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We study the existence of solitons related to homocliniaittmhs for reversible Hamiltonian
systems, taking the family of differential equatiaf$+ au’ —u+ f(u,b) = 0 as a model, where

f is an analytic function and, b real parameters. Applying a non pertubative approach whiah
modification of the standard procedure of tracking intetisas of unstable manifolds with some
invariant set, we determine soliton solutions and alsa thi&ircations in the space of parameters
giving a picture of the chaotic structural distribution togse and amplitude shifts phenomena.
In Section 1 we introduce a brief history of solitons, beggnivith the translation wave and its
discoverer, John Scott Russell in 1834. In Section 2 we ptemg model equation, establish
non restrictive hypotheses and state the main result baseeversibility properties, providing
the algorithm results for solitons parameters and bifimoat In Section 3 we discuss the model
equation energy and geometry, pointing out the zero enengigice and Poincaré sections related
to the main result and present in Section 4 our conclusion.
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1. Introduction

Our work is about solitons or solitary waves, which are non-linear wthagstravel without
change of form or speed.

We can talk about solitons in different contexts: water wave problemkig,temperature su-
perconductors [2], energy transport in DNA [3], fibre-optic commatians [4], and so on. But our
concern is about solitons bifurcations in presence of surface tenkairs, water wave problems.

In figure 1 (a) one can see solitons at the Gibraltar Strait, when the Atlartie isaccelerated
by its narrow passage. Then, the soliton packet travel miles without distahiongh Mediter-
ranean water while the boundary conditions remain the same. They wereérsfrom space on
the Apollo-Soyuz mission in 1975. In the same figure (b) one can also firehatiful picture
which illustrates what happens when solitons travel in deeper water. Iththigegion they slow
down, acummulationing theirselves, forming a Gauss distribution.

Figure 1: Solitons in the Gibraltar Strait (a) and solitons forming @aGsian curve (b).

In 1834, a young scottish engineer, John Scott Russell (figure 2dbgesving a channel boat
when it suddenly stopped and a great mass of water arised and traydtad bhannel apparently
without change of form [5]. He was riding a horse and was capableltiwfing the wave for
one or two miles. He recreated the so called "Wave of Translation" in aiexgmtal tank in his
garden, but their results were ill-understood and ignored by contemgmsaientists because in the
nineteenth century they were dealing only with linear differential equatidrishaare not enough
to model that phenomena. Linear waves can not propagate withoutebéfarm.

It was only in 1895, sixty one years after it was discovered, the "traoslavave" began to be
appreciated and explored by the KDV equation [6] and so on by Bowsssared Rayleigh equations
[7], etc. In 1965 Zabusky and Kruskall rebaptized the "translatiorevas "soliton" and with other
scientists discovered several properties and conservation laws.

To form a soliton we have to get very special conditions. In one hane ikex dispersion
effect (higher frequency components travel slower than lower ares)n the other hand you have
a amplitude effect (the top of the wave travels faster than the bottom partyet™esoliton when
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Figure 2: Russell and the wave of translation history.

those effects are in equilibrium. Which parameters in model equation lead wsotibaa solution
? That is the question we are interesting in.

The tidal bore, or in Brazil, the "Pororoca" (when the ocean water £mdea narrow river)
is a example of how much special are the conditions to form a soliton. Thedeardoes not
spread but it is not a soliton because the amplitude effect is not compensateone can see it is
changing all long its passage. In other hand, solitons have very intgrgstperties, like in the
KDV equation, where you can find one soliton solution which behavior is likelimear solutions
respecting the linear superposition principle. You can find both, the &ma@nd a KDV two pulse
soliton solution in figure 3.

Figure 3: Pororoca in Amazonas river and a KDV two pulse soliton sofuti

2. Model Equation

We investigate solitons in presence of surface tension related to revémaibikonian systems
homoclinic solutions [8]. We say that a hamiltonian system is reversible if theagrigolution
Q (Q ! = Q) that is anticonicalDQ'w = —wDQ), and invariant by the Hamiltonian function
(HoQ=H). And we say that an orbip is homoclinic to a certain critical setof a dynamical
system (it could be an equilibrium point or a periodic orbit) if the orbit is lyiragtotic to this set,
thatis, lim_, 1 @(t) =r.

We use as a model equation a fourth order differential equatfonau’ — u+ f(u,b) =0,
and the choice (u,b) = bu—tanh(bu), which was based on [9],[10],[11],[12] and [13]. We can
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reformulate that model equation to a two degrees of freedom HamiltoniamsystereH = py,v+
%2 + a"; + “—22 - g% - t—l)ln(cosk(bu))). The parametedi is related to wave speed and parameéter
is related to surface tension.

We will work with two hypothesis. The system has non-empty unstable manifoldva have
areversibility functiorQ for the system. In our mod€)(u, v, py, pv) = (U, —V, — py, py) and its fixed
points set isx = {(u,V, py, pv) | v= pu = 0}. Our main theorem discussed in previous work [14]
is : for Hamiltonian systems with a reversibiliQ and a equilibriunt, if r € x and the unstable
manifold ofr intersectsy, then there exists an homoclinic orbitrtoBased on this result we used a
standart procedure: for(@a, b) parameters grid we track the unstable orbit until it reaches the set
of reversibility fixed points, determinig which values lead us to a homoclinic solitithe space
(u,Vv, py, pv) and a soliton solution in coordinate that is, in our model equation. In figure 4 we
found a cascade behavior (see [9] and [15]) for those valuesimfigure 5, one can see soliton
bifurcations for fixedb = 3 andb = 4, when parametex changes inside plotted regions of figure 4
(i) and(ii), provindig a geometrical point of view for phase and amplitude shifts phena.

Figure 4: Soliton parameters.

3. Energy surfaces and Poincaré sections

Analysing our model equation energy and geometryQlet {(u,v, py, pv) | H = 0} the zero

energy surfaces; = {(u,Vv, py, pv) | pu =0} andZz = {(u,v, py, pv) | v= 0}, the Poincaré sections

related to the set.
From the Hamitonian function we deriv& = < (u,V, py, pv) | puv+ a% = —% - ”—22 + % - %In(cosk(bu))) }
In figure 6 one can observe a homoclinic bifurcation, lying in a projectioretf?, for a

perturbation of order 1¢ to the parametera, b) = (2.02 1.59), which were obtained from the

algorithm (see the plotted poiriii ) in figure 4). For those parameters, when the unstable orbit
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Figure 5: Soliton bifurcations.

instersects the sgt(rerversibility fixed points), represented by the line intersection betiigand
>,, we see some kind of "reflection”, which connects the unstable and stabifolts, forming a
homoclinic orbit to the system orign (a) and, consequently, a soliton in mgdatien, as predicted
by the main result. After parameters pertubation (b), we no long have thegentmn, leading us
to a oscillatory solution in the model equation.

Figure 6: Homoclinic orbit (a) and bifurcation (b) fdia, b) = (2.02, 1.59) in model equation.

4. Conclusion

As pointed out in Section 2, the reversibility function plays important role irasiqal refor-
mulation of usual methods for the situation where there is no simmetry associates Hamil-
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tonian system or it is unknown. Our approach is non restrictive and itpahkta of providing a

picture of geometrical structure for the usual solitons amplitude and phédspleenomena. The
cascade behavior obtained is consistent with experimental results.tlarS&eve can verify some
geometrical aspects associated to energy surface and Poincaréssiewiidved in the main result.
The search algorithm is simple (see [14] for more details) and can bealiegedrto a wide variety
of systems by doing the necessary analytical and numerical work coaisiohes, respecting the
two hypothesis mentioned in Section 2. We are now investigation the possiblal fnature of

figure 4 and we intend to report in more details the consequences of thedhetteopresented.
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