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Abstract

Gauge invariance is one of the fundamental principles of the Standard Model of
particles and interactions, and it is reasonable to believe that it also regulates the
physics beyond it. In this thesis we have studied the theory and phenomenology
of two New Physics models based on gauge symmetries that are extensions of the
Standard Model group. Both of them are particularly interesting because they pro-
vide some answers to the question of the origin of flavour, which is still unexplained.
Moreover, the flavour sector represents a promising field for the research of indirect
signatures of New Physics, since after the first run of LHC we do not have any direct
hint of it yet.

The first model assumes that flavour is a gauge symmetry of nature, SU(3)3
f ,

spontaneously broken by the vacuum expectation values of new scalar fields; the
second model is based on the gauge group SU(3)c × SU(3)L × U(1)X , the simplest
non-abelian extension of the Standard Model group. We have traced the complete
theoretical building of the models, from the gauge group, passing through the non-
anomalous fermion contents and the appropriate symmetry breakings, up to the
spectra and the Feynman rules, with a particular attention to the treatment of the
flavour structure, of tree-level Flavour Changing Neutral Currents and of new CP-
violating phases. In fact, these models present an interesting flavour phenomenology,
and for both of them we have analytically calculated the contributions to the ∆F = 2
and ∆F = 1 down-type transitions, arising from new tree-level and box diagrams.

Subsequently, we have performed a comprehensive numerical analysis of the phe-
nomenology of the two models. In both cases we have found very effective the strat-
egy of first to identify the quantities able to provide the strongest constraints to
the parameter space, then to systematically scan the allowed regions of the latter
in order to obtain indications about the key flavour observables, namely the mixing
parameters of the neutral K0, B0 and Bs meson systems and the most sensitive
decay channels. The approach we have used has been oriented to the understanding
of how these models will face more precise data, considering several sample scenarios
with reduced uncertainties. In fact, the results of our work are complete patterns of
predictions ready to be compared with the experiments of the very next future, in
order to soon provide conclusive statements about the viability of the models.

Kurzfassung

In dieser Doktorarbeit studieren wir die Erweiterung der Eichgruppe des Standard-
modells der Teilchenphysik und betrachten insbesondere zwei Neue Physik Mod-
elle: Ein Modell mit geeichter Flavoursymmetrie und ein 331 Modell. Zuerst legen
wir die Theorie der Modelle von den grundlegenden Prinzipien bis zu den Feyn-
man Regeln dar. Dann untersuchen wir die Phänomenologie mit Fokus auf den
Quark-Flavoursektor: Wir berechnen die Effekte in Prozessen mit flavour-ändernden
neutralen Strömen analytisch und führen eine numerische Analyse durch. Unsere
Vorhersagen können mit den experimentellen Daten des LHC in naher Zukunft ver-
glichen werden um eine endgültige Aussage über die betrachteten Modelle liefern zu
können.
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Introduction

“Not only God does play dice, but he sometimes confuses us by throwing them where
they can’t be seen” [1]. Stephen Hawking was talking about black holes when he
made this consideration, but this seems very appropriate to comment the situation
after the first run of the Large Hadron Collider (LHC) at CERN: we know that there
should be something beyond the Standard Model (SM) of particles and interactions,
but even if we are searching better and better investigating the smallest distances
ever reached, nature is not giving us any hint of what or where yet.

On March 30, 2010, the first proton-proton collisions at a center-of-mass energy
of 7 TeV marked the beginning of a long-awaited new era in particle physics. And
the LHC did not disappoint the expectations: on July 4, 2012, the experiments
ATLAS [2] and CMS [3] announced to the world the discovery of a boson of mass
125 GeV compatible with the Higgs boson. Then, after months of prudence during
which people preferred to refer to this particle as a Higgs-like, Higgs-ish or even
Higgsy boson [4], CERN general director Rolf Heuer and CERN research director
Sergio Bertolucci considered the evidences gathered by the experiments sufficient to
break the taboo and call it ‘a’ Higgs boson. However, trying to contain the great
enthusiasm for this historical discovery and to look objectively to the things, there
is a fil rouge through all the results obtained by the LHC experiments in these first
three years of data taking: the triumph of the SM. In fact, the Higgs boson we have
found seems more and more compatible with its SM description, which is just little
more than a toy model. Moreover, not only no hints of new particles have been found,
but the measured mass of the Higgs boson seems discouraging for the most popular
extensions of the SM: it suggests that the energy scale of Supersymmetry could be
so high to make it hardly detectable at the LHC [5–7], it disfavors several types
of composite-Higgs models [8], and it seems to put in difficulty some realizations
of the Randall-Sundrum model [9–11]. Finally, on the side of precision physics,
nothing in disagreement with the SM predictions has been found (for example, the
branching ratio of the rare decay Bs → µ+µ− [12]), and the previous few weak
hints of discrepancies have been withdrawn (for example, the mixing phase in the
Bs-meson system [13]). “It is too early to despair, but there is more than enough to
start a depression!” Guido Altarelli said, commenting the first LHC results already
in 2011 [14].

The reason why this uncontested experimental success of the SM is sometimes so
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2 Introduction

frustrating is that it is well known that the SM cannot be the ultimate particle the-
ory. Of course, the most evident aspect for which the SM is incomplete is that it does
not describe everything, for example dark matter, baryogenesis, and especially grav-
ity. In fact, the SM does not include the gravitational interaction, and, even worse, it
cannot, because a quantum theory of gravity is necessarily non-renormalizable [15].
However, the absence of the gravity is not the main problem in itself, at least because
phenomenologically quantum gravitational effects are not expected to play an im-
portant role below energies around the Planck mass MPl =

√
hc/2πGN ' O(1019)

GeV, but it is just this huge energy scale that leads to a severe problem in the
SM. In fact, the energy scale of the electroweak interactions is set by the vacuum
expectation value (vev) of the Higgs boson, v ' 246 GeV. Now, differently from
gauge boson masses and fermion masses which are protected respectively by the
gauge symmetry and by an approximate chiral symmetry, the Higgs mass receives
quadratic corrections which can only be limited by introducing a new explicit high-
energy scale Λ in the theory as a cut-off. If one assumes that the SM is the only
valid theory up to the gravity energy scale, the only possible cut-off is MPl. This
means that the Higgs boson has a bare squared mass of O(1038) GeV, and that there
are quantum corrections of O(1034) GeV that bring its renormalized squared mass
to the electroweak scale. The fact that there are two huge effects from completely
different origins that cancel almost exactly each other would be extraordinary, and
usually in physics one does not believe in coincidences. This severe problem of nat-
uralness1 is known as the gauge hierarchy problem of the SM [17], and it clearly
indicates that the SM must be extended beyond the electroweak energies. Morover,
if this were not enough, there are two other serious theoretical problems of the SM,
both due to the assumption that the SM is valid up to the Planck scale: they are
the vacuum instability problem [18], confirmed this year by the determination of the
Higgs mass [19], and the cosmological constant problem [20]. In summary, the com-
munity of physicists believes that there is a more fundamental theory of particles
and interactions at the TeV scale (they generally refer to it as New Physics, NP),
which should reduce to the SM at low energies in order to explain its experimental
success.

From this point of view, the most puzzling sector of the SM is the flavour sector.
It provides predictions confirmed with incredible accuracy by experiments, within a
few percent and often much less. Yet, it has been built totally ad hoc to reproduce
the quark masses and mixing without any explanation about its origin, and its
structure is definitely not appealing, presenting 13 free parameters (to be compared
with the four parameters of the gauge sector), which span over more than five
orders of magnitude. The cornerstones of the SM flavour sector are mainly the
CKM description of quark mixing and CP violation [21,22], and the suppression of
the Flavour Changing Neutral Currents (FCNCs) through the GIM mechanism [23].
Generally NP models do not present these features, and in order to be in agreement

1We underline that in this case naturalness is not only an aesthetic criterion. Intuitively, it states
that a physical theory that is valid within a certain scale range cannot be critically influenced by
the behavior of nature at much lower distances. An enlightening discussion about naturalness
is [16].
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with the experimental constraints they need either to be pushed up to energy scales
much higher than the few TeV one would need, or to be fine-tuned. This is known
as the NP flavour problem [24]: it seems that NP presents the same flavour pattern
as the SM, and this pattern has not been identified yet because the SM does not
posses an exact flavour symmetry, but instead simply a flavour structure that could
only be learnt from data.

What we have discussed up to now shows the twofold interest in flavour: on
one hand, together with the whole Higgs sector of which it is part, it is the sector
of the SM that most urgently calls for some NP, possibly explaining its origin and
hierarchy; on the other hand, because of the absence of direct signals, the search
for indirect signatures in precision physics, with the joint efforts of the accuracy im-
provements in the predictions and the high intensity in the experiments, represents
a powerful tool to reveal NP imprints, and the present existence of a few tensions
at the level of 1-3σ in this sector is encouraging. The work presented in this thesis
explores flavour physics in both these aspects: we analyze two NP models which
pretend to explain some features of the flavour structure of the SM, in both cases
making use of extended gauge symmetries, and we study their phenomenological
predictions about the flavour observables. Gauge invariance is an elegant and pow-
erful principle in physical theories; it led to the formulation both of the theory of
electroweak interactions and of Quantum Chromodynamics, and to impressing suc-
cesses like the prediction of the W and Z bosons or the explanation of asymptotic
freedom. More generally, the success of the SM, which describes all its forces as
gauge interactions, makes the gauge invariance very appealing as a starting point
for building NP models.

The first model under consideration has been proposed by Grinstein, Redi and
Villadoro in 2010 [25]; since it is based on the assumption that flavour is a sponta-
neously broken gauge symmetry, we will call it the Gauged Flavour Symmetry (GFS)
model. The existence of three generations of fermions in the SM can be formalized
by the presence in the gauge sector of a global flavour symmetry Gf = U(3)3; of
course, since the masses and mixings of quarks distinguish flavour, this symmetry
should be broken, and in order to avoid the presence of Goldstone bosons it should
also be gauged. This idea is very fascinating as an explanation of flavour, and for
this reason it has been already explored some years ago [26–35]; nevertheless, it
has never been considered really viable because in this framework the gauge bosons
associated with the flavour gauge group generally mediate large FCNCs. However,
with the only SM fermion content the theory is anomalous, and the authors of [25]
noticed that the minimal fermion content needed to remove the anomalies automat-
ically generates a mechanism of inverted hierarchy [36–38], for which the vevs of the
flavour-breaking fields are proportional to the inverse of the SM Yukawa couplings,
so that the FCNCs will be roughly proportional to positive powers of the Yukawa
couplings, suppressing effectively flavour violating effects for the light generations.
Therefore, the GFS model presents itself as an elegant explanation of flavour as a
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fundamental symmetry of nature, with a plausible phenomenology which is definitely
worth of investigation.

The second model we study is based on the extension of the left gauge symmetry
of the SM from SU(2)L to SU(3)L; the gauge group of this class of models is then
SU(3)c × SU(3)L × U(1)X and therefore they are known as 331 models. A minimal
version of 331 models was first introduced in 1992 by Frampton [39] and Pisano and
Pleitez [40], motivated mainly by the investigation of lepton flavour violation due
to the presence of a doubly-charged gauge boson. When it was pointed out that in
this model the cancellation of anomalies does not happen within the single fermion
generation as in the SM, and that exactly three fermion generations are needed to
make the model anomaly free, it started to draw much interest. 331 models can
be concretely built in many ways: in literature, besides the minimal version, one
can find realizations with different quantum numbers, with right-handed neutrinos,
with different Higgs sectors, with supersymmetric extensions, with further discrete
symmetries and many others. In the work of this thesis we have chosen to analyze
a specific version with no exotic charges and with a particularly interesting flavour
phenomenology.

This thesis is organized as follows. In Chapter 1 we collect an updated review
about the different aspects of flavour physics that will be often treated throughout all
the rest of the work. After introducing the theoretical basics of the study of flavour
physics, in particular the Operator Product Expansion, we present a catalogue of the
relevant flavour processes in their theoretical details and experimental status. Then
we discuss the 1-3σ tensions that are present today between the SM predictions and
the experimental values of some flavour observables; finally, we introduce the concept
of Minimal Flavour Violation as a framework to recognize the flavour structure of
NP models to be the same as the one of the SM or to identify deviations from it.
Chapter 2 is devoted to the study of the GFS model. First of all we build the
model, starting from its gauge group and its non-anomalous fermion content, then
performing the appropriate symmetry breaking; we list the obtained Feynman rules
in Appendix A. Subsequently, we proceed with the phenomenological analysis: first
we investigate the parameter space in order to obtain a first rough idea of the allowed
regions and we discuss a realization of the model with a plausible sample point;
then, we move to a deeper analysis by deriving the effects on the relevant flavour
observables and studying how the model faces the flavour tensions. In Chapter 3
we treat 331 models, starting with a general theoretical presentation that covers
almost all the possible realizations. To this aim, we build the model, with its gauge
and Higgs sectors, with a generic fermion content; then we analyze in detail the
anomaly cancellation obtaining a systematic list of the possible quantum numbers
and fermion contents. Subsequently we move to analyze the specific realization that
we have chosen, which we call the 331 model: we apply to it the results that we have
obtained for the general case, drawing out at the end the Feynman rules that are
listed in Appendix B; then we focus on the flavour sector discussing the tree-level
FCNCs and their impact on the relevant flavour observables. The phenomenological



Introduction 5

analysis consists in a first step in which we constrain the parameter space making
use of the data coming from the Bd,s mixing2, and in a second step in which we
scan the allowed regions in order to verify the effects on the other observables. In
the Conclusions we summarize for each model the pattern of effects in the flavour
sector, highlighting their strong and weak aspects and how they can be tested in
order to obtain more definitive statements. The numerical quantities used in the
work as input values or for comparisons are collected in Appendix C.

2Throughout all the text we have indicated the B0 meson as Bd in order to lighten the notation.





Chapter 1

Flavour physics:
the state of the art

1.1 Theoretical tools

1.1.1 Operator Product Expansion

The interactions relevant for flavour physics are the electroweak interactions, since
they are the only ones that distinguish flavour. The hadronic processes are generated
by quark interactions; quarks are bounded into hadrons through strong interactions,
which are characterized by the typical hadronic energy scales of O(1 GeV), much
lower than the energy scale of O(mW ) characterizing the weak interactions. In
order to describe the weak interactions of quarks, one needs therefore to work at
low energies; however, the presence of these two widely separated scales makes the
calculation of the decay amplitudes from the full Hamiltonian quite complicated,
since large logarithms may appear, leading to the breakdown of ordinary pertur-
bation theory. The problem can be solved building an effective low energy theory,
and the formal framework to achieve this is known as Operator Product Expansion
(OPE) [41–43].

OPE allows to write the product of two operators in the same point of the
space-time as a convergent series of local operators; this means that one integrates
out the high-energy effects into effective low-energy operators, separating the short-
distance and long-distance contributions. The hadronic process will be described by
an effective Hamiltonian

Heff =
∑
i

Ci(µ)Qi , (1.1)

where the Qi’s are a complete basis of the local operators that govern the process,
and the Ci’s, known as Wilson coefficients, describe the strength each of them con-
tributes with. The mass µ is the energy scale that separates the effects coming from
different distances; the dependence from it cancels when one evaluates the amplitude
of the process

A(I → F ) = 〈F |Heff |I〉 =
∑
i

Ci(µ) 〈Qi(µ)〉 , (1.2)

7



8 Chapter 1. Flavour Physics

where the Ci(µ) contain the short-distance perturbative contributions, while the
long-distance effects are left as explicit degrees of freedom through the matrix ele-
ments 〈Qi(µ)〉, that are generally non-perturbative. In principle, the value of µ can
be chosen arbitrarily, but the convenient choice is of course the typical low scale of
the considered process; the standard values are O(mb) and O(mc) for the B and D
decays respectively, and O(1−2 GeV) for K decays, since O(mK) would be too low
for perturbative calculations; as a result, the Wilson coefficients usually include the
contributions from the top quark, the W and Z bosons, and all the possible heavier
NP particles.

The calculation of the Wilson coefficients is performed in the context of ordinary
perturbation theory through the matching of the full theory into the effective theory,
i.e. imposing the amplitude in the full theory to be reproduced by the correspond-
ing amplitude in the effective one. Since for low energy processes the scale µ is
small, the large logarithms ln(mW/µ) are compensated by the smallness of αs(µ) in
the evaluation of Ci(µ); the resummation of the large logarithms can be efficiently
performed using the renormalization group methods.

On the other hand, the matrix elements 〈Qi(µ)〉 are evaluated by means of non-
perturbative methods, such as lattice calculations, 1/N expansion, QCD sum rules,
chiral perturbation, heavy-quark effective theory and so on.

Exhaustive treatments about the construction of the effective low-energy theories
for weak interactions can be found for example in [44] for a formal review, and [45]
for a didactical appoach.

1.1.2 Penguin-Box Expansion

As we have discussed, it is standard to set the OPE scale µ at values ofO(1−5 GeV).
However, if the aim is to expose the short distance structure of flavour physics and in
particular the NP contributions, it is more useful to choose a scale µH ∼ O(MW ,mt),
as high as possible but still low enough so that below it the physics is fully described
by the SM [46]. In this case the relevant Wilson coefficients are obtained as

Ci(µ) =
∑
j

Uij(µ, µH)Cj(µH) , (1.3)

where Uij(µ, µH) are the elements of the renormalization group evolution matrix,
and the coefficients Cj(µH) are the ones found in the process of matching the full and
the effective theory; the latter will be a linear combination of certain loop functions
Fk

Cj(µH) = gj +
∑
k

hjkFk(mt, ρNP), (1.4)

which will derive from the calculations of penguin and box diagrams containing the
top quark and possible NP particles, and hence will depend on the parameters ρNP

of the NP model; the other SM contributions will be contained in the constant term.
As a consequence, the process amplitude will take the form

A(I → F ) = P0(I → F ) +
∑
k

Pk(I → F )Fk(mt, ρNP) , (1.5)
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in which the coefficients Pi collect different contributions:

Pi(I → F ) ∝ V i
CKMBiη

i
QCD , (1.6)

where V i
CKM denote the relevant combinations of elements of the flavour matrix, ηiQCD

stand symbolically for the renormalization group factors coming from Uij(µ, µH),
and Bi are non-perturbative parameters deriving from the hadronic matrix elements
〈Qi(µ)〉.

The advantages of this approach, known as penguin-box expansion [47], become
evident when one considers the properties of the contributions involved.

• In the SM, since the only source of flavour and CP violation is the mass matrix,
which has been factored out, the master functions Fi are universal (i.e., process
independent), and real.

• As there are no right-handed charged current weak interactions, in the SM
only certain number of local operators is present, and hence only a particu-
lar set of parameters Bi is relevant. Similarly, if a careful treatment of the
QCD corrections is performed, the factors ηiQCD can be calculated within the
SM independently from the choice of the operator basis in the effective weak
Hamiltonian. In conclusion, the Pi coefficients are process dependent, but they
depend only on the operator structure of the model.

The master functions, which we have generically called Fi, often known as Inami-
Lim functions [48], are obtained from the calculation of the penguin diagrams
(they are commonly known as C(mt, ρNP) for the Z-penguin, D(mt, ρNP) for the
γ-penguins, D′(mt, ρNP) for the γ-magnetic penguin, E(mt, ρNP) for the gluon pen-
guin, E ′(mt, ρNP) for the chromomagnetic penguin), and box diagrams (S(mt, ρNP)
for ∆F = 2 transitions, Bνν̄(mt, ρNP) and B`+`−(mt, ρNP) for ∆F = 1 transitions);
the functions C, D, Bνν̄ , B`+`− are gauge dependent, and are combined into the
gauge-independent functions X(mt, ρNP), Y (mt, ρNP), Z(mt, ρNP). The result is a
set of seven gauge independent functions which govern the FCNC processes, given by
S, X, Y , Z, E, D′, E ′; the subscript ‘0’ is used to indicate when these functions do
not include QCD corrections, but in many cases these corrections at various orders
have been calculated. The expressions for all the master functions at the leading
order in the SM can be found in [45].

1.2 Relevant processes

1.2.1 ∆F = 2 transitions

Formalism of the oscillation of neutral mesons

The systems of neutral meson-antimeson M − M̄ are described as a two-state quan-
tum system governed by the non-hermitian Hamiltonian

H = M− iΓ =

(
M11 − i

2
Γ11 M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12 M11 − i

2
Γ11

)
, (1.7)
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where M21 = M∗
12, Γ21 = Γ∗12 for the hermiticity of M,Γ, and M22 = M11, Γ22 = Γ11

for the CPT invariance; this kind of effective hamiltonian can describe the mix-
ing and the decay of the mesons. In fact, it can be derived in the context of the
Wigner-Weisskopf approximation [49], which permits to obtain from the fundamen-
tal hermitian Hamiltionian H of the system of the mesons plus the final states f the
effective non-hermitian Hamiltonian H for the systems of the mesons, with

Mij = mMδij + 〈i|H |j〉+ PV
∑
f

〈i|H |f〉 〈f |H |j〉
mM − Ef

, (1.8a)

Γij = 2π
∑
f

δ(mM − Ef ) 〈i|H |f〉 〈f |H |j〉 . (1.8b)

Now, M, M̄ mix into the eigenstates of mass and width ML,MS:

|ML,S〉 = p |M〉 ± q
∣∣M̄〉 with

p

q
=

√
M12 − i

2
Γ12

M∗
12 − i

2
Γ∗12

, (1.9)

whose eigenvalues are

µL,S =

(
M11 −

i

2
Γ11

)
±Q with Q =

√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ∗12

)
.

(1.10)
Introducing the formal quantities

mL,S = Re(µL,S) = M11 ± ReQ , ΓL,S = −2 Im(µL,S) = Γ11 ∓ 2 ImQ , (1.11a)

m =
mL +mS

2
= M11 , Γ =

ΓL + ΓS
2

= Γ11 , (1.11b)

∆M = mS −mL = 2 ReQ , ∆Γ = ΓL − ΓS = −4 ImQ , (1.11c)

the time evolution of the meson states reads

|M(t)〉 = g+(t) |M〉+
q

p
g−(t)

∣∣M̄〉 , (1.12a)∣∣M̄(t)
〉

=
p

q
g+(t) |M〉+ g−(t)

∣∣M̄〉 , (1.12b)

where

g±(t) = e−imte−
Γ
2
t

(
cos

∆M t

4
cosh

∆Γ t

4
± i sin

∆M t

4
sinh

∆Γ t

4

)
; (1.13)

the interpretation of these expressions is clear: starting from a pure M (M̄) state, of
mass m, this self-interacts making transitions to M̄ (M) with oscillations governed
by the quantity ∆M , and meanwhile the mixing of states decays according to the
parameter Γ.

In general ML, MS are not CP eigenstates: this would be true only if |p| = |q|,
i.e. if the phase

φ = arg

(
−M12

Γ12

)
(1.14)
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were zero; we will see that the quantity ∆Γ is linked to this phase.
What we have discussed until now can be applied to all the systems of neutral

mesons. For a specific system one can apply approximations due to the hierarchy of
the parameters and consider the relevant CP-violating observables; in the following
we are going to analyze the meson systems which will be considered in this work.

• K0 − K̄0 system

For this system, experimentally one finds that |p/q| ∼ 1 +O(10−3), and hence
ImMK

12 � ReMK
12 , ImΓK12 � ReΓK12; in the SM this is due to the hierarchy of the

Yukawa matrix elements. These relations imply that one can write explicitly

∆MK ' 2 ReMK
12 , ∆ΓK ' 2 ReΓK12 , (1.15)

obtaining the observable quantities as functions of the entries of the effective
Hamiltonian.

As regards the CP violation in the kaon system, it is well known that the mass
eigenstates KS and KL preferably decay to 2π and 3π respectively, and that
the violation of this rule is a proof of indirect CP violation1. As a consequence,
a relevant quantity to charachterize the CP violation in the K0 − K̄0 system
is

εK ≡
〈(ππ)I=0|KL〉
〈(ππ)I=0|KS〉

, (1.16)

where selecting the states with zero strong isospin one eliminates the depen-
dance from phase conventions [50]. Following the non-trivial derivation of [50],
and including the most recent computations (see for example [51]), the theo-
retical formula for εK reads

εK = eiϕεκε
ImMK

12

2
√

2 ReMK
12

, (1.17)

where ϕε and κε parametrize the corrections due to the dropping of some
small phases and contributions to the approximate formula; moreover, in order
to reduce the amount of error, in this formula one can substitute the term
2 ReMK

12 with the experimental value of ∆MK .

• Bq − B̄q systems

In the case of the Bd and the Bs systems, experimentally the hierarchy |Γq12| �
|M q

12| (q = d, s) is found instead; this implies

∆Mq ' 2|M q
12| , ∆Γq ' 2|Γq12| cosφq (1.18)

for the relations between the observables and the effective Hamiltonian.

1This kind of CP violation is called indirect as it does not proceed via explicit breaking of the
CP symmetry in the decay itself, but via the mixing of states with opposite CP parity into the
initial state.
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For the study of CP violation in these systems, it is interesting to consider the
decays to a final state f , CP eigenstate with eigenvalue ηf , which is accessible
to both Bq and B̄q mesons (for a recent review, see [52]). In these cases one
can introduce the key quantity

λf =
q

p

〈
f |B̄q

〉
〈f |Bq〉

, (1.19)

which permits to estimate the CP violations

Adir
f =

1− |λf |2

1 + |λf |2
, Amix

f = − 2 Imλf
1 + |λf |2

, (1.20)

where the first one is non-vanishing in presence of CP violation in the oscil-
lation Bq − B̄q, while the second is non-vanishing in presence of CP violation
in the interference between the two possible decay channels Bq → f and
Bq → B̄q → f . These quantities are experimentally accessible through the
measurement of the time-dependent asymmetry

aCP(t) ≡ Γ(B̄q(t)→ f)− Γ(Bq(t)→ f)

Γ(B̄q(t)→ f) + Γ(Bq(t)→ f)
, (1.21)

which can be written as

aCP(t) = −
Adir
f cos(∆Mq t) +Amix

f sin(∆Mq t)

cosh
(

∆Γq t

2

)
− 2 Reλf

1+|λf |2
sinh

(
∆Γq t

2

) . (1.22)

In the Bq decays dominated by the b → cc̄s transition, one has simply λf =
ηfe
−iφq ; therefore Adir

f = 0, and it is common to denote the mixing-induced
CP asymmetry as Sf ; it reads simply

Sf ≡ Amix
f = ηf sinφq (1.23)

and permits to access directly to the phase φq.

Theoretical predictions and experimental status

The absorptive part of the ∆F = 2 effective Hamiltonian H, Γ12, is hardly affected
by NP effects in most of the models beyond the SM, since it receives contributions
only from on-shell transitions; moreover, its phase can be considered negligible for
all purposes. On the other hand, the dispersive part of H, M12, is sensitive to new
short distance dynamics, and hence the most interesting observables under the NP
point of view are the ones that depend on its modulus and phase, namely the mass
differences and the CP-violating parameters that we have presented. At the leading
order M12 is just the matrix element of the ∆F = 2 M −M̄ transition Hamiltonian:

MM
12 =

〈M |H∆F=2
eff

∣∣M̄〉
2mM

, (1.24)
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normalized to the meson mass. In the OPE formalism, the most general effective
hamiltonian for the ∆F = 2 transitions can contain eight different local operators:

H∆F=2
eff =

G2
F

16π2

8∑
i=1

Ci(µ)Qi , (1.25)

QVLL
1 = (q̄αi γµPLq

α
j )(q̄βi γ

µPLq
β
j ) , QVRR

1 = (q̄αi γµPRq
α
j )(q̄βi γ

µPRq
β
j ) , (1.26a)

QLR
1 = (q̄αi γµPLq

α
j )(q̄βi γ

µPRq
β
j ) , (1.26b)

QLR
2 = (q̄αi PLq

α
j )(q̄βi PRq

β
j ) , (1.26c)

QSLL
1 = (q̄αi PLq

α
j )(q̄βi PLq

β
j ) , QSRR

2 = (q̄αi σµνPRq
α
j )(q̄βi σ

µνPRq
β
j ) , (1.26d)

QSLL
2 = (q̄αi σµνPLq

α
j )(q̄βi σ

µνPLq
β
j ) , QSRR

1 = (q̄αi PRq
α
j )(q̄βi PRq

β
j ) , (1.26e)

with α, β being color indices and σµν = 1
2

[γµ, γν ].
In the SM only the operator QVLL

1 contributes, and the calculation of its matrix
element and its Wilson coefficient gives, for the considered mesons,

(MK
12)∗SM =

G2
F

12π2
F 2
KB̂KmKm

2
W

[
(V ∗csVcd)

2η1S0(xc)

+(V ∗tsVtd)
2η2S0(xt) + 2(V ∗tsVtd)(V

∗
csVcd)η3S0(xt, xc)

]
, (1.27a)

(M q
12)∗SM =

G2
F

12π2
F 2
BqB̂BqmBqm

2
W (V ∗tbVtq)

2ηBS0(xt) . (1.27b)

The Wilson coefficients contain two non-trivial contributions. The first one con-
sists in the Inami-Lim functions S0, which are the loop functions obtained from the
calculations of the two box diagrams that generate the M−M̄ transition in the SM;
S0(xt) is the dominant contribution, and the contributions from the charm quark
are totally negligible for the Bq mesons. The second is represented by the factors ηi;
they contain the corrections obtained from the QCD evolution from the scale mW to
the hadronic scales that characterize the meson systems; they have been evaluated
at NLO [53–57] and some of them at NNLO [58,59].

The matrix element 〈M |QV LL
1 (µ)

∣∣M̄〉 implies the appearance of the non-per-

turbative factors FM and B̂M ; they represent the largest source of error in the SM
predictions of the ∆F = 2 observables. While the decay constants are already known
with good precision (1-3%), in the very last years significant improvements have been
reached also for the other parameters [60–64]: the accuracy of B̂K has been lowered

below the 3%, and in the B sector the best results are in the combinations FBq

√
B̂q

(5%) and ξ = (FBs
√
B̂s)/(FBd

√
B̂d) (less than 3%).

Concerning the CP violation in the Bd, Bs systems, the expression in Eq. (1.27b)
shows that in the SM the phases of Md

12 and M s
12 are given only by the contributions

of Vtd and Vts respectively, and hence their measurement through the mixing induced
CP-asymmetries Sf provides direct access to the angles β and βs of the unitarity
triangles. The golden modes for the measurements of these phases are respectively
B → J/ψKS and B → J/ψ φ, because of their clean experimental signatures. In
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presence of NP effects on M q
12, separating in the new contributions the modulus CBq

and the phase φq according to

M q
12 = |(M q

12)SM | e2iβ(s)CBqe
2iϕq , (1.28)

the expressions of the CP-asymmetries are modified2:

SψKS = sin(2β + 2ϕd) , Sψϕ = sin(2|βs| − 2ϕs) . (1.29)

These expressions can be interpreted in two ways when compared with experiments:
on one hand, possible deviations of the experimental data from the SM prediction in
these quantities can be attributed to NP phases; on the other hand, the agreement
of the SM predictions of these observables with the experimental measurements
would not exclude completely the presence of NP phases, since they could instead
modify the extraction of the angles of the unitarity triangles. An example of the
last possibility can be found in the so-called 2HDMMFV (see Sec. 1.4.3).

Experimentally [65], the ∆F = 2 observables in the K sector are know with
very high precision: the values of ∆MK and |εK | present uncertainties of the 0.1%
and 0.5% respectively. In the B sector, also the mass differences ∆Md and ∆Ms are
known within errors of less than 1%; as regards the mixing-induced CP asymmetries,
while for SψKS we can count on a moderate uncertainty of the 3.4%, the experimental
estimation of Sψφ has been very debated in the last years (see Sec. 1.3.3), but
recent measurements can be considered reliable even if they still present a huge
uncertainty [66].

The like-sign dimuon charge asymmetry

We conclude analyzing an observable involving ∆Γ that is particularly interesting
today due to the discrepancy between its SM prediction and its first experimental
determinations. The like-sign dimuon charge asymmetry Absl for semileptonic decays
of b hadrons produced in proton-antiproton collisions is defined as

Absl =
N++
b −N−−b

N++
b +N−−b

, (1.30)

where N++
b and N−−b are the numbers of events containing two b hadrons that

decay semileptonically via b → µX, producing two positive or two negative muons
respectively. It can be expressed as [67]

Absl =
fdZda

d
sl + fsZsa

s
sl

fdZd + fsZs
, (1.31)

where Zq are functions of the Bq mixing parameters Γq,∆Mq and ∆Γq, the quantities
fq are the production fractions for b̄→ Bq, and aqsl is the charge asymmetry for the

2We recommend to be careful not to confuse the similar symbols φq, which indicates the total
phase of Mq

12, and ϕq, which is only the possible NP contribution to that phase.
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“wrong-charge” (i.e. a muon charge opposite to the charge of the original b quark)
semileptonic Bq-meson decay induced by oscillation:

aqsl =
Γ(B̄q(t)→ µ+X)− Γ(Bq(t)→ µ−X)

Γ(B̄q(t)→ µ+X) + Γ(Bq(t)→ µ−X)
; (1.32)

the latter is time-independent, and can be written as

aqsl =
∆Γq
∆Mq

tanφq . (1.33)

In this way, substituting the experimental values, the like-sign dimuon charge asym-
metry reads [68,69]

Absl = (0.532± 0.039)adsl + (0.468± 0.039)assl , (1.34)

showing explicitly the dependence on the relevant parameters ∆Γq and φq.
The most recent determination of the like-sign dimuon asymmetry, obtained in

2010 in 6.1 fb−1 of pp̄ collisions recorded with the D0 detector at a center-of-mass
energy

√
s = 1.96 TeV [70], differs by 3.2σ from the SM prediction [71].

1.2.2 ∆F = 1 transitions

The OPE effective Hamiltonian for the ∆F = 1 transitions di → dj is

H∆F=1
eff =

4GF√
2

∑
i=1

Ci(µ)Qi , (1.35)

Q
(′)
1 = (d̄αi γµPL(R)q

α)(q̄βγµPL(R)d
β
j ) , Q

(′)
2 = (d̄αi γµPL(R)q

β)(q̄βγµPL(R)d
α
j ) ,

(1.36a)

Q
(′)
3 = (d̄αi γµPL(R)d

α
j )
∑
q

(q̄βγµPLq
β) , Q

(′)
4 = (d̄αi γµPL(R)d

β
j )
∑
q

(q̄βγµPLq
α) ,

(1.36b)

Q
(′)
5 = (d̄αi γµPL(R)d

α
j )
∑
q

(q̄βγµPRq
β) , Q

(′)
6 = (d̄αi γµPL(R)d

β
j )
∑
q

(q̄βγµPRq
α) ,

(1.36c)

Q
(′)
7 = (d̄iσµνPL(R)dj)F

µν , Q
(′)
8 = (d̄iσµνT

aPL(R)dj)G
µν a , (1.36d)

Q
(′)
9 = (d̄iγµPL(R)dj)(¯̀γµ`) , Q

(′)
10 = (d̄iγµPL(R)dj)(¯̀γµγ5`) , (1.36e)

Q
(′)
S = (d̄iPL(R)dj)(¯̀̀ ) , Q

(′)
P = (d̄iPL(R)dj)(¯̀γ5`) . (1.36f)

The operators that are most sensitive to NP are the magnetic (Q
(′)
7 ), chromomagnetic

(Q
(′)
8 ), semileptonic (Q

(′)
9 and Q

(′)
10), scalar (Q

(′)
S ) and pseudoscalar (Q

(′)
P ) penguins3.

3 In principle there are also tensor penguins, QT (5) = (d̄iσµνdj)(¯̀σµν(γ5)`), which could be
relevant for some observables.
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Bd,s → µ+µ−

These decays are of particular interest among the electroweak penguin processes,
because in the SM they presents a double suppression, due to the FCNC transition
and to the chirality suppression; moreover, beyond SM they are dominated by scalar
and pseudoscalar operators, and hence they are particularly sensitive to the exchange
of new scalar and pseudoscalar particles; several NP models, especially those with
an extended Higgs sector, can significantly enhance the branching ratios even in the
presence of other existing constraints.

The branching fraction can be expressed as [72–74]

B(Bq → µ+µ−) =
G2
Fα

2

64π3
FBqτBqm

3
Bq |V

∗
tqVtb|2

√
1−

4m2
µ

m2
Bq

×

{(
1−

4m2
µ

m2
Bq

)
|CS − C ′S|2 +

∣∣∣∣(CP − C ′P ) + 2
mµ

mBq

(C10 − C ′10)

∣∣∣∣2
}

, (1.37)

and within the SM the Wilson coefficients CS and CP are negligibly small, while
the dominant contribution of C10 is helicity suppressed, so that the branching ratio
becomes [75]

B(Bq → µ+µ−)SM =
G2
Fα

16π3 sin4 θW
FBqτBqmBqm

2
µ

√
1−

4m2
µ

m2
Bq

∣∣V ∗tqVtb∣∣2 Y (xt) , (1.38)

where Y (xt) is the relevant loop function obtained through the calculation of the
penguin diagrams. The decay constraints FBq represent the main source of error in
the SM prediction, but as we have discussed there has been significant progress in
the computation of these quantities in recent years.

Also recently more theoretical improvements have been made in the comprehen-
sion of the Bs → µ+µ− decay channel in particular. First of all, experimentally the
measured branching fraction is the time-averaged branching fraction, which, as first
pointed out by [76–78], differs from the theoretical value because of the sizable width
difference between the heavy and light Bs mesons. This requires the introduction
of a correction factor:

B(Bs → µ+µ−)theor =
1− y2

s

1 + A∆Γys
B(Bs → µ+µ−)exp , (1.39)

with ys = τBs∆Γs/2 ' 0.088, and

A∆Γ =
|P |2 cos(2 arg(P )− ϕs)− |S|2 sin(2 arg(S)− ϕs)

|P |2 + |S|2
, (1.40)

where P and S are combinations of the Wilson coefficients and ϕs is the possible
NP phase in the Bs mixing; A∆Γ can deviate from 1 beyond SM for the presence
of scalar and pseoduscalar operators and new phases. It is a matter of choice to
include the correction factor in the experimental value or in the theoretical calcu-
lation, provided this factor is not significantly affected by NP; including it in the
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Figure 1.1: First signal of the Bs → µ+µ− decay, observed by the LHCb Collabora-
tion [12]: invariant mass distribution of the selected Bs → µ+µ− candidates (black
dots) in the combined 2011+2012 dataset. The result of the fit is overlaid (blue
solid line) and the different components detailed: Bs → µ+µ− (red long dashed),
Bd → µ+µ− (green medium dashed), Bd,s → h+h′− (pink dotted), Bd → π−µ+νµ
(black short dashed) and B

(+)
d → π0(+)µ+µ− (light blue dot dashed), and the com-

binatorial background (blue medium dashed).

experimental branching ratio one can preserve some correlations like the ones of
CMFV [79] (see Sec. 1.4.2). Moreover, it is possible to define a CP-asymmetry Ssµµ
analogous to SψKS and Sψφ:

Ssµµ =
|P |2 sin(2 arg(P )− ϕs)− |S|2 cos(2 arg(S)− ϕs)

|P |2 + |S|2
, (1.41)

which is zero in the SM; both A∆Γ and Ssµµ are accessible in the near future providing
additional tests of NP models [80].

The first measurement of the branching fraction ofBs → µ+µ−, shown in Fig. 1.1,
represents one of the most important results achieved by LHCb in the first LHC
run [12,81]. Using data collected in 2011 and 2012, consisting of 1.0 fb−1 of proton-
proton collisions at

√
s = 7 TeV and 1.1 fb−1 at

√
s = 8 TeV, they have measured

the signal with a significance of 3.5σ. Their value is well compatible with the SM
prediction, putting an end to the long-pursued hopes of possible excesses. At the
same time, LHCb has also set a new upper bound for Bd → µ+µ−.

B̄→ Xsγ

The inclusive channel B̄ → Xsγ is considered particularly interesting because it
provides generally a very strong constraint on extensions of the SM; in fact, the
present experimental measurements have the fair accuracies of about 10% [65], that
is of the same size as the availble QCD corrections to the perturbative decay width



18 Chapter 1. Flavour Physics

Γ(b → sγ), and larger than the known nonperturbative corrections to the relation
Γ(B̄ → Xsγ) ' Γ(b→ sγ) [82].

The effective Hamiltonian of the b → sγ transitions receives the contributions
from the four-fermion operators Q1 . . . Q6 and from the magnetic penguins Q7, Q8.
The magnetic γ-penguin plays the crucial role in this decay, but the role of the
dominant current-current operator Q2 is very important too, since the short dis-
tance QCD effects involving in particular the mixing between Q2 and Q7 enhance
the Wilson coefficient C7(µb) significantly, so that the final branching ratio turns
out to be by a factor of 3 higher than it would be at LO. A peculiar feature of
the renormalization group analysis in B̄ → Xsγ is that the mixing under infinite
renormalization between the set Q1 . . . Q6 and the operators (Q7, QG) vanishes at
the one-loop level [45]; consequently, in order to calculate the coefficients C7(µb)
and C8(µb) in the leading logarithmic approximation, two-loop calculations are nec-
essary. The corresponding NLO analysis requires the evaluation of the mixing in
question at the three-loop level. Because of this peculiar feature, the first fully cor-
rect calculation of the leading anomalous dimension matrix relevant for this decay
was obtained only in 1993 [83,84], and the NLO correction in 1996 [85].

Going beyond the SM, also the primed operators Q′7, Q′8 could be present. The
prediction for the B̄ → Xsγ branching ratio in the presence of arbitrary NP con-
tributions to the Wilson coefficients C

(′)
7 , C

(′)
8 can be well approximated by the

expression [86]

B(B̄ → Xsγ)

B(B̄ → Xsγ)SM

' 1 + â77

(∣∣CNP
7

∣∣2 +
∣∣C ′NP

7

∣∣2)+ â88

(
|CNP

8 |2 + |C ′NP
8 |2

)
+ Re

(
â7C

NP
7

)
+ Re

(
â8C

NP
8

)
+ Re

(
â78

[
CNP

7 C∗NP
8 + C ′NP

7 C ′ ∗NP
8

])
, (1.42)

where âi are fixed complex numbers and the Wilson coefficients have to be evaluated
at a scale µ = 160 GeV. The primed Wilson coefficients C ′7, C ′8 cannot interfere
with the SM contributions to C7, C8 in the branching ratio of this inclusive decay,
therefore they appear only quadratically, while the NP contributions to the unprimed
coefficients also appear linearly. NP contributions to C7, C8 are thus expected to be
more strongly constrained than contributions to C ′7, C ′8 . However, If CNP

7 and CNP
8

are complex, the constraint from B(B̄ → Xsγ) can be relaxed to a large extent [87].
For a recent review about the last developments see e.g. [88], while the most recent
experimental determination can be found in [89].

B→ Xsνν̄

The rare transition b → sνν̄ allows a transparent study of Z-penguin and other
electroweak penguin effects in NP scenarios in the absence of scalar and magnetic
penguin contributions that are often dominating in the b→ s`+`− and b→ sγ tran-
sitions, as we have just discussed in the previous two sections. The most interesting
decays containing this transition are the B → Xsνν̄ inclusive channel and the exclu-
sive channels B → K(∗)νν̄; while the only observables in B → Xsνν̄ and B → Kνν̄
are the respective branching ratios, the angular distribution of the K∗ decay prod-
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ucts in the B → K∗(→ Kπ)νν̄ decay allows to extract additional information about
the polarization of the K∗.

With an estimated uncertainty of less than 10%, the inclusive channel B →
Xsνν̄ has the theoretically cleanest branching ratio as it does not involve any form
factors (see [90] for a recent analysis). It is useful to normalize this quantity to the
semileptonic rate B → Xceν̄, that is experimentally well known, in order to reduce
the uncertainties due to the CKM matrix elements and to powers of mb. In the SM,
the expression of this ratio reads

B(B → Xsνν̄)

B(B → Xceν̄)
=

3α2

4π sin4 θW

κ(0)

f(z)κ(z)

|Vts|2

|Vcb|2
X2(xt) , (1.43)

where f(z) is the phase space factor in B → Xceν̄, κ(z) is the QCD correction to
the semileptonic decay, κ(0) represents the QCD correction to the matrix element of
the b → νν̄ transition due to virtual and bremsstrahlung contributions, and X(xt)
is the relevant loop function; all these contributions are known with good precision.

None of these three rare decays has been observed yet, and the present experi-
mental upper bounds on their branching ratios, obtained by ALEPH [91], are still
far above the SM predictions.

K→ πνν̄

The K+ → π+νν̄ and KL → π0νν̄ decays are the theoretically cleanest processes
among the many rare K and B decays (see [92] for a recent review). Both decays,
in particular the neutral mode that in the SM is purely induced by direct CP viola-
tion, are known to offer unique possibilities to test the structure of flavour and CP
violation in extensions of the SM.

The branching fractions of the two channels, as in the previous case normalized
to an experimentally well known semileptonic rate in order to reduce the theoretical
errors, are [93,94]

B(K+ → π+ν̄ν)

B(K+ → π0e+ν)
=

(
rK+

3α2|Vus|2

2π2 sin4 θW

)
×

[(
Im(V ∗tsVtd)

|Vus|5
X(xt)

)2

+

(
Im(V ∗csVcd)

|Vus|
P0(X) +

Re(V ∗tsVtd)

|Vus|5
X(xt)

)2
]
, (1.44)

B(KL → π0ν̄ν)

B(K+ → π0e+ν)
=

(
rKL

τKL
τK+

3α2|Vus|2

2π2 sin4 θW

)(
Im(V ∗tsVtd)

|Vus|5
X(xt)

)2

, (1.45)

where rK+ , rKL summarize the isospin-breaking corrections from the original decay
to the reference semileptonic one, due to quark mass effects and electroweak radiative
corrections, while X(xt) is the relevant loop function, and P0(X) is its analogue that
accounts for contributions from charm and light quark loops.

On the experimental side, for the charged mode a few candidate events have been
reported by the E787 and E949 experiments at BNL [95], while only a very loose
upper bound from the E391a experiment at KEK exists for the neutral mode [96].
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The central value of the measured branching ratio of K+ → π+νν̄ is a factor of 2
above the SM prediction, but it is perfectly consistent with the SM, given the large
experimental error at present. In the near future the NA62 experiment at CERN
and the K0TO experiment at JPARC will aim to improve the sensitivity for the
charged and neutral channels respectively.

1.3 Tensions in flavour observables

1.3.1 The εK − SψKS
tension

Using the unitarity of the CKM matrix, in the SM the expression of εK can be
rewritten with a reduced number of CKM elements as

|εK |SM = κε
G2
FF

2
KB̂KmKm

2
W

6
√

2π2∆MK

|Vcb|2|Vus|2

×
(

1

2
|Vcb|2R2

t sin 2β η2S0(xt) +Rt sin β(η3S0(xc, xt)− η1xc)

)
, (1.46)

where Rt is a side of the unitarity triangle, determinable with small uncertainty as

Rt ≡
|V ∗tbVtd|
|V ∗cbVcd|

=
ξ

|Vus|

√
mBs

mBd

√
∆Md

∆Ms

; (1.47)

in this way, the CKM dependence of εK is in |Vus|, |Vcb|, which are fixed by tree-level
processes, and in the angle β of the unitarity triangle.

Recently the uncertainty on the SM prediction of εK , due to the improvements
in the calculation of the corrections and in the accuracy of the non-perturbative
parameters, has been reduced down to roughly the 15% [59]. This has led to notice
[51, 97–99] that, using for β the value obtained from the measurement of SψKS in
the SM frame, the predicted value of εK is about 2σ below its experimental value.

Now, believing that this tension is due to the presence of some NP, if the latter
is present into εK or into Sψφ depends on the values of the other two tree-level-
determined parameters of the CKM matrix, namely |Vub| and γ. In fact, the Rt side
can be written as

Rt =

√
1 +

[(
1− |Vus|

2

2

)
1

|Vus|
|Vub|
|Vcb|

]2

− 2

(
1− |Vus|

2

2

)
1

|Vus|
|Vub|
|Vcb|

cos γ , (1.48)

which in the SM should be in agreement with the value obtained from the experi-
ments and lattice according to Eq. (1.47). However, the present measurement of γ is
affected by a large uncertainty [65], while the determination of |Vub| is controversial.

1.3.2 The determination of Vub

The modulus of the CKM matrix element Vub can be determined at tree level through
the transition b → u`ν̄. However, considering the inclusive decay B → Xu`ν̄, one
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Scenario 1 Scenario 2
Experiment|Vub| = 3.23(31)× 10−3 |Vub| = 4.41(32)× 10−3

1015 ∆MK (GeV) 3.05(43) 3.04(43) 3.484(5)
1013 ∆Md (GeV) 3.65(40) 3.69(41) 3.337(33)
1011 ∆Ms (GeV) 1.25(14) 1.26(14) 1.164(5)
103 |εK | 1.72(24) 2.25(32) 2.228(11)
SψKS 0.646(24) 0.827(31) 0.676(21)
Sψφ 0.034(1) 0.046(2) −0.001(105)
104 B(B+ → τ+ν) 0.62(14) 1.02(20) 1.15(23)

Table 1.1: SM predictions of the relevant observables in the two |Vub| scenarios,
compared with their experimental values.

has the difficulty of the large B → Xc`ν̄ background; on the other hand, for the
exclusive channels, like B → π`ν̄, the form factors have to be known. A result of
these complications is that the present determinations of |Vub| from inclusive and
exclusive decays show a discrepancy of about 4σ [65].

As we have discussed in the previous section, the value of Vub influences sensibly
the balance of the |εK | − SψKS relation. In this context, taking for |Vub| the aver-
age between the inclusive and the exclusive determination, with a huge uncertainty,
would wash out any kind of indication from this tension of precision observables. A
more useful approach is to assume that, instead of being both far from the actual
value of |Vub|, in the future only one between its inclusive and the exclusive deter-
minations will reveal itself to present some large error. As a consequence, we are
led to consider two limiting scenarios:

• Scenario 1: Exclusive (small) |Vub|.
Setting the tree-level-determined parameters |Vus|, |Vcb|, γ to their central
values, and using as the fourth independent input of the CKM matrix the
exclusive value of |Vub|, the unitarity of the CKM matrix permits to determine
the value of β. Using the latter, one finds that SψKS is in agreement with data,
while |εK | is well below its experimental measurement.

As discussed in [98, 99], a sizeable constructive NP contribution to εK would
not require an increased value of sin 2β relative to the experimental value of
SψKS . NP of this type would then remove the εK − SψKS anomaly in the
presence of the exclusive value of |Vub|.

• Scenario 2: Inclusive (large) |Vub|.
Exploiting as in the previous case the unitarity of the CKM matrix to derive β,
using the inclusive determination of |Vub| one obtains this time that |εK | is in
good agreement with data, while SψKS is significantly above its experimental
value.

As shown in [97, 98], a negative NP phase ϕd in the Bd mixing would solve
the εK − SψKS tension in this case, since sin 2β would be larger than SψKS ,
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implying a higher value on |εK |, in reasonable agreement with data, and a
better fit of the unitarity triangle.

This kind of analysis imply that the structure of a certain NP model could prefer
a specific determination of |Vub|; then, the correlated effects on other observables,
especially ∆Ms,d, would represent a powerful test for such a model. This will be
the case of the two models studied is this work: we will show that the GFS model
selects the Scenario 1, while the 331 model selects the Scenario 2.

In Tab. 1.1 we report the SM predictions for the crucial flavour observables that
are sensitive to |Vub| in the two scenarios; the request of the agreement with the
experiment values will guide the analysis of the NP models.

1.3.3 More discrepancies and anomalies

∆Md,s versus εK

Using the most recent lattice inputs, it results that the SM predictions for both ∆Md

and ∆Ms are slightly above the data, of about 1σ once the hadronic uncertainties
have been taken into account. While this is not a severe discrepancy in itself, it
can become more problematic when also εK is considered. In fact, ∆Md,s are often
correlated with εK in NP models, and if an enhancement of |εK | is required, as in
the case of the |Vub| Scenario 1, the weak agreement of ∆Md,s with experiment could
be worsened. As we will discuss in Sec. 1.4.2 and Sec. 2.3.2 respectively, this is the
case of models with CMFV and of the GFS model.

The anomalous like-sign dimuon asymmetry

As we have anticipated in Sec. 1.2.1, the experimental value of Absl differs by 3.2σ
from it SM prediction. In [69] a detailed model-independent analysis of NP in the
Bd,s − B̄d,s mixing has been performed; it has been found that in order to reconcile
Absl with its experimental value, accounting at the same time the constraints coming
from Sψφ, NP is required not only in Md,s

12 , but also in Γd,s12 .

The anomaly in B(B→ D(∗)τν)/B(B→ D(∗)`ν)

Based on its full data sample, in 2012 BaBar reported its improved measurements
of the ratios R(D(∗)) = B(B → D(∗)τν)/B(B → D(∗)`ν), with ` = e, µ [100]. With
the last updates [101], their results are

R(D)exp = 0.440± 0.058± 0.042 , R(D∗)exp = 0.332± 0.024± 0.018 , (1.49)

that exceed the SM predictions [102]

R(D)SM = 0.297± 0.017 , R(D∗)SM = 0.252± 0.003 , (1.50)

by 2.0σ and 2.7σ respectively; altogether, the possibility that the measured R(D)
and R(D∗) both agree with the SM predictions is excluded at the 3.4σ level. These
channels are particularly sensitive to charged Higgs contributions in NP models;
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Figure 1.2: Measured values of the mixing-induced CP violation Sψφ from various
experiments in the last five years. The green band indicates the SM prediction with
its 3σ uncertainty.

models with more Higgs doublets present generally physical charged Higgs (for a
review, see [103]); however, BaBar showed that for example this excess cannot be
explained by a charged Higgs boson in the Type II 2-Higgs-doublet model, which
results to be excluded at the 99.8% CL for any value of tan β/mH .

Sψφ and B(B+ → τ+ν): the fading stars

At the end of 2007, CDF [104] and D0 [105] released their results about the first
flavour-tagged determinations of the mixing-induced CP violation Sψφ; their com-
bined measurements resulted to be larger than the SM predictions by more than
3σ [106]. These measurements raised a great enthusiasm in the flavour community,
and many speculations about NP in the Bs mixing phase were proposed. However,
as can be seen from Fig. 1.2, in the following years CDF and D0 weakened their
claims, and at the end of 2011 LHCb put definitely an end to the optimistic hopes of
the previous years [13]. In fact, its value is in perfect agreement with the SM predic-
tion, expecting already for 25 years the mixing-induced CP violation in Bs decays to
be significantly smaller than in Bd decays. Nevertheless, from the present perspec-
tive, the measurement of Sψφ is affected by a large uncertainty, which not only still
presents the possibility of moderate enhancements, but this time also contemplates
the possibility of being negative; the latter would be an even clearer signature of
NP.

Another hint of NP was suspected in the last years in the branching ratio of
B+ → τ+ν. The latter is a simple tree-level decay in the SM, but the attempts to
conciliate its prediction from the unitarity triangle fit with its experimental values
obtained by BaBar and Belle were very puzzling [107]. In fact, the decay is generated
by the transition b̄ → ūτ+ν, and hence the CKM element |Vub| is involved, the de-
termination of which, as we have discussed, is quite controversial; nevertheless, both
with the exclusive and with the inclusive value of |Vub| the SM prediction resulted
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to be largely below the experimental value. Even trying to remove the dependence
from |Vub| by using the unitarity of the CKM matrix, so that the branching ratio
depends on the CKM parameters |Vud|, β and γ, the SM prediction was still 2.8σ
lower than the measurement. Now, in 2012 both BaBar [108] and Belle [109] pre-
sented their updates about the measurement of B(B+ → τ+ν); in particular, the
latter reported a very smaller value, such to lower the world average and weaken
the tension to 1.6σ [110].

1.4 Patterns of flavour violation

1.4.1 The NP flavour problem

In general, new sources of flavour and CP violation are present in NP models. Model-
independent considerations can be developed by means of a generic effective theory
approach, assuming that the energy scale of NP is a certain ΛNP and integrating
out the NP degrees of freedom; their effects will be described by higher dimensional
operators O

(d)
i in the resulting effective Lagrangian

Leff = LSM +
∑
i, d>4

c
(d)
i

Λd
NP

O
(d)
i , (1.51)

where cdi are unknown effective couplings.
Now, as we have discussed in the Introduction, the solution of SM gauge hierarchy

problem would require some NP at a scale ΛNP that should not exceed a few TeV.
On the other hand, the term with the higher dimensional operators contains for
example dimension six ∆F = 2 four-quark operators that lead to contributions to
neutral meson mixing; the very good agreement between the SM predictions for
meson mixing and the experimental data can then be translated into bounds for
c

(d)
i /ΛNP. If the coefficients c

(d)
i are assumed to be generic, i.e. all of O(1), then

the most stringent bounds that come from CP violation in the K mixing imply for
ΛNP values of the order O(104 − 105) TeV: the examination of models with generic
flavour structure has shown that large new sources of flavour symmetry breaking
beyond the SM are already excluded at the TeV scale [24]. The large discrepancy
between these two determinations of ΛNP is a manifestation of what in different
specific NP frameworks (supersymmetry, technicolor, etc.) goes under the name of
flavour problem [111].

These considerations have raised the interest in the understanding the flavour
structure of the NP models, and in signatures of deviations of it from the flavour
structure of the SM. The formalization of this solution to the flavour problem, i.e. the
recognition or imposition of the SM flavour structure in a certain NP model, is
called Minimal Flavour Violation (MFV), and it has been developed and analyzed
in different ways during the last years; in particular, two relevant frameworks [112]
are the pragmatic approach called Constrained Minimal Flavour Violation (CMFV),
and a more formal approach that makes use of group methods and effective theories,
and which at the same time allows more freedom. We stress however that MFV is
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not a theory of flavour, since it does not provide an explanation for the hierarchical
flavour structure that is already present in the SM.

1.4.2 Constrained Minimal Flavour Violation

CMFV can be seen as a brute-force method of extrapolating the flavour structure
of the SM. It is defined by two conditions [113,114]:

• all flavour changing transitions are governed by the CKM matrix with the
CKM phase being the only source of CP violation;

• the only relevant operators in the effective Hamiltonian below the weak scale
are those that are also relevant in the SM.

The use of the penguin-box expansion is very useful for the study of CMFV. In
fact, the properties of universality and realness of the Fi master functions depend
only on the flavour and CP structure of the SM, and the form of the Pi coefficients
depends only on the operator structure of the SM. Both the flavour and CP structure
and the operator structure of the SM are preserved by definition in models with
CMFV, and hence the Pi are model independent within the whole class of CMFV
models, while the details of the single models are contained into the master functions
Fi, which mantain their universality and realness. Since the SM belongs itself to the
class of CMFV, in these models the formulae of the observables will have the same
form as in the SM with the only substitution Fi(xt)→ Fi(xt, ρNP), where the latter
are obtained by the calculation of the relevant diagrams in the NP model.

Universal Unitarity Triangle

The analysis of the unitarity triangle provides a powerful test of the flavour pattern
of CMFV in a model independent way; in fact, a triangle common to the whole class
of CMFV models, known as Universal Unitarity Triangle (UUT) [113], can be built,
and comparing it with the Reference Unitarity Triangle (RUT), can give information
not only on the possible presence of NP, but also about its flavour structure (Fig. 1.3,
left).

Once the parameters λ ≡ |Vus| and A = |Vcb|/λ2, unaffected by NP, have been
determined, the determination of the apex (ρ̄, η̄) requires the knowledge of one side
and one angle of the triangle, provided the CKM matrix is unitary. Two choices of
sets with different characteristics are possible.

• Rb and γ . Rb ∝ |Vub| and γ = arg(Vub) are extracted from tree-level pro-
cesses, and hence are very unlikely modified by NP. The triangle obtained with
this method is the RUT.

• Rt and β . With a very good approximation Rt ∝ |Vtd/Vts|, while β =
arg(Vtd); the presence of the top quark implies that these can be only deter-
mined from loop processes. However, the universality of the master functions
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Figure 1.3: (Left) Comparison between the RUT (blue) and the UUT (red), obtained
from the 2012 updated inputs. (Right) ∆Md (blue) and ∆Ms (red) as functions of
εK in models with CMFV. The green crosses represent the data, while the darker
regions the SM predictions.

F (xt, ρNP) in CMFV models implies a model independent extraction of the
ratio |Vtd/Vts| as∣∣∣∣VtdVts

∣∣∣∣ = ξ

√
mBs

mBd

√
∆Md

∆Ms

or

∣∣∣∣VtdVts
∣∣∣∣2 =

mBs

mBs

τBs
τBd

F 2
Bs

F 2
Bd

B(Bd → µ+µ−)

B(Bs → µ+µ−)
,

(1.52)
from measurable quantities. On the other hand, the absence of new CP-
violating phases in the B mixing implies that the angle β can be extracted
directly from SψKS . The triangle built in this way is common to all the models
with CMFV and has been called UUT.

Correlations and lower bounds

The flavour universality of the master functions Fi and the model independence of
the parameters Pi suggest the idea of considering ratios between different observ-
ables in which at the same time the flavour pattern can be tested and the hadronic
uncertainties are reduced [115]. Correlations like

∆Md

∆Ms

=
mBd

mBs

B̂d

B̂s

F 2
Bs

F 2
Bs

∣∣∣∣VtdVts
∣∣∣∣2 r(∆M) , (1.53a)

B(Bs → µ+µ−)

B(Bd → µ+µ−)
=
mBs

mBs

τBs
τBd

F 2
Bd

F 2
Bs

∣∣∣∣VtdVts
∣∣∣∣2 r(µ+µ−) , (1.53b)

B(B → Xdνν̄)

B(B → Xsνν̄)
=

∣∣∣∣VtdVts
∣∣∣∣2 r(νν̄) (1.53c)

have been indicated as standard candles of flavour physics [79], since in CMFV
r(∆M) = r(µ+µ−) = r(νν̄) = 1 and deviations from unity can be used to recognize
and parametrize different patterns of flavour violation.
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Less intuitive but still simple calculations permit also to find that the observables
related to the meson mixing like εK and ∆Md,s are not only correlated, but also can
only be enhanced with respect to the SM [116].

Comparison with experiments

First of all one observes that, since in this context SψKS cannot receive new contri-
butions, CMFV models prefer what we have called the Scenario 2 for Vub. Now, as
we have discussed, positive contributions to εK are allowed, and hence the SψKS−εK
tension can be solved. Nevertheless, the enhancement of εK would determine a cor-
related enhancement of both ∆Md and ∆Ms, worsening the ∆Md,s− εK tension [79]
(Fig. 1.3, right).

The previous considerations, even if only qualitative, point out the difficulties
that CMFV models have in accommodating the tensions in flavour data, due to the
presence of few free parameters and strict correlations. A more quantitative and
complete study has recently been performed [117].

1.4.3 Minimal Flavour Violation at Large

The flavour symmetry of the SM can be formalized in the framework of group
theory. In fact, it can be identified with the largest group of unitary quark field
transformations that commutes with the SM gauge Lagrangian [118,119]

Gq = (SU(3)× U(1))3 , (1.54)

i.e. a SU(3) symmetry and a phase symmetry for each electroweak multiplet:

SU(3)3 = SU(3)QL × SU(3)UR × SU(3)DR , U(1)3 = U(1)B × U(1)Y × U(1)PQ ,
(1.55)

where the three U(1) symmetries can be rearranged as the baryon number, the
hypercharge, and a Peccei-Quinn symmetry [120] (see Sec. 3.2.2). In the SM this
symmetry (with the exception of U(1)B) is explicitly broken by the two Yukawa
couplings

LY = −Q̄LYdDRH − Q̄LYuURH̃ + h.c. . (1.56)

Now, the flavour symmetry Gq can be formally recovered by promoting the Yukawa
matrices to spurions, i.e. dimensionless auxiliary fields transforming as

Yu ∼ (3, 3̄,1)SU(3)3 , Yd ∼ (3,1, 3̄)SU(3)3 . (1.57)

One defines an effective theory as satisfying the criterion of MFV if all higher-
dimensional operators, constructed from SM and spurion fields, are formally invari-
ant under the flavour group Gq [119].

In practice, one can build effective couplings and higher-dimensional operators
in which the only relevant non-diagonal structures are polynomials P(YuY

†
u , YdY

†
d )

of the two basic spurions

YuY
†
u , YdY

†
d ∼ (8,1,1)SU(3)3

q
⊕ (1,1,1)SU(3)3

q
. (1.58)
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As an example of this mechanism at work, we shortly discuss the application of
this formulation of MFV to a generic model with two Higgs doublets, resulting in a
NP scenario called 2HDMMFV [121].

The 2HDMMFV

In a generic model with two-Higgs doublets, H1 and H2, with hypercharges Y = 1/2
and Y = −1/2 respectively, the most general renormalizable and gauge-invariant
interaction of them with the SM quarks is

−LY = Q̄LXd1DRH1 + Q̄LXu1URH
c
1 + Q̄LXd2DRH

c
2 + Q̄LXu2URH2 + h.c. , (1.59)

where Hc
1(2) = −iτ2H

∗
1(2) and the Xi are 3 × 3 matrices with a generic flavour

structure. By performing a global rotation of angle β = arctan(v2/v1) of the Higgs
fields, the mass terms and the interaction terms are separated, but they cannot be
diagonalized simultaneously for generic Xi and dangerous FCNC couplings to the
neutral Higgses appear.

If the MFV hypothesis is imposed instead, the Xi are forced to assume the
particular structure

Xd1 = Yd (1.60a)

Xd2 = Pd2(YuY
†
u , YdY

†
d )× Yd = ε0Yd + ε1YdY

†
d Yd + ε2YuY

†
uYd + . . . (1.60b)

Xu1 = Pu1(YuY
†
u , YdY

†
d )× Yu = ε′0Yu + ε′1YuY

†
uYu + ε′2YdY

†
d Yu + . . . (1.60c)

Xu2 = Yu (1.60d)

that is renormalization group invariant [121]. At higher orders in YiY
†
i FCNCs are

generated, and in order to investigate them one can perform an expansion in powers
of suppressed off-diagonal CKM elements, so that the effective down-type FCNC
interaction can be written as

LFCNC
MFV ∝ d̄iL

[(
a0V

†λ2
uV + a1V

†λ2
uV∆ + a2∆V †λ2

uV
)
λd
]
ij
djR

S2 + iS3√
2

+ h.c. ,

(1.61)
where λu,d ∝ 1/v diag (mu,d,mc,s,mt,b), ∆ = diag (0, 0, 1), and the ai are parameters
naturally of O(1); this structure shows a large suppression due to the presence of
two off-diagonal CKM elements and the down-type Yukawas [121], demonstrating
explicitly how MFV is effective and natural.

It is remarkable that the mechanisms of flavour and CP violation do not nec-
essarily need to be related: in MFV the Yukawa matrices are the only sources of
flavour breaking, but other sources of CP violation could be present, provided that
they are flavour-blind: this happens when the FCNC parameters ai are allowed to
be complex, as well as for the phases that can be present in the Higgs potential.

With a more detailed analysis the following relevant properties have been found
[121]:

• the impact in K, Bd and Bs mixing amplitudes scales with msmd, mbmd and
mbms respectively;
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• new flavour-blind phases φs = (ms/md)φd can contribute to the Bd and Bs

systems, and they are not present in the K system instead.

The previous observations imply that εK can receive only tiny new contributions
while SψKS could be in principle sizeably modified; as a consequence, for the reasons
that have been discussed in the previous section, the 2HDMMFV selects the inclusive
|Vub|. However, in this framework a suppression of SψKS would determine a cor-
related enhancement of Sψφ, an effect that was considered very welcome until last
year, when LHCb excluded a large NP phase in the Bs mixing, putting therefore
this model in difficulty [79].

The flavour-blind phases of the Higgs potential imply instead φs = φd [122], and
could be used to remove the SψKS − εK tension, but the necessary size of φd would
imply in turn Sψφ > 0.15, which is 2σ away from the LHCb central value [79].

1.4.4 Beyond Minimal Flavour Violation

From the discussion in the previous two sections it results that models with CMFV
and MFV seem to present visible difficulties in describing all ∆F = 2 observables in
the K and Bd,s meson systems simultaneously. More definite conclusions will only
be possible when |Vub| and γ will be known from tree level decays with a much better
precision and the lattice input will further improve. Nevertheless, these results seem
to indicate that the tensions in the flavour observables could be hints of a new flavour
structure different from the one of the SM. Both the models that we are going to
study in this work go beyond MFV.

Models that do not satisfy the MFV hypothesis, neither by construction nor by
imposition, present in general large flavour violating effects, unless fine tuning is
applied or some other suppression mechanism occurs. As we will discuss, the first
is the case of the 331 model, the second of the GFS model.

In fact, in the 331 model, in order to obtain phenomenological results in agree-
ment with the experimental data, one needs both a quite high NP energy scale,
coinciding with the mass of the FCNCs-mediating Z ′ new boson, and to force the
mixing matrix to be very similar the CKM matrix.

On the other hand, we will see that a very elegant feature of the GFS model
is that the minimal fermion content required for the theory to be consistent gener-
ates a mechanism of inverted hierarchy in the Yukawa couplings that automatically
suppresses FCNCs. Nevertheless, even if this model presents a number of analogies
with MFV models, the most evident of them being the fact that it is just based
on the restoring of the flavour symmetry and that NP effects are controlled by the
flavour group, it does not satisfy the MFV requirement: in fact, one can find a limit
in which all Yukawa couplings vanish but flavour breaking effects remain finite.





Chapter 2

Theory and phenomenology
of Gauged Flavour Symmetries

2.1 The model

2.1.1 Gauge group and field content

As we have discussed in Sec. 1.4.3, the SM presents the large flavour symmetry Gq =
(SU(3)× U(1))3, explicitly broken by the two Yukawa couplings. This symmetry
would be restored not only formally, but truly if instead of the Yukawa constant
matrix there were physical fields transforming as (3, 3̄,1) and (3,1, 3̄) under SU(3)3.

In the model that we are going to build, Gq is assumed to be an exact symmetry
of nature, spontaneously broken by the vevs of the two scalar fields Yu and Yd,
which opportunely transform under it, called flavons. In order to avoid problematic
flavour-violating Goldstone bosons, the symmetry should be gauged. Since we are
interested mainly in the flavour breaking, we choose to gauge only the subgroup

GGFS = SU(3)QL × SU(3)UR × SU(3)DR (2.1)

and not to concentrate on the abelian part. We will call GFS model the model with
these Gauged Flavour Symmetries and scalar content, and with the fermion content
that we are going to introduce. In fact, we are going to discuss how new fermions
have to be added in order to cancel the gauge anomalies.

Basic notions about anomalies

We recall here the relevant theoretical aspects of the perturbation theory anomalies,
following mainly [123–125].

A symmetry of a classic theory is not necessary preserved when such theory is
quantized. In fact, if a field transformation φ → φ + δφ leaves the classical action
S(φ) invariant, the path integral

∫
Dφ eiS(φ) is not necessarily invariant, depending

on the behavior of the measure Dφ. If a symmetry of a classical theory is spoiled
in its quantized version, one says that there is an anomaly. While an anomaly in a
global symmetry is not problematic, if there were an anomaly in a gauge symmetry

31
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qµ
a qµ

a

p⌫b

p⌫bk�
c

k�
c

+

Figure 2.1: Anomalous triangular diagrams contributing to the nonconsevation of
the gauge current jµa .

the theory would be inconsistent, since the whole construction of a theory with local
gauge invariance is based on the existence of an exact global symmetry, and results
such as the presence of non-physical degrees of freedom or the non-unitarity of the
S-matrix would follow. Therefore, the condition of gauge anomaly cancellation is a
constraint on the construction of physical gauge theories.

Even if the transformation of the measure of the functional integral has been fully
understood [126], it involves elegant but non-straightforward kind of calculations;
the method of computing directly the problematic Feynman diagrams is still more
clear and practical. In order to consider the general matter content of the theory,
it is convenient to take all the fermion fields as massless and to merge them into a
single left-handed column; for instance, if ψ is a column containing all quark and
lepton fields, then one can build

χ ≡
(

1
2
(1− γ5)ψ

1
2

[C(1 + γ5)ψ]∗

)
, (2.2)

where C, defined by CγTµ C−1 = γµ, permits to treat right-handed fermions in the
same representation of the left-handed one. When we consider the gauge group G
with generators tLa for the left-handed fermion representation and tRa for the right-
handed one, the column undergoes the infinitesimal transformation

δχ = iεaTaχ , with Ta =

(
tLa 0
0 −tR∗a

)
; (2.3)

with these definitions one can write the fermonic vector current

jµa = −iχ̄Taγµχ. (2.4)

In order to study the conservation of this current, one considers the matrix element
M of its divergence to create two gauge bosons∫

d4x e−iq·x 〈p, ν, b; k, λ, c| jµa (x) |0〉 ∝ Mµνλ
abc (p, k) , (2.5)

which at leading order gets contributions from the two diagrams in Fig. 2.1. While
with a naive calculation, by performing a shift of the internal momentum, the two
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diagrams seems to cancel each other and hence the current to be conserved, treating
the problem more carefully one has to notice that the two diagrams are divergent
and that this shift can not be allowed by the regularization. Using dimensional reg-
ularization in order to preserve gauge invariance and the ‘t Hooft-Veltman definition
of the γ5 matrix in d dimensions to perform the calculation, one finds the generally
nonvanishing result

〈p, ν, b; k, λ, c| jµa |0〉 =
g2

8π2
εανβλpαkβ · Aabc , (2.6)

with

Aabc = Tr
[
T a
{
T b, T c

}]
, (2.7)

where, as defined before, T a is the representation of the gauge algebra on the set
of all left-handed fermion and antifermion fields, and the trace denotes the sum
over these fermion and antifermion species. This anomalous contribution is a con-
sequence of the fact that in order to preserve gauge invariance one has to work in d
dimensions, but γ5, which is a fundamental object in chiral theories1, is an intrinsi-
cally 4-dimensional object. The following further results validate the correctness of
Eq. (2.6).

• Even if the previous calculation has been developed with massless fermions,
the result is correct since one can show that no fermion that is allowed by
a given symmetry to have a mass can contribute to the anomaly for that
symmetry [124]. It is known that mass terms for Dirac fermions are not
allowed by the SM gauge symmetry and hence neither by any of its possible
extensions, and therefore they contribute to the anomalies as massless fermions
before the spontaneous symmetry breaking.

• The higher order corrections to the matrix element, consisting both in prop-
agators internal to the loop and in more external currents, vanish because
they make the integral sufficiently convergent to allow to shift the internal
momentum without problems [127].

For the consistency of a gauge theory the current jµa must be conserved also at
quantum level, and hence, as a consequence of the previous calculation, the condition
for a gauge theory to be anomaly-free is Aabc = 0 when Ta, Tb and Tc run over all the
generators of the gauge group. The following general results simplify this analysis.

• Of course, one needs only to consider those combinations of generators for
which their product contains a singlet under the gauge group, since Aabc ob-
viously vanishes for all the others. For example, one can make invariants out
of any number of U(1) generators, zero, two or three SU(2) generators (since
2 × 2 and 2 × 2 × 2 both contain singlets), and zero, two or three SU(3)
generators.

1A theory is said to be chiral if it treats differently fields of different chiralities, if otherwise it
is parity-symmetric is said to be vector.
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• For a fermion representation that is equivalent to its complex conjugate, i.e. in
which its generators are related to the ones of its complex conjugate by unitary
transformations, it is straightforward to calculate Aabc = −Aabc = 0; as a
consequence, if the fermion content of a theory forms a representation that is
real or pseudoreal, the theory is anomaly-free, and if a gauge group admits
only real or pseudoreal representations (like for example SU(2), SO(10), E6),
it is automatically anomaly-free for any matter content.

• Besides the fields of the gauge group, also the gravitational field should be
considered. All species of fermions interact with gravitation in the same way,
and the calculation of the loop graph yields to an anomaly proportional to

Tr[Ta]ε
µνρσRµνκλRρσ

κλ ; (2.8)

it automatically vanishes if the gauge group is non-Abelian, while, if the latter
contains U(1) factors, the theory cannot be consistently coupled to gravity
unless each of the U(1) generators is traceless [128].

Anomalies in the GFS model

In order to analyze the gauge anomalies of the model in relation with its fermion
content, as described in the previous paragraph, we have to consider all the possible
combinations of three generators of the gauge group, except the ones that contain
a single SU(3) or SU(2) factor.

• SU(3)3QL
, SU(3)3UR

, SU(3)3DR

All the new groups present a cubic anomaly, because the SM quarks provide
non-real representations of them. In order to obtain (pseudo)real representa-
tions, one needs to add two new fermions Ψa, Ψb, whose right-handed compo-
nents ΨaR, ΨbR transform as triplets under SU(3)3

QL
, and whose left-handed

components ΨaL, ΨbL transform as triplets under SU(3)3
UR

and SU(3)3
DR

re-
spectively.

• SU(3)3c

This anomaly vanishes if the new fermions, as the ones of the SM, are vector-
like with respect to SU(3)c. This means that ΨaL and ΨaR have to belong to
the same SU(3)c representation (and hence for the number of colors one has
Nc(ΨaL) = Nc(ΨaR) ≡ Nc(Ψa)), as well as ΨbL and ΨbR (and hence Nc(ΨbL) =
Nc(ΨbR) ≡ Nc(Ψb)). Of course the simplest solutions, i.e. the singlets or the
triplets (Nc = 1 or Nc = 3), are preferable, in order to obtain a more elegant
and predictive theory.

• SU(2)3L

Since SU(2) has only real or pseudoreal representations, this combination is
always non anomalous, independently from the fermion content.
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• U(1)3Y

The contribution from the SM fermions cancels as usual, as regards the NP
contributions the condition for the cancellation is

−Nc(Ψa)Y (ψaR)3 −Nc(Ψb)Y (ψbR)3 +Nc(Ψa)Y (ψaL)3 +Nc(Ψb)Y (ψbL)3 ≡ 0 .
(2.9)

• SU(3)2QL
×U(1)Y, SU(3)2UR

×U(1)Y, SU(3)2DR
×U(1)Y

Also the conditions for the cancellation of these anomalies give information
about the hypercharge and color of the new fermions:∑
3[SU(3)QL ]

(YSM + YGFS) = 3

(
1

6
+

1

6

)
−Nc(Ψa)Y (ΨaR)−Nc(Ψb)Y (ΨbR) ≡ 0 ,

(2.10a)∑
3[SU(3)UR ]

(YSM + YGFS) = 3

(
−2

3

)
+Nc(Ψa)Y (ΨaL) ≡ 0 , (2.10b)

∑
3[SU(3)UR ]

(YSM + YGFS) = 3

(
1

3

)
+Nc(Ψb)Y (ΨbL) ≡ 0 . (2.10c)

• SU(3)2c ×U(1)Y

Again, since the SM contribution to this anomaly regularly cancels, the NP
contribution has to vanish by itself, giving the condition∑

3[SU(3)c]

YGFS ≡ 0 , (2.11)

where the new fermions enter or not depending if they are color triplets or
singlets. This provides another relation for the hypercharges.

• SU(2)2L ×U(1)Y

Similarly to the previous case, the NP contribution has to vanish by itself,
giving ∑

2[SU(3)L]

YGFS ≡ 0 , (2.12)

where the new fermions enter only if they are SU(2)L doublets. In the SM,
given the specific hypercharges, this conditions implies that the number of
quark doublets has to be the same as the one of lepton doublets; here it gives
analogous information.

• [Grav]2 ×U(1)Y

The condition for the cancellation of the gravitational anomaly is

−Nc(Ψa)Y (ψaR)−Nc(Ψb)Y (ψbR) +Nc(Ψa)Y (ψaL) +Nc(Ψb)Y (ψbL) ≡ 0 ,
(2.13)
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SU(3)QL SU(3)UR SU(3)DR SU(3)c SU(2)L U(1)Y

QL 3 1 1 3 2 1/6
UR 1 3 1 3 1 2/3
DR 1 1 3 3 1 -1/3

ΨuR 3 1 1 3 1 2/3
ΨdR 3 1 1 3 1 -1/3
ΨuL 1 3 1 3 1 2/3
ΨdL 1 1 3 3 1 -1/3

Yu 3̄ 3 1 1 1 0
Yd 3̄ 1 3 1 1 0
H 1 1 1 1 2 1/2

Table 2.1: Fermion content and quantum numbers of the GFS model.

but it does not give any additional information since it can be derived combin-
ing the new conditions for the cancellation of the mixed flavour-hypercharge
anomalies.

Even if we have verified that some solutions in which there are leptons between
the new fermions are possible, since we are concentrating on the quark sector, we
decide to follow [25] and to assume that the new fermions are colored. The conditions
for the cancellations of anomalies impose hence that they have to be all SU(2)L
singlets and fix their hypercharge. The final matter content of the GFS model is
listed in Tab. 2.1.

2.1.2 Lagrangian and symmetry breaking

Gauge Lagrangian

Gauging the flavour group SU(3)QL × SU(3)UR × SU(3)DR implies the introduction
of 8 × 3 = 24 new gauge bosons (AQ)aµ, (AU)aµ, (AD)aµ (a = 1 . . . 8), and three new
coupling constants gQ, gU , gD. The gauge part of the Lagrangian of the GFS model
is

Lgauge = Q̄Li /DQL + ŪRi /DUR + D̄Ri /DDR +
∑
f=u,d
H=L,R

Ψ̄fHi /DΨfH

+
1

2
(DµH)† (DµH) +

∑
f=u,d

1

2
(DµYf )

† (DµYf )

+
∑

F=W,B,Af

1

4
FµνF

µν ,

(2.14)

where in the first line there are the gauge terms for the fermions, in the second for the
Higgs bosons and in the third for the gauge bosons (Fµν = ∂µFν−∂νFµ+igF [Fµ, Fν ]
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are the usual field strength tensors of all the gauge bosons). The covariant derivative
is

Dµ = ∂µ + igIWWµ + ig′YWBµ +
∑

f=Q,U,D

igfNf (Af )µ ; (2.15)

IW , YW and Wµ and Bµ are respectively the usual quantum numbers and gauge
bosons associated to the electroweak group (we are not considering QCD in these
expressions); analogously, NQ, NU , ND are the quantum numbers of the fermions
with respect to the flavour group, and

(Af )µ =
8∑

a=1

(Af )
a
µ

λa

2
(f = Q,U,D) , (2.16)

being λa’s the Gell-Mann matrices.

Symmetry breaking

The pattern of electroweak symmetry breaking can be implemented as usual by
expanding, in the unitary gauge,

H =
1√
2

(
0

v + h

)
. (2.17)

As regards the flavour breaking, a bit of manipulation is worth. The flavon fields
(two complex 3 × 3 matrices for a total amount of 36 degrees of freedom) can be
parametrized as

Yu = UUρuU
†
Q , (2.18a)

Yd = UDρdU
†
Q , (2.18b)

where UQ,U,D are the three unitary matrices parametrizing the 26 Goldstone modes
(since the whole flavour group (SU(3)×U(1))3 is broken to U(1)B, there are 9+9+8
broken generators); in the unitary gauge UQ,U,D = Î3. Hence we are left with
36− 26 = 10 degrees of freedom contained into ρu and ρd, which can be interpreted
as the field excitations around the six SM masses and the four angles of the CKM
matrix. In fact, we can conveniently rewrite

ρu = ΣRuDuΣ
†
LuVGFS , (2.19a)

ρd = ΣRdDdΣ
†
Ld , (2.19b)

where Du,d are real diagonal matrices that get vevs Zu,d, VGSM is a unitary matrix
(we will see later how it is linked to the CKM matrix), and ΣRu,Lu,Rd,Ld are four
unitary matrices parametrizing the remaining four angle modes. In fact, requiring
the radial modes in ρu,d to be orthogonal to the Goldstone modes corresponds in
the unitary gauge to the condition that cross product terms of the type ∂µρA

µ

vanish [25]; this corresponds to the three sets of conditions

AU : Im Tr[ρu∂ρ
†
uλ

α] = 0 , α = 1 . . . 9 , (2.20a)

AD : Im Tr[ρd∂ρ
†
dλ

α] = 0 , α = 1 . . . 9 , (2.20b)

AQ : Im Tr[(∂ρ†uρu + ∂ρ†dρd)λ
α] = 0 , α = 1 . . . 8 , (2.20c)
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where λ9 is the unitary matrix. Now, if we write

ΣX = eiΠX = exp

(
i
λα

2
παX

)
, (2.21)

Eq. (2.20a)-(2.20c) are 26 conditions on the 36 παX , and 8 further conditions come
from Eq. (2.19a)-(2.19b), leaving four independent combinations out of the παRu,Lu,Rd,Ld;
we will call them π1,2,3,4 (notice that they mediate FCNCs).

In summary, the flavon fields and the breaking of the flavour symmetry can be
written as

Yu = ei
λα

2
παRuDue

−iλ
α

2
παLuV

Yd = ei
λα

2
παRdDde

−iλ
α

2
παLd

(2.22)

where

Du,d = Zu,d + Tu,d ≡

zu,d zc,s
zt,b

+

tu,d tc,s
tt,b

 , (2.23)

and παX are functions of π1, π2, π3, π4 with 〈πi〉 = 0; in particular

〈Yu〉 = ZuV
GFS , 〈Yd〉 = Zd . (2.24)

Concerning the mechanism for the generation of this particular symmetry-breaking
pattern, it can be shown that there exists no renormalizable potential for only two
bifundamentals from which the correct pattern can arise [25]. One possibility to
solve this problem is to introduce a non-renormalizable potential: as long as the
cut-off suppressing higher-dimensional operators is larger than the largest flavon
vev, its effects can be treated as perturbations. Another possibility is to assume
that Yu,d are combinations of several fields transforming as bifundamentals under
the flavour group.

Mass eigenstates and interactions of fermions and gauge bosons

The most general interaction of the quarks with the Higgs fields is

Lint = λuQ̄LH̃ΨuR + λ′uΨ̄uLYuΨuR +MuΨ̄uLUR+

λdQ̄LHΨdR + λ′uΨ̄dLYdΨdR +MdΨ̄dLDR + h.c. ,
(2.25)

where Mu,d are universal mass parameters and λ
(′)
u,d are coupling constants, both of

which can be always chosen to be real. Building the fermion mass matrices, one
finds that both the SM and new quarks mix each other separately for up-type and
down-type, according to the rotations(

uiR,L
u′iR,L

)
=

(
cu(R,L)i

−su(R,L)i

su(R,L)i
cu(R,L)i

)(
U i
R,L

Ψi
uR,L

)
, (2.26)



Chapter 2. Gauged Flavour Symmetries 39

with

suLi =

√
Cu − (2Mu − v2λ2

u + 2z2
ui
λ′u

2)

2Cu
, (2.27a)

suRi =

√
Cu + (2Mu − v2λ2

u − 2z2
ui
λ′u

2)

2Cu
, (2.27b)

where

Cu =
√

(2Muv2λ2
u + 2z2

ui
λ′u

2)− 8M2
uv

2λ2
u , (2.28)

and cu(R,L)i
and su(R,L)i

are the cosines and sines; for the down-quark sector the
formulae are analogous. We obtain hence two sets of six quarks, whose masses are

(mu,d,mc,s,mt,b) = λu,d
v√
2

(
s(u,d)R1

c(u,d)L1

,
s(u,d)R2

c(u,d)L2

,
s(u,d)L3

c(u,d)L3

)
,

(mu′,d′ ,mc′,s′ ,mt′,b′) = Mu,d

(
c(u,d)L1

s(u,d)R1

,
c(u,d)L2

s(u,d)R2

,
c(u,d)L3

s(u,d)L3

)
;

(2.29)

we identify the ones in the first row with the SM quarks, and we observe that once
their masses are fixed, the masses of the new quarks are determined by the relations
of inverse proportionality

m(u,d)im(u,d)′i
= Mu,dλu,d

v√
2
. (2.30)

In this sense, considering the masses of the SM quarks as inputs, one can rewrite
the formulae for the rotations and expand them for m(u,d)′i

� m(u,d)i :

suLi =

√√√√mui

Mu

∣∣∣∣∣λuvmu′i
−
√

2Mumui√
2(m2

u′i
−m2

ui
)

∣∣∣∣∣ '
√
mui

mu′i

λuv√
2Mu

, (2.31a)

suRi =

√√√√mui

λuv

∣∣∣∣∣−λuvmu′i
+
√

2Mumui

(m2
u′i
−m2

ui
)

∣∣∣∣∣ '
√
mui

mu′i

√
2Mu

λuv
, (2.31b)

finding the transparent expressions for the masses

mui '
λuvMu√
2λ′uzui

, mu′i
' λ′uvzui ; (2.32)

the first one shows explicitly the mechanism of inverted hierarchy [25], for which
the masses of the SM are proportional to the inverse of the vevs of the Yukawa
fields, conversely to the SM in which the masses are proportional to the Yukawa
couplings. On the other hand, the exotic quark masses are directly proportional to
these vevs, so that the lightest partner is the one associated with the t quark. For
this reason, mt′ � mt is not necessarily a good approximation, and we can expect
large corrections to the previous relations.
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The presence of new exotic quarks has a relevant impact on the SM couplings.
The most relevant effect can be observed in the charged current that couples to the
W boson, which reads

ūL(cuLV
GFScdL)γµdL + ūL(cuLV

GFSsdL)γµd′L

+ ū′L(suLV
GFScdL)γµdL + ū′L(suLV

GFSsdL)γµd′L , (2.33)

(in which we consider cu,dL and su,dL are diagonal matrices, whose entries are cu,dLi
and su,dLi , respectively); this can be opportunely rewritten by putting SM and exotic
quarks in the same vectors

UT = (u, c, t, u′, c′, t′) , DT = (d, s, b, d′, s′, b′) , (2.34)

so that it becomes

ŪL
(
cuLV

GFScdL cuLV
GFSsdL

suLV
GFScdL suLV

GFSsdL

)
DL , (2.35)

showing that it is governed by a 6×6 unitary matrix. However, if one considers only
the SM quarks, the impact is very relevant: effectively the CKM matrix becomes

V CKM = cuL · V GFS · cdL , (2.36)

that is not even unitary; this implies also that the GIM mechanism is broken, even if
a generalized version of it is recovered after that also the exotic quarks are included.

The masses and mixings of the SM gauge bosons are unchanged. On the other
hand, the vevs of the flavon fields determine the masses and the mixing of the gauge
bosons. If we build a vector with the gauge bosons,

χT =
(
A1
Q, . . . , A

8
Q, A

1
U , . . . , A

8
U , A

1
D, . . . , A

8
D,
)
, (2.37)

then the Lagrangian mass term will read

Lmass =
1

2
χT
(
M2

A

)
χ , (2.38)

where

M2
A =

M2
QQ M2

QU M2
QD

M2
UQ M2

UU 0
M2

DQ 0 M2
DD

 , (2.39)

with (
M2

QQ

)
ab

=
1

4
g2
QTr

[
Zu
{
λa, λb

}
Z†u + Zd

{
λa, λb

}
Z†d

]
, (2.40a)(

M2
UU

)
ab

=
1

4
g2
UTr

[
Zu
{
λa, λb

}
Z†u
]
, (2.40b)(

M2
DD

)
ab

=
1

4
g2
DTr

[
Zd
{
λa, λb

}
Z†d

]
, (2.40c)(

M2
QU

)
ab

=− 1

2
gQgUTr

[
λaZ†uλ

bZu
]
, (2.40d)(

M2
UQ

)
ab

=
(
M2

QU

)
ba
, (2.40e)(

M2
QD

)
ab

=− 1

2
gQgDTr

[
λaZ†dλ

bZd

]
, (2.40f)(

M2
DQ

)
ab

=
(
M2

QD

)
ba
. (2.40g)
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In general, M2
A can be diagonalized only numerically, even if from its structure,

which contains many zeroes and symmetries, some properties can be inferred, for
example that AU and AD do not mix. Formally, one obtains the mass eigenstates
of the gauge bosons

χ̂ =
(
Â1, . . . , Â24

)
(2.41)

through the unitary transformation

χ =Wχ̂ , (2.42)

whereW(Âm, AaF ) are the elements of the matrix that permits to obtain the diagonal
mass matrix

M̂2
A =WTM2

AW . (2.43)

If the coupling of the flavour gauge bosons to the quarks is described by

Ūiγµ(GuL + GuR)ij,mUj · χm + D̄iγµ(GdL + GdR)ij,mDj · χm , m = 1, . . . , 24 , (2.44)

the rotation to the mass-eigenstates of the heavy gauge bosons redefines the cou-
plings:

Ūiγµ(ĜuL + ĜuR)ij,kUj · χ̂k + D̄iγµ(ĜdL + ĜdR)ij,kUj · χ̂k , (2.45)

where (
Ĝu,dL,R

)
ij,m

=
∑
k

W(χ̂m, χk)
(
Gu,dL,R

)
ij,m

. (2.46)

The Feynman rules of the GFS model are listed in Appendix A. We have already
discussed the impact on the charged currents; of course, the couplings of quarks
to the photon are protected by gauge invariance and are not modified. As regards
the neutral currents, since the right handed quarks only mix with singlets of equal
charge, their couplings to the Z (proportional to their electric charge) are not mod-
ified either; the coupling of left handed quarks to the Z is modified instead. Finally,
the couplings of quarks to the Higgs are also modified relatively to the ones in the
SM.

2.2 Preliminary considerations

2.2.1 Exploring the parameter space

The GFS model presents nine new parameters with respect to the SM (non consid-
ering the Higgs sector for the difficulties that we have explained): seven couplings

gQ,U,D, λ(′)
u,d, and two masses Mu,d. As a preliminary step towards a deep phe-

nomenological flavour analysis of the GFS model, we examine the parameter space
looking for indications coming from the model structure itself and the strictest ex-
perimental constraints.
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• Order of magnitudes and unphysical regions

As regards the couplings, we assume all of them to be at most of O(1) at the
considered energies, in order to stay in the perturbative regime of the theory.
Concerning the mass parameters, too small values can be excluded since the
masses of the exotic quarks are proportional to them; on the other hand, too
high values would produce effects undetectable by the present experiments;
therefore, we assume them to be of O(102 − 103) GeV.

In order to be consistent, from expressions in Eq. (2.31a)-(2.31b) one must
obtain values |s(u,d)(L,R)i

| ≤ 1. Even stronger constraints come observing the
equivalences

x(u,d)i =
Mu,d

mui

≡
c(u,d)Li

s(u,d)Ri

, y(u,d)i =
λu,dv√
2mui

≡
c(u,d)Ri

s(u,d)Li

, (2.47)

for which the physical regions correspond to x(u,d)i , y(u,d)i ≥ 1 or x(u,d)i , y(u,d)i <
1; however, the second case corresponds to m(u,d)′i

< m(u,d)i , which can be
excluded (even if, as we will discuss in the next point, not completely). These
conditions impose clear bounds on Mu,d and λu,d; however, as it can be seen
in Fig. 2.2, they are significant only for xu3 , yu3 , and hence for Mu and λu.

Moreover, from the approximations in Eq. (2.31a)-(2.31b) it can be seen that
all the sines are small, with the exception of su(L,R)3

for which those approxi-
mations are not always valid.

• Experimental bounds from the down sector

From the expressions of the masses and the mixing sines it is evident that the
ones on the up and down sector depend only on Mu, λu and Md, λd respectively;
as a consequence, looking only at quantities depending only from them it is
possible to obtain constraints on the two pairs of parameters separately.

In the down sector, a strong constraint comes from the lower bounds of a
possible b′ quark. The most recent limits, coming from CDF [129] and CMS
[130], give respectively mb′ > 372 GeV and mb′ > 361 GeV. However, these
lower bounds are given assuming B(b′ → Zb) = 100% for 100 GeV . mb′ .
268 GeV, and B(b′ → Wt) = 100% for mb′ = mt +mW = 253 GeV, for which
theWt channel opens up. These assumptions may not apply in the GFS model,
because the couplings of the b′ to Wt and Zb include a suppression factor
of sdL3

, and on the other hand the channel b′ → bh can become important
[25]. Without the previous assumptions, LEP gave mb′ > 46 GeV [131]. The
constraints coming from both these limits on mb′ to Mu − λu are shown in
Fig. 2.2 (left).

Another strict constraint comes from the fact that in the GFS model the
couplings to the Z boson are not universal, in the sense that, as we have seen,
they do not depend only on the charge but also on the specific generation.
Since the effects are larger for heavier quarks, the most important deviations



Chapter 2. Gauged Flavour Symmetries 43

1 5 10 50 100 500

0.005

0.010

0.050

0.100

0.500

1.000

Md HGeVL

Λ
d

0 200 400 600 800 1000 1200 1400

0.0

0.5

1.0

1.5

2.0

Mu HGeVL

Λ
u

Figure 2.2: (Left) Allowed regions of parameter space in the Md − λd plane. The
blue regions corresponds to 46 GeV ≤ mb′ ≤ 372 GeV (lighter) and mb′ > 372 GeV
(darker); the red region is the one allowed by the 95% CL limit on Rb. (Right)
Allowed regions of parameter space in the Mu − λu plane. The dark shaded regions
are not physical, while in the gray-shaded region mu′i

< mui . The green hyperbola
corresponds to mt′ > 420 GeV; the red region is allowed at 95% CL by the S, T, U
parameters, while the blue region is the one allowed by the bounds on |Vtb|.

should be found in the observable Rb = Γ(Z → bb̄)/Γ(Z → hadrons). In the
GFS model it reads [25]

δRb

RSM
b

≈ −1.8s2
dL3

, (2.48)

and the experimental global fit is Rexp
b = 0.21629± 0.00066 [65].

• Experimental bounds from the up sector

The upper bounds on the t′ mass are mt′ > 420 GeV assuming B(t′ → tX) =
100% (mX < 140 GeV) from ATLAS [132], and mt′ > 358 GeV assuming
B(t → Wb) = 100% from CDF [133]. However, as we have discussed for b′,
these assumption may not be valid in the GFS model; moreover, it can be
seen from Fig. 2.2 (right) that a small region of the parameter space could be
allowed for mt′ lower than these bounds and even for mt′ < mt.

Regarding the electroweak precision tests, the exotic fermions modify the
oblique corrections to the electroweak gauge bosons with respect to their SM
values; the best parametrization of these effects is given by the S, T, U param-
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eters [134]. In the GFS model they are given by [25]

S =
s2
uL3

6π

[(
3c2
uL3

(m2
t′ +m2

t )(m
4
t′ − 4m2

t′m
2
t +m4

t )

(m2
t′ −m2

t )
3

− 1

)
log
(m2

t′

m2
t

)
(2.49a)

−c2
uL3

5m4
t′ − 22m2

t′m
2
t + 5m4

t

(m2
t′ −m2

t )
2

]
,

T =
3 s2

uL3

8π s2
wc

2
w

m2
t

M2
Z

[
c2
uL3

(
m2
t′

m2
t′ −m2

t

log
(m2

t′

m2
t

)
− 1

)
+
s2
uL3

2

(
m2
t′

m2
t

− 1

)]
,

(2.49b)

U =
s2
uL3

6π

[
−3

(
c2
uL3

(m2
t′ +m2

t )(m
4
t′ − 4m2

t′m
2
t +m4

t )

(m2
t′ −m2

t )
3

− 1

)
log
(m2

t′

m2
t

)
(2.49c)

+c2
uL3

5m4
t′ − 22m2

t′m
2
t + 5m4

t

(m2
t′ −m2

t )
2

]
,

obtained at one loop, considering only the dominant contributions of the third
family in the limit mb → 0. The correction to the T -parameter is generated
by the violation of the custodial symmetry due to the mixing of the quark
doublets with the left singlets, whose amount is proportional to λu. On the
other hand, the contribution of the exotic fermions to the S-parameter is
always small and its sign is not fixed, and U only affects the results in a minor
way. The most recent fit for the S, T, U parameters, performed for the first
time with the actual mass of the Higgs boson, gives

S = 0.03± 0.10 , T = 0.05± 0.12 , U = 0.03± 0.10 , (2.50)

with correlation coefficients of +0.89 between S and T , and −0.54(−0.83)
between S and U (T and U) [135].

In the up sector another important constraint comes from the CKM matrix. In
fact, as we have discussed, in the GFS model the effective CKM matrix differs
from the SM one and it is not unitary. The unitarity of the CKM matrix is
presently tested with good accuracy only in the first two rows [65], but since
they contain only light quarks, the resulting bounds are very weak. On the
other hand, in the third row, looking at Eq. (2.36), the measured smallness
of |V CKM

td | and |V CKM
ts | and the fact that c(u,d)L(1,2)

' 1 imply that |V GFS
tb | = 1

with high accuracy; hence, since also cdL3
' 1, the direct measurement of the

t−b−W coupling constrains cuL3
. The determination of |Vtb| from top decays,

recently measured by CMS at 7 TeV, gives the bound |V CKM
tb | > 0.92 [136].

2.2.2 Spectrum

Once we have performed a first analysis of the space parameter, and before scan-
ning the allowed regions to look for more indications from flavour physics, we choose
one between the possible points in order to obtain a representative spectrum of the
quarks and flavour bosons of the GFS model and make some qualitative considera-
tions. In particular we use the following parameters.
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Figure 2.3: Spectrum of the flavour gauge bosons (left) and of the exotic quarks
(right, blue for the up-type and green for the down-type). The position in the
vertical axis of the relative rectangles and bars represents the corresponding mass.
Each vector fields is represented by a set of three 3 × 3 matrices (see Eq. (2.51)),
each of them indicating how much they contribute to AQ, AU , AD respectively: the
intensity of the red color correspond to the size of each entry in the matrices (from
0 to 1).

gQ gU gD λu λd λ′u λ′d Mu Md

0.4 0.3 0.5 0.95 0.25 0.5 0.3 450 GeV 100 GeV

As we have discussed, the structure of the fermionic sector is quite rigid, since it
depends only on λu,d and Mu,d; on the other hand, also all the other parameters are
involved in the gauge sector, and the fact that the diagonalization is only possible
numerically makes more difficult to recognize a pattern of behavior.

As it can be seen from Fig. 2.3, in this specific case both the lightest quark
states, t′ and b′, have a mass of O(1) TeV, so they should be within the reach of the
LHC. It is important to keep in mind however that, contrarily to the models with
a sequential 4th generation of quarks, their couplings to the SM W and Z bosons
arise through mixing with SM left-handed fields and are suppressed by the small
angles suL3

and sdL3
. Due to the relation of inverse proportionality between the SM

quark masses and the exotic quark masses, the spectrum of the latter presents a
strong hierarchy, and the heavier quark u′ has a mass of O(105) TeV.

Regarding the flavour gauge bosons, the lightest state has a mass of O(1) TeV,
which is one order of magnitude lighter than the next lightest ones. In Fig. 2.3
we have also represented the contribution of each mass eigenstate to the flavour
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eigenstates, with matrices according to

AQ = Â1

(
W1,1

λ1

2
+ . . .+W1,8

λ8

2

)
︸ ︷︷ ︸

1st matrix of the lightest boson

+ . . .+ Â24

(
W24,1

λ1

2
+ . . .+W24,8

λ8

2

)
,

AU = Â1

(
W1,9

λ1

2
+ . . .+W1,16

λ8

2

)
︸ ︷︷ ︸

2nd matrix of the lightest boson

+ . . .+ Â24

(
W24,9

λ1

2
+ . . .+W24,16

λ8

2

)
,

AD = Â1

(
W1,17

λ1

2
+ . . .+W1,24

λ8

2

)
︸ ︷︷ ︸

3rd matrix of the lightest boson

+ . . .+ Â24

(
W24,17

λ1

2
+ . . .+W24,24

λ8

2

)
.

(2.51)

The lightest boson couples to fermions through the λ8 flavour generator and with
equal strength to left/right up/down type fermions (the unequal intensity of mag-
nitude is compensated by the different values of the gauge couplings). Although its
coupling to the third generation is the largest, the lightest vector couples also to
the first two generations, which makes it accessible at the LHC. For all practical
purposes it corresponds to a flavour non-universal leptophobic Z ′ [25]. Tevatron
excludes this kind of resonances in the tt̄ channel only for mZ′ < 900 GeV at 95%
confidence level [137].

2.3 Phenomenological analysis

2.3.1 Impact on the observables

∆F = 2 transitions

In the GFS model the ∆F = 2 observables with external down-type quarks receive
two kinds of new contributions at the leading order, as shown in Fig. 2.4: one from
the usual SM box diagrams in which also the new up-type quarks participate, and
one due to the tree-level exchange of the flavour gauge bosons. We can include these
contributions in the effective Hamiltonian

H∆F=2
eff =

G2
F m

2
W

4π2

∑
i

Ci(µ)Qi (2.52)

through a modification of the Wilson coefficients

C
(M)
i = C

(M)
i,SM + ∆

(M)
box Ci + ∆

(M)
treeCi , (2.53)

where M is the meson system under consideration, and µ is the energy scale at
which the coefficient has to be evaluated.

In principle one should also consider box-diagrams with flavour gauge boson
exchanges, but they are negligible with respect to the tree-level contributions. Also
negligible can be considered the tree-level exchanges of the πi Higgs states.
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Figure 2.4: Box diagrams (upper panel) and tree diagrams (lower panel) contributing
to the meson mixings K0 − K̄0, Bd − B̄d, Bs − B̄s.

• Contributions from the box diagrams

We define the combinations of the mixing matrix

λKi = (VGFS)∗is(VGFS)id , λ
Bq
i = (VGFS)∗ib(VGFS)iq . (2.54)

Then, for the K system, the contribution of the new box diagrams to the
Wilson coefficients, that is purely of the V LL type, is

∆
(K)
boxC

V LL
1 (µt) = (cdL1

cdL2
)2

∑
i,j=1,2,3

λKi λ
K
j c

2
uLi
c2
uLj
F (xi, xj)

+ (cdL1
cdL2

)2
∑

i,j=1,2,3

λKi λ
K
j s

2
uLi
s2
uLj
F (x′i, x

′
j)

+ (cdL1
cdL2

)2
∑

i,j=1,2,3

λKi λ
K
j

[
c2
uLi
s2
uLj
F (xi, x

′
j)

+s2
uLi
c2
uLj
F (x′i, xj)

]
;

(2.55)

the loop function [48] is

F (xi, xj) =
1

4

[
(4 + xi xj) I2 (xi, xj)− 8xi xj I1 (xi, xj)

]
(2.56)

with

I1(xi, xj) =
1

(1− xi)(1− xj)
+

[
xi ln(xi)

(1− xi)2(xi − xj)
+ (i↔ j)

]
,

I2(xi, xj) =
1

(1− xi)(1− xj)
+

[
x2
i ln(xi)

(1− xi)2(xi − xj)
+ (i↔ j)

]
,

(2.57)

and with arguments

xi =

(
mui

MW

)2

, x′j =

(
mu′j

MW

)2

; (2.58)
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the matching scale µt is in the ballpark of the top quark mass2. For the Bq−B̄q

mixing one has to replace λKi by λ
Bq
i and cdL1

cdL2
by cdL1

cdL3
(cdL2

cdL3
) in the

case of q = d (q = s).

These structures become more familiar by noticing that, for a fixed λMi λ
M
j , we

obtain the combination

Fij ≡ c2
uLi
c2
uLj
F (xi, xj)+s

2
uLi
s2
uLj
F (x′i, x

′
j)+c

2
uLi
s2
uLj
F (xi, x

′
j)+s

2
uLi
c2
uLj
F (x′i, xj) ;

(2.59)
this shows the generalized GIM mechanism at work: if all fermion masses were
degenerate, this combination would be independent from i, j and the unitarity
of the matrix VGFS would assure the disappearance of FCNCs. Moreover,
these F functions can be arranged in order to write the box contributions as
a modification of the usual Inami-Lim functions:

S0(xt) −→ S
(K)
t ≡ (cdL1

cdL2
)2 (F33 + F11 − 2F13) ,

S0(xc) −→ S(K)
c ≡ (cdL1

cdL2
)2 (F22 + F11 − 2F12) ,

S0(xc, xt) −→ S
(K)
ct ≡ (cdL1

cdL2
)2 (F23 + F11 −F13 −F12) ;

(2.60)

similarly for the Bq systems the analogous functions S
(Bq)
i are obtained by

substituting cdL1
cdL2

with cdL1
cdL3

(cdL2
cdL3

) in the case of q = d (q = s); the
combination of the Fij contributions are universal. The appearance of ci and
sj factors introduces a new flavour dependence, breaking the SM universality
of the master functions.

• Contributions from the tree diagrams

In this case new operators, beyond the SM V LL one, are involved: for the K
system the new contributions are

∆
(K)
treeC

V LL
1 (µA) =

4π2

G2
Fm

2
W

24∑
m=1

1

2m2
Âm

[(
ĜdL
)
ds,m

]2

, (2.61)

∆
(K)
treeC

V RR
1 (µA) =

4π2

G2
Fm

2
W

24∑
m=1

1

2m2
Âm

[(
ĜdR
)
ds,m

]2

, (2.62)

∆
(K)
treeC

LR
1 (µA) =

4π2

G2
Fm

2
W

24∑
m=1

1

2m2
Âm

[
2
(
ĜdL
)
ds,m

(
ĜdR
)
ds,m

]
; (2.63)

the energy scale µA is of the order of the mass of the corresponding flavour
gauge boson. The corresponding expressions for the Bd (Bs) system are ob-
tained by substituting ds with db (sb) in the indices of the couplings.

2In the case of the box-diagrams involving simultaneously heavy and light particles, the correct
procedure would be to integrate out first the heavy fermions and construct an effective field theory
not involving them as dynamical degrees of freedom. However, as the only relevant contribution
comes from the lightest exotic fermion t′, whose mass is of the same order as mt, we can set the
matching scale to be µt also in this case.
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Figure 2.5: Coefficients P V LL
1 (left) and PLR

1 (right) as functions of the high energy
scale µH . The blue functions are valid for the K system, the green functions for the
Bd and Bs systems.

500 GeV 1 TeV 3 TeV 10 TeV

P V LL
1 (µH , K) 0.392 0.384 0.373 0.363
PLR

1 (µH , K) -35.7 -39.3 -45.0 -51.4
P V LL

1 (µH , Bd) 0.675 0.662 0.643 0.624
PLR

1 (µH , Bd) -2.76 -2.97 -3.31 -3.69
P V LL

1 (µH , Bs) 0.713 0.698 0.678 0.659
PLR

1 (µH , Bs) -2.76 -2.97 -3.31 -3.69

Table 2.2: Central values of the relevant Pi factors for selected values of µH .

• QCD corrections

The effective Hamiltonian above has been constructed at certain high energy
scales, and the renormalization group QCD evolution down to lower energy
scales, at which the hadronic matrix elements are evaluated by lattice methods,
has to be performed. In the GFS model this is complicated by the presence
of different high scales, i.e. the mass of the W boson mW , the masses of the
neutral gauge bosons mÂm

, and the masses of heavy quarks mq′i
.

An efficient method for the inclusion of the QCD effects in the presence of a
high energy scale µH , corresponding to the scale at which heavy particles are
integrated out, consists in evaluating the hadronic matrix elements at this high
scale instead that taking directly their low-energy scale values. The amplitude
for M − M̄ meson mixing at the scale µH is then simply given by

A(M → M̄) =
G2
Fm

2
W

4π2

∑
i

Ci(µH)〈M̄ |Qi(µH)|M〉 , (2.64)

where the matrix element is

〈M̄ |Qi(µH)|M〉 =
2

3
m2
M F 2

M Pi(µH ,M) ; (2.65)
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the coefficients Pi have forms of the kind

Pi(µH ,M) ∼
∑
a

ηai (µH , µL)Ba
i (µL,M) , (2.66)

where ηai includes the renormalization-group effects from scales below µH ,
while Ba

i represent the hadronic matrix elements obtained by lattice methods
at low energy scales µL. The detailed analytic formulae for the Pi coefficients
have been obtained in [138]; in Fig. 2.5 and in Tab. 2.2 we have respectively
shown the dependence from the high energy scale and listed some representa-
tive values for the ones relevant in the GFS model.

• Final formulae

Putting together the results obtained in the previous points, the final expres-
sions for the matrix elements of the ∆F = 2 transitions are

〈K̄0|H∆S=2
eff |K0〉 =

G2
Fm

2
W

24π2
F 2
K

{
B̂Kη1(λK2 )2S(K)

c + B̂Kη2(λK3 )2S
(K)
t +

+ 2B̂Kη3λ
K
2 λ

K
3 S

(K)
ct +

+
24∑
a=1

[
P V LL

1 (µÂm , K)
(

∆
(K)
treeC

V LL
1 (µÂm) + ∆

(K)
treeC

V RR
1 (µÂm)

)
+ PLR

1 (µÂm , K)∆
(K)
treeC

LR
1 (µÂm)

]}
,

(2.67)

〈B̄q|H∆B=2
eff |Bq〉 =

G2
F m

2
W

24π2
F 2
Bq

{
ηB B̂Bq λ

2
3(Bq) S

(Bq)
t +

+
24∑
a=1

[
P V LL

1 (µÂm , Bq)
(

∆
(Bq)
tree C

V LL
1 (µÂm) + ∆

(Bq)
tree C

V RR
1 (µÂm)

)
+ PLR

1 (µÂm , Bq) ∆
(Bq)
tree C

LR
1 (µÂm)

]}
.

(2.68)

More observables

• B+ → τ+ν and ratios

The dominant modification of the B+ → τ+ν branching ratio in the GFS
model is due to the different coupling of the W vertex with respect to the SM:

B(B+ → τ+ν) =
G2
F mB+ m2

τ

8π

(
1− m2

τ

m2
B+

)2

F 2
B+ |cuL1

Vub cdL3
|2 τB+ . (2.69)

We have assumed that the couplings of the leptons with the W boson are
the same as the SM: even if we are not considering the lepton sector in our
analysis, it is reasonable to assume that any NP modification can be safely
negligible, as these couplings are strongly constrained by the SM electroweak
analysis.
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The dependence on FBd represents a significant source of error on this quantity;
however, this is cancelled by considering the ratio with respect to ∆Md [139,
140]:

Rτν/∆M ≡
B(B+ → τ+ν)

∆Md

=
3π τB+

4 ηB B̂Bd S0(xt)

c2
uL1

c2
dL3

|Md
12/(M

d
12)SM|

m2
τ

m2
W

|Vub|2

|V ∗tb Vtd|
2

(
1− m2

τ

m2
Bd

)2

, (2.70)

where we took mB+ ≈ mBd , well justified considering the errors in the other
quantities.

Analogously, FBq is also the main source of the theoretical error on ∆MBq ;
when considering instead the ratio

R∆MB
≡ ∆Md

∆Ms

, (2.71)

the SM theoretical errors are encoded into the parameter ξ [61], which is much
less affected by uncertainties with respect to the mass differences.

• The b semileptonic CP asymmetry

If we separate the modulus and the phase of the NP effects in the ∆F = 2
matrix elements, by writing as usual

M q
12 = (M q

12)SM CBqe
2 i ϕq , (2.72a)

Γq12 = (Γq12)SM C̃Bq e
−2 i ϕ̃q , (2.72b)

the contributions to the b semileptonic CP asymmetry read

aqsl =

∣∣∣∣∣
(
Γd12

)
SM(

Md
12

)
SM

∣∣∣∣∣ C̃BqCBq
sin

(
arg

[
−
(
Md

12

)
SM(

Γd12

)
SM

]
+ 2ϕq + 2ϕ̃q

)
. (2.73)

Now, in the GFS model the phase φ̃Bq is vanishing, while C̃Bq is mainly given
by c2

uL2
cdLb cdLq ≈ 1; as a result, the only modifications are provided by the

contributions on M q
12.

• B̄→ Xsγ

Similarly to the case of the ∆F = 2 transitions, the NP contributions to
the Wilson coefficients in the effective Hamiltonian can be separated into two
parts, as shown in Fig. 2.6: (i) the SM-like contribution from diagrams with
W bosons with modified couplings to both SM and exotic up-type quarks;
(ii) the contribution of flavour gauge bosons exchanges with virtual SM and
exotic down-type quarks.

The first contribution has been considered in [25], where it has been shown
that it could provide further information on the Mu−λu parameter space, but
it actually eliminates regions already excluded by other constraints.
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Figure 2.6: Contributions to the b→ sγ transition in the GFS model: from diagrams
with W bosons with modified couplings (a and b) and from flavour gauge bosons
exchange (c).

As regards the second contribution, the relevant Wilson coefficients were cal-
culated within a generic framework in [141]. Applying those general formulae
to the GFS model, we found that these contributions are below 1% and can
be safely neglected [142]. The reason for such suppression are the See-Saw-like
couplings of flavour gauge bosons to both SM and exotic fermions and the
heavy flavour gauge boson masses.

2.3.2 Numerical analysis

The aim of our analysis is to study how the GFS model faces the flavour constraints,
and to determine if it is able to relax the tensions in the flavour observables. In order
to do this, we scan the allowed and significant regions of the parameter space, i.e.

Mu ∈ [400 GeV, 1000 GeV], λu ∈ [0.8, 1.5], (2.74a)

Md ∈ [25 GeV, 250 GeV], λd ∈ [0.1, 1.5] , (2.74b)

λ′u, λ
′
d, gQ, gU , gD ∈ [10−5, 1.1] , (2.74c)

according to the constraints and the discussions in Sec. 2.2.1. The numerical eval-
uation is performed iteratively, in order to fix correctly the energy scales µt and µA
coinciding with the masses of the lightest exotic quark and of the lightest flavour
gauge boson respectively.



Chapter 2. Gauged Flavour Symmetries 53

Figure 2.7: |εK | versus SψKS , in Scenario 1 (left) and Scenario 2 (right) for |Vub|.
The shaded grey regions are the experimental 1σ− 3σ error ranges, while the black
points are the central values of the SM predictions.

Figure 2.8: |εK | versus ∆Md (left) and ∆Ms (right). The shaded grey regions are
the experimental 1σ− 3σ error ranges, while the black points are the central values
of the SM predictions.

• |εK| − SψKS

The analysis of the correlation between |εK | and SψKS in the GFS model
permits to select one between the two scenarios of determination of |Vub|.

|εK | is uniquely enhanced by the new box-diagram contributions involving
exotic quarks, while it is uniquely suppressed by heavy gauge flavour boson
contributions; among the latter, the LR contributions are the dominant ones,
while the LL ones are safely negligible. On the other hand, SψKS is unaffected
by the new box-diagram contributions, and this allows to see transparently the
heavy gauge flavour boson contributions; the result is that it is only affected
by LL contributions and can only be suppressed [142].

This means that while SψKS can only be slightly suppressed in the GFS model,
|εK | can be significantly both enhanced and suppressed, as can be seen from
Fig. 2.7. As a consequence, this model prefers what we have called Scenario 1
for |Vub|, in which SψKS is already in good agreement with its experimen-
tal determinations, while |εK |, which is below its experimental value, can be
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Figure 2.9: Rτν/∆M versus R∆Mb
(left) and Sψφ versus Absl (right). The red points

are the ones for which εK and SψKS are both compatible with their experimental
values within the 3σ error. The shaded grey regions are the experimental 1σ − 3σ
error ranges, while the black points are the central values of the SM predictions.

enhanced, as shown in the left panel of Fig. 2.7. In the right panel of the
same figure it is shown how, in the GFS model, using the inclusive value of
|Vub| instead, SψKS cannot be nearly sufficiently suppressed to get closer to its
experimental determination.

• |εK| −∆Md,s

∆Md,s are also uniquely enhanced by the new box-diagram contributions, but
they are mostly unaffected by the heavy flavour gauge boson contributions
[142].

This implies not only that the model is not able to improve the |εK | −∆Md,s

weak tension present in the SM, but that it worsens it. In fact, as can be
seen from Fig. 2.8, once we have selected the exclusive determination of |Vub|,
when εK is enhanced to match its experimental value, both ∆Md and ∆Ms

are enhanced as well, departing more from their experimental determinations.

However, we underline how these conclusions are very sensitive to the values of
the non-perturbative parameters FBd and FBs . In fact, in [142] we have shown
how taking for them values reduced by 15%, close to their lower 3σ bound,
the GFS model performs much better regarding the |εK |−∆Md,s correlations.

• B(B+ → τ+ντ )

R∆MB
does not show any dependence on the new box-diagram contributions,

since in the GFS model the operator structure in box-diagram contributions
does not change with respect to the SM and the NP effects are the same in the
Bd and Bs systems; as a result, any NP effect in this ratio should be attributed
to the heavy gauge flavour boson contributions, both LL and LR [142]. On
the other hand, there are no new operators contributing to B(B+ → τ+ντ ),
but only the different coupling to the W boson, and hence we do not expect
large modifications in this observable.
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Figure 2.10: Masses of the lightest exotic quark t′ and of the lightest flavour gauge
boson Â24 of the GFS model. For the red points, εK , SψKS , R∆MB

, Rτν/∆M agree
with the experimental data at 3σlevel. The visible correlations corresponds to points
of the parameter space with the same values of Mu,d and λu,d.

Both R∆MB
and Rτν/∆M have small theoretical uncertainties and are therefore

very useful to provide information on the parameter space of the GFS model.
From Fig. 2.9 (left) we can see that the values of the GFS parameters that
satisfy the |εK | −SψKS constraints also improve the accordance of R∆MB

with
its measurement, but neither of them is able to significantly improve the dis-
crepancy with the experimental value of B(B+ → τ+ντ ), that however, as we
have discussed, is now less problematic due to the recent determinations.

• Ab
sl

Absl is not affected by box-diagram contributions, the LR contributions are
almost completely negligible and the LL are the only relevant ones, enhancing
|Absl| towards the central value of its experimental determination. This is simi-
lar to what happens to Sψφ: like SψKS it is unaffected by the new box-diagram
contributions, but, differently from the latter, it depends on both LL and
LR contributions; interestingly, the NP contributions interfere destructively
with the SM contribution so that its sign can in principle be reversed in this
model [142].

Fig. 2.9 (right) shows that the GFS model predicts only tiny deviations from
the SM predictions for both Absl and Sψφ, especially when the indications from
|εK | − SψKS are taken into account. This is beneficial for Sψφ, since the last
measurements agree on a SM-like value, while concerning Absl until now only
a measurement from D0 is available, and hence an independent determination
from LHCb will be very relevant in the near future.

• Masses for direct observations

The analysis of the parameter space and the constraints derived from flavour
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observables in this section permit to obtain more precise estimations of reliable
masses of the exotic particles possibly detectable at the LHC. In Fig. 2.10 the
masses obtained with values of the parameters for which the majority of flavour
constraints are satisfied are highlighted; it results that relatively light masses
of the lightest flavour boson Â24 are preferred, while both for low and for high
masses of the lightest exotic quark t′ the predictions in the flavour sector can
be satisfactory.

• Comparison with MFV

Despite the numerous similarities in the principles and in the realization, the
GFS model do not satisfy the MFV requirements. This can be seen by notic-
ing that while in MFV in the limit of vanishing Yukawa couplings the full
flavour symmetry is restored, in the GFS model there exists a limit in which
all Yukawa couplings vanish but flavour-breaking contributions remain finite:
when Mu,d → 0 with all the other parameters, the four-fermion operators,
generated by the exchange of the flavour bosons, still break flavour [25].

The deviations from the MFV patterns can be experimentally recognized.
Comparing the GFS model with the CMFV frameworks, one observes that in
both cases they prefer the exclusive value of Vub, solving the εK−SψKS tension
through the enhancement of |εK |, but worsening the εK − ∆Md,s agreement.
Nevertheless, the distinction can be provided by ∆F = 1 processes: for ex-
ample, considering B̄ → Xsγ, while in the GFS model the NP contributions
uniquely enhance the branching ratio, in CMFV this can be also suppressed.

Concerning MFV at large, taking for example the 2HDMMFV, in the latter NP
contributions to εK are tiny and hence the inclusive value of |Vub| is selected,
contrarily to the GFS model.



Chapter 3

Theory and phenomenology
of 331 models

3.1 General theory

3.1.1 Gauge group and fermion representations

We want to build a model with gauge group SU(3)c× SU(3)L×U(1)X .We indicate
with T a (a = 1 . . . 8) the generators of SU(3)L, and with T 9 the generator of U(1)X ,
defined as

T a =
1

2
λa , T 9 =

1√
6
I3 , (3.1)

where λa are the Gell-Mann matrices and I3 is the 3×3 identity matrix, so that the
normalization condition

Tr(T aT b) =
1

2
δab (3.2)

holds for a, b = 1 . . . 9.
The electric charge must be a linear combination of the diagonal generators of

the SU(3)L × U(1)X gauge group1:

Q̂ = T̂ 3 + βT̂ 8 +XÎ3 . (3.3)

In the specific representations it reads

Q =


1
2

+ β

2
√

3
+X

−1
2

+ β

2
√

3
+X

− β√
3

+X

 ; (3.4a)

Q̄ =

−
1
2
− β

2
√

3
+X

1
2
− β

2
√

3
+X

β√
3

+X

 ; (3.4b)

1We will denote a general operator Ô by a hat, to distinguish them from their representations
as operator matrices that we will denote by O for the 3 representation, Ō for the 3̄ representation,
and by O(r) for other representations.
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Q6 =

 1 + β√
3

+ 2X β√
3

+ 2X 1
2
− β

2
√

3
+ 2X

β√
3

−1 + β√
3

−1
2
− β

2
√

3
+ 2X

1
2
− β

2
√

3
+ 2X −1

2
− β

2
√

3
+ 2X − 2β√

3
+ 2X

 ; (3.4c)

Q8 =


0 1 1

2
+
√

3β
2

−1 0 −1
2

+
√

3β
2

−
(

1
2

+
√

3β
2

)
−
(
−1

2
+
√

3β
2

)
0

 ; (3.4d)

where we have used the properties T̂aΦ = ΦTa + T Ta Φ for the symmetric sextet, and
T̄ a = −(T a)T and T a8T

b = [T a, T b] for the adjoint octet.
The gauge invariance is obtained by building a covariant derivative introducing

the gauge bosons W a
µ (a = 1 . . . 8) and Xµ, and the coupling constants g and gX :

Dµ = ∂µ − igT̂ aW a
µ − igX T̂ 9Xµ , (3.5)

where the representation of the generators depends on the representation of the
objects on which the derivative is applied. The gauge bosons associated to SU(3)L
transform according to the adjoint representation (8, 0) and can be rewritten as

Wµ = W a
µT

a =
1

2

W
3
µ + 1√

3
W 8
µ

√
2W+

µ

√
2Y QY

µ√
2W−

µ −W 3
µ + 1√

3
W 8
µ

√
2V QV

µ√
2Y −QYµ

√
2V −QVµ − 2√

3
W 8
µ

 , (3.6)

from which one can recognize one singly-charged boson

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (3.7a)

two generically-charged bosons

Y ±QYµ =
1√
2

(
W 4
µ ∓ iW 5

µ

)
with QY =

1

2
+

√
3β

2
, (3.7b)

V ±QVµ =
1√
2

(
W 6
µ ∓ iW 7

µ

)
with QV = −1

2
+

√
3β

2
, (3.7c)

and three neutral states that are linearly-independent combinations of W 3
µ and W 8

µ .
The lowest possible fermion representations under this gauge group SU(3)L are

the singlet ψ(1), the triplet ψ(3), and the antitriplet ψ(3̄), that are of quark or of
leptonic type depending on if they are respectively triplets or singlets under SU(3)c:

ψ(1) =

{
q(1) : (3,1, X)

`(1) : (1,1, X)
, (3.8a)

ψ(3) =

{
q(3) : (3,3, X)→ (3,2, Y )⊕ (3,1, Y )

`(3) : (1,3, X)→ (1,2, Y )⊕ (1,1, Y ) ,
(3.8b)
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ψL QψL XψL ψR QψR = XψR

q
(m)
L =

U (m)

D(m)

J (m)


L

 2
3

−1
3

1
6
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2
3
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1
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+
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3β
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`
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
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−1
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3β
2
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2
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3
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`
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L
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2
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2
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2
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e
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R 0

E
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2
+
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2

Table 3.1: Generic fermionic content of 331 models, requiring only one lepton and
one quark SU(3)L multiplet for each generation, and no more than one right-handed
singlet for each left-handed field. U and D are generic up-type and down-type quarks
respectively, as well as e and ν are a generic lepton and neutrino; m and n label
the quark and lepton left-handed triplets, respectively, while m∗ and n∗ label the
antitriplets.

ψ(3̄) =

{
q(3̄) : (3, 3̄, X)→ (3,2, Y )⊕ (3,1, Y )

`(3̄) : (1, 3̄, X)→ (1,2, Y )⊕ (1,1, Y )
; (3.8c)

due to the branching rules SU(2) ⊂ SU(3), after the breaking of SU(3)L both the
triplet and the antitripet embed a doublet and a singlet of SU(2)L.

Trying to embed the SM fermions in the 331 multiplets, in general one could
introduce sets of multiplets with different quantum numbers, meaning that one rep-
resents each generation as a set of triplets with particles of the SM plus exotic parti-
cles. However, this would at the same time enlarge the exotic spectrum and hugely
increase the number of free parameters; hence, we decide as a minimal assumption
to associate only one lepton and one quark multiplet for each generation, and at
most one right-handed singlet associated with each left-handed fermion. Based on
this criterium, the possible fermion multiplets are the ones listed in Tab. 3.1 [143].

From Eq. (3.8b)–(3.8c) it is evident that the SM left-handed doublets can be em-
bedded in SU(3)L triplets or antitriplets. Reproducing their correct electric charge
fixes the values of the multiplet hypercharge and consequently the (β-dependent)
charge of the third exotic component.
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3.1.2 Spontaneous symmetry breaking

Higgs content

Given its great experimental success, a feature of the majority of NP models is to
reduce to the SM at low energies. In the case of 331 models, this can be obtained
with a first spontaneous symmetry breaking at high energies, followed by the usual
electroweak symmetry breaking:

SU(3)L × U(1)X → SU(2)L × U(1)Y → U(1)Q . (3.9)

In order to build a reliable Higgs sector, the following conditions must be re-
spected [144].

1. For the first symmetry breaking, there must exist one or more Higgs fields Φ1

getting vevs that break the generators in the following way:[
T̂ 4, T̂ 5, T̂ 6, T̂ 7,

(
βT̂ 8 −XÎ

)]
〈Φ1〉 6= 0 (3.10a)[

T̂ 1, T̂ 2, T̂ 3,
(
βT̂ 8 +XÎ

)
≡ Ŷ /2

]
〈Φ2〉 = 0 , (3.10b)

where Ŷ is the SM weak hypercharge.

2. Analogously, for the second symmetry breaking, one or more Higgs fields Φ2

must get a vev according to[
T̂ 1, T̂ 2, T̂ 3 − Ŷ /2

]
〈Φ2〉 6= 0 (3.11a)[

T̂ 3 + Ŷ /2 ≡ Q̂
]
〈Φ2〉 = 0 . (3.11b)

3. The Higgs content must be able to generate appropriate fermion masses through
the Yukawa couplings. The Yukawa terms must be invariant, that is singlets,
under the gauge group, and this restricts the possible representations of the
Higgs fields. If ψL ∼ (3, XL) and ψR ∼ (1, XR), then the following Yukawa
terms are possible

ψiLψRΦ⇒ Φ ∼ 3XL−XR , (3.12a)

ψiL(ψjL)cΦ⇒ Φ ∼ 3̄2XL ⊕ 62XL , (3.12b)

ψR(ψR)c ⇒ Φ ∼ 12XR , (3.12c)

(ψR)c(ψiL)cΦ⇒ Φ ∼ 3XL−XR , (3.12d)

and their hermitian conjugates, that provide the couplings for fermion an-
titriplets; in this way there is no difference between a charge conjugated scalar
triplet and a scalar antitriplet, and we can omit the latter without loss of
generality. Of course these patterns can be realized also by higher Higgs rep-
resentations, but those multiplets do not give rise to new features.
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4. For each step of the spontaneous symmetry breaking, the total number of
Higgs components involved must be sufficient to give mass to the relative
gauge bosons. As a consequence, the singlet representation is disfavored.

With the guide of the previous conditions, we analyze systematically the possible
content of the Higgs sector.

• First symmetry breaking

It can be accomplished by a triplet or a sextet with the following quantum
numbers and vevs in order to satisfy the Eq. (3.10a)-(3.10b):

χ ∼ (3,
β√
3

) with 〈χ〉 =
1√
2

0
0
u

 , (3.13a)

S0 ∼ (6,
β√
3

) with 〈S0〉 =
1√
2

0 0 0
0 0 0
0 0 u

 . (3.13b)

However, following Eq. (3.12b), this Higgs sextet can generate Yukawa masses
only if 2XL = XΦ ≡ β/

√
3, and, as evident from Tab. 3.1, this can be satisfied

neither for quarks nor for leptons for any value of β. On the other hand, from
Eq. (3.12a)-(3.12d) one has that for the triplet XL−XR = XΦ ≡ β/

√
3, which

can be obtained from the third component of both quarks and leptons for each
value of β, and from the other components for particular values of β.

• Second symmetry breaking

The possible fields are

ρ ∼ (3,
1

2
− β

2
√

3
) with 〈ρ〉 =

1√
2

 0
v1

0

 , (3.14a)

η ∼ (3,−1

2
− β

2
√

3
) with 〈η〉 =

1√
2

v2

0
0

 , (3.14b)

S1 ∼ (6,−1

4
+

β

4
√

3
) with 〈S1〉 =

1

2

 0 0 w1

0 0 0
w1 0 0

 , (3.14c)

S2 ∼ (6,−1

2
+

β

2
√

3
) with 〈S1〉 =

1

2

w2 0 0
0 0 0
0 0 0

 , (3.14d)

S3 ∼ (6,
1

2
− β

2
√

3
) with 〈S3〉 =

1

2

0 0 0
0 w3 0
0 0 0

 , (3.14e)

S4 ∼ (6,
1

4
+

β

4
√

3
) with 〈S4〉 =

1

2

0 0 0
0 0 w4

0 w4 0

 ; (3.14f)
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β = 1/
√

3

〈Φ〉

 0
v2

v3

 v1

0
0

  0 w2 w3

w2 0 0
w3 0 0

 0 0 0
0 w4 w5

0 w5 w4

 w1 0 0
0 0 0
0 0 0


XΦ

1
3

−2
3

−1
6

1
3

−2
3

β = −1/
√

3

〈Φ〉

 0
v2

0

 v1

0
v3

 w1 0 w3

0 0 0
w3 0 w6

  0 w2 0
w2 0 w5

0 w5 0

 0 0 0
0 w4 0
0 0 0


XΦ

2
3

−1
3

−1
3

1
6

2
3

β =
√

3

〈Φ〉

 0 0 w3

0 w4 0
w3 0 0

 w1 0 0
0 0 0
0 0 0

 0 0 0
0 0 w5

0 0 w5


XΦ 0 −1 1

2

β = −
√

3

〈Φ〉

w1 0 0
0 0 w5

0 w5 0

  0 0 w3

0 0 0
w3 0 0

 0 0 0
0 w4 0
0 0 0


XΦ 0 −1

2
1

Table 3.2: Further Higgs fields valid only for specific values of β.

they are valid for each value of β, while for specific values of β other vacuum
alignments are possible, as shown in Tab. 3.2. In general, both these triplets
are necessary to give masses to all quarks; however, in some particular cases
also a sextet is needed to give masses to the leptons [145,146], while if a mech-
anism of dynamical symmetry breaking is implemented a more economical
Higgs content can be sufficient [147–155].

The variegate possibilities for the Higgs sector of 331 models have been exten-
sively analyzed [156–164]. According to what we have discussed, in order to perform
an analysis as general as possible, in what follows we are going to consider the fol-
lowing Higgs content:

χ =

χQYχQV

χ0

 ∼ (3,
β√
3

) with 〈χ〉 =
1√
2

 0
0
vχ

 , (3.15a)

ρ =

 ρ+

ρ0

ρ−QV

 ∼ (3,
1

2
− β

2
√

3
) with 〈ρ〉 =

1√
2

 0
vρ
0

 , (3.15b)
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η =

 η0

η−

η−QY

 ∼ (3,−1

2
− β

2
√

3
) with 〈η〉 =

1√
2

vη0
0

 , (3.15c)

S =

SQY SQV S0

SQV SQC S−

S0 S− S−QY

 ∼ (6,
1

4
+

β

4
√

3
) with 〈S〉 =

1

2

0 0 0
0 0 vS
0 vS 0

 ,

(3.15d)

where QY , QV are che charges defined in Eq. (3.7b)-(3.7c), while

QC = −3

2
+

√
3β

2
, (3.16)

and the vevs are at different energy scales vχ � vρ, vη, vS.

Gauge bosons masses

With the first spontaneous symmetry breaking, the Higgs field χ gets a vev, and
from its covariant kinetic Lagrangian (Dµχ)†(Dµχ) some mass terms arise:

m2
W± = 0, m2

V ±QV = g2
v2
χ

4
, m2

Y ±QY = g2
v2
χ

4
, (3.17a)

m2
W 3 = 0, m2

B = 0, m2
Z′ = g2

v2
χ

3

(
1 +

β2

6

g2
X

g2

)
; (3.17b)

the bosons W± and W 3 remain massless by construction of the symmetry breaking
pattern; B and Z ′ are neutral mass eigenstates obtained from the mixing(

Bµ

Z ′µ

)
=

(
cos θ331 sin θ331

− sin θ331 cos θ331

)(
W 8
µ

Xµ

)
with sin2 θ331 =

1

1 + β2

6

g2
X

g2

. (3.18)

The covariant derivative can be rewritten as

Dµ = ∂µ − igW±
µ T̂

±
W − igW

3
µ T̂

3 − igY
2
BµŶ

− igV ±QVµ T̂±V − igY
±QY
µ T̂±Y − igYZ

′
µ

(
−X β√

6

gX
g
Î +

√
6g

gX
T̂ 8

)
,

(3.19)

where

1

g2
Y

=
6

g2
X

+
β2

g2
,

Ŷ

2
= T̂ 8 +XÎ3 ; (3.20)

the first row presents the usual SM terms before the electroweak symmetry breaking,
while the second row contains the new fields.



64 Chapter 3. 331 models

When with the second step of spontaneous symmetry breaking also the Higgs
fields ρ, η and S get a vev, the masses of the charged gauge bosons become

m2
W± = g2v

2
+

4
, (3.21a)

m2
V ±QV = g2

v2
χ

4

(
1 +

v2
+

2v2
χ

−
v2
−

2v2
χ

+
4v2

S

v2
χ

)
, (3.21b)

m2
Y ±QY = g2

v2
χ

4

(
1 +

v2
+

2v2
χ

+
v2
−

2v2
χ

)
, (3.21c)

where v2
± = ±v2

ρ + v2
η + v2

S. It is evident that, while the charged boson W± has
a mass of the order of the electroweak symmetry breaking scale, and hence should
be identified with the SM charged gauge boson, the new bosons are significantly
heavier [165].

As regards the neutral bosons, the mass terms read

Bµ

W 3
µ

Z ′µ

T



v2
+

4
g2
Y −v2

+

4
ggY 0

−v2
+

4
ggY

v2
+

4
g2 0

0 0 g4

3(g2−g2
Y β

2)

(
v2
χ +

v2
+

4

(
1 +

3g4
Y β

2

g4

)
+

v2
−
4

√
3g2
Y β

g2

)


+
g2

4
√

3
√
g2 − g2

Y β
2

(
v2
− + v2

+

√
3g2

Y β

g2

) 0 0 gY
0 0 −g
gY −g 0

Bµ

W 3
µ

Z ′µ

 ; (3.22)

it is evident that the mixing with the Z ′µ is small, and with a rotation of

sin θW =
gY√
g2 + g2

Y

(3.23)

one can recognize the SM neutral bosons Aµ and Zµ:AµZµ
Z ′µ

 =

 cos θW sin θW 0
− sin θW cos θW 0

0 0 1

Bµ

W 3
µ

Z ′µ

 ; (3.24)

the mass eigentstates are obtained with a further rotation of

sin δZ−Z′ =

√
3
√
g2 + g2

Y

√
g2 − g2

Y β
2

4g2

(√
3g2

Y β

g2

v2
+

v2
χ

+
v2
−

v2
χ

)
, (3.25)

that gives AµZ1
µ

Z2
µ

 =

1 0 0
0 cos δZ−Z′ sin δZ−Z′
0 − sin δZ−Z′ cos δZ−Z′

AµZµ
Z ′µ

 . (3.26)

The phenomenological effects of the Z − Z ′ mixing are not relevant, being δZ−Z′ .
O(10−3) [166–169], and hence one can approximate Zµ ≈ Z1

µ, Z ′µ ≈ Z2
µ, obtaining
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the following masses:

m2
A = 0 , (3.27a)

m2
Z =

v2
+

4

g2

cos2 θW
, (3.27b)

m2
Z′ = v2

χ

g2 cos2 θW
3(1− sin2 θW (1 + β2))

[
1 +

v2
+

4v2
χ

(
1 +

3β2 sin4 θW
cos4 θW

)
+
v2
−

4v2
χ

√
3β sin2 θW
cos2 θW

]
;

(3.27c)

the massless boson is identified with the photon, and comparing Eq. (3.21a) and
Eq. (3.27b) one observes that

m2
W

m2
Z

= cos2 θW , (3.28)

and hence θW is just the SM Weinberg angle; moreover, the mass of the new boson
Z ′ is at the scale vχ, much larger than the SM masses. It is clear that both gY and

cos θ331 = β tan θW (3.29)

are not fundamental parameters, and the neutral mass eigenstates can be written
as a function of the original neutral bosons as

Aµ = sin θWW
3
µ + cos θW

(
β tan θWW

8
µ +

√
1− β2 tan2 θWXµ

)
, (3.30a)

Zµ = cos θWW
3
µ − sin θW

(
β tan θWW

8
µ +

√
1− β2 tan2 θWXµ

)
, (3.30b)

Z ′µ = −
√

1− β2 tan2 θWW
8
µ + β tan θWXµ . (3.30c)

Finally, it is very interesting to note the relation between gX and g

g2
X

g2
=

6 sin2 θW
1− (β2 + 1) sin2 θW

, (3.31)

that, even if obtained at tree level, remains valid at higher orders. It shows that
the theory can present a Landau pole at sin2 θW = 1/(β2 + 1). This is particularly
relevant for example in the minimal model, in which β =

√
3: since sin2 θW (mZ) =

0.233, the constraint sin2 θW (mZ) < 1/4 would restrict the 331 breaking scale to be
of about a few TeV [170–174].

More phenomenological studies on the 331 gauge bosons can be found in [175–
183].

Yukawa interactions

The requirement of being able to obtain SU(3)L × U(1)Y -invariant Yukawa terms
has been used for the construction of the Higgs sector; now, from the comparison of
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Tab. 3.1 with Eq. (3.12a)-(3.12d) and Eq. (3.15a)-(3.15d), one obtains directly the
most generic Yukawa Lagrangian; in the quark sector this is

LqY = λJm,m′Q̄
(m)χJ

(m′)
R + λJm∗,m′∗Q̄

(m′∗)χ∗J (m′∗)

+ λDm,iQ̄
(m)ρD

(i)
R + λUm∗,iQ̄

(m∗)ρ∗U
(i)
R

+ λUm,iQ̄
(m)ηU

(i)
R + λDm∗,iQ̄

(m∗)η∗D
(i)
R + h.c. ,

(3.32)

where the indices m,m′ run over the quark triplets, m∗,m′∗ over the quark an-
titriplets, and i over all the quark generations. We observe that the χ Higgs boson
can only give mass to the third elements of the (anti)triplets J (m(∗)), and hence these
exotic quarks get a mass proportional to the high scale u; on the contrary, the U -
and D-type quarks get a mass at the lower scales. As usual, the mass eigenstates
can be obtained by diagonalizing the Yukawa couplings for each type of quark with
unitary matrices:

U ′L
(1)

...
U ′L

(M)

 = (V U
L )−1

U
(1)
L
...

U
(M)
L

 ,

D′L
(1)

...
D′L

(M)

 = (V D
L )−1

D
(1)
L
...

D
(M)
L

 , (3.33a)

J
′
L

(1)

...
J ′L

(k)

 = (V J
L )−1

J
(1)
L
...

J
(k)
L

 ,

J
′
L

(k+1)

...
J ′L

(M)

 = (V J∗

L )−1

J
(k+1)∗

L
...

J
(M)∗

L

 ; (3.33b)

however, since triplets and antitriplets couple differently with the Z ′, the unitary
matrices can appear explicitly in these neutral currents and hence one could not be
able to absorb all of them in CKM-like matrices as in the SM [184,185].

As regards the lepton sector, the form of the Yukawa Lagrangian depends on
the presence of right-handed leptons. If right-handed leptons are available to build
Yukawa terms, the lepton Yukawa Lagrangian is analogue to the quark one; if the
model does not contain them one has to conveniently combine the left-handed mul-
tiplets. For example, in the minimal 331 model the most general lepton Yukawa
Lagrangian reads

L`Y = λ`,ρn,n′ε
ijk ¯̀(n)

i (`
(n′)
j )cρk + λ`,Sn,n′

¯̀(n)S†(`(n′))c + h.c. , (3.34)

where the introduction of the Higgs sextet S is necessary to give (Majorana) masses
to the neutrinos.
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Higgs potential

The most general gauge-invariant renormalizable potential for the Higgs content
that we are considering reads

V = µ2
1χ
†χ+ µ2

2ρ
†ρ+ µ2

3η
†η

+ λ1(χ†χ)2 + λ2(ρ†ρ)2 + λ3(η†η)2

+ λ4(χ†χ)(ρ†ρ) + λ5(ρ†ρ)(η†η) + λ6(η†η)(χ†χ)

+ λ7(χ†ρ)(ρ†χ) + λ8(ρ†η)(η†ρ) + λ9(η†χ)(χ†η)

+ f(εijkχiρjηk + h.c.)

+ µ2
4S
†S + λ10(S†S)(χ†χ) + λ11(S†S)(ρ†ρ) + λ12(S†S)(η†η)

+ λ13(χ†S)(S†χ) + λ14(ρ†S)(S†ρ) + λ15(η†S)(S†η)

+ λ16(S†S)2 + λ17(S†(S(S†S))) .

(3.35)

For specific values of β, the fact that some Higgs fields happen to have the same
hypercharge imply that other terms are allowed; for example, for β = 1/

√
3 there is

the further contribution

V1/
√

3 = + µ2
5(χ†ρ+ h.c.) + λ18(χ†χ)(χ†ρ+ h.c.) + λ19(ρ†ρ)(χ†ρ+ h.c.)

+ λ20(η†η)(χ†ρ+ h.c.) + λ21

(
(χ†ρ)(χ†ρ) + h.c.

)
+ λ22

(
(η†χ)(ρ†η) + h.c.

)
+ f2(χ†Sχ+ h.c.) + λ23(χiS

ijηkρlεjkl + h.c.)

+ λ24(S†S)(ρ†χ+ h.c.) + λ25(ρ†(S(S†ρ)) + h.c.) ;

(3.36)

however, in these cases there are terms containing combinations like χ†Sχ and
(η†χ)(ρ†η) that violate leptonic number, and discrete symmetries have to be in-
troduced in order to remove them.

For an overall analysis we are going to consider the case of generic β, and to
concentrate on the quark sector in which the S Higgs boson is never required; hence
in what follows the Higgs potential will be the one on Eq. (3.35) without the last
three lines. We write the Higgs triplets

χ =

 χQY

χQV

vχ + ξχ + iζχ

 , ρ =

 ρ+

vρ + ξρ + iζρ
ρ−QV

 , η =

vη + ξη + iζη
η−

η−QY

 ;

(3.37)
moreover, from the minimization of the potential, one finds that, in order to obtain a
suitable spontaneous symmetry breaking, the first coefficients in the potential must
take the form:

µ2
1 = −λ1v

2
χ −

λ4

2
v2
ρ −

λ6

2
v2
η + f

vρvη
vχ

, (3.38a)

µ2
2 = −λ2v

2
ρ −

λ4

2
v2
χ −

λ5

2
v2
η + f

vχvη
vρ

, (3.38b)

µ2
3 = −λ3v

2
η −

λ6

2
v2
χ −

λ5

2
v2
ρ + f

vχvρ
vη

, (3.38c)
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Besides, since as we will see some of the Higgs bosons deriving from the first sym-
metry breaking have a squared mass proportional to fvχ, in order to prevent the
introduction of a third energy scale one can assume |f | ∼ |vχ|. Then, the spectrum
of the Higgs fields results to be the following, where we have defined

sin βab =
va√
v2
a + v2

b

. (3.39)

• Charge 1 (
φ±W
H±1

)
=

(
− sin βρη cos βρη
cos βρη sin βρη

)(
ρ±

η±

)
; (3.40)

m2
φ±W

= 0 , (3.41a)

m2
H±1

=
(v2
ρ + v2

η)(2fvχ + λ8vρvη)

2vρvη
' 1

sin βρη cos βρη
fvχ . (3.41b)

We obtain the Goldstone boson that gives mass to the W±, and a heavy
charged physical Higgs.

• Charge QY (
φ±QYY

H±QY2

)
=

(
− sin βχη cos βχη
cos βχη sin βχη

)(
η±QY

χ±QY

)
; (3.42)

m2

φ
±QY
Y

= 0 , (3.43a)

m2

H
±QY
2

=
(v2
χ + v2

η)(2fvρ + λ9vχvη)

2vχvη
' tan βρηfvχ +

λ9

2
v2
χ . (3.43b)

The Goldstone boson gives mass to the new Y ±QY gauge bosons, and there is
also a heavy physical Higgs.

• Charge QV (
φ±QVV

H±QV3

)
=

(
− sin βχρ cos βχρ
cos βχρ sin βχρ

)(
ρ±QV

χ±QV

)
; (3.44)

m2

φ
±QV
V

= 0 , (3.45a)

m2

H
±QV
3

=
(v2
χ + v2

ρ)(2fvη + λ7vχvρ)

2vχvρ
' cot βρηfvχ +

λ7

2
v2
χ . (3.45b)

Again, the Goldstone boson gives mass to the new V ±QV gauge bosons, and
there is another heavy physical Higgs.
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• Neutral pseudoscalars

The mass matrix of the ζχ, ζρ, ζη pseudoscalar fields reads

M2
ζ = f


vρvη
vχ

vη vρ
vη

vχvη
vρ

vχ
vρ vχ

vχvρ
vη

 ; (3.46)

it can be diagonalized, obtainingφ0
Z

φ0
Z′

H0
4

 '
 −1 0 cot βχη
− cot βχη cos βρη sin βρη − cos βρη
cot βχρ cos βρη cos βρη sin βρη

ζχζρ
ζη

 ; (3.47)

m2
φ0
Z

= 0 , (3.48a)

m2
φ0
Z′

= 0 , (3.48b)

m2
H0

4
=
f(v2

χv
2
ρ + v2

χv
2
η + v2

ρv
2
η)

vχvρvη
' 1

sin βρη cos βρη
fvχ ; (3.48c)

where two Goldstone bosons give mass to the Z and Z ′, and a heavy neutral
pseudoscalar Higgs fields results too.

• Netral scalars

This time the mass matrix is

M2
ξ =

2λ1v
2
χ + f vρvη

vχ
λ4vχvρ − fvη λ6vχvη − fvρ

λ4vχvρ − fvη 2λ2v
2
ρ + f vχvη

vρ
λ5vρvη − fvχ

λ6vχvη − fvρ λ5vρvη − fvχ 2λ3v
2
η + f vχvρ

vη

 . (3.49)

The diagonalization is more complicated; keeping only the terms of O(v2
χ) it

becomes block-diagonal:

Mξ =

2λ1v
2
χ 0 0

0 f vχvη
vρ

−fvχ
0 −fvχ f vχvρ

vη

 , (3.50)

and in the second block higher orders have to be included in order not to lose
the light masses. One obtains three neutral scalar fields that are all physical:H0

5

H0
6

H0
7

 '
1 0 0

0 sin βρη cos βρη
0 − cos βρη sin βρη

ξχξρ
ξη

 ; (3.51)

m2
H0

5
' 2λ1v

2
χ , (3.52a)

m2
H0

6
'

2(λ2v
4
ρ + λ3v

4
η + λ5v

2
ρv

2
η)

v2
ρ + v2

η

, (3.52b)

m2
H0

7
' 1

sin βρη cos βρη
fvχ ; (3.52c)



70 Chapter 3. 331 models

while H0
5 and H0

7 have mass at the high scale vχ, H0
6 gets mass at the elec-

troweak scale and can be identified with the SM Higgs boson.

3.2 Aspects of the models

3.2.1 Number of generations

We perform the analysis of anomalies in 331 models considering a 331 model with
a generic fermion content of M quark generations and N lepton generations, trans-
forming as

q
(m)
L with m = 1 . . . k︸ ︷︷ ︸

3k triplets

; q
(m∗)
L with m∗ = k + 1 . . .M︸ ︷︷ ︸

3(M−k) antitriplets

(3.53a)

`
(n)
L with n = 1 . . . j︸ ︷︷ ︸

j triplets

; `
(n∗)
L with n∗ = j + 1 . . . N︸ ︷︷ ︸

N−j antitriplets

. (3.53b)

As described in the Sec. 2.1.1, we have to consider all the possible combinations of
three generators, except the ones that contain a single SU(3) factor.

• SU(3)c × SU(3)c × SU(3)c

If we require the SU(3)c representations to be vectorlike as in the SM, the
fermonic representation is

3k · 3 + 3k · 3̄ + 3(M − k) · 3 + 3(M − k) · 3̄
+N · 1 + (a 1 term for each right-handed lepton) , (3.54)

that is real and hence do not contribute to the anomaly, in the same way as
the SM.

• SU(3)L × SU(3)L × SU(3)L

As before, we need the SU(3)L representation to be real, that is obtained
when the number of left-handed triplets equals the number of left-handed
antitriplets. This gives the condition

3k + j = 3(M − k) + (N − j) . (3.55)

• U(1)X × SU(3)c × SU(3)c
We have to take the trace of the X-hypercharges over the colored fermions,
obtaining the conditions

3XL
q(m) −

(
XR
U(m) +XR

D(m) +XR
J(m)

)
= 0 ∀ m , (3.56a)

− 3XL
q(m∗) −

(
XR
U(m∗) +XR

D(m∗) +XR
J(m∗)

)
= 0 ∀ m∗ ; (3.56b)

since they are already satisfied by the SM left-handed doublets, they are auto-
matically satisfied by the 331 left-handed triplets when we embed the doublets
and impose the charge.
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• U(1)X × SU(3)L × SU(3)L

This time the trace runs over the X-hypercharges of the left-handed triplets:

j∑
n=1

(XL
`(n)) +

N∑
n∗=j+1

(−XL
`(n
∗)) + 3

k∑
m=1

(XL
q(m)) + 3

M∑
m∗=k+1

(−XL
q(m∗)) = 0 , (3.57)

which, substituting the actual values of the hypercharges, gives the condition

− 3

2
M +

3
√

3β

2
(M − 2k) = −3

2
N +

√
3β

2
(N − 2j) . (3.58)

• U(1)X × [Grav]× [Grav]
Since gravity acts on all the fields, the anomaly is

3

j∑
n=1

(XL
`(n)) + 3

N∑
n∗=j+1

(−XL
`(n
∗)) + 9

k∑
m=1

(XL
q(m)) + 9

M∑
m∗=k+1

(−XL
q(m∗))

−
j∑

n=1

(XR
ν(n) +XR

e(n) +XR
E(n))−

N∑
n∗=j+1

(XR
ν(n∗) +XR

e(n
∗) +XR

E(n∗))

− 3
k∑

m=1

(XR
U(m) +XR

D(m) +XR
J(m))− 3

M∑
m∗=k+1

(XR
U(m∗) +XR

D(m∗) +XR
J(m∗)) = 0 .

(3.59)

Now, while for each left-handed quark its right-handed partner must always be
present, this is not necessary for leptons, not only for right-handed neutrinos
but also for the other leptons, since in some cases a right-handed lepton could
be embedded into the third place of a left-handed triplet, or because the exotic
fermion could be neutral. The right-handed neutrinos, being electrically neu-
tral, do not contribute to the anomalies, but we have to take into account the
possible absence of right-handed charged leptons, by introducing the symbol

Θ` ≡

{
1 for models with charged `R

0 for models without charged `R
. (3.60)

With this notation we substitute the hyper charges obtaining

− 3

2
N +

√
3β

2
(N − 2j) = −jΘe(1) − j

(
1

2
+

√
3β

2

)
ΘE(1)

− (N − j)Θe(j+1) − (N − j)

(
1

2
−
√

3β

2

)
ΘE(j+1) , (3.61)

that is a condition on the lepton sector.
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• U(1)X ×U(1)X ×U(1)X

Similarly to the previous case, we get

3

j∑
n=1

(XL
`(n))

3 + 3
N∑

n∗=j+1

(−XL
`(n
∗))

3 + 9
k∑

m=1

(XL
q(m))

3 + 9
M∑

m∗=k+1

(−XL
q(m∗))

3

−
j∑

n=1

((XR
ν(n))

3 + (XR
e(n))

3 + (XR
E(n))

3)

−
N∑

n∗=j+1

((XR
ν(n∗))

3 + (XR
e(n
∗))

3 + (XR
E(n∗))

3)

(3.62)

− 3
k∑

m=1

((XR
U(m))

3 + (XR
D(m))

3 + (XR
J(m))

3)

− 3
M∑

m∗=k+1

((XR
U(m∗))

3 + (XR
D(m∗))

3 + (XR
J(m∗))

3) = 0 ,

and from it

− 3

4
(1 + β2)

(
1

2
N +M

)
+

√
3β(9 + β2)

24
(N − 2j)−

√
3β3(M − 2k) =

−jΘe(1)+j

(
1

2
+

√
3β

2

)3

ΘE(1)−(N−j)Θe(j+1)−(N−j)

(
1

2
−
√

3β

2

)3

ΘE(j+1) .

(3.63)

From the requirement of anomaly cancellation we have obtained the four condi-
tions in Eq. (3.55), Eq. (3.58), Eq. (3.61) and Eq. (3.63). Combining the first two,
they simplify in

N = M ; (3.64)

j + 3k = 2N, (3.65)

the first one saying that, as in the SM, the number of quark and lepton generations
must be the same, while the second is a constraint on the subdivision of the mul-
tiplets in triplets and antitriplets, whose possible solutions are reported in Tab. 3.3
for the relevant values of N , i.e. N ≥ 3 in order to fit all the SM generations and
N ≤ 5 in order to obtain asymptotic freedom [123].

Now, substituting the first three conditions into the fourth, this becomes

j(Θe(1) −ΘE(1)) = (j −N)(Θe(j+1) −ΘE(j+1)) , (3.66)

and, together with the condition in Eq. (3.61), represents a constraint in the build-
ing of the lepton sector; once the latter have been consistently defined, the quark
sector is fixed by Eq. (3.64)-(3.65). Moreover, despite the freedom left by the Θ`
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N = M triplets

3
j = 0; k = 2
j = 3; k = 1

4 j = 2; k = 2

5
j = 1; k = 3
j = 4; k = 2

Table 3.3: Anomaly-free subdivision of SU(3)L triplets and antitriplets for the pos-
sible numbers of generations. We notice that the different possibilities for a single
number of generations are symmetric for the interchange of triplets and antitriplets.

parameters, in the lepton sector one has to ensure to include for each charged lepton
its corresponding conjugate in the spectrum in order to build up the correspond-
ing Dirac Lagrangian. Hence we perform a systematic analysis of all the possible
structures of the lepton sector.

• N = 3

◦ j = 0

Since there are no left-handed triplets, we cannot have the relative right-
handed singlets and hence Θe(1) = ΘE(1) = 0. Then the two conditions in
Eq. (3.61)-(3.66) become respectively

Θe(j+1) +

(
1

2
−
√

3β

2

)
ΘE(j+1) =

3

2
−
√

3β

2
, (3.67a)

Θe(j+1) −ΘE(j+1) = 0 , (3.67b)

that admit the solutions

Θe(j+1) = ΘE(j+1) = 0 with β =
√

3 , (3.68a)

Θe(j+1) = ΘE(j+1) = 1 ∀β . (3.68b)

◦ j = 3

Symmetrically with respect to the previous case, we have Θe(j+1) = ΘE(j+1) =
0 and the solutions

Θe(1) = ΘE(1) = 0 with β =
√

3 , (3.69a)

Θe(1) = ΘE(1) = 1 ∀β . (3.69b)

• N = 4, j = 2
This time there are no a priori conditions on the Θ`’s, and they are constrained
by

Θe(1) +

(
1

2
+

√
3β

2

)
ΘE(1) + Θe(j+1) +

(
1

2
−
√

3β

2

)
ΘE(j+1) = 3 , (3.70a)
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Θe(1) −ΘE(1) = − (Θe(j+1) −ΘE(j+1)) , (3.70b)

whose possible solutions are

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 0, 1, 1) with β = −
√

3 , (3.71a)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 1, 1, 0) with β =
√

3 , (3.71b)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 0, 0, 1) with β = −
√

3 , (3.71c)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 1, 0, 0) with β =
√

3 , (3.71d)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 1, 1, 1) ∀β . (3.71e)

• N = 5

◦ j = 1

The two conditions read

Θe(1)+

(
1

2
+

√
3β

2

)
ΘE(1)+4Θe(j+1)+4

(
1

2
−
√

3β

2

)
ΘE(j+1) =

15

2
−3
√

3β

2
,

(3.72a)
Θe(1) −ΘE(1) = −4 (Θe(j+1) −ΘE(j+1)) , (3.72b)

with solutions

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 0, 0, 0) with β = − 5√
3
, (3.73a)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 0, 1, 1) with β = −
√

3 , (3.73b)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 1, 0, 0) with β =
√

3 , (3.73c)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 1, 1, 1) ∀β ; (3.73d)

however, the first solution is not physical because it implies the presence
of right-handed leptons with charge different from the one of the relative
left-handed ones.

◦ j = 4

Symmetrically, the possible configurations are

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 0, 1, 1) with β = −
√

3 , (3.74)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 1, 0, 0) with β =
√

3 , (3.75)

(Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 1, 1, 1) ∀β . (3.76)

In summary, some representatives of possible matter contents for which a model
with gauge group SU(3)c × SU(3)L × U(1)X is anomaly-free are listed in Tab. 3.4
and Tab. 3.5, with the only assumption to associate only one lepton and one quark
multiplet for each generation, and at most one right-handed singlet associated with
each left-handed fermion.

A few considerations are worth. We notice from the first row of Tab. 3.4 that
for a certain value of β the third place of the leptonic left-handed (anti)triplets
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N = 3, j = 0, (Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 0, 0, 0), β =
√

3

`
(1∗)
L =

 e(1∗)

−ν(1∗)(
e(1∗)

)c

L

`
(2∗)
L =

 e(2∗)

−ν(2∗)(
e(2∗)

)c

L

`
(3∗)
L =

 e(3∗)

−ν(3∗)(
e(3∗)

)c

L

q
(1)
L =

U (1)

D(1)

J (1)


L

U
(1)
R

q
(2)
L =

U (2)

D(2)

J (2)


L

U
(2)
R

D
(1)
R D

(2)
R

J
(1)
R J

(2)
R

q
(3∗)
L =

 D(3∗)

−U (3∗)

J (3∗)


L

D
(3∗)
R

U
(3∗)
R

J
(3∗)
R

N = 3, j = 1, (Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 0, 1, 1), ∀β

`
(1∗)
L =

 e(1∗)

−ν(1∗)

E(1∗)


L

e
(1∗)
R

`
(2∗)
L =

 e(2∗)

−ν(2∗)

E(2∗)


L

e
(2∗)
R[

ν
(1∗)
R

] [
ν

(2∗)
R

]
E

(1∗)
R E

(2∗)
R

`
(3∗)
L =

 e(3∗)

−ν(3∗)

E(3∗)


L

e
(3∗)
R[
ν

(3∗)
R

]
E

(3∗)
R

q
(1)
L =

U (1)

D(1)

J (1)


L

U
(1)
R

q
(2)
L =

U (2)

D(2)

J (2)


L

U
(2)
R

D
(1)
R D

(2)
R

J
(1)
R J

(2)
R

q
(3∗)
L =

 D(3∗)

−U (3∗)

J (3∗)


L

D
(3∗)
R

U
(3∗)
R

J
(3∗)
R

Table 3.4: Possible fermonic contents for N = 3 generations; also the two solutions
obtained for the exchange of triplets with antitriplets are admissible.

acquires the right charge to fit the antiparticle of the charged lepton, avoiding at all
the introduction of right-handed leptons, compatibly with the anomaly cancellation.
Historically, this configuration was used for the very first formulations of the 331
model [39,40], and led to the derivation of very interesting properties. In fact, if one
assumes that all the leptons behave in the same way, it is evident from Tab. 3.3 that
the theory is anomaly free only for 3 generations of leptons, offering a solution to
a long-debated question; moreover, in this case there is one quark generation that
behaves differently from the other two, giving a starting point to explain the large
hierarchy of the third quark generation [186]. On the other hand, the limits of this
configuration emerged soon, and the cases with right-handed neutrinos [187–189]
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N = 4, j = 2, (Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (0, 0, 1, 1), β = −
√

3

`
(1)
L =

 ν(1)

e(1)(
e(1)
)c

L

`
(2)
L =

 ν(2)

e(2)(
e(2)
)c

L

`
(3∗)
L =

 e(3∗)

−ν(3∗)

E(3∗)


L

e
(3∗)
R

`
(4∗)
L =

 e(4∗)

−ν(4∗)

E(4∗)


L

e
(4∗)
R[

ν
(3∗)
R

] [
ν

(4∗)
R

]
E

(3∗)
R E

(4∗)
R

q
(1)
L =

U (1)

D(1)

J (1)


L

U
(1)
R

q
(2)
L =

U (2)

D(2)

J (2)


L

U
(2)
R

D
(1)
R D

(2)
R

J
(1)
R J

(2)
R

q
(3∗)
L =

 D(3∗)

−U (3∗)

J (3∗)


L

D
(3∗)
R

q
(4∗)
L =

 D(4∗)

−U (4∗)

J (4∗)


L

D
(4∗)
R

U
(3∗)
R U

(4∗)
R

J
(3∗)
R J

(4∗)
R

N = 4, j = 2, (Θe(1) ,ΘE(1) ,Θe(j+1) ,ΘE(j+1)) = (1, 1, 1, 1), ∀β

`
(1)
L =

ν(1)

e(1)

E(1)


L

[
ν

(1)
R

]
`

(2)
L =

ν(2)

e(2)

E(2)


L

[
ν

(2)
R

]
e

(1)
R e

(2)
R

E
(1)
R E

(2)
R

`
(3∗)
L =

 e(3∗)

−ν(3∗)

E(3∗)


L

e
(3∗)
R

`
(4∗)
L =

 e(4∗)

−ν(4∗)

E(4∗)


L

e
(4∗)
R[

ν
(3∗)
R

] [
ν

(4∗)
R

]
E

(3∗)
R E

(4∗)
R

q
(1)
L =

U (1)

D(1)

J (1)


L

U
(1)
R

q
(2)
L =

U (2)

D(2)

J (2)


L

U
(2)
R

D
(1)
R D

(2)
R

J
(1)
R J

(2)
R

q
(3∗)
L =

 D(3∗)

−U (3∗)

J (3∗)


L

D
(3∗)
R

q
(4∗)
L =

 D(4∗)

−U (4∗)

J (4∗)


L

D
(4∗)
R

U
(3∗)
R U

(4∗)
R

J
(3∗)
R J

(4∗)
R

Table 3.5: Some of the possible fermonic contents for N = 4 generations; the solu-
tions obtained for the exchange of triplets with antitriplets and some solutions with
different positions of the right-handed singlets are also possible.

and mirror fermions have been considered as well [143], [190], and the role of the
anomalies in the scalar sector has been investigated [191,192].

3.2.2 Peccei-Quinn simmetry

In the limit of vanishing masses for the u and d quark, the QCD Lagrangian for
these two flavours presents a global U(2)V × U(2)A (vector-axial) symmetry. Ex-
perimentally, while the vector symmetry is respected to a very good approximation
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(in fact U(2)V = SU(2)I × U(1)B), this is not true for the axial symmetry: quark
condensates with 〈ūu〉 =

〈
d̄d
〉
6= 0 form, breaking down the axial symmetry spon-

taneously; four pseudo-Goldostone bosons would be expected, but, apart for the
pions, there are no signs of another light state in the hadronic spectrum.

A possible solution to this problem seems to be provided by the breaking of the
U(2)A symmetry at loop level. In fact, considering the triangle loop of an axial
current with two gluons, one finds the anomalous current

∂µj
µ5 =

g2

32π2
Gµν
a G̃aµν , (3.77)

with G̃aµν = 1
2
εµναβG

µν
a . One can notice that the pseudoscalar density entering this

anomaly is a total divergence:

Gµν
a G̃aµν = ∂µK

µ with Kµ = εµαβγAaα

[
Gaβγ −

g

3
fabcAbβAcγ

]
; (3.78)

however, this do not vanish when integrated into the action, because the usual
boundary condition Aµa = 0 at spatial infinity is not gauge invariant; the correct
boundary condition to use is that any gauge transformation of Aµa should vanish at
the spatial infinity [193]. This nontrivial structure of the QCD vacuum brings out
a free parameter θ from the gauge transformation, with the result of adding to the
Lagrangian the effective contribution

Lθ = θ
g2

32π2
Gµν
a G̃aµν . (3.79)

Moreover, when electroweak interactions are included, the diagonalization of the
mass matrix M implies a chiral transformation that changes θ → θ̄ = θ+arg(detM).
The term in Eq. (3.79) is C-conserving and P - and T -violating, and hence violates
CP . It is directly linked to the neutron electric dipole moment dn ' eθmq/m

2
N ,

and the strong bounds on the latter, |dn| < 2.9 e·cm [194] imply that the phase θ is
extremely small, if not vanishing; this is known as the strong CP problem and it is
an open problem of the SM.

The most popular solution to the CP problem is the introduction of the Peccei-
Quinn symmetry [120,195] and hence of the axion [196,197]. If the theory presents a
global axial symmetry U(1)PQ that is spontaneously broken, the relative Goldstone
boson, called the axion, exhibits a triangle anomaly that, due to the effective poten-
tial generated by the interaction with the gluons, exactly cancels the axial anomaly.
Due to the anomaly, the axion acquires a mass and hence is not incompatible with
experiments.

A theory that naturally presents such a symmetry has the appealing advantage of
not suffering of the strong CP problem. This is the case of at least some realizations
of the 331 model [198–201].

• In its minimal version [39,40], with 3 generations without right-handed lepton
singlets and β =

√
3, the fermion content of the model is

`
(1∗, 2∗, 3∗)
L ∼ (1, 3̄, 0) , Q

(1, 2)
L ∼

(
3,3,−1

3

)
, Q

(3∗)
L ∼

(
3, 3̄,

2

3

)
; (3.80a)
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U
(1, 2, 3∗)
R ∼

(
3,1,

2

3

)
, D

(1, 2, 3∗)
R ∼

(
3,1,−1

3

)
; (3.80b)

J
(1, 2)
R ∼

(
3,1,−4

3

)
, J

(3∗)
R ∼

(
3,1,

5

3

)
; (3.80c)

while the Higgs sector contains

χ ∼ (1,3, 1) , ρ ∼ (1,3, 0) , η ∼ (1,3,−1) , S ∼ (1,6, 0) ; (3.81)

the most general Yukawa Lagrangian is

LY = λ`,ρab ε
ijk ¯̀

ia`
c
jbρk + λ`,Sab

¯̀
aS
†`cb

+ λQ,χij Q̄i
LχJ

j
R + λQ,χ3 Q̄3

Lχ
†TR

+ λQ,ρia Q̄i
Lρd

a
R + λQ,ρ3 Q̄3

Lρ
†uR

+ λQ,ηia Q̄i
Lηu

a
R + λQ,η3 Q̄3

Lη
†dR + h.c. ;

(3.82)

and the most general Higgs potential

V = λ1(χ†χ− v2
χ)2 + λ2(ρ†ρ− v2

ρ)
2 + λ3(η†η − v2

η)
2 + λ4(Tr(S†S)− v2

S)2

+ λ5(Tr(S†SS†S)− v4
S) + λ6(χ†χρ†ρ− v2

χv
2
ρ) + λ7(ρ†ρη†η − v2

ρv
2
η)

+ λ8(η†ηχ†χ− v2
ηv

2
χ) + λ9(χ†χTr(S†S)− v2

χv
2
S) + λ10(ρ†ρTr(S†S)− v2

ρv
2
S)

+ λ11(η†ηTr(S†S)− v2
ηv

2
S) + λ12(χ†ρρ†χ) + λ13(ρ†ηη†ρ) + λ14(η†χχ†η)

+ µ1ηρχ+ µ2ρ
TS†χ+ h.c. .

(3.83)

The gauge Lagrangian and the Yukawa Lagrangian are invariant with respect
to the global chiral U(1) symmetry [198]

Multiplet `
(i∗)
L Q

(i)
L Q

(3∗)
L qR χ, η, ρ S

Charge 1 1 −1 0 1 2

as well as the Higgs potential, with the exception of the trilinear term ηρχ
that can be dropped out without consequences.

This scenario presents therefore a symmetry of the type advocated by Peccei-
Quinn. However the model is not realistic in this way: at the high scale vχ,
although the U(1)PQ breaks, the combination U(1)PQ+U(1)X is unbroken and
acts as a Peccei-Quinn symmetry; hence the axion emerges at the lower scale
vρ ∼ vη and this is ruled out by experiments. The model has to be extended
in order to make the axion invisible.

• If one wants to include right-handed neutrinos, one can choose β = −1/
√

3
and a fermionic content

`
(1, 2, 3)
L ∼

(
1, 3̄,−1

3

)
, Q

(1∗, 2∗)
L ∼ (3, 3̄, 0) , Q

(3)
L ∼

(
3,3,

1

3

)
(3.84a)
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e
(1, 2, 3)
R ∼ (1,1,−1) ; (3.84b)

U
(1∗, 2∗, 3)
R , J

(3)
R ∼

(
3,1,

2

3

)
, D

(1∗, 2∗, 3)
R , J

(1∗, 2∗)
R ∼

(
3,1,−1

3

)
; (3.84c)

the Higgs sector is reduced to

χ ∼
(

1,3,−1

3

)
, ρ ∼

(
1,3,

2

3

)
, η ∼

(
1,3,−1

3

)
; (3.85)

the Yukawa Lagrangian and the Higgs potential2 read respectively

LY = λ`,LLij `iL`
j
Lρ+ λ`,LRij

¯̀i
L`

j
Rρ

+ λQ,χij Q̄i
Lχ
†J jR + λQ,χ3 Q̄3

LχTR

+ λQ,ρia Q̄i
Lρ
†daR + λQ,ρ3 Q̄3

LρuR

+ λQ,ηia Q̄i
Lη
†uaR + λQ,η3 Q̄3

LηdR + h.c. ;

(3.86)

V = λ1(χ†χ− v2
χ)2 + λ2(ρ†ρ− v2

ρ)
2 + λ3(η†η − v2

η)
2

+ λ4(χ†χ− v2
χ)(η†η − v2

η) + λ5(η†η − v2
η)(ρ

†ρ− v2
ρ)

+ λ6(ρ†ρ− v2
ρ)(χ

†χ− v2
χ) + λ7(χ†η + η†χ)2

+ λ8(χ†η)(η†χ) + λ9(η†ρ)(ρ†η) + λ10(ρ†χ)(χ†ρ) .

(3.87)

Also in this case there is a Peccei-Quinn symmetry [198]

Multiplet `
(i)
L `

(i)
R Q

(i∗)
L Q

(3)
L qR χ, η, ρ

Charge −1
2
−3

2
−1 1 0 1

which however presents the same axion problem as the previous scenario.

3.3 The 331 model

3.3.1 Model content

As we have discussed in the previous sections, a specific realization of a 331 model
is defined by a value of the β parameter and by the assignment of a consequent non-
anomalous fermionic content. The specific scenario that we are going to consider,
that we will call 331 model, has

β =
1√
3

(3.88)

and the fermionic content listed in Tab. 3.6. We introduce three fermion generations;
the three lepton families are arranged into antitriplets, and their third component
can fit the charged-conjugated neutrinos, so that neutrinos can get a mass without
the explicit introduction of their right-handed component; on the other hand, the

2In [187] the following discrete symmetry is imposed: χ→ −χ, TR → −TR, Dj
R → Dj

R.
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ψL QψL ψR QψR

Q
(1,2)
L =

u
d
D


L

,

c
s
S


L

 2
3

−1
3

−1
3

 uR, cR
2
3

dR, sR −1
3

DR, SR −1
3

Q
(3∗)
L =

 b
−t
T


L

−1
3

2
3
2
3

 bR −1
3

tR
2
3

TR
2
3

`
(1∗,2∗,3∗)
L =

 e
−νe
(νe)

c


L

,

 µ
−νµ
(νµ)c


L

,

 τ
−ντ
(ντ )

c


L

−1
0
0

 eR, µR, τR −1

Table 3.6: Fermionic content of the 331 model.

right-handed components are introduced necessarily for the charged leptons. Con-
cerning the quark sector, in order to build an anomaly-free model, according to
Tab. 3.3 two families must be arranged into triplets and one into an antitriplet;
in order to obtain a realistic phenomenology, the third generation is chosen to be
the antitriplet [186]. Three new quarks are present: two of down-type and one of
up-type. Notice that the sign of the b or of the t quark has to be reversed to get
the proper couplings to the charged SM gauge bosons, which has no effect on the
diagonal couplings to the neutral gauge bosons. However, this affects the couplings
of b and t to the heavy T and thus has physical consequences, but the ambiguity
cannot be resolved up to now as the effect enters only in loops with the heavy T
and it is not strong enough to significantly influence measured quantities. In the
lepton sector, the minus sign can be assigned to the neutrino or to the charged lep-
ton indifferently because all couplings are independent of the choice. The choice of
β = 1/

√
3 implies that no exotic charges are present, neither in the fermionic nor in

the gauge sector [202–204].

The gauge bosons, in the mass basis, are

W±
µ =

1√
2

(W 1
µ ∓ i W 2

µ) , m2
W = g2

v2
ρ + v2

η

4
, (3.89a)

Y ±µ =
1√
2

(W 4
µ ∓ i W 5

µ) , m2
Y = g2

v2
χ + v2

ρ

4
, (3.89b)

V 0
µ , V̄

0
µ =

1√
2

(W 6
µ ∓ i W 7

µ) , m2
V = g2

v2
χ + v2

η

4
, (3.89c)

Aµ = sWW
3
µ + cW

(
tW√

3
W 8
µ +

√
1− t2W

3
Xµ

)
, m2

A = 0 , (3.89d)

Zµ = cWW
3
µ + sW

(
tW√

3
W 8
µ +

√
1− t2W

3
Xµ

)
, m2

Z = g2
v2
ρ + v2

η

4c2
W

, (3.89e)
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Z ′µ = −
√

1− t2W
3
W 8
µ +

tW√
3
Xµ ,

m2
Z′ '

g2c2
W

3− 4s2
W

[
v2
χ +

v2
ρ

4

(
t2W +

1

c4
W

)
+
v2
η

4

(
1 +

1

c4
W

)]
. (3.89f)

W±
µ , Aµ, Zµ are the gauge bosons of the SM, while Y ±µ , V 0

µ , V̄
0
µ and Z ′µ are new heavy

gauge bosons.
The scalar sector contains the three triplets

χ =

 χ+
A

χ0
B

vχ + ξχ + iζχ

 , ρ =

 ρ+
A

vρ + ξρ + iζρ
ρ0
B

 , η =

vη + ξη + iζη
η−A
η−B

 ,

(3.90)
for which the mass eigenstates are

φ±W = −sβρ±A + cβη±A , m2
φW

= 0 , (3.91a)

φ±Y ' −η
±
B , m2

φY
= 0 , (3.91b)

φ0
V , φ̄

0
V ' −ρ0

B,−ρ̄0
B , m2

φV
= 0 , (3.91c)

φ0
Z ' −ζχ , m2

φZ
= 0 , (3.91d)

φ0
Z′ ' sβζρ − cβζη , m2

φZ′
= 0 , (3.91e)

H±1 = cβρ
±
A + sβη

±
A , m2

H1
=

1

sβcβ
fvχ , (3.91f)

H±2 ' χ±A , m2
H2

= tβfvχ +
λ9

2
v2
χ , (3.91g)

H0
3 , H̄

0
3 ' χ0

B, χ̄
0
B , m2

H3
=

1

tβ
fvχ +

λ7

2
v2
χ , (3.91h)

H0
4 ' cβζρ + sβζη , m2

H4
=

1

sβcβ
fvχ , (3.91i)

H0
5 ' ξχ , m2

H5
= 2λ1v

2
χ , (3.91j)

H0
6 ' sβξρ + cβξη , m2

H6
=

2(λ2v
4
ρ + λ4v

4
η + λ5v

2
ρv

2
η)

v2
ρ + v2

η

, (3.91k)

H0
7 ' −cβξρ + sβξη , m2

H7
=

1

sβcβ
fvχ , (3.91l)

(3.91m)

where sβ ≡ sin βρη = vρ√
v2
ρ+v2

η

. The φ’s are the Goldstone bosons that give mass to

the five gauge bosons, H6 is the neutral scalar field that can be identified with the
SM Higgs boson, while H1 . . . H5 and H7 are heavy (pseudo)scalar fields.

The Feynman rules of the 331 model are listed in Appendix B. It is interesting
to notice that the SM quark sector is strictly not affected by the effects of the gauge
group enlargement, in the sense that, if we consider only the SM quarks and gauge
bosons, their interactions are exactly the same as in the SM. On the contrary, in the
lepton sector the new gauge bosons can couple two SM leptons; they are assigned
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lepton number L = ∓2, but carry no lepton generation number since they can
mediate lepton-flavour violating processes at tree level. Consequently, strict bounds
on the model come from the upper bounds on the µ → eγ decay set by the MEG
experiment [205]; detailed studies on lepton-flavour violation have been performed
in [206–211], and more insights into lepton masses, see-saw mechanisms and neutrino
physics in 331 models can be found in [212–226].

We mention here that, in addition to consider realizations of the 331 model
with different values of β and different fermionic contents, a variety of extensions
with more NP features has been studied: supersymmetric extensions [227–242], the
additions of further symmetries [243–251], the inclusion into GUTs [252–256], the
dark matter candidates [257–259].

3.3.2 Quark mixing and FCNCs

The most general gauge-invariant Yukawa Lagrangian in the quark sector is

LqY = λJijQ̄i,LχJj,R + λJ33Q̄3,Lχ
∗TR

+ λDiaQ̄i,Lρda,R + λD3aQ̄3,Lη
∗da,R

+ λUiaQ̄i,Lηua,R + λU3aQ̄3ρ
∗ua,R + h.c. ,

(3.92)

where i = 1, 2 so that Jj = D,S, while a = 1, 2, 3 so that ua = u, c, t and da = d, s, b.
The pattern is similar to the 2HDM or to the SUSY one, with up- and down- quarks
getting mass from different Higgs multiplets; instead, the new quarks get mass from
another different multiplet at a different scale.

As in the SM, the mass eigenstates of the SM quarks can be obtained through
unitary transformations of the left-handed multiplets:u′Lc′L

t′L

 = U−1
L

uLcL
tL

 ,

d′Ls′L
b′L

 = V −1
L

dLsL
bL

 . (3.93)

As regards the exotic quarks, obviously the D and S quarks do not mix with the
differently charged T quark; on the other hand, the mixing of D and S can be
reabsorbed by a suitable parametrization of the rotation matrices. In fact, the
exotic mass matrix MJ can be diagonalized by two block-diagonal unitary matrices
WL and WR, and WR can be removed by a redefinition of the right-handed heavy
quark fields, while WL can be absorbed into the definition of UL and VL. As a
consequence, one can treat D,S, T as physical fields.

The rotation of the SM quarks affects the charged currents: the W -mediated
current becomes

JµW = ūLγ
µU †LVLdL , (3.94)

and hence the relevant matrix is the combination

VCKM ≡ U †LVL , (3.95)

that is just the SM CKM matrix. Nonetheless, differently from the SM, the UL and
VL matrices are physical quantities: first of all they appear explicitly in the vertices
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of the Y and V gauge bosons, but moreover they have also an important impact
on the neutral currents. In fact, the quark mixing has no consequences on the A
and Z interactions, as in the SM, but this is not true for the Z ′, due to its different
treatment of the third generation. Explicitly, we consider the Z ′-mediated current,
keeping only the phenomenologically interesting contributions, i.e. the left handed
ones leaving out the exotic quarks that are too heavy as external states:

JµZ′ = ūLγ
µU †L

−1 + 4
3
s2
W

−1 + 4
3
s2
W

1− 2
3
s2
W

ULu

+ d̄Lγ
µV †L

−1 + 4
3
s2
W

−1 + 4
3
s2
W

1− 2
3
s2
W

VLd

= (−1 +
4

3
s2
W )(ūLγ

µuL + d̄Lγ
µdL)

+ 2c2
W ūLγ

µU †L

0
0

1

ULuL + 2c2
W d̄Lγ

µV †L

0
0

1

VLdL ,

(3.96)

i.e. the Z ′ can mediate tree-level FCNCs governed by the UL and VL matrices,
introducing new sources of CP violation. This holds for all the 3-generations 331
models, since by construction two generations are treated equally and differently
from the third. On the other hand, the universality of the coupling of the Z ′ to
to right-handed quarks implies that the FCNCs are purely left-handed, and the
universality of its coupling to leptons guarantees that no FCNCs show up in this case.
In addition, we underline that instead the new V 0 gauge boson does not generate
tree-level FCNCs between SM quarks, since it only mediates interactions between
SM and exotic quarks. FCNCs in 331 models have been analyzed theoretically and
phenomenologically in [260–271], and CP violation in [272–274].

In order to analyze the structure of these matrices, it is convenient to take VL
and VCKM as the independent matrices. The structure of the CKM matrix is the
same as in the SM since the form of the W -vertex is exactly the same and one can
still rotate five independent, unphysical phases. The matrix VL is a unitary matrix
as well and therefore it is determined by nine parameters. As there are three new
quarks in the theory, three phases are unphysical, and in VL six parameters remain,
three angles and three mixing phases. In order to draw out a parametrization of VL,
one has to analyze the structure of the other vertices in which it appears, i.e. with
the currents

JµV = d̄iLγ
µV †L

1 0
0 1
0 0


ia

Da
L + T̄Lγ

µ
(
0 0 1

)
i
ULu

i
L , (3.97a)

JµY = ūiLγ
µU †L

1 0
0 1
0 0


ia

Da
L − T̄Lγµ

(
0 0 1

)
i
VLd

i
L ; (3.97b)
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from the second term in Eq. (3.97b) we see that rotating T by a complex phase θ
amounts to multiplying the third line in VL by θ; in the first term in Eq. (3.97a)
one can rotate the first and second line of VL through an arbitrary phase rotation
of each D and S. Therefore the transformations allowed for the VL matrix are an
independent phase rotation in every line. It is convenient to choose a parameteriza-
tion that has a simple structure and as little parameters as possible in the third line,
since these are the elements that will occur in the down-type FCNCs. Moreover,
the parametrization must be compatible with the choice to treat D and S both as
masses and interaction eigenstates. We will use the following parametrization [263]:

VL =

 c12c13 s12c23e
iδ3 − c12s13s23e

i(δ1−δ2) c12c23s13e
iδ1 + s12s23e

i(δ2+δ3)

−c13s12e
−iδ3 c12c23 + s12s13s23e

i(δ1−δ2−δ3) −s12s13c23e
i(δ1−δ3) − c12s23e

iδ2

−s13e
−iδ1 −c13s23e

−iδ2 c13c23

 .

(3.98)
Moreover, we will use the following notation for the Z ′-mediated FCNCs of down
quarks:

iLFCNC = i
[
∆sd(sLγ

µdL) + ∆bd(bLγ
µdL) + ∆bs(bLγ

µsL)
]
Z ′µ , (3.99)

and similarly ∆µµ̄
L,R and ∆νν̄ for the couplings of Z ′ to leptons. For a generic 331

model with 3 generations the ∆’s are

∆ij =
gc2

W√
3cW

√
1− (1 + β2)s2

W

v∗3iv3j , (3.100a)

∆ji = (∆ij)∗ , (3.100b)

∆µµ̄
L =

g
[
1− (1 +

√
3β)s2

W

]
2
√

3cW
√

1− (1 + β2)s2
W

, (3.100c)

∆µµ̄
R =


−gβs2W

cW
√

1−(1+β2)s2W
β 6=
√

3

g
√

1−4s2W√
3cW

β =
√

3
, (3.100d)

∆νν̄ = ∆µµ̄
L , (3.100e)

(3.100f)

where vij = (VL)ij; in particular, in the 331 model and using the value of the
Weinberg angle, they read

∆sd = 0.61gs13s23c13e
i(δ2−δ1) , (3.101a)

∆bd = −0.61gs13c13c23e
−iδ1 , (3.101b)

∆bs = −0.61gs23c
2
13c23e

−iδ2 , (3.101c)

∆µµ̄
L = 0.213g , (3.101d)

∆µµ̄
R = −0.183g , (3.101e)

∆νν̄ = 0.213g . (3.101f)
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3.4 Phenomenology of the 331 model

The previous phenomenological analyses of different kinds of 331 models can be
found in [275–290] for hadron colliders and in [291–299] for lepton colliders.

3.4.1 Impact on the master functions

General structure

The key observation about the structure of the 331 model is that it presents the
same operators as the SM: neither left-right nor right-right effective vertices are
introduced, and, neglecting the Higgs-mediated transition, the left-left operator is
vectorial. As a consequence, the penguin-box expansion approach can be used with-
out the definition of new master functions. However, the presence of the VL matrix
elements is a new source of both flavour violation and CP violation, and this implies
that the master functions loose respectively their universality and their realness. In
summary, the phenomenological effects of the 331 model can be incorporated into
the SM formulae for the relevant observables simply by performing a substitution
of the master functions

F (xt)→ Fi(xt; ρ331) ≡ |Fi|eiθ
i
F , (3.102)

where ρ331 indicates the new parameters of the model, the i index indicates that the
master function is flavour-dependent, and the θiF are the new CP-violating phases.

∆F = 2 transitions

The master function involved is S, that becomes

Si(xt;mZ′ , VL) = S0(xt) + ∆S
(Z′)
i (mZ′ , VL) + ∆S

(Box)
i ≡ |Si|eiθ

i
S , (3.103)

where S0 is the SM contribution, ∆S
(Z′)
i is the contribution due to the tree-level

Z ′ exchange, and ∆S
(Box)
i is the contribution coming from the exchange of the new

particles into the box diagram.
As regards the first contribution, from Fig. 3.1a we find

∆S
(Z′)
{sd,bd,bs}(mZ′ , VL) =

[
∆{sd,bd,bs}

λ
(sd,bd,bs)
t

]2
4r̃

g2
SMm

2
Z′
, (3.104)

where we have defined

λ
(ij)
t = (VCKM)∗ti(VCKM)tj , g2

SM =
2GFα√

2π sin2 θW
. (3.105)

The r̃ coefficient includes the renormalization group effects. It reads

r̃ =
CV LL

1 (mZ′)

0.985
η

6/21
6

[
1 + 1.371

α
(6)
s (mt)

4π
(1− η6)

]
, (3.106)
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Figure 3.1: Z ′ contribution to: (a) ∆F = 2 transitions; (b) di → dj `
+`−; (c)

di → dj νν̄; (d) b→ sγ.

where

CV LL
1 (µ) = 1 +

αs
4π

(
−2 log

m2
Z′

µ2

11

3

)
(3.107)

represents O(αs) QCD corrections to Z ′ tree-level exchange [300] and the two factors
involving

η6 =
α

(6)
s (mZ′)

α
(6)
s (mt)

(3.108)

represent together NLO QCD renormalization group evolution from mt to mZ′ as
given in [138]; the renormalization scheme dependence of this evolution is cancelled
by the one of CV LL

1 . The departure of r̃ from unity is governed by the renormalization
group effects between µt and µZ′ = O(mZ′), absent in the SM, and by the difference
in matching conditions between full and effective theories, involving tree diagrams in
the 331 models while box diagrams in the SM. These are represented by CVLL

1 (mZ′)
and the numerical factor 0.985 [53], respectively. The latter factor describes flavour
universal QCD correction to S0(xt) in the SM and is usually included in ηB and
η2 [53]. The coefficient 1.371, calculated in [138], corresponds to the effective theory
with six flavours. We implicitly assume that the new fermions D,S, T are heavier
than Z ′; their inclusion into this formula would have a very small impact on r̃. Note
that r̃ is free from hadronic uncertainties; it is also flavour universal, as the flavour
dependence is already included in η2, ηB, B̂q and B̂K , which have been factored out.
The numerical values for r̃, for the values of mZ′ that we will use in the numerical
analysis, are

r̃(mZ′ = 1 TeV) = 0.985, r̃(mZ′ = 3 TeV) = 0.9534 . (3.109)
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In principle one should also include new box diagram contributions with new
charged and neutral gauge bosons and new quark exchanges; charged Higgs parti-
cles can also contribute. However it is possible to show that these contributions
are negligible even without explicit calculations. Indeed, compared to the SM
contributions, the new box contributions are suppressed automatically by a fac-
tor m2

W/m
2
V ≤ 0.006, where mV ≥ 1 TeV stands for the masses of the new gauge

bosons. In models with new left-right operators this suppression could be compen-
sated by enhanced hadronic matrix elements of new operators and QCD renormal-
ization group effects; however, in 331 models only the SM operator is present and
such enhancements are absent. Another enhancement could be present through in-
creased values of the elements of the mixing matrix VL, but our analysis shows that,
in order to suppress sufficiently tree-level Z ′ contributions to ∆F = 2 processes,
the hierarchical structure of VL resembles the structure of the CKM matrix. Box
diagrams are also suppressed with respect to the tree-level contributions by a loop
factor 1/(16π2) and two additional vertices. In summary, it is safe to keep only
Z ′ contributions; this simplifies significantly the analysis as new box diagrams de-
pend generally on many more new parameters, like masses of new gauge bosons and
fermions and new mixing angles.

∆F = 1 transitions

According to what we have just discussed, we will neglect the loop contributions
also in this case.

• di → dj νν̄

In the SM, the Z-penguin and the box diagram that contribute to this process
are contained in the X master function, which with the Z ′ contribution in
Fig. 3.1c becomes here

X{sd,bd,bs}(mt;mZ′ , VL) = X(xt) +
∆νν̄

g2
SMm

2
Z′

∆{sd,bd,bs}

λ
(sd,bd,bs)
t

≡ |Xi|eiθ
i
X . (3.110)

• di → dj `
+`−

In this transition the relevant loop functions is the Y , which in the SM is a
linear combination of the V − A component of the Z-penguin and the box
diagrams with final leptons with weak isospin T3 = −1/2, and Z, which is
a linear combination of the vector component of the Z-penguin and the γ
penguin; they are modified as follows by the contribution in Fig. 3.1b:

Y{sd,bd,bs}(mt;mZ′ , VL) = Y (xt) +
∆µµ̄
A

g2
SMm

2
Z′

∆{sd,bd,bs}

λ
(sd,bd,bs)
t

≡ |Yi|eiθ
i
Y , (3.111)

Z{sd,bd,bs}(mt;mZ′ , VL) = Z(xt) +
2

4 sin2 θW

∆µµ̄
R

g2
SMm

2
Z′

∆{sd,bd,bs}

λ
(sd,bd,bs)
t

≡ |Zi|eiθ
i
Z ,

(3.112)

where we have defined ∆µµ̄
A = ∆µµ̄

R + ∆µµ̄
L .
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• b→ s γ

Very detailed analyses of B → Xsγ decay in 331 models have been presented
in [260], [266], and it has been found that the dominant NP contributions come
from the Higgs sector. In the numerical analysis that we are going to perform,
we will not consider the parameters involved in this sector, which being par-
ticularly rich do not provide significant predictions. Similarly, the subleading
contributions involving the new gauge bosons V 0 and Y ± and the new heavy
quarks involve new parameters and their contributions can be suppressed if
necessary without any impact on our analysis. The only contributing diagram
that involves only the Z ′ as a new particle is shown in Fig. 3.1d; we have
performed a novel analysis regarding its QCD corrections, founding that it
determines a correction of O(10−4) with respect to the SM prediction, and
hence is negligible as expected [301].

3.4.2 Correlations

The 331 model does not satisfy Constrained Minimal Flavour Violation, since the
master functions are neither flavour universal nor real; the pattern of flavour viola-
tion can be investigated by looking at the deviation from unity of the r parameters,
that in this case read:

r(∆M) =

∣∣∣∣SbdSbs
∣∣∣∣ , r(µ+µ−) =

∣∣∣∣YbdYbs
∣∣∣∣2 , r(νν̄) =

∣∣∣∣Xbd

Xbs

∣∣∣∣2 . (3.113)

On the other hand, due to the small number of new parameters, a noticeable
pattern of correlations can be recognized. In fact, we make the following observa-
tions.

• The good consistence of the CKM theory with experiments implies that the
angles and the phases of the new VL matrix should be very small; as a con-
sequence, it is a good approximation to set c12 ' c13 ' c23 ' 1, provided
that a post-check is made with the obtained values of the relative sine terms.
Then, fixing the mass of the Z ′, the 331 contributions depend only on four
new parameters:

s13 , s23 , δ1 , δ2 . (3.114)

• Going further, we notice that:

◦ ∆bd depends only on s13 and δ1. As a consequence, we expect direct
correlations between the Bd-related observables, such as ∆Md, SψKS in
the mixing, Bd → µ+µ−, Sdµ+µ− in the dimuon decay.

◦ ∆bs depends only on s33 and δ2. As a consequence, analogously to the
previous case, we expect direct correlations between the Bs-related ob-
servables, i.e. ∆Ms, Sψφ in the mixing, Bs → µ+µ−, Ssµ+µ− , Aλ∆Γ in the
dimuon decay, the rare decays B → Xsνν̄.
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◦ ∆ds depends on all the four parameters, and (weaker) correlations can
be expected between the observables in the K system. Moreover, when
experimental constraints are taken into account, this will provide indirect
correlations between the Bd- and Bs-observables.

Given the simple structure of the Z ′ contribution, the form of these correlations
can be derived in analytical form even for arbitrary values of β.

• In order to estimate the correlation between the mixing in the K sector and
in the Bd,s sector, we consider the ratio

∆Ssd
∆Sbd∆S∗bs

=
m2
Z′g

2
SM

4r̃

[
∆sd

∆bd(∆bs)∗

]2

= 0.41
(mZ′

TeV

)2 1− (1 + β2)s2
W

r̃

β=1/
√

3−−−−→ 0.28
(mZ′

TeV

)2 1

r̃
. (3.115)

This relation implies that after the experimental constraints on ∆Md,s have
been taken into account, the effects in εK are smaller than in ∆Md,s for values
mZ′ ≤ 3 TeV. Indeed, NP contributions in ∆Md,s are constrained to be at
most 10% of the SM values and therefore the absolute values of ∆{bd,bs} can
be at most 0.25. As r̃ ≈ 1, we find ∆{ds} ≤ 0.16, which implies a correction of
at most 6%. However, for much larger values of mZ′ these effects can increase
significantly.

• In order to estimate the impact of the variation in the mixing observables to
the νν̄ decays, the relevant comparison is

∆X{bd,bs}√
∆S∗{bd,bs}

= {±} ∆νν̄

√
r̃gSMmZ′

= {∓}0.255

(
TeV

mZ′

)
1− (1 +

√
3β)s2

W

r̃
√

1− (1 + β2)s2
W

β=1/
√

3−−−−→ {∓}0.165
(mZ′

TeV

) 1√
r̃
. (3.116)

This result implies that NP effects in the processes with νν̄ in the final state
are rather small for mZ′ = 3 TeV: requiring again that ∆{bd,bs} ≤ 0.25 we find
that only effects of at most 5% on branching ratios are expected for b→ sνν̄
transitions; these effects are even smaller for the K decays. For mZ′ = 1 TeV
the relevant mixing parameters s13 and s23 have to be lowered by roughly a
factor of 3 to satisfy the ∆Md,s constraint. The inspection of the dependence
on mixing angles shows that the decrease of the latter is compensated approxi-
mately by the decrease of mZ′ in the case of K+ → π+νν̄ and KL → π0νν̄, and
it is overcompensated in the case of b→ sνν̄ transitions, so that modifications
of the branching ratios by 15% are possible in this case.

• As regards the correlation between the decays with νν̄ and µ+µ− in the final
state, the ratio

∆Yi
∆Xi

= −1− (1−
√

3β)s2
W

1− (1 +
√

3β)s2
W

β=1/
√

3−−−−→ −1.86 (3.117)
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implies that NP effects in the µ+µ− decays can be larger than in the case of νν̄.
This is not only because of the factor −1.9 in this relation, but also because,
concerning the SM contributions, Y (xt) is smaller than X(xt); thus for mZ′ =
3 TeV effects of 10-15% on the branching ratio are still allowed in Bd,s →
µ+µ− and these effects are expected to increase up to 30% for mZ′ = 1 TeV.
Interestingly the NP effects in Bd,s → µ+µ− and B → Xsνν̄ are anticorrelated,
and similarly for K+ → π+νν̄ and KL → µ+µ−; unfortunately, due to small
NP effects in decays with νν̄ in the final states, these anticorrelations will be
difficult to test.

Moreover, these relations allow to point out that, once the constraints on ∆Md,s are
taken into account, the NP effects for β =

√
3 both in εK and in all rare decays are

so small that it will be difficult to distinguish this model from the SM on the basis
of flavour violation in meson decays.

3.4.3 Numerical analysis

Strategy

Since in all the 331 contributions that we are going to consider the key role is played
by the new Z ′ boson, first of all it is fundamental to determine a plausible working
range for its mass. Lower bounds on mZ′ within 331 models were discussed in
literature, from the study of µ decay [165, 186, 206], Z ′ decays to e+ e− or µ+µ−

[302], or from the analysis of S, T , U parameters [167]; however, the resulting
bounds are model dependent, since they depend also on the entries of the matrices
that transform the quark gauge eigenstates into mass eigenstates. Concerning the
direct lower bound on mZ′ from collider experiments, the most stringent bounds
are provided by CMS experiment [303]; the precise value depends on the model
considered: while for the so-called sequential Z ′ the lower bound for mZ′ is of about
2.5 TeV, in other models values as low as 1 TeV are still possible, and we will use
the latter in order to be more general. As regards the upper bounds on mZ′ , as
we have discussed about Eq. (3.31), some realization of the 331 model present the
interesting feature of an upper limit to the breaking scale and consequently to the
mass of the Z ′; however, it can be seen that this is not the case of the models with
β = 1/

√
3. Hence we choose to investigate the range 1 TeV ≤ mZ′ ≤ 3 TeV, that is

testable in the nearby future by present experiments, and we will discuss the case
in which Z ′ is beyond the LHC reach at the end.

As our discussion about the correlations in the 331 model indicates, the imposi-
tion of the experimental constraints on ∆Md,s for the chosen range of mZ′ implies
very small effects in εK . Moreover, in the 331 model there are no new tree-level
contributions to B+ → τ+ντ . Both these aspects favor a value of |Vub| that is closer
to inclusive determinations, i.e. to what we have called Scenario 2, in which εK is in
good agreement with data and B+ → τ+ντ is closer to the experimental value than
in the SM. Therefore we perform our numerical analysis setting |Vub| = 4.0 · 10−3,
and the other three CKM input parameters |Vus|, |Vcb| = 0.0406, γ at their central
values measured in tree level decays; we checked that varying |Vub| within ±5% has
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only minor impact on our results. Once four parameters have been fixed, we derive
the other entries requiring the unitarity of the CKM matrix; defining [45]

λ = |Vus| , A =
|Vcb|
λ2

, (3.118a)

Rb =

(
1− λ2

2

)
1

Aλ3
|Vub| , Rt =

√
1 +R2

b − 2Rb cos γ . (3.118b)

the elements that we are going to use are:

|Vtd| = Aλ3Rt = 8.49 · 10−3 , (3.118c)

β = −arg(Vtd) = arctan

(
Rb sin γ

1−Rb sin γ

)
= 25.2◦ , (3.118d)

|Vts| =
∣∣∣∣−Aλ2

[(
1− λ2

2

)
+

(
2λ2

2− λ2

)(
1−Rte

iβ
)]∣∣∣∣ = 0.0399 , (3.118e)

βs = arg(−Vts) = 1.2◦ , (3.118f)

Vtb = 1− 1

2
A2λ4 = 0.9992 . (3.118g)

Now, having fixed the CKM matrix and a range for mZ′ , the goals of our nu-
merical analysis are: (i) to explore the space of the new parameters in order to see
if it is constrained by the experimental data; (ii) to study if the freedom in the al-
lowed regions permits to solve the anomalies in the flavour data. The first step can
be realized in an elegant and straightforward way by using the particular pattern
of dependences that we have recognized in the previous section, and in particular
using only the experimental limits on the two pairs of observables (∆Md, SψKS) and
(∆Ms, Sψφ), which constrain separately the pairs of parameters (s13, δ1) and (s23, δ2)
respectively. Once the possible regions of the parameter space have been identified
in this way, we let the parameters vary into them and study the impact of this on
all the other relevant observables in the K, Bd, Bs mixing and decays, in order to
verify where their experimental limits are respected and then if the present tensions
can be relaxed.

Identification of the space parameter regions

As we have anticipated, in order to perform a first analysis of the parameter space,
we consider the ∆F = 2 pairs of observables (∆Ms, Sψφ) and (∆Md, SψKS) indepen-
dently. We set all the other input parameters at their central values, and in order to
take partially hadronic and experimental uncertainties into account we require the
331 model to reproduce the data for ∆Ms,d within ±5% and the data on Sψ{φ,KS}
within experimental 2σ, i.e. we allow the ranges

1.112 · 10−11 GeV ≤ ∆Ms ≤ 1.231 · 10−11 GeV −0.18 ≤ Sψφ ≤ 0.18 , (3.119a)

3.159 · 10−13 GeV ≤ ∆Md ≤ 3.488 · 10−13 GeV 0.64 ≤ SψKS ≤ 0.72 . (3.119b)

We underline that in this scenario for Vub the SM predictions for both ∆Md and ∆Ms

and also for SψKS fall outside this ranges; in fact, one of our aims is to see if the
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Figure 3.2: Conditions of consistency of the 331 parameters s13, s23, δ1, δ2 with the
experimental data of ∆Md,∆Ms, SψKs , Sψφ. In the upper panel the shaded areas
of (s23, δ2) are the ones allowed by the conditions on ∆Ms (red) and Sψφ (blue).
Analogously, in the lower panel they are the ones of (s13, δ1) allowed by the conditions
on ∆Md (red) and SψKs (blue). The plots on the left are obtained for mZ′ = 1 TeV,
the ones on the right for mZ′ = 3 TeV.

331 model can improve the performance of the SM. Now, these conditions, for fixed
mZ′ = 1 TeV and mZ′ = 3 TeV, select the regions of the parameter space shown
in Fig. 3.2. We can see that each couple of conditions is satisfied in four disjoint
regions in the two planes of parameters; being the conditions and the parameters
independent, we obtain therefore 16 distinct intervals of parameters. We will denote
as Ai(mZ′/TeV) and Bi(mZ′/TeV) the allowed regions in the (s23, δ2) and (s13, δ1)
respectively, as illustrated in Fig. 3.3; the numerical bounds of these regions are
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Figure 3.3: Allowed regions in the (s23, δ2) plane (upper panel) and (s13, δ1) plane
(lower panel). The plots on the left are obtained for mZ′ = 1 TeV, the ones on the
right for mZ′ = 3 TeV. The used names for the region are shown, as well as their
numerical sampling.

s23 δ2 s13 δ1

A1(1) [0.004, 0.016] [49◦, 129◦] B1(1) [0.0019, 0.0033] [126◦, 152◦]
A2(1) [0.044, 0.046] [83◦, 95◦] B2(1) [0.0075, 0.0081] [89◦, 97◦]
A3(1) [0.004, 0.016] [229◦, 308◦] B3(1) [0.0019, 0.0033] [306◦, 352◦]
A4(1) [0.044, 0.046] [263◦, 275◦] B4(1) [0.0075, 0.0081] [269◦, 277◦]

A1(3) [0.012, 0.048] [49◦, 129◦] B1(3) [0.006, 0.010] [126◦, 152◦]
A2(3) [0.13, 0.15] [83◦, 95◦] B2(3) [0.022, 0.024] [89◦, 97◦]
A3(3) [0.012, 0.048] [229◦, 308◦] B3(3) [0.006, 0.010] [306◦, 352◦]
A4(3) [0.13, 0.15] [263◦, 275◦] B4(3) [0.022, 0.024] [269◦, 277◦]

Table 3.7: Allowed intervals for (s23, δ2) and (s23, δ2).

listed in Tab. 3.7.

Two immediate considerations are that the regions with i = 2, 4 are very small,
and that for each allowed region with a given δi the one with δi shifted by 180◦

is allowed too. As regards the dependence on the mass of the Z ′, we notice that
the increase of mZ′ by a factor of three allows to increases s13 and s23 by the same
factor; this structure is evident from the formulae for ∆Sbq. Conversely, the ranges
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Figure 3.4: εK versus ∆Md (upper panel) and ∆Ms (lower panel), for mZ′ = 1 TeV
(left plots) and mZ′ = 3 TeV (right plots). The parameters (s23, δ2; s13, δ1) vary in
the regions (A2, B1) (blue), (A4, B1) (red), (A2, B3) (green), (A4, B3) (yellow), all
superposed. The shaded grey regions are the experimental 1σ − 3σ error ranges,
while the black points are the central values of the SM predictions.

for δi are not affected by the variation of mZ′ .

Indications from other observables

• εK
Once we have considered the observables of the ∆F = 2 transitions in the Bd

and Bs systems to constrain independently two planes of the parameter space,
we turn to the K system that involves all the observables; in particular, the
∆F = 2 observable εK provides very useful indications.

First of all we consider the four small regions between the allowed ones. It
turns out that they correspond to NP contributions to Md

12 and M s
12 that are

larger than their SM values roughly by a factor of two, but carry opposite
signs; as ∆Md,s involve the absolute values of the mixing amplitudes, these
regions cannot be eliminated on the basis of them, and to this aim other
observables have to be invoked. In fact, it turns out that, when (s23, δ2) vary
in the small regions A2 and A4, the predictions for εK are well above its
experimental measurement, worsening with the increase of mZ′ , as shown in
Fig. 3.4. As a consequence, if we require only that εK does not differ more
than 5% with respect to the experimental central value (a bound even larger
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Figure 3.5: εK versus ∆Md (upper plots) and ∆Ms (lower plots), for mZ′ = 1 TeV
(left plots) and mZ′ = 3 TeV (right plots). The parameters (s23, δ2; s13, δ1) vary in
the regions (A1, B1) (blue), (A3, B1) (red), (A1, B3) (green), (A3, B3) (yellow), all
superposed. The shaded grey regions are the experimental 1σ − 3σ error ranges,
while the black points are the central values of the SM predictions.

than the experimental uncertainty), these parameter regions can be excluded,
provided the theoretical and parametric uncertainties in εK could be lowered
down to 5%; this is clearly not the case at present, especially due to V 4

cb

dependence present in εK , but could become realistic in the second half of this
decade. At the end we are left with 8 possible combinations of regions (Ai, Bj).

The second interesting feature arises when we let the parameters vary into the
large regions A1, A3 and B1, B3; the results are shown in Fig. 3.5. It is evident
how imposing that ∆Md and ∆Ms are in agreement with their experimental
values and hence lower than their SM prediction does not have a strong impact
on εK , that stays within a few percents from the experimental central value
and SM prediction; as expected, in this case the room for NP contributions
is larger for larger Z ′ mass. Thus these plots show that this model does not
suffer from the ∆Ms,d-|εK | tension that has been identified in CMFV models.

• Bd,s → µ+µ−

The data from the superstar decays of the flavour physics at LHC will be
fundamental in order to univocally select the region of the parameters of the
331 model and to provide additional stringent tests.
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Figure 3.6: Upper panel: B(Bd → µ+µ−) versus Ssµ+µ− , for mZ′ = 1 TeV (left)
and mZ′ = 3 TeV (right). The parameters (s23, δ2; s13, δ1) vary in the regions
(A1,B1) (blue), (A1, B3) (red), (A3, B1) (green), (A3, B3) (yellow), (A1, B2) (light
red), (A1, B4) (light blue), (A3, B2) (light yellow), (A3, B4) (light green). Lower
panel: B(Bd → µ+µ−) versus Sdµ+µ− , when the parameters (s13, δ1) vary in the re-
gions B1 (blue), B3 (red), B2 (green), B4 (yellow). The black points are the central
values of SM predictions.

We have found a very powerful way to distinguish the effects from the different
parameter regions when looking simultaneously at the two observables Ssµ+µ−

and B(Bd → µ+µ−). In fact, as shown in the upper plots of Fig. 3.6, when
these quantities will be measured, possible deviations from the SM prediction
would select one large region and one small region between the 8 we are left
with. In particular:

◦ (A1, B1) and (A1, B4) are chosen when Ssµ+µ− < 0 and B(Bd → µ+µ−) <
B(Bd → µ+µ−)SM;

◦ (A1, B3) and (A1, B2) are chosen when Ssµ+µ− < 0 and B(Bd → µ+µ−) >
B(Bd → µ+µ−)SM;

◦ (A3, B1) and (A3, B4) are chosen when Ssµ+µ− > 0 and B(Bd → µ+µ−) <
B(Bd → µ+µ−)SM;

◦ (A3, B3) and (A3, B2) are chosen when Ssµ+µ− > and B(Bd → µ+µ−) >
B(Bd → µ+µ−)SM.
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Figure 3.7: Upper panel: B(Bs → µ+µ−) versus Ssµ+µ− , when the parameters (s23, δ2)
vary in the regions A1 (blue), A3 (red). In both rows the left plots are obtained for
mZ′ = 1 TeV, the right ones for mZ′ = 3 TeV. Lower panel: Sψφ versus Aλ∆Γ, for
mZ′ = 1 TeV (left) and mZ′ = 3 TeV (right), when the parameters (s23, δ2) vary in
the regions A1 (blue), A3 (red). The shaded grey regions are the experimental 1σ−3σ
error ranges, while the black points are the central values of the SM predictions.

The fact that Ssµ+µ− and B(Bd → µ+µ−) are very powerful in identifying the
optimal parameter space region can be understood as follows. Ssµ+µ− is gov-

erned by the phase of the function Y bs that originates in the Z ′ contribution.
It can distinguish between A1 and A3 because the new phase δ2 in these two
regions differs by 180◦ and consequently sin δ2, which is relevant for this asym-
metry, differs by sign in the two regions. Calculating the imaginary part of
Y bs and taking into account that it is ∆sb and not ∆bs that enters Y bs, one
can understand the origin of the definite sign of Ssµ+µ− in A1 and A3 regions,
as stated above.

The most evident distinction between the large regions and the small regions
of the parameters (s13, δ1) is possible by adding Sdµ+µ− to the previous set of
observables, as shown in the lower plots of Fig. 3.6. Explicitely:

◦ The large regions are chosen when Sdµ+µ− > 0;

◦ The small regions are chosen when Sdµ+µ− < 0.

In summary, the future measurements of B(Bd → µ+µ−), Sdµ+µ− and Ssµ+µ−
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Figure 3.8: Upper panel: SψKS versus Sdµ+µ− , when the parameters (s13, δ1) vary in
the regions B1 (blue), B3 (red), B2 (green), B4 (yellow). Lower panel: Sψφ versus
Ssµ+µ− , when the parameters (s23, δ2) vary in the regions A1 (blue), A3 (red). In
both rows the left plots are obtained for mZ′ = 1 TeV, the right ones for mZ′ = 3
TeV. The shaded grey regions are the experimental 1σ − 3σ error ranges, while the
black points are the central values of the SM predictions.

will be able to select univocally one region of the parameter space of the 331
model. Once this region has been fixed, the other observables and correlations
that we are going to show provide stringent tests to the validity of the model.

For completeness, in the upper plots of Fig. 3.7 we show the relation between
Ssµ+µ− and B(Bs → µ+µ−), while in the lower plots of the same figure we

consider the observable Aλ∆Γ. Only for mZ′ = 1 TeV and Sψφ significantly
different from zero Aλ∆Γ differs significantly from unity.

In Fig. 3.8 we show the CP violation in the Bq → ψ{qs} decays versus the one
in the Bq → µ+µ− decays. In the lower plots it is evident that the requirement
of suppression of ∆Ms requires Ssµ+µ− to be non-zero. In both scenarios the
sign of Sψφ is not fixed yet but it will be fixed by invoking B(Bs → µ+µ−). It
is particularly remarkable that |Ssµ+µ− | can reach high values for the extreme
values of Sψφ.

In Fig. 3.9 we compare instead the branching ratios of the Bq → µ+µ− decays
with the CP asymmetries in the Bq → ψ{qs}. In the upper plots, it is evident
that the requirements on SψKS and ∆Md forces B(Bd → µ+µ−) to differ from
the SM value, but the sign of this departure depends on the parameter region



Chapter 3. 331 models 99

Figure 3.9: Upper panel: B(Bd → µ+µ−) versus SψKS , when the parameters (s13, δ1)
vary in the regions B1 (blue), B3 (red), B2 (green), B4 (yellow). Lower panel:
B(Bs → µ+µ−) versus Sψφ, when the parameters (s23, δ2) vary in the regions A1

(blue), A3 (red). In both rows the left plots are obtained for mZ′ = 1 TeV, the right
ones for mZ′ = 3 TeV. The shaded grey regions are the experimental 1σ − 3σ error
ranges, while the black points are the central values of the SM predictions.

considered, and the effect increases with decreasing SψKS . Since B(Bd →
µ+µ−) is correlated with SψKS which is already well determined, the range of
δ1 cannot be large. B(Bd → µ+µ−) can then distinguish between the B1 and
B3 regions because cos δ1 differs by sign in these two regions. We find then
destructive interference of Z ′ contribution with the SM contribution in B1 and
constructive interference in B3 implying the results exposed above. It should
be noted that on the basis of ∆F = 2 processes such a distinction between
these regions cannot be made because the relevant amplitudes are governed
by 2δ1 and 2δ2 which differ by 360◦. The reason why B(Bs → µ+µ−) cannot
be presently as powerful as B(Bd → µ+µ−) in the selection of the regions is
the significant experimental error on Sψφ with which this branching ratio is
correlated. However, inspecting this correlation in a given region constitutes
an important test of the model, as we can see in the lower plots. While in
the region A1 Sψφ increases (decreases) uniquely with increasing (decreasing)
B(Bs → µ+µ−), in the region A3 the increase of Sψφ implies uniquely a decrease
of B(Bs → µ+µ−). Therefore, while B(Bs → µ+µ−) alone cannot uniquely
determine the optimal region, it can do it together with Sψφ. If the favored
region will be found to differ from the one found comparing Ssµ+µ− and B(Bd →
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Figure 3.10: B(Bs → µ+µ−) versus B(Bd → µ+µ−), for Sψφ > 0.05 (upper panel)
and Sψφ < −0.05 (lower panel). The parameters (s23, δ2; s13, δ1) vary in the regions
(A1,B1) (blue), (A1, B3) (red), (A3, B1) (green), (A3, B3) (yellow). In both rows the
left plots are obtained for mZ′ = 1 TeV, the right ones for mZ′ = 3 TeV. The black
point is the central value of SM prediction.

µ+µ−), the 331 model will be in trouble. This discussion shows that we have
a triple correlation Ssµ+µ− −Sψφ−B(Bs → µ+µ−) in this model: once the sign
of Ssµ+µ− is known, a unique correlation Sψφ − B(Bs → µ+µ−) is found; if in
addition one of these three observables is precisely known, the other two can
be strongly constrained.

The relation between B(Bd → µ+µ−) and B(Bs → µ+µ−) with the sign Sψφ is
shown in Fig. 3.10, in case Sψφ will be find significantly different from zero.

• B→ Xsνν̄,K
+ → π+νν̄,KL → π0νν̄

We consider some rare decays to final states containing a neutrino-antineutrino
pair, and we start with the inclusive channel B → Xsνν̄, whose results are
shown in the upper plots of Fig. 3.11. The sharp correlation found between
its branching ratio and the one of Bs → µ+µ− is valid in any region of the
parameter space, due to the independence of both ∆µµ̄ and ∆νν̄ from the VL
matrix. As expected, NP effects are significantly larger in B(Bs → µ+µ−)
than in B(B → Xsνν̄).

Moving to the K sector, in the lower plots of the same figure we show the
relation between B(K+ → π+νν̄) and B(KL → π0νν̄). It turns out that there
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Figure 3.11: Upper panel: B(Bs → µ+µ−) versus B(B → Xsνν̄), when the
parameters (s23, δ2) vary in the regions A1 (blue) and A3 (red). Lower panel:
B(K+ → π+νν̄) versus B(KL → π0νν̄), when the parameters (s23, δ2; s13, δ1) vary
in the regions (A1, B1) and (A3, B3) (blue and yellow, superposed), (A1, B3) and
(A3, B1) (red and green, superposed). In both rows the left plots are obtained for
mZ′ = 1 TeV, the right ones for mZ′ = 3 TeV. The shaded grey regions are the
experimental 1σ − 3σ error ranges, while the black points are the central values of
the SM predictions.

are two regions in which both branching ratios are suppressed with respect to
the SM values, and two in which they are both enhanced. The measurements
of these branching ratios could in principle constitute an important test of the
model, but unfortunately the deviations from SM expectations are at most 5%
at the level of the branching ratios, so that these correlations cannot be tested
in a near future; on the other hand, finding experimentally both branching
ratios significantly different from SM expectations would put the model in
trouble. As expected, the NP effects basically do not depend on the mass of
the Z ′.

• Correlations

The calculation of the various observables that we have performed within the
331 model allows us to discuss the departure from CMFV master correlations,
and therefore to recognize the different pattern of flavour violation. We show
the analysis of two of the three r-parameters in the upper plots of Fig. 3.12. We
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Figure 3.12: Upper panel: violation of the CMFV relations in the parameters
r(νν̄) and r(µ+µ−), obtained in the regions (A1, B1) (blue), (A1, B3) (red), (A3, B1)
(green), (A3, B3) (yellow), all almost superposed. Lower panel: B(Bs → µ+µ−) ver-
sus B(Bd → µ+µ−), in the regions (A1, B1) (blue), (A1, B3) (red), (A3, B1) (green),
(A3, B3) (yellow); the gray band is the correlation predicted in the CMFV scenarios.
In both rows the left plots are obtained for mZ′ = 1 TeV, the right ones for mZ′ = 3
TeV. The black point is the central value of SM prediction.

observe that deviation of r(∆M) from 1 is approximately 10%, irrespective of
the value of mZ′ ; r(νν̄) can deviate by almost 20% from 1 for mZ′ = 1 TeV, but
only 6% for mZ′ = 3 TeV; r(µ+µ−) is by far the function that mostly deviates
from CMFV prediction: its values can differ from 1 by 60% for mZ′ = 1
TeV, and almost 20% for mZ′ = 3 TeV. The departure of these functions
from 1 is anti-correlated in the case of r(µ+µ−) and r(νν̄); the largest possible
values of r(νν̄) are obtained when (s̃13, δ1) ∈ B1, while r(µ+µ−) is larger when
(s̃13, δ1) ∈ B3. The case in which the parameters belong to the small regions
is not displayed in these figures for the sake of readability. However, we report
that for mZ′ = 1 TeV, the values of r(νν̄) can be larger, while r(µ+µ−) can
reach even the value 2.2 in the region (A1, B2). For mZ′ = 3 TeV the effects
are almost indistinguishable from the ones of the large regions, except for the
fact that r(µ+µ−) and r(νν̄) can be as large as 1.3 and 1.1, respectively.

A very clear indication of the different flavour patterns is given by the compar-
ison between B(Bs → µ+µ−) and B(Bd → µ+µ−), for which CMFV predicts
a precise correlation. In the lower plots of Fig. 3.12 we include the errors on
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the experimental determinations of ∆Ms, ∆Md, τ(Bs), τ(Bd), and as regards
the non-perturbative inputs we used the central value of the last lattice de-
terminations but we reduced the size of the uncertainty. An improvement in
this direction would indeed substantially help understanding if and how much
CMFV relations are violated in the 331 model.

The correlations of the 331 model allow also to distinguish it from general
MFV scenarios. Taking as a reference example the 2HDMMFV, in both cases
the NP contributions to εK are small, favoring the inclusive value of |Vub|.
However, while in the 2HDMMFV the data on SψKS imply then automatically
a positive value of Sψφ ≥ 0.15 [79], in the 331 model this is not required,
and any value within the LHCb range is still possible. Concerning ∆F = 1
transitions, in the 2HDMMFV there is a tendency for which with increasing
Sψφ also the lower bound on B(Bs → µ+µ−) increases; in the 331 model the
correlation between Sψφ and B(Bs → µ+µ−) is much more transparent. In
both models B(Bs → µ+µ−) can be smaller or larger than the SM value, but
in 2HDMMFV the deviations can be larger, a characteristic property of scalar
currents.

More inspections

• Until now we have considered the case in which the Z ′ is detectable by the
LHC, but the only indirect effects of a heavier mass are of course worth of
investigation as well.

As we can see from the trend in Fig. 3.2, increasing the mass of the Z ′ implies
that the allowed regions of the space parameter are shifted in order to satisfy
the constraints of the ∆F = 2 Bd,s-observables; in particular, s13 and s23 have
to be increased proportionally. Since ∆sd depends on the product s13s23, the
effects on εK increase with mZ′ , as evident from Fig 3.5; on the contrary, since
∆µµ̄ and ∆νν̄ do not depend on these parameters, the NP contributions to the
considered rare decays are suppressed by the mass of the FCNC-mediating Z ′

boson.

The consideration that a heavy Z ′ can significantly modify εK respecting the
experimental bounds on the B-observables suggests that the experimental
value of εK could be even obtained in the context of the Scenario 1, i.e. using
the exclusive determination of |Vub|. In fact, using the representative value of
mZ′ = 10 TeV, and imposing the additional constraints∣∣∣∣ ∆MK

(∆MK)exp

∣∣∣∣ < 25% , 2.0 · 10−3 ≤ |εK | ≤ 2.5 · 10−3 , (3.120)

which are necessary because of the strong effects on the K sector, we find that
the Scenario 1 with |Vub| = 3.1 · 10−3 is allowed for approximately

0.05 ≤ s23 ≤ 0.12 , 0.016 ≤ s13 ≤ 0.030 , (3.121)

to be compared with the ranges in Tab. 3.7.
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When ∆sd reaches its maximal value, further increase of mZ′ will also decrease
NP contributions to εK , so that for very large masses of the Z ′ SM-like results
are obtained as required by decoupling of NP; however, this happens only for
mZ′ ≥ 3000 TeV. This result is just a confirmation of the known fact that if
the FCNC Z ′ couplings to quarks are O(1), εK puts very strong constraints
on the scale of NP.

• In our analysis we have used the most recent lattice inputs, for which the SM
values for ∆Ms and ∆Md are significantly above the data, when the hadronic
and CKM uncertainties are reduced down to ±5%. However, some of the
correlations that we have found would change if ∆Ms and ∆Md were both
found below the data instead. For example, if the values of B̂Bq were reduced
by 20%, the values of the allowed δi would change significantly, going close
to 0◦ or 180◦. This changes radically the quantitative and sometimes the
qualitative results of the 331 analysis; for example, in the Bd meson system,
the general structure of correlations is unchanged, but this time the NP effects
in Bd → µ+µ− are found to be much larger than in Sdµ+µ− ; the impact on the
Bs system is much larger; now the roles of Bs → µ+µ− and Ssµ+µ− in the search
for the optimal space parameter region are interchanged, and B(Bs → µ+µ−)
is bound to be different from the SM values [301]. These considerations show
clearly the importance of precise determinations of flavour observables within
the SM in order to be able to search indirectly for NP.
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The LHC has just concluded its first run, and despite all the strong efforts and
the accurate analyses, it has not given us any direct hint of NP. Therefore, the
complementary research of indirect signatures in precision physics represents the
only viable route at least waiting for higher energies. In particular, the flavour
sector represents an especially interesting field of investigation, both because its
origin is an open question of the SM, and because the accuracy of the available data
together with the improvements of the SM predictions provide a powerful starting
point.

In this thesis we have considered two NP models, particularly interesting because
they provide some answers about the nature of flavour using as only assumption an
extended gauge symmetry. We have found that the phenomenological analysis of
these models, as well as of several other NP models, returns very interesting signa-
tures, like deviations and correlations, that unfortunately are washed out because
of the relatively large uncertainties of some non-perturbative parameters and some
experimental values. We have chosen therefore to adopt an approach that is in some
sense a bit futuristic: we have tried to understand how these NP model will face the
future more precise data. We have done this by considering independent limiting
scenarios with small errors that together cover the majority of the ranges allowed
by the present uncertainties.

The GFS model [25] provides an elegant description of flavour as a spontaneously
broken gauge symmetry; moreover, it is particularly elegant the fact that the mini-
mal non-anomalous fermion content generates a mechanism of inverted hierarchy of
the Yukawa couplings that automatically suppresses FCNCs in an effective way.

In this work we have first of all retraced the complete building of the model in
the quark sector, from the gauge group to the Feynman rules; the main concrete
features of the model are the presence of six new quarks associated to the SM
ones, the presence of 24 new neutral flavour gauge bosons that mediate tree-level
FCNCs and introduce new CP-violating phases, the facts that the CKM matrix is
not unitary and that the couplings of the SM quarks with the Z boson and with
the Higgs boson are modified. As regards in particular the ∆F = 2 and ∆F = 1
transitions between down-type quarks, we have calculated all the new contributions,
both the ones due to the tree-level exchange of the flavour bosons and the ones due
to the exchange of the new heavy quarks into the box diagrams.

In order to put the basis of a phenomenological analysis, we have first explored
the parameter space, consisting in nine new parameters, looking for constraints com-
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ing from consistency, reasonableness and from the strictest experimental bounds, like
the lower limits to the b′ and t′ quark masses and the restrictions from electroweak
precision physics. Then we have moved to a more detailed and systematic scan of
the allowed regions of the parameter space, finding the following results [142].

• In the most favorite regions of the parameter space, the masses of exotic quarks
b′ and t′ as well as of the lightest flavour boson (which for all practical purposes
it corresponds to a flavour non-universal leptophobic Z ′), can be within the
reach of LHC. On the other hand, even in the absence of direct detections,
there are anyway good regions of parameters in which these exotic particles
are much heavier.

• |εK | is enhanced by the new box-diagram contributions and suppressed by the
tree exchange of flavour bosons; on the other hand, SψKS can only be slightly
suppressed by the left-left tree-level contributions. As a consequence, choosing
the exclusive determination of |Vub|, the GFS model can be able to remove the
εK − SψKS tension present in the SM.

• The box diagrams that enhance |εK | enhance also both ∆Md and ∆Ms, which
are almost unaffected by the tree-level contributions. This implies that, where
the εK − SψKS tension is solved, the weak SM equilibrium between εK and
∆Md,s is automatically worsened.

• Concerning other relevant observables: (i) the branching ratio of B̄ → Xsγ
is generally enhanced, but only very small modifications are allowed by the
∆F = 2 bounds; (ii) also the dimuon asymmetry Absl, which could receive
large contributions from the tree-level flavour boson diagrams, remains close
to the SM prediction if |εK | is required to be in agreement with data; (iii) the
branching ratio of B+ → τ+ν is modified through the modified CKM matrix,
and hence provides important constraints in the parameter space.

• This model does not satisfy MFV, and its signatures can prove this. In fact,
even if, by choosing the exclusive |Vub| and by allowing an enhancement of
|εK |, it resembles the CMFV behavior, as well as for the worsening of the
εK −∆Md,s tension, ∆F = 1 processes can provide a distinction: for example,
B(B̄ → Xsγ) can be suppressed in CMFV models. On the other hand, taking
as an example of MFV at large the 2HDMMFV, the GFS model can be easily
distinguished from it: in the latter only tiny contributions to |εK | are allowed
and hence the inclusive value of |Vub| is required.

In summary, besides its appealing theoretical form, a great virtue of the GFS
model is that it presents a relatively small number of free parameters, the structure of
which makes it well predictive. A first decisive test for it will be a more unambiguous
determination of |Vub|: if this will be found to be closer to its present inclusive value,
the GFS model will be definitely in difficulty. On the other hand, even with the
exclusive value of |Vub| the model is not able to correctly describe all the flavour
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data at the same time; in this case, because of its sensitivity to the non-perturbative
parameters, improved calculations of them will play a key role.

The group SU(3)c×SU(3)L×U(1)X is the simplest non-abelian extension of the
SM gauge group; some realizations of these so-called 331 models [39,40] provide an
explanation about why there are just three generations of fermions.

In this work we have presented a complete theoretical treatment of 331 models
in their most general form; in particular, we have performed a detailed analysis
of anomaly cancellation in order to obtain a list of the possible realizations, given
by specific combinations of electric charges with fermion content. Subsequently, we
have chosen a particular realization, which we have indicated as 331, characterized by
interesting phenomenological features, and we have studied its gauge and symmetry-
breaking structure in detail up to the derivation of the Feynman rules. In the 331
model there are three exotic quarks, two of down-type and one of up-type, generally
very heavy; there are moreover three new gauge bosons, and between them a Z ′,
which can have mass at the electroweak scale, mediates FCNCs; finally, the CKM
matrix is flanked by a new unitary mixing matrix. The impact on ∆F = 2 and
∆F = 1 transitions is due only to the contribution of the Z ′ tree-level exchange,
and since there are no new local operators it can be implemented by modifications
of the master loop functions.

In the phenomenological analysis five free parameters are relevant: the mass of
the Z ′ and four angles of the new mixing matrix. We have chosen two representative
and significant values for mZ′ , namely 1 TeV and 3 TeV, and we have proceeded as
follows [301].

• As a preliminary consideration, we have shown that only small contributions
to |εK | are possible, and hence the inclusive determination of |Vub| is preferred.

• Requiring the predictions of the model to be in agreement with the experimen-
tal bounds of the two pairs of observables (∆Md, SψKS) and (∆Ms, Sψφ) of the
Bd,s mixing, there are 4× 4 limited regions in the parameter space of the mix-
ing matrix that are allowed. Requiring also |εK | to be in agreement with data
reduces the allowed regions to 8. This means that in these regions the experi-
mental values of |εK |, SψKS and ∆Md,s are all simultaneously accommodated,
differently from the SM.

• Precise data from the decays Bd,s → µ+µ− will be able to provide more defini-
tive statements about the model. In fact, we have shown that the three ob-
servables B(Bd → µ+µ−), Ssµµ and Sdµµ provide 23 = 8 combinations of possible
deviations from the SM predictions that would be able to univocally select one
between the remaining allowed regions.

• Other characteristics of the model are a well defined correlation between Bs →
µ+µ− and Sψφ, an anti-correlation between Bs → µ+µ− and B(B → Xsνν̄),
small contributions to the transitions B → Xsνν̄, K+ → π+νν̄, KL → π0νν̄.
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• 331 models are not included in the MFV framework. In particular, the typ-
ical correlations of CMFV are clearly violated in the 331, especially the one
between the Bd,s → µ+µ− decays. On the other hand, in contrast to the
2HDMMFV, it does not present a correlation between SψKS and Sψφ.

In summary, the 331 model presents a very interesting phenomenology that, de-
spite the small number of free parameters, could be able to solve the main tensions
between the flavuor prediction of the SM and the experimental data. The exper-
imental deep investigation of different observables in Bd,s → µ+µ−, which will be
most likely performed in the next future, will be able to provide some conclusive in-
formation about this model at least at the TeV scale, which should be also explored
searching for the possible Z ′ boson.

We are aware that we are living during the most exciting years for particle physics
since decades. We have found the Higgs boson and the LHC is warming up to hit the
smallest distances ever explored. In spite of this, at least in the last years the search
of NP has been quite frustrating, because it has consisted only in feeble hints that
have been timely retracted. Nevertheless we believe that NP is around the corner,
and with the work of this thesis we have shown how the flavour physics community
is preparing itself to face all the surprises that the future experiments are saving
for us.



Appendix A

Feynman rules of the GFS model

We present here the Feynman rules for the interaction vertices of quarks with gauge
bosons and the electroweak Higgs boson and Goldstone bosons. V is the SM CKM
matrix; λa, a = 1, . . . , 8 are the Gell-Mann matrices while λu,d are the parameters
of the theory; PL,R = (1∓ γ5)/2.
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Zū′iu
′
i :

{
CL = +

T 3
us

2
uLi−s

2
WQu

cW

CR = − s2W
cW
Qu

Zūiu
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Feynman rules of the 331 model

We present here the Feynman rules for the interaction vertices of quarks and leptons
with gauge bosons. We use the following compact notation: u1,2,3 = u, c, t; d1,2,3 =
d, s, b; D1,2 = D,S; uij = (UL)ij; vij = (VL)ij; PL,R = (1∓ γ5)/2.
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Input Values

Constants

α(mZ) 1/127.9 [65]
αs(mZ) 1.1184(7) [65]
GF 1.1663787(6)× 10−5 GeV−2 [65]
sin2 θW 0.23116(12) [65]

Masses and lifetimes

mW 80.399(23) GeV [65]
mu(2 GeV)1 2.3+0.7

−0.5 × 10−3 GeV [65]
md(2 GeV)1 4.8+0.7

−0.3 × 10−3 GeV [65]
ms(2 GeV)1 95(5)× 10−3 GeV [65]
mc(mc)

1 1.275(25) GeV [65]
mb(mb)

1 4.18(3) GeV [65]
mt(mt)

1 160.0+4.8
−4.3 GeV [65]

mt (direct) (173.5± 0.6± 0.8) GeV [65]
mµ 105.6583715(35)× 10−3 GeV [65]
mτ 1.77682(16) GeV [65]
mK0 497.614(24)× 10−3 GeV [65]
mBd 5.27958(17) GeV [65]
mBs 5.36677(24) GeV [65]
τB± 1.641(8) ps 2 [65]
τBd 1.519(7) ps 2 [65]
τBs 1.497(15) ps 2 [65]

1In the MS renormalization scheme.
21 ps−1 = 6.582× 10−13 GeV/~.
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CKM matrix

|Vus| 0.2252(9) [65]
|Vcb| 40.9(11)× 10−3 [65]
|Vub|(excl.) 4.41(15)× 10−3 [65]
|Vub|(incl.) 3.23(31)× 10−3 [65]
γ (68+10

−11)◦ [65]

Renormalization and non-perturbative parameters

FK 156.1(11)× 10−3 GeV [61]

B̂K 0.746(10) [61]
η1 1.87(76) [59]
η2 0.5765(65) [53]
η3 0.496(47) [58]
κε 0.94(2) [51]
ϕε 43.51(5)◦ [98]
FBd 190.6(47)× 10−3 GeV [61]

B̂Bd 1.26(11) [61]

FBd

√
B̂Bd 226(15)× 10−3 GeV [61]

FBs 227.6(50)× 10−3 GeV [61]

B̂Bs 1.33(6) [61]

FBs

√
B̂Bs 279(15)× 10−3 GeV [61]

ξ 1.237(32) [61]
ηB 0.55(1) [57]

Experimental values of selected observables

∆MK 3.484(5)× 10−15 GeV [65]
∆Md 3.337(33)× 10−13 GeV [65]
∆Ms 1.164(5)× 10−11 GeV [65]
|εK | 2.228(11)× 10−3 [65]
SψKS 0.676(21) [65]
Sψφ −0.001± 0.101± 0.027 [66]
Absl −0.00957± 0.00251± 0.00146 [70]
B(Bd → µ+µ−) < 9.4× 10−10 @ 95% CL [12]
B(Bs → µ+µ−) 3.2+1.5

−1.2 × 10−9 [12]
B(B+ → τ+ντ ) 1.15(23)× 10−4 [110]
B(B̄ → Xsγ) (3.21± 0.15± 0.29± 0.08)× 10−4 [89]
B(B̄ → Xsνν̄) < 6.4× 10−4 @ 90% CL [91]
B(K+ → π+νν̄) 1.73+1.15

−1.05 × 10−10 [95]
B(KL → π0νν̄) < 2.6× 10−8 @ 90% CL [96]
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