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Solitons bifurcations in presence of surface tension
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We study the existence of solitons related to homoclinic solutions for reversible Hamiltonian

systems, taking the family of differential equationsuiv +au′′−u+ f (u,b) = 0 as a model, where

f is an analytic function anda, b real parameters. Applying a non pertubative approach whichis a

modification of the standard procedure of tracking intersections of unstable manifolds with some

invariant set, we determine soliton solutions and also their bifurcations in the space of parameters

giving a picture of the chaotic structural distribution to phase and amplitude shifts phenomena.

In Section 1 we introduce a brief history of solitons, begining with the translation wave and its

discoverer, John Scott Russell in 1834. In Section 2 we present our model equation, establish

non restrictive hypotheses and state the main result based on reversibility properties, providing

the algorithm results for solitons parameters and bifurcations. In Section 3 we discuss the model

equation energy and geometry, pointing out the zero energy surface and Poincaré sections related

to the main result and present in Section 4 our conclusion.
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1. Introduction

Our work is about solitons or solitary waves, which are non-linear wavesthat travel without
change of form or speed.

We can talk about solitons in different contexts: water wave problems [1],high temperature su-
perconductors [2], energy transport in DNA [3], fibre-optic communications [4], and so on. But our
concern is about solitons bifurcations in presence of surface tension,that is, water wave problems.

In figure 1 (a) one can see solitons at the Gibraltar Strait, when the Atlantic water is accelerated
by its narrow passage. Then, the soliton packet travel miles without distortionthrough Mediter-
ranean water while the boundary conditions remain the same. They were first seen from space on
the Apollo-Soyuz mission in 1975. In the same figure (b) one can also find a beautiful picture
which illustrates what happens when solitons travel in deeper water. In thisthis region they slow
down, acummulationing theirselves, forming a Gauss distribution.

Figure 1: Solitons in the Gibraltar Strait (a) and solitons forming a Gaussian curve (b).

In 1834, a young scottish engineer, John Scott Russell (figure 2) wasobserving a channel boat
when it suddenly stopped and a great mass of water arised and traveled by this channel apparently
without change of form [5]. He was riding a horse and was capable of following the wave for
one or two miles. He recreated the so called "Wave of Translation" in a experimental tank in his
garden, but their results were ill-understood and ignored by contemporaries scientists because in the
nineteenth century they were dealing only with linear differential equations which are not enough
to model that phenomena. Linear waves can not propagate without change of form.

It was only in 1895, sixty one years after it was discovered, the "translation wave" began to be
appreciated and explored by the KDV equation [6] and so on by Boussinesq and Rayleigh equations
[7], etc. In 1965 Zabusky and Kruskall rebaptized the "translation wave" as "soliton" and with other
scientists discovered several properties and conservation laws.

To form a soliton we have to get very special conditions. In one hand there is a dispersion
effect (higher frequency components travel slower than lower ones)and in the other hand you have
a amplitude effect (the top of the wave travels faster than the bottom part). Weget a soliton when
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Figure 2: Russell and the wave of translation history.

those effects are in equilibrium. Which parameters in model equation lead us to asoliton solution
? That is the question we are interesting in.

The tidal bore, or in Brazil, the "Pororoca" (when the ocean water enters to a narrow river)
is a example of how much special are the conditions to form a soliton. The Pororoca does not
spread but it is not a soliton because the amplitude effect is not compensated, and one can see it is
changing all long its passage. In other hand, solitons have very interesting properties, like in the
KDV equation, where you can find one soliton solution which behavior is like two linear solutions
respecting the linear superposition principle. You can find both, the Pororoca and a KDV two pulse
soliton solution in figure 3.

Figure 3: Pororoca in Amazonas river and a KDV two pulse soliton solution.

2. Model Equation

We investigate solitons in presence of surface tension related to reversiblehamiltonian systems
homoclinic solutions [8]. We say that a hamiltonian system is reversible if there isa involution
Q (Q−1 = Q) that is anticonical(DQtω = −ωDQ), and invariant by the Hamiltonian function
(H ◦Q = H). And we say that an orbitφ is homoclinic to a certain critical setr of a dynamical
system (it could be an equilibrium point or a periodic orbit) if the orbit is bi-asymptotic to this set,
that is, limt→±∞ φ(t) = r.

We use as a model equation a fourth order differential equationuiv + au′′−u+ f (u,b) = 0,
and the choicef (u,b) = bu− tanh(bu), which was based on [9],[10],[11],[12] and [13]. We can
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reformulate that model equation to a two degrees of freedom Hamiltonian system whereH = puv+
p2

v
2 +av2

2 + u2

2 −
(

bu2

2 − 1
b ln(cosh(bu))

)

. The parametera is related to wave speed and parameterb
is related to surface tension.

We will work with two hypothesis. The system has non-empty unstable manifold and we have
a reversibility functionQ for the system. In our modelQ(u,v, pu, pv) = (u,−v,−pu, pv) and its fixed
points set isχ = {(u,v, pu, pv) | v = pu = 0}. Our main theorem discussed in previous work [14]
is : for Hamiltonian systems with a reversibilityQ and a equilibriumr, if r ∈ χ and the unstable
manifold ofr intersectsχ, then there exists an homoclinic orbit tor. Based on this result we used a
standart procedure: for a(a,b) parameters grid we track the unstable orbit until it reaches the setχ
of reversibility fixed points, determinig which values lead us to a homoclinic solution in the space
(u,v, pu, pv) and a soliton solution in coordinateu, that is, in our model equation. In figure 4 we
found a cascade behavior (see [9] and [15]) for those values and,in figure 5, one can see soliton
bifurcations for fixedb = 3 andb = 4, when parametera changes inside plotted regions of figure 4
(i) and(ii), provindig a geometrical point of view for phase and amplitude shifts phenomena.

Figure 4: Soliton parameters.

3. Energy surfaces and Poincaré sections

Analysing our model equation energy and geometry, letΩ = {(u,v, pu, pv) | H ≡ 0} the zero
energy surface,Σ1 = {(u,v, pu, pv) | pu ≡ 0} andΣ2 = {(u,v, pu, pv) | v≡ 0}, the Poincaré sections
related to the setχ.

From the Hamitonian function we derive:Ω =
{

(u,v, pu, pv) | puv+av2

2 = − p2
v

2 − u2

2 +
(

bu2

2 − 1
b ln(cosh(bu))

)}

.
In figure 6 one can observe a homoclinic bifurcation, lying in a projection ofset Ω, for a

perturbation of order 10−2 to the parameters(a,b) = (2.02,1.59), which were obtained from the
algorithm (see the plotted point(iii ) in figure 4). For those parameters, when the unstable orbit
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Figure 5: Soliton bifurcations.

instersects the setχ (rerversibility fixed points), represented by the line intersection betweenΣ1 and
Σ2, we see some kind of "reflection", which connects the unstable and stable manifolds, forming a
homoclinic orbit to the system orign (a) and, consequently, a soliton in model equation, as predicted
by the main result. After parameters pertubation (b), we no long have that intersection, leading us
to a oscillatory solution in the model equation.

Figure 6: Homoclinic orbit (a) and bifurcation (b) for(a,b) = (2.02,1.59) in model equation.

4. Conclusion

As pointed out in Section 2, the reversibility function plays important role in a pratical refor-
mulation of usual methods for the situation where there is no simmetry associated tothe Hamil-
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tonian system or it is unknown. Our approach is non restrictive and it is capable of providing a
picture of geometrical structure for the usual solitons amplitude and phase shift phenomena. The
cascade behavior obtained is consistent with experimental results. In Section 3 we can verify some
geometrical aspects associated to energy surface and Poincaré sections involved in the main result.
The search algorithm is simple (see [14] for more details) and can be generalized to a wide variety
of systems by doing the necessary analytical and numerical work considerations, respecting the
two hypothesis mentioned in Section 2. We are now investigation the possible fractal nature of
figure 4 and we intend to report in more details the consequences of the method here presented.
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