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In this paper we will review the symmetries of the AdS/CFT S-matrix,
in particular, the Hopf Algebra and Yangian symmetries.

PACS numbers: 11.25.Tq, 02.20.Uw, 02.30.Ik

1. Introduction

In the last couple of years huge progress has been done in understand-
ing the AdS/CFT correspondence by exploiting its integrability properties.
Originally, integrability was only discovered in certain subsectors [1] and
at one-loop gauge theory [2], and arguments were soon afterwards presented
that integrability also persists at all orders and in all sectors of the AdS/CFT
correspondence [3]. Not long thereafter, long-range Bethe equations have
been conjectured [4] which are supposed to describe the spectrum of all long
operators if one uses the correct dressing phase obtained in [5,6], see also [7]
for an interesting discussion regarding its origin. These Bethe equations
can be obtained from an S-matrix scattering fundamental magnons. The
S-matrix can be derived by using invariance under the correct symmetry
algebra [8]. The global symmetry algebra of N = 4 Super Yang–Mills the-
ory is the superconformal algebra psu(2, 2|4), which is also the isometry of
AdS5× S5. Choosing a vacuum state on the level of the corresponding spin
chain this symmetry gets broken to u(1) ⋉ psu(2|2) × psu(2|2) ⋉ u(1). In
principle, one should expect the S-matrix to be invariant under this residual
symmetry algebra.
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However, it turns out that this algebra is too restrictive as one of the u(1)
generators is identified with the spin chains energy, and is fixed to 1

2
on the

fundamental representation, in opposition to the required continuous values.
It turns out that the correct S-matrix is invariant under two copies of the
universal central extension of psu(2|2), which is psu(2|2) ⋉ R

3 [8]. Due to
this product structure, we will henceforth only talk about the S-matrix in-
variant under one copy of psu(2|2)⋉R

3, whereas the full S-matrix is a tensor
product of two such psu(2|2) ⋉ R

3 S-matrices. It turns out that this cen-
tral extension is crucial in several aspects: If one links those extra central
charges correctly with the momentum as well as some additional braiding
element [9, 10] it allows the energy to be continuous on the fundamental
representation and it fixes the S-matrix uniquely up to a scalar prefactor.
This is quite unusual as usually S-matrices in integrable systems are fixed
not only by Lie algebra symmetries but by higher symmetries such as quan-
tum affine algebras or Yangians. The reason for this is the unusual tensor
product behaviour of this algebra, the tensor product of two fundamental
representations is generically irreducible [11]. The triple tensor product of
fundamentals also has a comparatively simple structure, which can be used
to show that the crucial Yang–Baxter equation holds.

Interestingly, even though no higher symmetry was needed for the deriva-
tion of this S-matrix, it was shown [12] that it is additionally invariant under
a Yangian. This is expected as there is lots of indication that the full sym-
metry algebra psu(2, 2|4) is actually enhanced to the Yangian of psu(2, 2|4)
[13–21]. Furthermore, for the derivation of bound state S-matrices the exis-
tence of the Yangian symmetry is actually crucial [22].

A remaining question is the construction of the universal R-matrix which
should lead automatically to all S-matrices on all representations. From the
underlying symmetry one should expect that it is the universal R-matrix of
the Yangian of psu(2|2) ⋉ R

3. However, because of the degeneracy of the
Killing form due to the existence of additional central charges, this univer-
sal R-matrix cannot exist. On the classical level it was shown [23] that the
two extra central charges and the braiding can be removed as independent
degrees of freedom and incorporated at different degrees of the remaining
central charge in the loop algebra of su(2|2). A universal classical R-matrix
then exists if one adds an outer automorphism and all its higher degrees
to this algebra, making it the loop algebra u(2|2)[u, u−1] which has slightly
deformed commutation relations as a remaining effect of the additional cen-
tral charges which now do not appear explicitly. This classical R-matrix is
valid at strong coupling. The corresponding form for weak coupling looks the
same but the u(2|2)[u, u−1] commutation relations remain undeformed. This
makes it possible to find the so called mathematical quantisation, which is
the double Yangian DY(u(2|2)), and its universal R-matrix has been found
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in [24]. However, this does not yet lead to the coupling dependent all-loop
S-matrix incorporating the effects of the additional central charges, and find-
ing its corresponding universal R-matrix is an outstanding problem. In [25]
the second realization of the Yangian needed for the construction of the uni-
versal R-matrix was studied. What remains to be done is to remove the
gauge central charges in a similar way as on the classical level.

We begin by discussing the su(2|2) symmetric spin chain and its par-
ticular features involving length changing effects and the appearance of the
central extension. In Section 3 we show how to derive the fundamental
S-matrix, and finally we discuss its Yangian symmetry in Section 4.

2. The su(2|2) symmetric spin chain

We start with a psu(2, 2|4) symmetric spin chain, where the spin de-
grees of freedom are equivalent to the fundamental operators of N = 4 SYM
theory inserted into a single trace local operator. As discussed in [1, 3]
the anomalous dimension of such operator corresponds to the energy of
a spin chain with this symmetry. One finds this energy with the help of the
Bethe Ansatz. This works by choosing a vacuum state, which is a protected
BPS operator ZJ , breaking the psu(2, 2|4) symmetry to u(1) ⋉ psu(2|2) ×
psu(2|2) ⋉ u(1). The remaining eight bosonic and eight fermionic operators
transforming under this residual symmetry are now interpreted as magnons
in the spin chain language, they look like

|X 〉 =
∑

n

eipn|. . .ZXZ . . .〉 . (1)

Let us from now on consider magnons which transform in the fundamental
representation of su(2|2), i.e. the magnons span a four dimensional vector
space consisting of two bosons |φa〉 and two fermions |ψα〉. The 16 original
magnons of the full spin chain are then given by the product of two su(2|2)
magnons of the two su(2|2)’s in the residual symmetry algebra.

2.1. Central extension and Hopf algebra

We shall now come to two important related features of the su(2|2) spin
chain considered here. The first one is that the u(1) charge C of su(2|2) is
to be considered as the energy eigenvalue of the spin chain. However, repre-
sentation theory forces this value to be fixed to ±1

2
, which is not compatible

with the requirement of having a continuously varying energy. This appar-
ent puzzle can be resolved by extending the algebra to its universal central
extension psu(2|2) ⋉ R

3 [8], where, if we call the additional central charges
P and K, only the combination

C2 − KP = 1

4
(2)

invariant under outer automorphism is fixed on the fundamental represen-
tation to 1/4.
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Another important feature of this chain is that, as was shown in [26], the
length of this spin chain actually fluctuates. This is manifested in the action
of the supersymmetry generators on the magnons, which can insert or remove
vacuum fields Z in the spin chain. These additional or missing vacuum fields
have no effects on single magnons but only on multi-magnon states. As was
shown in [9, 10] this results in a modified Hopf algebra structure. If we
call the eight supersymmetry generators Qα

a , Sa
α, a, α = 1, 2 then one gets

cocommutation relations or coproducts

∆Qα
a = Qα

a ⊗ 1 + U ⊗ Qα
a ,

∆Sa
α = Sa

α ⊗ 1 + U−1 ⊗ Sa
α , (3)

where U is a new central operator taking the eigenvalue eip/2 on the funda-
mental representation. The essence of the coproduct is that it tells us how
to act on tensor products. We see that unlike what we know from ordinary
Lie algebras, in our case the generators do not act on each tensor product
factor in the same way. This is actually crucial for the derivation of the fun-
damental S-matrix. We finally add that the bosonic generators of the two
su(2)’s of psu(2|2) ⋉ R

3 as well as the central charge C have the standard
action on tensor products, whereas the relations for the additional central
elements P,K follow from the fact that they arise as commutators

P = {Q1

1,Q
2

2} , K = {S1

1,S
2

2} , (4)

to be
∆P = P ⊗ 1 + U2 ⊗ P ,

∆K = K ⊗ 1 + U−2 ⊗ K . (5)

3. The fundamental S-matrix

3.1. Derivation of the S-matrix

The S-matrix we are talking about is the S-matrix scattering two magnons
without particle production. As a symmetry operation should not alter
the outcome of a physical process the S-matrix should commute with the
action of the symmetry generators on the tensor product of two fundamental
representations, which is, as discussed before, defined by the coproduct,
i.e. we should have

[∆J,S] = 0 , J ∈ psu(2|2) ⋉ R
3 . (6)

Note that as the S-matrix changes the two factors of the tensor product the
individual tensor product factors in the coproduct get interchanged if one
scatters first and then performs a symmetry transformation. One first ob-
servation is the following: as the action of the additional central charges (5)
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is not symmetric, and all the generators P,K,U involved are central and
drop out of the commutation relation with the S-matrix, the coproduct of
P,K needs to be symmetric which is only possible if one identifies

P = gα(1 − U2) , P =
g

α
(1 − U−2) , (7)

with some a priori unidentified constants of proportionality. However, note
that on the fundamental representation, where we had U = eip/2, this auto-
matically gives the correct dispersion relation from the constraint between
the central elements (2),

2C =

√
1 + 16g2 sin2

(p
2

)
, (8)

if one chooses the right proportionality factor as above.
One is now in a position to solve (6) for the S-matrix, which is surpris-

ingly fully fixed by the psu(2|2) ⋉ R
3 symmetry up to a prefactor. We get

the result as spelled out in [11] upon identifying ξ = eip/2 in the S-matrix.
Importantly, this S-matrix satisfies the Yang–Baxter equation [11] and leads
to the Bethe equations describing the spectrum of long operators in N = 4
SYM theory previously conjectured in [4]. In this paper, however, we want
to focus on its additional symmetries and algebraic properties.

4. Yangian symmetry

Despite being fixed by the centrally extended psu(2|2) ⋉ R
3 Lie algebra

one might ask if there are additional symmetries of the S-matrix. One rea-
son to believe that these symmetries might exist is that integrable systems
usually have infinitely many symmetries, and on the level of the full sym-
metry algebra psu(2, 2|4), some Yangian enhancement was found. Indeed,
in [12] it was shown that the S-matrix is invariant under the Yangian of
psu(2|2) ⋉ R

3. The Yangian is defined as follows: Let g be any finite di-
mensional Lie algebra with non-degenerate Killing form κAB generated by
JA satisfying commutation relations [JA,JB ] = fAB

C JC . The Yangian Y (g)
is a deformation of the algebra g[u] of polynomials with values in g defined
by the following commutation relations between the level zero generators Ja

forming g and the level one generators Ĵa:

[JA,JB ] = fAB
C JC , (9)

[JA, ĴB ] = fAB
C ĴC . (10)
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The generators of higher levels are derived by demanding compatibility with
the Serre relation (for algebras other than su(2))

[ĴA, [ĴB ,JC ]] + [ĴB , [ĴC ,JA]] + [ĴC , [ĴA,JB ]]

=
1

4
fAG

D fBH
E fCK

F fGHKJ{DJEJF} . (11)

Importantly, the Yangian is a Hopf algebra. The Lie generators have unde-
formed cocommutation relations

∆JA = JA ⊗ 1 + 1 ⊗ JA , (12)

whereas the new generators ĴA have nontrivial coproduct

∆ĴA = ĴA ⊗ 1 + 1 ⊗ ĴA +
1

2
fA

BCJB ⊗ JC . (13)

If g is of type u(n|m) and the Yangian generators are represented as ĴA =
iuJA on the fundamental evaluation representation, this leads to standard
rational S-matrices S = u/(u+ i) − i/(u+ i)P, where P is the graded per-
mutation operator.

We now face the problem that psl(2|2)⋉C
3 has no non-degenerate Killing

form. Luckily, we can overcome this degeneracy by adjoining the three au-
tomorphisms which do not appear on the right-hand side of commutation
relations. They also do not appear in the coproduct of the Yangian gen-
erators of psu(2|2) ⋉ R

3 which is necessary as the automorphisms have no
fundamental representation and hence the Yangian could not be a symmetry
of the fundamental S-matrix. Hence one can use the automorphisms to raise
and lower indices on structure constants in (13) without them appearing
explicitly. Additionally, in the case of psu(2|2) ⋉ R

3 we have to twist the
coproduct now not only of the Lie generators but also of the Yangian genera-
tors, as done in Section 2.1. Now a basic requirement for being a symmetry
of the S-matrix is that all central elements are cocommutative, i.e. sym-
metric on the tensor products. This actually links the spectral parameter u

appearing in ĴA = iuJA to the eigenvalues of the central charges and hence
to the momentum, as required from its physical interpretation as a rapidity.
The final outcome is that the S-matrix is indeed invariant under the Yangian
of psu(2|2) ⋉ R

3.

4.1. Universal R matrices

It would be desirable to have a universal, representation independent
form of the S- or related R-matrix S=PR, as this should yield all S-matrices
existing on representations. It should be related to theYangian of psu(2|2)⋉R

3.
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However, the degeneracy of the Killing form makes the finding of the uni-
versal R-matrix a difficult task. If one takes the classical limit g → 0 one
remains with a u(2|2) symmetry which has non-degenerate Killing form and
a universal R-matrix can be constructed [24]. In the strong coupling limit
1

g → 0 under appropriate scaling of the momentum as p ∝ 1

g one finds that

all the three central elements of psu(2|2) ⋉ R
3 reduce effectively to one,

P = −2iα
C

u
, K =

2i

α

C

u
, (14)

and the braiding becomes 1. Hence, when working with the loop algebra of
su(2|2) the generators P,K are identified with

P = −2αC−1 , K =
2

α
C−1 . (15)

Adjoining an outer automorphism one completes the loop algebra of su(2|2)
to the loop algebra u(2|2)[u, u−1]. This has a non-degenerate Killing form
and a simple classical universal R-matrix

r =
T

iu1 − iu2

, (16)

where T is the quadratic Casimir of u(2|2). If one incorporates a proper
twist as a residual effect coming from the braiding this classical R-matrix
reduces to the strong coupling limit of the S-matrix PS = 1 + (1/g)r + . . ..

5. Outlook

We have discussed the symmetries of the S-matrix of AdS/CFT, which
involve standard Yangian structures as well as unusual Hopf algebra symme-
tries and a central extension unique to the underlying Lie algebra psu(2|2).
Even though these symmetries seem now to be complete there are several
remaining question. It would be desirable to construct a universal R-matrix
as done for u(2|2) in [24] now for all values of g in order to have a rep-
resentation independent form which should also be automatically crossing
invariant. Furthermore, one should study the algebra behind generalisations
of this S-matrix, in particular, its q deformed version considered in [27].

I want to thank P. Koroteev and A. Rej for useful comments on the
manuscript. I am grateful to the Deutsche Telekom Stiftung for supporting
me with a PhD fellowship.
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