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Abstract

We present a slightly modified prescription of the radial pullback formalism proposed previously by R. 
Manvelyan, R. Mkrtchyan and W. Rühl in 2012, where authors investigated possibility to connect the main 
term of higher spin interaction in flat d + 2 dimensional space to the main term of interaction in AdSd+1
space ignoring all trace and divergent terms but expressed directly through the AdS covariant derivatives 
and including some curvature corrections. In this paper we succeeded to solve all necessary recurrence 
relations to finalize full radial pullback of the main term of cubic self-interaction for higher spin gauge 
fields in Fronsdal’s formulation from flat to one dimension less AdSd+1 space. Nontrivial solutions of 
recurrence relations lead to the possibility to obtain the full set of AdSd+1 dimensional interacting terms 
with all curvature corrections including trace and divergence terms from any interaction term in d + 2
dimensional flat space.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

0. Introduction

This rather technical article is devoted to cubic interaction of the higher spin gauge theory in 
AdSd+1 space. So we start this introduction just pointing some interesting and important things 
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for us sending readers for recent and not so recent reviews [1–10] on the state of arts in higher 
spin gauge theory.

Construction of an interacting Higher Spin (HS) gauge theory is a kind of task with some 
permanent background interest during more than the last thirty years starting from early work 
[11]. Periodically, one can observe growing interest to this object of investigation mainly real-
ized as some success in the construction of cubic interaction in AdS or flat background and in 
connection with AdS/CFT and HS gravity in various dimensions. These attempts were always 
attractive as one more way to relate quantum theory with General Relativity and investigate HS 
gauge fields on the same shelf with gravity or understand the uniqueness of gravity (spin 2 field) 
in comparison with other members of HS hierarchy. Because we are focused in this paper on 
the cubic interaction, it is worth to recall that even though consistent equations of motion [1]
for interacting higher spin fields are known for many years, the action principle for these theo-
ries remains unknown. The usual method to construct this interacting Lagrangian was to develop 
Fronsdal metric formalism for free fields [12]. The crucial point here that during perturbative 
(Noether method) construction of interaction for HS models we came in parallel to perturbative 
deformation of the free fields gauge transformation and the certain difficulties connected with 
the locality of the theory beyond cubic order (see [13–18] and references therein). So we see that 
cubic interaction up to now is the main building object of HS interaction and not all problems 
are solving in a fast way even on cubic level. For example, the light-cone gauge construction and 
classification started from the eighties of the last century for four dimensions [19] and continued 
and finished by Metsaev [20] during the first decade of current century for arbitrary dimension 
and even with some interesting results during last years [21]. The covariant approach went even 
slowly: after seminal work of Berends, Baurgers and van Dam in 1985 [22] and then Fradkin 
and Vasiliev in 1987 [23] the cubic interaction and classification of vertices came to the center of 
interest again in 2006-2012 [24–37]. This development in particularly brought to interesting and 
elegant formulation through the generating function [35,37] and connection with String Theory 
[35,36]. It is worth to mention also that all these activities supplemented with the parallel de-
velopment of Vasiliev’s frame like formalism to cubic interaction in AdS space [38–40]. It is 
interesting also in these aspects that covariant classification of cubic vertices was done for parity 
even dimensions d ≥ 4 in [33] but classification including parity odd vertices for four and three 
dimensions was completed only recently in [41–43]. The last point we want to mention here is 
that although cubic interaction in AdS space has formulation developed in ambient space some 
years ago [44–48] the direct formulation on the language of AdSd+1 covariant derivatives is still 
unknown and realized before in [48] for some simplest part of interaction only. From other side 
realization of the Noether program directly in AdS space [49] is also extremely difficult due 
to noncommutativity of covariant derivatives in space with constant curvature. Therefore at the 
moment, the only way to see this interaction in AdS space directly is to continue the approach 
defined in [48].

So the main purpose of this article to complete the first part of the program defined in [48]
where authors considered a version of the radial reduction (or pullback) formalism to obtain 
a cubic interaction of higher spin gauge fields in AdSd+1 space from the corresponding cubic 
interaction in a flat d +2 dimensional background. The crucial point in [48] was to write AdSd+1
cubic interaction terms directly in d + 1 dimensional space using AdSd+1 covariant derivatives. 
This was done there only for main term and AdSd+1 curvature corrections without trace terms. 
The result was enough elegant but expressed only one simplest type of correction terms. Here 
we complete setup proposed in appendixes of [48] for all correction terms coming from main 
(in other words transverse and traceless) term in flat space. The key point of this paper is that 
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we succeeded in formulation and solution of the corresponding recurrence relations to complete 
radial pullback from d + 2 dimensional flat ambient space to AdSd+1 in all orders of curvature 
expansion including all possible trace terms. Another important point of this consideration is that 
we constructed general pullback prescription for objects with higher derivatives of higher spin 
gauge fields to realize corresponding reduction for all other terms of cubic interaction pushing 
this important remaining task of our program in the field of just technical work which can be 
done in the future without additional difficulties. This we are left for future publication.

In the first section, we presented and applied the correct radial pullback procedure for the free 
field reconciled with gauge invariance. Our formulation slightly differs from approaches used in 
[44–48] but completely equivalent them and more suitable for application to cubic interaction. 
In the second section we considered pullback for the high power of flat derivatives of HS field in 
d + 2 dimensional space to power of covariant derivatives in AdSd+1 which is the most impor-
tant ingredient of cubic interaction. Doing that we solved all necessary recurrence relations arose 
from noncommutative algebra. In the third section using the result of previous one, we completed 
pullback of the main term of cubic interaction with all AdS corrections supplemented by corre-
sponding trace terms. Some technical details of calculations and useful information about cubic 
interaction in flat space we placed in four appendixes.

1. Prescription for radial pullback and free HS gauge fields in AdS

In this section, we present a short review of the radial pullback technique proposed and de-
veloped in [50] and applied in detail to the free higher spin case in [51,48]. We start from d + 2
dimensional flat space with coordinates XA and flat SO(1, d + 1) invariant metric

XA A = 1,2, . . . . d + 2, (1.1)

ds2 = ηABdXAdXB = −(dXd+2)2 + (dXd+1)2 + dXidXjηij . (1.2)

To recognize Euclidean AdSd+1 hypersphere inside of this Ambient space we should define the 
following coordinate transformation to a curvilinear coordinate system XA → (u, r, xi):

Xd+2 = 1

2
eu[r + 1

r
(L2 + xixjηij )],

Xd+1 = 1

2
eu[r − 1

r
(L2 − xixjηij )],

Xi = euL
xi

r
, (1.3)

−e2uL2 = −(Xd+2)2 + (Xd+1)2 + XiXjηij , (1.4)

ds2 = L2e2u[−du2 + 1

r2 (dr2 + dxidxjηij )]. (1.5)

The restriction eu = 1 leads instead of coordinate transformations to the usual embedding of 
the Euclidean AdSd+1 hypersphere with local coordinates xμ = (x0, xi) = (r, xi) into d + 2
dimensional flat space.

In other words, we can define the Jacobian matrix for transformation (1.3) in the following 
compact form:

EA
μ(u, xν) = ∂XA

= eueA
μ(xν), (1.6)
∂xμ
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EA
u (u, xν) = ∂XA

∂u
= XA(u,xν) = euLnA(xν), (1.7)

where due to (1.4) the d + 1 tangent vectors {eA
μ(x)}dμ=0 and one normal vector nA(x)

nA(x)eB
μ(x)ηAB = 0, (1.8)

nA(x)nB(x)ηAB = −1 (1.9)

for embedded AdSd+1 space define the standard induced metric gμν(x) and extrinsic curvature 
Kμν(x) for our embedded AdSd+1 space:

gμν(x) = eA
μ(x)eB

ν (x)ηAB =
(

L

x0

)2

δμν, (1.10)

and

∂μeA
ν (x) = �λ

μν(g)eA
ν (x) + Kμν(x)nA(x), (1.11)

where

�λ
μν(g) = �λ(AdS)

μν = 1

2
gλρ

(
∂μgνρ + ∂μgνρ − ∂ρgμν

)
, (1.12)

Kμν = gμν

L
. (1.13)

So we see that �λ
μν(g) is usual Christoffel symbol constructed from induced AdSd+1 metric 

and therefore we can introduce AdSd+1 covariant derivative ∇μ and rewrite (1.10) in convenient 
form:

∇μeA
ν (x) = Kμν(x)nA(x), (1.14)

Kμν(x) = eA
ν (x)∂μnA = −nA∇μeA

ν (x). (1.15)

Therefor to restrict our flat theory to AdS hypersphere we should first formulate d +2 dimen-
sional field theory in the curvilinear coordinates with flat e2u(AdSd+1 ×Ru) metric

ds2 = e2u[−L2du2 + gμν(x)dxμdxν] = Guu(u)du2 + Gμν(u, x)dxμdxν, (1.16)

where

Guu(u) = EA
u (u, xν)EB

u (u, xν)ηAB = XAXA = −L2e2u, (1.17)

Gμν = EA
μ(u, xν)EB

ν (u, xν)ηAB = e2ugμν(x), (1.18)

and then define the correct prescription to go from theory in flat curvilinear space defined by 
Jacobian matrix EA

u , EA
μ to the theory with negative constant curvature on the level of d + 2 ×

d + 1 embedding matrix eA
μ or induced metric gμν(x) getting rid of normal components along 

of nA. The most simple check of this statement we can obtain calculating Riemann curvature of 
the embedded hypersphere. To perform this we should first derive differentiation rules for Frenet 
basis using (1.13)-(1.15):

∇μeA
ν (x) = gμν(x)

L
nA(x), (1.19)

∂μnA(x) = 1
eA
μ(x), (1.20)
L
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and then taking commutator:

[∇μ,∇ν]eA
λ = R

ρ
μν,λ eA

ρ = Kλ[νKρ
μ]e

A
ρ , (1.21)

we get the standard expression for AdSd+1 Riemann curvature and Ricci tensors

R
ρ

μν,λ = − 1

L2 (gμλδ
ρ
ν − gνλδ

ρ
μ), (1.22)

Rμ,λ = − d

L2 gμν, R = gμλRμλ = −d(d + 1)

L2 . (1.23)

Turning to higher spins in flat ambient space we should introduce first the following conventions. 
As usual, we utilize instead of symmetric tensors such as h(s)

A1A2...As
(X) polynomials homoge-

neous in the vector aA of degree s at the base point X

h(s)(X;a) =
∑
Ai

(

s∏
i=1

aAi )h
(s)
A1A2...As

(X). (1.24)

Then we can write the symmetrized gradient, trace, and divergence1

Grad : h(s)(X;a) ⇒ Gradh(s+1)(X;a) = aA∂Ah(s)(X;a), (1.25)

T r : h(s)(X;a) ⇒ T rh(s−2)(X;a) = 1

s(s − 1)
�ah

(s)(X;a), (1.26)

Div : h(s)(X;a) ⇒ Divh(s−1)(X;a) = 1

s
ηAB∂A∂aB h(s)(X;a). (1.27)

Moreover, we introduce the notation ∗s
a, ∗s

b, . . . for a contraction in the symmetric spaces of 
indices a or b

∗s
aA = 1

(s!)2

s∏
i=1

←−
∂ aAi η

AiBi
−→
∂ aBi . (1.28)

So we should fix two important points to perform correct pullback of higher spin theory from 
flat ambient to one dimensional less AdS space:

• We should fix the ansatz for d + 2 dimensional HS field in a way to get from one spin s field 
exactly one spin s field in AdSd+1. The natural condition here sends to zero all components 
normal to the embedded hypersphere

nAh
(s)
AA2...As

(u, xν) ∼ XA(u,xν)h
(s)
AA2...As

(u, xν) = 0. (1.29)

• Our auxiliary vector aA is constant in flat space

aA =EA
u (u, x)au(u, xν) + EA

μ(u,x)aμ(u, xν)

=eu
(
LnA(x)au(u, x) + eA

μ(x)aμ(u, x)
)

, (1.30)

∂BaA = 0, (1.31)

but in curve AdSd+1 space there is no possibility to get covariantly constant vectors.

1 To distinguish easily between “a” and “X” spaces we introduce the notation ∂A for space-time derivatives ∂

∂XA and 
∂a for derivatives in a space.
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This means that ansatz for HS field itself is not enough for getting correct pullback for ob-
jects with derivatives contracted with constant vector aA. From the other side we have in hand 
curvilinear metric (1.16)-(1.18) which we can invert and then easily invert the Jacobian matrix 
(1.6)-(1.7)

Guu(u, x) = −e−2u

L2 , (1.32)

Gμν(u, x) = e−2ugμν(x), (1.33)

Eu
A(u, x) = EB

u (u, x)ηABGuu(u, x) = −e−u

L
nA(x), (1.34)

E
μ
A(u,x) = EB

ν (u, x)ηABGμν(u, x) = e−ue
μ
A(x), (1.35)

where gμν(x) is inverse AdSd+1 metric and eμ
A(x) = eB

ν (x)ηABgμν(x).
Then our flat-space derivative in (1.31) after coordinate transformation is:

∂A = Eu
A(u, x)∂u + E

μ
A(u,x)∂xμ = −e−u

L
nA(x)∂u + e−ue

μ
A(x)∂xμ . (1.36)

Substituting this in (1.31) and taking into account (1.30), (1.19) and (1.20) we obtain the follow-
ing four relations for derivatives of components au(u, x), aμ(u, x):

∂ua
u(u, x) + au(u, x) = 0, (1.37)

∂ua
μ(u, x) + aμ(u, x) = 0, (1.38)

∂μau(u, x) + 1

L2 aμ(u, x) = 0, (1.39)

∇μaν(u, x) + δν
μau(u, x) = 0. (1.40)

First two equations we can solve directly:

au(u, x) = e−uau(x), (1.41)

aμ(u, x) = e−uaμ(x). (1.42)

Substituting these solutions in (1.30) and using restriction (1.29) we see that in curvilinear coor-
dinates our ansatz leads to the following relation:

h(s)(X,aB) = h
(s)
A1A2...As

(X)aA1aA2 . . . aAs |
XA=(u,xμ),nAh

(s)
A...=0

= h(s)
μ1μ2...μs

(u, x)aμ1(x)aμ2(x) . . . aμs (x) = h(s)(u, x, aμ(x)), (1.43)

where:

h(s)
μ1μ2...μs

(u, x) = h
(s)
A1A2...As

(u, x)eA1
μ1

(x)eA2
μ1

(x) . . . eAs
μs

(x). (1.44)

This is correct pullback of spin s tensor field from d +2 dimensional flat space to AdSd+1 space. 
The only reminder about flat space we have here is u-dependence of d + 1 dimensional field 
components in (1.44)

The initial gauge variation of order zero in the spin s field is

δ(0)h
(s)(XA;aA) = s(aA∂A)ε(s−1)(XA;aA), (1.45)

with the traceless gauge parameter for the double traceless gauge field
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�aAε(s−1)(XA;aA) = 0, (1.46)

�2
aAh(s)(XA;aA) = 0. (1.47)

Then combining (1.30) and (1.36) we obtain due to (1.42)

aA∂Aε(s−1)(XA;aA) = e−u
(
au(x)∂u + aμ(x)∂xμ

)
ε(s−1)(u, x;aμ(x)), (1.48)

where parameter ε(s−1)(XA; aA) obeys to the same type ansatz rule as the h(s)(XA; aA) in (1.43)

ε(s−1)(XA;aA) = ε(s−1)(u, x;aμ(x)). (1.49)

The next important observation is about derivatives ∂xμ ≡ ∂μ in respect to AdSd+1 coordinates 
xμ:

• First note that we mapped scalar object in flat space constructed from X-dependent tensor 
contracted with constant vectors aA to the scalar object in curve space constructed from 
x-dependent tensor contracted with x-dependent vectors aμ(x). So as a result we obtain in 
r.h.s. of (1.48) ordinary derivative ∂xμ

• To see appearance of the AdSd+1 covariant derivatives we should use Leibnitz rule in curve 
space and conditions (1.39), (1.40):

∂xμ(Tν(x)aν(x)) = ∇μTν(x)aν(x) + Tν(x)∇μaν(x)

= (∇μTν(x))aν(x) − Tμ(x)au(x) = (∇μTν(x))aν(x) − au(x)
∂

∂aμ
(Tν(x)aν). (1.50)

From this example we see that instead of x-dependent vectors we can use formally 
x-independent vectors aμ (and component au also) and split AdS space from formal aμ

space inserted only for shortening symmetric tensor contractions and symmetrizing proce-
dures just like in the Cartesian case. But at the same time according to (1.50) we should 
replace the usual derivative with the following operators in Frenet basis:

∂A => (e−u∂u, e
−u∂μ), (1.51)

∂μ => Dμ = ∇μ − au∂aμ − aμ

L2 ∂au, (1.52)

where ∇μ is AdS covariant derivative constructed from the Christoffel symbols (1.12) with 
the following action rule:

∇μh(s)(u, x;a) = ∇μhμ1μ2...μs (u, x)aμ1aμ2 . . . aμs . (1.53)

So from now on we have instead of usual differential operator and coordinate dependent 
auxiliary vector components “constant” objects au and aμ and covariant derivative operator 
(1.52) working on rank s symmetric tensors as operators working in both x and a spaces.

Then we can write (1.48) in the form:

aA∂Aε(s−1)(XA;aA) = e−u
(
au∂u + aμDμ

)
ε(s−1)(u, x;aμ)

= e−u
[
au(∂u − s + 1) + aμ∇μ

]
ε(s−1)(u, x;aμ). (1.54)

Using this and restricting the dependence on additional “u” coordinates for all fields and gauge 
parameters in the following (exponential) way
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h(s)(u, xμ;aμ) = e
huh(s)(xμ;aμ), (1.55)

ε(s−1)(u, xμ;aμ) = e
εuε(s−1)(xμ;aμ), (1.56)

we obtain from the (1.45) the following relation

e
huδh(s)(xμ;aμ) = e(
ε−1)us
[
au(
ε − s + 1) + aμ∇μ

]
ε(s−1)(x;aμ). (1.57)

So we see that for getting from gauge transformation in d + 2 dimensional flat space (1.45) the 
correct AdSd+1 gauge transformation

δh(s)(xμ;aμ) = saμ∇με(s−1)(x;aμ), (1.58)

we should fix the last freedom in our ansatz in unique form


ε = s − 1, (1.59)


h = 
ε − 1 = s − 2, (1.60)

which is in agreement with consideration in [44–47].
After all, we can formulate our final prescription for radial pullback in the massless AdS case 

slightly differs from our reduction formulated in [48] and can be summarized by the following 
three points.

1. Expand auxiliary vectors aA using Frenet basis for embedded AdS space (1.30) and take into 
account u dependents (1.41), (1.42) for components normal and tangential to the embedded 
hypersphere coming from condition (1.31) and formal xμ independence explained above. 
Finally, we have the following embedding rule

aA => LnA(x)au + eA
μ(x)aμ. (1.61)

2. Replace all derivatives in the following way:

∂A => e−u

(
−nA(x)

L
∂u + e

μ
A(x)Dμ

)
, (1.62)

where Dμ defined in (1.52).
3. Restrict the dependence on additional “u” coordinates for all fields and gauge parameters in 

an exponential way with corresponding weights (1.59) (1.60) to preserve gauge invariants 
during pullback.

Note also that our reduction rules here slightly different from rules, formulated in [48], es-
pecially in the area of “u” dependence. This happened because we used direct solutions (1.41), 
(1.42) and keep derivative ∂u unchanged. In [48] we removed exponential factor e−u a front of 
derivatives and all au and aμ vector components, replacing radial derivatives also with opera-
tor ∂u − au∂au − aμ∂aμ working in both u and a spaces. In that case scaling behavior of field 
components and parameters are different from our here and in [48].2

In any case, the final result is the same: After some straightforward calculation using our 
reduction rules we can prove that d + 2 dimensional gauge invariant Fronsdal tensor

2 in [48] we had 
h = 
ε = 2(s − 1).
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F (s)(XA;aA) = �d+2h
(s)(XA;aA) − aA∂A

(
∂B∂aB h(s)(XA;aA)

− 1

2
(aB∂B)�aAh(s)(XA;aA

)
, (1.63)

reduces to the AdSd+1 gauge invariant Fronsdal tensor

F (s)(x;aμ) = �d+1h
(s)(xμ;aμ)

−(aμ∇μ)
[
(∇ν∂aν )h(s)(x;aμ) − 1

2
(aν∇ν)�aμh(s)(x;aμ)

]
− 1

L2 [s2 + s(d − 5) − 2(d − 2)]h(s)(xμ;aμ)) − 1

L2 aμaμ�aμh(s)(xμ;aμ), (1.64)

in the following way

F (s)(XA;aA) = e(s−4)uF (s)(x;aμ). (1.65)

Supplementing this with the reductions for field (1.55), (1.60) and for integration volume:∫
dd+2X =

∫
dudd+1x

√−G = L

∫
dudd+1x

√
ge(d+2)u, (1.66)

we obtain the following reduction rule for Fronsdal actions:

S0[h(s)(XA;aA)] =
[
L

∫
due(d+2s−4)u

]
× S0[h(s)(xμ;aμ)], (1.67)

where

S0[h(s)(XA;aA)] =
∫

dd+2X
[
− 1

2
h(s)(XA;aA) ∗aA F (s)(XA;aA)

+ 1

8s(s − 1)
�aAh(s)(XA;aA) ∗aA �aAF (s)(XA;aA)

]
, (1.68)

S0[h(s)(xμ;aμ)] =
∫

dd+1x
√

g
[
− 1

2
h(s)(x;aμ) ∗aμ F (s)(x;aμ)

+ 1

8s(s − 1)
�aμh(s)(x;aμ) ∗aμ �aμF (s)(x;aμ)

]
. (1.69)

The overall infinite factor[
L

∫
due(d+2s−4)u

]
, (1.70)

here the same as in [48], where we described prescription to get correct additional AdS correction 
terms from the full “u” derivative part of interaction terms. This additional terms can be found 
with insertion of the dimensionless delta function in measure (1.66) [44–47]∫

dd+2Xδ

(√−X2

L
− 1

)
. (1.71)

Then full derivative terms will survive only for normal u derivatives:∫
dd+2Xδ

(√−X2

L
− 1

)
∂ALA =

∫
dd+2Xδ(1)

(√−X2

L
− 1

)
XA

L2 Eu
ALu

=
∫

dudd+1x
√

ge(d+2)u δ(1)(eu − 1)
Lu. (1.72)
L



10 M. Karapetyan et al. / Nuclear Physics B 950 (2020) 114876
So we see that both approaches produce the same additional corrections coming from the differ-
entiation of overall “u” phase a front of full derivatives in the normal direction. Finally, we note 
that this reduction procedure is more useful for investigation of interaction terms due to the very 
simple form of the pullback of fields and auxiliary vectors aA and star contractions:

∗s
aA = 1

(s!)2

s∏
i=1

( − ←−
∂ aui

−→
∂ aui + ←−

∂ aμi

−→
∂ aμi

)

=
s∑

n=0

(−1)n(
s
n

) ∗n
au ∗s−n

aμ . (1.73)

2. Pullback for power of derivatives of HS fields from flat to embedded AdS space

In this section, we discuss radial pullback for Cubic interaction for higher spins in a covariant 
off-shell formulation derived In [33,34]. This result for flat space is in full agreement with light 
cone gauge results of Metsaev [20]. Moreover this agreement shows that all interactions of higher 
spin gauge fields with any spin s1, s2, s3 both in flat space and in dS or AdS are unique up to 
partial integration and field redefinition.3 The formulation of the cubic interactions for higher 
spin fields in ambient space was considered in several papers [44–49]. In [48] we investigated 
the possibility to connect the main term of interaction in flat d + 2 dimensional space to the 
main term of interaction in AdSd+1 space one dimension lower ignoring all trace and divergent 
terms but expressed directly through the AdS covariant derivatives and including some curvature 
corrections. In this article, we perform one important step forward solving task for flat main 
term completely and presenting full reduction or pullback including all trace and other related 
terms coming from main term of cubic interaction in direct AdSd+1 covariant form. We put in 
appendix A short review for the main term of cubic interaction formulated in details in [33,34]
and start here from the more convenient for radial pullback form described in [48], where we 
reformulated the main term of cubic interaction (A.2), (A.3) in the following way:

Lmain
I (h(s1)(X,aA),h(s2)(X,bA),h(s3)(X, cA)) =∑

Qij

C
s1,s2,s3
Q12,Q23,Q31

∫
dd+2X ∗Q31+n3

cA K(s1)(Q31, n3; cA, aA;X)

∗Q12+n1
aA K(s2)(Q12, n1;aA,bA;X) ∗Q23+n2

bA K(s3)(Q23, n2;bA, cA;X), (2.1)

where

K(s1)(Q31, n3; cA, aA;X) = (cA∂aA)Q12(cB∂B)n3h(s1)(X;aC). (2.2)

The most important advantage of this form that here we can express our cubic interaction as a 
cube of above bitensor function with cyclic index contraction. From now on we put AdS radius 
L = 1 and use for shortness the brackets (. . . , . . . ) for AdSd+1 index summation. In other words

(a, ∂b) = aμ∂bμ, (2.3)

(a,∇) = aμ∇μ, (2.4)

3 This was already proven for some low spin cases of both the Fradkin-Vasiliev vertex for 2, s, s and the nonabelian 
vertex for 1, s, s in [29].
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and

(a,D) = aμDμ. (2.5)

Another important point here is the difference in the definition of the covariant differentiation 
operator (1.52) in the case of interaction. The minimal object here is a bitensor (2.2) which has 
two sets of symmetrized indices. In this case, we should define covariant differentiation operators 
for both sets of indices:

Dμ = ∇μ − au∂aμ − aμ∂au − bu∂bμ − bμ∂bu . (2.6)

and in a similar way for other sets of indices. Now we have all ingredients to start analyzing the 
“u”-dependence of interaction Lagrangian (2.1) in curvilinear coordinates (1.3). First of all we 
note that in the new frame only the measure and derivatives create additional u phase (1.66) and 
(1.62) in addition to the three similar phase (1.60) coming from reduced fields. Finally, we get

d + 2 +
3∑

i=1

(
h(si ) − ni) =
3∑

i=1

(si) − 
 + d − 4, (2.7)

where 
 is the number of derivatives in interaction. Then inserting minimal number of derivatives 
from (A.8) we see that our interaction rescales as4

3∑
i=1

si − 
min + d − 4 = d + 2s3 − 4, (2.8)

with the obvious limit d + 2s − 4 in the self-interacting case s1 = s2 = s3 = s. So we see that 
the cubic interaction in the case of the minimal number of derivatives is relevant for the radial 
reduction procedure described in the previous section. Therefore it should produce the right 
curvature corrections for the main term of the cubic interaction in AdSd+1.

In this section, we consider a possible radial pullback scheme for the main object of cubic 
interaction (2.1): the bitensorial function

K(s)(Q,n;aA,bA;X) = (aA∂bA)Q(aB∂B)nh(s)(X;bC). (2.9)

This term should generate all AdS curvature corrections coming from main term. For that we 
study these operators in a representation that act on pullback HS field

h(s)(X;bA)|X=X(u,x) = h(s)(u, xμ;bμ) = e(s−2)uh(s)(xμ;bμ). (2.10)

Then we can obtain these AdS corrections expanding all flat d + 2 dimensional objects in Frenet 
basis or in other words in term of d + 1 dimensional AdS space derivatives and vectors and 
normal components surviving after applying our ansatz rules:

(aB∂B)n|X=X(u,x) = [
e−u(au∂u + aμDμ)

]n
, (2.11)

aμDμ = (a,D) = (a,∇) − au(a, ∂a) − bu(a, ∂b) − a2∂au − (a, b)∂bu, (2.12)

where a2 = (a, a) = aμaνgμν(x),

and contracting over all au, bu, cu.

4 In the case of three spins ordered as s1 ≥ s2 ≥ s3.
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2.1. Noncommutative algebra and au stripping

Now we must deal with the d + 1 dimensional expansion for the n’th power of d + 2 dimen-
sional derivatives (2.11), where the operator

au∂u + aμDμ = aμ∇̂μ(g) − R, (2.13)

∇̂μ = ∇μ − bu∂bμ − bμ∂bu, (2.14)

R = au[(a∂a) − ∂u] + a2∂au, (2.15)

act on ground states (2.10). These ground states can be characterized by the total symmetry in 
the argument and by the fact that they are annihilated by the following operators:

| 0 >= e(s−2)uh(s)(xμ;bμ), (2.16)

∂aμ | 0 >= ∂au | 0 >= ∂bu | 0 >= 0, (2.17)

R | 0 >= (2 − s)au | 0 > . (2.18)

The operator of interest is[
e−u(a, ∇̂) − e−uR

]n

, (2.19)

where in the sequel it is advantageous to write the operator R in the following way

R = au[(a∂a) + au∂au − ∂u] + (a2 − (au)2)∂au (2.20)

with the following important algebraic relations:

[(a∂a) + au∂au,R] = R, (2.21)

[(a∂a) + au∂au, (a, ∇̂)] = (a, ∇̂), (2.22)

[R,e−u(a, ∇̂)] = 2e−uau(a, ∇̂). (2.23)

We have to evaluate (2.19) on the ground state (2.16). Hiding all technical details in Appendix B
we present here the result of this straightforward manipulations with noncommutative algebra

[(a, e−u∇̂) − e−uR]n | 0 >= e(s−2−n)u
n∑

p=0

(−1)p(a, ∇̂)n−pV p+1(ip+1)h
(s)(xμ;bμ),

(2.24)

where5

V p+1(ip+1) =
[ p

2 ]∑
k=0

ξ
p+1
k (ip+1)(a

2)k(au)p−2k. (2.25)

Then from recurrent relations (B.12) for ξp+1
k (ip+1) and from solutions of latter equations ob-

tained by direct calculation of V p+1 using (B.8) for p = 1, 2, 3, 4, . . . in Appendix B we can 
finally present solution6 for general p:

5 See derivation in Appendix B.
6 Our definition of Pochhammer symbols (a)n (rising factorial) can be found in (B.19) of Appendix B.
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ξ
p+1
k (i) = 1

(p − 2k)! (2k + i + 1)p−2k(2k + 2 + i − s)p−2kPk(i), (2.26)

where Pk(i) is p-independent polynomials and satisfies corresponding simple equation (B.22)
with the following solution in the form of multiple sums:

Pk(i) =
∑

i≥ik≥ik−1≥ik−2...≥i1≥0

k∏
n=1

(in + 2n − 1)(in + 2n − s). (2.27)

This solution described in Appendix B also in the form of generating function (B.24) obtained 
from solution of a differential equation.

2.2. Noncommutative algebra and bu stripping

To extract exact dependence from bu and obtain final expressions written directly through the 
AdSd+1 covariant derivatives ∇ we have to evaluate the remaining factors

(a, ∇̂)n−p = [(a,∇) − bu(a, ∂b) − (a, b)∂bu ]n−p

=
n−p∑
p̃=0

(−1)p̃
(

n − p

p̃

)
(a,∇)n−p−p̃(L+ + L−)p̃, (2.28)

where L+, L− generate a Lie algebra

L+ = bu(a, ∂b), L− = (a, b)∂bu, (2.29)

[L+,L−] = H = a2bu∂bu − (a, b)(a, ∂b), (2.30)

[H,L±] = ±2a2L±. (2.31)

Representations of this Lie algebra are created from an (s + 1)-dimensional vector space of “null 
vectors” {�n(a; b)}|sn=0 of “level” n

�n(a;b) = h(s)
μ1,μ2,...μs

aμ1aμ2 ...aμnbμn+1bμn+2 ...bμs , L−�n(a;b) = 0, (2.32)

for any fixed tensor function hs . From (2.29)-(2.31) follows that starting from

�0(a;b) = �0(b), (2.33)

all �n(a; b) can be produced by application of H 7

�n(a;b) = Hn�0(b) = (−1)n
n∑

r=1

A(n)
r [s]r (a2)n−r (a, b)r�r(a;b). (2.34)

The ansatz8 (2.34) leads to the recurrence relation

A
(n)
r−1 + rA(n)

r = A(n+1)
r , (2.35)

A(n)
r = 0 for r > n. (2.36)

The boundary conditions A(n)
−1 = 0 and A(0)

0 = 1 are assumed.

7 For falling factorial we use in this paper notation [s]n = s(s − 1) . . . (s − n + 1).
8 To guess this ansatz we used direct calculations of the first three powers of H acting on ground state (2.33) presented 

in Appendix C.
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We can solve recurrent equation (2.35) in common way using generating function method. 
Shifting in Appendix C all details of this procedure we present here the final solution in the 
form:

ex(et−1) =
∞∑

n=0

∞∑
r=0

A(n)
r

xr tn

n! . (2.37)

It is not difficult to get a simple combinatorial formula for A(n)
r . Let us denote by P(n, r) the 

set of partitions of n into r nonzero parts. The partitions are in one to one correspondence with 
Young diagrams with n boxes and r rows. An arbitrary partition λ may be represented as λ =
1k1 2k23k2 · · · , where the nonnegative integer ki indicates the number of rows with length i. For 
example the partition 8 = 1 + 1 + 3 + 3 is represented as 122032, hence {k1, k2, k3} = {2, 0, 2}
and k4 = k5 = · · · = 0. The corresponding Young diagram consists of two rows of length 3 and 
two rows of length 1. For a diagram λ ∈P(n, r) let us arbitrarily distribute the integers 1, 2, · · ·n
among boxes. Let us identify two configurations which differ from each other by permutations 
of numbers along rows or by permutation of entire rows of same lengths. Evidently, the number 
of non-equivalent distributions is given by

S(λ) = n!∏
i≥1 ki !(i!)ki

. (2.38)

Now comparing (C.10), (2.37) with (2.38) one easily gets

A(r)
n =

∑
λ∈P(n,r)

S(λ). (2.39)

With the help of the basis {�n(a; b)}sn=0 of null vectors the representation of the Lie algebra 
(2.29)-(2.31) can be constructed as follows (see for details Appendix C).

(L+ + L−)p̃�0(b) =
[ p̃

2 ]∑
k̃=1

(bu)p̃−2k̃(−1)k̃(a, ∂b)
p̃−2k̃W k̃(a2,H)�0(b), (2.40)

where

Wk̃(a2,H, i
k̃+1)�0(b)

=
∑

i
k̃+1≥i

k̃
≥i

k̃−1≥i
k̃−2...≥i2≥i1≥1

ψ
i
k̃
−k̃+1ψi

k̃−1−k̃+2ψi
k̃−2−k̃+3...ψi2−1ψi1�0(b), (2.41)

and

ψi = iH + [i]2 a2. (2.42)

The sum is a homogeneous polynomial of H and a2 of degree k̃9:

Wk̃(a2,H, i
k̃+1) =

k̃∑
m=0

ηm

k̃
(i

k̃+1)(a
2)mH k̃−m. (2.43)

9 Remember that H is second order in a as well.
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So we see that representation (2.40) extracts bu dependence and we can calculate coefficients 
ηm

k̃
(i

k̃+1) from (2.41) directly. comparing (2.43) with (2.41) and taking into account (2.42) we 
see that it is possible to write

ηm

k̃
(p̃ − k̃) = ηm

k̃
(i

k̃+1)|i
k̃+1=p̃−k̃

, (2.44)

in the following form:

ηm

k̃
(p̃ − k̃) =

∑
p̃−k̃≥i

k̃
≥i

k̃−1≥i
k̃−2...≥i2≥i1≥1

∑
k̃≥nm≥nm−1≥nm−2...≥n2≥n1≥1

k̃∏
lm=nm+1

(ilm − lk + 1)[inm − nm + 1]2

nm−1∏
lm−1=nm−1+1

(ilm−1 − lm−1 + 1)[inm−1 − nm−1 + 1]2 . . .

· · ·
n3−1∏

l2=n2+1

(il2 − l2 + 1)[in2 − n2 + 1]2

n2−1∏
l1=n1+1

(il1 − l1 + 1)[in1 − n1 + 1]2

n1−1∏
l=1

(il − l + 1).

(2.45)

This formula means that we should inside of expression for η0
k̃
(p̃ − k̃):

η0
k̃
(p̃ − k̃) =

∑
p̃−k̃≥i

k̃
≥i

k̃−1≥i
k̃−2...≥i2≥i1≥1

k̃∏
l=1

(il − l + 1), (2.46)

replace m brackets (inr − nr + 1)|mr=1 with the m Pochhammers {[inr − nr + 1]2}|mr=1 in all 
possible ways and then take sums.

3. Pullback of the main term of cubic self-interaction

Now we start to collect things together and present all terms of cubic interaction produced 
from the main term in one dimension more flat space. First, we look at the main term in the case 
of a cubic self-interaction. This can be obtained from the general expressions (A.4)-(A.6) taking

s1 = s2 = s3 = s, (3.1)

ν1 = ν2 = ν3 = 0, (3.2)

Q23 = n1 = α, (3.3)

Q31 = n2 = β, (3.4)

Q12 = n3 = γ. (3.5)

Then (2.1), (2.2) transform to the following nice cyclic (in (a)α, (b)β , (c)γ ) expression with 
trinomial coefficients:

Lmain
I =

∑
α,β,γ

α+β+γ=s

(
s

α,β, γ

)∫
dd+2X

∗γ+α
a (aA∂bA)γ (aB∂B)αh(s)(X;bC)

∗α+β
b (bD∂cD )α(bE∂E)βh(s)(X; cF )

∗β+γ
c (cG∂aG)β(cH ∂H )γ h(s)(X;aK). (3.6)
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The main result of the previous section is that we can expand each line of (3.6) and extract 
au, bu, cu dependence to contract with expansion of star product and write exact expression in the 
term of AdSd+1 dimensional covariant derivatives and curvature corrections. Combining (2.24), 
(2.25) and (2.28), (2.40) we can write10

(aB∂B)αh(s)(X;bC) = e(s−2−α)u

α∑
p1=0

[ p1
2 ]∑

k1=0

α−p1∑
p̃1=0

[ p̃1
2 ]∑

k̃1=1

(−1)p1+p̃1+k̃1(au)p1−2k1(bu)p̃1−2k̃1

(a,∇)α−p1−p̃1ξ
p1+1
k1

(α − p1)

(
α − p1

p̃1

)
(a2)k1(a, ∂b)

p̃1−2k̃1Wk̃1(a2,H1)h
(s)(xμ;bμ).

(3.7)

Then expanding:

(aA∂bA)γ =
γ∑

m=0

(
γ

m1

)
(au∂bu)m1(a, ∂b)

γ−m1 , (3.8)

we obtain

(aA∂bA)γ (aB∂B)αh(s)(X;bC) = e(s−2−α)u

γ∑
m1=0

γ,α,[ p1
2 ],α−p1,[ p̃1

2 ]∑
m1,p1,k1,p̃1,k̃1

(au)p1−2k1+m1(bu)p̃1−2k̃1−m1(a, ∂b)
γ+p̃1−2k̃1−m1(a,∇)α−p1−p̃1

�[γ,α,m1,p1, k1, p̃1, k̃1, a
2,H1]h(s)(bμ), (3.9)

where:

γ,α,[ p1
2 ],α−p1,[ p̃1

2 ]∑
m1,p1,k1,p̃1,k̃1

=
γ∑

m1=0

α∑
p1=0

[ p1
2 ]∑

k1=0

α−p1∑
p̃1=0

[ p̃1
2 ]∑

k̃1=1

, (3.10)

and

�[γ,α,m1,p1, k1, p̃1, k̃1, a
2,H1]

= (−1)p1+p̃1+k̃1 [p̃1 − 2k̃1]m1

(
γ

m1

)
ξ

p1+1
k1

(α − p1)

(
α − p1

p̃1

)
(a2)k1Wk̃1(a2,H1). (3.11)

Then we can write expression for the whole main interaction term

Lmain
I =

∫
due(d+2s−4)udd+1x

√
g

∑
α,β,γ

α+β+γ=s

(
s

α,β, γ

) γ,α,[ p1
2 ],α−p1,[ p̃1

2 ]∑
m1,p1,k1,p̃1,k̃1

α,β,[ p2
2 ],β−p2,[ p̃2

2 ]∑
m2,p2,k2,p̃2,k̃2

β,γ,[ p3
2 ],γ−p3,[ p̃3

2 ]∑
m3,p3,k3,p̃3,k̃3

10 For shortening notation we introduce instead of H(a, b) from (2.30) H1 and then H2 = H(b, c) and H3 = H(c, a)

correspondingly.
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γ+α,α+β,β+γ∑
n1,n2,n3=0

(−1)n1+n2+n3(
γ+α
n1

)(
α+β
n2

)(
β+γ
n3

) ∗n1
au ∗n2

bu ∗n3
cu ∗γ+α−n1

aμ ∗α+β−n2
bμ ∗β+γ−n3

cμ

(au)p1−2k1+m1(bu)p̃1−2k̃1−m1(a, ∂b)
γ+p̃1−2k̃1−m1(a,∇)α−p1−p̃1

�[γ,α,m1,p1, k1, p̃1, k̃1, a
2,H1]h(s)(bμ)

(bu)p2−2k2+m2(cu)p̃2−2k̃2−m2(b, ∂c)
α+p̃2−2k̃2−m2(b,∇)β−p2−p̃2

�[α,β,m2,p2, k2, p̃2, k̃2, b
2,H2]h(s)(cμ)

(cu)p3−2k3+m3(au)p̃3−2k̃3−m3(c, ∂a)
β+p̃3−2k̃3−m3(c,∇)γ−p3−p̃3

�[β,γ,m3,p3, k3, p̃3, k̃3, c
2,H3]h(s)(aμ). (3.12)

Now we can contract all non AdSd+1 components au, bu, cu using corresponding “u”-stars 
from second line of (3.12). This leads to the following constraints for summation indices:

p1 − 2k1 + m1 = p̃3 − 2k̃3 − m3 = n1, (3.13)

p2 − 2k2 + m2 = p̃1 − 2k̃1 − m1 = n2, (3.14)

p3 − 2k3 + m3 = p̃2 − 2k̃2 − m2 = n3. (3.15)

So we can take summation over mi, i = 1, 2, 3 with remaining constraints on other variables:

p1 + p̃1 = n1 + n2 + 2(k1 + k̃1), (3.16)

p2 + p̃2 = n2 + n3 + 2(k2 + k̃2), (3.17)

p3 + p̃3 = n3 + n1 + 2(k3 + k̃3). (3.18)

Relations (3.13)-(3.15) restrict also summation ranges for n1, n2, n3 from zero to α, β, γ . Then 
we have

Lmain
I =

∫
due(d+2s−4)udd+1x

√
g

∑
α,β,γ

α+β+γ=s

(
s

α,β, γ

) α,[ p1
2 ],α−p1,[ p̃1

2 ]∑
p1,k1,p̃1,k̃1

β,[ p2
2 ],β−p2,[ p̃2

2 ]∑
p2,k2,p̃2,k̃2

γ,[ p3
2 ],γ−p3,[ p̃3

2 ]∑
p3,k3,p̃3,k̃3

α,β,γ∑
n1,n2,n3=0

(−1)n1+n2+n3(
γ+α
n1

)(
α+β
n2

)(
β+γ
n3

) ∗γ+α−n1
aμ ∗α+β−n2

bμ ∗β+γ−n3
cμ

(a, ∂b)
γ+n2(a,∇)α−n1−n2−2(k1+k̃1)�̃[γ,α,n2,p1, k1, p̃1, k̃1, a

2,H1]h(s)(bμ)

(b, ∂c)
α+n3(b,∇)β−n2−n3−2(k2+k̃2)�̃[α,β,n3,p2, k2, p̃2, k̃2, b

2,H2]h(s)(cμ)

(c, ∂a)
β+n1(c,∇)γ−n3−n1−2(k3+k̃3)�̃[β,γ,n1,p3, k3, p̃3, k̃3, c

2,H3]h(s)(aμ), (3.19)

where

�̃[γ,α,n2,p1, k1, p̃1, k̃1, a
2,H1] = �[γ,α,m1 = p̃1 − 2k̃1 − n2,p1, k1, p̃1, k̃1, a

2,H1],
(3.20)

�̃[α,β,n3,p2, k2, p̃2, k̃2, b
2,H2] = �[α,β,m2 = p̃2 − 2k̃2 − n3,p2, k2, p̃2, k̃2, b

2,H2],
(3.21)
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�̃[β,γ,n1,p3, k3, p̃3, k̃3, c
2,H3] = �[β,γ,m3 = p̃3 − 2k̃3 − n1, p̃3,p3, k3, k̃3, c

2,H3].
(3.22)

Taking into account that �[. . . , a2, H1] ∼ (a2)k1+k̃1 we see that our star products in (3.19) con-
tract correctly all auxiliary vectors aμ, bν, cλ.

Then to understand better the structure of the derivatives of interaction we can take into 
account constraints (3.16)-(3.18) and rearrange the summations coming from (3.19) in the fol-
lowing way∑

n3≥0

∑
n2≥0

∑
n1≥0

(−1)n1+n2+n3 =
∑
N≥0

(−1)N
∑

n1,n2,n3∑
ni=N

, (3.23)

∑
{pi,ki ,p̃i ,k̃i }i=1,2,3

pi+p̃i=ni+ni+1+2(ki+k̃i )

=
∑
K≥0

∑
{Pi,Ki }i=1,2,3

Pi=ni+ni+1+2Ki∑
Ki=K

∑
{pi,ki ,p̃i ,k̃i }i=1,2,3

pi+p̃i=Pi ;ki+k̃i=Ki

, (3.24)

where in last equation {ni} = n1, n2, n3 are with cyclic property n4 = n1
After that we should introduce instead of α, β, γ new summation variables

α̃ = α − n1 − n2 − 2K1 = α − P1, (3.25)

β̃ = β − n2 − n3 − 2K2 = β − P2, (3.26)

γ̃ = γ − n3 − n1 − 2K3 = γ − P3, (3.27)

with corresponding summation limits and constraints

0 ≤ α̃, β̃, γ̃ ≤ s − 2(N + K), (3.28)

α̃ + β̃ + γ̃ = s − 2(N + K), (3.29)

N =
∑

i

ni; K =
∑

i

Ki =
∑

i

(ki + k̃i ). (3.30)

These transformations lead to the following formula:

Lmain
I =

∫
due(d+2s−4)udd+1x

√
g

∑
N≥0

∑
K≥0

(−1)Ns!
(s − 2(N + K))!

∑
α̃,β̃,γ̃

α̃+β̃+γ̃=s−2(N+K)

(
s − 2(N + K)

α̃, β̃, γ̃

) ∑
{ni }i=1,2,3∑

ni=N

∑
{Pi,Ki }i=1,2,3

Pi=ni+ni+1+2Ki∑
Ki=K

∑
{pi,ki ,p̃i ,k̃i }i=1,2,3

pi+p̃i=Pi ;ki+k̃i=Ki

∗γ̃+α̃+N+2(K3+K1)
aμ ∗α̃+β̃+N+2(K1+K2)

bμ ∗β̃+γ̃+N+2(K2+K3)
cμ(

γ̃+α̃+N+2(K3+K1)+n1
n1

)(
α̃+β̃+N+2(K1+K2)+n2

n2

)(
β̃+γ̃+N+2(K2+K3)+n3

n3

)

(a, ∂b)
γ̃+N+2K3(a,∇)α̃ �2K1[γ̃ , α̃, n2,p1, k1, p̃1, k̃1, a

2,H1]h(s)(bμ)

(b, ∂c)
α̃+N+2K1(b,∇)β̃ �2K2[α̃, β̃, n3,p2, k2, p̃2, k̃2, b

2,H2]h(s)(cμ)

(c, ∂a)
β̃+N+2K2(c,∇)γ̃ �2K3 [β̃, γ̃ , n1,p3, k3, p̃3, k̃3, c

2,H3]h(s)(aμ), (3.31)

where
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�̃[γ,α,n2,p1, k1, p̃1, k̃1, a
2,H1] = γ !

α̃! �2K1 [γ̃ , α̃, n2,P3,p1, k1, p̃1, k̃1, a
2,H1], (3.32)

�̃[α,β,n3,p2, k2, p̃2, k̃2, b
2,H2] = α!

β̃! �2K2[α̃, β̃, n3,P1,p2, k2, p̃2, k̃2, b
2,H2], (3.33)

�̃[β,γ,n1,p3, k3, p̃3, k̃3, c
2,H3] = β!

γ̃ ! �2K3 [β̃, γ̃ , n1,P2,p3, k3, p̃3, k̃3, c
2,H3], (3.34)

and

�2K1 [γ̃ , α̃, n2,P3,p1, k1, p̃1, k̃1, a
2,H1]

= (α̃ + p̃1)!(a2)k1

(γ̃ + P3 − p̃1 + 2k̃1 + n2)!
(

p̃1 − 2k̃1

n2

)
ξ

p1+1
k1

(α̃ + p̃1)W
k̃1(a2,H1) , (3.35)

�2K2 [α̃, β̃, n3,P1,p2, k2, p̃2, k̃2, b
2,H2]

= (β̃ + p̃2)!(a2)k2

(α̃ + P1 − p̃2 + 2k̃2 + n3)!
(

p̃2 − 2k̃2

n3

)
ξ

p2+1
k2

(β̃ + p̃2)W
k̃2(b2,H2) , (3.36)

�2K3 [β̃, γ̃ , n1,P2,p3, k3, p̃3, k̃3, c
2,H3]

= (γ̃ + p̃3)!(a2)k3

(β̃ + P2 − p̃3 + 2k̃3 + n1)!
(

p̃3 − 2k̃3

n1

)
ξ

p3+1
k3

(γ̃ + p̃3)W
k̃3(c2,H3) . (3.37)

Finalizing our consideration we can write direct (a2), (b)2, (c)2 expansion of corresponding 
�2Ki terms using (2.34) and (2.43)

(a2)k1Wk̃1(a2,H1)h
(s)(bμ)

=
k̃1∑

t1=0

(−1)t1
k̃1−t1∑
r1=1

η
t1

k̃1
(p̃1 − k̃1)A

k̃1−t1
r1

[s]r1(a
2)K1−r1(a, b)r1�r1(a, b), (3.38)

(b2)k2Wk̃2(b2,H2)h
(s)(cμ)

=
k̃2∑

t2=0

(−1)t2
k̃2−t2∑
r2=1

η
t2

k̃2
(p̃2 − k̃2)A

k̃2−t2
r2

[s]r2(b
2)K2−r2(b, c)r2�r2(b, c), (3.39)

(c2)k3Wk̃3(a3,H3)h
(s)(cμ)

=
k̃3∑

t3=0

(−1)t3
k̃3−t3∑
r3=1

η
t3

k̃3
(p̃3 − k̃3)A

k̃3−t3
r3

[s]r3(c
2)K3−r3(c, a)r3�r3(c, a). (3.40)

So we see that �2Ki in (3.32)-(3.34) really behave like a2K1, b2K2, c2K3 as they should for correct 
contractions of indices.

4. Conclusion

We have constructed all AdS corrections including trace and divergence terms to the main 
term of the cubic self-interaction by a slightly modified method of radial pullback (reduction) 
proposed in [48], where all quantum fields are carried by a real AdS space and corresponding in-
teraction terms expressed through the covariant AdS derivatives. For given spin s and 
min = s

we derived all curvature correction terms (3.31) in the form of series of terms with numbers 
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s − 2(N + K) of derivatives, where 0 ≤ N + K ≤ s
2 . The latter is the number of seized pair of 

derivatives replaced by corresponding power of 1/L2 and K is the sum of power of a2, b2, c2

terms connected with trace and divergent correction terms produced from the main term of in-
teraction after pullback. Correction terms appear with coefficients that are polynomials in the 
dimension d + 1 and spin number s with rational coefficients. Now we can expect that the same 
method can be used for the derivation of the AdS corrections to traces and de Donder terms 
connected with the main term by Noether’s procedure derived for the flat case in [33] and [34].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal rela-
tionships that could have appeared to influence the work reported in this paper.

Acknowledgements

R.M. is indebted to Stefan Theisen for valuable discussions and help during the visit in 
AEI. R.M. would like to thank Karapet Mkrtchyan and Ruben Mkrtchyan for discussion and 
comments. This work were partially supported by the grants of the Science Committee of the 
Ministry of Science and Education of the Republic of Armenia under contracts 18T-1C229 and 
18T-1C340.

Appendix A. Main term of cubic interaction in flat space

In this Appendix we repeat the general formula for a covariant cubic interaction of higher 
spin gauge fields in a flat background as presented in [33] and [34]. The main result of [33,
34] is the following. The gauge invariance fixes in a unique way the cubic interaction if the 
main cyclic ansatz term without divergences and traces is given. Accordingly in this article we 
consider only the main term of the cubic interaction postponing the proof for all other terms to 
a future publication, and understanding intuitively that gauge invariance is going to regulate in 
a correct fashion the radial reduction for all other terms presented in [33,34] and classified in 
corresponding tables there.

In [33,34] we considered three potentials h(s1)(X1; aA), h(s2)(X2; bA), h(s3)(X3; cA) of d + 2
dimensional flat theory with ordered spins si

s1 ≥ s2 ≥ s3, (A.1)

and with the cyclic ansatz for the interaction

Lmain
I (h(s1)(X1, a

A),h(s2)(X2, b
A),h(s3)(X3c

A))

=
∑
ni

Cs1,s2,s3
n1,n2,n3

∫
dd+2X1d

d+2X2d
d+2X3δ(X3 − X1)δ(X2 − X1)

×T̃ (Q12,Q23,Q31|n1, n2, n3)h
(s1)(X1;aA)h(s2)(X2;bB)h(s3)(X3; cC),

(A.2)

where

T̃ (Q12,Q23,Q31|n1, n2, n3)

= (∂aA∂b )Q12(∂bB ∂c )Q23(∂cC ∂a )Q31(∂aD ∇̃D)n1(∂bE ∇̃E)n2(∂cF ∇̃F )n3 , (A.3)

A B C 2 3 1
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and the notation “main” as a superscript means that it is an ansatz for terms without Divh(si−1)

and T rh(si−2). Denoting the number of derivatives by 
 we have

n1 + n2 + n3 = 
. (A.4)

We shall later determine and then use the minimal possible 
. As balance equations we have

n1 + Q12 + Q31 = s1,

n2 + Q23 + Q12 = s2,

n3 + Q31 + Q23 = s3. (A.5)

These equations are solved by

Q12 = n3 − ν3,

Q23 = n1 − ν1,

Q31 = n2 − ν2. (A.6)

Since the l.h.s. cannot be negative, we have

ni ≥ νi .

The νi are determined to be

νi = 1/2(
 + si − sj − sk), i, j, k are all different. (A.7)

It follows that the minimally possible 
 is expressed by Metsaev’s [20] (using the ordering of 
the si ).


min = max [si + sj − sk] = s1 + s2 − s3. (A.8)

Another result of [33,34] is the trinomial expression for the coefficients in (A.2) fixed by 
Noether’s procedure. Taking into account (A.5)-(A.8) we can write it in the following elegant 
form

Cs1,s2,s3
n1,n2,n3

= C
s1,s2,s3
Q12,Q23,Q31

= const

(
smin

Q12,Q23,Q31

)
. (A.9)

Appendix B. Solution for ξp+1
k for general p

To evaluate (2.19) on the ground state (2.16) we have to expand this operator power (2.19)
into a noncommutative binomial series:

[(a, e−u∇̂) − e−uR]n | 0 >=
n∑

p=0

(−1)p

∑
n−p≥ip≥ip−1≥ip−2...≥i1≥0

(a, e−u∇̂)n−p−ip e−uR(a, e−u∇̂)ip−ip−1 . . .

e−uR(a, e−u∇̂)i1 | 0 > . (B.1)

Then using relation

[R, (a, e−u∇̂)ik ] = 2ike
−ikuau(a, ∇̂)ik , (B.2)
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we can rewrite (B.1) in the following form

[(a, e−u∇̂) − e−uR]n | 0 >=
n∑

p=0

(−1)p(a, ∇̂)n−pe(p−n)u

∑
n−p≥ip≥ip−1≥ip−2...≥i1≥0

e−u(2ipau + R)e−u(2ip−1a
u + R)...

e−u(2i1a
u + R)e(s−2)uh(s)(xμ;bμ). (B.3)

Then introducing the new objects

φik = 2ika
u + R = au[2ik + (a, ∂a) + au∂au − ∂u] + [a2 − (au)2]∂au, (B.4)

and taking into account that

[(a, ∂a) + au∂au − ∂u]e−nuf (m)(aμ, au) = (m + n)e−nuf (m)(aμ, au), (B.5)

we obtain

[(a, e−u∇̂) − e−uR]n | 0 >= e(s−2−n)u

n∑
p=0

(−1)p(a, ∇̂)n−p

∑
n−p≥ip≥ip−1≥ip−2...≥i1≥0

φipφip−1 . . . φi2φi1h
(s)(xμ;bμ), (B.6)

where we have φik as a very simple “creation” operators

φik = au[2(ik + k) − s] + [a2 − (au)2]∂au . (B.7)

Now we show how to perform summation in (2.24) and obtain wanted expansion on the power 
of au to contract after. Introducing notation

V p+1(ip+1)h
(s)(xμ;bμ) =

∑
ip+1≥ip≥ip−1≥ip−2...≥i1≥0

φipφip−1 . . . φi2φi1h
(s)(xμ;bμ), (B.8)

and performing summation over the labels {ik}|pk=1 we should obtain a polynomial in au and (a2)

of the form11

V p+1(ip+1) =
[ p

2 ]∑
k=0

ξ
p+1
k (ip+1)(a

2)k(au)p−2k. (B.9)

Considering the last expression as an ansatz for equation

V p+1(ip+1) =
ip+1∑
ip=0

φipV p(ip), (B.10)

and using (B.7) we obtain the following recurrence relation for 2p − k order polynomials coef-
ficients ξp+1

k (ip+1) ∼ (ip+1)
2p−k + . . .

11 Note that [p/2] is integer part of p/2 and at the end we have to insert ip+1 = n − p.
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ξ
p+1
k (j) =

j∑
i=0

(2i + p + 1 + 2k − s)ξ
p
k (i) +

j∑
i=0

(p + 1 − 2k)ξ
p

k−1(i). (B.11)

This equation is easier to consider in “differential” form

ξ
p+1
k (i) − ξ

p+1
k (i − 1) = (2i + p + 1 + 2k − s)ξ

p
k (i) + (p + 1 − 2k)ξ

p

k−1(i). (B.12)

To get general solution of (B.12) we present first solutions of latter equation obtained by direct 
calculation of V p+1. So using (B.10) for p = 1, 2, 3, 4, . . . and expanding the results using (2.25)
we search for the form of first ξp+1

k coefficients.

V 2(i2) =
i2∑

i1=0

φi1 |0 >= (1 + i2) (2 − s + i2) au|0 >, (B.13)

V 3(i3) =
i2∑

i1=0

φi2V
2(i2) = 1

6
a2 (1 + i3) (2 + i3) (6 − 3s + 2i3) |0 >

+ 1

2
(1 + i3) (2 + i3) (2 − s + i3) (3 − s + i3)

(
au

)2 |0 >, (B.14)

V 4(i4) =
i4∑

i3=0

φi3V
3(i3)

= 1

6
a2 (1 + i4) (2 + i4) (3 + i4) (4 − s + i4) (6 − 3s + 2i4) au|0 >

+ 1

6
(1 + i4) (2 + i4) (3 + i4) (2 − s + i4) (3 − s + i4) (4 − s + i4)

(
au

)3 |0 >,

(B.15)

V 5(i5) =
i5∑

i4=0

φi4V
4(i4)

= 1

360
a4 (1 + i5) (2 + i5) (3 + i5) (4 + i5)(

360 − 270s + 45s2 + 172i5 − 60si5 + 20i2
5

)
|0 >

+ 1

12
a2 (1 + i5) (2 + i5) (3 + i5) (4 + i5) (4 − s + i5)

(5 − s + i5) (6 − 3s + 2i5)
(
au

)2 |0 >

+ 1

24
(1 + i5) (2 + i5) (3 + i5) (4 + i5) (2 − s + i5) (3 − s + i5)

(4 − s + i5) (5 − s + i5)
(
au

)4 |0 > . (B.16)

After investigation of the structures of first ξp+1
k coefficients we note that they all have the fol-

lowing general factor

1

(p − 2k)! (i + 1)p(2k + 2 + i − s)p−2k. (B.17)

Using this information we arrive to the following important ansatz for ξp+1
(i)
k
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ξ
p+1
k (i) = 1

(p − 2k)! (i + 1)p(2k + 2 + i − s)p−2kPk(i), (B.18)

where Pk(i) ∼ ik + . . . is now p-independent polynomial of order k and we introduced Pochham-
mer symbols

(a)n = �(a + n)

�(a)
= a(a + 1) . . . (a + n − 1). (B.19)

Inserting (B.18) in equation (B.12) we obtain equation for Pk(i):

(i + 2k)Pk(i) − iPk(i − 1) = (i + 2k − s)Pk−1(i). (B.20)

Then after more convenient normalization of our polynomials with additional 2k order factor:

Pk(i) ≡ (i + 1)2kPk(i), (B.21)

we arrive to the following simple equation with boundary condition:

Pk(i) −Pk(i − 1) = (i + 2k − 1)(i + 2k − s)Pk−1(i), (B.22)

P0(i) = P0(i) = 1. (B.23)

This we can solve in two way: first in the form of multiple sums (2.27), or solving differential 
equation for generating function

Pk(y) ≡
∞∑
i=0

Pk(i)y
i, (B.24)

where we introduced formal variable y with |y| < 1 for production of the boundary condition:

P0(y) =
∞∑
i=0

yi = 1

1 − y
. (B.25)

For this generation function, we obtain from recurrence relation (B.22) the equation

(1 − y)Pk(y) = (y
d

dy
+ 2k − 1)(y

d

dy
+ 2k − s)Pk−1(y). (B.26)

Solving recursively and using (B.25) we can write the solution in the form:

Pk(y) = y−(2k+1)

[
y4

1 − y

d

dy
ys d

dy
y−s

]k
y2

1 − y
. (B.27)

Finally, we can write (B.18) in term of Pk(i) as (2.26).

Appendix C. The structure of the polynomial coefficients and the iterative approach of 
finding solutions

To obtain the ansatz (2.34) we use direct calculations of the first three powers of H acting on 
ground state �0(b)

H�0(b) = −s(a, b)�1(a, b), (C.1)

H 2�0(b) = [s]2(a, b)2�2(a;b) + sa2(a, b)�1(a;b), (C.2)

H 3�0(b) = −{[s]3(a, b)3�3(a;b) + 3[s]2a
2(a, b)2�2(a;b) + s(a2)2(a, b)�1(a;b)}.

(C.3)
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Then the way of solution of the recurrent relation (2.35) is obvious: We should multiply A(n)
r by 

xr and introduce

Pn(x) =
∞∑

r=0

A(n)
r xr . (C.4)

Then we obtain a simple differential equation

x
d

dx

(
exPn(x)

) = exPn+1(x), (C.5)

which we can easily solve since P0(x) = 1.
Iterating n times we find

exPn(x) =
(

x
d

dx

)n

ex , (C.6)

or

Pn(x) = e−x

(
x

d

dx

)n

ex . (C.7)

Evidently, Pn(x) is a polynomial of order n, which means that A(n)
r = 0 for r > n.

Finally, we can find a “double” generating function. Introducing

Q(x, t) =
∞∑

n=0

Pn(x)
tn

n! . (C.8)

So we see that

Q(x, t) = e−xetx d
dx ex = ex(et−1), (C.9)

where we have explored the fact that the operator etx d
dx , rescales the variable x by the factor et . 

Expanding (C.9) in x and t we get

ex(et−1) =
∞∏
i=1

∞∑
ki=0

xki t iki

ki !(i!)ki
. (C.10)

This can be used to derive (2.39).
To obtain the important representation (2.40) we start from

(L+ + L−)p̃�0(b) =
p̃∑

k̃=0

∑
p̃−k̃≥i

k̃
≥i

k̃−1≥i
k̃−2...≥i1≥1

(L+)p̃−k̃−i
k̃L−(L+)ik̃−i

k̃−1L−(L+)ik̃−1−i
k̃−2L−...(L+)i2−i1L−(L+)i1�0(b). (C.11)

Only commutators of L− with powers of L+ arise

[L−, (L+)i] = −
i−1∑
j=0

(L+)i−j−1H(L+)j =

−
i−1∑

(L+)i−1(H + 2ja2) = −(L+)i−1(iH + [i]2 a2). (C.12)

j=0
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Here we recognize that the whole basis {�n(a; b)} of null vectors is produced from �0(b) by the 
action of H . With the shorthand

ψi = iH + [i]2 a2, (C.13)

the result is

[ p̃
2 ]∑

k̃=1

(−1)k̃(L+)p̃−2k̃W k̃(a2,H)�0(b) =
[ p̃

2 ]∑
k̃=1

(bu)p̃−2k̃(−1)k̃(a, ∂b)
p̃−2k̃W k̃(a2,H)�0(b),

(C.14)

where

Wk̃(a2,H, i
k̃+1)�0(b)

=
∑

i
k̃+1≥i

k̃
≥i

k̃−1≥i
k̃−2...≥i2≥i1≥1

ψ
i
k̃
−k̃+1ψi

k̃−1−k̃+2ψi
k̃−2−k̃+3...ψi2−1ψi1�0(b). (C.15)

The sum is a homogeneous polynomial of H and a2 of degree k̃12:

Wk̃(a2,H, i
k̃+1) =

k̃∑
m=0

ηm

k̃
(i

k̃+1)(a
2)mH k̃−m. (C.16)

Using this ansatz and doing in the way similar to (2.25) we derive from

Wk̃+1(a2,H, i
k̃+2) =

i
k̃+2∑

i
k̃+1=1

ψ
i
k̃+1−k̃

W k̃(a2,H, i
k̃+1), (C.17)

the following recurrence relation

ηm

k̃+1
(j) =

j∑
i=1

[
(i − k̃)ηm

k̃
(i) + (i − k̃)(i − k̃ − 1)ηm−1

k̃
(i)

]
, (C.18)

or without summation:

ηm

k̃+1
(i) − ηm

k̃+1
(i − 1) = (i − k̃)ηm

k̃
(i) + (i − k̃)(i − k̃ − 1)ηm−1

k̃
(i). (C.19)

To investigate the structure of these coefficients and gain more information about polynomials 
we compute the (2.43) for initial values of k̃ = 1, 2, 3, 4 . . . :

W 1(a2,H, i2) =
i2∑

i1=1

ψi1�0(b) = 1

2
Hi2 (1 + i2)�0 + 1

3
a2 (−1 + i2) i2 (1 + i2)�0,

(C.20)

12 Remember that H is second order in a as well.
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W 2(a2,H, i3) =
i3∑

i2=1

ψi2−1W
1(a2,H, i2) = 1

8
H 2 (−1 + i3) i3 (1 + i3) (2 + i3)�0

+ 1

12
a2H (−1 + i3) i3 (1 + i3) (2 + i3) (−3 + 2i3)�0

+ 1

90
a4 (−2 + i3) (−1 + i3) i3 (1 + i3) (2 + i3) (−3 + 5i3)�0, (C.21)

W 3(a2,H, i4) =
i4∑

i3=1

ψi3−2W
2(a2,H, i3) =

1

48
H 3 (−2 + i4) (−1 + i4) i4 (1 + i4) (2 + i4) (3 + i4)�0

+ 1

24
a2H 2 (−2 + i4)

2 (−1 + i4) i4 (1 + i4) (2 + i4) (3 + i4)�0

+ 1

180
a4H (−2 + i4) (−1 + i4)

2i4 (1 + i4) (2 + i4) (3 + i4) (−13 + 5i4)�0

+a6 (−3 + i4) (−2 + i4) (−1 + i4) i4 (1 + i4) (2 + i4) (3 + i4)
(−2 − 63i4 + 35i2

4

)
�0

5670
,

(C.22)

W 4(a2,H, i5) =
i5∑

i4=1

ψi4−3W
3(a2,H, i4)

= 1

384
H 4 (−3 + i5) (−2 + i5) (−1 + i5) i5 (1 + i5) (2 + i5) (3 + i5) (4 + i5)�0

+ 1

288
a2H 3 (−3 + i5) (−2 + i5) (−1 + i5) i5 (1 + i5) (2 + i5)

(3 + i5) (4 + i5) (−5 + 2i5)�0

+ 1

1440
a4H 2 (−3 + i5) (−2 + i5) (−1 + i5) i5 (1 + i5) (2 + i5) (3 + i5) (4 + i5)(

45 − 46i5 + 10i2
5

)
�0

+ 1

22680
a6H (−3 + i5) (−2 + i5) (−1 + i5) i5 (1 + i5) (2 + i5) (3 + i5) (4 + i5)(

−195 + 731i5 − 441i2
5 + 70i3

5

)
�0

+ 1

340200
a8 (−4 + i5) (−3 + i5) (−2 + i5) (−1 + i5) i5 (1 + i5) (2 + i5) (3 + i5) (4 + i5)(

570 + 149i5 − 630i2
5 + 175i3

5

)
�0. (C.23)

From these direct calculations it is easy to see that we can factorize again i2k̃ terms and write 
ηm

k̃
(i) in this form:

ηm

k̃
(i) = 2m−k̃3−m

˜ (i − k̃ + 1)2k̃
Pm(i, k̃), P0(i, k̃) = 1, (C.24)
(k − m)!m!
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where the polynomials Pm(i, k̃) ∼ (i − k̃
2 )m + . . . is mth orders in i and k̃ with binomial leading 

term and satisfy the equation

(i + k̃ + 1)Pm(i, k̃ + 1) − (i − k̃ − 1)Pm(i − 1, k̃ + 1)

= 2(k̃ − m + 1)Pm(i, k̃) + 3m(i − k̃ − 1)Pm−1(i, k̃), (C.25)

with the same level of difficulty to solve as (C.19). The solutions of this recurrent equation can 
be calculated step by step from the (C.20)-(C.23) for each k:

P0(i,p) = 1, (C.26)

P1(i,p) = i −
(

p

2
+ 1

2

)
, (C.27)

P2(i,p) = i2 − 2i

(
p

2
+ 3

10

)
+

(
p2

4
+ 3p

20
− 1

10

)
, (C.28)

P3(i,p) = i3 − 3i2
(

p

2
+ 1

10

)
+ 3i

(
p2

4
− p

20
− 67

210

)
−

(
p3

8
− 3p2

20
− 173p

280
− 12

35

)
,

(C.29)

P4(i,p) = i4 − 4i3
(

p

2
− 1

10

)
+ 6i2

(
p2

4
− p

4
− 481

1050

)

−4i

(
p3

8
− 3p2

10
− 1031p

1400
− 38

175

)
+ p4

16
− 11p3

40
− 2011p2

2800
− 89p

1400
+ 111

350
. (C.30)

From the solutions above we can see that the general ansatz for Pk(i, p) has the following 
form

Pk(i,p) =
k∑

n=0

ik−n(−1)n
(

k

n

)
Bn

k (p).

From the solutions above for different Pk(i, p) it is possible to find the solutions for Bn
k (p) as 

follows13

B1
k(p) = p

2
− k

5
+ 7

10
, (C.31)

B2
k(p) = p2

4
+ p

(
11

20
− k

5

)
+ k2

25
− 44k

105
+ 607

1050
, (C.32)

B3
k(p) = p3

8
+ p2

(
3

10
− 3k

20

)
+ p

(
3k2

50
− 377k

700
+ 641

1400

)

− k3

125
+ 293k2

1750
− 1313k

1750
+ 108

175
, (C.33)

13 In order to compute the Bn
k
(p) using this iterative approach one should compute and know the expressions of Pm(i, p)

for up to m = 2k.
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B4
k(p) = p4

16
+ p3

(
1

8
− k

10

)
+ p2

(
3k2

50
− 157k

350
+ 13

112

)

+ p

(
− 2k3

125
+ 523k2

1750
− 131k

125
+ 519

1400

)
+ k4

625
− 244k3

4375

+ 47728k2

91875
− 460722k

336875
+ 256957

404250
. (C.34)

The final form of ηm

k̃
(i) coefficients will be

ηm

k̃
(i) = 2m−k̃3−m

(k̃ − m)!m! (i − k̃ + 1)2k̃

m∑
n=0

im−n(−1)n
(

m

n

)
Bn

m(k̃). (C.35)

Appendix D. Mapping operator (a, ∂b)
p to the product of H and a2

This is the final exercise to get more freedom in writing of our cubic interaction after our 
“stripping” for u components of auxiliary vectors. Investigating (C.14) and first operator in (2.9):

(aA∂bA)Q =
Q∑

q=0

(
Q

q

)
(au∂bu)Q−q(a, ∂b)

q, (D.1)

we see that last thing to do is transform the power of (a, ∂b) to H and a2 to write interaction 
without (a, ∂b), hiding them then in �(a, b). Note that starting from (C.1) operator H effectively 
worked with only its second part:

H ≡ H(a,b) = −(a, b)(a, ∂b), (D.2)

due to the separation of all bu dependence to the left from H dependent part in (C.14). Therefore 
we can write simple relation

(a, ∂b)
p = (−1)p

(
1

(a, b)
H

)p

. (D.3)

Then introducing ansatz for ordered power:(
1

(a, b)
H

)p

= 1

(a, b)p

p−1∑
k=0

ρk(p)Hp−k(a2)k, (D.4)

and taking into account commutator

[H,(a, b)−k] = ka2

(a, b)k
, (D.5)

we arrive to the following simple triangular recurrence relation for polynomials ρk(p)

ρk(p + 1) = ρk(p) + pρk−1(p), (D.6)

with boundary conditions:

ρ0(p) = 1, ρp−1(p) = (p − 1)!. (D.7)

Recurrence relation (D.6) we can easily solve using generation function. Introducing formal 
variable z with |z| < 1



30 M. Karapetyan et al. / Nuclear Physics B 950 (2020) 114876
ρk(z) =
∞∑

p=0

zpρk(p), (D.8)

we obtain recursive equation:

ρk(z) = z2

1 − z

d

dz
ρk−1(z), (D.9)

with the simple solution due to boundary value ρ0(z) = (1 − z)−1:

ρk(z) =
[

z2

1 − z

d

dz

]k
1

1 − z
. (D.10)

In another way we can write the same solution of (D.6) in the form of multiple sums:

ρk(p) =
p−1∑
ik=k

ik

ik−1∑
ik−1=k−1

ik−1 · · ·
i3−1∑
i2=2

i2

i2−1∑
i1=1

i1. (D.11)
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