2 + iUµ1|2) = 0:

sin θ13 =
c23
s23

√
1 + tan2 δ cos 2θ12√

1 + cos2 2θ12 tan2 δ + 2c12 s12 sgn(cos δ)
. (3.11)

Using the 3σ intervals of allowed values of sin2 θ12 and sin2 θ23 (found with the “new”

reactor ν̄e fluxes, see Table 3.1) and allowing δ to vary in the interval [0,2π], we find

that the values of sin θ13 obtained using eq. (3.11) lie in the interval sin θ13 ∼> 0.11.

As it follows from eq. (3.1), we have at 3σ: 0.10 ∼< sin θ13 ∼< 0.19. The values of

0.11 ∼< sin θ13 ∼< 0.19 correspond to 0 ≤ δ ∼< 0.7. These conclusions are illustrated in

Fig. 3.1. For sin θ13 and δ lying in the indicated intervals we can have |Uµ2+ iUµ1|2 = 0

and thus a strong suppression of the µ → eγ decay rate. As we will see in subsections

3.1.2 and 3.1.3, in the model we are considering, the predicted µ − e conversion rate

in a given nucleus and µ → 3e decay rate are also proportional to |(RV )∗µ1(RV )e1|2, as
like the µ → eγ decay rate. This implies that in the case of the TeV scale type I see-

saw mechanism and IH light neutrino mass spectrum, if, e.g., BR(µ → eγ) is strongly

suppressed due to |Uµ2 + iUµ1|2 ∼= 0, the µ − e conversion and the µ → 3e decay rates

will also be strongly suppressed 1. The suppression under discussion cannot hold if,

for instance, it is experimentally established that δ is definitely bigger than 1.0. That

would be the case if the existing indications [17] that cos δ < 0 receive unambiguous

confirmation.

1 Let us note that in the case of IH spectrum we are discussing actually one has |(RV )µ1|2 ∝
|Uµ2+ i

√
m1/m2Uµ1|2 (see eq. (2.29)), with m2 =

√
|∆m2

A| and m1 =
√

|∆m2
A| −∆m2

⊙
∼=

√
|∆m2

A|(1−
0.5∆m2

⊙/|∆m2
A|). Therefore when |Uµ2 + iUµ1| = 0 we still have |Uµ2 + i

√
m1/m2Uµ1|2 ̸= 0. However,

in this case |Uµ2 + i
√

m1/m2Uµ1|2 ∼= (∆m2
⊙/(4|∆m2

A|))2|Uµ1|2 ∼< 1.7× 10−5, where we have used δ = 0
(which maximises |Uµ1|2) and the best fit values of the other neutrino oscillation parameters. Thus, our
conclusions about the suppression of BR(µ → eγ), the µ− e conversion and the µ → 3e decay rates are
still valid.
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Figure 3.1: Values of sin θ13, as a function of the phase δ in the case of IH light
neutrino mass spectrum, which yield a suppressed rate of the process µ → eγ. The
values are obtained using eq. (3.11), the 2σ (3σ) intervals of allowed values of sin2 θ12
and sin2 θ23, yellow (green) points (found with the “new” reactor ν̄e fluxes, see Table
3.1) and allowing δ to vary in the interval [0,2π]. The red and blue horizontal lines
correspond to the 3σ upper limit sin θ13 = 0.191 and the best fit value sin θ13 = 0.156.

The limits on the parameters |(RV )µ1| and |(RV )e1|, implied by the electroweak precision

data, eqs. (2.18) - (2.20), and the upper bound on BR(µ→ eγ), eq. (1.6), are illustrated

in Fig. 3.2. The results shown are obtained for the best fit values of sin θ13 = 0.156 and

of the other neutrino oscillation parameters given in Table 3.1.

3.1.2 The µ − e Conversion in Nuclei

We will discuss next the predictions of the TeV scale type I see-saw extension of the SM

for the rate of the µ−e conversion in nuclei, as well as the experimental constraints that

can be imposed on this see-saw scenario by the current and prospective µ− e conversion
data. In the type I see-saw scenario of interest, the µ − e conversion ratio in a nucleus

N is straightforward from eq. (2.50), then we arrive at the expression 2:

CR(µN → eN ) ≡ Γ(µN → eN )

Γcapt
=

α5
em

2π4 sin4 θW

Z4
eff

Z

∣∣F (−m2
µ)
∣∣2 G2

Fm
5
µ

Γcapt

×
∣∣(RV )∗µ1(RV )e1

∣∣2 |Cµe|2 , (3.12)

2In the earlier version of the article [107] we have used the expression for |Cµe| found in [116] (in the
notations of ref. [117]) in a model with an active heavy Majorana neutrino. It was pointed out in [118],
however, that the result for |Cµe| of [116] is not directly applicable to the case of TeV scale type I see-saw
model we are considering. The authors of [118] performed a detailed calculation of |Cµe| in the model of
interest and obtained a new expression for |Cµe|. We have performed an independent calculation of the
factor |Cµe| in the model under discussion. Our result for |Cµe| coincides with that derived in [118].
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Figure 3.2: Correlation between |(RV )e1| and |(RV )µ1| in the case of NH (upper
panels) and IH (lower panels) light neutrino mass spectrum, for M1 = 100 (1000) GeV
and, i) y = 0.0001 (magenta points), ii) y = 0.001 (blue points), iii) y = 0.01 (red
points) and iv) y = 0.1 (cyan points), while neutrino oscillation parameters are varying
in the 3σ allowed ranges. The constraints from several LFV processes discussed in the

text are shown.

where Γcapt is the total muon capture rate, the loop integral factor

Cµe ∼= Z
[
2F (µe)

u (x) + F
(µe)
d (x)

]
+N

[
F (µe)
u (x) + 2F

(µe)
d (x)

]
, (3.13)

F (µe)
q (x) = Qq sin

2 θW

[
Fγ(x)− F (µe)

z (x) +Gγ(x)
]

+
1

4

[
2I3F

(µe)
z (x) + F

(µeqq)
B (x)

]
, (3.14)

F (µe)
z (x) = Fz(x) + 2Gz(0, x), F

(µeuu)
Box (x) = FBox(x, 0)− FBox(0, 0) , (3.15)

F
(µedd)
Box (x) = FXBox(x, 0)− FXBox(0, 0) , (3.16)

and x =M2
1 /M

2
w.

In the following we will present the results for three nuclei which were used in the

past, and are of interest for possible future µ − e conversion experiments: 48
22Ti,

27
13Al

and 197
79 Au. For these nuclei, one has, respectively: i) Zeff = 17.6; 11.62 ; 33.64, ii)

F (q2 = −m2
µ) ≈ 0.54; 0.64; 0.20, and iii) Γcapt = 2.59; 0.69; 13.07× 106 sec−1 [43].
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Figure 3.3: The µ− e conversion loop integration factor Cµe versus the see-saw mass
scale M1, for three different nuclei: i) 48

22Ti (blue line), ii) 27
13Al, (green line), and iii)

197
79 Au (red line).

The dependence of the loop integration factor Cµe on the see-saw mass scale M1 for the

three nuclei of interest is shown in Fig. 3.3. The first feature to notice is that |Cµe| for
48
22Ti,

27
13Al and 197

79 Au has maxima |Cµe| = 34.4; 20.4; 124 at M1 = 250; 267; 214 GeV,

respectively. AtM1 = 250 GeV, |Cµe| for 27
13Al and

197
79 Au takes the values |Cµe(Al)| ∼= 20.4

and |Cµe(Au)| ∼= 123.1; at M1 = 267 GeV, we have |Cµe(Ti)| ∼= 34.4 and |Cµe(Au)| ∼=
122.4; and finally, at M1 = 214 GeV, we find |Cµe(Ti)| ∼= 34.3 and |Cµe(Al)| ∼= 20.2.

These maxima of |Cµe| give the biggest enhancement factors for the conversion rate when

M1 ≤ 1000 GeV. Beside the maxima, |Cµe| goes through zero at M1 = 4595; 6215; 2470

GeV for 48
22Ti,

27
13Al and 197

79 Au, respectively, as was noticed also in [118].

Qualitatively, the dependence of the factor |Cµe| defined in eq. (3.15) on M1 exhibits

the same features as the factor |Cµe| derived in [116], namely [107], at goes through

zero at a certain value of M1 = M0
1 (N ) which depends on the nucleus N and is a

monotonically increasing function of M1 in the interval [50 GeV, 104 GeV] when M1

decreases (increases) starting from the value M1 = M0
1 (N ). The values of M0

1 (N ) at

which |Cµe| given in (3.15)) and that obtained in [116] are zero differ roughly by a factor

of 10 to 20, depending on the nucleus N .

For M1 lying inside the interested interval (100 - 1000) GeV, the loop integration factor

|Cµe| takes rather large values for each of the three nuclei. As our calculations show,

|Cµe| is not smaller than 23.4 for the Ti and 14.9 for the Al, while for the Au nucleus

it exceeds 64.1. Since the µ − e conversion rate is enhanced by the factor |Cµe|2, it is



30 Chap. 3: LFV µ Processes in TeV Scale See-saw Type models

0 200 400 600 800 1000
10

−1

10
0

10
1

10
2

10
3

M
1
 (GeV)

C
R

(µ
−

e
)/

B
R

(µ
−

>
e
+

 γ
)&

 C
R

(µ
−

e
)/

B
R

(µ
−

>
3

e
)

 

 

Ti
Al
Au

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
−6

10
−4

10
−2

10
0

10
2

M
1
 (GeV)

C
R

(µ
−

e
)/

B
R

(µ
−

>
e
+

 γ
)&

 C
R

(µ
−

e
)/

B
R

(µ
−

>
3

e
)

 

 

Ti
Al
Au

Figure 3.4: The ratio of the µ − e relative conversion rate and the branching ratio
of the i) µ → eγ decay (solid lines), ii) µ → 3e decay (dashed lines), versus the type I
see-saw mass scale M1, for three different nuclei: 48

22Ti (blue lines), 27
13Al (green lines)

and 197
79 Au (red lines).

very sensitive to the product |(RV )∗µ1(RV )e1| of CC couplings of the heavy Majorana

neutrinos to the electron and muon for the values of M1 in the interval of interest.

The best experimental upper bound on the conversion rate is [39]: CR(µTi → eTi) .
4.3 × 10−12. This bound implies a constraint on |(RV )∗µ1(RV )e1|, which is shown in

Fig. 3.2 for M1 = 100; 1000 GeV. It is quite remarkable that, as Fig. 3.2 shows, the

constraint on the product of couplings |(RV )∗µ1(RV )e1| implied by the best experimental

upper limit on CR(µTi → eTi) and BR(µ→ eγ) are almost the same forM1 = 100 GeV

although the experimental upper limits for BR(µ→ eγ) is about 4 time more stringent

than those for BR(µ → eγ) and the expression for CR(µTi → eTi) has an additional

factor of α = 1/137 with respect to the expression for BR(µ → eγ). For M1 = 1000

GeV, the constraint from BR(µ→ eγ) is more stringent.

Future experimental searches for µ − e conversion in 48
22Ti can reach the sensitivity of

CR(µTi → eTi) ≈ 10−18 [43]. Therefore, for values of M1 outside the narrow intervals

quoted above for which the loop integration factor |Cµe| is strongly suppressed, an upper

bound on the µ − e conversion ratio of O(10−18) can be translated into the following

stringent constraint on the heavy Majorana neutrino CC couplings to the muon and

electron:

∣∣(RV )∗µ1(RV )e1
∣∣ . 2.17× 10−8 (2.63× 10−8) for M1 ≈ 100 (1000) GeV . (3.17)

As being noticed earlier, the two parameters of the type I see-saw model considered,

the mass scale M1 and the Yukawa coupling y, can be determined, in principle, from

data on BR(µ → eγ) (or BR(µ → 3e)) and CR(µTi → eTi) if the two processes will

be observed. Actually, the ratio of the rates of µ − e conversion in any given nucleus

N , CR(µN → eN ) and of the µ→ eγ decay depends only on the mass (scale) M1 and
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can be used, in principle, to determine the latter. In the case of µ − e conversion on

titanium, for instance, we find:

R

(
µ− e

µ→ eγ

)
≡ CR(µTi → eTi)

BR(µ→ eγ)
≈ 5.95 (0.48) for M1 ≈ 100 (1000) GeV . (3.18)

The correlation between CR(µN → eN ) and BR(µ → eγ) in the model considered is

illustrated in Fig. 3.4. The type I see-saw mass scale M1 would be uniquely determined

if µ − e conversion is observed in two different nuclei or if, e.g., the µ → eγ decay

or µ − e conversion in a given nucleus is observed and it is experimentally established

that R( µ−e
µ→eγ ) ∼< 10−3. In the latter case M1 could be determined with a relatively

high precision. Furthermore, as Fig. 3.4 indicates, if the RH neutrino mass M1 lies in

the interval (50 − 1000) GeV, M1 would be uniquely determined provided R( µ−e
µ→eγ ) is

measured with a sufficiently high precision.

We also note that the correlation between CR(µN → eN ) and BR(µ→ eγ) in the type

I see-saw model considered is qualitatively and quantitatively very different from the

correlation in models where the µ−e conversion is dominated by the photon penguin di-

agram, e.g., the supersymmetric high-scale see-saw model which predicts approximately

[119] CR(µTi → eTi) ≈ 5× 10−3BR(µ→ eγ).

3.1.3 The µ → 3e Decay

The l → 3l′ decay branching ratio has been introduced in Subsection 2.1.2 in a type I

see-saw mechanism of neutrino mass generation with arbitrary fixed number of heavy

RH neutrinos. After adapting the result for µ → 3e decay in the scenario considered

with two approximately equal mass heavy neutrinos N1 and N2, we find in the model

of interest to the leading order in the small parameters |(RV )l1|:

BR(µ→ 3e) =
α2
em

16π2 sin4 θW

∣∣(RV )∗µ1(RV )e1
∣∣2 |Cµ3e(x)|2 , (3.19)

|Cµ3e(x)|2 = 2

∣∣∣∣12Fµ3eB + Fµ3ez − 2 sin2 θW (Fµ3ez − Fγ)

∣∣∣∣2 + 4 sin4 θW
∣∣Fµ3ez − Fγ

∣∣2
+16 sin2 θW

[
(Fµ3ez +

1

2
Fµ3eB )Gγ

]
− 48 sin4 θW

[
(Fµ3ez − Fµ3eγ )Gγ

]
+32 sin4 θW |Gγ |2

(
log

m2
µ

m2
e

− 11

4

)
, (3.20)

where Fγ(x), Gγ(x), Fz(x), Gz(x, y), FXBox(x, y) can be found in (A.27), (A.28), (A.54),

(A.56), (A.72), and

Fµ3ez (x) = Fz(x) + 2Gz(0, x), F
µ3e
B (x) = −2(FXBox(0, x)− FXBox(0, 0)). (3.21)
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Figure 3.5: The µ → 3e decay rate factor |Cµ3e|2 as a function of the see-saw mass
scale M1.

The dependence of the µ → 3e decay rate factor |Cµ3e|2 on the type I see-saw mass

scaleM1 is shown in Fig. 3.5. AtM1 = 100 (1000) GeV we have: |Cµ3e|2 ∼= 1.75 (38.73),

i.e., |Cµ3e|2 increases by a factor of 22 when M1 changes from 100 GeV to 1000 GeV.

Using the quoted values of |Cµ3e|2 we get the following constraint from the current limit

on BR(µ→ 3e), eq. (1.7):

∣∣(RV )∗µ1(RV )e1
∣∣ . 3.01× 10−4 (6.39× 10−5) for M1 = 100 (1000) GeV . (3.22)

Thus, for M1 = 100 (1000) GeV the constraint on |(RV )∗µ1(RV )e1| obtained using the

current experimental upper limit on BR(µ → 3e) is by a factor of 7.7 (4.3) less strin-

gent than that obtained from the current upper limit on BR(µ → eγ) (see eq. (3.6)),

respectively. In conclusion, for M1 = 100 GeV, the upper limit on |(RV )∗µ1(RV )e1| from
the current experimental bound on the µ− e conversion and µ → eγ decay, are similar

qualitative; while for M1 = 1000 GeV, the most stringent constraint is from µ → eγ

current upper bound. This is clearly seen in Fig. 3.2. It follows also from Fig. 3.2 that

an experiment sensitive to a µ− e conversion rate CR(µAl → eAl) ≈ 10−16, will probe

smaller values of the product of couplings |(RV )∗µ1(RV )e1| than an experiment sensitive

to BR(µ→ 3e) = 10−15.

In Fig. 3.4 we show the correlation between CR(µN → eN ) and BR(µ → 3e) in the

TeV scale see-saw model considered. As it follows from Fig. 3.4, the observation of the

µ→ 3e decay or of the µ− e conversion in a given nucleus, combined with data on the

ratio CR(µN → eN )/BR(µ → 3e) would lead either to a unique determination of the

type I see-saw scaleM1, or to two values, or else to a relatively narrow interval of values,
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Figure 3.6: The dependence of |(h†h)eµ| on sin θ13 for v∆ = 9.5 eV and δ = 0 (solid
lines) and δ = π/2 (dashed line). The other neutrino oscillation parameters are set to
their best fit values given in Table 3.1. The vertical line corresponds to the current 3σ

allowed minimal value of sin θ13 (see eq. (3.1)).

of M1 compatible with the data. One can get the same type of information on the scale

M1 from data on the ratio BR(µ → 3e)/BR(µ → eγ), provided at least one of the two

decays µ→ eγ and µ→ 3e is observed.

It should be added finally that for M1 ∼> 100 GeV we have: BR(µ → 3e)/BR(µ →
eγ) ∼> 0.031. Thus, if it is experimentally established that BR(µ → 3e)/BR(µ → eγ) is

definitely smaller than the quoted lower bound, the model considered with M1 ∼> 100

GeV will be ruled out. Such a result would be consistent also just with a see-saw scale

M1 < 100 GeV.

3.2 TeV Scale Type II See-Saw Model

3.2.1 The µ → eγ Decay

The µ→ eγ decay branching ratio in the case under discussion is taken from (2.61):

BR(µ→ eγ) ∼=
αem

192π

∣∣∣(h†h)eµ∣∣∣2
G2
F

(
1

m2
∆+

+
8

m2
∆++

)2

. (3.23)
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For m∆+
∼= m∆++ ≡ M∆, the upper limit on BR(µ → eγ) reported by the MEG

experiment, eq. (1.6), implies the following upper bound on |(h†h)eµ|:∣∣∣∣(h†h)eµ
∣∣∣∣ < 2.8× 10−6

(
M∆

100GeV

)2

. (3.24)

One can use this upper bound, in particular, to obtain a lower bound on the vacuum

expectation value of ∆0, v∆
3. Indeed, from eq. (2.55) it is not difficult to get:∣∣∣∣(h†h)eµ
∣∣∣∣ = 1

4v2∆

∣∣∣Ue2 U †
2µ∆m

2
21 + Ue3 U

†
3µ∆m

2
31

∣∣∣ , (3.25)

where we have used the unitarity of U . The above expression for |(h†h)eµ| is exact.

It follows from eq. (3.25) that the prediction for |(h†h)eµ|, and thus for BR(µ → eγ),

depends, in general, on the Dirac CPV phase δ of the standard parametrisation of the

PMNS matrix U (see eq. (2.30)). For the best fit values of sin2 θ13 = 0.0236 and of the

other neutrino oscillation parameters listed in Table 3.1, the term ∝ ∆m2
21 in eq. (3.25)

is approximately a factor of 10 smaller than the term ∝ ∆m2
31. In this case, BR(µ→ eγ)

exhibits a relatively weak dependence on the type of the neutrino mass spectrum and

on the Dirac phase δ. Neglecting the term ∝ ∆m2
21, we obtain from (3.24) and (3.25):

v∆ > 2.98× 102
∣∣s13 s23∆m2

31

∣∣ 12 (100GeV

M∆

)
∼= 4.30 eV

(
100GeV

M∆

)
. (3.26)

For the 3σ allowed ranges of values of sin2 2θ13 given in eq. (3.1) and of the other neutrino

oscillation parameters quoted in Table 3.1, the absolute lower bound on v∆ corresponds

approximately to v∆ > 2.1 eV (100GeV)/M∆ and is reached in the case of ∆m2
31 > 0

(∆m2
31 < 0) for δ = π (0).

We note further that if δ ∼= π/2 (3π/2), the term ∝ ∆m2
21 in the expression for |(h†h)eµ|

(and thus for BR(µ→ eγ)) always plays a subdominant role as long as the other neutrino

oscillation parameters lie in their currently allowed 3σ ranges. Therefore in this case the

dependence of BR(µ → eγ) on the type of neutrino mass spectrum is negligible. The

specific features of the predictions for |(h†h)eµ| discussed above are illustrated in Fig.

3.6.

Exploiting the fact that v2∆|(h†h)eµ| is known with a rather good precision, we can write:

BR(µ→ eγ) ∼= 2.7× 10−10

(
1 eV

v∆

)4 (100GeV

M∆

)4

, (3.27)

where we have used eq. (3.23) and the best fit values of the neutrino oscillation parame-

ters. It follows from eq. (3.27) that for the values of v∆ andM∆ (or m∆+ and/or m∆++)

3This was noticed also in [120].
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Figure 3.7: The dependence of |m∗
eemµe| on the lightest neutrino mass m1 in the

case of neutrino mass spectrum with normal ordering (∆m2
A > 0), for four sets of

values of the Dirac and the two Majorana CPV phases, [δ, α21, α31]. The depicted
curves correspond to the best fit values of sin θ13 (eq. (3.1)) and of the other neutrino
oscillation parameters given in Table 3.1. The scattered points are obtained by varying
the neutrino oscillation parameters within their corresponding 3σ intervals and giving

random values to the CPV Dirac and Majorana phases.

of interest, BR(µ→ eγ) can have a value within the projected sensitivity of the ongoing

MEG experiment.

3.2.2 The µ → 3e Decay

Let us start this subsection by writing down the µ → 3e decay branching ratio in the

scenario of Tev scale type II seesaw from the general case, which was expressed in eq.

(2.62)

BR(µ→ 3e) =
1

G2
F

|(h†)ee(h)µe|2

m4
∆++

=
1

G2
F m

4
∆++

|m∗
eemµe|2

16 v4∆
, (3.28)

where we have used eq. (2.54). From the present limit BR(µ → 3e) < 10−12, one can

obtain the following constraint on |(h†)ee(h)µe|:

|(h†)ee(h)µe| < 1.2× 10−7
( m∆++

100GeV

)2
. (3.29)

In the model under discussion, BR(µ → 3e) depends on the factor |m∗
eemµe|, which

involves the product of two elements of the neutrino Majorana mass matrix, on the

neutrino mass spectrum and on the Majorana and Dirac CPV phases in the PMNS

matrix U . For the values of m∆+ and m∆++ in the range of ∼ (100− 1000) GeV and of

v∆ ≪ 1 MeV of interest, mee practically coincides with the effective Majorana mass in
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Figure 3.8: The same as in Fig. 3.7 in the case of a light neutrino mass spectrum
with inverted ordering (∆m2

A < 0) (see text for details).

neutrinoless double beta ((ββ)0ν-) decay (see, e.g., [28, 121–124]), ⟨m⟩:

|mee| =

∣∣∣∣∣∣
3∑
j=1

mjU
2
ej

∣∣∣∣∣∣ ∼= |⟨m⟩| . (3.30)

Depending on the type of neutrino mass spectrum, the value of the lightest neutrino

mass and on the values of the CPV Majorana and Dirac phases in the PMNS matrix,

|mee| can take any value between 0 and m0, where m0 = m1
∼= m2

∼= m3 is the value of

the neutrino masses in the case of quasi-degenerate (QD) spectrum, m0 ∼> 0.1 eV (see,

e.g., [121–123]). It follows from the searches for the (ββ)0ν-decay that |mee| ∼< m0 ∼< 1

eV, while the cosmological constraints on the sum of the neutrino masses implym0 ∼< 0.3

eV (see, e.g., [1]). As is well known, the (ββ)0ν-decay is claimed to have been observed

in [125, 126], with the reported half-life corresponding to [126] |mee| = 0.32 ± 0.03 eV.

This claim will be tested in a new generation of (ββ)0ν-decay experiments which either

are already taking data or are in preparation at present (see, e.g., [1, 29]).

In the case of NH light neutrino mass spectrum with m1 ≪ 10−4 eV, |mee| lies in the

interval 3.6×10−4 eV ∼< |mee| ∼< 5.2×10−3 eV. This interval was obtained by taking into

account the 3σ allowed ranges of values of sin2 θ13 (eq. (3.1)), sin2 θ12, sin
2 θ23 and ∆m2

⊙

and ∆m2
A. For the best fit values of the latter we get

4: 1.45×10−3 eV ∼< |mee| ∼< 3.75×
10−3 eV. The minimal and the maximal values correspond to the combination of the

CPV phases (α21 − α31 + 2δ) = π and 0, respectively. However, for m1 ∼> 10−4 eV,

4The numerical values quoted further in this subsection are obtained for the indicated best fit values
of the neutrino oscillation parameters, unless otherwise stated.
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one can have |mee| = 0 for specific values of m1 if the CPV phases α21 and α31 − 2δ

possess the CP conserving values α21 = π and (α31 − 2δ) = 0, π (see, e.g., [54]): for the

[π, 0] combination this occurs at m1
∼= 2.3× 10−3 eV, while in the case of the [π, π] one

we have |mee| = 0 at m1
∼= 6.5 × 10−3 eV. If the light neutrino mass spectrum is with

inverted ordering (∆m2
A ≡ ∆m2

32 < 0, m3 < m1 < m2) or of inverted hierarchical (IH)

type (m3 ≪ m1 < m2), we have [127] |mee| ∼>
√

|∆m2
A|+m2

3 cos 2θ12 ∼> 1.27× 10−2 eV,

while in the case of QD spectrum, |mee| ∼> m0 cos 2θ12 ∼> 2.8× 10−2 eV, where we used

the 3σ minimal allowed values of |∆m2
A| and cos 2θ12.

We consider next briefly the dependence of the neutrino mass matrix element |mµe| on
the type of the neutrino mass spectrum and on the CPV Majorana and Dirac phases.

In the case of NH spectrum with m1 = 0, the maximal value of |mµe| is obtained for

α31 − α21 = δ, δ = π, and reads: max(|mµe|) ∼= 8.1 × 10−3 eV. We get |mµe| = 0

for α21 = π, δ = 0 (π) and α31 = 0 (π). As can be shown, for each of these two

sets of values of the CPV phases, the zeros take place at essentially the same value of

m1
∼= 4.3 × 10−3 eV (Fig. 3.7). If the neutrino mass spectrum is of the IH type with

negligible m3
∼= 0, the maximal value of |mµe| corresponds to δ = 0 and α21 = π and is

given by max(|mµe|) ∼=
√

|∆m2
A| c13(c23 sin 2θ12 + s23s13 cos 2θ12). The element |mµe| is

strongly suppressed, i.e., we have |mµe| ≪ max(|mµe|), for δ ∼= π/2 and a value of the

Majorana phase α21 which is determined by the equation:

c23 c12 s12 sinα21
∼=
(
c212 + s212 cosα21

)
s23 s13 . (3.31)

For the best fit values of the neutrino mixing angles this equation is satisfied for α21
∼=

0.283.

The properties of |mee| and |mµe| described above allow us to understand most of the

specific features of the dependence of the quantity |m∗
eemµe| of interest on the the neu-

trino mass spectrum and the leptonic CPV phases. For NH spectrum and negligible

m1
∼= 0, the maximum of the latter is obtained for α31 − α21 = δ = 0 and is given by:

max(|m∗
eemµe|) =

∣∣(m2 s
2
12 c

2
13 +m3 s

2
13

)
c13 (m2 s12(c12 c23 − s12 s23 s13) +m3 s23 s13)

∣∣ ,
(3.32)

with m2 =
√

∆m2
⊙ and m3 =

√
∆m2

A. Using the best fit values of the neutrino oscil-

lation parameters we get max(|m∗
eemµe|) ∼= 2.9× 10−5 eV2 (see Fig. 3.7). This implies

BR(µ → 3e) ∼< 6 × 10−9(1 eV/v∆)
4(100 GeV/m∆++)4. In the case of NH spectrum

and non-negligible m1 we have |m∗
eemµe| = 0 for the values of the CPV phases and m1

discussed above, for which either |mee| = 0 or |mµe| = 0. The scattered points in Fig.

3.7 correspond to the possible values the quantity |m∗
eemµe| can assume when varying
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the neutrino oscillation parameters within their corresponding 3σ intervals and giving

random values to the CPV Dirac and Majorana phases from the interval [0,2π].

The maximum of |meemµe| for the IH spectrum with a negligible m3 is reached for δ = 0

and α21 = π, and reads:

max(|m∗
eemµe|) ∼=

∣∣∆m2
A

∣∣ c313 (1

2
c23 sin 4θ12 + s23 s13 cos2 2θ12

)
. (3.33)

Numerically this gives max(|meemµe|) ∼= 6.1 × 10−4 eV2 (Fig. 3.8). For BR(µ → 3e)

we thus obtain: BR(µ→ 3e) ∼< 2.4× 10−6(1 eV/v∆)
4(100 GeV/m∆++)4. One can have

|meemµe| ≪ max(|meemµe|) in the case of IH spectrum with m3 = 0 for, e.g., δ ∼= π/2

and α21
∼= 0.283, for which |mµe| has a minimum. For the indicated values of the phases

we find: |meemµe| ∼= 1.2 × 10−6 eV2 (see Fig. 3.8). Similarly to the case of a neutrino

mass spectrum with normal ordering discussed above, we show in Fig. 3.8 the range of

values the LFV term |meemµe| can assume (scattered points).

Finally, in the case of QD spectrum, |meemµe| will be relatively strongly suppressed with

respect to its possible maximal value for this spectrum (i.e., we will have |meemµe| ≪
max(|m∗

eemµe|)) if, e.g., the Majorana and Dirac phases are zero, thus conserving the

CP symmetry: α21 = α31 = δ = 0. Then one has: |meemµe| ∼= |∆m2
A|s13s23c13/2 ∼=

1.2× 10−4 eV2. Note that this value is still larger than the maximal value of |meemµe|
for the NH neutrino mass spectrum with a negligible m1 (see Fig. 3.7). The maximum

of |meemµe| takes place for another set of CP conserving values of the Majorana and

Dirac phases: α21 = α31 = π and δ = 0. At the maximum we have:

max(|m∗
eemµe|) ∼= m2

0

(
c313 cos 2θ12 − s213

)
c13

(
c23 sin 2θ12 + 2 c212s23 s13

)
, m0 ∼> 0.1 eV .

(3.34)

For the best fit values of the neutrino mixing angles we get max(|m∗
eemµe|) ∼= 0.3m2

0.

For m0 ∼< 0.3 eV this implies max(|m∗
eemµe|) ∼< 2.7 × 10−2 eV2, leading to an upper

bound on BR(µ → 3e), which is by a factor approximately of 4.1 × 103 larger than in

the case of IH spectrum.

The features of |meemµe| discussed above are illustrated in Figs. 3.7 and 3.8.

It should be clear from the preceding discussion that in the case of the type II see-

saw model considered, the value of the quantity |(h†)ee(h)µe|2 ∝ |m∗
eemµe|2, and thus

the prediction for BR(µ → 3e), depends very strongly on the type of neutrino mass

spectrum. For a given spectrum, it exhibits also a very strong dependence on the values

of the Majorana and Dirac CPV phases α21, α31 and δ, as well as on the value of the

lightest neutrino mass, min(mj). As a consequence, the prediction for BR(µ → 3e) for

given v∆ andm∆++ can vary by a few to several orders of magnitude when one varies the
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values of min(mj) and of the CPV phases. Nevertheless, for all possible types of neutrino

mass spectrum - NH, IH, QD, etc., there are relatively large regions of the parameter

space of the model where BR(µ→ 3e) has a value within the sensitivity of the planned

experimental searches for the µ → 3e decay [45]. The region of interest for the NH

spectrum is considerably smaller than those for the IH and QD spectra. In the case NO

spectrum (∆m2
A > 0), BR(µ→ 3e) can be strongly suppressed for certain values of the

lightest neutrino mass m1 from the interval ∼ (2× 10−3 − 10−2) eV (Fig. 3.7). For the

IO spectrum (∆m2
A < 0), a similar suppression can take place for m3 ≪ 10−2 eV (Fig.

3.8). In the cases when |m∗
eemµe|2 is very strongly suppressed, the one-loop corrections

to the µ → 3e decay amplitude should be taken into account since they might give a

larger contribution than that of the tree level diagram we are considering. The analysis

of this case, however, is beyond the scope of the present investigation.

3.2.3 The µ − e Conversion in Nuclei

Using the formula (2.64) and assuming that m∆+
∼= m∆++ ≡ M∆, the conversion rate

can be written as

CR(µN → eN ) ∼=
α5
em

36π4
m5
µ

Γcapt
Z4
eff Z F

2(−m2
µ)
∣∣∣C(II)

µe

∣∣∣2 , (3.35)

where

C(II)
µe ≡ 1

4v2∆

29
24

(
m†m

)
eµ

+
∑

l=e,µ,τ

m†
el f(r, sl)mlµ

 , (3.36)

r = m2
µ/M

2
∆, sl = m2

l /M
2
∆ and we have used eq. (2.54).

The upper limit on the µ−e conversion rate in Ti, eq. (1.8), leads to the following upper

limit on |C(II)
µe |:

|C(II)
µe | < 1.24× 10−4

(
M∆

100GeV

)2

. (3.37)

In obtaining it we have used the values of Γcapt, Zeff , Z and F (−m2
µ) for Ti given in

subsection 3.1.2. An experiment sensitive to CR(µTi → eTi) ≈ 10−18 [43] will be able

to probe values of |C(II)
µe | ∼> 5.8× 10−8 (M∆/(100GeV))2.

The µ − e conversion rate in a given nucleus depends through the quantity C
(II)
µe , on

the type of neutrino mass spectrum and the Majorana and Dirac CPV phases in the

PMNS matrix. Using the best fit values of the the neutrino oscillation parameters and

performing a scan over the values of the CPV phases and the lightest neutrino mass,

which in the cases of NO (∆m2
A > 0) and IO (∆m2

A < 0) spectra was varied in the

intervals (10−4 − 1) eV and (10−5 − 1) eV, respectively, we have identified the possible

ranges of values of 4v2∆|C
(II)
µe |. The latter are shown in Figs. (3.9) and (3.10).
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Figure 3.9: The dependence of 4v2∆|C
(II)
µe | (given in eV2) on the lightest neutrino

mass m1 in the case of neutrino mass spectrum with normal ordering (∆m2
A > 0), for

two sets of values of the Dirac and the two Majorana CPV phases, [δ, α21, α31] and
M∆ = 200 (1000) GeV, plain (dashed) curves. The figure is obtained for the best fit
values of sin θ13 (eq. (3.1)) and of the other neutrino oscillation parameters given in

Table 3.1 (see text for details).

For M∆ = 200 (1000) GeV and NH spectrum with negligible m1 (m1 ≪ 10−3 eV), the

maximal value of 4v2∆|C
(II)
µe | occurs for [δ, α21, α31] = [0, 0, 0] and at the maximum we

have 4v2∆|C
(II)
µe | ∼= 2.9 (3.8) × 10−3 eV2. For values of the CPV phases [δ, α21, α31] =

[0, π, 0] and M∆ = 200 GeV, 4v2∆|C
(II)
µe | goes through zero at m1

∼= 2 × 10−2 eV (Fig.

3.9). In the case of a larger charged scalar mass, i.e. M∆ = 1000 GeV, such cancellation

occurs at a different value of the lightest neutrino mass, mainly m1 = 0.025 eV.

The maximum of 4v2∆|C
(II)
µe | in the case of IH spectrum with negligible m3, occurs for

maximal CPV phases: [δ, α21, α31] = [π/2, 3π/2, 0]. At the maximum in this case one

has 4v2∆|C
(II)
µe | ∼= 6 (7) × 10−3 eV2 for M∆ = 200 (1000) GeV. As Fig. 3.10 shows, for

other sets of values of the CPV phases, 4v2∆|C
(II)
µe | can be much smaller. Taking again

CP conserving phases, e.g. [π, π, 0], one can get a strong suppression of the branching

ratio for m3 = 7.2 (15)× 10−3 eV and M∆ = 200 (1000) GeV. Allowing sin θ13 to take

values other than the best fit one, we find that 4v2∆|C
(II)
µe | can even go through zero at,

e.g., [δ, α21, α31] = [π, π, π/2] for sin θ13 ∼= 0.137, which lies within the 2σ allowed region.

In Fig. 3.10 we report other examples in which the CPV phases in the PMNS matrix

take different sets of CP violating values and the quantity 4v2∆|C
(II)
µe | (and the conversion

rate) can vary by several orders of magnitude for specific values of the lightest neutrino

mass m3 and the see-saw mass scale M∆.

If the neutrino mass spectrum is quasi-degenerate, m1,2,3
∼= m0 ∼> 0.1 eV, we have for
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Figure 3.10: The same as in Fig. 3.9 in the case of a light neutrino mass spectrum
with inverted ordering.

m0 ∼< 0.3 eV: 2.8×10−3 eV2 ∼< 4v2∆|C
(II)
µe | ∼< 0.4 eV2. The minimal value corresponds to

∆m2
A > 0 (NO spectrum) and [δ, α21, α31] = [π, 0, 0]; for e.g. [δ, α21, α31] = [0, 0, 0] and

M∆ = 200 GeV we get in the QD region 4v2∆|C
(II)
µe | ∼= 3.3× 10−3 eV2 (Fig. 3.9).

Finally, the scattered points in Figs. 3.9 and 3.10 are obtained by varying all the neutrino

oscillation parameters within the corresponding 3σ intervals and allowing for arbitrary

values of the Dirac and Majorana phases in the interval [0,2π].

We remark that the previous estimates, as well as Figs 3.9 and 3.10, were realized under

the assumption that the singly- and doubly-charged scalars have masses of the same

order, i.e. m∆+
∼= m∆++ ≡ M∆. The case in which the dominant contribution to the

conversion amplitude is provided by the exchange of ∆++, i.e. for m∆+ ≫ m∆++ & 100

GeV, shows similar features: the upper limits of the conversion ratio in the cases of NO

and IO spectra are unchanged and a strong suppression can occur for specific values of

the CPV phases and min(mj). Taking, instead, the opposite limit m∆++ ≫ m∆+ , with

m∆+ = (100−1000) GeV, the dominant contribution to the µ−e conversion amplitude is

given by the exchange of the singly-charged scalar, therefore we have: |C(II)
µe | ∝ |(h†h)eµ|.

As it was pointed out in subsection 3.2.1, |(h†h)eµ| shows a relative weak dependance

on the type of neutrino mass spectrum and on the CPV phases in the PMNS matrix.

Moreover, no suppression of the conversion amplitude occurs if sin θ13 is taken within the

current 3σ experimental bound (see Fig. 3.6). In this case, from the best experimental

upper bound on the conversion rate in Ti, CR(µTi → eTi) < 4.3 × 10−12, we get the

constraint:

|(h†h)eµ| < 6× 10−4
( m∆+

100GeV

)2
, (3.38)
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which provides a weaker bound with respect to that obtained from the µ → eγ decay

(see eq. (3.24)). A µ−e conversion experiment sensitive to i.e. CR(µTi → eTi) ≈ 10−18,

can probe values of |(h†h)eµ| which are by a factor 2 × 103 smaller and could set the

limit:

|(h†h)eµ| < 3× 10−7
( m∆+

100GeV

)2
. (3.39)

3.3 TeV Scale Type III See-Saw Model

In this section, we are going to study briefly the µ → eγ, µ → 3e decays and the

µ → e conversion in the scenario of type III see-saw model, which has been introduced

in section 2.3.

3.3.1 The µ → eγ Decay

Charged lepton radiative decays receive additional contributions with respect to the

scenario with singlet RH neutrinos, due to the presence of new lepton flavour violating

interactions in the low energy effective Lagrangian (see eqs. (2.71) and (2.73)). Following

the computation reported in [111], we have for the µ→ eγ decay branching ratio in the

present scenario:

BR(µ→ eγ) =
3αem

32π
|T |2 , (3.40)

where the amplitude T is given by

T ∼= −2

(
13

3
+ C

)
ηµe +

∑
k

(RV )ek(RV )∗µk [A(xk) +B(yk) + C(zk) ] , (3.41)

with xk = (Mk/MW )2, yk = (Mk/MZ)
2, zk = (Mk/MH)

2 and C ≃ −6.56. The loop

functions A(xk), B(yk) and C(zk) read [111]:

A(x) =
−30 + 153x − 198x2 + 75x3 + 18 (4− 3x)x2 log x

3(x− 1)4
, (3.42)

B(y) =
33 − 18 y − 45 y2 + 30 y3 + 18 (4− 3 y) y log y

3(y − 1)4
, (3.43)

C(z) =
−7 + 12 z + 3 z2 − 8 z3 + 6 (3 z − 2) z log z

3(z − 1)4
. (3.44)

In the simple scenario of degenerate fermion triplets with an overall mass scale M we

obtain taking MH = 125 GeV:

T/ηµe ∼= 11.6 (5.2) , for M = 100 (1000) GeV . (3.45)
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N D m
−5/2
µ V (p) m

−5/2
µ V (n) m

−5/2
µ Γcapt (10

6 s−1)

48
22Ti 0.0864 0.0396 0.0468 2.590

27
13Al 0.0362 0.0161 0.0173 0.7054

197
79 Au 0.189 0.0974 0.146 13.07

Table 3.2: Nuclear parameters related to µ − e conversion in 48
22Ti,

27
13Al and 197

79 Au.
The numerical values of the overlap integrals D, V (p) and V (n) are taken from [87].

For M = 100 (1000) GeV, the current best upper limit on the µ→ eγ decay branching

ratio obtained in the MEG experiment, eq. (1.6), implies the bound:

|ηµe| < 4.4 (9.7)× 10−6 , for M = 100 (1000) GeV . (3.46)

If no positive signal will be observed by the MEG experiment, that is if it results that

BR(µ → eγ) < 10−13, the following upper limit on the non-unitarity lepton flavour

violating coupling |ηµe| can be set:

|ηµe| < 2 (4)× 10−6 , for M = 100 (1000) GeV . (3.47)

3.3.2 The µ → 3 e and µ − e Conversion in Nuclei

The effective µ−e−Z effective coupling in the Lagrangian (2.71) provides the dominant

contribution (at tree-level) to the µ→ 3e decay rate and the µ− e conversion rate in a

nucleus. In the case of the first process we have (see, e.g., [110]):

BR(µ→ 3e) ≃ 16 |ηµe|2
(
3 sin4 θW − 2 sin2 θW +

1

2

)
. (3.48)

Taking into account the experimental upper limit reported in (1.7), we get the following

upper limit on the µ− e effective coupling:

|ηµe| < 5.6× 10−7 . (3.49)

which is a stronger constraint with respect to the one derived from the non-observation

of the µ→ eγ decay (see eqs. (3.47) and (3.46)), mediated (at one-loop) by an effective

dipole operator.

More stringent constraints on the effective µ− e−Z coupling can be obtained using the

data from the µ−e conversion experiments. Indeed, according to the general parametri-

sation given in [87] (see also [111, 128]), we have for the µ − e conversion ratio in a



44 Chap. 3: LFV µ Processes in TeV Scale See-saw Type models

nucleus N with N neutrons and Z protons:

CR(µN → eN ) ∼=
2G2

F

Γcapt
|Cµe|2

∣∣∣(2 gLV (u) + gLV (d))V
(p) + (gLV (u) + 2 gLV (d))V

(n)
∣∣∣2 ,

(3.50)

where in this case

Cµe ≡ 4 ηµe , (3.51)

V (n) ≃ N

Z
V (p) , gLV (u) = 1− 8

3
s2w and gLV (d) = −1 +

4

3
s2w . (3.52)

The parameters Dm
−5/2
µ , V (p)m

−5/2
µ and Γcapt for 48

22Ti,
27
13Al and 197

79 Au are given in

Table 3.2.

An upper bound on |ηµe| can be derived from the present experimental upper limit on

the µ − e conversion rate in the nucleus of 48
22Ti, CR(µTi → eTi) . 4.3 × 10−12. From

eqs. (3.50)-(3.52) we get:

|ηµe| . 2.6× 10−7 . (3.53)

If in the µ−e conversion experiments with 48
22Ti the prospective sensitivity to CR(µTi →

eTi) ∼ 10−18 will be reached, these experiments will be able to probe values of |ηµe| as
small as |ηµe| ∼ 1.3× 10−10.

3.4 Chapter Conclusion

In this chapter, we have performed a detailed analysis of charged lepton flavour violating

(LFV) processes − µ→ eγ, µ→ 3e and µ−e conversion in nuclei − in the context of see-

saw type extensions of the Standard Model, in which the scale of new physics Λ is taken

in the TeV range, Λ ∼ (100 − 1000) GeV. We summarize below the phenomenological

implications of a possible observation of the LFV processes given above for each kind of

(TeV scale) see-saw extensions of the SM.

Type I see-saw results. In this case, the µ → eγ and µ → 3e decay branching

ratios BR(µ → eγ) and BR(µ → 3e), and the µ − e conversion rate in a nucleus N ,

CR(µN → eN ), N = Al, Ti, Au, can have values close to the existing upper limits

and within the sensitivity of the ongoing MEG experiment searching for the µ → eγ

decay and the future planned µ − e conversion and µ → 3e decay experiments [41–45].

The relevant LFV observable in the minimal scenario, with the addition of only two RH
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neutrinos to the SM particle content, is provided by the quantity |(RV )∗µ1(RV )e1|, where
(RV )ℓj (j = 1, 2) denote the couplings of the fermion singlets to the SM charged leptons

(see eqs. (2.28) and (2.29)). If MEG experiment reaches the projected sensitivity and

no positive signal will be observed implying that BR(µ → eγ) < 10−13, there still will

be a relatively large interval of values of |(RV )∗µ1(RV )e1|, as Fig. 3.2 shows, for which

the µ − e conversion and µ → 3e decay are predicted to have observable rates in the

planned next generation of experiments.

It follows from the analysis performed by us that as a consequence of an accidental

cancellation between the contributions due to the different one-loop diagrams in the

µ − e conversion amplitude, the rate of µ − e conversion in Al and Ti or in Au can be

strongly suppressed for certain values of the see-saw scale M1. As we have seen, this

suppression can be efficient either for the conversion in Al and Ti or for the conversion

in Au, but not for all the three nuclei, the reason being that the values of M1 for which

it happens in Al and Ti differ significantly from those for which it occurs in Au. In both

the cases of Al or Ti and Au, the suppression can be effective only for values ofM1 lying

in very narrow intervals (see Figs. 3.3 and 3.4).

In the case of IH light neutrino mass spectrum, all the three LFV observables, BR(µ→
eγ), BR(µ→ 3e) and CR(µN → eN ), can be strongly suppressed due to the fact that

the LFV factor |(RV )µ1|2 ∝ |Uµ2 + i
√
m1/m2Uµ1|2 ∼= |Uµ2 + iUµ1|2, in the expressions

of the three rates can be exceedingly small. This requires a special relation between the

Dirac and the Majorana CPV phases δ and α21, as well as between the neutrino mixing

angle θ13 and the phase δ (see eq. (3.11)). For the values of sin θ13 from the current 3σ

allowed interval, eq. (3.1), one can have |Uµ2+ iUµ1|2 ∼= 0 provided 0 ≤ δ ∼< 0.7. A priori

it is not clear why the relations between δ and α21, and between δ and θ13, leading to

|Uµ2 + iUµ1|2 = 0, should take place (although, in general, it might be a consequence of

the existence of an approximate symmetry). The suppression under discussion cannot

hold if, for instance, it is experimentally established that δ is definitely bigger than 1.0.

That would be the case if the existing indications [17] that cos δ < 0 receive unambiguous

confirmation.

We note finally that for M1 ∼> 100 GeV we have: BR(µ → 3e)/BR(µ → eγ) ∼> 0.031.

Thus, if it is experimentally established that BR(µ → 3e)/BR(µ → eγ) is definetely

smaller than the quoted lower bound, the model considered with M1 ∼> 100 GeV will

be ruled out. Such a result would be consistent also just with a see-saw scale M1 < 100

GeV.

Type II see-saw results. It follows from the results obtained in Section 3.2 that the

predictions for the µ → eγ and µ → 3e decay branching ratios, as well as the µ − e
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conversion rate in a nucleus N , in the TeV scale type II see-saw scenario considered

exhibit, in general, different dependence on the masses of the singly- and doubly-charged

Higgs particles ∆+ and ∆++, which mediate (to leading order) the three processes. For

m∆+
∼= m∆++

∼=M∆, all the three rates are proportional to M−4
∆ , i.e., they diminish as

the 4th power of the see-saw scale when the latter increases.

The matrix of Yukawa couplings hℓℓ′ which are responsible for the LFV processes of

interest, is directly related to the neutrino Majorana mass matrix and thus to the PMNS

neutrino mixing matrix U . As a consequence, BR(µ→ eγ), BR(µ→ 3e) and CR(µN →
eN ) depend, in general, on the neutrino mass and mixing parameters, including the CPV

phases in U .

To be more specific, BR(µ→ eγ) does not depend on the Majorana CPV phases and on

min(mj), and its dependence on the Dirac CPV phase and on the type of neutrino mass

spectrum is insignificant. In contrast, both BR(µ → 3e) and CR(µN → eN ) exhibit

very strong dependence on the type of neutrino mass spectrum and on the values of the

Majorana and Dirac CPV phases. As a consequence, the predictions for BR(µ → 3e)

and CR(µN → eN ) for given M∆ can vary by several orders of magnitude not only

when the spectrum changes from NH (IH) to QD as a function of the lightest neutrino

mass, but also when one varies only the values of the CPV phases keeping the type of

the neutrino mass spectrum fixed. All the three observables under discussion can have

values within the sensitivity of the currently running MEG experiment on the µ → eγ

decay and the planned future experiments on the µ → 3e decay and µ − e conversion.

However, for a given see-saw scale in the range of ∼ (100 − 1000) GeV, the planned

experiments on µ− e conversion in Al or Ti will provide the most sensitive probe of the

LFV Yukawa couplings of the TeV scale type II see-saw model.

Type III see-saw results. Unlike the type I see-saw extension of the SM discussed

in Section 3.1, in this scenario we have several − possibly sizable − lepton flavour vi-

olating interactions in the low energy effective Lagrangian, due to the higher SU(2)L

representation of the new fermion fields. In particular, FCNCs arise at tree-level from

the non-unitarity of the PMNS matrix (see eq. (2.71)). Thus, the effective µ − e − Z

coupling in (2.71) makes it possible an enhancement of at least two orders of magni-

tude of the rates of µ → eγ, µ → 3e and µ − e conversion with respect to the ones

predicted in the type I see-saw scenario, with RH neutrinos taken in the TeV range.

Consequently, all the predicted LFV observables may be probed in the related present

and future experiments. As in the previous scenarios, the strongest constraint on the

flavour structure of this class of models is by far provided by the expected very high
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sensitivity reach of µ− e conversion experiments.

In conclusion, the oncoming combination of data on neutrino oscillations, collider searches

and lepton number/flavour violating processes represent an important opportunity to

reveal in the next future the fundamental mechanism at the basis of the generation of

neutrino masses as well as the underlying physics beyond the standard theory.





Chapter 4

LFV τ Processes in TeV Scale

See-saw Type models

4.1 TeV Scale Type I See-Saw Model

4.1.1 The τ → µγ and τ → eγ Decays

That have been introduced in the Subsection 2.1.2, for convenience, we write down here

the ratio Γ(lα → lβγ)/Γ(lα → ναlβνβ) after adapting the result for the see-saw type I

scheme with two heavy neutrinos possessing approximately equal masses:

Γ(lα → lβγ)

Γ(lα → ναlβνβ)
=

3αem

32π
|T |2 , (4.1)

where

T ≈ 2|(RV )∗β1(RV )α1| |G(x)−G(0)| , (4.2)

and G(x) was defined in eq. (2.43). The lα → lβγ decay branching ratio is given by:

BR(lα → lβγ) =
Γ(lα → lβγ)

Γ(lα → ναlβνβ)
Br(lα → ναlβνβ), (4.3)

with BR(µ → νµ e νe) ≈ 1, BR(τ → ντ µ νµ) = 0.1739, and BR(τ → ντ e νe) = 0.1782

[1].

The predictions of the model under discussion for BR(µ → eγ) and the constraints on

the product of couplings |(RV )∗e1(RV )µ1|, as well as on the Yukawa coupling y, following

from the experimental upper limit on BR(µ→ eγ), were discussed in detail in [62, 107].
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Here we concentrate on the phenomenology of the τ → µγ and τ → eγ decays. Using

the current upper limits on BR(τ → µγ) and Br(τ → eγ) quoted in eqs. (1.9) and

(1.10), we obtain the following upper bounds:

τ → µγ : |(RV )∗µ1(RV )τ1| ≤ 2.7× 10−2 (0.9× 10−2) M1 = 100 (1000)GeV , (4.4)

τ → eγ : |(RV )∗e1(RV )τ1| ≤ 2.3× 10−2 (0.8× 10−2) M1 = 100 (1000)GeV. (4.5)

These constraints are weaker than those implied by the limits quoted in eqs. (2.18) -

(2.20). The planned experiments at the SuperB factory, which are expected to probe

values of BR(τ → (µ, e)γ) ≥ 10−9, will be sensitive to

τ → (µ, e)γ : |(RV )∗(µ,e)1(RV )τ1| ≥ 4.0× 10−3 (1.4× 10−3)

for M1 = 100 (1000)GeV . (4.6)

The minimal values quoted above are of the same order as the upper limits following

from the constraints (2.18) - (2.20).

The τ decay branching ratios of interest depend on the neutrino mixing parameters

via the quantity |(RV )∗l1(RV )τ1|, l = e, µ. In the case of NH neutrino mass spectrum,

|(RV )l1| ∝ |Ul3 + i
√
m2/m3 Ul2| is different from zero for any values of the neutrino

mixing parameters from their 3σ experimentally determined allowed ranges and for any

l = e, µ, τ . This implies that there cannot be further suppression of the τ → (µ, e)γ

decay rates due to a cancellation between the terms in the expressions for |(RV )l1|.

In contrast, depending on the values of the Dirac and Majorana CPV phases δ and α21

of the PMNS matrix, we can have strong suppression of the couplings |(RV )l1|, l = e, µ,

which enter into the expressions for BR(τ → (µ, e)γ) if the neutrino mass spectrum is of

the IH type [62, 107]. Indeed, in this case we have |(RV )l1| ∝ |Ul3+i Ul2|, l = e, µ, τ . For

α21 = −π, |Ue3 + i Ue2| can be rather small: |Ue2 + iUe1|2 = c213(1− sin 2θ12) ∼= 0.0765,

where we have used the best fit values of sin2 θ12 = 0.307 and sin2 θ13 = 0.0236. As was

shown in Section 3.1, we can have |Uµ2 + iUµ1|2 = 0 for specific values of δ lying the

interval 0 ≤ δ . 0.7. In this case the value of the phases α21 is determined by the values

of δ and θ12.

We analyse next the possibility of having strongly suppressed coupling |(RV )τ1|2, i.e.,
to have |(RV )τ1|2 ∝ |Uτ2 + iUτ1|2 = 0, in the case of IH spectrum. The suppression in

question can take place if

sin θ13 =
s12 − c12 sin α21

2

c12 cos δ + s12 sin(δ + α21
2 )

tan θ23 , (4.7)
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and if in addition the values of the phases δ and α21 are related via the equation:

c12 s23 cos
α21

2
− c23 s13

[
c12 sin δ − s12 cos(δ +

α21

2

]
= 0 . (4.8)

One simple solution to eq. (4.8) obviously is δ = α21 = π. For these values of δ and α21,

eq. (4.7) becomes:

sin θ13 =
c12 − s12
c12 + s12

tan θ23 . (4.9)

Using the the best fit values of sin2 θ12 and sin2 θ23 quoted in eq. (1.5), we get from eq.

(4.9): sin θ13 = 0.162, which is very close to the best fit value of 0.155 (0.156) quoted

in eq. (1.5). For |Uτ2 + iUτ1|2 ∼= 0, all LFV decays of the τ charged lepton, including

τ− → µ− +µ+ +µ−, τ− → µ− + e+ + e−, etc., in the TeV scale type I seesaw model we

are considering will be strongly suppressed.

4.1.2 The τ → 3µ Decay

We consider next the τ → 3µ decay in the same scenario of the previous subsection, the

branching ratio is directly taken from eq. (2.44):

BR(τ → 3µ) =
α2
em

16π2 sin4 θW
|(RV )∗τ1(RV )µ1|2 |Cτ3µ(x)|2 × BR(τ → µν̄µντ ), (4.10)

|Cτ3µ(x)|2 = 2

∣∣∣∣12F τ3µB + F τ3µz − 2 sin2 θW (F τ3µz − Fγ)

∣∣∣∣2 + 4 sin4 θW
∣∣F τ3µz − Fγ

∣∣2
+16 sin2 θW

[
(F τ3µz +

1

2
F τ3µB )Gγ

]
− 48 sin4 θW

[
(F τ3µz − F τ3µγ )Gγ

]
+32 sin4 θW |Gγ |2

(
log

m2
τ

m2
µ

− 11

4

)
. (4.11)

Here

F τ3µz (x) = Fz(x) + 2Gz(0, x), F
τ3µ
B (x) = −2(FXBox(0, x)− FXBox(0, 0)). (4.12)

The factor |Cτ3µ(x)|2 in the expression for BR(τ → 3µ) is a monotonically increasing

function of the heavy Majorana neutrino mass M1. The dependence of |Cτ3µ(x)|2 on

M1 is shown in Fig. 1. At M1 = 100 (1000) GeV, the function |Cτ3µ(x)|2 has values

1.53 (36.85).

The present experimental limit on BR(τ → 3µ), eq. (1.11), leads to a weaker constraint

than that following from the upper limits quoted in eqs. (2.19) and (2.20):

|(RV )∗τ1(RV )µ1| < 1.1× 10−1 (2.3× 10−2) for M1 = 100 (1000) GeV. (4.13)
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The next generation of experiments will be sensitive to BR(τ → 3µ) ≥ 10−10, and thus

to:

|(RV )∗τ1(RV )µ1| ≥ 7.7× 10−3 (1.6× 10−3) for M1 = 100 (1000) GeV . (4.14)

As we see, in the case ofM1 = 1000 GeV, the minimal value of |(RV )∗τ1(RV )µ1| to which

the future planned experiments will be sensitive is of the order of the upper bound on

|(RV )∗τ1(RV )µ1| following from the limits (2.19) and (2.20).

Consider next the dependence of the decay rate on the CPV phases and the neutrino

oscillation parameters. In the case of NH mass spectrum we have:

BR(τ → 3µ) ∝ |(RV )∗τ1(RV )µ1|2 ∝ |Uτ3 + i

√
m2

m3
Uτ2|2 |Uµ3 + i

√
m2

m3
Uµ2|2 . (4.15)

Using the best fit values of the neutrino mixing angles and mass squared differences,

quoted in eqs. (1.4) and (1.5) and varying the Dirac and Majorana CPV phases in the

interval of [0, 2π], we find that |Uµ3 + i
√
m2/m3Uµ2||Uτ3 + i

√
m2/m3Uτ2| takes values

in the interval (0.31 − 0.59). It follows from this result and the inequality (4.14) that

the future experiments on the τ → 3µ decay will be sensitive to values of the Yukawa

coupling y ≥ 0.10 (0.46) for M1 = 100 (1000) GeV. The minimal values in these lower

limits are larger than the upper limits on y following from the current upper bound (1.6)

on BR(µ→ e+ γ) [107].

A suppression of the τ → 3µ decay rate might occur in the case of IH mass due to

possible cancellations between the terms in the factors |(RV )µ1| and |(RV )τ1|, as was

discussed in the previous subsection. Using again the best fit values of the neutrino

oscillation parameters and varying the leptonic CPV phases in the interval [0, 2π], we

find 0.003 ≤ |Uµ2 + iUµ1||Uτ2 + iUτ1| ≤ 0.51. Thus, in the case of IH spectrum, the

future experiments with sensitivity to BR(τ → 3µ) ≥ 10−10 will probe values of y ≥
0.14 (0.64) for M1 = 100 (1000) GeV. Again the minimal values in these lower limits

are larger than the upper limits on y following from the current upper bound (1.6) on

BR(µ→ e+ γ) [107].

For specific values of, e.g., the CPV phases of the neutrino mixing matrix one can obtain

more stringent upper bounds than those already discussed on the branching ratios of the

τ → µ+ γ, τ → e+ γ and τ → 3µ decays due to their relation to the µ → e+ γ decay

branching ratio and the fact that the latter is severely constrained. Indeed, it follows
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from eqs. (4.3), (2.43) and (4.10) that we have:

BR(τ → e+ γ)

BR(µ→ e+ γ)
=

|(RV )τ1|2

|(RV )µ1|2
BR(τ → eν̄eντ ) , (4.16)

BR(τ → µ+ γ)

BR(µ→ e+ γ)
=

|(RV )τ1|2

|(RV )e1|2
BR(τ → µν̄µντ ) , (4.17)

BR(τ → 3µ)

BR(µ→ 3e)
=

|(RV )τ1|2

|(RV )e1|2
BR(τ → µν̄µντ ) =

BR(τ → µ+ γ)

BR(µ→ e+ γ)
, (4.18)

BR(τ → 3µ)

BR(µ→ e+ γ)
=

αem

6π sin4 θW

|Cτ3µ(x)|2

|G(x)−G(0)|2
|(RV )τ1|2

|(RV )e1|2
BR(τ → µν̄µντ ) . (4.19)

The explicit expressions for |(RV )l1|2, eqs. (2.28) and (2.29), imply that the ratios of

interest in eqs. (4.16) - (4.18) do not depend on the heavy Majorana neutrino mass

M1 and on the Yukawa coupling y and are determined by the values of the neutrino

oscillation parameters and of the CPV phases in the neutrino mixing matrix. Using the

best fit values quoted in eqs. (1.4) and (1.5) and varying the Dirac and Majorana phases

in the interval [0, 2π] we obtain in the case of NH neutrino mass spectrum:

0.37 ≤ |(RV )τ1|2

|(RV )µ1|2
≤ 9.06 , (4.20)

1.90 ≤ |(RV )τ1|2

|(RV )e1|2
≤ 191.82 , (4.21)

In a similar way, we get in the case of IH neutrino mass spectrum:

4.84× 10−4 ≤ |(RV )τ1|2

|(RV )µ1|2
≤ 15.13 , (4.22)

3.25× 10−4 ≤ |(RV )τ1|2

|(RV )e1|2
≤ 0.56 . (4.23)

Thus, in the case of the best fit values of the neutrino oscillation parameters we always

have

BR(τ → e+ γ) . 2.67× BR(µ→ e+ γ) < 1.52× 10−12 , (4.24)

BR(τ → µ+ γ) . 33.36× BR(µ→ e+ γ) < 1.90× 10−11 , (4.25)

where we have used the current upper bound on BR(µ→ e+γ), eq. (1.6). The limits in

eqs. (4.24) and (4.25) correspond respectively to the IH and NH spectra. These values

are beyond the expected sensitivity reach of the planned future experiments.

Using the 2σ (3σ) allowed ranges of the neutrino oscillations parameters in the case of

NH neutrino mass spectrum we obtain larger intervals of allowed values of the ratios of
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interest:

NH : 0.26 (0.08) ≤ |(RV )τ1|2

|(RV )µ1|2
≤ 14.06 (16.73) , (4.26)

NH : 1.39 (0.53) ≤ |(RV )τ1|2

|(RV )e1|2
≤ 497.74 (980.32) . (4.27)

The maximal value of |(RV )τ1|2/|(RV )e1|2 correspond to sin2 θ12 = 0.275 (0.259),

sin2 θ23 = 0.359 (0.348), sin2 θ13 = 0.0298 (0.0312), δ = 0.203 (0.234), α21 = 6.199 (3.560)

and α31 = 3.420 (0.919). At these values of the neutrino mixing parameters we have

|(RV )µ1|2|(RV )e1|2 ∼= 6.98 × 10−4 (3.41 × 10−4) y4v4/(16M4
1 ), |(RV )τ1|2|(RV )µ1|2 ∼=

0.347 (0.335) y4v4/(16M4
1 ). Thus, the bound on BR(µ → e + γ), eq. (1.6), is satisfied

for M1 = 100 GeV if y4v4/(16M4
1 ) . 2.29 (4.69) × 10−6, and for M1 = 1000 GeV

provided y4v4/(16M4
1 ) . 2.68 (5.48) × 10−7. This implies that |(RV )τ1|2|(RV )µ1|2 .

7.95 (15.7) × 10−7 if M1 = 100 GeV, and |(RV )τ1|2|(RV )µ1|2 . 9.30 (18.4) × 10−8 for

M1 = 1000 GeV. The bound for M1 = 1000 GeV is a stronger constraint than that

following from the limits (2.19) and (2.20).

Using the inequalities in eqs. (4.26) and (4.27) we obtain:

BR(τ → e+ γ) . 2.50 (2.98)× BR(µ→ e+ γ) < 1.43 (1.70)× 10−12 , (4.28)

BR(τ → µ+ γ) . 86.56 (170.48)× BR(µ→ e+ γ) < 4.93 (9.72)× 10−11 . (4.29)

These are the maximal values of BR(τ → e + γ) and BR(τ → µ + γ), allowed by the

current upper bound on the µ→ e+ γ decay rate in the TeV scale type I seesaw model

considered and in the case of NH neutrino mass spectrum. If the τ → e + γ and/or

τ → µ + γ decays are observed to proceed with branching ratios which are larger than

the bounds quoted above and it is established that the neutrino mass spectrum is of the

NH type, the model under discussion will be strongly disfavored, if not ruled out.

Performing a similar analysis in the case of IH spectrum by employing the 2σ (3σ)

allowed ranges of the neutrino oscillations parameters we get:

IH : 0.0 (0.0) ≤ |(RV )τ1|2

|(RV )µ1|2
<∞ (∞) , (4.30)

IH : 0.0 (0.0) ≤ |(RV )τ1|2

|(RV )e1|2
≤ 0.64 (0.83) . (4.31)

The infinity in eq. (4.30) corresponds to |(RV )µ1| = 0, |(RV )τ1| ̸= 0, i.e., to very strongly

suppressed BR(µ → e + γ) and BR(τ → µ + γ). One obtains |(RV )µ1| = 0 for the

following values of the neutrino mixing angles from the 2σ allowed intervals, and of the

CPV phases: sin2 θ12 = 0.340, sin2 θ23 = 0.547, sin2 θ13 = 0.0239, δ = 6.185, α21 = 3.077

and α31 = 4.184 (i.e., δ ∼= 2π, α21
∼= π and α31

∼= 1.3π). For |(RV )µ1| = 0, the branching
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Figure 4.1: The dependence of C0(x) as a function of the see-saw mass scale M1.

ratios BR(τ → e+ γ) and BR(µ→ e+ γ) are “decoupled”. Correspondingly, the upper

bound on BR(τ → e+ γ) is determined in this case by the limits quoted in eqs. (2.18)

and (2.20) and has already been discussed by us.

Using the same strategy and eq. (4.18), we obtain the constraint on BR(τ → 3µ)

following from the upper bound on BR(µ → 3e) at the best fit values, 2σ (3σ) allowed

ranges of the neutrino oscillation parameters:

BR(τ → 3µ) . 33.36× BR(µ→ 3e) < 3.34× 10−11 , (4.32)

BR(τ → 3µ) . 86.56 (170.48)× BR(µ→ 3e) < 8.66 (17.0)× 10−11 . (4.33)

The relation between BR(τ → 3µ) and BR(µ → eγ) is somewhat less straightforward,

since it involves the M1 dependent factor C0(x):

C0(x) =
αem

6π sin4 θW

|Cτ3µ(x)|2

|G(x)−G(0)|2
. (4.34)

For 50 GeV ≤ M1 ≤ 1000 GeV, C0(x) has its maximum of 0.0764 at M1 = 1000 GeV.

This leads to

BR(τ → 3µ) . 2.55× BR(µ→ e+ γ) < 1.45× 10−12 , (4.35)

BR(τ → 3µ) . 6.61 (13.02)× BR(µ→ e+ γ) < 3.77 (7.42)× 10−12 . (4.36)

Thus, for M1 having a value in the interval [50, 1000] GeV, the branching ratio BR(τ →
3µ) is predicted to be beyond the sensitivity reach of ∼ 10−10 of the planned next

generation experiment. The observation of the τ → 3µ decay with a branching ratio
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BR(τ → 3µ) which is definitely larger than the upper bounds quoted in eq. (4.36) would

strongly disfavor (if not rule out) the TeV scale type I seesaw model under discussion

with M1 ∼ (50− 1000) GeV.

It should be added that for M1 ≥ 103 GeV, the factor C0(x) is a monotonically (slowly)

increasing function of M1 (see Fig. 4.1). The upper bound on BR(τ → 3µ) following

from the upper bound on BR(µ → e+ γ) and the 3σ ranges of the neutrino oscillation

parameters, can be bigger than 10−10 if C0(x) ≥ 1.8, which requires M1 ≥ 8.5 × 106

GeV. However, the rates of the processes of interest scale as ∝ (v/M1)
4 and at values of

M1 ≥ 8.5× 106 GeV are too small to be observed in the currently planned experiments.

4.2 TeV Scale Type II See-Saw Model

4.2.1 The τ → µγ and τ → eγ Decays

In this part, we consider the τ → (µ, e) + γ decays in the type II see-saw scheme with

equal masses m∆+ ≈ m∆++ . For m∆+ ≈ m∆++ =M∆, the expression in eq. (2.61) can

be cast in the form:

BR(ℓ→ ℓ′ + γ) =
27αem

64π

∣∣(m†m
)
ℓℓ′

∣∣2
16v4∆G

2
F M

4
∆

BR(ℓ→ νℓ ℓ
′ νℓ′) , (4.37)

where ℓ = µ and ℓ′ = e, or ℓ = τ and ℓ′ = µ, e.

The factor |(m†m)ℓℓ′ |, as it is not difficult to show, is given by:

|
(
m†m

)
ℓℓ′

| = |Uℓ2U∗
ℓ′2∆m

2
21 + Uℓ3U

∗
ℓ′3∆m

2
31| , (4.38)

where we have used eqs. (2.54) and (2.55) and the unitarity of the PMNS matrix.

The expression in eq. (4.38) is exact. Obviously, |(m†m)ℓℓ′ | does not depend on the

Majorana phases present in the PMNS matrix U .

The branching ratios, BR(ℓ → ℓ′ + γ), are inversely proportional to (v∆M∆)
4. From

the the current upper bound on BR(µ → e + γ), eq. (1.6), and the expression for

|(m†m)µe| in terms of the neutrino oscillation parameters, one can obtain a lower limit

on v∆M∆ [107]:

v∆ > 2.98× 102
∣∣s13 s23∆m2

31

∣∣ 12 (100GeV

M∆

)
. (4.39)



4.2 TeV Scale Type II See-Saw Model 57

Using the the best fit values (3σ allowed ranges) of sin θ13, sin θ23 and ∆m2
31, obtained

in the global analysis [21] we find:

v∆M∆ > 4.60 (3.77)× 10−7 GeV2 .1 (4.40)

As in the case of type I seesaw model, we can obtain an upper bounds on the branching

ratios BR(τ → µ+ γ) and BR(τ → e+ γ) of interest using their relation with BR(µ→
e+ γ) and the current experimental upper bound on BR(µ→ e+ γ). We have:

BR(τ → µ(e) + γ)

BR(µ→ e+ γ)
=

∣∣(m+m)τµ(e)
∣∣2

|(m+m)µe|2
BR(τ → ντ µ(e) ν̄µ(e)) . (4.41)

Using again the expressions for |(m†m)ℓℓ′ | in terms of neutrino oscillation parameters

and the best fit values quoted in eqs. (1.4) and (1.5) we get in the case of NO (IO)

neutrino mass spectrum:

4.41 (4.47) ≤ |(m+m)τµ|
|(m+m)µe|

≤ 5.57 (5.64) , NO (IO) b.f. (4.42)

1.05 (1.03) ≤ |(m+m)τe|
|(m+m)µe|

≤ 1.53 (1.51) NO (IO) b.f. (4.43)

Employing the 3σ allowed ranges of the neutrino oscillation parameters derived in [21]

we obtain:

0.87 (0.57) ≤ |(m+m)τe|
|(m+m)µe|

≤ 1.79 (1.78) NO (IO) 2σ ; (4.44)

3.07 (3.04) ≤ |(m+m)τµ|
|(m+m)µe|

≤ 7.72 (7.85) NO (IO) 3σ ; (4.45)

0.55 (0.52) ≤ |(m+m)τe|
|(m+m)µe|

≤ 1.95 (1.95) NO (IO) 3σ . (4.46)

From eqs. (1.6), (4.41), (4.45) and (4.46) it follows that

BR(τ → µ+ γ) < 5.9 (6.1)× 10−12 , BR(τ → e+ γ) < 3.9× 10−13 , NO (IO) . (4.47)

These values are significantly below the planned sensitivities of the future experiments

on the τ → µ+ γ and τ → e+ γ decays. The observation of the any of the two decays

having a branching ratio definitely larger than that quoted in eq. (4.47) would rule out

the TeV scale Higgs triplet model under discussion.

1It is little different from eq. (3.26) with the latest neutrino experimental data.
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Figure 4.2: The dependence of |m∗
µµmτµ| on the lightest neutrino mass m0 in the

cases of NO (left panel) and IO (right panel) neutrino mass spectra, for three sets of
values of the Dirac and Majorana CPV phases, [δ, α21, α31]. The neutrino oscillation
parameters sin θ12, sin θ23, sin θ13, ∆m2

21 and ∆m2
31 have been set to their best fit

values, eqs. (1.4) and (1.5). The scattered points are obtained by varying Dirac and
Majorana CPV phases randomly in the interval [0, 2π].

4.2.2 The τ → 3µ Decay

The τ → 3µ decay occurring in the TeV scale HTM at tree level diagram with exchange

of the virtual doubly-charged Higgs scalar ∆++. The corresponding τ → 3µ decay

branching ratio is taken from eq. (2.62):

BR(τ → 3µ) =

∣∣h∗µµhτµ∣∣2
G2
F M

4
∆

BR(τ → µν̄µντ ) =
1

G2
F M

4
∆

∣∣m∗
µµmτµ

∣∣2
16v4∆

BR(τ → µν̄µντ ) ,

(4.48)

whereM∆ ≡ m∆++ is the ∆++ mass and we have neglected corrections∼ mµ/mτ
∼= 0.06.

Using the current upper bound on BR(τ → 3µ), eq. (1.11), and eq. (4.48), we get the

following constraint: ∣∣h∗µµhτµ∣∣ < 4.1× 10−5

(
M∆

100 GeV

)2

. (4.49)

Further, the lower limit on the product of v∆ and M∆, eq. (4.40), implies the following

upper limit on BR(τ → 3µ):

BR(τ → 3µ) < 1.88 (4.17)× 10−3

∣∣m∗
µµmτµ

∣∣2
(1 eV)4

. (4.50)

The factor |m∗
µµmτµ|, as can be shown using eqs. (2.54) and (2.55), depends not only on

the neutrino oscillation parameters, but also on the type of the neutrino mass spectrum,

the lightest neutrino mass m0 ≡ min(mj), j = 1, 2, 3 (i.e., on the absolute neutrino mass

scale), and on the Majorana CPV phases α21 and α31, present in the PMNS matrix. The

dependence of |m∗
µµmτµ| on m0 for three sets of values of the CPV Dirac and Majorana
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phases δ, α21 and α31 in the cases of NO and IO neutrino mass spectra is illustrated in

Fig. 4.2. The neutrino oscillation parameters were set to their best fit values quoted

in eqs. (1.4) and (1.5). As Fig. 4.2 indicates, both for the NO and IO spectra, the

maximal allowed value of |m∗
µµmτµ| is a monotonically increasing function of m0.

The intervals of possible values of |m∗
µµmτµ| in the cases of NO and IO neutrino mass

spectra determine the ranges of allowed values of BR(τ → 3µ) in the TeV scale HTM.

Varying the three CPV phases independently in the interval [0, 2π] and using the best

fit, the 2σ and the 3σ allowed ranges of values of sin θ12, sin θ23, sin θ13, ∆m
2
21 and ∆m2

31

derived in [21], we get for m0 = 0; 0.01 ; 0, 10 eV:

• m0 = 0 eV, NO (IO)

38.0 (5.35)× 10−5 eV2 ≤ |(m∗)µµ(m)τµ| ≤ 4.82 (7.38)× 10−4 eV2 b.f; (4.51)

2.77 (0.00)× 10−4 eV2 ≤ |(m∗)µµ(m)τµ| ≤ 5.89 (8.11)× 10−4 eV2 2σ; (4.52)

2.33 (0.00)× 10−4 eV2 ≤ |(m∗)µµ(m)τµ| ≤ 8.35 (8.45)× 10−4 eV2 3σ. (4.53)

• m0 = 0.01 eV, NO (IO)

33.6 (1.66)× 10−5 eV2 ≤ |(m∗)µµ(m)τµ| ≤ 5.34 (8.06)× 10−4 eV2 b.f; (4.54)

2.24 (0.00)× 10−4 eV2 ≤ |(m∗)µµ(m)τµ| ≤ 6.41 (8.99)× 10−4 eV2 2σ; (4.55)

1.76 (0.00)× 10−4 eV2 ≤ |(m∗)µµ(m)τµ| ≤ 8.96 (9.41)× 10−4 eV2 3σ. (4.56)

• m0 = 0.1 eV, NO (IO)

0.00 (0.00) eV2 ≤ |(m∗)µµ(m)τµ| ≤ 5.48 (5.76)× 10−3 eV2 b.f; (4.57)

0.00 (0.00) eV2 ≤ |(m∗)µµ(m)τµ| ≤ 5.57 (5.85)× 10−3 eV2 2σ; (4.58)

0.00 (0.00) eV2 ≤ |(m∗)µµ(m)τµ| ≤ 5.85 (5.88)× 10−3 eV2 3σ. (4.59)

We would like to determine next whether BR(τ → 3µ) predicted by the TeV scale HTM

considered can be bigger than the sensitivity limit of ∼ 10−10 of the future planned

experiment on τ → 3µ decay, given the stringent upper bounds on the µ → e + γ and

µ → 3e decay branching ratios, eqs. (1.6) and (1.7). As we have seen, the current

upper bound on BR(µ→ e + γ) leads to the lower limit eq. (4.40) of v∆M∆. We have

to take into account also the important constraint on BR(τ → 3µ) following from the

current upper bound on µ → 3e decay branching ratio BR(µ→ 3e), eq. (1.7). In the
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case of BR(µ→ 3e) we have BR(µ→ 3e) ∝ |m∗
µemee|2. The quantity |m∗

µemee|, and
thus BR(µ→ 3e), depends on the same set of neutrino mass and mixing parameters as

|(m∗)µµ(m)τµ|, and thus BR(τ → 3µ). We have performed a numerical analysis in order

to determine the regions of values of the neutrino oscillation parameters and of the three

CPV phases δ, α21 and α31, in which the experimental upper bounds on BR(µ→ e + γ)

and BR(µ→ 3e), eqs. (1.6) and (1.7), and the following requirement,

10−10 ≤ BR(τ → 3µ) ≤ 10−8 , (4.60)

are simultaneously satisfied. The analysis is performed for three values of m0 = 0; 0.01

eV; 0.10 eV. The neutrino oscillation parameters sin θ12, sin θ23, sin θ13, ∆m
2
21 and ∆m2

31

were varied in their respective 3σ allowed ranges taken from [21]. The CPV phases δ, α21

and α31 were varied independently in the interval [0, 2π]. The results of this analysis

are presented graphically in Fig. 4.3, in which we show the regions of values of the

quantities |m∗
µµmτµ| and v∆M∆ where the three conditions (1.6), (1.7) and (4.60) are

simultaneously fulfilled in the cases of m0 = 0; 0.01 eV; 0.10 eV for the NO and IO

spectra. For m0 = 0 and NO spectrum, the results depend weakly on the CPV phases;

they are independent of the phase α31 if m0 = 0 and the spectrum is of the IO type.

The analysis performed by us shows that the maximal values BR(τ → 3µ) can have are

the following:

BR(τ → 3µ) ≤ 1.02 (1.68)× 10−9 , m0 = 0 eV, NO (IO) , (4.61)

BR(τ → 3µ) ≤ 1.24 (2.05)× 10−9 , m0 = 0.01 eV, NO (IO) , (4.62)

BR(τ → 3µ) ≤ 8.64 (9.11)× 10−9 , m0 = 0.10 eV, NO (IO) . (4.63)

Thus, for all the three values of m0 considered, which span essentially the whole in-

terval of possible values of m0, the maximal allowed values of BR(τ → 3µ) is by a

factor of ∼ 10 to ∼ 90 bigger than the projected sensitivity limit of 10−10 of the fu-

ture experiment on the τ → 3µ decay. The regions on the |m∗
µµmτµ| − v∆M∆ plane,

where the three conditions of interest are satisfied, are sizeable. The maximal value of

BR(τ → 3µ) for, e.g., m0 = 0.01 eV and NO (IO) spectrum, quoted in eq. (4.62), is

reached for sin2 θ12 = 0.269 (0.308), sin2 θ23 = 0.527 (0.438), sin2 θ13 = 0.0268 (0.0203),

∆m2
21 = 7.38 (7.56) × 10−5 eV2, ∆m2

31 = 2.14 (2.40) × 10−3 eV2 and [δ, α21, α31] =

[2.300, 5.098, 3.437] ([1.577,0.161,3.436]).

As it follows from Fig. 4.2 and the results quoted in eqs. (4.51) - (4.59), for certain values

of the absolute neutrino mass scale m0 and the CPV phases, |m∗
µµmτµ| can be strongly

suppressed; we can have even |m∗
µµmτµ| = 0. For NO (IO) neutrino mass spectrum,

such a strong suppression can happen for m0 ∼> 38 meV (m0 ∼> 15 meV). The strong

suppression of |m∗
µµmτµ| seen in Fig. 4.2 takes place in the case of NO (IO) spectrum at
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Figure 4.3: The regions in the v2∆M
2
∆ − |(m∗

µµ)(mτµ)| plane where 10−10 ≤ BR(τ →
3µ) ≤ 10−8 (the areas deliminated by the black lines) and the the upper limits BR(τ →
3e) < 10−12 and BR(τ → eγ) < 5.7×10−13 are satisfied (the colored areas), for m0 = 0
(upper panels), 0.01 eV (middle panels), 0.10 eV (lower panels) and NO (left panels)
and IO (right panels) neutrino mass spectra. The figures are obtained by varying the
neutrino oscillation parameters in their 3σ allowed ranges [21]; the CPV Dirac and

Majorana phases were varied in the interval [0, 2π].

m0 = 38 meV and [δ, α21, α31] = [0.420, 6.079, 3.030] (m0 = 15 meV and [δ, α21, α31] =

[0.410, 3.235, 6.055]). For m0 = 0.10 eV, for instance, we have |m∗
µµmτµ| = 0 in the

case of NO mass spectrum at δ = 2.633, α21 = 2.533 and α31 = 5.349, while for the IO

spectrum |m∗
µµmτµ| goes through zero for δ = 4.078, α21 = 2.161 and α31 = 5.212. The

above examples of the vanishing of |m∗
µµmτµ| when m0 = 0.10 eV are not unique, it can

happen also at other specific sets of values of the Dirac and Majorana CPV phases.

If in the planned experiment on the τ → 3µ decay the limit BR(τ → 3µ) < 10−10 will be

obtained, this will imply the following upper limit on the product |h∗µµhτµ| of Yukawa
couplings: ∣∣h∗µµhτµ∣∣ < 2.83× 10−6

(
M∆

100 GeV

)2

. (4.64)
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4.3 Chapter Conclusion

In the present chapter we have investigated in detail the τ → (e, µ)+γ and τ → 3µ decays

in the TeV scale type I see-saw and Higgs Triplet models of neutrino mass generation.

Future experiments at the SuperB factory are planned to have sensitivity to the branch-

ing rations of the these decays BR(τ → (e, µ) + γ) ∼> 10−9 and BR(τ → 3µ) ∼> 10−10,

which is an improvement by one and two orders of magnitude with respect to that

reached so far in the searches for the τ → (e, µ) + γ and τ → 3µ decays, respectively.

We find using the constraints on the couplings (RV )lj , j = 1, 2, from the low en-

ergy electroweak precision data, eqs. (2.18) - (2.20), that the branching ratios of

the decays τ → (e, µ) + γ and τ → 3µ predicted in the TeV scale type I see-saw

model can at most be of the order of the sensitivity of the planned future experi-

ments, BR(τ → (e, µ) + γ) ∼< 10−9 and BR(τ → 3µ) ∼< 10−10. Taking into account

the stringent experimental upper bounds on the µ → e + γ and µ → 3e decay rates

has the effect of constraining further the maximal values of BR(τ → (e, µ) + γ) and

BR(τ → 3µ) compatible with the data. In the case of NH spectrum, for instance, we

get using the 2σ (3σ) ranges of the neutrino oscillations parameters from [21] and vary-

ing the CPV Dirac and Majorana phases δ, α21 and α31 independently in the interval

[0, 2π]: BR(τ → e + γ) ∼< 1.4 (1.7) × 10−12, BR(τ → µ+ γ) ∼< 4.9 (9.7) × 10−11, and

BR(τ → 3µ) ∼< 3.8 (7.4) × 10−12. For specific values of the neutrino mixing parame-

ters in the case of the IH spectrum, the predicted rates of the µ → e + γ and µ → 3e

decays are strongly suppressed and the experimental upper bounds on these rates are

automatically satisfied. In this special case the τ → µ + γ and the τ → 3µ decay

rates are also predicted to be strongly suppressed and significantly smaller than the

planned sensitivity of the future experiments, while for the τ → e + γ decay we have

BR(τ → e + γ) ∼< 10−9. Clearly, if any of the three τ decays under discussion is observed

in the planned experiments, the TeV scale type I see-saw model we have considered will

be strongly disfavored if not ruled out.

The predicted rates of the µ → e + γ and of the τ → (e, µ) + γ decays in the Higgs

Triplet model are also correlated. Using the existing experimental upper bound on

BR(µ→ e + γ) we find the following upper limits on the τ → µ+γ and τ → e+γ decay

branching ratios for the NO (IO) neutrino mass spectrum: BR(τ → µ+ γ) ∼< 5.9 (6.1)×
10−12, BR(τ → e + γ) ∼< 3.9 × 10−12. These values are significantly below the planned

sensitivity of the future experiments on the τ → µ + γ and τ → e + γ decays. The

observation of the any of the two decays having a branching ratio definitely larger than

that quoted above would rule out the TeV scale Higgs triplet model under discussion.

In contrast, we find that in a sizeable region of the parameter space of the Higgs Triplet

model, the τ → 3µ decay branching ratio BR(τ → 3µ) can have a value in the interval
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(10−10 − 10−8) and the predicted values of BR(µ→ e + γ) and BR(µ→ 3e) satisfy the

existing stringent experimental upper bounds. Thus, the observation of the τ → 3µ

decay with BR(τ → 3µ) ∼> 10−10 and the non-observation of the τ → µ+γ and τ → e+γ

decays in the planned experiments having a sensitivity to BR(τ → (e, µ) + γ) ≥ 10−9,

would constitute an evidence in favor of the Higgs Triplet model.

Finally, the planned searches for the τ → µ + γ, τ → e + γ and τ → 3µ decays

with sensitivity to BR(τ → (e, µ) + γ) ∼> 10−9 and to BR(τ → 3µ) ∼> 10−10 will provide

additional important test of the TeV scale see-saw type I and Higgs Triplet models of

neutrino mass generation.





Chapter 5

Neutrino Mass Spectroscopy

Using Atoms

In the following, we are going to consider a process which is cooperative de-excitation of

atoms in a metastable state. For the single atom the process is |e⟩ → |g⟩+ γ+(νi+ νj),

i, j = 1, 2, 3, where νi’s are neutrino mass eigenstates. If νi are Dirac fermions, (νi+ νj)

should be understood for i = j as (νi + ν̄i), and as either (νi + ν̄j) or (νj + ν̄i) when

i ̸= j, ν̄i being the antineutrino with mass mi. If νi are Majorana particles, we have

ν̄i ≡ νi and (νi + νj) are the Majorana neutrinos with masses mi and mj .

The proposed experimental method is to measure, under irradiation of two counter-

propagating trigger lasers, the continuous photon (γ) energy spectrum below each of the

six thresholds ωij corresponding to the production of the six different pairs of neutrinos,

ν1ν1, ν1ν2,..., ν3ν3: ω < ωij , ω being the photon energy, and [64–66]

ωij = ωji =
ϵeg
2

− (mi +mj)
2

2ϵeg
, i, j = 1, 2, 3, m1,2,3 ≥ 0 , (5.1)

where ϵeg is the energy difference between the two relevant atomic levels.

The disadvantage of atomic targets is their smallness of rates which are very sensitive

to available energy of order eV. This can be overcome by developing, with the aid of a

trigger laser, macro-coherence of atomic polarization to which the relevant amplitude is

proportional, as discussed in [129, 130]. A similar amplification observed experimentally

in the case of a single photon emission, which is called “Super-radiance” predicted by

Dicke in 1954. The macroscopic polarization supported by trigger field gives rise to

enhanced rate ∝ n2V , where n is the number density of excited atoms and V is the

volume irradiated by the trigger laser. The proposed atomic process may be called

radiative emission of neutrino pair, or RENP in short. The estimated rate roughly of
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order mHz or a little less makes it feasible to plan realistic RENP experiments for a

target number of order of the Avogadro number, within a small region of order 1 ∼ 102

cm3, if the rate enhancement works as expected.

The macro-coherence of interest is developed by irradiation of two trigger lasers of

frequencies ω1, ω1, satisfying ω1 +ω2 = ϵeg. It is a complicated dynamical process. The

asymptotic state of fields and target atoms in the latest stage of trigger irradiation is

described by a static solution of the master evolution equation. In many cases there is

a remnant state consisting of field condensates (of the solition type) accompanied with

a large coherent medium polarisation. This asymptotic target state is stable against

two photon emission, while RENP occurs from any point in the target. The Group at

Okayama University is working on the experimental realisation of the macro-coherent

RENP. We hope the efforts of the University of Okayama Group will be successful.

All of the observables - the absolute neutrino mass scale, the type of neutrino mass

spectrum, the nature of massive neutrinos and the Majorana CPV phases in the case

of Majorana neutrinos - can be determined in one experiment, each observable with a

different degree of difficulty, once the RENP process is experimentally established. For

atomic energy available in the RENP process of the order of a fraction of eV, the observ-

ables of interest can be ranked in the order of increasing difficulty of their determination

as follows:

(1) The absolute neutrino mass scale, which can be fixed by, e.g., measuring the small-

est photon energy threshold min(ωij) near which the RENP rate is maximal: min(ωij)

corresponds to the production of a pair of the heaviest neutrinos (max(mj) ∼> 50 meV).

(2) The neutrino mass hierarchy, i.e., distinguishing between the normal hierarchical

(NH), inverted hierarchical (IH) and quasi-degenerate (QD) spectra, or a spectrum with

partial hierarchy (see, e.g., [1]).

(3) The nature (Dirac or Majorana) of massive neutrinos.

(4) The measurement on the Majorana CPV phases if the massive neutrinos are Majo-

rana particles.

The last item is particularly challenging. The importance of getting information about

the Majorana CPV violation phases in the proposed RENP experiment stems, in par-

ticular, from the possibility that these phases play a fundamental role in the generation

of the baryon asymmetry of the Universe [55, 56]. The only other experiments which,

in principle, might provide information about the Majorana CPV phases are the neutri-

noless double beta (ββ)0ν-decay experiments.
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5.1 Photon Energy Spectrum in RENP

The considered process occurs in the 3rd order (counting the four Fermi weak interaction

as the 2nd order) of electroweak theory as a combined weak and QED process, as depicted

in Fig. 5.1. Its effective amplitude has the form of

⟨g|d⃗|p⟩ · E⃗
GF

∑
ij aijν

†
j σ⃗νi

ϵpg − ω
· ⟨p|S⃗e|e⟩ , (5.2)

aij = U∗
eiUej −

1

2
δij , (5.3)

where Uei, i = 1, 2, 3, are the elements of the first row of the neutrino mixing matrix

UPMNS , expressed as:

Ue1 = c12 c13 , Ue2 = s12 c13 e
iα , Ue3 = s13 e

i(β−δ) . (5.4)

Here we have used the standard notation cij = cos θij , sij = sin θij with 0 ≤ θij ≤ π/2,

0 ≤ δ ≤ 2π and, in the case of interest for our analysis 1, 0 ≤ α, β ≤ π, (see, however,

[6]). If CP invariance holds, we have δ = 0, π, and [7–9] α, β = 0, π/2, π.

The atomic part of the probability amplitude involves three states |e⟩, |g⟩, |p⟩, where
the two states |e⟩, |p⟩, responsible for the neutrino pair emission, are connected by a

magnetic dipole type operator, the electron spin S⃗e. The |g⟩ − |p⟩ transition involves a

stronger electric dipole operator d⃗. From the point of selecting candidate atoms, E1×M1

type transition must be chosen between the initial and the final states (|e⟩ and |g⟩). The
field E⃗ in eq. (5.2) is the one stored in the target by the counter-propagating fields.

Figure 5.1: Λ−type atomic level for RENP |e⟩ → |g⟩ + γ + νiνj with νi a neutrino
mass eigenstate. Dipole forbidden transition |e⟩ → |g⟩+ γ+ γ may also occur via weak

E1× M1 couplings to |p⟩.

1Note that the two Majorana phases α21 and α31 defined in [1] are twice the phases α and β: α21 = 2α,
α31 = 2β.
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When the target becomes macro-coherent by irradiation of trigger laser, RENP process

conserves both the momentum and the energy which are shared by a photon and two

emitted neutrinos. The atomic recoil can be neglected to a good approximation. Since

neutrinos are practically impossible to measure, one sums over neutrino momenta and

helicities, and derives the single photon spectrum as a function of photon energy ω. We

think of experiments that do not apply magnetic field and neglect effects of atomic spin

orientation. The neutrino helicity (denoted by hr , r = 1, 2) summation in the squared

neutrino current jk = aijν
†
i σkνj gives bilinear terms of neutrino momenta (see [64] and

the discussion after eq. (5.19)):

KS
kn ≡

∑
h1,h2

jk(jn)† = |aij |2
[(

1− δM
mimj

EiEj

(
1− 2

(Im(aij))
2

|aij |2

))
δkn

+
1

EiEj

(
pki p

n
j + pkj p

n
i − δknp⃗i · p⃗j

)]
. (5.5)

The case δM = 1 applies to Majorana neutrinos, δM = 0 corresponds to Dirac neutri-

nos. The term ∝ mimj(1 − 2(Im(aij))
2/|aij |2) is similar to, and has the same physical

origin as, the term ∝ MiMj in the production cross section of two different Majorana

neutralinos χi and χj with masses Mi and Mj in the process of e−+ e+ → χi+χj [131].

The term ∝ MiMj of interest determines, in particular, the threshold behavior of the

indicated cross section.

The subsequent neutrino momentum integration (with Ei =
√
p⃗2i +m2

i being the neu-

trino energy)∫
d3p1d

3p2
(2π)2

δ3(k⃗ + p⃗1 + p⃗2)δ(ϵeg − ω − E1 − E2)K
S
ij ≡

1

2π

∫
dPνKS

ij , (5.6)

can be written as a second rank tensor of photon momentum, kikjG
(1)+ δij k⃗

2G(2) from

rotational covariance. Two coefficient functions G(i) are readily evaluated by taking the

trace
∑

i=j and a product with kikj and using the energy-momentum conservation. But

their explicit forms are not necessary in subsequent computation.

We now consider sum over magnetic quantum numbers of E1×M1 amplitude squared:

R =

∫
dPν

∑
Me

2Je + 1

∑
Mg

|
∑
Mp

⟨gMg|d⃗ · E⃗|pMp⟩ · ⟨pMp|S⃗e · j⃗ν |eMe⟩|2 . (5.7)

The field E⃗ is assumed to be oriented along the trigger axis taken parallel to 3−axis.

Since there is no correlation of neutrino pair emission to the trigger axis, one may use

the isotropy of space and replace (S⃗e · k⃗)ni(S⃗e · k⃗)in′ by (S⃗e)ni · (S⃗e)in′ k⃗2/3. Using the
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isotropy, we define the atomic spin factor Cep(X) of X atom by∑
Me

2Je + 1
⟨pMp|S⃗e|eMe⟩ · ⟨eMe|S⃗e|pM ′

p⟩ = δMpM ′
p
Cep(X) . (5.8)

This means that only the trace part of eq. (5.5), 4KS
ii/3, is relevant for the neutrino

phase space integration.

The result is summarized by separating the interference term relevant to the case of

Majorana neutrinos νi:

Γγ2ν(ω) = Γ0I(ω)ηω(t) , Γ0 =
3n2V G2

Fγpgϵegn

2ϵ3pg
(2Jp + 1)Cep , (5.9)

I(ω) =
1

(ϵpg − ω)2

∑
ij

(BijI
D
ij (ω) + δMB

M
ij I

M
ij (ω)) , (5.10)

BM
ij =

ℜ(a2ij)
|aij |2

=

(
1− 2

(Im(aij))
2

|aij |2

)
, Bij = |aij |2 = |U∗

eiUej −
1

2
δij |2 , (5.11)

IDij (ω) =
1

ω

∫ ∞

0

∫ ∞

0
dE1dE2δ(E1 + E2 + ω − ϵeg)θ (Cij(E1, E2)

×
[
E1E2 +

1

6

(
E2

1 +E2
2 −m2

im
2
j − ω2

)]
, (5.12)

IMij (ω) = −mimj

ω

∫ ∞

0

∫ ∞

0
dE1dE2δ(E1 + E2 + ω − ϵeg)θ (Cij(E1, E2)) , (5.13)

Cij(E1, E2) = −(E2
1 + E2

2 −m2
i −m2

j − ω2) + 4(E2
1 −m2

i )(E
2
2 −m2

j ). (5.14)

Here, Γ0 is a constant characterizing the experimental target with volume V and number

density n.

It is important to note that Cij(E1, E2) has origin from the momentum conservation.

Integration with respect to E1, E2 over the space limited by Cij(E1, E2) leads to a

threshold on photon energy for each pair of neutrinos, below which the given neutrino

pair is possible to be produced:

ωij = ωji =
ϵeg
2

− (mi +mj)
2

2ϵeg
, i, j = 1, 2, 3, m1,2,3 ≥ 0 . (5.15)

If one can organize an experiment to measure one of the thresholds, the absolute neutrino

mass scale will be determined.
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After carrying out the integration and rewriting the result, we have final expression for

I(ω):

I(ω) =
1

(ϵpg − ω)2

∑
ij

|aij |2∆ij(ω)
(
Iij(ω)− δMmimj B

M
ij

)
, (5.16)

∆ij(ω) =
1

ϵeg(ϵeg − 2ω)

{(
ϵeg(ϵeg − 2ω)− (mi +mj)

2
)

×
(
ϵeg(ϵeg − 2ω)− (mi −mj)

2
)}1/2

, (5.17)

Iij(ω) =

(
1

3
ϵeg(ϵeg − 2ω) +

1

6
ω2 − 1

18
ω2∆2

ij(ω)−
1

6
(m2

i +m2
j )

− 1

6

(ϵeg − ω)2

ϵ2eg(ϵeg − 2ω)2
(m2

i −m2
j )

2

)
. (5.18)

The term ∝ δM mimj appears only for the Majorana case. We shall define and discuss

the dynamical dimensionless factor ηω(t) further below. The limit of massless neutrinos

gives the spectral form,

I(ω;mi = 0) =
ω2 − 6ϵegω + 3ϵ2eg

12(ϵpg − ω)2
, (5.19)

where the prefactor of
∑

ij |aij |2 = 3/4 is calculated using the unitarity of the neutrino

mixing matrix. On the other hand, near the threshold these functions have the behavior

∝ √
ωij − ω.

We will explain next the origin of the interference term for Majorana neutrinos. The two-

component Majorana neutrino field can be decomposed in terms of plane wave modes

as

ψM (x⃗, t) =
∑
i,p⃗

(
u(p⃗)e−iEit+ip⃗·x⃗bi(p⃗) + uc(p⃗)eiEit−ip⃗·x⃗b†i (p⃗)

)
, (5.20)

where the annihilation bi(p⃗) and creation b†i (p⃗) operators appears as a conjugate pair of

the same type of operator b in the expansion (the index i gives the i−th neutrino of mass

mi, and the helicity summation is suppressed for simplicity). The concrete form of the

2-component conjugate wave function uc ∝ iσ2u
∗ is given in [64]. A similar expansion

can be written in terms of four component field if one takes into account the chiral

projection (1 − γ5)/2 in the interaction. The Dirac case is different involving different

type of operators bi(p⃗) and d
†
i (p⃗):

ψD(x⃗, t) =
∑
i,p⃗

(
u(p⃗)e−iEit+ip⃗·x⃗bi(p⃗) + v(p⃗)eiEit−ip⃗·x⃗d†i (p⃗)

)
. (5.21)
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Neutrino pair emission amplitude of modes ip⃗1, jp⃗2 contains two terms in the case of

Majorana particle:

b†ib
†
j (aiju

∗(p⃗1)u
c(p⃗2)− ajiu

∗(p⃗2)u
c(p⃗1)) , (5.22)

and its rate involves

1

2
|aiju∗(p⃗1)uc(p⃗2)− ajiu

∗(p⃗2)u
c(p⃗1)|2

=
1

2
|aij |2

(
|ψ(1, 2)|2 + |ψ(2, 1)|2

)
−ℜ(a2ij) (ψ(1, 2)ψ(2, 1)∗) , (5.23)

where the relation aji = a∗ij is used and ψ(1, 2) = u∗(p⃗1)u
c(p⃗2). The result of the helicity

sum
∑

(ψ(1, 2)ψ(2, 1)∗) is in [64], which then gives the interference term ∝ BM
ij in the

formula (5.11).

We see from eqs. (5.9) and (5.16) that the overall decay rate is determined by the

energy independent Γ0, while the spectral information is in the dimensionless function

I(ω). The rate Γ0 given here is obtained by replacing the field amplitude E of eq. (5.2)

squared by ϵegn, which is the atomic energy density stored in the upper level |e⟩.

The dynamical factor ηω(t) is defined by a space integral of a product of macroscopic

polarization squared times field strength, both in dimensionless units,

ηω(t) =
1

αmL

∫ αmL/2

−αmL/2
dξ
r1(ξ , αmt)

2 + r2(ξ , αmt)
2

4
|e(ξ , αmt)|2 . (5.24)

Here r1 ± ir2 is the medium polarization normalized to the target number density.

The dimensionless field strength |e(ξ, τ)|2 = |E(ξ = αmx, τ = αmt)|2/(ϵegn) is to be cal-

culated using the evolution equation for field plus medium polarization in [130], where

ξ = αmx (αm = ϵegµgen/2 with µge the off-diagonal coefficient of AC Stark shifts

[65, 66]) is the atomic site position in dimensionless unit along the trigger laser direc-

tion (−L/2 < x < L/2 with L the target length), and τ = αmt is the dimensionless

time. The characteristic unit of length and time are α−1
m ∼ (1cm)(n/1021cm−3)−1 and

(40ps)(n/1021cm−3)−1 for Yb discussed below. We expect that ηω(t) in the formula

given above is roughly of order unity or less.2 We shall have more comments on this at

the end of this section.

Note that what we calculate here is not the differential spectrum at each frequency,

instead it is the spectral rate of number of events per unit time at each photon energy.

Experiments for the same target atom are repeated at different frequencies ω1 ≤ ω11

2There is a weak dependence of the dynamical factor ηω(t) on the photon energy ω, since the field
e in eq. (5.24), a solution of the evolution equation, is obtained for the initial boundary condition of
frequency ω dependent trigger laser irradiation.
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in the NO case (or ω1 ≤ ω33 in the IO case) since it is irradiated by two trigger lasers

of different frequencies of ωi (constrained by ω1 + ω2 = ϵeg) from counter-propagating

directions.

As a standard reference target we take Yb atom and the following de-excitation path,

Yb; |e⟩ = (6s6p) 3P0 , |g⟩ = (6s2) 1S0 , |p⟩ = (6s6p) 3P1 . (5.25)

The relevant atomic parameters are as follows [132]:

ϵeg = 2.14349 eV , ϵpg = 2.23072 eV , γpg = 1.1 MHz . (5.26)

The notation based on LS coupling is used for Yb electronic configuration, but this

approximation must be treated with care, since there might be a sizable mixing based

on jj coupling scheme. The relevant atomic spin factor Cep(Yb) is estimated, using the

spin Casimir operator within an irreducible representation of LS coupling. Namely,

⟨3P0|S⃗e|3P1,M⟩ · ⟨3P1,M |S⃗e|3P0⟩ =
1

3

∑
M

⟨3P0|S⃗e|3P1,M⟩ · ⟨3P1,M |S⃗e|3P0⟩ =
2

3
, (5.27)

since S⃗e · S⃗e = 2 for the spin triplet. This gives Cep(Yb)= 2/3 for the intermediate path

chosen.

We also considered another path, taking the intermediate state of Yb, 1P1 with ϵpg =

3.10806 eV , γpg = 0.176 GHz. Using a theoretical estimate of A-coefficient 4.6×10−2 Hz

for 1P1 →3 P1 transition given in NIST [132] and taking the estimated Lande g-factor

[133], 3/2 for the 3P1 case, we calculate the mixed fraction of jj coupling scheme in LS

forbidden amplitude squared |⟨1P1|S⃗e|3P1⟩|2, to give Cep ∼ 1× 10−4.

Summarizing, the overall rate factor Γ0 is given by

Γ0 =
3n2V G2

Fγpgϵegn

2ϵ3pg
(2Jp + 1)Cep ∼ 0.37 mHz(

n

1021 cm−3
)3

V

102 cm3
, (5.28)

where the number is valid for the Yb first excited state of J = 0. If one chooses the

other intermediate path, 1P1, the rate Γ0 is estimated to be of order, 1 × 10−3 mHz, a

value much smaller than that of the 3P1 path. The denominator factor 1/(ϵpg − ω)2 is

slightly larger for the 3P1 path, too. We consider the intermediate 3P1 path alone in the

following.

The high degree of sensitivity to the target number density n seems to suggest that

solid environment is the best choice. But de-coherence in solids is fast, usually sub-

picoseconds, and one has to verify how efficient coherence development is achieved in
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the chosen target.

Finally, we discuss a stationary value of time independent ηω(t) (5.24) some time after

trigger irradiation. The stationary value may arise when many soliton pairs of absorber-

emitter [130] are created, since the target in this stage is expected not to emit photons

of PSR origin (due to the macro-coherent |e⟩ → |g⟩ + γγ), or emits very little only at

target ends, picking up an exponentially small leakage tail. This is due to the stability of

solitons against two photon emission. Thus the PSR background is essentially negligible.

According to [134], the ηω(t) integral (5.24) is time dependent in general. Its stationary

standard reference value may be obtained by taking the field from a single created

soliton. This quantity depends on target parameters such as αm and relaxation times.

Moreover, a complication arises, since many solitons may be created within the target,

and the number of created solitons should be multiplied in the rate. This is a dynamical

question that has to be addressed separately. In the following sections we compute

spectral rates, assuming ηω(t) = 1.

5.2 Sensitivity of the Spectral Rate to Neutrino Mass Ob-

servables and the Nature of Massive Neutrinos

We will discuss in what follows the potential of an RENP experiment to get information

about the absolute neutrino mass scale, the type of the neutrino mass spectrum and the

nature of massive neutrinos. We begin by recalling that the existing data do not allow

one to determine the sign of ∆m2
A = ∆m2

31(2) and in the case of 3-neutrino mixing, the

two possible signs of ∆m2
31(2) corresponding to two types of neutrino mass spectrum. In

the standard convention [1] the two spectra read:

i) spectrum with normal ordering (NO): m1 < m2 < m3, ∆m
2
A = ∆m2

31 > 0, ∆m2
21 > 0,

m2(3) = (m2
1 +∆m2

21(31))
1
2 ; ii) spectrum with inverted ordering (IO): m3 < m1 < m2,

∆m2
A = ∆m2

32 < 0, ∆m2
21 > 0, m2 = (m2

3 + ∆m2
23)

1
2 , m1 = (m2

3 + ∆m2
23 − ∆m2

21)
1
2 .

Depending on the values of the smallest neutrino mass, min(mj) ≡ m0, the neutrino

mass spectrum can also be normal hierarchical (NH), inverted hierarchical (IH) and

quasi-degenerate (QD):

NH : m1 ≪ m2 < m3 , m2
∼= (∆m2

21)
1
2 ∼= 0.009 eV , m3

∼= (∆m2
31)

1
2 ∼= 0.05 eV ,(5.29)

IH : m3 ≪ m1 < m2 , m1,2
∼= |∆m2

32|
1
2 ∼= 0.05 eV , (5.30)

QD : m1
∼= m2

∼= m3
∼= m, m2

j ≫ |∆m2
31(32)| , m ∼> 0.10 eV . (5.31)

All three types of spectrum are compatible with the existing constraints on the absolute

scale of neutrino masses mj .
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5.2.1 General Features of the Spectral Rate

The first thing to notice is that the rate of emission of a given pair of neutrinos (νi+ νj)

is suppressed, in particular, by the factor |aij |2, independently of the nature of massive

neutrinos. The expressions for the six different factors |aij |2 in terms of the sines and

cosines of the mixing angles θ12 and θ13, as well as their values corresponding to the best

fit values of sin2 θ12 and sin2 θ13 quoted in eq. (1.5), are given in Table 5.1. It follows

from Table 5.1 that the least suppressed by the factor |aij |2 is the emission of the pairs

(ν3+ν3) and (ν1+ν2), while the most suppressed is the emission of (ν2+ν3). The values

of |aij |2 given in Table 5.1 suggest that in order to be able to identify the emission of

each of the six pairs of neutrinos, the photon spectrum, i.e., the RENP spectral rate,

should be measured with a relative precision not worse than approximately 5× 10−3.

As it follows from eqs. (5.16) and (5.11), the rate of emission of a pair of Majorana

neutrinos with masses mi and mj differs from the rate of emission of a pair of Dirac

neutrinos with the same masses by the interference term ∝ mimjB
M
ij . For i = j we have

BM
ij = 1, the interference term is negative and tends to suppress the neutrino emission

rate. In the case of i ̸= j, the factor BM
ij , and thus the rate of emission of a pair of

different Majorana neutrinos, depends on specific combinations of the Majorana and

Dirac CPV phases of the neutrino mixing matrix: from eqs. (5.11) and (5.4) we get

BM
12 = cos 2α , BM

13 = cos 2(β − δ) , BM
23 = cos 2(α− β + δ) . (5.32)

In contrast, the rate of emission of a pair of Dirac neutrinos does not depend on the

CPV phases of the PMNS matrix. In the case of CP invariance we have α, β = 0, π/2, π,

δ = 0, π, and, correspondingly, BM
ij = −1 or + 1, i ̸= j. For BM

ij = +1, the interference

term tends to suppress the neutrino emission rate, while for BM
ij = −1 it tends to

increase it. If some of the three relevant (combinations of) CPV phases, say α, has a

CP violating value, we would have −1 < BM
12 < 1; if all three are CP violating, the

inequality will be valid for each of the three factors BM
ij : −1 < BM

ij < 1, i ̸= j. Note,

however, that the rates of emission of (ν1 + ν3) and of (ν2 + ν3) are suppressed by

Table 5.1: The quantity |aij |2 = |U∗
eiUej − 1

2δij |
2

|a11|2 = |c212c213 − 1
2 |

2 |a12|2 = c212s
2
12c

4
13 |a13|2 = c212s

2
13c

2
13

0.0311 0.2027 0.0162

|a22|2 = |s212c213 − 1
2 |

2 |a23|2 = s212s
2
13c

2
13 |a33|2 = |s213 − 1

2 |
2

0.0405 0.0072 0.2266
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|a13|2 = 0.016 and |a23|2 = 0.007, respectively. Thus, studying the rate of emission of

(ν1 + ν2) seems the most favorable approach to get information about the Majorana

phase α, provided the corresponding interference term ∝ m1m2B
M
12 is not suppressed by

the smallness of the factorm1m2. The massm1 can be very small or even zero in the case

of NH neutrino mass spectrum, while for the IH spectrum we have m1m2 ∼> |∆m2
32| ∼=

2.5 × 10−3 eV2. We note that all three of the CPV phases in eq. (5.32) enter into the

expression for the (ββ)0ν− decay effective Majorana mass as their linear combination

(see, e.g., [28, 121, 135–137]):

|
∑
i

miU
2
ei|2 = m2

3s
4
13 +m2

2s
4
12c

4
13 +m2

1c
4
12c

4
13 + 2m1m2s

2
12c

2
12c

4
13 cos(2α)

+ 2m1m3s
2
13c

2
12c

2
13 cos 2(β − δ) + 2m2m3s

2
13s

2
12c

2
13 cos 2(α− β + δ) . (5.33)

In the case of m1 < m2 < m3 (NO spectrum), the ordering of the threshold energies at

ωij = ωji is the following: ω11 > ω12 > ω22 > ω13 > ω23 > ω33. For NH spectrum with

negligible m1 which can be set to zero, the factors (mi +mj)
2 ≡ κij in the expression

(5.15) for the threshold energy ωij are given by: κ11 = 0, κ12 = ∆m2
21, κ22 = 4∆m2

21,

κ13 = ∆m2
31, κ23 = (

√
∆m2

31 +
√

∆m2
21)

2, κ33 = 4∆m2
31. It follows from eq. (5.15) and

the expressions for κij that ω11, ω12 and ω22 are very close, ω13 and ω23 are somewhat

more separated and the separation is the largest between ω22 and ω13, and ω23 and ω33:

NH : ω11 − ω12 =
1

3
(ω12 − ω22) =

1

2ϵeg
∆m2

21
∼= 1.759 (8.794)× 10−5 eV , (5.34)

NH : ω13 − ω23 =
1

2ϵeg
(2
√

∆m2
21

√
∆m2

31 +∆m2
21)

∼= 0.219 (1.095)× 10−3 eV , (5.35)

NH : ω22 − ω13 =
1

2ϵeg
(∆m2

31 − 4∆m2
21)

∼= 0.506 (2.529)× 10−3 eV , (5.36)

NH : ω23 − ω33 =
1

2ϵeg
(3∆m2

31 − 2
√

∆m2
21

√
∆m2

31 −∆m2
21)

∼= 1.510 (7.548)× 10−3 eV , (5.37)

where the numerical values correspond to ∆m2
21 given in eq. (1.4) and ϵeg = 2.14349 (num-

bers in parenthesis corresponding to the 1/5 of Yb value, namely 0.42870) eV. We get

similar results in what concerns the separation between the different thresholds in the
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Figure 5.2: Global feature of photon energy spectrum I(ω) for the 3P0 → 1S0 tran-
sitions in Yb. The lines corresponding to m0 = 20 meV (red line) and to massless
neutrinos, mi = 0 (blue line), are practically indistinguishable in this figure (see text

for details).

case of QD spectrum and ∆m2
31 > 0:

QD : ω11 − ω12
∼= ω12 − ω22

∼= ω13 − ω23
∼=

1

ϵeg
∆m2

21

∼= 3.518 (17.588)× 10−5 eV , (5.38)

QD : ω22 − ω13
∼= ω23 − ω33 −

1

ϵeg
∆m2

21 =
1

ϵeg
(∆m2

31 − 2∆m2
21)

∼= 1.082 (5.410)× 10−3 eV . (5.39)

For spectrum with inverted ordering, m3 < m1 < m2, the ordering of the threshold

energies is different: ω33 > ω13 > ω23 > ω11 > ω12 > ω22. In the case of IH spectrum

with negligible m3 = 0, we have: κ33 = 0, κ13 = ∆m2
23 − ∆m2

21, κ23 = ∆m2
23, κ11 =

4(∆m2
23 − ∆m2

21), κ12 = (
√

∆m2
23 +

√
∆m2

23 −∆m2
21)

2, κ22 = 4∆m2
23. Now not only

ω11, ω12 and ω22, but also ω13 and ω23, are very close, the corresponding differences

being all ∼ ∆m2
21/ϵeg. The separation between the thresholds ω33 and ω13, and between

ω23 and ω11, are considerably larger, being ∼ ∆m2
23/ϵeg. These results remain valid also

in the case of QD spectrum and ∆m2
32 < 0.

It follows from the preceding discussion that in order to observe and determine all six

threshold energies ωij , the photon energy ω should be measured with a precision not

worse than approximately 10−5 eV. This precision is possible in our RENP experiments

since the energy resolution in the spectrum is determined by accuracy of the trigger laser

frequency, which is much better than 10−5 eV.
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Figure 5.3: Photon energy spectrum from Yb 3P0 → 1S0 transitions in the threshold
region in the cases of NH spectrum (solid lines) and IH spectrum (dashed lines) and for
3 different sets of Dirac neutrinos masses corresponding to m0 = 2 meV (blue lines),

20 meV (red lines) and 50 meV (green lines).

5.2.2 Neutrino Observables

We will concentrate in what follows on the analysis of the dimensionless spectral function

I(ω) which contains all the neutrino physics information of interest.

In Fig. 5.2 we show the global features of the photon energy spectrum for the Yb

3P0 → 1S0 transition in the case of massive Dirac neutrinos and NH and IH spectra.

For the lightest neutrino mass m0 ≤ 20 meV, all spectra (including those corresponding

to massive Majorana neutrinos which are not plotted) look degenerate owing to the

horizontal and vertical axes scales used to draw the figure.

The Absolute Neutrino Mass Scale. Much richer physics information is contained

in the spectrum near the thresholds ωij . Figure 5.3 shows the Dirac neutrino spectra

for three different sets of values of the neutrino masses (corresponding to the smallest

mass m0 = 2, 20, 50 meV) and for both the NO (∆m2
31(32) > 0) and IO (∆m2

31(32) < 0)

neutrino mass spectra. One sees that the locations of the thresholds corresponding to

the three values of m0 (and that can be seen in the figure) differ substantially. This

feature can be used to determine the absolute neutrino mass scale, including the smallest

mass, as evident in differences of spectrum shapes for different masses of m0, 2, 20, 50

meV in Fig. 5.3. In particular, the smallest mass can be determined by locating the

highest threshold (ω11 for NO and ω33 for IO). Also the location of the most prominent

kink, which comes from the heavier neutrino pair emission thresholds (ω33 in the NO
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Figure 5.4: Spectra from Yb 3P0 → 1S0 transitions in the cases of Dirac neutrinos
(blue lines) and Majorana neutrinos (red lines) with masses corresponding to m0 = 20

meV, for NH spectrum (solid lines) and IH spectrum (dashed lines).

case and ω12 in the IO case), can independently be used to extract the smallest neutrino

mass value, and thus to check consistency of two experimental methods.

If the spectrum is of the NO type, the measurement of the position of the kink will

determine the value of ω33 and therefore of m3. For the IO spectrum, the threshold ω12

is very close to the thresholds ω22 and ω11. The rates of emission of the pairs (ν2+ν2) and

(ν1 + ν1), however, are smaller approximately by the factors 10.0 and 12.7, respectively,

than the rate of emission of (ν1 + ν2). Thus, the kink due to the (ν1 + ν2) emission will

be the easiest to observe. The position of the kink will allow to determine (m1 +m2)
2

and thus the absolute neutrino mass scale. If the kink due to the emission of (ν2+ν2) or

(ν1 + ν1) will also be observed, it can be used for the individual m1,m2 determination

as well.

The Neutrino Mass Spectrum (or Hierarchy). Once the absolute neutrino mass

scale is determined, the distinction between the NH (NO) and IH (IO) spectra can

be made by measuring the ratio of rates below and above the thresholds ω33 and ω12

(or ω11), respectively. We note that both of these measurements can be done without

knowing the absolute counting rates. For m0 ∼< 20 meV and NH (IH) spectrum, the

ratio of the rates at ω just above the ω33 (ω11) threshold and sufficiently far below the



5.2 Sensitivity of the Spectral Rate to Neutrino Mass Observables and the Nature of
Massive Neutrinos 79

1.066 1.0665 1.067 1.0675 1.068 1.0685 1.069 1.0695
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ω (eV)

Γ
(ω

)/
Γ

0
(ω

)

 

 

Dirac
Majo, (0 0)
Majo, (π/2 0)

Majo, (0 π/2)

Majo, (π/2 π/2)

NO, m
0
 = 50 meV

1.066 1.0665 1.067 1.0675 1.068 1.0685 1.069 1.0695
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ω (eV)

Γ
(ω

)/
Γ

0
(ω

)

 

 

Dirac
Majo, (0 0)
Majo, (π/2 0)

Majo, (0 π/2)

Majo, (π/2 π/2)

IO, m
0
 = 50 meV

1.056 1.057 1.058 1.059 1.06 1.061 1.062 1.063
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ω (eV)

Γ
(ω

)/
Γ

0
(ω

)

 

 

Dirac
Majo, (0 0)
Majo, (π/2 0)

Majo, (0 π/2)

Majo, (π/2 π/2)

NO, m
0
 = 100 meV

1.056 1.057 1.058 1.059 1.06 1.061 1.062 1.063
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ω (eV)

Γ
(ω

)/
Γ

0
(ω

)

 

 

Dirac
Majo, (0 0)
Majo, (π/2 0)

Majo, (0 π/2)

Majo, (π/2 π/2)

IO, m
0
 = 100 meV

Figure 5.5: The ratio R(Γ) ≡ Γγ2ν(ω)/Γγ2ν(ω;mi = 0) in the case of emission of
Dirac and Majorana massive neutrinos having NO (left panels) or IO (right panels)
mass spectrum corresponding to m0 = 50; 100 meV, for ϵeg = 2.14 eV and four values

of the CPV phases (α, β − δ) in the Majorana case.

indicated thresholds, R̃, is given by:

NH : R̃(ω33;NH) ∼=
∑

i,j |aij |2 − |a33|2∑
i,j |aij |2

∼= 0.70 , (5.40)

IH : R̃(ω11; IH) ∼=
|a33|2 + 2 (|a13|2 + (|a23|2)∑

i,j |aij |2
∼= 0.36 . (5.41)

In obtaining the result (5.41) in the IH case we have assumed that ω22 and ω12 are

not resolved, but the kink due to the ω11 threshold could be observed. The latter does

not corresponds to the features shown in Fig. 5.3 (and in the subsequent figures of the

paper), where the kink due to the ω11 threshold is too small to be seen and only the

kink due to the ω12 threshold is prominent.

The Nature of Massive Neutrinos. The Majorana vs Dirac neutrino distinction is

much more challenging experimentally, if not impossible, with the Yb atom. This is

illustrated in Fig. 5.4, where the Dirac and Majorana spectra are almost degenerate for

both the NH and IH cases. The figure is obtained for m0 = 20 meV and the CPV phases
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Figure 5.6: Majorana vs Dirac neutrino comparison of R(Γ) in the case of hypothetic
atom X with energy difference ϵeg = ϵeg(Yb)/5 form0 = 2 meV and NH (solid lines) and
IH (dashed lines) spectra. The red and blue lines correspond respectively to Majorana

and Dirac massive neutrinos.

set to zero, (α, β − δ) = (0, 0), but the conclusion is valid for other choices of the values

of the phases as well.

The difference between the emission of pairs of Dirac and Majorana neutrinos can be

noticeable in the case of QD spectrum with m0 ∼ 100 meV and for values of the phases

α ∼= 0, as is illustrated in Fig. 5.5, where we show the ratioR(Γ) ≡ Γγ2ν(ω)/Γγ2ν(ω;mi =

0) = I(ω)/I(ω;mi = 0) as a function of ω. As Fig. 5.5 indicates, the relative difference

between the Dirac and Majorana spectra can reach approximately 6% at values of ω

sufficiently far below the threshold energies ωij . For m0 = 50 meV, this difference

cannot exceed 2% (Fig. 5.5).

A lower atomic energy scale ϵeg > 100 meV, which is closer in value to the largest

neutrino mass, would provide more favorable conditions for determination of the nature

of massive neutrinos and possibly for getting information about at least some (if not all)

of the CPV phases. In view of this we now consider a hypothetical atom X scaled down

in energy by 1/5 from the real Yb, thus ϵeg ∼ 0.4 eV. There may or may not be good

candidate atoms/molecules experimentally accessible, having level energy difference of

order of the indicated value. Figure 5.6 shows comparison between the ratios R(Γ) from

X 3P0 →1 S0 for Majorana and Dirac neutrinos with m0 = 2 meV, for both the NH and

IH cases. As seen in Fig. 5.6, the Majorana vs Dirac difference is bigger than 5% (10%)

above the heaviest pair threshold in the NH (IH) case. The difference becomes bigger

for larger values of the smallest neutrino mass m0, making the measurement easier.
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Figure 5.7: The same as in Fig. 5.5 but for ϵeg = 0.43 eV.

This is illustrated in Fig. 5.7, where we show again the ratio R(Γ) = I(ω)/I(ω;mi =

0) as a function of ω in the case of Dirac and Majorana pair neutrino emission for

m0 = 50; 100 meV and NO and IO spectra. In the Majorana neutrino case, the

ratio R(Γ) is plotted for the four combinations of CP conserving values of the phases

(α, β− δ) = (0, 0); (0, π/2); (π/2, 0); (π/2, π/2). There is a significant difference between

the Majorana neutrino emission rates corresponding to (α, β−δ) = (0, 0) and (π/2, π/2).

The difference between the emission rates of Dirac and Majorana neutrinos is largest

for (α, β − δ) = (0, 0). For m0 = 50 (100) meV and (α, β − δ) = (0, 0). for instance,

the rate of emission of Dirac neutrinos at ω sufficiently smaller than ω33 in the NO case

and ω22 in the IO one, can be larger than the rate of Majorana neutrino emission by

∼ 20% (70%). The Dirac and Majorana neutrino emission spectral rates never coincide.

In Figs. 5.8 and 5.9 we show the dependence of the ratios R(Γ) on the CPV phases α and

β− δ for m0 = 2 meV. Generally speaking, the CPV phase measurement is challenging,

requiring a high statistics data acquisition. A possible exception is the case of α and IH

spectrum, as shown in Fig. 5.9, where the difference between the ratios R(Γ) for α = 0

and α = π/2 can reach 10%. For the NH spectrum, the analogous difference is at most

a few percent; observing this case requires large statistics in actual measurements.

It follows from these results that one of the most critical atomic physics parameters for
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Figure 5.9: The same as in Fig. 5.8 for IH spectrum. The blue, red, and lines
correspond to (α, β − δ) = (0, 0), (π/2, 0) and (0, π/2), respectively.

the potential of an RENP experiment to provide information on the largest number of

fundamental neutrino physics observables of interest is the value of the energy difference

ϵeg. Values ϵeg ≤0.4 eV are favorable for determining the nature of massive neutrinos,

and, if neutrinos are Majorana particles, for getting information about at least some of

the leptonic CPV phases, which are the most difficult neutrino related observables to

probe experimentally.
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5.3 Chapter Conclusion

As the content of this chapter, we have investigated the sensitivity to undetermined

neutrino parameters and properties (the absolute mass scale, the type of neutrino mass

spectrum, the nature - Dirac or Majorana, of massive neutrinos and the CP violating

phases) of the observables in macro-coherent RENP experiments.

The specific case of a potential RENP experiment measuring the photon spectrum orig-

inating from 3P0 → 1S0 transitions in Yb atoms was considered. The relevant atomic

level energy difference is ϵeg = 2.14349 eV. Our results show that once the RENP events

are unambiguously identified experimentally, the least challenging would be the mea-

surement of the largest neutrino mass (or the absolute neutrino mass scale). The next

in the order of increasing difficulty is the determination of the neutrino mass spectrum

or hierarchy (NH, IH, QD). The Majorana vs Dirac distinction and the measurement of

the CPV phases are considerably more challenging, requiring high statistics data from

atoms (or molecules) with lower energy difference ϵeg ∼< 0.5 eV. Although the measure-

ments of the indicated fundamental parameters of neutrino physics might be demanding,

a single RENP experiment might provide a systematic strategy to determine almost all

of these parameters, and thus can contribute to the progress in understanding the origin

of neutrino masses and of the physics beyond the Standard Model possibly associated

with their existence.

The present work points to the best atom/molecule candidate with level energy difference

of less than O(0.5 eV) for the indicator ϵeg. Besides the desirable richness of detectable

observables, good candidates for realistic RENP experiments have to be searched also

from the point of least complexity of target preparation.





Chapter 6

Conclusion

In the present thesis, we have investigated the LFV processes in the charged lepton sector

in the three scenarios of light neutrino mass generation, see-saw type I, see-saw type II

(or Higgs Triplet Model) and see-saw type III, at the TeV scale. We also discussed the

sensitivity of the radiative emission of neutrino pair experiment for determining the still

unknown neutrino properties, such as their nature - Dirac or Majonana, absolute mass

scale, hierarchy of the mass spectrum. The results are summarized as below.

In Chapter 2, the three well-known types of see-saw models have been introduced with

assumption that the masses of the additional particles (heavy Majorana neutrinos for

see-saw type I and III, or physical Higgs particles in case of Higgs triplet model) are

at the TeV scale. We have considered type I and type III scenarios, whose two heavy

Majorana neutrinos with similar masses forming a pseudo-Dirac state, such that it could

have sizeable enough couplings |(RV )li|, which might provide observable effects at low

energy scale, after being constrained by the experimental data of neutrino oscillations

and EW precision tests. Then, in the same Chapter, the rates of the LFV processes

ℓ→ ℓ′ + γ, ℓ→ 3ℓ′ (ℓ = µ and ℓ′ = e, or ℓ = τ and ℓ′ = µ, e) and µ→ e conversion, are

calculated in the type I and type II see-saw models, while the µ→ e+ γ, µ→ 3e decays

and the µ → e conversion rates in the type III see-saw scheme were discussed later in

Chapter 3.

In Chapter 3 and Chapter 4, we have analyzed in detail the dependence of the LFV

rates on the light neutrino masses and the CPV phases using the current data on the

neutrino oscillation parameters. We also set constraints on the couplings |(RV )ℓi| of the
heavy Majorana neutrinos to the charged leptons l∓ and W± and to νℓL and Z0 using

the current experimental upper bounds on the LFV ℓ→ ℓ′+γ, ℓ→ 3ℓ′ decay and µ→ e

conversion rates.
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In the type I see-saw, our results show that the muon LFV decays (µ→ e+ γ, µ→ 3e)

and µ→ e conversion have observable rates within the sensitivities of the next generation

of the LFV experiments. In contrast, the LFV rates of the processes involving the τ

lepton, τ → (µ, e) + γ, τ → 3µ, are predicted to be lower than the detectable limits of

the planned experiments. Thus, any detected signal of the LFV τ decays in the next

generation of experiments will rule out the TeV scale type I see-saw model. It is also

important to note that, in the case of IH spectrum, the decay rates of ℓ→ ℓ′+γ, ℓ→ 3ℓ′

(ℓ = µ and ℓ′ = e, or ℓ = τ and ℓ′ = µ, e), with the exception of τ → eγ, might be

strongly suppressed at some specific values of the CPV phases and lightest neutrino

mass. Furthermore, the µ → e conversion rate in the nuclei considered (Al, Ti, Au)

could also pass through zero at a certain value of the heavy Majorana neutrino mass

M1 of a few TeV.

In the case of the Higgs triplet model, one has to keep in mind that all considered

LFV rates are proportional to M−4
∆ , M∆ being the mass of the physical singly charged

and doubly charged Higgs particles. Thus, the values of the LFV rates are strongly

suppressed when M∆ increases beyond the TeV scale. Therefore, if the physical scale of

neutrino mass generation is too high, this will rule out any possibility to observe LFV

signal in the µ and τ decays as well as in the searches for µ→ e conversion. The rates,

in general, are also functions of the mixing angles, neutrino masses and both Dirac

and Majorana CPV phases. However, in the special case of the charged lepton LFV

decays with emission of a real photon (µ → eγ, τ → µγ and τ → eγ), the rates do

not depend on the lightest neutrino mass nor on the Majorana CPV phases. Detailed

analysis shows that rates of µ → e + γ, µ → 3e, τ → 3µ decays and µ → e conversion

have values within the sensitivities of the next generation experiments. Furthermore,

we have also considered the possibility of the branching ratio Br(τ → 3µ) in the range

of 10−10 ≤ Br(τ → 3µ) ≤ 10−8, which is the interval between the present experimental

upper bound and the limit of next generation experimental sensitivity. Finally, using

the correlation between Br(µ → e + γ), Br(µ → 3e) and Br(τ → (µ, e) + γ) in the

see-saw type II scenario, it is proved that Br(τ → µ + γ) ≤ 5.9 (6.1) × 10−12 NO (IO)

and Br(τ → e+ γ) ≤ 3.9× 10−12, respectively.

With the FCNCs arising at tree-level in the type III see-saw model, the effective µ−e−Z
coupling will provide large magnitudes of the rates of considered LFV processes. Thus,

either the LFV processes of µ→ e+γ, µ→ 3e, and µ→ e conversion would be observed

in the future experiments or the couplings |(RV )ℓi| will be severely constrained.

It follows from the results obtained on the LFV processes in the three well-known types of

see-saw models of neutrino mass generation that it will be relatively easy to discriminate

the type III and the type I and type II see-saw models. To discriminate between the
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type I and type II see-saw is trickier. In principle, one might use the independence of

the branching ratios Br(ℓ → ℓ′γ) on the lightest neutrino mass and the CPV phase in

the Higgs triplet model to distinguish it from the type I see-saw. However the values

of the CPV phases and neutrino mass scale are still unknown at present. Our results

also show that the channel of τ → 3µ decay is the only process that could be used, in

principle, to discriminate between them.

As the last topic discussed in the thesis, in Chapter 5, we have introduced and carried

out numerical analysis the phenomenon of radiative emission of neutrino pair in atoms.

The process is sensitive to the absolute neutrino mass scale, the type of neutrino mass

spectrum, the nature - Dirac or Majorana - of massive neutrinos, and the CPV Majorana

phases in the neutrino mixing matrix. These are basically all of the unknown neutrino

properties. The neutrino masses and the mass spectrum are determined by measuring

the threshold energy of the photon which accompanies each emitted pair of neutrinos.

In order to get information about the nature of massive neutrinos, and if neutrinos

are Majorana particles - about the Majorana CPV phases - requires a high precision

measurements of the emission rate from atoms with energy differences of ϵeg ≤ 0.5 eV.





Appendix A

See-saw Type I Form Factor

In this appendix, we are going to calculate the form factors of the diagrams which have

contributions to the LFV processes such as µ→ eγ, µ→ 3e decays and µ− e conversion
etc., in the scheme of see-saw type I model. For convenience, we use the same Feynman

rule conventions and notations reported in [138]. As the first step, we write down here

the definitions of the functions and notations that will be used in the further calculation

[138]:

D3(x, y) = (1− y)m2
i + y

[
M2
w − q2x(1− x)

]
− y(1− y)p2 , (A.1)

D3F (x, y) = (1− y)M2
w + y

{
m2 − q2x(1− x)

}
− y(1− y)p2 , (A.2)

D2a =M2
w(1− x) +m2

ix− p21x(1− x) , (A.3)

D2b =M2
w(1− x) +m2

ix− p22x(1− x) , (A.4)

p = (1− x)p1 + xp2 , q = p1 − p2 , m2 = (1− x)m2
i +m2

jx , (A.5)

Sl =
m2
l

M2
w

l = e, µ, τ , λi =
m2
i

M2
w

i = 1, 2, ..., 3 + k , (A.6)

where mi is mass of the Majorana neutrino ni or quark qi; pi (i = 1, .., 4) stand for

momentums of the incoming and outgoing particles; while k is number of the heavy

neutrinos participating in the model.

The ultraviolet divergent part is expressed as

CUV =
1

ε
− γ + log 4π . (A.7)
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Figure A.1: Feynman diagrams contribute to the effective vertex l̄l′γ (l ̸= l′).

We also define new notations:

Int (f(x)) =

∫ 1

0
dx f(x) , (A.8)

Int (f(x, y)) =

∫ 1

0
dx

∫ 1

0
dy f(x, y) , (A.9)

Int (f(x, y, z)) =

∫ 1

0
dx

∫ 1

0
dy

∫ 1

0
dz f(x, y, z) . (A.10)

(A.11)

A.1 Calculation of the Gamma Exchange Diagrams

The diagrams which contribute to the effective vertex l̄l′γ (l ̸= l′) are shown in the Fig.

A.1. Using the results reported in the appendix B of [138] and defining the effective

coupling l̄l′γ in the following

− e Γγα = −e
h∑
r=a

Γ(r)
α =

h∑
r=a

Diag.(r) , (A.12)

one obtains:

Γ(a)
α = − g2

32π2
UliU

∗
l′i

[
−m2

iPRγα

∫ 1

0

y dx dy

D3(x, y)
+mαPRγα

∫ 1

0

dx dy

D3(x, y)
y2/p

]
, (A.13)

Γ(b)
α =

g2

32π2
UliU

∗
l′i

[
m2
iPRγα

∫ 1

0

y dx dy

D3(x, y)
−mβPL

∫ 1

0

dx dy

D3(x, y)
y2/pγα

]
, (A.14)
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Γ(c)
α = − g2

32π2
UliU

∗
l′i

[
−γαPL

{
3CUV − 2− 6

∫ 1

0
dx dy y log [D3(x, y)]

}
+ PR

∫ 1

0

y2 dx dy

D3(x, y)

{
(/p2 − 2/p1 + y/p)/pγα − 2(p1 + p2 − 2yp)α/p

+ γa/p(/p1 − 2/p2 + y/p)
}]

, (A.15)

Γ(d)
α = − g2

32π2
UliU

∗
l′i/p2PL

[
CUV − 1− 2

∫ 1

0
dx(1− x) log [D2b(x)]

]
/p2 +mα

m2
β −m2

α

γα , (A.16)

Γ(e)
α = − g2

32π2
UliU

∗
l′iγα

/p1 +mβ

m2
α −m2

β
/p1PL

[
CUV − 1− 2

∫ 1

0
dx(1− x) log [D2a(x)]

]
, (A.17)

Γ(f)
α = − g2

64π2M2
w

UliU
∗
l′i

[
m2
i {(mα +mβ) + γ5(mα −mβ)}

∫ 1

0

dx dy y

D3(x, y)

× (p1 + p2 − 2yp)α − 1

2

{
(mαmβ +m2

i )− γ5(mαmβ −m2
i )
}
γα

×
{
CUV − 2

∫ 1

0
dx dy y log [D3(x, y)]

}
−
{
(mαmβ +m2

i )− γ5(mαmβ −m2
i )
}

×
∫ 1

0

dx dy y2

D3(x, y)
(p1 + p2 − 2yp)α/p

]
. (A.18)

Γ(g)
α =

g2

64π2M2
w

UliU
∗
l′i

[
m2
i {(mα +mβ) + γ5(mα −mβ)}

{
CUV −

∫ 1

0
dx log [D2b(x)]

}
−

/p2
2

{
(mαmβ +m2

i ) + γ5(mαmβ −m2
i )
}{

CUV − 2

∫ 1

0
dx(1− x) log [D2b(x)]

}]
×

/p2 +mα

m2
β −m2

α

γα , (A.19)

Γ(h)
α =

g2

64π2M2
w

UliU
∗
l′i γα

/p1 +mβ

m2
α −m2

β

[
m2
i {(mα +mβ) + γ5(mα −mβ)} {CUV−

−
∫ 1

0
dx log [D2a(x)]

}
−
/p1
2

{
(mαmβ +m2

i ) + γ5(mαmβ −m2
i )
}
{CUV−

− 2

∫ 1

0
dx(1− x) log [D2a(x)]

}]
, (A.20)

From the above results, one can see that the divergences appear in Γ
(i)
α for i = c, ..., f .

The divergences in diagrams (c), (d) and (e) vanish explicitly because of the unitarity

of the neutrino mixing matrix
∑3+k

i UαiU
∗
βi = 0 (α ̸= β), while the divergences in Γ

(f)
α ,

Γ
(g)
α , and Γ

(h)
α cancel each other. After ignoring the divergences and simplifying the
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result, we have:

Γ(a)
α =

g2

32π2
UliU

∗
l′i

[
A

(1)
1 Int

(
y

D3(x, y)

)
+B

(1)
1 Int

(
y2x

D3(x, y)

)
+ B

(1)
2 Int

(
y2

D3(x, y)

)]
,

A
(1)
1 =M2

wλiγαPL, B
(1)
1 =M2

wSαγαPL − 2/p1p2αPL + /p2γα/p1PL,

B
(1)
2 = −M2

wSαγαPL. (A.21)

Γ(b)
α =

g2

32π2
UliU

∗
l′i

[
A

(2)
1 Int

(
y

D3(x, y)

)
+B

(2)
1 Int

(
y2x

D3(x, y)

)
+ B

(2)
2 Int

(
y2

D3(x, y)

)]
,

A
(1)
1 =M2

wλiγαPL, B
(1)
1 = −M2

wSβγαPL + 2/p2p1αPL − /p2γα/p1PL,

B
(2)
2 = /p2γα/p1PL − 2/p2p1αPL. (A.22)

Γ(c)
α =

g2

32π2
UliU

∗
l′i

[
A

(5)
1 Int

(
y3x2

D3(x, y)

)
+A

(5)
2 Int

(
y3x

D3(x, y)

)
+A

(5)
3 Int

(
y3

D3(x, y)

)
+ B

(5)
1 Int

(
y2x

D3(x, y)

)
+B

(5)
2 Int

(
y2

D3(x, y)

)
+ C

(5)
1 Int (y logD3(x, y))

]
,

A
(5)
1 = 2M2

wrγαPL − 4/p1p1αPL + 4/p2p1αPL + 4/p1p2αPL − 4/p2p2αPL ,

A
(5)
2 = 8/p1p1αPL − 4/p2p1αPL − 4/p1p2αPL + 2M2

w(Sα − Sβ − r)γaPL ,

A
(5)
3 = −4/p1p1αPL − 2M2

wSαγαPL , B
(5)
1 = −2/p1p1αPL + 2/p2p2αPL

−M2
w(Sα − Sβ)γαPL , B

(5)
2 = 2/p1p1αPL − 2/p1p2αPL − 2/p2p1αPL

+3/p2γα/p1PL +M2
w(3Sα + 2Sβ + 2r)γαPL , C

(5)
1 = −6γαPL . (A.23)

Γ(d)
α + Γ(e)

α =
g2

16π2
UliU

∗
l′i

[
A(34) {Int [(1− x) logD2a(x)]− Int [(1− x) logD2b(x)]}

+ B(34) {SαInt [(1− x) logD2a(x)]− SβInt [(1− x) logD2b(x)]}
]
,

A(34) =
1

Sα − Sβ

/p2γα/p1PL

M2
w

, B(34) =
1

Sα − Sβ
γαPL . (A.24)
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Γ(f)
α =

g2

32π2
UliU

∗
l′i

[
−λi

{
A

(8)
1 Int

(
y2x

D3(x, y)

)
+A

(8)
2 Int

(
y2

D3(x, y)

)
+ A

(8)
3 Int

(
y

D3(x, y)

)}
+ λi

{
B

(8)
1 Int

(
y3x2

D3(x, y)

)
+B

(8)
2 Int

(
y3x

D3(x, y)

)
+ B

(8)
3 Int

(
y3

D3(x, y)

)
+ C

(8)
1 Int

(
y2x

D3(x, y)

)
+ C

(8)
2 Int

(
y2x

D3(x, y)

)}
+ D

(8)
1 Int [y logD3(x, y)]

]
,

A
(8)
1 = 2/p1p1αPL + 2/p2p1αPL − 2/p1p2αPL − 2/p2p2αPL , A

(8)
2 = −2/p1p1αPL

−2/p2p1αPL , A
(8)
3 = /p1p1αPL + /p2p1αPL + /p1p2αPL + /p2p2αPL ,

B
(8)
1 = −2/p1p1αPL + 2/p2p1αPL + 2/p1p2αPL − 2/p2p2αPL ,

B
(8)
2 = 4/p1p1αPL − 2/p2p1αPL − 2/p1p2αPL , B

(8)
3 = −2/p1p1αPL ,

C
(8)
1 = −/p1p1αPL + /p2p1αPL − /p1p2αPL + /p2p2αPL , C

(8)
2 = /p1p1αPL

+/p1p2αPL , D
(8)
1 = −λiγαPL −

/p2γα/p1PL

M2
w

. (A.25)

Γ(g)
α + Γ(h)

α =
g2

32π2
UliU

∗
l′i

[
A(67) {Int [logD2a(x)]− Int [logD2b(x)]}

+ B
(67)
1 {Int [(1− x) logD2a(x)]− Int [(1− x) logD2b(x)]}

+ B
(67)
2 {SαInt [(1− x) logD2a(x)]− SβInt [(1− x) logD2b(x)]}

]
,

A(67) = − λi
Sα − Sβ

[
(Sα + Sβ)γαPL +

2/p2γα/p1PL

M2
w

]
,

B
(67)
1 =

1

Sα − Sβ

[
SαSβγαPL + λi

/p2γα/p1PL

M2
w

]
,

B
(67)
2 =

1

Sα − Sβ

[
/p2γα/p1PL

M2
w

+ λiγαPL

]
. (A.26)

Carrying on the integrations and keeping only the leading order terms, Γγα(λ) is arrived

at the form:

Γγα(λ) =
h∑
r=a

Γ(i)
α (λ) =

g2

32π2
UliU

∗
l′iPR

[
Fγ(λi)

{
− q2

M2
w

γα +
(/p1 − /p2)(p1 − p2)α

M2
w

}
+ Gγ(λi)

{
/p1(p1 + p2)α

M2
w

− Sαγα −
/p2γα/p1
M2
w

}
+Gγ(λi)

{
/p2(p1 + p2)α

M2
w

− Sβγα −
/p2γα/p1
M2
w

}]
,

Fγ(x) =
x(7x2 − x− 12)

12(1− x)3
− x2(12− 10x+ x2)

6(1− x)4
log x , (A.27)

Gγ(x) = −x(2x
2 + 5x− 1)

4(1− x)3
− 3x3

2(1− x)4
log x . (A.28)
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Finally, using the property of the Dirac equation

u(p2)
[
/p1(p1 + p2)α −m2

µγα − /p2γα/p1

]
u(p1) = mµu(p2)iσαβq

βu(p1) , (A.29)

u(p2)
[
/p2(p1 + p2)α −m2

eγα − /p2γα/p1

]
u(p1) = meu(p2)iσαβq

βu(p1) , (A.30)

we can rewrite the effective coupling in the gauge covariant form

− e u(p2)Γ
γ
α(λ)u(p1) =

g2e

32π2M2
w

UliU
∗
l′iu(p2)

[
Fγ(λ)

(
q2γα − /qqα

)
PL

− iσαβq
βGγ(λ) (mePL +mµPR)

]
u(p1) , (A.31)

− e Γγα(λ) =
g2e

32π2M2
w

UliU
∗
l′i

[
Fγ(λ)

(
q2γα − /qqα

)
PL

− iσαβq
βGγ(λ) (mePL +mµPR)

]
. (A.32)

A.2 Calculation of the Z Boson Exchange Diagrams

In the type I see-saw scenario, the diagrams, which give one-loop correction to the

effective vertex l̄l′Z (l ̸= l′) are listed in the Fig. A.2. In this case, let us define the

effective vertex as

g

4 cos θw
Γzα =

g

4 cos θw

k∑
r=a

Γ(r)
α =

k∑
r=a

Diag.(r) . (A.33)

Using the same trick like the previous case, we obtain the contributions of the diagrams

quoted in Fig. A.2:

Γ(a)
α =

g2

8π2
UliU

∗
l′i sin

2 θw

[
m2
iPRγα

∫ 1

0

y dx dy

D3(x, y)
−mαPRγα

∫ 1

0

dx dy

D3(x, y)
y2/p

]
, (A.34)

Γ(b)
α =

g2

8π2
UliU

∗
l′i sin

2 θw

[
m2
iPRγα

∫ 1

0

y dx dy

D3(x, y)
−mβPL

∫ 1

0

dx dy

D3(x, y)
y2/pγα

]
, (A.35)

Γ(c)
α =

g2

8π2
UliU

∗
l′i cos

2 θw

[
−γαPL

{
3CUV − 2− 6

∫ 1

0
dx dy y log [D3(x, y)]

}
+ PR

∫ 1

0

y2 dx dy

D3(x, y)

{
(/p2 − 2/p1 + y/p)/pγα − 2(p1 + p2 − 2yp)α/p +

+ γα/p(/p1 − 2/p2 + y/p)
}]

, (A.36)
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l l′

Z

l l′

Z

G− W−

ni l l′ni

W− G−

Z

l l′ni

Z

W− W−

l l′ni

G−

Z

l ni l′

G−

Z

l ni l
′

G− G−

Z

l l
′ni

Z

W−

l ni l
′

W−

Z

l W− l′

ni nj

Z

l G− l′

ni nj

Z

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (k)

= +

+ + +

+ + +

+ +

Figure A.2: Feynman diagrams contribute to the effective vertex l̄l′Z (l ̸= l′).

Γ(d)
α =

g2

32π2
UliU

∗
l′i /p2PL

[
CUV − 1− 2

∫ 1

0
dx(1− x) log [D2b(x)]

]
/p2 +mα

m2
β −m2

α

× γα
(
2PL − 4 sin2 θw

)
, (A.37)

Γ(e)
α =

g2

32π2
UliU

∗
l′i γα

(
2PL − 4 sin2 θw

) /p1 +mβ

m2
α −m2

β
/p1PL

×
[
CUV − 1− 2

∫ 1

0
dx(1− x) log [D2a(x)]

]
, (A.38)

Γ(f)
α =

g2

32π2M2
w

UliU
∗
l′i

(
1− 2 sin2 θw

) [
m2
i {(mα +mβ) + γ5(mα −mβ)}

×
∫ 1

0

dx dy y

D3(x, y)
(p1 + p2 − 2yp)α −

{
(mαmβ +m2

i )− γ5(mαmβ −m2
i )
}

×
∫ 1

0

dx dy y2

D3(x, y)
(p1 + p2 − 2yp)α/p−

1

2

{
(mαmβ +m2

i )− γ5(mαmβ −m2
i )
}
γα

×
{
CUV − 2

∫ 1

0
dx dy y log [D3(x, y)]

}]
, (A.39)
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Γ(g)
α = − g2

64π2M2
w

UliU
∗
l′i

[
m2
i {(mα +mβ) + γ5(mα −mβ)} {CUV

−
∫ 1

0
dx log [D2b(x)]

}
−
/p2
2

{
(mαmβ +m2

i ) + γ5(mαmβ −m2
i )
}
{CUV

− 2

∫ 1

0
dx(1− x) log [D2b(x)]

}]
/p2 +mα

m2
β −m2

α

γα
(
2PL − 4 sin2 θw

)
, (A.40)

Γ(h)
α = − g2

64π2M2
w

UliU
∗
l′i γα

(
2PL − 4 sin2 θw

) /p1 +mβ

m2
α −m2

β

[
m2
i {(mα +mβ)

+ γ5(mα −mβ)} ×
{
CUV −

∫ 1

0
dx log [D2a(x)]

}
−
/p1
2

{
(mαmβ +m2

i )

+ γ5(mαmβ −m2
i )
}
×
{
CUV − 2

∫ 1

0
dx(1− x) log [D2a(x)]

}]
, (A.41)

Γ(i)
α =

g2

8π2M2
w

UliCijU
∗
l′j

[
PR

∫ 1

0

dx dy y

D3F (x, y)
(/p1 − y/p)γα(/p2 − y/p) +

1

2
γαPL

×
{
CUV − 2− 2

∫ 1

0
dx dy y logD3F (x, y)

}]
, (A.42)

Γ(k)
α = − g2

16π2M2
w

UliCijU
∗
l′j

[
−m2

im
2
jγαPL

∫ 1

0

dx dy y

D3F (x, y)
+mβm

2
iPL

×
∫ 1

0

dx dy y

D3F (x, y)
(/p2 − y/p)γα +mαm

2
jγαPL

∫ 1

0

dx dy y

D3F (x, y)
(/p1 − y/p)

− mαmβPL

∫ 1

0

dx dy y

D3F (x, y)
(/p2 − y/p)γα(/p1 − y/p)−

mαmβγαPR
2

×
{
CUV − 1− 2

∫ 1

0
dx dy y logD3F (x, y)

}]
, (A.43)

where Cij =
∑e,µ,τ

α U∗
αiUαj .

In the case considered, the unitarity of the mixing matrix will eliminate the divergences

in the (e), (i) and (k) diagrams, the divergences remained also vanishes since:

Γ(d)
α (CUV ) + Γ(e)

α (CUV ) = 0 , (A.44)

Γ(f)
α (CUV ) + Γ(g)

α (CUV ) + Γ(h)
α (CUV ) = 0 . (A.45)

One can simplify the above results by keeping only the leading order terms that con-

tribute to the effective vertex:

Γ(a,b)
α =

g2

8π2
UliU

∗
l′i sin

2 θw M2
wλi Int

(
y2

D3(x, y)

)
γαPL , (A.46)
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Γ(c)
α =

g2

8π2
UliU

∗
l′i cos

2 θw Int [y logD3(x, y)] 6γαPL , (A.47)

Γ(d)
α + Γ(e)

α = − g2

8π2
UliU

∗
l′i

1− 2 sin2 θw
Sα − Sβ

{SαInt [(1− x) logD2a(x)]

− SβInt [(1− x) logD2b(x)]} γαPL , (A.48)

Γ(f)
α =

g2

16π2
UliU

∗
l′i λi(1− 2 sin2 θw) Int [y logD3(x, y)] γαPL , (A.49)

Γ(g)
α + Γ(h)

α = − g2

16π2
UliU

∗
l′i

λi(1− 2 sin2 θw)

Sα − Sβ
{SαInt [logD2a(x)]

− SβInt [logD2b(x)]} γαPL , (A.50)

Γ(i)
α = − g2

8π2
UliCijU

∗
l′j Int [y logD3F (x, y)] γαPL , (A.51)

Γ(k)
α =

g2

16π2
UliCijU

∗
l′j λiλjM

2
w Int

[
y

D3F (x, y)

]
γαPL , (A.52)

Performing the integrations with respect to x and y, the results read:

h∑
r=a

Γ(r)
α = − g2

8π2
UliU

∗
l′i Fz(λi) γαPL , (A.53)

Fz(x) = − 5x

2(1− x)
− 5x2

2(1− x)2
log x , (A.54)

Γ(i)
α + Γ(k)

α = − g2

8π2
UliCijU

∗
l′j Gz(λi, λj) γαPL , (A.55)

Gz(x, y) = − 1

2(x− y)

[
x2(1− y)

(1− x)
log x− y2(1− x)

(1− y)
log y

]
. (A.56)

Then, we have the final expression for the effective vertex l̄l′Z (l ̸= l′)

g

4 cos θw
Γzα = − g3

32π2 cos θw
UliU

∗
l′j [δijFz(λi) + Cij Gz(λi, λj)] γαPL . (A.57)
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(a)

l l′ni

u d, s, b u

W− W+

(b)

l ni l′

u d, s, b u

W− X+

(c)

l ni l′

u d, s, b u

X− W+

(d)

l ni l′

u d, s, b u

X− X−

Figure A.3: u-type box diagrams.

A.3 Calculation of the Box Diagrams

There are two groups of box diagrams, which give contribution to the µ− e conversion

rate. They are u-type box diagrams (Fig. A.3) or d-type box diagrams (Fig. A.4).

The virtual quarks participating in the u-type graphs are d, s and b, while the quarks

taking part in the d-type ones are u, c and t. It is important to note that result of

the calculation of the d-type diagrams can also be applied to the box diagrams, whose

origins are d-type box diagrams with d quark replaced by negative leptons (e−, µ−, τ−)

and virtual (u, c, t) quarks by neutrinos.

We introduce next a common function D4(x, y, z), which will be used in further calcu-

lation

D4(x, y, z) = (1− z)M2
w + z

{
(1− y)m2

i + ym2
j

}
+ ... , (A.58)

where the dots stand for the ignored terms in the function which give subdominant

contribution to the form factor.

A.3.1 u-Type Box Diagrams

Let us start to calculate the u-type box diagrams. Using the result in [138] and ignoring

the subdominant terms, the contribution of the (a) diagram is expressed as:

Mu
(a) =

g4

128π2
UliU

∗
l′iVudjV

∗
udj

∫ 1

0
dx dy dz

z(1− z)

D4(x, y, z)
[u(p4)PRγργαγσu(p3)]

× [u(p2)PRγ
ργαγσu(p1)] . (A.59)
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Using

[u(p4)PRγργαγσu(p3)]× [u(p2)PRγ
ργαγσu(p1)] = 16 [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] . (A.60)

the above equation is simplified into the form

Mu
(a) =

g4

8π2
UliU

∗
l′iVudjV

∗
udj

∫ 1

0
dx dy dz

z(1− z)

D4(x, y, z)
[u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] . (A.61)

Performing the same calculations for diagrams (b), (c) and (d), we obtain:

Mu
(b, c) =

g4

64π2
UliU

∗
l′iVudjV

∗
udj

∫ 1

0
dx dy dz

z(1− z)

D2
4(x, y, z)

m2
im

2
j [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] , (A.62)

Mu
(d) =

g4

128π2
UliU

∗
l′iVudjV

∗
udj

∫ 1

0
dx dy dz

z(1− z)

D4(x, y, z)
m2
im

2
j [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] . (A.63)

Summing up the contributions of the four graphs and carrying out the integrations with

respect to x, y and z, the result is easy to be obtained:

d∑
r=a

Mu
(r) =

g4

64π2M2
w

UliU
∗
l′iVudjV

∗
udj

[
M2
w

(
8 +

1

2
λiλj

)
Int

(
z(1− z)

D4(x, y, z)

)
+ 2M4

wλiλjInt

(
z(1− z)

D2
4(x, y, z)

)]
[u(p4)PRγαu(p3)]× [u(p2)PRγ

αu(p1)]

=
g4

64π2M2
w

UliU
∗
l′iVudjV

∗
udj
FXBox(λi, λj) [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] , (A.64)

where

FBox(x, y) =
1

x− y

{
(4 +

xy

4
)

[
1

1− x
+

x2

(1− x)2
log x− 1

1− y
− y2

(1− y)2
log y

]
− 2xy

[
1

1− x
+

x

(1− x)2
log x− 1

1− y
− y

(1− y)2
log y

]}
. (A.65)
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(a)

l l′ni

d u, c, t d

W− W+

(b)

l ni l′

d u, c, t d

W− X+

(c)

l ni l′

d u, c, t d

X− W+

(d)

l ni l′

d u, c, t d

X− X−

Figure A.4: d-type box diagrams.

A.3.2 d-Type Box Diagrams

The d-box diagrams are calculated similarly, the result of diagram (a) is:

Md
(a) = − g4

128π2
UliU

∗
l′iVdujV

∗
duj

∫ 1

0
dx dy dz

z(1− z)

D4(x, y, z)
[u(p4)PRγργαγσu(p3)]

× [u(p2)PRγ
σγαγρu(p1)] . (A.66)

Using

[u(p4)PRγργαγσu(p3)]× [u(p2)PRγ
σγαγρu(p1)] = 4 [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] . (A.67)

we have

Md
(a) = − g4

32π2
UliU

∗
l′iVdujV

∗
duj

∫ 1

0
dx dy dz

z(1− z)

D4(x, y, z)
[u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] . (A.68)

We also have expressions for diagrams (b), (c) and (d):

Md
(b, c) = − g4

64π2
UliU

∗
l′iVdujV

∗
duj

∫ 1

0
dx dy dz

z(1− z)

D2
4(x, y, z)

m2
im

2
j [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] , (A.69)
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Md
(d) = − g4

128π2
UliU

∗
l′iVdujV

∗
duj

∫ 1

0
dx dy dz

z(1− z)

D4(x, y, z)
m2
im

2
j [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] . (A.70)

Summing up the contributions obtained above, we arrive at the final expression of the

the d-type diagram form factor:

d∑
r=a

Md
(r) = − g4

64π2M2
w

UliU
∗
l′iVdujV

∗
duj

[
M2
w

(
2 +

1

2
λiλj

)
Int

(
z(1− z)

D4(x, y, z)

)
+ 2M4

wλiλjInt

(
z(1− z)

D2
4(x, y, z)

)]
[u(p4)PRγαu(p3)]× [u(p2)PRγ

αu(p1)]

=
g4

64π2M2
w

UliU
∗
l′iVdujV

∗
duj
FXBox(λi, λj) [u(p4)PRγαu(p3)]

× [u(p2)PRγ
αu(p1)] , (A.71)

where

FXBox(x, y) = − 1

x− y

{
(1 +

xy

4
)

[
1

1− x
+

x2

(1− x)2
log x− 1

1− y
− y2

(1− y)2
log y

]
− 2xy

[
1

1− x
+

x

(1− x)2
log x− 1

1− y
− y

(1− y)2
log y

]}
. (A.72)





Appendix B

See-saw Type II Form Factor

B.1 Lagrangian and Feynman Rules

We start this section by writing down here the interested part of the see-saw type II

(Higgs triplet model) Lagrangian involving the interaction between leptons and heavy

charged scalars:

Lint =
1

2
(yN )ij

[
eciejξ

++ +
1√
2
(νciej + eciνj) ξ

+ + h.c

]
, (B.1)

here (yN )ij is two times bigger than hij , which was introduced in eq. (2.53).

In the framework of this calculation, we use the following Feynman rules:

- Vertexes

• l̄i ν
c
k ξ

−

i√
2
(yN )ik PL , (B.2)

• l̄i l
c
k ξ

−−

i(yN )ik PL (B.3)

• ξ∗(p) ξ(p′) Aα

iqξ e (p+ p′)α , (B.4)

• l̄ l Aα

iql e γα . (B.5)
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l l′

γ
(a)

l l′ξ−−

γ

lc
k

lc
k

(b)

l l′lc
k

ξ−− ξ−−

γ

(c)

l l′lc
k

ξ−−

γ

(d)

l lc
k l′

ξ−−

γ

(e)

l νc
k l′

ξ−ξ−

γ

(f)

l l′νc
k

γ
ξ−

(g)

l νc
k l′

ξ−

γ

= +

+ + +

+ +

Figure B.1: One-loop diagrams contribute to seesaw type-II form factor.

- Propagators

• Fermion field
i

/k −m+ iϵ
, (B.6)

• Scalar field
i

k2 −m2 + iϵ
. (B.7)

Here qξ is the heavy scalar charge, and e is the electromagnetic coupling constant.

B.2 Calculation of the See-saw Type II Form Factor

At order of one-loop correction, the Feynman diagrams which contribute to the form

factors are shown in the Fig. B.1.

From the Feynman rules listed above, the contribution of the graph (a) (see Fig. B.2)

is easy to be written down:

Λ(a)
µ = i(y∗N )ek(yN )µkµ

ε

∫
ddk

(2π)d

PR

[
(/p2 − /k) +mk

]
γµ

[
(/p1 − /k) +mk

]
PL[

(p2 − k)2 −m2
k

] [
(p1 − k)2 −m2

k

] (
k2 −M2

ξ−−

) , (B.8)

where, µ is an arbitrary mass dimensional parameter and ε = 4− d .
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p1 p2p1 − k p2 − k

k

ξ−−

q

γ

lc
k

lc
k

µ e

Figure B.2: Diagram (a)

Using Feynman parametrization

1

a b c
=

∫ 1

0
dx

∫ 1

0
2y dy

1

[{a(1− x) + bx} y + c(1− y)]3
, (B.9)

for a = (p1 − k)2 −m2
k, b = (p2 − k)2 −m2

k and c = k2 −M2
ξ−− , we rewrite eq. (B.8) in

the form

Λ(a)
µ = i(y∗N )ek(yN )µk µ

ε

∫ 1

0
dx

∫ 1

0
2y dy

∫
ddk

(2π)d
NM

(k2 −∆2)3
. (B.10)

Here,

NM = PR

[
2A0(d− 2)

d
k2 +A1 − y(A21 + xA22) + y2(A31 + xA32 + x2A33)

]
, (B.11)

A0 = −1

2
γµ , A1 = m2

kγµ + /p2γµ/p1 , A21 = /p1γµ/p1 + /p2γµ/p2 ,

A22 = /p2γµ/p1 − /p1γµ/p1 , A31 = /p1γµ/p1 , A32 = −2/p1γµ/p1 + /p1γµ/p2 + /p2γµ/p1 ,

A33 = /p1γµ/p1 + /p2γµ/p2 − /p1γµ/p2 − /p2γµ/p1 ,

∆2 = (1− y)C + yB − y(1− y)A , (B.12)

A =M2
ξ−−

[
−rx2 − x(sµ − r − se) + sµ

]
, B =M2

ξ−−
[
−rx2 + rx+ sk

]
,

C =M2
ξ−− , se,µ =

m2
e,µ

M2
ξ−−

, sk =
m2
k

M2
ξ−−

, r = − q2

M2
ξ−−

. (B.13)

Performing the integration with respect to the phase space, one obtains the following

equalities: ∫
ddk

(2π)d
1

(k2 −∆2)3
= − i

32π2∆2
, (B.14)

2(d− 2)

d
µε
∫

ddk

(2π)d
k2

(k2 −∆2)3
=

i

16π2
(
CUV − 1− log∆2

)
. (B.15)
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where, the ultraviolet divergence CUV is

CUV =
2

ε
+ log 4πµ2 , (B.16)

and γ = 0.5772 is Euler-Mascheroni constant.

Substituting eqs. (B.14) and (B.15) into (B.10), after simplifying the result obtained,

the formula becomes:

Λ(a)
µ = −

A0 (y∗N )ek(yN )µkPL
16π2

(CUV − 1) +
A0 (y∗N )ek(yN )µkPL

8π2

∫ 1

0
dx

∫ 1

0
dy y log∆2

+
(y∗N )ek(yN )µkPR

16π2

∫ 1

0
dx

∫ 1

0
dy
[
A1y − y2(A21 + xA22)

+ y3(A31 + xA32 + x2A33)
]
. (B.17)

To carry out the integration with respect to x and y variables in the above formula, one

has to expand the function ∆ in term of leading and subdominant contributions. For

∆2 = C(1− y) +By −Ay(1− y) with C ≫ A,B , we have approximations:∫ 1

0
dy y log∆2 =

1

2
logC − 3

4
− 1

3

A

C
− 1

2

B

C
− B

C
log

B

C
, (B.18)∫ 1

0
dy

y

∆2
= − 1

C

[
1 + log

B

C
+
B

C
+

2B

C
log

B

C
+

5

2

A

C
+
A

C
log

B

C

]
, (B.19)∫ 1

0
dy

y2

∆2
= − 1

C

[
3

2
+ log

B

C
+

5B

2C
+

3B

C
log

B

C
+

17

6

A

C
+
A

C
log

B

C

]
, (B.20)∫ 1

0
dy

y3

∆2
= − 1

C

[
11

6
+ log

B

C
+

13B

3C
+

4B

C
log

B

C
+

37

12

A

C
+
A

C
log

B

C

]
. (B.21)

Applying the above equalities, while keeping in mind new notations

B′ =
B

M2
ξ−−

, A′ =
A

M2
ξ−−

, (B.22)

then the eq. (B.17) can be rewritten as:

Λ(a)
µ = −

A0 (y∗N )ek(yN )µkPL
16π2

(CUV − 1) + I1 + I2 + I3 + I4 , (B.23)
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I1 = −
A1 (y∗N )ek(yN )µkPL

16π2M2
ξ−−

∫ 1

0
dx

[(
1 +B′ +

5

2
A′
)
+ (1 + 2sk + sµ) logB

′

+ (3r − sµ)x logB
′ − 3rx2 logB′] , (B.24)

I2 =
(y∗N )ek(yN )µkPR

16π2M2
ξ−−

∫ 1

0
dx

[
(A21 +A22x)

(
3

2
+

5

2
B′ +

17

6
A′
)

+ A21(1 + 3sk + sµ) logB
′ + {A21(4r − sµ) +A22(1 + 3sk + sµ)}x logB′

+ {−A21(4r − se) +A22(4r − sµ)}x2 logB′ −A22(4r − se)x
3 logB′] , (B.25)

I3 = −
(y∗N )ek(yN )µkPR

16π2M2
ξ−−

∫ 1

0
dx

[
(A31 +A32x+A33x

2)

(
11

6
+

13

3
B′ +

37

12
A′
)

+ A31(1 + 4sk + sµ) logB
′ + {A31(5r − sµ) +A32(1 + 4sk + sµ)}x logB′

+ {A33(1 + 4sk + sµ)−A31(5r − se) +A32(5r − sµ)}x2 logB′

− {A32(5r − se)−A33(5r − sµ)}x3 logB′ −A33(5r − se)x
4 logB′] , (B.26)

I4 =
A0 (y∗N )ek(yN )µkPL

8π2

∫ 1

0
dx

[(
1

2
logC − 3

4
− 1

3
A′ − 1

2
B′
)
− sk logB

′

− rx logB′ + rx2 logB′] . (B.27)

Taking the integration with respect to x, then keeping only the leading terms, after

rearranging the result, one gets:

Λ(a)
µ =

(y∗N )ek(yN )µkγµPL
32π2

CUV +
(y∗N )ek(yN )µkγµPL

16π2

(
1

4
− 5r

36
− sk

2
+
se + sµ

6

− 1

2
logM2 +

r

6
f(r, sk)

)
+

(y∗N )ek(yN )µkPL
16π2M2

ξ−−

(
− 5

36
+
f(r, sk)

6

)
× (/p1γµ/p1 + /p2γµ/p2)−

(y∗N )ek(yN )µkPL
16π2M2

ξ−−

(
1

36
+
f(r, sk)

6

)
/p1γµ/p2

+
(y∗N )ek(yN )µkPL

16π2M2
ξ−−

(
17

36
− f(r, sk)

6

)
/p2γµ/p1 . (B.28)

Here, the well-known function f(r, sk) is

f(r, sk) =
4sk
r

+ log(sk) +

(
1− 2sk

r

) √
1 +

4sk
r

log

√
r + 4sk +

√
r√

r + 4sk −
√
r
. (B.29)

Similarly, we also have the contribution of the diagrams (b) (see Fig. B.3) to the form

factor

Λ(b)
µ = −2i(y∗N )ek(yN )µkµ

ε

∫
ddk

(2π)d
PR(/k +mk)PL(p1 + p2 − 2k)µ(

k2 −m2
k

) [
(p2 − k)2 −M2

ξ−−

] [
(p1 − k)2 −M2

ξ−−

] .
(B.30)
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p1 p2p1 − k p2 − k

k

lc
k

q

γ

ξ−− ξ−−µ e

Figure B.3: Diagram (b)

After using the Feynman parametrization, eq. B.30 becomes

Λ(b)
µ = −2i(y∗N )ek(yN )µk µ

ε

∫ 1

0
dx

∫ 1

0
2y dy

∫
ddk′

(2π)d
PR NM

(k′2 −∆2)3
, (B.31)

k′ = k − [p1(1− x) + p2x] y , (B.32)

∆2 = [p1(1− x) + p2x]
2 y2 +M2

ξ−−y +m2
k(1− y)−

[
p21(1− x) + p22x

]
y . (B.33)

For Mξ−− ≫ mα, in order to expand ∆2 in leading and subdominant terms, one has to

change y → 1− y. After changing the variable, we have

Λ(b)
µ = −2i(y∗N )ek(yN )µk µ

ε

∫ 1

0
dx

∫ 1

0
2(1− y) dy

∫
ddk′′

(2π)d
PR NM

(k′′2 −∆2)3
, (B.34)

k′′ = k − [p1(1− x) + p2x] (1− y) , (B.35)

∆2 = (1− y)C + yB + C1y
2 + C2y + C3 , C =M2

ξ−− , (B.36)

B =M2
ξ−−(−rx2 + rx+ sk) , C1 =M2

ξ−−
[
−rx2 + x(se + r − sµ) + sµ

]
, (B.37)

C2 =M2
ξ−−

[
3rx2 + x(sµ − 3r − se)− sµ

]
, C3 =M2

ξ−−rx(1− x) , (B.38)

NM =
2B0

d
k2 + (1− y)B1 + (1− y)2B2 , B0 = −γµ , (B.39)

B1 = (1− x)(/p1p1µ + /p1p2µ) + x(/p2p1µ + /p2p2µ) , (B.40)

B2 = −2
[
(1− x)2/p1p1µ + x(1− x)/p1p2µ + x(1− x)/p2p1µ + x2/p2p2µ

]
. (B.41)

Using eq. (B.14) and

2

d
µε
∫

ddk

(2π)d
k2

(k2 −∆2)3
=

i

32π2
(
CUV − log∆2

)
, (B.42)
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Λ
(b)
µ is arrived at:

Λ(b)
µ = −

(y∗N )ek(yN )µkPR
8π2

∫ 1

0
dx

∫ 1

0
dy

[
(1− y)2

∆2
B1 +

(1− y)3

∆2
B2

+ (1− y)B0 log∆
2
]
+

(y∗N )ek(yN )µkPR
16π2

B0 CUV . (B.43)

The final expression for Λ
(b)
µ is obtained after performing the integration with respect to

the Feynman variables x and y:

Λ(b)
µ = −

(y∗N )ek(yN )µkγµPL
16π2

CUV −
(y∗N )ek(yN )µkγµPL

8π2

(
1

4
− r

18
− sk

2
+
se + sµ

12

− 1

2
logM2

)
−

(y∗N )ek(yN )µkPR
8π2

(
/p1p1µ

36
+

5/p1p2µ

36
+

5/p2p1µ

36
+
/p2p2µ

36

)
. (B.44)

Here, one has used the approximations:∫ 1

0
dy(1− y) log∆2 = −1

4
+

B

2C
+
C1

3C
+
C2

2C
+
C3

C
+

1

2
logC , (B.45)∫ 1

0
dy

(1− y)2

∆2
=

1

C

[
1

2
− B

2C
− C1

3C
− C2

2C
− C3

C

]
, (B.46)∫ 1

0
dy

(1− y)3

∆2
=

1

C

[
1

3
− B

6C
− C1

12C
− C2

6C
− C3

2C

]
. (B.47)

Let us continue by calculating the diagram (c). From the Fig. B.4, applying the

Feynman rules quoted above, it is not difficult to have

Λ(c)
µ = i

(y∗N )ek(yN )µk
m2
µ −m2

e

µε
∫

ddk

(2π)d
PR /k(/p2 +mµ)γµ(

k2 −m2
k

) [
(p2 − k)2 −M2

ξ−−

] . (B.48)

µ e

γ

ξ−−

lc
k

k p2p1 p2

q

p2 − k

Figure B.4: Diagram (c)
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After few steps of modifying, eq. (B.48) becomes

Λ(c)
µ = i

(y∗N )ek(yN )µk
m2
µ −m2

e

µε
∫

ddk′

(2π)d
(1− x)(m2

ePR +mµmePL)γµ

(k′2 −∆2
e)

2 , (B.49)

k′ = k + (1− x)p2, ∆2
e =M2

ξ−−(1− x) +m2
kx−m2

ex(1− x) . (B.50)

To arrive at eq. (B.49) expression, we have used the Feynman parametrization

1

a b
=

∫ 1

0

dx

[a(1− x) + bx]2
, (B.51)

for a = (p2 − k)2 −M2
ξ−− and b = k2 −m2

k .

Performing the integration in D dimensional phase space, the result reads

µε
∫

ddk

(2π)d
1

(k2 −∆2)2
=

i

16π2
(
CUV − log∆2

)
. (B.52)

Substituting eq. (B.52) into eq. (B.49), it is easy to get

Λ(c)
µ = −

(y∗N )ek(yN )µk
32π2

(m2
ePR +mµmePL)γµ

m2
µ −m2

e

[
CUV − 2

∫ 1

0
dx(1− x) log∆2

e

]
. (B.53)

The contribution of the (d) diagram to the form factor can be obtained directly from

eq. (B.53) by exchanging me and mµ. The result is straightforward

Λ(d)
µ =

(y∗N )ek(yN )µk
32π2

(m2
µPR +mµmePL)γµ

m2
µ −m2

e

[
CUV − 2

∫ 1

0
dx(1− x) log∆2

µ

]
, (B.54)

(B.55)

where

∆2
µ =M2

ξ−−(1− x) +m2
kx−m2

µx(1− x) . (B.56)

After expanding ∆e,µ in a series of leading and subdominant terms, the integrations

with respect to x in eqs. (B.53) and (B.54) are easy to be carried out, the results read:∫ 1

0
dx(1− x) log∆2

e =
1

2
logM2

ξ−− − 1

4
− 1

6
se +

1

2
sk , (B.57)∫ 1

0
dx(1− x) log∆2

µ =
1

2
logM2

ξ−− − 1

4
− 1

6
sµ +

1

2
sk . (B.58)
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Using above equations, while keeping in mind equality γµmemµPR = PR/p2γµ/p1, the sum

of the diagrams (c) and (d) becomes

Λ(c)
µ + Λ(d)

µ =
(y∗N )ek(yN )µkγµPL

32π2
CUV +

(y∗N )ek(yN )µkγµPL
16π2

(
−1

2
logM2

ξ−− +
1

4

+
se + sµ

6
− 1

2
sk

)
+

(y∗N )ek(yN )µk
16π2

PR /p2γµ/p1
6

. (B.59)

The effective coupling, which is contributed by the doubly-charged scalar is now straight-

forward to be obtained by summing up the results of the first four diagrams

Λ(ξ−−)
µ =

d∑
i=a

Λ(i)
µ = 1Λ(ξ−−)

µ + 2Λ(ξ−−)
µ , (B.60)

1Λ(ξ−−)
µ =

(y∗N )ek(yN )µk
16π2

f(r, sk)

6M2
ξ−−

(
/p1γµ/p1 − /p1γµ/p2 − /p2γµ/p1 + /p2γµ/p2 − γµq

2
)
PL ,

(B.61)

2Λ(ξ−−)
µ =

(y∗N )ek(yN )µkγµPL
16π2

(
− r

36
+
se + sµ

6

)
+

(y∗N )ek(yN )µk
16π2

PL
36M2

ξ−−

(
−5/p1γµ/p1

− /p1γµ/p2 + 23/p2γµ/p1 − 5/p2γµ/p2 − 2/p1p1µ − 10/p1p2µ − 10/p2p1µ − 2/p2p2µ

)
.

(B.62)

As a property of the form factors with photon exchange, it is possible to write eqs.

(B.61) and (B.62) in the gauge covariant forms. For 1Λ
(ξ−−)
µ , after using

/qγµ/q = −q2γµ + 2qµqνγ
ν , (B.63)

the formula is arrived at

1Λ(ξ−−)
µ = −

(y∗N )ek(yN )µk
48π2M2

ξ−−
f(r, sk)

(
q2γµ − qµqνγ

ν
)
PL , (B.64)

which is gauge covariant as being expected.

For the case of 2Λ
(ξ−−)
µ , one has

2Λ(ξ−−)
µ ∼ γµ

(
−q2 − 6m2

e − 6m2
µ

)
+ 5/p1γµ/p1 + /p1γµ/p2 − 23/p2γµ/p1 + 5/p2γµ/p2 + 2/p1p1µ

+ 10/p1p2µ + 10/p2p1µ + 2/p2p2µ

= γµ
[
−7m2

e − 7m2
µ + 2(p1p2)

]
+ 12/p1(p1 + p2)µ + 12/p2(p1 + p2)µ − 10/p1p1µ

− 10/p2p2µ − 2/p1p2µ − 2/p2p1µ + 5/p1γµ/p1 + 5/p2γµ/p2 + /p1γµ/p2 − 23/p2γµ/p1 , (B.65)
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2Λ(ξ−−)
µ = −

(y∗N )ek(yN )µk
48π2M2

ξ−−

[
(/p1 + /p2)(p1 + p2)µ − (m2

e +m2
µ)γµ − 2/p2γµ/p1

]
PL . (B.66)

Here, to obtain eq. (B.66) from eq. (B.65), one has used:

/pqµ =
1

2
(/pγµ/q + /p/qγµ) =

1

2
(/qγµ/p+ γµ/q/p) =

1

4
(/pγµ/q + /qγµ/p+ /p/qγµ + γµ/q/p) , (B.67)

1

2
γµ(/p1/p2 + /p2/p1) +

1

2
(/p1/p2 + /p2/p1)γµ = 2(p1p2)γµ . (B.68)

From eq. (B.66), it is straightforward to have (see eqs. (A.29) and (A.30))

u(p2)
2Λ(ξ−−)

µ u(p1) = −
(y∗N )ek(yN )µk
48π2M2

ξ−−
u(p2) [mePLiσµνq

ν +mµPRiσµνq
ν ]u(p1) , (B.69)

or

2Λ(ξ−−)
µ = −

(y∗N )ek(yN )µk
48π2M2

ξ−−
[mePLiσµνq

ν +mµPRiσµνq
ν ] . (B.70)

In the same way, it is not difficult to calculate the diagrams (e), (f) and (h) with the

participation of singly charged scalar, the result reads:

Λ(ξ−)
µ =

h∑
i=f

Λ(i)
µ = 1Λ(ξ−)

µ + 2Λ(ξ−)
µ , (B.71)

1Λ(ξ−)
µ = −

(y∗N )ek(yN )µk
12× 48π2M2

ξ−

(
q2γµ − qµqνγ

ν
)
PL , (B.72)

2Λ(ξ−)
µ = −

(y∗N )ek(yN )µk
8× 48π2M2

ξ−
[mePLiσµνq

ν +mµPRiσµνq
ν ] , (B.73)

Finally, gathering the results of the calculation, we have the one-loop form factor for

type II see-saw model (HTM) with the participation of both singly and doubly charged

scalars:

1Λµ = −
(y∗N )ek(yN )µk

48π2

(
1

12M2
ξ−

+
f(r, sk)

M2
ξ−−

)(
q2γµ − qµqνγ

ν
)
PL , (B.74)

2Λµ = −
(y∗N )ek(yN )µk
48π2M2

ξ−

(
1

8M2
ξ−

+
1

M2
ξ−−

)
[mePLiσµνq

ν +mµPRiσµνq
ν ] . (B.75)



Bibliography

[1] K. Nakamura and S. T. Petcov, “Neutrino Masses, Mixing and Oscillations”, in

J. Beringer et al. (Particle Data Group), Phys. Rev. D 86 (2012) 010001.

[2] B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge”,

Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247].

[3] B. Pontecorvo, “Neutrino experiments and the question of leptonic-charge

conservation”, Zh. Eksp. Teor. Fiz. 53 (1967) 1717.

[4] Z. Maki, M. Nakagawa and S. Sakata, “Remarks on the unified model of

elementary particles”, Prog. Theor. Phys. 28 (1962) 870.

[5] S. M. Bilenky, J. Hosek and S. T. Petcov, “On Oscillations of Neutrinos with

Dirac and Majorana Masses”, Phys. Lett. B 94 (1980) 495.

[6] E. Molinaro and S. T. Petcov, “The Interplay Between the ’Low’ and ’High’

Energy CP-Violation in Leptogenesis”, Eur. Phys. J. C 61 (2009) 93

[arXiv:0803.4120 [hep-ph]].

[7] L. Wolfenstein, “CP Properties of Majorana Neutrinos and Double beta Decay”,

Phys. Lett. B 107 (1981) 77.

[8] S. M. Bilenky, N. P. Nedelcheva and S. T. Petcov, “Some Implications Of The Cp

Invariance For Mixing Of Majorana Neutrinos”, Nucl. Phys. B 247 (1984) 61.

[9] B. Kayser, “CPT, CP, and c Phases and their Effects in Majorana Particle

Processes”, Phys. Rev. D 30 (1984) 1023.

[10] Y. Fukuda et al. [Super-Kamiokande Collaboration], “Evidence for oscillation of

atmospheric neutrinos”, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003].

[11] Q. R. Ahmad et al. [SNO Collaboration], “Measurement of the rate of

νe + d→ p+ p+ e− interactions produced by B-8 solar neutrinos at the Sudbury

Neutrino Observatory”, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015].



114 BIBLIOGRAPHY

[12] S. Fukuda et al. [Super-Kamiokande Collaboration], “Solar B-8 and hep neutrino

measurements from 1258 days of Super-Kamiokande data”, Phys. Rev. Lett. 86

(2001) 5651 [hep-ex/0103032].

[13] K. Eguchi et al. [KamLAND Collaboration], “First results from KamLAND:

Evidence for reactor anti-neutrino disappearance”, Phys. Rev. Lett. 90 (2003)

021802 [arXiv:hep-ex/0212021].

[14] T. Nakaya [for the T2K Collaboration], talk at Neutrino 2012; see also: K. Abe

et al. [T2K Collaboration], “Indication of Electron Neutrino Appearance from an

Accelerator-produced Off-axis Muon Neutrino Beam”, Phys. Rev. Lett. 107

(2011) 041801 [arXiv:1106.2822 [hep-ex]].

[15] P. Adamson et al. [MINOS Collaboration], “Improved search for muon-neutrino

to electron-neutrino oscillations in MINOS”, Phys. Rev. Lett. 107 (2011) 181802

[arXiv:1108.0015 [hep-ex]].

[16] Y. Abe et al. [DOUBLE-CHOOZ Collaboration], “Indication for the

disappearance of reactor electron antineutrinos in the Double Chooz experiment”,

Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353 [hep-ex]].

[17] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. M. Rotunno, “Evidence of

θ13 > 0 from global neutrino data analysis”, Phys. Rev. D 84 (2011) 053007

[arXiv:1106.6028 [hep-ph]].

[18] T. Schwetz, M. Tortola and J. W. F. Valle, “Where we are on θ13: addendum to

‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation

parameters”’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376 [hep-ph]].

[19] F. P. An et al. [DAYA-BAY Collaboration], “Observation of

electron-antineutrino disappearance at Daya Bay”, Phys. Rev. Lett. 108 (2012)

171803 [arXiv:1203.1669 [hep-ex]].

[20] J. K. Ahn et al. [RENO Collaboration], “Observation of Reactor Electron

Antineutrino Disappearance in the RENO Experiment”, Phys. Rev. Lett. 108

(2012) 191802 [arXiv:1204.0626 [hep-ex]].

[21] G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A. M. Rotunno,

“Global analysis of neutrino masses, mixings and phases: entering the era of

leptonic CP violation searches”, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254

[hep-ph]].

[22] M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, “Global fit to

three neutrino mixing: critical look at present precision”, JHEP 1212 (2012) 123

[arXiv:1209.3023 [hep-ph]].



BIBLIOGRAPHY 115

[23] A. Osipowicz et al. [KATRIN Collaboration], “KATRIN: A Next generation

tritium beta decay experiment with sub-eV sensitivity for the electron neutrino

mass. Letter of intent”, hep-ex/0109033.

[24] T. .M. Nieuwenhuizen, “Do non-relativistic neutrinos constitute the dark

matter?”, Europhys. Lett. 86 (2009) 59001 [arXiv:0812.4552 [astro-ph]].

[25] P. A. R. Ade et al. [Planck Collaboration], “Planck 2013 results. XVI.

Cosmological parameters”, arXiv:1303.5076 [astro-ph.CO].

[26] R. B. Patterson [NOvA Collaboration], “The NOvA Experiment: Status and

Outlook”, Nucl. Phys. Proc. Suppl. 235-236 (2013) 151 [arXiv:1209.0716

[hep-ex]].

[27] M. Aoki, K. Hagiwara, Y. Hayato, T. Kobayashi, T. Nakaya, K. Nishikawa and

N. Okamura, “Prospects of very long baseline neutrino oscillation experiments

with the KEK / JAERI high intensity proton accelerator”, Phys. Rev. D 67

(2003) 093004 [hep-ph/0112338].

[28] S. M. Bilenky and S. T. Petcov, “Massive Neutrinos and Neutrino Oscillations”,

Rev. Mod. Phys. 59 (1987) 671.

[29] W. Rodejohann, “Neutrino-less Double Beta Decay and Particle Physics”, Int. J.

Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334 [hep-ph]].

[30] F. Alessandria, E. Andreotti, R. Ardito, C. Arnaboldi, F. T. Avignone, III,

M. Balata, I. Bandac and T. I. Banks et al., “Sensitivity of CUORE to

Neutrinoless Double-Beta Decay”, arXiv:1109.0494 [nucl-ex].

[31] I. Abt, M. F. Altmann, A. Bakalyarov, I. Barabanov, C. Bauer, E. Bellotti,

S. T. Belyaev and L. B. Bezrukov et al., “A New Ge-76 double beta decay

experiment at LNGS: Letter of intent”, hep-ex/0404039.

[32] M. Agostini et al. [GERDA Collaboration], “Results on neutrinoless double beta

decay of 76Ge from GERDA Phase I”, arXiv:1307.4720 [nucl-ex].

[33] C. E. Aalseth et al. [Majorana Collaboration], “The Majorana neutrinoless

double beta decay experiment”, Phys. Atom. Nucl. 67 (2004) 2002 [Yad. Fiz. 67

(2004) 2025] [hep-ex/0405008].

[34] M. Auger et al. [EXO Collaboration], “Search for Neutrinoless Double-Beta

Decay in 136Xe with EXO-200”, Phys. Rev. Lett. 109 (2012) 032505

[arXiv:1205.5608 [hep-ex]].



116 BIBLIOGRAPHY

[35] M. C. Chen [SNO+ Collaboration], “The SNO+ Experiment”, arXiv:0810.3694

[hep-ex].

[36] A. Gando et al. [KamLAND-Zen Collaboration], “Measurement of the double-β

decay half-life of 136Xe with the KamLAND-Zen experiment”, Phys. Rev. C 85

(2012) 045504 [arXiv:1201.4664 [hep-ex]].

[37] J. Adam et al. [MEG Collaboration], “New constraint on the existence of the

µ+ → e+ + γ decay”, arXiv:1303.0754 [hep-ex].

[38] U. Bellgardt et al. [SINDRUM Collaboration], “Search for the Decay

µ+ → e+ + e+ + e−”, Nucl. Phys. B 299 (1988) 1.

[39] C. Dohmen et al. [SINDRUM II Collaboration.], “Test of lepton flavor

conservation in µ→ e conversion on titanium”, Phys. Lett. B 317 (1993) 631.

[40] B. Aubert et al. [BABAR Collaboration], “Searches for Lepton Flavor Violation

in the Decays τ± → e± + γ and τ± → µ± + γ”, Phys. Rev. Lett. 104 (2010)

021802 [arXiv:0908.2381 [hep-ex]].

[41] See, e.g., http://comet.phys.sci.osaka-u.ac.jp:8080/comet .

[42] See, e.g., http://mu2e.fnal.gov/.

[43] Y. Mori et al. [The PRIME Working Group], “An Experimental Search for

µ− → e− Conversion Process at an Ultimate Sensitivity of the Order of 10−18

with PRISM”, LOI-25.

[44] See, e.g., http://projectx.fnal.gov/.

[45] This is part of the program of research planned to be realised with the MuSIC

facility at Osaka University, Japan (private communication by Y. Kuno); see also

N. Berger, “A Novel experiment searching for the lepton flavour violating decay

µ→ eee”, J. Phys. Conf. Ser. 408 (2013) 012070 [J. Phys. Conf. Ser. 408 (2013)

012070] [arXiv:1110.1504 [hep-ex]].

[46] A. G. Akeroyd et al. [SuperKEKB Physics Working Group Collaboration],

“Physics at super B factory”, hep-ex/0406071.

[47] J. Bernabeu, S. Palomares Ruiz and S. T. Petcov, “Atmospheric neutrino

oscillations, theta(13) and neutrino mass hierarchy”, Nucl. Phys. B 669 (2003)

255 [hep-ph/0305152].

[48] S. Palomares-Ruiz and S. T. Petcov, “Three-neutrino oscillations of atmospheric

neutrinos, θ13, neutrino mass hierarchy and iron magnetized detectors”, Nucl.

Phys. B 712 (2005) 392 [hep-ph/0406096].



BIBLIOGRAPHY 117

[49] S. T. Petcov and T. Schwetz, “Determining the neutrino mass hierarchy with

atmospheric neutrinos”, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277].

[50] R. Gandhi et al., “Mass Hierarchy Determination via future Atmospheric

Neutrino Detectors”, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723 [hep-ph]].

[51] S. T. Petcov and M. Piai, “The LMA MSW solution of the solar neutrino

problem, inverted neutrino mass hierarchy and reactor neutrino experiments”,

Phys. Lett. B 533 (2002) 94 [hep-ph/0112074].

[52] S. Choubey, S. T. Petcov and M. Piai, “Precision neutrino oscillation physics

with an intermediate baseline reactor neutrino experiment”, Phys. Rev. D 68

(2003) 113006 [hep-ph/0306017].

[53] P. Ghoshal and S. T. Petcov, “Neutrino Mass Hierarchy Determination Using

Reactor Antineutrinos”, JHEP 1103 (2011) 058 [arXiv:1011.1646 [hep-ph]].

[54] S. Pascoli and S. T. Petcov, “Majorana Neutrinos, Neutrino Mass Spectrum and

the | < m > | ∼ 10−3 eV Frontier in Neutrinoless Double Beta Decay”, Phys.

Rev. D 77 (2008) 113003 [arXiv:0711.4993 [hep-ph]].

[55] S. Pascoli, S. T. Petcov and A. Riotto, “Connecting low energy leptonic

CP-violation to leptogenesis”, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125].

[56] S. Pascoli, S. T. Petcov and A. Riotto, “Leptogenesis and Low Energy CP

Violation in Neutrino Physics”, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338].

[57] E. Molinaro and S. T. Petcov, “A Case of Subdominant/Suppressed ’High

Energy’ Contribution to the Baryon Asymmetry of the Universe in Flavoured

Leptogenesis”, Phys. Lett. B 671 (2009) 60 [arXiv:0808.3534 [hep-ph]].

[58] S. T. Petcov, “The Processes Mu → E Gamma, Mu → E E Anti-E, Neutrino’ →
Neutrino Gamma In The Weinberg-Salam Model With Neutrino Mixing”, Sov. J.

Nucl. Phys. 25 (1977) 340 [Yad. Fiz. 25 (1977) 641].

[59] S. M. Bilenky, S. T. Petcov and B. Pontecorvo, “Lepton mixing, µ→ e+ γ decay

and neutrino oscillations”, Phys. Lett. B 67 (1977) 309.

[60] M. Shaposhnikov, “A Possible symmetry of the nuMSM”, Nucl. Phys. B 763

(2007) 49 [hep-ph/0605047].

[61] M. B. Gavela, T. Hambye, D. Hernandez and P. Hernandez, “Minimal Flavour

Seesaw Models”, JHEP 0909 (2009) 038 [arXiv:0906.1461 [hep-ph]].



118 BIBLIOGRAPHY

[62] A. Ibarra, E. Molinaro and S. T. Petcov, “Low Energy Signatures of the TeV

Scale See-Saw Mechanism”, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217

[hep-ph]].

[63] M. Raidal, A. Strumia and K. Turzynski, “Low-scale standard supersymmetric

leptogenesis”, Phys. Lett. B 609 (2005) 351 [Erratum-ibid. B 632 (2006) 752]

[hep-ph/0408015].

[64] M. Yoshimura, “Neutrino Pair Emission from Excited Atoms”, Phys. Rev. D 75

(2007) 113007 [hep-ph/0611362].

[65] M. Yoshimura, “Solitons and Precision Neutrino Mass Spectroscopy”, Phys. Lett.

B 699 (2011) 123 [arXiv:1101.2749 [hep-ph]].

[66] M. Yoshimura, A. Fukumi, N. Sasao and T. Yamaguchi, “Parity violating

observables in radiative neutrino pair emission from metastable atoms”, Prog.

Theor. Phys. 123 (2010) 523 [arXiv:0907.0519 [hep-ph]].

[67] P. Minkowski, “µ→ eγ at a Rate of One Out of 1-Billion Muon Decays?”, Phys.

Lett. B 67 (1977) 421.

[68] M. Gell-Mann, P. Ramond and R. Slansky, Proceedings of the Supergravity Stony

Brook Workshop, New York 1979, eds. P. Van Nieuwenhuizen and D. Freedman.

[69] T. Yanagida, Proceedinds of the Workshop on Unified Theories and Baryon

Number in the Universe, Tsukuba, Japan 1979, eds. A. Sawada and A. Sugamoto.

[70] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity

Violation”, Phys. Rev. Lett. 44 (1980) 912.

[71] A. Ibarra, E. Molinaro and S. T. Petcov, “TeV Scale See-Saw Mechanisms of

Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos

and (ββ)0ν-Decay”, JHEP 1009 (2010) 108 [arXiv:1007.2378 [hep-ph]].

[72] A. Kleppe, “Extending The Standard Model With Two Right-Handed Neutrinos”,

in *Lohusalu 1995, Neutrino physics*, 118-125.

[73] E. Ma, D. P. Roy and U. Sarkar, “A Seesaw model for atmospheric and solar

neutrino oscillations”, Phys. Lett. B 444 (1998) 391 [hep-ph/9810309].

[74] P. H. Frampton, S. L. Glashow and T. Yanagida, “Cosmological sign of neutrino

CP violation”, Phys. Lett. B 548 (2002) 119 [arXiv:hep-ph/0208157].

[75] M. Raidal and A. Strumia, “Predictions of the most minimal see-saw model”,

Phys. Lett. B 553, 72 (2003) [arXiv:hep-ph/0210021].



BIBLIOGRAPHY 119

[76] V. Barger, D. A. Dicus, H. J. He and T. j. Li, “Structure of cosmological CP

violation via neutrino seesaw”, Phys. Lett. B 583 (2004) 173

[arXiv:hep-ph/0310278].

[77] T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi and M. Tanimoto, “CP violation

in neutrino oscillation and leptogenesis”, Phys. Rev. Lett. 89 (2002) 231601

[arXiv:hep-ph/0209020].

[78] A. Ibarra and G. G. Ross, “Neutrino phenomenology: The case of two right

handed neutrinos”, Phys. Lett. B 591 (2004) 285 [arXiv:hep-ph/0312138].

[79] A. Ibarra and G. G. Ross, “Neutrino properties from Yukawa structure”, Phys.

Lett. B 575 (2003) 279 [arXiv:hep-ph/0307051].

[80] S. T. Petcov, W. Rodejohann, T. Shindou and Y. Takanishi, “The See-Saw

Mechanism, Neutrino Yukawa Couplings, LFV Decays ℓi → ℓj + γ and

Leptogenesis”, Nucl. Phys. B 739 (2006) 208 [arXiv:hep-ph/0510404].

[81] S. Antusch, J. P. Baumann and E. Fernandez-Martinez, “Non-Standard Neutrino

Interactions with Matter from Physics Beyond the Standard Model”, Nucl. Phys.

B 810 (2009) 369 [arXiv:0807.1003 [hep-ph]].

[82] S. Antusch et al., “Unitarity of the Leptonic Mixing Matrix”, JHEP 0610 (2006)

084 [arXiv:hep-ph/0607020].

[83] E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels and J. Smirnov,

“Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos”, JHEP 1305

(2013) 081 [arXiv:1302.1872 [hep-ph]].

[84] T. -P. Cheng and L. -F. Li, “Muon Number Nonconservation Effects in a Gauge

Theory with V A Currents and Heavy Neutral Leptons”, Phys. Rev. D 16 (1977)

1425.

[85] T. P. Cheng and L. F. Li, “Mu → E Gamma In Theories With Dirac And

Majorana Neutrino Mass Terms”, Phys. Rev. Lett. 45 (1980) 1908.

[86] A. Ilakovac and A. Pilaftsis, “Flavor violating charged lepton decays in

seesaw-type models”, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398].

[87] R. Kitano, M. Koike and Y. Okada, “Detailed calculation of lepton flavor

violating muon electron conversion rate for various nuclei”, Phys. Rev. D 66

(2002) 096002 [Erratum-ibid. D 76 (2007) 059902] [arXiv:hep-ph/0203110].

[88] M. Magg and C. Wetterich, “Neutrino Mass Problem And Gauge Hierarchy”,

Phys. Lett. B 94 (1980) 61.



120 BIBLIOGRAPHY

[89] J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories”,

Phys. Rev. D 22 (1980) 2227.

[90] R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge

Models with Spontaneous Parity Violation”, Phys. Rev. D 23 (1981) 165.

[91] M. Kakizaki, Y. Ogura and F. Shima, “Lepton flavor violation in the triplet

Higgs model”, Phys. Lett. B 566 (2003) 210 [hep-ph/0304254].

[92] A. G. Akeroyd, M. Aoki and H. Sugiyama, “Lepton Flavour Violating Decays

τ− → l+l−l− and µ→ eγ in the Higgs Triplet Model”, Phys. Rev. D 79 (2009)

113010 [arXiv:0904.3640 [hep-ph]].

[93] T. Han, B. Zhang, “Signatures for Majorana neutrinos at hadron colliders”,

Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064].

[94] F. del Aguila, J. A. Aguilar-Saavedra, R. Pittau, “Heavy neutrino signals at large

hadron colliders”, JHEP 0710 (2007) 047 [hep-ph/0703261].

[95] A. Atre, T. Han, S. Pascoli and B. Zhang, “The Search for Heavy Majorana

Neutrinos”, JHEP 0905 (2009) 030 [arXiv:0901.3589 [hep-ph]].

[96] F. del Aguila, J. A. Aguilar-Saavedra, “Distinguishing seesaw models at LHC

with multi-lepton signals”, Nucl. Phys. B813 (2009) 22-90 [arXiv:0808.2468

[hep-ph]].

[97] A. G. Akeroyd, S. Moretti and H. Sugiyama, “Five-lepton and six-lepton

signatures from production of neutral triplet scalars in the Higgs Triplet Model”,

Phys. Rev. D 85, 055026 (2012) [arXiv:1201.5047 [hep-ph]].

[98] E. J. Chun, K. Y. Lee and S. C. Park, “Testing Higgs triplet model and neutrino

mass patterns”, Phys. Lett. B 566, 142 (2003) [arXiv:hep-ph/0304069].

[99] M. C. Chen, “Generation of small neutrino Majorana masses in a

Randall-Sundrum model”, Phys. Rev. D 71, 113010 (2005)

[arXiv:hep-ph/0504158].

[100] E. Ma, M. Raidal and U. Sarkar, “Verifiable model of neutrino masses from large

extra dimensions”, Phys. Rev. Lett. 85 (2000) 3769 [hep-ph/0006046].

[101] A. G. Akeroyd and C. -W. Chiang, “Phenomenology of Large Mixing for the

CP-even Neutral Scalars of the Higgs Triplet Model”, Phys. Rev. D 81 (2010)

115007 [arXiv:1003.3724 [hep-ph]].



BIBLIOGRAPHY 121

[102] E. Ma, M. Raidal and U. Sarkar, “Phenomenology of the neutrino mass giving

Higgs triplet and the low-energy seesaw violation of lepton number”, Nucl. Phys.

B 615 (2001) 313 [hep-ph/0012101].

[103] M. Raidal and A. Santamaria, “mu e conversion in nuclei versus µ→ eγ : An

effective field theory point of view”, Phys. Lett. B 421 (1998) 250

[arXiv:hep-ph/9710389].

[104] J. Bernabeu, A. Pich and A. Santamaria, “Cp Phases In The Charged Current

And Higgs Sectors For Majorana Neutrinos”, Z. Phys. C 30 (1986) 213.

[105] G. K. Leontaris, K. Tamvakis and J. D. Vergados, “Lepton And Family Number

Violation From Exotic Scalars”, Phys. Lett. B 162 (1985) 153.

[106] S. T. Petcov, “Remarks on the Zee Model of Neutrino Mixing (mu → e gamma,

Heavy Neutrino → Light Neutrino gamma, etc.)”, Phys. Lett. B 115 (1982) 401.

[107] D. N. Dinh, A. Ibarra, E. Molinaro and S. T. Petcov, “The µ− e Conversion in

Nuclei, µ→ eγ , µ→ 3e Decays and TeV Scale See-Saw Scenarios of Neutrino

Mass Generation”, JHEP 1208 (2012) 125, Erratum-ibid. 1309 (2013) 023

[arXiv:1205.4671v4].

[108] R. Foot, H. Lew, X. G. He and G. C. Joshi, “See-saw neutrino masses induced by

a triplet of leptons”, Z. Phys. C 44 (1989) 441.

[109] E. Ma, “Pathways to naturally small neutrino masses”, Phys. Rev. Lett. 81

(1998) 1171 [hep-ph/9805219].

[110] A. Abada, C. Biggio, F. Bonnet, M. B. Gavela and T. Hambye, “Low energy

effects of neutrino masses”, JHEP 0712 (2007) 061 [arXiv:0707.4058 [hep-ph]].

[111] A. Abada, C. Biggio, F. Bonnet, M. B. Gavela, T. Hambye, “µ→ eγ and τ → lγ

decays in the fermion triplet seesaw model”, Phys. Rev. D78 (2008) 033007.

[arXiv:0803.0481 [hep-ph]].

[112] K. Schreckenbach, G. Colvin, W. Gelletly and F. Von Feilitzsch, “Determination

Of The Anti-neutrino Spectrum From U-235 Thermal Neutron Fission Products

Up To 9.5-mev”, Phys. Lett. B 160 (1985) 325.

[113] G. Mention, M. Fechner, T. .Lasserre, T. .A. Mueller, D. Lhuillier, M. Cribier

and A. Letourneau, “The Reactor Antineutrino Anomaly”, Phys. Rev. D 83

(2011) 073006 [arXiv:1101.2755 [hep-ex]].

[114] M. L. Brooks et al. [MEGA Collaboration], “New Limit for the Family-Number

Non-conserving Decay µ+ → e+ + γ”, Phys. Rev. Lett. 83 (1999) 1521

[arXiv:hep-ex/9905013].



122 BIBLIOGRAPHY

[115] J. Adam et al. [MEG Collaboration], “New limit on the lepton-flavour violating

decay µ+ → e+γ”, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547 [hep-ex]].

[116] J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, “Lepton flavor violation via

right-handed neutrino Yukawa couplings in supersymmetric standard model”,

Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309].

[117] A. J. Buras, B. Duling, T. Feldmann, T. Heidsieck and C. Promberger, “Lepton

Flavour Violation in the Presence of a Fourth Generation of Quarks and

Leptons”, JHEP 1009 (2010) 104 [arXiv:1006.5356 [hep-ph]].

[118] R. Alonso, M. Dhen, M. B. Gavela and T. Hambye, “Muon conversion to

electron in nuclei in type-I seesaw models”, JHEP 1301, 118 (2013)

[arXiv:1209.2679 [hep-ph]].

[119] J. Hisano and K. Tobe, “Neutrino masses, muon g-2, and lepton flavor violation

in the supersymmetric seesaw model”, Phys. Lett. B 510 (2001) 197.

[120] J. Chakrabortty, P. Ghosh and W. Rodejohann, “Lower Limits on µ→ eγ from

New Measurements on Ue3”, Phys. Rev. D 86 (2012) 075020 [arXiv:1204.1000

[hep-ph]].

[121] S. M. Bilenky, S. Pascoli and S. T. Petcov, “Majorana neutrinos, neutrino mass

spectrum, CP violation and neutrinoless double beta decay. 1. The Three

neutrino mixing case”, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265].

[122] S. T. Petcov, “Theoretical prospects of neutrinoless double beta decay”, Phys.

Scripta T 121 (2005) 94 [hep-ph/0504166].

[123] S. T. Petcov, “Neutrino mixing, leptonic CP violation, the seesaw mechanism

and beyond”, Int. J. Mod. Phys. A 25 (2010) 4325.

[124] S. T. Petcov, H. Sugiyama and Y. Takanishi, “Neutrinoless Double Beta Decay

and H±± → l′±l± Decays in the Higgs Triplet Model”, Phys. Rev. D 80 (2009)

015005 [arXiv:0904.0759 [hep-ph]].

[125] H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz and O. Chkvorets,

“Search for neutrinoless double beta decay with enriched Ge-76 in Gran Sasso

1990-2003”, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088].

[126] H. V. Klapdor-Kleingrothaus, A. Dietz, H. L. Harney and I. V. Krivosheina,

“Evidence for neutrinoless double beta decay”, Mod. Phys. Lett. A 16 (2001)

2409 [hep-ph/0201231].



BIBLIOGRAPHY 123

[127] S. Pascoli and S. T. Petcov, “The SNO solar neutrino data, neutrinoless double

beta decay and neutrino mass spectrum”, Phys. Lett. B 544 (2002) 239; ibid. 580

(2004) 280 [hep-ph/0205022].

[128] J. Bernabeu, E. Nardi, D. Tommasini, “µ - e conversion in nuclei and Z ′

physics”, Nucl. Phys. B409 (1993) 69-86. [hep-ph/9306251].

[129] M. Yoshimura, C. Ohae, A. Fukumi, K. Nakajima, I. Nakano, H. Nanjo, and N.

Sasao, “Macro-coherent two photon and radiative neutrino pair emission”,

arXiv:0805.1970[hep-ph] (2008); M. Yoshimura, “Neutrino Spectroscopy using

Atoms (SPAN)”, in Proceedings of 4th NO-VE International Workshop, edited

by M. Baldo Ceolin (2008).

[130] M. Yoshimura, N. Sasao and M. Tanaka, “Dynamics of paired superradiance”,

Phys. Rev. A 86 (2012) 013812 [arXiv:1203.5394 [quant-ph]].

[131] S. T. Petcov, “Cp Violation Effect In Neutralino Pair Production In e+e−

Annihilation And The Electric Dipole Moment Of The Electron”, Phys. Lett. B

178 (1986) 57.

[132] NIST (National Institute of Standards and Technology) Atomic Spectra

Database: http://www.nist.gov/pml/data/asd.cfm

[133] For example, B.H. Bransden and C.J. Joachain, “Physics of Atoms and

Molecules”, second edition, Prentice Hall (2003).

[134] A. Fukumi, S. Kuma, Y. Miyamoto, K. Nakajima, I. Nakano, H. Nanjo, C. Ohae

and N. Sasao et al., “Neutrino Spectroscopy with Atoms and Molecules”, PTEP

2012 (2012) 04D002 [arXiv:1211.4904 [hep-ph]].

[135] S. Pascoli, S. T. Petcov and W. Rodejohann, “On the CP violation associated

with Majorana neutrinos and neutrinoless double beta decay”, Phys. Lett. B 549

(2002) 177 [hep-ph/0209059].

[136] S. Pascoli, S. T. Petcov and T. Schwetz, “The Absolute neutrino mass scale,

neutrino mass spectrum, majorana CP-violation and neutrinoless double-beta

decay”, Nucl. Phys. B 734 (2006) 24 [hep-ph/0505226], and references quoted

therein.

[137] V. Barger, S. L. Glashow, P. Langacker and D. Marfatia, “No go for detecting

CP violation via neutrinoless double beta decay”, Phys. Lett. B 540 (2002) 247

[hep-ph/0205290].



124 BIBLIOGRAPHY

[138] K. I. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, “Electroweak Theory.

Framework of On-Shell Renormalization and Study of Higher Order Effects”,

Prog. Theor. Phys. Suppl. 73 (1982) 1.


