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The superior man perseveres long
in his course, adapts to the times,
but remains firm in his direction
and correct in his goals.

I Ching
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Determination of Fundamental Parameters in the Hadronic Sector of the Standard
Model

by Mr. David PRETI

Abstract

Renormalization Group (RG) is an essential tool which allow to study how physical quan-
tities change respect to the physical scale at which are measured. In asymptotic free the-
ories QCD-like, the perturbative computation of RG evolution is limited to a short range
scales at high energies. This strong theoretical limitation cannot be overcame, making
impossible to connect low-energy non-perturbative quantities with high energy ones en-
tering in phenomenological computations. In this thesis we present a non-perturbative
first-principle computation of the scaling of several composite operators relevant for phe-
nomenology, and of quark masses. We take advantage of numerical simulation of the the-
ory discretised on a space-time hyper cubic lattice to compute renormalization constants.
Thanks to recursive finite-size scaling techniques developed by the ALPHA collabora-
tion, we are able to provide the non-perturbative running over two order of magnitude in
scales, from low energies O(ΛQCD) to high energies O(MW). The latter, allow as to con-
nect with perturbative calculations and compute the Renormalization Group Invariant
(RGI) quantity for all the operators investigated in the thesis. In particular, we provide
both perturbative and non-perturbative calculation in the Schrödinger Functional renor-
malization scheme for tensor currents in Nf = 0, 2 QCD. The procedure is also extended
to account for the BSM four-fermion operators with a net flavour exchange which exhibit
mixing under renormalization group. In this case the non-perturbative computation has
been performed for Nf = 2 QCD. As a final results, we also employ a slightly innovative
procedure involving two renormalization schemes defined in high and low energy re-
gions to carry out the non-perturbative running of quark masses withNf = 2+1 flavours.
The latter is an essential step required for the ongoing computation of the value of quark
masses, in particular the strange quark mass ms.
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by Mr. David PRETI

Abstract

El Grupo de Renormalización (RG) es una herramienta esencial que permite estudiar
cómo cambian las cantidades fı́sicas respecto a la escala fı́sica a la que son medidas.

En teorı́as asintóticamente libres como QCD, el cálculo perturbativo de la evolución
RG está limitado al rango de escalas de altas energı́as. Esta fuerte limitación teórica no
puede ser superada, haciendo imposible el contacto entre las cantidades no perturbativas
a baja energı́a con las de alta energı́a que aparecen en cálculos fenomenológicos.

En esta tesis presentamos un cálculo no perturbativo desde primeros principios del
scaling de varios operadores compuestos relevantes para la fenomenologı́a, ası́ como de
las masas de quark. Utilizamos simulaciones numéricas de la teorı́a discretizada en una
red espaciotemporal hipercúbica para calcular constantes de renormalización. Gracias
a las técnicas recursivas de scaling en volumen finito desarrolladas por la Colaboración
ALPHA podemos obtener el running no perturbativo sobre dos órdenes de magnitud
en escalas, desde bajas energı́as O(ΛQCD) hasta altas energı́as O(MW). Estas últimas
permiten hacer contacto con cálculos perturbativos y calcular la cantidad Invariante bajo
Grupo de Renormalización (RGI) para todos los operadores investigados en esta tesis.

En particular, describimos un cálculo tanto perturbativo como no perturbativo de
la renormalización en esquemas Schrödinger Functional para corrientes tensoriales en
Nf = 0, 2 QCD. El procedimiento se extiende a operadores de cuatro fermiones BSM con
cambio neto de sabor, que exhiben mezcla bajo RG. En este caso el cálculo no perturbativo
ha sido realizado para Nf = 2 QCD. Por último, utilizamos un procedimiento innovador,
que emplea dos esquemas de renormalización diferentes a altas y bajas energı́as, para
calcular el running no perturbative de las masas de quark con Nf = 2 + 1 sabores. Este
es un paso esencial en el cálculo en curso de la masa de los quarks en particular para el
quark extraño ms.
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Introduction

Quantum Field theory (QFT) is recognised as the natural theoretical framework for de-
scribing the dynamics of fundamental particles and their interactions. Since its inception
[1], it has been subjected to a continuous evolution process, characterized by several sig-
nicant phases. Among these, one could recollect the formulation of Fermi theory of beta
decay, the adoption of Feynman path integral formalism in perturbation theory, or, last
but not less important, the establishment of the Standard Model.

Along this evolution path, one of the most important landmarks is surely repre-
sented by the emergence of the renormalization group (RG). This is a fundamental tool
which allow to understand how the scale dependence of all fundamental parameters of
the theory is enforced in order not to have infinities once the high energy modes are
included in the theory. The RG machinery has been successfully applied to Quantum
Chromodynamics (QCD). In this theory, the β-function, governing the behaviour of the
renormalized gauge coupling, shows that it tends to zero at short distances, i.e. large
energies (UV). This phenomenon takes the name of asymptotic freedom [2]. As opposite,
the coupling increases toward the low energy scales (IR). This interesting behaviour of
the theory, limits the applicability of perturbative methods, which are defined only in the
high energy region. This points out that non-perturbative strategies had to be employed
to probe low energy dynamics of the theory.

In this context, a natural way to regularise the theory is elegantly provided by the
formulation on the lattice. The theory is defined on a discretised lattice space-time with
lattice spacing a, which acts as a momentum cutoff. In this framework, it is possible to
carry out numerical computation starting from first principles, without relying on per-
turbative expansions.

In this work, the lattice regularisation has been the technical tool for studying a well
known, hot topic of quantum field theory: the renormalization of composite operators.
The main goal of this procedure is to render on-shell correlation functions containing
the insertion of some local operators, which are not in the action, finite as the cut-off is
removed. These operators play a central role in the phenomenological study of particle
physics interactions. In fact, a standard approach to describe such interactions is the Op-
erator Product Expansion (OPE) [3]. The latter allow to express physical amplitudes as
a sum over matrix elements of local operators. The coefficient of this expansion, usually
called Wilson coefficients, encode the high energy short distance physical effects, while
the matrix elements contain the low energy dynamics, which is completely dominated by
non-perturbative phenomena. The latter, is computed on the lattice on large volume sim-
ulations and constitute a challenging theoretical and computational task. A fundamental
ingredient in this procedure is the renormalization the bare matrix elements.

In this thesis we focus on the non-perturbative renormalization for composite op-
erators. We employ a finite volume renormalization scheme with Dirichlet boundary
conditions in time direction, and periodic conditions in space which takes the name of
”Schrödinger Functional”. Taking advantage of recursive techniques developed along
the years by the ALPHA collaboration, we are not only able to extract the renormaliza-
tion constants, but also to compute the non-perturbative running over two order of mag-
nitude in energy scales, from an hadronic region O(ΛQCD) to a perturbative one O(MW).
Once the latter is reached non-perturbatively it is safe to make contact with perturbation
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theory and access to another fundamental quantity called the Renormalization Group In-
variants (RGI). These, as the name suggests, are independent on the scale, and (except
for the coupling) do not carry any dependence on the renormalization scheme (provided
the scheme is massless).

In particularly, in this work we consider the full set of (non flavour-singlet) Lorentz
invariant bilinears (in quark fields). Through Ward Identities (WI) we observe that the
only two operators which transform independently under RG are the pseudoscalar den-
sity and the tensor currents. The first one plays a very special role, since it can be shown,
that its renormalization properties are the inverse of the one of quark masses. The high
precision knowledge of the running of the latter, together with ongoing large volume
simulations allows for an unprecedented accuracy in the determination of some of the
fundamental parameters of QCD. We provide non-perturbative study of the scaling of
the renormalized mass in Nf = 2 + 1 QCD with a novel approach, involving two differ-
ent renormalization schemes respectively at low and high energy regions, which allow to
compute directly for the first time the non-perturbative anomalous dimension of quark
masses.

Hadronic matrix elements of tensor currents also play an important rôle in several
relevant problems in particle physics. Some prominent examples are rare heavy meson
decays that allow to probe the consistency of the SM flavour sector (see, e.g., [4, 5, 6] for
an overview), or precision measurements of β-decay and limits on the neutron electric
dipole moment (see, e.g., [7, 8, 9] for an up-to-date lattice-QCD perspective). Also in this
case, a non-perturbative high precision renormalization is required. In this case we pro-
vide a complete 1-loop perturbative analysis and the non-perturbative calculation with
Nf = 0 and Nf = 2 QCD.

Moreover, we provide an explorative extension of the well established renormaliza-
tion procedure cited above to the case of operators which does not renormalise multi-
plicatively. In particular we focused on the full set of Beyond Standard Model (BSM)
four-fermion operators with a net flavour exchange. Hadronic matrix elements involv-
ing those operators play an important rôle in the study of flavour physics within the SM,
as well as in searches for new physics. In particular, they are essential to the study of CP-
violation in the hadron sector in both the SM and BSM models, where they parametrise
the effect of new interactions.

The material presented in this thesis can be summarised as follow:

• Chapter 1-2. After a brief introduction about Wilsonian Renormalization group
and generalities about RG function, we move to the renormalization of compos-
ite operators. The definition of the RGI is discussed for both multiplicative and
non-multiplicative renormalizable operators. Basic concepts, like the step scaling
functions are introduced at this very first stage.

• Chapter 3. We introduce the Lattice regularisation, fixing the notation and pre-
senting the discretisation for both gauge and fermion actions, where the latter, in-
duces an explicit chiral symmetry breaking by the Wilson term. We then summarise
renormalization pattern for currents and densities, with particular attention to the
renormalization of the mass.

• Chapter 4. We define the Schrödinger Functional, first in the continuum then its
realisation on the lattice. The definition of the renormalized gauge coupling which
naturally provided by the SF is discussed as well as the recursive finite-volume
techniques. In the same chapter, in parallel with the SF coupling we provide an-
other independent coupling definition taking advantage of the Gradient Flow, as
discussed in [10, 11].
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• Chapter 5. Symanzik’s Improvement theory is presented, and its application to a
variety of quantities is provided. In particular the improvement of the action (both
gauge and fermion part), of the flow equations and fermionic currents and densities
are discussed.

• Chapter 6. We present our results for a perturbative 1-loop study in the Schrödinger
Functional of the tensor currents, analysing cutoff effects and, through a scheme-
matching procedure, quoting the results for the 2-loop tensor anomalous dimension
in this scheme. Then, a full non-perturbative computation of the running over two
orders of magnitude in scales is provided for both Nf = 0 and Nf = 2 QCD.

• Chapter 7. We present our results for the non-perturbative running of quark masses
in Nf = 2 + 1 QCD. In this case we adopt a different renormalization scheme, given
by a different definition of the renormalized coupling, in the high energy region
and the low energy region. The non-perturbative running is scheme-matched at an
intermediate scale.

• Chapter 8. We present our 1-loop perturbative study about the parity violating
four-fermion operators with a net flavour exchange. The computation of the 2-
loop (matrix) anomalous dimension is presented, as well as the computation of
cutoff effects in the Step Scaling Functions (SSFs). Non-perturbative results for the
running are provided for Nf = 2 QCD.
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Introducción

La Teorı́a Cuántica de Campos (QFT) es el marco teórico natural para describir la dinámica
de las partı́culas funamentales y sus interacciones. Desde su desarrollo [1], ha estado
sometida a un proceso continuo de evolución, caracterizado por varias fases significa-
tivas. Entre ellas, es necesario mencionar la formulación de la teorı́a de Fermi para las
desintegraciones beta, la adopción del formalismo de integral de caminos de Feynman
en teorı́a de perturbaciones, o, por último, pero no por ello menos importante, la con-
strucción del Modelo Estándar.

A lo largo de esta evolución, una de las piedras miliares más importantes es segu-
ramente la aparición del Grupo de Renormalización (RG), una herramienta fundamental
que permite comprender cómo imponer la correcta dependencia de la escala de todos
los parámetros fundamentales de la teorı́a para evitar la aparición de divergencias aso-
ciadas a los modos de alta energı́a. La maquinaria de RG ha sido aplicada con éxito a
la Cromodinámica Cuántica (QCD). En esta teorı́a la función β, que gobierna el compor-
tamiento del acoplamiento renormalizado, tiende a cero a cortas distancias, i.e. altas en-
ergı́as (UV). Este fenómeno se denomina libertad asintótica [2]. Por el contrario, el valor
del acoplamiento aumenta a baja energı́a (IR). Este interesante comportamiento limita
la aplicabilidad de los métodos perturbativos, que están definidos sólo en la región de
alta energı́a. Por ello, es necesario el uso de estrategias no perturbativas para estudiar la
dinámica de la teorı́a a baja energı́a.

En este contexto, una manera natural y elegante de regularizar la teorı́a es formularla
en una red. La teorı́a se define en un retı́culo espaciotemporal discreto con espaciado a,
que actúa como un cutoff en momentos. En este formalismo es posible llevar a cabo un
cálculo numérico desde primeros principios, sin depender de expansiones perturbativas.

En este trabajo se usa la regularización en una red como herramienta para estudiar
un tema crucial en QFT: la renormalización de operadores compuestos. El objetivo prin-
cipal es hacer que las funciones de correlación en capa de masas de operadores locales,
que no aparecen en la acción, sean finitas en el lı́mite en que se elimina el cutoff. Los
operadores compuestos tienen un papel esencial en el estudio fenomenológico de las in-
teracciones en fı́sica de partı́culas. De hecho, la descripción habitual de las mismas puede
ser realizada a través de la Expansión en Producto de Operadores (OPE) [3]. Este último
permite expresar las amplitudes fı́sicas en términos de sumas sobre elementos de matriz
de operadores locales. Los coeficientes de esta expansión, normalmente llamados coefi-
cientes de Wilson, contienen la información sobre los efectos fı́sicos de alta energı́a (corta
distancia), mientras que los elementos de matriz contienen la dinámica de baja energı́a,
completamente dominada por fenómenos no perturbativos. Estos últimos son calculados
en la red en simulaciones en grandes volúmenes, que constituyen un desafı́o tanto a nivel
teórico como computacional. Un ingrediente esencial del cálculo es la renormalización
de los elementos de matriz.

En esta tesis nos concentramos en la renormalización no perturbativa de operadores
compuestos. Utilizamos un esquema de renormalización de volumen finito con condi-
ciones de contorno de tipo Dirichlet en la dirección temporal, y condiciones de contorno
periódicas en el espacio. Esta técnica recibe el nombre “Schrödinger Functional”. A
través de las técnicas recursivas desarrolladas por la colaboración ALPHA, podemos no
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sólo extraer las constantes de renormalización, sino también calcular el running no per-
turbativo a lo largo de dos órdenes de magnitud en escalas de energı́a, desde la región
hadrónica O(ΛQCD) hasta una perturbativa O(MW). Una vez alcanzada esta última,
es posible establecer el contacto con la teorı́a de perturbaciones, y acceder a otra canti-
dad fundamental llamada Invariante bajo Grupo de Renormalización (RGI). Este último,
como su nombre sugiere, es independiente de la escala, y (salvo en el caso del RGI aso-
ciado al acoplamiento) es independiente del esquema de renormalización (si este último
es un esquema sin masa).

En particular, en este trabajo consideramos el conjunto completo de bilineales (en
campos de quark) invariantes Lorentz en los canales de no singlete. A través de las iden-
tidades de Ward (WI) es posible demostrar que sólo dos operadores se transforman de
manera independiente bajo RG: la densidad pseudoescalar (o, equivalentemente, la es-
calar), y las corrientes tensoriales. La primera tiene un papel muy especial, porque es
posible demostrar que su renormalización es la misma que la de las masas de quark, con
un cambio de signo en la dimensión anómala. Un cálculo de alta precisión de la renormal-
ización de la densidad pseudoescalar, por lo tanto, permite una precisión sin precedentes
para la determinación de algunos de los parámetros fundamentales de QCD. Llevamos a
cabo un estudio no perturbativo del escaleo de la masa renormalizada en QCDNf = 2+1
con una nueva técnica, que implica el uso de dos esquemas diferentes a alta y baja en-
ergı́as, lo que permite calcular por primera vez de manera directa la dimensión anómala
no perturbativa.

Los elementos de matriz de corrientes tensoriales también tienen un papel impor-
tante en numerosos problemas relevantes en fı́sica de partı́culas. Algunos ejemplos promi-
nentes son la desintegraciones raras de mesones pesados, que permiten poner a prueba
la consistencia del sector de sabor del SM (ver, e.g., [4, 5, 6] para una visión global), o
las medidas de precisión de la desintegración beta y los lı́mites sobre el momento dipolar
eléctrico del neutrón (ver, e.g., [7, 8, 9] para obtener una perspectiva del estado del arte en
QCD en la red). También en este caso es necesario una renormalización no perturbativa
de alta precisión. En este trabajo hemos realizado un estudio completo a un loop y la
renormalización no perturbativa para Nf = 0 y Nf = 2.

Por último, proporcionamos una extensión exploratoria de los procedimientos de
renormalización para operadores que no renormalizan multiplicativamente. En particu-
lar, nos concentramos en el conjunto completo de operadores de cuatro fermiones más
allá del SM (BSM) con cambio de sabor. Los elementos de matriz hadrónicos de estos
operadores tienen un importante papel en el estudio de la fı́sica del sabor en el SM y en
la búsqueda de nueva fı́sica. En particular, son esenciales para el estudio de la violación
de CP en el sector hadrónico en SM y BSM, ya que parametrizan los efectos de nuevas
interacciones.

El material presentado en esta tesis se resume ası́:

• Capı́tulo 1-2. Tras una breve introducción al RG wilsoniano y generalidades sobre
funciones RG, se discute la renormalización de operadores compuestos. Se discute
la definición del RGI para operadores renormalizables tanto multiplicativa como
no multiplicativamente. A este nivel se introducen conceptos básicos, como las
step-scaling functions.

• Capı́tulo 3. Se introduce la regularización reticular, fijando la notación y discutiendo
la discretización tanto de campos gauge como de campos fermiónicos, incluyendo
la rotura de simetrı́a quiral en este último sector debido a la presencia del término
de Wilson. A continuación discutimos el patrón de renormalización de corrientes y
densidades, prestando particular atención a las masas de quark.
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• Capı́tulo 4. Se define el Schrödinger Functional, primero en el continuo y a contin-
uación en la red. Se discute la definición del acoplamiento renormalizado propor-
cionado de manera natural por el SF, ası́ como las técnicas recursivas de volumen
finito. En paralelo a la definición SF del acoplamiento, se discute una definición
independiente que usa el Gradient Flow (GF) introducida en [10, 11].

• Capı́tulo 5. Se presentan la teorı́a efectiva de Symanzik para la mejora de la regu-
larización en la red, y su aplicación a varias cantidades. En particular, se discuten
la mejora de la acción (tanto de su parte gauge como de su parte fermiónica), de las
ecuaciones de GF, y de las corrientes y densidades fermiónicas.

• Capı́tulo 6. Presentamos nuestros resultados para un estudio perturbativo a un
loop en el SF de las corrientes tensoriales, analizando los efectos de cutoff y, a través
de un procedimiento de matching de esquemas, el resultado del cálculo de las di-
mensiones anómalas a dos loops de las corrientes tensoriales en este esquema. A
continuación presentamos un cálculo completamente no perturbativo del running
en dos órdenes de magnitud en escalas de energı́a tanto para QCD conNf = 0 como
para Nf = 2.

• Capı́tulo 7. Presentamos nuestros resultados para el running no perturbativo de
masas de quark en QCD Nf = 2 + 1. En este caso adoptamos un esquema de
renormalización distinto, que usa una definición diferente del acoplamiento renor-
malizado, en las regiones de alta y baja energı́a. El matching de los dos running se
realiza de manera no perturbativa a una escala intermedia.

• Capı́tulo 8. Presentamos un estudio perturbativo a un loop de los operadores de
cuatro fermiones que violan paridad, ası́ como los efectos de cutoff de sus SSF en
esquemas SF. Se proporcionan resultados no perturbativos para QCD Nf = 2.
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Part I

Theoretical Background
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1 Renormalization

In this section we give the basic concepts of the renormalization approach in QFT. Before
starting it is worth to observe that the terminology The Renormalization Group is unfortu-
nate [12], while the mathematical structure of the procedure somewhat reminds the one
of a group this comparison cannot be stressed too much. The word Renormalization which
arises historically from perturbative calculation in QFT is also misleading as well as the
article The which gives the impression of a very general tool which might be applied
blindly to any physical problem. In practice, renormalization group, is a powerful tool to
study a statistical system close to criticality.
All renormalization group studies have in common the idea of re-expressing the funda-
mental parameters of the theory in terms of some others, while keeping unchanged those
physical aspects of the problems which are of interest.
In the next section we define the Renormalization Group (RG) approach à la Wilson in-
troducing the concept of effective actions as a consequence of a coarse graining RG transfor-
mation. This allows to delineate the concept of RG flows and finally the meaning of the
continuum limit in terms of RG fixed points. Later on, we move to the well known contin-
uum RG notation, where the scale dependence of operators or couplings is made explicit
by the introduction of the energy scale µ which defines the subtraction point at which the
renormalization conditions are imposed and the cutoff is safely removed. While both ap-
proaches lead exactly to the same procedure, they are both summarised in this thesis in
order to present a complete picture.

1.1 Scaling and Wilsonian Renormalization Group

The intimate connection of renormalizability in QFT and critical phenomena in statistical
physics has been presented by K. Wilson [13, 14, 15], via the formulation of renormalization
group transformations in terms of effective actions. Following [16] we can assume a QFT
in d dimensions governed by the action

SΛ0 [ϕ] =

∫
ddx

{∑
i

Λd−di0 g0iOi(x) +K[ϕ]

}
. (1.1.1)

Here we allowed arbitrary local operators Oi(x) of dimension di > 0 to appear in the ac-
tion. Each Oi can be a Lorentz-Invariant combination of fields and derivatives. In order
to keep the formulation as general as possible, we introduce a generic kinetic term K[ϕ]
quadratic in the (generic) fields ϕ(x), accounting for all kind of actions. For later conve-
nience we consider the couplings g0i dimensionless by the introduction of the energy scale
Λ0 which carries all the dimensions and plays the rôle of a momentum cutoff. For such a
regularized theory, the partition function reads

ZΛ0(g0i) =

∫
C∞(M)≤Λ0

Dϕe−SΛ0
[ϕ] (1.1.2)
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Where the integral have to be taken over the space C∞(M)≤Λ0 of smooth functions
(fields) on the manyfold M whose momentum is at most Λ0.1 In this way we allow only
momentum modes up to the cutoff scale Λ0, preventing eventual UV divergencies2, since
the infinite energy region is absent. However, the inclusion of the UV region is crucial
and will be discussed in detail Section 1.2.1. It is natural at this stage to separate the field
components integrating those modes between Λ0 and Λ < Λ0. Therefore

ϕ(x) =

(∫
|p|≤Λ

+

∫
Λ<|p|≤Λ0

)
eip·x

ddp

(2π)d
ϕ̃(p) = φ(x) + χ(x) , (1.1.3)

where φ ∈ C∞≤Λ is the low-energy part of the field while χ ∈ C∞(Λ,Λ0] contains the high en-
ergy modes, and the integral measure in the path integral can be consequently factorised
asDϕ = DφDχ. Performing an integral over the high-energy modes χ defines an effective
action at the new scale Λ

Seff
Λ [φ] = − log

[∫
C∞

(Λ,Λ0]

Dχe−SΛ0
[φ+χ]

]
, (1.1.4)

involving the low-energy modes only. This process is usually called “integrating-out”
high energy modes, consequently changing the scale of the theory. The process can be
iterated, integrating out further modes, and obtaining again a new effective action

Seff
Λ′ [φ] = − log

[∫
C∞

(Λ′,Λ]

Dχe−SΛ[φ+χ]

]
, (1.1.5)

at a still lower scale Λ′ < Λ.
What is crucial in the above iterative construction is that the partition function

ZΛ(gi(Λ)) =

∫
C∞(M)≤Λ

Dφe−S
eff
Λ [ϕ] (1.1.6)

is exactly the same as the one defined at Λ0 if we re-absorb the change of the cutoff into
the couplings, viz

ZΛ(gi(Λ)) = ZΛ0(g0i) . (1.1.7)

In particular, if the scale is lowered infinitesimally, the above equation reads

Λ
dZ(gi(Λ)

dΛ
=

(
Λ
∂

∂Λ

∣∣∣∣
gi

+ Λ
∂gi(Λ)

∂Λ

∂

∂gi

∣∣∣∣
Λ

)
ZΛ(gi(Λ)) = 0 . (1.1.8)

Eq. (1.1.8) is a particular case for partition function of Callan-Symanzik equation, which
in general are differential equations which, once integrated, give the dependence of a
given quantity respect to the energy scale. On the other hand, Eq. (1.1.8) simply tells how
the couplings of the effective action Seff

Λ vary to account for the change in the degrees
of freedom over which we take the path integral, so that the partition function is in fact
independent on the scale at which we define our theory, provided this scale is below our
initial cutoff Λ0.

1In general in a quantum theory it is not always possible to describe the theory in terms of smooth fields,
but in order to make this construction easier we work under this assumption.

2In this work we do not consider IR divergencies
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With a generic initial action, the effective action can be written as

Seff
Λ [φ] =

∫
ddx

{∑
i

Λd−diZφ(Λ)ni/2gi(Λ)Oi(x) + Zφ(Λ)K[φ]

}
(1.1.9)

where ni is the dimension of the operator Oi and Zφ(Λ) defines the renormalized field

ϕ(x) = Z
1/2
φ (Λ)φ(x) . (1.1.10)

In this case we talk about wave function renormalization, but the same can be done for
the composite operators and parameters as we will see in the following. It is crucial at
this stage to already introduce the β-functions for the couplings as

βi(gi) = Λ
∂gi(Λ)

∂Λ
. (1.1.11)

For a dimensionless coupling we can then write

βi(gj(Λ)) = (di − d)gi(Λ) + βquant
i (gj) , (1.1.12)

where the first term is the ”naive” scaling of the coupling and the latter βquant
i represents

the quantum effect of integrating out the high-energy modes. Similarly to the β-function
we can define another fundamental quantity called anomalous dimension of the field as

γφ(Λ) = −1

2
Λ
∂ logZφ(Λ)

∂Λ
, (1.1.13)

where the factor 1/2 comes from the power in Eq. (1.1.10). The meaning of the name
anomalous will be clear in the following. Like the β-functions γφ depends on the value of
all the couplings in the theory3.

Suppose an n-point correlation function in the regularised theory, given by

〈φ(x1) . . . φ(xn)〉 =
1

Z

∫
C∞(M)≤Λ

Dφe−S
eff
Λ [Z1/2(Λ)φ;gi(Λ0)]φ(x1) . . . φ(xn) , (1.1.14)

with field insertions at x1, . . . , xn ∈ M and for i 6= j, xi 6= xj , using the scale Λ . Renor-
malizing the fields with Eq. (1.1.10) we have

〈φ(x1) . . . φ(xn)〉 = Z
−n/2
φ (Λ)〈ϕ(x1) . . . ϕ(xn)〉 . (1.1.15)

Since the change in the measure Dφ → Dϕ cancels as we have normalised by the par-
tition function. Upon performing the ϕ path integral we will (in principle) evaluate the
remaining ϕ correlator as some function Γ

(n)
Λ (x1, . . . , xn; gi(Λ)) that depends on the scale

Λ, couplings and positions xi. If the modes just involve momenta � Λ then the same
correlation function can be computed using just an effective lower scale theory. In other
words, the operator insertions will be unaffected as we integrate out modes in range
(sΛ,Λ] for s < 1. The correlator Γ

(n)
Λ (x1, . . . , xn; gi(Λ)) is than given by

Z
−n/2
φ (sΛ)Γ

(n)
sΛ (x1, . . . , xn; gi(sΛ)) = Z

−n/2
φ (Λ)Γ

(n)
Λ (x1, . . . , xn; gi(Λ)) , (1.1.16)

3As we will show in the following, this is one of the main reasons for using a massless renormalization
scheme.
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or in the differential form we have the usual Callan-Symanzik equation for correlators

Λ
d

dΛ
Γ

(n)
Λ (x1, . . . , xn; gi(Λ)) =

(
Λ
∂

∂Λ
+ βi(g)

∂

∂gi
+ nγφ

)
Γ

(n)
Λ (x1, . . . , xn, gi(Λ)) = 0 .

(1.1.17)

Let us now define better the rôle of the anomalous dimension. We integrate out modes
in the range (sΛ,Λ] as above, but we also change coordinates introducing a spacial di-
latation by xµ → sxµ = x′µ. The scaling of a field with dimension dφ in d space-time
dimensions is 4

φ(sx) = s(dφ−d)/2φ(x) . (1.1.18)

Since for the kinetic term
∫
ddx′K[φ(x′)] =

∫
ddxK[φ(x)], the remaining terms in the

action are likewise unchanged by the rescaling provided by Λ → Λ/s in the opposite
direction of x. The energy scale sΛ is then restored to its original value Λ. In this operation
the scaling is not induced by a RG transformation, is simply a change of coordinate. We
find then for a correlation function

Γ
(n)
Λ (x1, . . . , xn; gi(Λ)) =

(
Zφ(Λ)

Zφ(sΛ)

)−n/2
Γ

(n)
sΛ (x1, . . . , xn; gi(sΛ))

=

(
s(dφ−d) Zφ(Λ)

Zφ(sΛ)

)n/2
Γ

(n)
Λ (sx1, . . . , sxn; gi(sΛ)) . (1.1.19)

From the r.h.s. of the above equation we see the classical ”naive” scaling of an object with
mass dimension as n(d− dφ)/2, but the effect of integrating out high modes modifies the
naive scaling. If we consider s = 1 + δs with δs� 1 from Eq. (1.1.19) we have(

s(dφ−d) Zφ(Λ)

Zφ(sΛ)

)1/2

= 1 +

(
d− dφ

2
+ γφ

)
δs+O(δs2) , (1.1.20)

with the anomalous dimension γφ given by Eq. (1.1.13). The scaling dimension of the field
is then given by

γclassical
φ + γφ with γclassical

φ =
d− dφ

2
. (1.1.21)

1.2 Renormalization Group flow

In order to present the flow induced in the theory parameters by the RG transformation,
let us change the formalism in order to make contact with the one practically used in this
work. Consider a QFT regularized on a space-time lattice with a = Λ−1

0 as the regula-
tor. In this section we are interested in the identification of the continuum limit. In that
respect, instead of lowering the cutoff as in the previous section, let us send a → 0 (or
Λ0 →∞), removing the cutoff and including high-energy modes into the theory.

The existence of a continuum limit is given by

mphysa→ 0 (1.2.1)

for a → 0. The above equation implies than that inverse of the ”physical” mass, in-
terpreted as the correlation length ξ ∼ m−1

phys of a two point correlation function has to

4I.e. for a scalar field [φ] = (2− d)/2 while for a spinor [ψ] = (1− d)/2.
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diverge as it would happen in a second order phase transition in a statistical system at
the critical point. Let us suppose that we have a lattice theory with m � 1/a. As showed
in the previous section, if the theory is local and consequently the action (with an explicit
dependence on the regulator Λ = 1/a) is given by Eq. (1.1.1), the long-distance behaviour
of the system may be decoupled from the short-distance (high-momentum) dynamics,
which can be reabsorbed into a change of the theory parameters gi(a) as a function of the
cutoff.

In order to approach the continuum limit we proceed here with the so called ”Coarse
Graining” approach5. We consider a series of lattice spacings (corresponding to the scales
Λ) inducing a series of effective actions as

a > a1 > a2 > · · · > an = (1− ε)na , with ε� 1 , (1.2.2)

S(0)(a)→ S(1)(a)→ S(2)(a)→ · · · → S(n)(a) , (1.2.3)

where S(n)(a) is simply obtained by the n-th action at an after integrating out recursively
the extra high-momentum (between 1/an−1 and 1/an) degrees of freedom appearing at
each iteration. It is natural to consider the RG transformation as the action of an RG
evolution operator Ri acting on the coupling space as

Ri : g
(n)
i → g

(n+1)
i . (1.2.4)

A crucial point in this formulation is the existence of fixed points of Ri

Ri(g
∗) = g∗ (1.2.5)

where the parameters are unchanged by the application of the RG transformation6. In
other words, the action remains unchanged as we move toward continuum limit. The
fixed points are therefore critical points, since Eq. (1.2.1) can be recast as

lim
n→∞

mphys(g
∗)an → 0 , (1.2.6)

unless the physical critical mass diverges, which would be uninteresting for a QFT. It
turns out, that such fixed points, if they exist, are rather universal, because they can be
approached by tuning just a few parameters, called relevant couplings. Let us be more
qualitative.

In order to understand the critical dynamics of the theory close to the critical point
we can linear expand the RG evolution as

g
(n+1)
i − g∗i =

∑
j

∂Ri
∂gj

∣∣∣∣
g∗

(g
(n)
j − g∗j ) , (1.2.7)

the distance from the critical point ∆g
(n)
i change then accordingly to

∆g
(n+1)
i =

∑
j

Mij∆g
(n)
j with Mij =

∂Ri
∂gj

∣∣∣∣
g∗
. (1.2.8)

Looking at the eigenvalues λi of Mij we can identify the three situations sketched in
Fig. 1.1 :

5Not the usual coarse graining, since we are going towards the continuum, and not towards the IR, as in
the original formulation by Wilson [14]. This implies that the RG flow has its direction reversed

6Sometimes in the literature authors refer to Renormalization Group Flow or Renormalization Group Trans-
formation whether it is a continuous transformation or it is a discrete one. In the present thesis we will use
both nomenclatures without making any distinction
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• λi > 1 define a relevant direction in RG space, increasing as n→∞

• λi = 1 define a marginal direction which stays the same as n→∞

• λi < 1 define an irrelevant direction which decreases as n→∞.

In the first case, since the RG transformation is repulsive respect to the fixed point those
couplings, called relevant couplings need to be tuned along the iterations. The third case
is also interesting because irrelevant directions play an important rôle in terms of im-
proving the RG scaling of the theory. The remaining possibility of marginal operators
is a situation where Lyapunov theorem of stability cannot be applied. In this situation,
the stability of the fixed point is given by the non-linear part of the equation, and can be
attractive or repulsive.

A key feature in this framework is given by the universality of critical phenomena,
which translates to our context to the universality of the continuum limit. This concept has
fundamental implication and is discussed more in detail in Section 5.

1.2.1 Continuum Limit and Asymptotic Freedom

The continuum limit is approached removing the cutoff a → 0 whilst keeping the same
physics at any momentum p < a−1. This concept of “keeping the physics constant” plays
a fundamental rôle in this work, and we will often refer to the renormalized trajectory as
a line of constant physics (LCP) since some interesting physical quantity is kept unchanged
while scaling towards the continuum limit (e.g. see [17]). As discussed more in detail in
following chapters, this thesis the LCP is defined by requiring the renormalized coupling
is constant while approaching to the continuum.

The existence of such a limit is highly non-trivial and encodes the renormalizability
of the theory of interest. It is important to say that taking the continuum limit involves
the inverse RG flow, which is going toward the UV.

From now on we consider only one coupling in our theory calling it g0 (e.g. we will
think of it as the bare coupling of a 4-dimensional gauge theory). This means that when
we send a→ 0 we are interested in g0(a)→ g0(0) which is a fixed point of RG.

In case of QCD with Nf < 33/2 the theory is said to be asymptotically free [18], mean-
ing g0(a = 0) = g∗ = 0. In this case since the theory is not interacting at g∗, this is
called Gaussian Fixed Point. The resulting trajectory g0(a) is known as a ”renormalized
trajectory” since it defines the theory at all scales (not depending on the cutoff). Clearly a
renormalized trajectory has to have the infinite set of irrelevant couplings at the UV fixed-
point vanishing. As mentioned in the last section, thanks to universality, the continuum
theory is not reached only by the renormalized trajectory. We can think about a class of
theories defined with cut-off a′ 6= a and with coupling g̃(a′) (which is not necessary the
one on the RG trajectory) for which g̃(a = 0) lies on the critical surface in the domain of
attraction of the UV fixed point. In this sense the limit a′ → 0 is defined in such a way
that the IR physics at the original cut-off a is fixed.

There are then many ways of taking the continuum limit of the theory which differ
by irrelevant operators, leading to the same continuum theory. This opens the possibility
of modifying the theory with the inclusion of some irrelevant operators (respecting the
symmetry of the action) which may improve the scaling toward the continuum. This
simple idea is actually very interesting topic, described in more detail in section 5 under
the name of “Symanzik Improvement”.

More in general, if we suppose an initial coupling g(a) to be on the critical surface,
within the domain of attraction of the fixed point g∗, by lowering the cutoff, the theory
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FIGURE 1.1: A sketch of the RG flow (from [20]), where the renormalized
trajectory flows out from the UV fixed point when moving toward the IR

energy region.

we obtain at any fixed scale < 1/a will be driven to the critical point, as all the irrelevant
operators become suppressed by the cutoff itself. The critical point is a fixed point of the
RG flow and so, by definition, is scale invariant, so we can remove the cutoff without af-
fecting the theory. The resulting (massless) theory at the critical point will be a Conformal
Field Theory (CFT), independent on the scale.

In general QCD as well as Yang-Mills theories are not CFT, and several relevant or
marginally relevant operators are turned on by the interactions. The crucial observation
is that due to the asymptotic freedom the theory becomes free (i.e. scale independent) at
the gaussian fixed point. However, the scale independence is only in the ”bare” coupling,
since the renormalized one survives in the continuum (assuming a non trivial theory),
making the (renormalized) theory not conformal.

The existence of other attractive IR fixed point g′∗ 6= 0 is still an open problem. Mod-
els engineered in order to exhibit a conformal or quasi-conformal behaviour (meaning the
β-function is very small) in the non-perturbative low-energy region are vastly discussed
in literature (among many others we can cite [19] as a review on the topic) and may offer
an intriguing extension of the SM.





19

2 Renormalization of composite
operators

Let us now focus on the renormalization of composite operators, which is the central
topic of this thesis. The notation is slightly changed with respect to the previous chapter
in order to match the one more commonly used in the context of particle physics.

Theory parameters and operators are renormalised at the renormalisation scale µ.
The scale dependence of renormalised quantities is then governed by renormalisation
group evolution. We will consider QCD with Nf quark flavours and N colours. The
Callan-Symanzik equations satisfied by the gauge coupling and quark masses are of the
form

q
∂

∂q
g (q) = β(g (q)) , (2.0.1)

q
∂

∂q
mf(q) = τ(g (q))mf(q) , (2.0.2)

respectively, and satisfy the initial conditions

g (µ) = gR , (2.0.3)
mf(µ) = mR,f , (2.0.4)

where f is a flavour label. In a mass-independent scheme, like the one we use here, the
β-function and mass anomalous dimension τ depend on the coupling and the number of
flavours, but not on quark masses. Asymptotic perturbative expansions read

β(g) ≈
g∼0
−g3(b0 + b1g

2 + . . .) , (2.0.5)

τ(g) ≈
g∼0
−g2(d0 + d1g

2 + . . .) . (2.0.6)

The universal coefficients of the perturbative beta function and mass anomalous dimen-
sion are

b0 =
1

(4π)2

[
11

3
N − 2

3
Nf

]
,

b1 =
1

(4π)4

[
34

3
N2 −

(
13

3
N − 1

N

)
Nf

]
,

d0 =
1

(4π)2

3(N2 − 1)

N
.

(2.0.7)

We collect here to simplify the presentation, the first non-universal perturbative coeffi-
cient of the β function and τ for the SF scheme (which will be introduced in Chapter 4)
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as

b2 =
1

(4π)3

(
0.483− 0.275Nf + 0.0361N2

f − 0.00175N3
f

)
, (2.0.8)

d1 =
1

(4π)2
(0.2168 + 0.084Nf) . (2.0.9)

We will deal with Euclidean correlation functions of gauge-invariant composite op-
erators. Without loss of generality, let us consider correlation functions of the form

Gk(x; y1, . . . , yn) = 〈Ok(x)O1(y1) · · · On(yn))〉 , (2.0.10)

with x 6= yj ∀j, yj 6= yk ∀j 6= k, where {Ok} is a set of operators that mix under renor-
malisation, and where Ok are multiplicatively renormalisable operators.1 Renormalised
correlation functions satisfy a system of Callan-Symanzik equations obtained by impos-
ing that Gk is independent of the renormalisation scale µ, viz.

µ
d

dµ
Ḡj =

∑
k

[
γjk(gR)−

n∑
l=1

γ̃l(gR)

]
Ḡk , (2.0.11)

which, expanding the total derivative, leads toµ ∂

∂µ
+ β(gR)

∂

∂gR
+ βλ(gR)λ

∂

∂λ
+

Nf∑
f=1

τ(gR)mR,f
∂

∂mR,f
+

n∑
l=1

γ̃l(gR)

 Ḡj =
∑
k

γjk(gR) Ḡk ,

(2.0.12)

where γ is a matrix of anomalous dimensions describing the mixing of {Ok}, and γ̃l is
the anomalous dimension ofOl. For completeness, we have included a term which takes
into account the dependence on the gauge parameter λ in covariant gauges; this term
is absent in schemes like MS (irrespective of the regularisation prescription) or the SF
schemes we will introduce, but is present in the RI schemes we will also be concerned
with later. The RG function βλ is given by

q
∂

∂q
λ(q) = βλ(g (q))λ(q) , (2.0.13)

and its perturbative expansion has the form

βλ(g) = −g2(bλ0 + bλ1g
2 + . . .) , (2.0.14)

where the universal coefficient is given by

bλ0 =
1

(4π)2

[(
λ− 13

3

)
N +

4

3
Nf

]
. (2.0.15)

In the Landau gauge (λ = 0) the term with βλ always vanishes. From now on, in order to
avoid unnecessary complications, we will assume that whenever RI anomalous dimen-
sions are employed they will be in Landau gauge, and consequently drop terms with βλ
in all equations.

1To avoid burdening the notation, we have omitted the dependence of Gk on coupling and masses, as
well as on the renormalisation scale.
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From now on, in order to simplify the notation we will use the shorthand notation

q
∂

∂q
O j(q) =

∑
k

γjk(g (q))Ok(q) (2.0.16)

for the Callan-Symanzik equation satisfied by the insertion of a composite operator in a
renormalised, on-shell correlation function (i.e. Eq. (8.1.8) is to be interpreted in the sense
provided by Eq. (2.0.12)). The corresponding initial condition can be written as

Ok(µ) = OR,k , (2.0.17)

and the perturbative expansion of the anomalous dimension matrix γ as

γ(g) ≈
g∼0
−g2(γ0 + γ1g

2 + . . .) . (2.0.18)

The connection between the bare operator and its renormalized counterpart is given by
the renormalization constants, defined by the limit equation

Ok(µ) = lim
a→0

Zkj(aµ)Obare
j (a) , (2.0.19)

where a is the usual cutoff. Both Z and Obare are divergent at a = 0 in a way that O is
finite. An explicit definition of the renormalization constants will be discussed when the
renormalization conditions are introduced for every operator of interest in this work.

2.1 Formal solution of the RG equation

Let us now consider the solution to Eq. (8.1.8). To that purpose we start by introducing the
(matrix) renormalisation group evolution operator U(µ2, µ1) that evolves renormalised
operators between the scales2 µ1 and µ2 < µ1.

O i(µ2) = Uij(µ2, µ1)O j(µ1) . (2.1.1)

By substituting into Eq. (8.1.8) one has the equation for U(µ2, µ1)

µ2
∂

∂µ2
U(µ2, µ1) = γ[g (µ2)]U(µ2, µ1) , (2.1.2)

(n.b. the matrix product on the r.h.s.) with initial condition U(µ1, µ1) = 1. Following a
standard procedure, this differential equation for U can be converted into a Volterra-type
integral equation and solved iteratively, viz.

U(µ2, µ1) = T exp

{∫ g (µ2)

g (µ1)
dg

1

β(g)
γ(g)

}
, (2.1.3)

where as usual the notation Texp refers to a definition in terms of the Taylor expansion
of the exponential function with “powers” of the integral involving argument-ordered

2Restricting the evolution operator to run towards the IR avoids unessential algebraic technicalities be-
low. The running towards the UV can be trivially obtained by taking [U(µ2, µ1)]−1.
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integrands — explicitly, for a generic matrix function M , one has

T exp

{∫ x+

x−
dxM(x)

}
≡ 1 +

∫ x+

x−
dxM(x)

+

∫ x+

x−
dx1M(x1)

∫ x1

x−
dx2M(x2)

+

∫ x+

x−
dx1M(x1)

∫ x1

x−
dx2M(x2)

∫ x2

x−
dx3M(x3)

+ . . .

= 1 +

∫ x+

x−
dxM(x)

+
1

2!

∫ x+

x−
dx1

∫ x+

x−
dx2

{
θ(x1 − x2)M(x1)M(x2)+

θ(x2 − x1)M(x2)M(x1)
}

+ . . .

(2.1.4)

2.1.1 RGI in the absence of mixing

The RG equations, for coupling, mass or a generic composite operator multiplicatively
renormalizable can be formally solved in terms of the renormalization group invariants
(RGIs).

Let us derive the RGIs for composite operators, the one for the coupling can be ob-
tained analogously.

We assume here γ (or τ equivalently) and U are scalar objects (in the next section we
generalise to the matrix case), therefore Eq. (2.1.1) can be manipulated as

O (µ2) = exp

{∫ g (µ2)

g (µ1)
dg

γ(g)

β(g)

}
O (µ1)

= exp

{∫ g (µ2)

g (µ1)
dg

γ0

b0g

}
exp

{∫ g (µ2)

g (µ1)
dg

[
γ(g)

β(g)
− γ0

b0g

]}
O (µ1)

=

[
g 2(µ2)

g 2(µ1)

] γ0
2b0

exp

{∫ g (µ2)

g (µ1)
dg

[
γ(g)

β(g)
− γ0

b0g

]}
O (µ1) ,

(2.1.5)

yielding the identity[
g 2(µ2)

N

]− γ0
2b0

O (µ2) =

[
g 2(µ1)

N

]− γ0
2b0

exp

{∫ g (µ2)

g (µ1)
dg

[
γ(g)

β(g)
− γ0

b0g

]}
O (µ1) , (2.1.6)

where we introduce an arbitrary normalisation N . Common choices3 are

N =

{
4π for generic composite operator
1/(2b0) for the mass .

(2.1.7)

The advantage of having rewritten Eq. (2.1.1) in this way is that now the integral in the
exponential is finite as either integration limit is taken to zero; in particular, the r.h.s. is

3Overall normalizations are a matter of convention, apart from that of ΛQCD, which is universal. Our
choice for Mi follows Gasser and Leutwyler [21, 22, 23], whereas for Eq. (2.1.12) we have chosen the most
usual normalization with a power of αs.
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well-defined when µ2 → ∞ ⇔ g (µ2) → 0, and therefore so is the l.h.s. Thus, we define
the RGI operator insertion as

Ô ≡ lim
µ→∞

[
g 2(µ)

N

]− γ0
2b0

O (µ) , (2.1.8)

upon which we have an explicit expression to retrieve the RGI operator from the renor-
malised one at any value of the renormalisation scale µ, provided the anomalous dimen-
sion and the β-function are known for scales ≥ µ,

Ô =

[
g 2(µ)

N

]− γ0
2b0

exp

{
−
∫ g (µ)

0
dg

[
γ(g)

β(g)
− γ0

b0g

]}
O (µ) . (2.1.9)

Starting from the latter equation, it is easy to check explicitly that Ô is invariant under a
change of renormalisation scheme.

Explicitly, for ΛQCD, M and a generic composite operator Ô we have:

ΛQCD = µ
[b0g

2(µ)]−b1/2b
2
0

e1/2b0g 2(µ)
exp

{
−
∫ g (µ)

0
dg

[
1

β(g)
+

1

b0g3
− b1
b20g

]}
. (2.1.10)

Mi = mi(µ) [2b0g
2(µ)]−d0/2b0 exp

{
−
∫ g (µ)

0
dg

[
τ(g)

β(g)
− d0

b0g

]}
, (2.1.11)

Ô = O (µ)

[
g 2(µ)

4π

]−γ0/2b0

exp

{
−
∫ g (µ)

0
dg

[
γ(g)

β(g)
− γ0

b0g

]}
. (2.1.12)

We introduce here the ”running”, denoted by ĉ(µ) as the ratio between the l.h.s. of the
above equations and µ in Eq. (2.1.10), mi(µ) in Eq. (2.1.11) and finally O (µ) in Eq. (2.1.12).

It is important to observe that while the value of the ΛQCD parameter depends on the
renormalization scheme chosen,Mi and Ô are the same for all schemes. In this sense, they
can be regarded as meaningful physical quantities, as opposed to their scale-dependent
counterparts. The aim of the non-perturbative determination of the RG running of pa-
rameters and operators is to connect the RGIs — or, equivalently, the quantity renor-
malized at a very high energy scale, where perturbation theory applies — to the bare
parameters or operator insertions, computed in the hadronic energy regime. In this way
the three-orders-of-magnitude leap between the hadronic and weak scales can be bridged
without significant uncertainties related to the use of perturbation theory.

Note that the crucial step in the manipulation has been to add and subtract the term
γ0

b0g
in the integral that defines the RG evolution operator, which allows to obtain a quan-

tity that is UV-finite by removing the logarithmic divergence induced at small g by the
perturbative behaviour γ(g)/β(g) ∼ 1/g. When γ is a matrix of anomalous dimensions
this step becomes non-trivial, since in general [γ(g), γ0] 6= 0; the derivation has thus to be
performed somewhat more carefully.

2.1.2 RGI in the presence of mixing

Let us start by studying the UV behaviour of the matrix RG evolution operator in Eq. (2.1.1),
using its actual definition in Eq. (2.1.4). To that purpose, we first observe that by taking
the leading-order approximation for γ(g)/β(g) the T-exponential becomes a standard ex-
ponential, since [γ0g

2
1, γ0g

2
2] = 0 ∀g1, g2. One can then perform the integral trivially and
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write

U(µ2, µ1) =
LO

[
g 2(µ2)

g 2(µ1)

] γ0
2b0 ≡ ULO(µ2, µ1) . (2.1.13)

When next-to-leading order corrections are included the T-exponential becomes non-
trivial. In order to make contact with the literature (see e.g. [24, 25]), we write4

U(µ2, µ1) ≡ [W (µ2)]−1 ULO(µ2, µ1)W (µ1) . (2.1.15)

Upon inserting Eq. (2.1.15) in Eq. (2.1.2) we obtain for W the RG equation

µ
∂

∂µ
W (µ) = −W (µ)γ(g (µ)) + β(g (µ))

γ0

b0g (µ)
W (µ)

= [γ(g (µ)),W (µ)]− β(g (µ))

(
γ(g (µ))

β(g (µ))
− γ0

b0g (µ)

)
W (µ) .

(2.1.16)

The matrix W can be interpreted as the piece of the evolution operator containing contri-
butions beyond the leading perturbative order. It is easy to check by expanding pertur-
batively (see below) that W is regular in the UV, and that all the logarithmic divergences
in the evolution operator are contained in ULO; in particular,

W (µ) =
µ→∞

1 . (2.1.17)

Note also that in the absence of mixing Eq. (2.1.16) can be solved explicitly to get

W (µ) =
no mixing

exp

{
−
∫ g (µ)

0
dg

[
γ(g)

β(g)
− γ0

b0g

]}
. (2.1.18)

Now it is easy, by analogy with the non-mixing case, to define RGI operators. We
rewrite Eq. (2.1.1) as[

g 2(µ2)

4π

]− γ0
2b0

W (µ2)O (µ2) =

[
g 2(µ1)

4π

]− γ0
2b0

W (µ1)O (µ1) , (2.1.19)

where O is a vector of renormalised operators on which the RG evolution matrix acts, cf.
Eq. (2.1.1). The l.h.s. (resp. r.h.s.) is obviously finite for µ1 → ∞ (resp. µ2 → ∞), which
implies that the vector of RGI operators can be obtained as

Ô =

[
g 2(µ)

4π

]− γ0
2b0

W (µ)O (µ) ≡ Ũ(µ)O (µ) . (2.1.20)

When there is no mixing, the use of Eq. (2.1.18) immediately brings back Eq. (2.1.9).

4The property underlying this equation is that the evolution operator can actually be factorised, in full
generality, as

U(µ2, µ1) =
[
Ũ(µ2)

]−1

Ũ(µ1) , Ũ(µ) =

[
g 2(µ)

4π

]− γ0
2b0

W (µ) (2.1.14)

with a W (µ) that satisfies Eq. (2.1.16) below.
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2.2 Step-Scaling Functions

In order to describe non-perturbatively the scale dependence of the gauge coupling and
composite operators, we will use the step-scaling functions (SSFs) σ and σO, respectively,
defined as

− log(s) =

∫ √σ(u)

√
u

dg′

β(g′)
, (2.2.1)

σO(s, u) = exp

{∫ √σ(u)

√
u

γ(g′)

β(g′)
dg′

}
, (2.2.2)

or, equivalently,

σ(s, u) = g 2(µ/s)
∣∣
u=g 2(µ)

, (2.2.3)

σO(s, u) = U(µ/s, µ) , (2.2.4)

where

U(µ2, µ1) = exp

{∫ √g 2(µ2)

√
g 2(µ1)

γ(g′)

β(g′)
dg′

}
(2.2.5)

is the RG evolution operator for the operator at hand, which connects renormalized op-
erators at different scales as O (µ2) = U(µ2, µ1)O (µ1). The SSFs are thus completely
determined by, and contain the same information as, the RG functions γ and β. In partic-
ular, σO(s, u) corresponds to the RG evolution operator of O between the scales µ/s and
µ; from now on, we will set s = 2, and drop the parameter s in the dependence. The SSF
can be related to renormalization constants via the identity

σO(u) = lim
a→0

ΣO(u, aµ) , ΣO(u, aµ) =
ZO(g2

0, aµ/2)

ZO(g2
0, aµ)

∣∣∣∣
u=g 2(µ)

. (2.2.6)

This will be the expression we will employ in practice to determine σO, and hence op-
erator anomalous dimensions, for a broad range of values of the renormalized coupling
u. In the case with mixing the definition of the SSF is essentially the same but it involves
the ordered exponential respect to the multiplicative renormalizable case. This topic is
extensively discussed in Chapter 8.
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3 Lattice Formulation and
Symmetries

3.1 Lattice QCD

In this Chapter we describe the lattice formulation of QCD [26]. The first step consists in
introducing the lattice spacing a thus discretising the Euclidean space-time. By a Fourier
transformation it can be showed that the lattice spacing translates into a momentum cut-
off π/a. However, if we consider a finite volume V = Ld in d-dimensional space-time,
momenta became discrete as well pµ = 2πn/L. Hence, QFT with infinite degrees of free-
dom can be recovered sending a→ 0 after the thermodynamic limit V →∞.

The gauge potential Aµ(x) = AaµT
a ∈ su(n) is represented on the lattice by the link

Uµ(x) ∈ SU(N) as

Uµ(x) = eg0aAµ(x) . (3.1.1)

Parallel transporters Uµ(x) sits on the link connecting the sites x and x + aµ̂ (µ̂ denotes
the unit vector in µ-direction). It is easy to see that each closed loop made up of links is a
gauge invariant observable.
Quark and antiquark fields ψ(x) and ψ̄(x) are defined on the lattice sites and live in Dirac,
colour and flavour space. The lattice action has the form of

S[U, ψ̄, ψ] = SG[U ] + SF[U, ψ̄, ψ] , (3.1.2)

where SG and SF denote respectively the gauge and the fermion action. Since the con-
tinuum theory have to be reproduced only when a → 0, the way to discretize the theory
is not unique. In general we can think about lattice theories as a class whose elements
differ each others by cutoff effects (which, by definition, vanish in the continuum). This
idea is better formalised under the name of Symanzik’s Improvement Program, which is
discussed in Section 5. At this stage, we introduce the actions without any improvement.

Explicitly, gauge action is given by the so-called Plaquette Wilson action as

SG[U ] =
1

g2
0

∑
p

Tr{1− U(p)} (3.1.3)

with the bare gauge coupling constant g2
0 = 2N/β (which has nothing to do with the RG

β-function) and the parallel transporter around a closed loop U(p). The index p in the
sum in Eq. (3.1.3) runs over the oriented plaquettes p on the lattice. It is interesting to
notice that this action approaches to the continuum quadratically in a. In fact, thanks to
the presence of translation and gauge invariance all O(a)-terms are forbidden. 1

Before introducing a discretisation of fermions on the lattice, we replace derivatives
with finite differences. This can be done in several ways, e.g. we can have the ”forward”

1We are implicitly assuming boundary conditions (BC) which preserve translations, e.g. periodic BC.
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derivative

a∂µf(x) = f(x+ aµ̂)− f(x) , (3.1.4)

”backward” derivative

a∂∗µf(x) = f(x)− f(x− aµ̂) , (3.1.5)

or the ”symmetric” combination 2 of the two above

2a∂̃µf(x) = f(x+ aµ̂)− f(x− aµ̂) . (3.1.6)

It is interesting to notice already at this point that while backward and forward deriva-
tive approaches the continuum derivative linearly in a, the symmetric one approaches
quadratically in the lattice spacing. This is a first naive example of O(a)-improvement.
The covariant version of the discrete derivative can be interpreted as a ”covariant shift”
by plugging a link into the derivative, as

a∇µψ(x) = Uµ(x)ψ(x+ aµ̂)− ψ(x) , (3.1.7)

and the analogous for the backward and symmetric derivatives.
Starting from a free theory the usual Dirac Lagrangian (in euclidean space), reads

LF = (γµ∂µ +m0)ψ(x) . (3.1.8)

If we substitute naively the derivative with a finite difference, the free fermionic propa-
gator in momentum space becomes

Sαβ(p) = [m0 +
∑
µ

iγµp̃µ]αβ , p̃µ =
1

a
sin(pµa) , pµ ∈ [0,

2π

a
] , (3.1.9)

with α, β spin indices. Eq. (3.1.9) in the continuum for d = 4 describes 23 ”spatial” copies
of the same particle with energy

E2 = m2 +
1

a2

∑
k

sin2(apk)
a→0→ m2 + ~P 2 , a~p = (n1, n2, n3)π + a~P . (3.1.10)

In addition to this, the time-slice propagator S(x0,p) has other 2 poles. To summarise,
starting with one particle on the lattice, we end up with 2d degenerate fermions in the
continuum limit. The extra poles in the propagator are called ”doublers”. The same can
be seen also in the interacting theory.

The presence of doublers is an important feature of the theory. Their existence can
be interpreted as a manifestation of the chiral anomaly, which is reabsorbed by doublers,
leaving the theory anomaly-free. This effect is absent for scalar theories which might be
discretised naively on the lattice.

Several interesting solutions have been introduced to overcome this ”doublers prob-
lem”. Wilson’s solution for this is to add an irrelevant operator to the Lagrangian which
enhance the derivative order of the Dirac operator. We introduce the so-called Wilson

2It can be showed that symmetric derivative is invariant under an hermitian conjugation. This is not true
for the other discretizations, which are transformed one into another.
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fermion action as

SW = aa
∑
x

ψ̄(x)
1

2
[γµ(∇µ +∇∗µ) + 2m0 − ar∇µ∇∗µ]ψ(x) = a4

∑
x

ψ̄(x)DWψ(x) .

(3.1.11)

It can be noted immediately that the effect of the extra term, called ”Wilson Term” in
momentum space

−ar
2
∇µ∇∗µ →

ar

2
p̂2 =

2r

a

∑
µ

sin2(
pµa

2
) =

r

a

∑
µ

(1− cos(pµa)) , (3.1.12)

is to add a term O(a−1) to the dispersion relation, such that states which before had the
same energy at apµ = π now decouples in the continuum limit and only the ”physical”
pole at apµ = (0, 0, 0, 0) in the Brillouin zone survives.

Wilson action is invariant under parity (P), charge conjugation (C) and time reversal
(T). Moreover it has the additional symmetry called γ5-hermiticity γ5DWγ5 = D†W which
implies important relations on the eigenvalues spectrum [27]. However, the payback
of this extra term is that it explicitly breaks chiral symmetry, which is restored only in
the continuum limit. At finite lattice spacing chiral symmetry can be also reached, but
instead of requiring the bare masses to vanish, the latter have to be tuned along a critical
line which depends on cutoff.

With all those elements we can write the complete QCD action with Nf Wilson’s
fermions as

S = SG +

Nf∑
f=1

[a4
∑
x

ψ̄f (x)DW(m0,f )ψf (x)] . (3.1.13)

For convenience instead of writing explicitly the bare mass in the Lagrangian, it is com-
mon to replace it with the hopping parameter κf = (2m0,f+8)−1. In terms of this parametri-
sation, and for r = 1 (the parameter entering in the Wilson term), for a flavour f the action
reads

SfW =
∑
x

ψ̄f (x){1− κf
3∑

µ=0

[(1− γµ)Uµ(x)δx,x+aµ̂ + δx,x−aµ̂(1 + γµ)U †µ(x)]}ψf (x) .

(3.1.14)

Renormalization properties of operators and currents with Wilson fermions can be
formulated in terms of symmetries, which are briefly presented in the following section.

3.2 Ward Identities

At the classical level Noether’s theorem relates the presence of conserved currents and
charges to continuous symmetries of the Lagrangian. At a quantum level, once the the-
ory is quantized, Ward Identities (WI) tell us how those symmetries are expressed in
terms of Green functions. As we will explain in this chapter, the renormalization pattern
of composite operators is constrained by symmetries underlying the WI. After a very
brief ”textbook” discussion about continuum WI, we summarise the WI on the lattice
with a discretisation which breaks explicitly the chiral symmetry, in particular the Wil-
son fermions formulation introduced in the previous section.
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3.2.1 Quark bilinear operators

In this thesis we make use extensively of local quark bilinear operators. The general form
is

Of
Γ(x) = ψ̄(x)Γ

λf

2
ψ(x) , (3.2.1)

where Γ stands for a generic Dirac matrix and f = 1, . . . , N2
F − 1 (for the flavour non-

singlet case). The specific bilinear operator is denote according to their Lorentz group
transformations: the scalar, pseudoscalar and tensor densities are:

Sf (x) = ψ̄(x)
λf

2
ψ(x) , (3.2.2)

P fµ (x) = ψ̄(x)γ5
λf

2
ψ(x) , (3.2.3)

T fµν(x) = iψ̄(x)σµν
λf

2
ψ(x) (3.2.4)

respectively. In the tensor σµν = i
2 [γµ, γν ]. Whereas for the vector and axial currents

V f
µ (x) = ψ̄(x)γµ

λf

2
ψ(x) , (3.2.5)

Afµ(x) = ψ̄(x)γµγ5
λf

2
ψ(x) . (3.2.6)

In the above, implicit colour and spin indices are contracted.

3.2.2 Continuum WI

The formal continuum theory with Nf mass-less fermions is invariant under U(Nf )L ×
U(Nf )R chiral transformations. The introduction of a positive mass matrixM0 = diag(m0,1,
. . . , m0,Nf ) breaks it to a smaller subgroup. From the variation of fermion fields deriv-
ing from a generic SU(Nf )L × SU(Nf )R transformation (which we rewrite in the usual
infinitesimal vector-axial form) we have

δψ = i

[
αaV

λa

2
+ αaAγ5

λa

2

]
ψ , (3.2.7)

δψ̄ = −iψ̄
[
αaV

λa

2
− αaAγ5

λa

2

]
, (3.2.8)

with λa ∈ su(Nf ) and a = 1, . . . , N2
f − 1. The conservation of currents associated to global

vector and axial transformation read

PCVC : ∂µV
a
µ (x) + ψ̄(x)

[
λa

2
,M0

]
ψ(x) = 0 (3.2.9)

PCAC : ∂µA
a
µ(x)− ψ̄(x)

{
λa

2
,M0

}
ψ(x) = 0 . (3.2.10)

From the above equations it is clear that PCVC relation is satisfied with degenerate quark
masses m0,1 = m0,2 = · · · = m0,Nf , while the axial current is conserved only for massless
quarks3.

3Even if not specified in the text we will always refer to the non-anomalous (i.e. flavour non-singlet)
PCAC relation
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Beyond classical level WI are to be understood as relations among operators. More
precisely they are insertions in expectation values of operators O(x1, . . . , xn) consist-
ing in products of quark and gluon fields at different points of space-time xi 6= xj for
i, j = 1, . . . , N , viz

〈O(x1, . . . , xn)〉 =
1

Z

∫
[DU ][Dψ][Dψ̄]O(x1, . . . , xn)e−[SG(U)+SF (U,ψ,ψ̄)] . (3.2.11)

WI are obtained by requiring that

δαa(x)〈O(x1, . . . , xn)〉 = 0 , (3.2.12)

where δαa(x) is the local variation respect to a vector or axial transformation, depending
on the symmetry considered once promoted to be a local symmetry. Eq. (3.2.12) is trivially
satisfied since the infinitesimal transformation acts as a local change of variable in the
fermionic fields, which are integration variables. This variation in the functional integral
then leads to 〈

δO(x1, . . . , xn)

δαa(x)

〉
=

〈
O(x1, . . . , xn)

δSF
δαa(x)

〉
, (3.2.13)

for which explicitly

O(x1, . . . , xn) = ψ̄(x)γµ
λa

2
ψ(x)O′(y) = V a

µ (x)O′(y) (3.2.14)

O(x1, . . . , xn) = ψ̄(x)γµγ5
λa

2
ψ(x)O′(y) = Aaµ(x)O′(y) , (3.2.15)

lead to the integrated version of PCVC and PCAC relations respectively. Let us now
move to the lattice, where due to the explicit loss of chiral symmetry even for m0 = 0
caused by the Wilson term, the situation is slightly more complicated.

3.2.3 Mass renormalization with Wilson Fermions

We focus here in Wilson discretisation for fermion fields. Even in the absence of mass
matrixM0 the presence of the Wilson term aψ̄∇∗µ∇µψ in the action breaks explicitly chiral
symmetry. Consequently SU(Nf )L × SU(Nf )R is not anymore a symmetry. In order
to present what is the consequence of this loss of chiral symmetry, let us focus on the
renormalization on the quark mass. We can rewrite the bare mass matrix M0 separately
for the singlet and non-singlet part as

M0 =
∑
d

m̃dλd +mav1 , (3.2.16)

where the sum runs only over diagonal generators λa ∈ su(Nf ) and m̃a, mav are given by

m̃a =
1

2
Tr[M0λ

a] , mav =
Tr[M0]

Nf
. (3.2.17)

For a given flavour f Eq. (3.2.16) reads

m0,f =
∑
d

m̃dλaff +mav , (3.2.18)

with λaff is the diagonal fth-element of the generator λa. The reason why we stressed to
separate singlet and non-singlet components of M0 is because, since they have different
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symmetries, they show a different renormalization pattern4. In fact while m̃a transform
in the adjoint representation of SU(Nf ) with a multiplicative renormalization, the singlet
mav due to the lack of chiral symmetry is allowed to mix with the identity, introducing
then an additive renormalization, viz

[m̃a(g (µ))]R = lim
a→0

Zm(g0, aµ)m̃a(g0) , (3.2.19)

[mav(g (µ))]R = lim
a→0

Zm0(g0, aµ)[mav(g0)−mcr] . (3.2.20)

In Eq. (3.2.20) Zm and Zm0 represent the renormalization constants of the non-singlet
and singlet mass terms respectively. It is very important to stress here that the additive
subtraction mcr is flavour independent and define what is usually called critical line. This
extra term is also a power divergence ( effect that can be appreciated already at tree level
where mcr = −4/a). This extra counter term is one of the most important features of
Wilson fermions, a discussion about the tuning of the critical line is present in Section 7.
Finally, combining Eq. (3.2.20) together we have

[mf (g (µ)]R = lim
a→0

Zm(g0, aµ)

[
m0,f −mcr +

(
Zm0(g0, aµ)

Zm(g0, aµ)
− 1

)
(mav −mcr)

]
. (3.2.21)

Focusing on the most relevant case for the present thesis, of degenerate masses and defin-
ing the subtracted bare quark mass mf = m0,f −mcr

[mf (g (µ)]R = lim
a→0

[Zm0(g0, aµ)mf (g0,m0,f )] . (3.2.22)

In order to have a massless theory with Wilson fermions, all the bare quark masses have
to be set to the critical value m0,f = mcr.

3.2.4 Lattice WI

Let us define the point-split axial and vector currents as

Ṽ a
µ (x) =

1

2
[ψ̄(x)(γµ − 1)Uµ(x)

λa

2
ψ(x+ aµ̂) + ψ̄(x+ aµ̂)(γµ + 1)U †µ

λa

2
ψ(x)] , (3.2.23)

Ãaµ(x) =
1

2
[ψ̄(x)γµγ5Uµ(x)

λa

2
ψ(x+ aµ̂) + ψ̄(x+ aµ̂)γµγ5U

†
µ

λa

2
ψ(x)] . (3.2.24)

The vector WI can be derived [28] for the point-split current. It is easy to show that
∇µṼ a

µ (x) = 0. As showed in [29], Ṽµ can be inserted into an expectation value with two
extra quarks ψ1 and ψ2 with corresponding bare masses m0,1 and m0,2, viz

∇µ〈ψ1(x1)Ṽµ(x)ψ̄2(x2)〉 = [m0,1 −m0,2]〈ψ1(x1)S(x)ψ̄2(x2)〉
− δ(x2 − x)〈ψ1(x1)ψ̄1(x2)〉 − δ(x1 − x)〈ψ2(x1)ψ̄2(x2)〉 (3.2.25)

In principle since the above relation is among bare quantities, it is expected to diverge in
the continuum limit. In order to simplify the notation we can take the mass degenerate
case m0,1 = m0,2 for which the first term at r.h.s vanish. Furthermore, it is easy to see
that the l.h.s is finite, once we renormalise the wave functions with Z1/2

ψ . Consequently
the r.h.s. is finite and ZṼ = 1 [30]. Extracting the WI for the ”standard” vector current
is less intuitive and have to be carried out more carefully. The same no-renormalization

4It can be shown that there is a spurionic symmetry which relates singlet and non-singlet masses, en-
forcing the same renormalization for both terms. However, unlike in regularisation which preserve chiral
symmetry, it is broken by Wilson term.



3.2. Ward Identities 33

theorem holds but now even tough ZV is a finite renormalization constant it deviates
from unity due to the lattice discretisation ZV (g0) = 1− c(g0) 6= 0. A consequence of this
results is a relation between the mass renormalization and the scalar density

ZS(g0, aµ) = Z−1
m (g0, aµ) , (3.2.26)

and than

γS = −γm . (3.2.27)

The lattice axial WI is less intuitive. In fact even at vanishing quark masses M0 = 0 the
lattice action is not invariant under global axial transformation. Analogously to what
have been done for the vector current, we have

i

〈
∂O(x1, . . . , xn)

∂αaA(x)

〉
= a4

∑
µ

∇µ〈Ãaµ(x)O(x1, . . . , xn)〉

− a4〈ψ̄(x){λ
a

2
,M0}γ5γµψ(x)O(x1, . . . , xn)〉 − a4〈Xa(x)O(x1, . . . , xn)〉 (3.2.28)

where Xa is the variation of the Wilson term, reading

Xa(x) = −a
2

[ψ̄(x)
λa

2
γ5

→
∇2 ψ(x) + ψ̄(x)

←
∇2 λ

a

2
γ5ψ(x)] , (3.2.29)

with the discrete second (covariant) derivative∇2 acting on quark fields as

a2
→
∇2 ψ(x) =

∑
µ

[Uµ(x)ψ(x+ aµ̂) + U †µ(x− aµ̂)ψ(a− aµ̂)− 2ψ(x)] , (3.2.30)

a2ψ̄(x)
←
∇2 =

∑
µ

[ψ̄(x+ aµ̂)U †µ(x) + ψ̄(x− aµ̂)Uµ(x− aµ̂)− 2ψ(x)] . (3.2.31)

We can write the Wilson term contribution to the above expression as a 5-dimensional
operator proportional to the lattice spacing a as

Xa(x) = aOa
5(x) , (3.2.32)

whose renormalized counterpart (including all the mixing) reads

[Oa
5(x)]R = Z5

[
Oa

5(x) + ψ̄(x)

{
λa

2
,
M̄

a

}
γ5ψ(x) +

(ZÃ − 1)

a
∇µÃaµ(x)

]
. (3.2.33)

Combining together Eq. (3.2.28), and Eq. (3.2.33), the renormalized WI reads

i

〈
∂O(x1, . . . , xn)

∂αaA(x)

〉
= a4

∑
µ

∇µ〈ZÃÃaµ(x)O(x1, . . . , xn)〉

− a4〈ψ̄(x){λ
a

2
, [M0 − M̄ ]}γ5γµψ(x)O(x1, . . . , xn)〉 − a4〈X

a
R(x)

Z5
O(x1, . . . , xn)〉 . (3.2.34)
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without loss of generality in order understand Eq. (3.2.34), as in the vector case we can
consider O(x1, x2) = ψ1(x1)ψ̄2(x2) and a given combination of λa it becomes

∇µ〈ψ1(x1)ZÃÃµ(x)ψ̄2(x2)〉 = [m0,1 − m̄1 +m0,2 − m̄2]〈ψ1(x1)P (x)ψ̄2(x2)〉
− δ(x− x2)〈ψ1(x1)ψ̄1(x2)γ5〉 − δ(x− x1)〈γ5ψ2(x1)ψ̄2(x2)〉

+
a

Z5
〈ψ1(x1)[O5(x)]Rψ̄2(x2)〉 , (3.2.35)

with m̄i the diagonal entry of M̄ . In Eq. (3.2.35) the last term on the r.h.s. simply vanish in
the continuum, we can then rewrite it in terms ofmf,PCAC = m0,f−m̄0,f (g0,m0,1, . . . ,m0,Nf )
for f = 1, 2, . . . , Nf , as

∇µ〈ψ1(x1)ZÃÃµ(x2)ψ̄2(x)〉 = [m1,PCAC +m2,PCAC]〈ψ1(x1)P (x)ψ̄2(x2)〉
− δ(x− x2)〈ψ1(x1)ψ̄1(x2)γ5〉 − δ(x− x1)〈γ5ψ2(x1)ψ̄2(x2)〉 . (3.2.36)

Here a similar argument as in the vector case can be applied. It has been shown that the
point-split and ”standard” axial renormalization constant are finite and ZÃ, ZA 6= 1 due
to discretisation effects being

[Aaµ(x)]R = lim
a→0

[ZÃÃ
a
µ(x)] = lim

a→0
[ZAA

a
µ(x)] . (3.2.37)

As in the vector case, after eliminating the surface term with the divergence of the axial
current on the l.h.s. in Eq. (3.2.36), once we renormalise the wave functions with Zψ
everything is finite. Given that pseudoscalar operator P is renormalized multiplicatively,
the renormalization pattern for the PCAC mass reads

[mf (g (µ), µ)]R = Z−1
P (g0, aµ)mf,PCAC(g0,m0,1, . . . ,m0,Nf ) , (3.2.38)

and consequently for the anomalous dimensions

γP = −γm . (3.2.39)

Summarising, the scale dependence of scalar, pseudoscalar and mass is enforced to be
the same by WI, while axial and vector currents do not depend on the scale but their
renormalization constants deviate from the identity due to discretisation effect. Since
there are no relation involving the tensor current, it is the only other bilinear with an
independent anomalous dimension (and consequently RG running).
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4 Finite Volume Renormalization
Scheme - Schrödinger Functional

In asymptotic free theories, like QCD, perturbative approaches to RG are only applicable
to a class of high-energy processes. However, QCD is a candidate theory for the hadronic
interactions at all energies. In particular in numerical QCD computations it is possible to
determine low-energy observables. In such studies the bare quark masses can be fixed
by ratios of hadronic quantities, e.g. mπ/fπ, mK/fK to their physical values and then
afπ(g0) gives the lattice spacing a(g0) for the pion decay constant fπ fixed. This procedure
is usually called hadronic renormalization scheme.

In order to connect a hadronic scheme to a perturbative one, it is necessary to com-
pute the non-perturbative running between the two scales O(ΛQCD)→ O(MW ). For this
purpose, we present the most common non-perturbative renormalization schemes, and
then focus on the one adopted in this thesis.

4.1 Lattice Renormalization schemes

There exist many methods to implement (non-perturbative) renormalization. We eas-
ily can classify schemes into two types: infinite-volume schemes and finite-volume ones.
Let us proceed in order. Infinite-volume schemes like the ”RI-MOM” (Renormalization
Invariant Momentum Subtraction) have been suggested for the first time in [31]. The
proposed procedure mimics what is often done in perturbation theory. The renormal-
ization constants are determined by requiring that vertex functions (amputated Green
functions between off-shell quark states with momentum) assume their three-level value
when the scale of external momenta is equal to the renormalization scale. For example if
we consider the generic bilinear operators OΓ = ψ̄Γψ, we may impose the condition

ZOΓ
〈p|OΓ|p〉|p2=−µ2 = 〈p|OΓ|p〉tree−level , (4.1.1)

where Γ is a generic Dirac structure and 〈p|OΓ|p〉tree−level is the tree-level matrix element.
Since one works with non gauge-invariant correlation functions, a gauge must be fixed,
usually the Landau gauge is chosen. Moreover the renormalization condition is intended
to be imposed at zero quark masses in order to have a mass-independent renormalization
scheme. In practice this is done by extrapolating to the chiral limit the numerical results
obtained for non-zero values of the quark masses. In principle, this procedure completely
solves the problem of large corrections in lattice perturbation theory and yields the exact
renormalization constant at the scale µ up to lattice artifacts which are of orderO(µa,Λa).
In order to keep lattice artifacts and finite-size effect under control, the range of validity
of this kind of approach is given by

L

a
� 1

µa
� 1 , (4.1.2)
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and bare couplings such that

L

a
� 1

Λa
� 1 , (4.1.3)

where L is the linear lattice size in physical units. In principle such a procedure, largely
employed in literature (see e.g. [31]), allows to compute the renormalization constants
with high precision respecting Eq. (4.1.2), Eq. (4.1.3). Moreover, the accuracy of the proce-
dure is limited by the needing of chiral extrapolations and the subtraction of the Goldstone
pole which may contaminates the states [32], in addition to some tecnical complications
like gauge fixing procedure to avoid Gribov ambiguities.
In order to overcome the above limitations a possibility is to consider Finite-Volume schemes.
These schemes are the practical application of the important observation due to Symanzik
[33] which states that renormalizability is not spoiled when a field theory is put on a fi-
nite space-time manifold. We can then define a finite volume renormalization scheme
naturally identifying the linear size L of this space-time manifold as the renormalization
scale µ without the need of injecting external momenta. The first big advantage of this
approach with respect to the infinite-volume one, is that Eq. (4.1.2), Eq. (4.1.3) reduce to
the much weaker:

L

a
� 1, Λa� 1 , (4.1.4)

thanks to the recursiveness of the finite volume approach, removing the need of accom-
modating all the physical scales on the same lattice. The second advantage is that a
proper choice of the boundary conditions (as we will see in the following) naturally pro-
duces a gap of order 1/L in the spectrum of the Dirac-Wilson operator [34] which survives
in the chiral limit m→ 0. It is then possible to work safely with massless fermions avoid-
ing chiral extrapolations. Finally, a careful examination shows that nontrivial results can
be obtained without fixing a particular gauge [17].
Let us then focus in the following section on a particular finite-volume renormalization
scheme, which is the one used in this thesis. The aim of this section is to give a very brief
overview to one of these schemes called the Schrödinger Functional (SF). We proceed
with the formulation in the continuum and then on the lattice to establish basic formal-
ism and highlight the most important features, crucial for the work carried out in this
thesis. As explained in [17], the SF will be used to explore the scaling properties of the
theory exploiting the finite volume, taken as a ”hyper-cylinder” with periodic space di-
rections of length L and finite time extent T . The formalism and approach is taken from
[17, 35].

4.2 Schrödinger Functional

Let us present the SF by a quantum-mechanical interpretation and then move to QFT for
the pure gauge theory and its extension including fermions.

4.2.1 Quantum-Mechanical Interpretation

Let us assume SU(N) gauge fields are represented by a space-periodic vector potential
Ak(x) on R3 with values in su(n), the algebra of SU(N). The gauge transformation of the
vector potential reads

Ak(x)→ AΛ
k (x) = Λ(x)Ak(x)Λ(x)−1 + Λ(x)∂kΛ(x)−1, (4.2.1)
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where, in order to preserve periodicity, only periodic gauge functions Λ(x) are admitted.
The choice of the name ”Schrödinger” has to be traced back to the Schödinger representa-
tion in classical quantum mechanics. In fact, defining the wave functional state as ψ(A),
with A running over all the gauge fields as described above. A scalar product among
wave functions can be defined as

〈ψ|χ〉 =

∫
D[A]ψ[A]∗χ[A], D[A] =

∏
x,k,a

dAak(x). (4.2.2)

Focusing only on the gauge invariant wave functions ψ(A) = ψ(AΛ) we can define a
projector P on (physical) gauge-invariant states as

ψ(A)→ Pψ(A) =

∫
D[Λ]ψ(AΛ), D[Λ] =

∏
x

dΛ(x), (4.2.3)

The canonical ”Chromo-Electric” field can be defined as

F a0k(x) =
1

i

δ

δAak(x)
, (4.2.4)

while the ”Chromo-Magnetic” components are the usual

F akl(x) = ∂kA
a
l (x)− ∂lAak(x) + fabcAbk(b)Acl (x), (4.2.5)

both entering the definition of the Hamilton operator H, reading

H =

∫ L

0
d3x

{
g2

0

2
F a0k(x)F a0k(x) +

1

4g2
0

F akl(x)F akl(x)

}
, (4.2.6)

with g0 the bare gauge coupling. Analogously any smooth classical gauge field Ck(x) a
state |C〉 can be introduced as

〈C|ψ〉 = ψ[C]. (4.2.7)

This state can be projected on a gauge invariant subspace, and the (euclidean) SF partition
function is defined as

Z[C ′, C] = 〈C ′|e−HTP|C〉. (4.2.8)

In the above formula T > 0 represent the ”physical” time-extent of the volume. The
dependence on T is implicit in the Z , since it is encoded into the two ”boundary” states
C and C ′. In this formalism the spectral representation of the SF is obtained by inserting
a gauge invariant orthonormal basis |ψn〉with n = 1, 2, . . . ,∞,

Z[C,C ′] =
∞∑
n=0

e−EnTψn[C ′]ψn[C]∗ , (4.2.9)

where En are the (discrete) energy eigenvalues.
It is important to stress that since this formulation is defined in terms of gauge invariant
states, the whole Z[C ′, C] is gauge invariant under arbitrary gauge transformations of
boundary fields C and C ′.
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4.2.2 Pure Gauge

In QFT functional integral representation on a finite four-dimensional volume with 0 ≤
x0 ≤ T and periodic boundary condition in the spacial direction we can assign explicitly
an initial and final ”Dirichlet” boundary condition in time for the gauge field as

Ak(x) =

{
CΛ
k (x) at x0 = 0 ,

C ′k(x) at x0 = T .
(4.2.10)

The functional integral representation of the Schrödinger Functional thus reads

Z[C,C ′] =

∫
D[Λ]

∫
D[A] e−S[A] , (4.2.11)

where the measure D[A] is intended as an integration over all the components of the
Euclidean gauge field. The gauge action is given by

S[A] =
1

2g2
0

∫
d4xTr{FµνFµν} (4.2.12)

with

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] . (4.2.13)

It is important to notice that the dependence on the time component of the gauge field
appearing in the functional integral can be reabsorbed into a specific gauge transforma-
tion. In fact, since Eq. (4.2.11) and boundaries in Eq. (4.2.17) are invariant under a gauge
transformation of the form

Aµ(x)→ Ω(x)Aµ(x)Ω(x)−1 + Ω(x)∂µΩ(x)−1 , (4.2.14)
Λ(x)→ Ω(x)|x0=0Λ(x) , (4.2.15)

provided that Ω(x)|x0=T = 1. A straightforward choice which satisfies the above condi-
tions is the temporal gaugeA0 = 0. In this way the contact with the Hamiltonian formalism
in Eq. (4.2.6) is clear.

4.2.3 Topology

If we take into account the existence of different disconnected topological sectors labeled
by the integer n called winding number, the SF partition function reads

Z[C ′, C] =
∞∑

n=−∞

∫
D[A] e−S[A] , (4.2.16)

where now the boundaries satisfy

Ak(x) =

{
CΛn
k (x) at x0 = 0 ,

C ′k(x) at x0 = T ,
(4.2.17)

where Λn is some representative gauge transformation in the class of gauge functions
with winding number n. A convenient choice can be to set Λ0 = 1 [17]. An interesting
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semiclassical inequivalence [36] called instanton bound states

S[A] ≥ 8π2

g2
0

|Q[A]| , (4.2.18)

where the topological charge for a given configuration A is given by

Q[A] = − 1

32π2

∫
d4xTr{εµνρσFµνFρσ} . (4.2.19)

It can be shown [17] that the quantity Q[A] takes an extra contribution coming from the
time-boundaries surface terms. In fact, using the equality

1

4
Tr{εµνρσFµνFρσ} = εµνρσ∂µTr{Aν∂ρAσ +

2

3
AνAρAσ} (4.2.20)

we have that

Q[A] = SCS[C ′]− SCS[C]− n , (4.2.21)

with

SCS[C] = − 1

8π2

∫
d3x εkljTr{Ck∂lCj +

2

3
CkClCj} (4.2.22)

the Chern-Simons term of the boundary C.
The topological properties of gauge theories offer a rich environment for the study of non-
perturbative effects. On the other hand, the presence of topological fluctuations makes
numerical simulation challenging for the standard local sampling algorithms commonly
used. In this work, we do not explore algorithmic solutions, but include the topological
charge within the definition of our fermionic correlation functions. More details about
this discussion are given in Section 7.

4.2.4 Induced Background Field and SF Coupling

The SF allows for a natural non-perturbative definition of the renormalized coupling as
a ”response coefficient” given by the change of a background (BG) field induced by the
choice of the boundary fields C and C ′.
In the perturbative energy region the functional integral is dominated by the fields close
to the classical ones lying in the minima of the action. In general the non-perturbative
dynamics is driven by the presence of several gauge inequivalent minimal action con-
figurations occurring in different winding number sectors. We assume that the minimal
action configurationBµ(x) is unique up to a gauge transformation and occurs in the n = 0
sector 1. For an arbitrary choice of C and C ′ it is usually difficult (or even impossible) to
obtain an analytic form for the induced BG field. However proceeding in reverse we can
first define the boundary fields and than compute the BG field. A common choice can be
simply

Ck(x) = Bk(x) at x0 = 0 , (4.2.23)

C ′k(x) = Bk(x) at x0 = T . (4.2.24)

which trivially correspond to a constant BG field Bk(x). As mentioned above, it can be
proved [17] taking advantage of Eq. (4.2.21) that this solution B is the unique minimal

1Both statements are proven for an abelian gauge field in the appendix of [17]
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action configuration with these boundary values. In practice other choices for the bound-
aries are made.
In the weak coupling domain, the SF can be computed by a saddle-point expansion
around the classical solution B of the functional integral. The effective (one particle irre-
ducible generating functional) reads

Γ[B] = −lnZ[C′,C] , (4.2.25)

and admits an asymptotic expansion in a power series in g2
0

Γ[B] =
Γ0[B]

g2
0

+ Γ1[B] + g2
0Γ2[B] + . . . (4.2.26)

Focusing on the leading term of the above series we have

Γ0[B] = g2
0S[B] , (4.2.27)

while the higher order terms contain increasing number of vacuum polarisation loops.
If we now consider a generic choice of boundary fields to be dependent on an extra di-
mensionless parameter η it can be inferred that

Γ′[B] =
∂

∂η
Γ[B] , (4.2.28)

is a renormalization group invariant quantity [17], and an ”operative” definition of the
renormalized coupling follows naturally as

ḡ2
SF =

Γ′0[B]

Γ′[B]
, (4.2.29)

where Γ0[B] is just a normalisation factor which forces the value of ḡ2
SF to coincide with

the g2
0 at one-loop. The renormalization properties for the SF have been analysed per-

forming a one-loop [17] and two-loop [37] calculation for arbitrarily BG field. The most
important result of this computation is that the SF is finite after eliminating the bare cou-
pling in favour of the renormalized one. The presence of boundaries does not introduce
any extra divergence. This result can be conjectured to hold at all orders in perturbation
theory, because there are no local gauge invariant operators with d ≤ 3 living on the
boundaries in the pure gauge theory. However, there is no formal proof to all orders in
perturbation theory.

4.2.5 Fermion fields

In this section we follow the elegant approach presented in [35] and [38].
We consider a massless free fermion on S1 × T3 with Lagrangian density

L = ψ̄(x)γµ∂µψ(x) , (4.2.30)

where we define D = γµ∂µ and we impose anti-periodic boundary condition in temporal
direction with extent 2T

ψ(x, x0 + 2T ) = −ψ(x, x0) , ψ̄(x, x0 + 2T ) = −ψ̄(x, x0) . (4.2.31)

An orbifolding S1/Z2 in the temporal direction is implemented by the identification
−x0 ↔ x0, which translates into a generic transformation that includes time reflection
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R of the fermion fields

ψ(x)→ Σψ(−x0,x) , ψ̄(x)→ ψ̄(−x0,x)Σ , Σ = iγ5γ0R . (4.2.32)

It is easy to identify the fixed points of R, located in x0 = 0, T ; they are, respectively,
symmetric and antisymmetric fixed points (because of anti-periodicity), viz

Rψ(x, 0) = ψ(x, 0) , Rψ(x, T ) = −ψ(x, T ) . (4.2.33)

At this stage it is possible to add another symmetry, like e.g. chiral symmetry

ψ(x)→ −iγ5ψ(x) , ψ̄(x)→ −ψ̄(x)iγ5 , (4.2.34)

and combine them together into Γ = −iγ5R = γ0R acting as

ψ(x)→ −Γψ(x) , ψ̄(x)→ ψ̄(x)Γ . (4.2.35)

The orbifolding of the fermion field is given by selecting the symmetric subspace for
which

Π+ψ(x) = 0 , (4.2.36)
ψ̄(x)Π− = 0 , (4.2.37)

where Π± = 1±Γ
2 . Starting from an anti-periodic fermion field living on a torus with time-

length of 2T , thanks to the orbifold we end up with fermion fields obeying SF Dirichlet
boundary condition [35] imposed at times x0 = 0, T , viz,

P+ψ(x)|x0=0 = 0 P−ψ(x)|x0=T = 0 , (4.2.38)
ψ̄(x)P−|x0=0 = 0 ψ̄(x)P+|x0=T = 0 , (4.2.39)

with the usual spin projectors P± = 1±γ0

2 . Applying this procedure with a non-vanishing
mass term is not straightforward. Although Dirac operator does not have chiral symme-
try, it is possible to introduce the mass as a function of x0 which is compatible with the
orbifolding transformation, i.e. {M,Γ} = 0 . One of the possible time-dependent mass
terms is M = mη(x0) with

η(−x0) = −η(x0) , (4.2.40)
η(x0) = 0 for 0 < x0 < T , (4.2.41)

with the requirement of being periodic η(x0 + 2T ) = η(x0). The Dirac operator, in the
interacting theory, becomes

D(m) = γµ(∂µ − iAµ(x)) +mη(x0) , (4.2.42)

which satisfies the anti-commutator with the orbifolding symmetry {D(m),Γ} = 0. The
”SF” Dirac operator DSF is than related to the one before orbifolding by the projection

DSF(m) = Π+D(m)Π− . (4.2.43)

In the next section we translate this formulation into objects commonly used on the lat-
tice. 2

2Several complications arise when trying to apply orbifolding to Dirac operators field which explicitly
break chiral symmetry. Such difficulties are avoided for the Chirally-rotated SF or for Ginsparg-Wilson
fermions. which are not topics of this thesis.
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4.3 Lattice Formulation

From the Euclidean point of view in the SF setup the time direction is distinguished from
the others and there is no translation invariance in the time-direction. Therefore in this
case we generalize the Plaquette action Eq. (3.1.3) to

SWsf
= β

∑
C∈S0

ω(C)ReTr[1− U(C)] . (4.3.1)

Here the novelty is the plaquette dependent weight ω for which the transfer matrix for-
malism suggests to take ω(C) = 1 for all plaquettes except the purely spatial ones on the
boundary where ω(C) = 1/2. This is so because it is natural to symmetrically distribute
these contributions to the two adjacent transfer matrix factors. The SF Dirichlet boundary
condition in time are than imposed on the link fields at t = 0 and t = T as follows [35]:

U(x, k)|x0=0 = eaCk = W (x, k) , (4.3.2)

U(x, k)|x0=T = eaC
′
k = W ′(x, k) , (4.3.3)

for k = 1, 2, 3. In general for SU(N) the choice of boundaries follows the same prescription
as for the first exploratory study in SU(2) [17], where

Ck =
i

L


φ1 0 · · · 0
0 φ2 · · · 0
...

...
. . .

...
0 0 · · · φN

 and C ′k =
i

L


φ′1 0 · · · 0
0 φ′2 · · · 0
...

...
. . .

...
0 0 · · · φ′N

 (4.3.4)

with the constraint that
∑

i φi = 0 and
∑

i φ
′
i = 0 in order to have W ∈ SU(N). With

the above prescription the minimum of the action [39] corresponds to the ”classical link”
V (x, µ) = exp(aBµ(x)) with

B0 = 0 Bk(x0) = [x0C
′
k + (L− x0)Ck]/L , (4.3.5)

which is a linear interpolation between the two boundaries. As showed in [39], this
solution satisfies uniqueness and stability, provided

φ1 < φ2 < · · · < φN and φN − φ1 < 2π . (4.3.6)

Eq. (4.3.6) defines a fundamental domain which is an irregular (N − 1)-simplex [40] with
vertices at points

X1 =
2π

N
(−N + 1, 1, 1, 1, . . . , 1) , (4.3.7)

X2 =
2π

N
(−N + 2,−N + 2, 2, . . . , 2) , (4.3.8)

X3 =
2π

N
(−N + 3,−N + 3,−N + 3, 3, . . . , 3) , (4.3.9)

... (4.3.10)
XN = (0, 0, . . . , 0) . (4.3.11)

Restricting to QCD we can introduce an extra parameter usually called ”curve parame-
ter” η allowing to induce a small deformation of the boundary fields. The curve of angles
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for N = 3, (φ1, φ2, φ3) now reads

φ1 = ηω1 −
π

3
, w1 = 1 , (4.3.12)

φ2 = ηω2 , ω2 = −1

2
+ ν (4.3.13)

φ3 = ηω3 +
π

3
, ω3 = −1

2
− ν (4.3.14)

and the ”primed” angles are defined to be

φ′1 = −φ1 −
4π

3
, (4.3.15)

φ′2 = −φ3 +
2π

3
, (4.3.16)

φ′3 = −φ3 +
2π

3
. (4.3.17)

As in the continuum case, the SF coupling [17] in full generality is identified by the rela-
tion

∂Γ

∂η

∣∣∣∣
η=0

= k

{
1

ḡ2
SF

− νv̄
}

(4.3.18)

where k is the Leading Order (LO) ∂Γ0/∂η and v̄ is another renormalized quantity. The
parameter ν (introduced in [41]) allows for different renormalization schemes, which
provides a good test of the universality of continuum limit. So far we have discussed
a possible definition of the strong coupling constant in pure gauge theory (in particular
for SU(3), but this approach is very general [39]). Let us now introduce fermions on the
lattice.
For practical purposes the lattice implementation of boundary conditions on fermion
fields is slightly different from the one presented in the previous section. We consider
a generalisation of periodic boundary conditions in space up to an abelian phase θk in
direction k = 1, 2, 3 for quark fields

ψ(x+ Lk̂) = eiθkψ(x) , ψ̄(x+ Lk̂) = e−iθk ψ̄(x) . (4.3.19)

this leaves all gauge-invariant quantities (containing the couple ψ̄ and ψ) to be periodic.
The angle is usually taken to be the same in all directions θk = θ. The effect of this
choice can be interpreted as an induced constant background abelian chromomagnetic
field which enters into the finite size kinematics (and consequently the renormalization
scheme [42]) in useful ways. Boundary conditions in time read

P+ψ(x)|x0=0 = ρ(x) , P−ψ(x)|x0=T = ρ′(x) , (4.3.20)

and

ψ̄(x)|x0=0P− = ρ̄(x) , ψ̄(x)|x0=TP+ = ρ̄′(x) , (4.3.21)

with the usual P± = 1±γ0

2 . Boundary fermion fields ρ, ρ′, ρ̄, ρ̄′ have to be taken as formal
Grassmann variables like ψ, ψ̄. The total SF partition function is now given by

Z[C ′, ρ̄′, ρ′;C, ρ̄, ρ] =

∫
D[U ]D[ψ]D[ψ̄]e−S(U,ψ,ψ̄) . (4.3.22)
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FIGURE 4.1: A sketch of the SF with two points correlation functions and
boundary-to-boundary correlators (courtesy of [43])

The above equation is valid for any action. More elaborate actions respect to the ones
introduced so far are introduced in Section 5.

4.3.1 Fermionic Correlation Functions in the SF

We introduce boundary sources by the usual functional differentiation,

ζ(x) = a−3 ∂

∂ρ̄(x)
, ζ̄(x) = −a−3 ∂

∂ρ(x)
, (4.3.23)

ζ ′(x) = a−3 ∂

∂ρ̄′(x)
, ζ̄ ′(x) = −a−3 ∂

∂ρ′(x)
. (4.3.24)

A generic correlation function made up multi-local gauge invariant operators constructed
out of fundamental links and fermion fields O(U,ψ, ψ̄), mediated with the partition func-
tion than reads

〈O〉 =

[
1

Z

∫
D[U ]D[ψ]D[ψ̄]O(U,ψ, ψ̄) exp−S(U,ψ, ψ̄)

]
ρ=ρ′=ρ̄=ρ̄′=0

(4.3.25)

Taking advantage of Eq. (4.3.23) we can introduce ”boundary operators” Oa with a as a
generic flavour index as

Oa = a6
∑
u,v

ζ̄(u)γ5
τa

2
ζ(v) , (4.3.26)

and analogously at x0 = T for primed boundary fields Eq. (4.3.24) we have O′a.



4.4. Gradient Flow 45

We introduce the SF correlators [44], by contracting the bilinear operators Eq. 3.2.6,3.2.3,
3.2.5,3.2.4 (with an explicit colour index a) with boundary operators O, viz

fA(x0) = −a6
∑
y,z

1

3
〈Aa0(x)ζ̄(y)γ5

τa

2
ζ(z)〉 , (4.3.27)

fP(x0) = −a6
∑
y,z

1

3
〈P a(x)ζ̄(y)γ5

τa

2
ζ(z)〉 , (4.3.28)

kV(x0) = −a6
∑
y,z

1

9
〈V a
k (x)ζ̄(y)γk

τa

2
ζ(z)〉 , (4.3.29)

kT(x0) = −a6
∑
y,z

1

9
〈T ak0(x)ζ̄(y)γk

τa

2
ζ(z)〉 , (4.3.30)

and boundary-to-boundary correlators

f1 = −a
12

L6

∑
u,v,y,z

1

3
〈ζ̄ ′(u)γ5

τa

2
ζ ′(v)ζ̄(y)γ5

τa

2
ζ(z)〉 (4.3.31)

k1 = −a
12

L6

∑
u,v,y,z

1

3
〈ζ̄ ′(u)γk

τa

2
ζ ′(v)ζ̄(y)γk

τa

2
ζ(z)〉 . (4.3.32)

Their renormalized counterparts (with the bX improvement coefficients discussed in Sec-
tion 5) read

[fA(x0)]R = ZA(1 + bAamq)Z
2
ζ (1 + bζamq)

2

× {fA(x0) + acA
1

2
(∂∗0 + ∂0)fP(x0)} , (4.3.33)

[fP(x0)]R = ZP (1 + bPamq)Z
2
ζ (1 + bζamq)

2fP(x0) , (4.3.34)

[kV(x0)]R = ZV (1 + bV amq)Z
2
ζ (1 + bζamq)

2

× {kV(x0) + acV
1

2
(∂∗0 + ∂0)kT(x0)} , (4.3.35)

[kT(x0)]R = ZT (1 + bTamq)Z
2
ζ (1 + bζamq)

2

× {kT(x0) + acT
1

2
(∂∗0 + ∂0)kV(x0)} , (4.3.36)

[f1]R = Z4
ζ (1 + bζamq)

4f1 , (4.3.37)

[k1]R = Z4
ζ (1 + bζamq)

4k1 . (4.3.38)

In this work we are only interested in studying the renormalization properties of
the above operators, therefore since all the components of the currents share the same
renormalization constant we do not consider all the possible Lorentz contractions.

4.4 Gradient Flow

In this section we introduce the Gradient Flow in the continuum, and its discretisation
on the lattice. This is an important ingredient for the work since it gives an independent
determination of the strong coupling which, together with the SF coupling, gives another
approach to the non-perturbative determination of the running.
Let us first introduce an ”extra dimension” parametrised by the commonly called ”flow
time” t ≥ 0 with dimension [E]−2. We can define Bµ(x, t) as the 5-dimensional extension
of the gauge potential reproducing the 4-dimensional one at t = 0, i.e. Bµ(x, t = 0) =
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Aµ(x), the field strength at t > 0 is given by

Gνµ(x, t) = ∂νBµ(x, t)− ∂µBν(x, t) + [Bν(x, t), Bµ(x, t)] . (4.4.1)

The way how the gauge fields are evolving at t > 0 is given by the Gradient Flow equation
[45] as

dBµ(x, t)

dt
= DνGνµ(x, t) . (4.4.2)

An analogous equation can be written for fermion fields [46], opening the possibility to
take advantage of this powerful tool to renormalize composite operators, however, this
application it is not discussed in this thesis.
Eq. (4.4.2) can be interpreted as a gauge-invariant smearing procedure controlled by
the continuous parameter t. At very large flow time, in fact, quantum fluctuation are
smoothed down and the gauge field tends to the minimum3 of the action Amin

lim
t→∞

Bµ(x, t) = Amin
µ (x) . (4.4.3)

In particular it can be showed that the shape of the smearing is Gaussian (as a classical
heat equation) where the typical smearing radius is given by

√
8t. At leading order in

perturbation theory it is easy to observe that

B(1)
µ (x, t) =

∫
d4yK(x, y, t)Aµ(y) (4.4.4)

where the heat kernel K is given by a Gaussian

K(x, y, t) =
1

(4πt)2
e−

(x−y)2

4t (4.4.5)

which squeezes to a delta function when limt→0K(x, y, t) = δ4(x − y). Without entering
into the details of the formulation of flow which are discussed at length in literature (e.g.
see [47]), since we are interested in the flow as a tool for a definition of the gauge coupling
constant, can be defined the action density [48] in terms of fields at t > 0 as4

〈E(t)〉 = −1

2
〈Tr[Gµν(x, t)Gµν(x, t)]〉 , (4.4.6)

which leads to a finite and well-defined continuum limit [49]. The above quantity given
by Eq. (4.4.6) is an ideal candidate for an accurate scale setting. In fact we can define the
reference flow time t0 through

t2〈E(t)〉|t=t0 = 0.3 , (4.4.7)

as discussed in [48]. Most importantly for this work, it gives a non-perturbative definition
the renormalized coupling (alternative respect to the SF) through

g2
GF(µ) =

16π2

3
t2 〈E(t)〉|µ= 1√

8t
. (4.4.8)

For the purpose of this thesis, avoiding further complication we point to [49] for all the
technical details. A very interesting possibility is given by the combination of the flow
equation with a finite volume with linear extent L [50, 51], fixing the ratio between the

3 this also include the possibility to end up in some secondary minimum of the action.
4note that at t = 0 the energy density would diverge when approaching the continuum limit ∝ 1/a4
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smoothing radius and L as
√

8t/L = c , (4.4.9)

with c as a fixed proportionality constant enters into the definition of the renormalization
scheme. Usually it is taken to be c = 0.3. We report here that the first application of the
above renormalization scheme with SF boundary condition is discussed in [11].
The lattice version of Eq. (4.4.2) reads

a2∂Vµ(x, t)

∂t
Vµ(x, t)−1 = −g0∂x,µS[V ] , (4.4.10)

with Vµ(x, t = 0) = Uµ(x) and S[V ] any lattice gluon action. In practice, in this thesis we
refer to the GF coupling obtained only from the space component of the energy density
and projected at Q = 0 sector

g 2
GF(L) = N−1(c)

t2

4

〈Gaij(x, t)Gaij(x, t)δQ,0〉
〈δQ,0〉

∣∣∣∣√
8t=cL,x0=T/2

, (4.4.11)

while the normalisation is discussed in [11]. An improved version of the coupling is the
one given by a modified version of the flow, called ”Zeuthen Flow” [52] is discussed in
Chapter 5.

4.5 Running of the Strong Coupling

The non-perturbative computation of the running coupling is a remarkable application
of the SF formalism summarised in this thesis. The recursive procedure allowed to by-
pass the usual limitation of infinite-volume renormalization schemes, making possible
to cover several orders of magnitude in energy scales. Even though the computation of
the scale dependence of the strong coupling is not the topic of this thesis, the renormal-
ization of composite operators is a shared effort with the coupling projects. Let us then
summarise briefly the strategy employed in Nf = 0, 2 and Nf = 2 + 1 projects, as we will
see the latter differ from the first two.

4.5.1 Recursive finite-size technique in the SF

As stressed in the previous sections, SF is a well defined tool which allows for a very nat-
ural definition of the gauge coupling, and make possible the computation of correlation
functions in finite volume. The volume, denoted by its extension along space directions L
is a free scale in our quantities which can be naturally interpreted as the inverse of the
physical energy scale µ = 1/L.5 Here we summarise the main feature of the recursive
procedure, without entering into details of any specific renormalization project, whose
details will be given along with the renormalization of composite operators in Chap-
ters 6, 7, 8. The goal of any renormalization project is to calculate the scale evolution
of the strong coupling, or in general renormalization constants from a low energy scales
denoted by µhad where it is possible to match with typical bare coupling β used in large
volume simulations to high energy region µpt where perturbation theory is (supposed to
be) safe and match with perturbation theory.
The first step, before studying the finite size scaling, is to fix the Line of Constant Physics

5It is here chosen the notation where the renormalized coupling at the scale µ = 1/L is written as g (L)
instead of the usual g (1/L).
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FIGURE 4.2: A sketch of the iterative procedure allowing to match a low
energy HS (Hadronic Scheme) with perturbation theory at high energy

(from [53])

FIGURE 4.3: A sketch the step scaling function of the coupling for the vol-
umes L/a = 4, 6. Both lattices on the lhs of the picture lies on the same

LCP defined by u = g2(L) but at different βs. (from [53])

(LCP), given by the tuning of bare parameters (β, κ) such that

g 2(L) = u and m0 = mc . (4.5.1)

This work, of tuning the bare parameters in order to be on the critical line with van-
ishing masses usually requires a lot of effort but is a fundamental step in our renormal-
ization procedure, since it ensures that the renormalization scheme given by this lattice
setup is mass independent. The value of the critical line κc(β, L) is obtained by requiring
the bare O(a)-improved PCAC mass (which will be introduced in the following chapter)
to be equal to zero for each lattice size L and β. As expected being the PCAC mass a very
local observable, the volume dependence of the critical line is small and only appreciated
at small betas where the theory is fully dominated by non-perturbative dynamics.
Once the couple (β, κc(β, L)) is provided, it is possible to compute u = g 2(L) and repeat
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the computation with twice6 the volume size while keeping fixed the bare parameters.
This defines another renormalized coupling u′ = g 2(2L) 7. We remind here the definition
of the lattice SSF for the coupling as

Σ(u, a/L) = g 2(2L)|g 2(L)=u;m=0 . (4.5.2)

In the real calculation, Σ(u, a/L) is commonly replaced with its 2-loop improved version

Σ̃(u, a/L) =
Σ(u, a/L)

1 + δ1(a/L)u+ δ2(a/L)u2
(4.5.3)

with the relative cutoff effects at 1-loop and 2-loop, respectively δ1 and δ2 are given by

δ(u, a/L) =
Σ(u, a/L)− σ(u)

σ(u)
= δ1(a/L)u+ δ2(a/L)u2 +O(u3) , (4.5.4)

whose numerical values are provided in [54]. Finally this quantity can be extrapolated to
the continuum by iterating this procedure for several (usually 3 or 4) lattices as

σ(u) = lim
a→0

Σ̃(u, a/L) . (4.5.5)

Typical values of L/a are 6, 8, 12, 16 and respective double size (more details are given
later). From now on, all the procedure deals only with continuum quantities. In order
to compute the running over several orders of magnitudes it is necessary to interpolate
(usually with some polynomial ansatz) the continuum SSF, viz

σ(u) = u(1 + s0u+ s1u
2 + . . . ) , (4.5.6)

where the coefficients can be estimated from Eq. (2.2.1) (for s = 2) in perturbation theory
(and may be kept fixed or not in the fitting procedure) as

s0 = 2b0 log(2) , (4.5.7)

s1 = (2b0 log(2))2 + 2b1 log(2) , (4.5.8)

s2 = (2b0 log(2))3 + 10b0b1(log(2))2 + 2b2 log(2) . (4.5.9)

As stressed in Chapter 2, the SSF is simply an integrated and discretized version of the β-
function for a given step scale s. Once an analytical form of σ(u) is obtained, it is possible
to build the recursion

ui = g 2(2−iLhad) for i = 0, . . . , n . (4.5.10)

The starting point of the recursion u0 = uhad = g 2(Lhad) is chosen in a way to match the
large volume βs. The number of steps n of the coupling chain it is usually chosen to be
n = 7, 8 in order to reach a factor of 27 or 28 in scales. This means that, if for instance
the starting scale corresponds to µhad = 1/Lhad ∼ ΛQCD the final scale µpt ∼ MW where
perturbation theory is guaranteed to describe well the theory. The RGI of the coupling
defined by Eq. (2.1.10) can be than reached through the trivial iteration

ΛQCD

µhad
=

ΛQCD

2nµhad

2nµhad

2n−1µhad
· · · 2µhad

µhad
. (4.5.11)

6actually, it is not mandatory to double the size. In principle it is possible to define the scale step s to be
an arbitrary non-integer number. But for historical reasons it is chosen to be s = 2.

7Since the chiral tuning is performed on L lattices, the simulation at 2L will have a mass different from
zero by lattice arctifacts, vanishing in the continuum limit
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FIGURE 4.4: Running of αs = g 2(µ/Λ)/(4π) for Nf = 2 on the left [39] and
Nf = 0 on the right [53] .

The first term on the r.h.s. is computed perturbatively, while the rest of terms are com-
puted through the non-perturbative recursion.

The value of Lhad is determined in terms of physical units like the Sommer’s param-
eter r0 [55], the flow time t0 [56], or combination of hadron masses and decay constants
(e.g. [57]).

Numerical details, and references are provided in the context of the renormalization
of the tensor current in Section 6.

4.5.2 Scheme Switching

The iterative procedure summarised in the last section has been successfully used for
computing the running coupling in Nf = 0, 2, 4 and in the SU(2) pure gauge theory in

FIGURE 4.5: β-function for Nf = 3 QCD as a function of αs [10]. The
Scheme switch SF-GF at g 2

SF(L0) = 2.012 or equivalentely g 2
GF(2L0) =

2.6723(64) is displayed in the zoom.
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[39, 58, 59, 60]. However, in order to go beyond that precision and access to new levels
of accuracy it has been necessary to introduce a different renormalization scheme, and
perform a non-perturbative matching.

As discussed in the above sections, the SF coupling definition relies on the presence
of the BG field induced by the non trivial Dirichlet boundary condition in time. The
correlators, entering the definition of the SF coupling are expensive to measure, and it
has been observed that the relative error increase fast at large couplings, i.e. in the ”deep”
non-perturbative regime. On the other hand, perturbative calculation up to 2-loops have
been performed [37], and a NLO perturbative matching can be performed.

The novel GF coupling, seems to be computationally cheaper than the SF, and much
more accurate while moving toward hadronic energy region. Moreover, since this defini-
tion is not based on the presence of BG field, this can be turned off improving noticeably
the accuracy of results. As we will see in the Chapter 7, the absence of BG field, allowed
us to use the same gauge ensembles8 which have been produced to analyse the running
coupling in [10].

Despite the observation that the GF coupling seems much more suited at low energy
scales, it has to be mentioned that it is affected by larger cutoff effects compared to its
SF counterpart, requiring then the simulation of larger volumes. Moreover, currently
there are no perturbative calculation beyond the leading order9 , and, therefore that is
the highest order entering in the perturbative matching.

This general picture suggest to use different couplings definition in different energy
regions, namely GF at low energy to make contact with CLS large volume simulations
[62] and SF at high energy to make contact with perturbation theory. The two schemes
are non-perturbatively matched at an intermediate scale, called the ”Switching Scale”
µ0 = 1/L0 ∼ 4,GeV. This procedure has been successfully applied for Nf = 2 + 1 QCD,
yielding to the final determination of Λ

(3)
QCD is provided in [63].

8it has been observed that the presence of a non trivial BG field deteriorate the signal of fermionic corre-
lators.

9preliminary results in this direction can be found in [61].
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5 Symanzik Improvement

In this section we summarise briefly the main ideas, originally from Symanzik [64, 65, 66],
to interpret and identify the sources of cutoff effects. Once presented the general features
we restrict to the formulation in finite volume with SF boundary conditions, which is the
interesting case for this thesis.

5.1 Local Effective Action

Close to the continuum limit, the lattice theory can be defined in terms of local effective
actions

Seff = S0 + aS1 + a2S2 + . . . , (5.1.1)

where the non-vanishing term when a → 0 is just the continuum theory and the other
terms can be interpreted as operator insertions in the continuum theory.
While in the original formulation [64, 65, 66] the continuum is defined in dimensional
regularisation, here, following [44] we can employ a discretised theory with lattice spac-
ing much smaller than a.

In general the cutoff effects proportional to a can be written as

Sk =

∫
d4xLk(x) , (5.1.2)

where Lk(x) is a combination of local composite fields of dimension 4 + k, in particular
for L1(x) we have

O1 = ψ̄σµνFµνψ , (5.1.3)

O2 = ψ̄DµDµψ + ψ̄
←
Dµ

←
Dµ ψ , (5.1.4)

O3 = mTr{FµνFµν} , (5.1.5)

O4 = m{ψ̄γµDµψ − ψ̄
←
Dµ γµψ} (5.1.6)

O5 = m2ψ̄ψ . (5.1.7)

It can be seen [44] that on-shell the only independent term is given by O1. We can than
write the on-shell O(a)-improved fermion action as

SIF [U, ψ̄, ψ] = SF [U, ψ̄, ψ] + δSF [U, ψ̄, ψ] , (5.1.8)

with

δSF [U, ψ̄, ψ] = a5
∑
x

cswψ̄(x)
i

4
σµνF̂µν(x)ψ(x) . (5.1.9)
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FIGURE 5.1: A sketch (from [68]) of the Clover plaquette term, providing
the O(a)-improvement of the Wilson fermion action once the coefficient

csw is opportunely tuned.

The term proportional to csw originally written down in [67] is sometime called ”Clover
Term” because of the plaquette shape of F̂µν , given by

F̂µν(x) =
1

8a2
[Qµν(x)−Qνµ] , (5.1.10)

where the clover Q can be written as [67]1

Qµν(x) =

Uµ(x)Uν(x+ aµ̂)[Uµ(x+ aν̂)]−1[Uν(x)]−1

+ Uν(x)[Uµ(x− aµ̂+ aν̂)]−1[Uν(x− aµ̂)]−1Uµ(x− aν̂) (5.1.11)

+ [Uµ(x− aµ̂)]−1[Uν(x− aµ̂− aν̂)]−1Uµ(x− aµ̂− aν̂)Uν(x− aν̂)

+ [Uν(x− aν̂)]−1Uµ(x− aν̂)Uν(x+ aµ̂− aν̂)[Uµ(x)]−1 .

A sketch of the above link structure is shown in Fig. 5.1. It has been showed that at the
lowest order in perturbation theory csw = 1.
As usual, when studying a QFT discretised on the lattice the quantity of interests are the

(renormalized and connected) correlation functions

(Zφ)n/2〈φ(x1) . . . φ(xn)〉con (5.1.12)

which have a well defined continuum limit, providing the appropriate renormalization
for the fields Z1/2

φ φ(x) and the absence of contact terms. In the local effective theory we
can also power expand in a the field around the continuum as

φeff(x) = φ0(x) + aφ1(x) + a2φ2(x) . . . , (5.1.13)

where the fields φk(x) are linear combinations of local fields with appropriate dimension
and symmetry properties. At order a the lattice correlation function get a contribution

1note that it is not the only way to orient the ”leafs”.
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from both the action and the correlator itself as

〈φ0(x1) . . . φ0(xn)〉conn

− a
∫

d4y〈φ0(x1) . . . φ0(xn)L1(y)〉con

+ a
n∑
k=1

〈φ0(x1) . . . φ1(xk) . . . φ0(xn)〉con +O(a2) , (5.1.14)

where the expectation value with subscript ”con” is meant to be taken in the contin-
uum theory with action S0. It is clear from Eq. (5.1.14) that in order to have a full O(a)-
improved correlation function 2 it is necessary to improve both the action and the opera-
tor with appropriate counter’terms.

5.2 On-shell improved gauge action

On the same line with the fermionic improvement3, the same can be done for the gauge
plaquette action Eq. (3.1.3). In this case the list of independent dimension-6 gauge invari-
ant operators respecting the symmetry of the action contributing atO(a2), accordingly to
[69] are given by

O1 =
∑
µ,ν

TrDµFµνDνFµν , (5.2.1)

O2 =
∑
µ,ν,ρ

TrDµFνρDµFνρ (5.2.2)

O3 =
∑
µ,ν,ρ

TrDµFµρDνFνρ (5.2.3)

where DµFµρ = ∂µFµρ + g0[Aµ, Fνρ]. The general form of the improved gauge action (for
N = 3) is given by

Simp =
2

g2
0

∑
i

ci(g0)
∑
Ci∈Si

L(Ci) with L(Ci) = ReTr[1− U(C)] , (5.2.4)

where U(C) is the ordered product of link variables around the closed curves C, and Si
are sets with a given ”link”-topology, i.e.

• S0 is the standard wilson plaquette.

• S1 is the set of 2× 1 rectangles,

• S2 the set of ”twisted chairs”,

• S3 the set of ”chairs”.

All the shapes are summarised in Fig. 5.2. It is conventional [69] to normalise the action
by requiring

c0 + 8c1 + 8c2 + 16c3 = 1 , (5.2.5)

2with vanishing masses
3note that while for fermions the improvement is done O(a), for the gauge action the improvement is

done at O(a2). As mentioned in the text, there are no linear cutoff contribution for the gauge action in
infinite volume. The case in finite volume is discussed later on.
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FIGURE 5.2: 4 and 6 links closed loops on the lattice (from [68])

such that the standard continuum gluon action is obtained in the classical continuum
limit, with any choice of the 3 free parameters4. With the choice of c0 = 1, ci≥1 = 0 we
reproduce the standard Wilson plaquette action, while for c0 = 5/3, c1 = −1/12, ci≥2 = 0
we have the tree-level improved Lüscher-Weisz (LW) action.

5.3 Improved currents and density

As we showed in Eq. (5.1.14) in order to subtract all the cutoff effect ∝ a it is necessary to
isolate (and than remove) the a dependence in correlation functions. A very important
example is given by the axial current, since leads to the definition of the PCAC mass. All
the possible contributions O(a) to Aaµ(x) are

(O6)aµ = ψ̄γ5
τa

2
σµνDνψ − ψ̄

←
Dν σµνγ5

τa

2
ψ , (5.3.1)

(O7)aµ = ψ̄
τa

2
γ5Dµψ + ψ̄

←
Dµ γ5

τa

2
ψ , (5.3.2)

(O8)aµ = mψ̄γµγ5
τa

2
ψ . (5.3.3)

Following the same strategy applied for the improvement of the Wilson action, it can
be showed [44] that the only relevant operator is given by O7. We can then define an
O(a)-improved axial current as

(AI)
a
µ(x) = Aaµ(x) + acA(g2

0)
1

2
(∂∗µ + ∂µ)P a(x) , (5.3.4)

4Taking into account a constraint arising from positivity [69].
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where cA have to be tuned appropriately.
Analogously, improvement pattern can be worked out [70] for all the currents and densi-
ties, viz

(VI)
a
µ(x) = V a

µ (x) + acV(g2
0)

1

2
(∂∗ν + ∂ν)T aµν , (5.3.5)

(TI)
a
µν(x) = T aµν + acT(g2

0)
1

2
[(∂∗µ + ∂µ)V a

ν − (∂∗ν + ∂ν)V a
µ ] . (5.3.6)

Interestingly, there are no O(a) counter terms for pseudoscalar and scalar correlators.
It can be observed that if we are in a non-vanishing mass setup, O(a) terms propor-

tional to the subtracted mass affect the theory and have to be subtracted from all the other
quantities. More in general, the improvement of the theory requires a renormalization of
the bare parameters of the form 1 + abX(g2

0)mq, where mq is the bare subtracted mass
introduced in Section 3, and X denotes a specific parameter.

We can consider modified bare parameters, in particular coupling and mass as

g̃2
0 = g2

0(1 + bgamq) , (5.3.7)
m̃q = mq(1 + bmamq) . (5.3.8)

So that the renormalized counterparts read

g 2 = Zg(g0, aµ)(1 + bgamq)g
2
0 , (5.3.9)

m̄ = Zm(g0, aµ)(1 + bmamq)mq , (5.3.10)

as for the fields

φR = Zφ(g̃2
0, aµ)(1 + bφamq)φI(x) . (5.3.11)

Exactly the same have to be considered for all renormalized correlation functions, even
those who does not shown an explicit O(a) dependence like the pseudoscalar density.
We do not go deeper on this topic, fully investigated in [44], since all our renormalization
procedure is imposed at vanishing quark masses (i.e. mq = 0), simplifying considerably
the scaling toward the continuum of all the interesting quantities.
More details on the renormalization procedure are provided in last chapters.

5.4 Improvement of the gradient flow and flow observables

Since this topic is very technical and out of the scope of this thesis, we will only mention
the most important features to give a general idea, avoiding technicalities. For a full
detailed analysis see [52].
In order to formulate a theory satisfying the flow equation Eq. (4.4.10), it is necessary
to modify the original 4−dimensional action incorporating the flow equation itself as a
constraint by the introduction of Lagrange multiplier fields [45]. We call the latterLµ(t, x)
which are hermitian.
The 4+1 dimensional action of this theory, restricting to the gauge part, takes the general
form of

S[V,L] = SG[U ]− 2a4

∫ ∞
0

dt
∑
x,µ

Tr{Lµ(t, x)Fµ(t, x)} (5.4.1)
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where we are assuming

Vµ(0, x) = Uµ(x) , (5.4.2)

and

Fµ(t, x) = a−1(∂tVµ(t, x))Vµ(t, x)† − a−3g2
0∂x;µSG[V ] . (5.4.3)

Given the above action it is possible to define expectation values of composite fields
O[V,L] at t ≥ 0 as

〈O[V,L]〉t = Z−1

∫
D[V ]D[L]O[V,L] exp (−S[V,L]) , (5.4.4)

where with 〈·〉t we denote the average taken at flow time t. Accordingly to Symanzik’s
effective action for the 4 + 1 theory

Seff [B,L] = Scont
0 [B,L] + a2S2[B,L] +O(a4) , (5.4.5)

it is possible to identify two contribution at O(a2). 5 In particular

S2[B,L] = S2,fl[B,L] + S2,b[B,L] , (5.4.6)

were the first term at the r.h.s. is the ”flow” contribution at t > 0 and the second term is
the ”boundary” contribution at t = 0. These two objects have the general form of

S2,fl[B,L] =

∫ ∞
0

∫
d t d4 x

nfl∑
i=1

Qi(t, x) , (5.4.7)

S2,b[B,L] =

∫
d4 x

nb∑
i=1

Oi(x) , (5.4.8)

where Qi are gauge-invariant polynomials in the fundamental fields B(t, x), L(t, x) and
derivatives, while Oi are the analogous at t = 0. It can be observed that the dimension
of the two kind of counter terms is different at t = 0 and t > 0. In fact Qi is dimension-8
while Oi is dimension-6. It is observed with a perturbative analysis in [47] that there
are not loop diagrams in the bulk, which imply that a classical improvement of the flow
action yields exactly the O(a2) effects. By the same argument, O(a2) improvement is
achieved for composite operators at t > 0 by choosing a discretisation which does not
generateO(a2) effects when expanded classically. In other words, once the flow equation
is improved it does not generate any O(a2) effects in the observables. The only source of
cutoff effectsO(a2) which receive quantum corrections are the one living at the boundary
t = 0 time-slice (i.e. the standard 4-dimensional formulation).
Applying those general considerations, S2,fl is computed in [52] by a classical expansion
in a, yielding to

S2,fl|LW = −2

∫ ∞
0

dt

∫
d4 x

∑
µ,ν

Tr{Lµ(t, x)
1

12
D2
µDνGνµ(t, x)} . (5.4.9)

5only odd powers of a appear in the expansion because of extra symmetries of the 5−dimensional for-
mulation [52].
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Eq. (5.4.9) vanishes with the Lüscher-Weisz choice of coefficients in the discretisation of
gauge action, if the gradient entering in the flow equation is modified by the term

1 +
1

12
a2∇∗µ∇µ , (5.4.10)

This leads to an ”improved” flow equation where all theO(a2) effects are removed, com-
monly referred in the literature by Zeuthen Flow [71, 52] as

a2∂Vµ(x, t)

∂t
V −1
µ (x, t) = −g2

0(1 +
a2

12
D∗µDµ)∂x,µSLW[V ] . (5.4.11)

Concerning flow observables, we have

〈O〉lat = 〈O0〉+ a2(〈O2〉 − 〈O0S2,fl〉 − 〈O0S2,b〉) +O(a4) . (5.4.12)

Also in this case the last ingredient in order to remove O(a2) contribution is the knowl-
edge of S2,b, which, as shown in [52] can be realized as a change of initial condition of
the flow equation. The corresponding coefficient cb(g2

0) is a function of the bare cou-
pling which happens to vanish at tree level for plaquette and LW action. Skipping all
the technicalities, one of the most important results of the afore-mentioned paper, for the
scope of this thesis, is that with LW discretisation of gauge action, and with the modified
version of the flow given by Eq. (5.4.11), the tree level O(a2) improvement is achieved
for flow observables. This is particularly important for the energy density, which, as we
have showed in the previous chapter gives a non-perturbative definition of the strong
coupling constant.

5.5 Improvement in the SF

As in the previous sections, also the approach of the SF to the continuum limit can be
described by a local effective theory. The difference here, respect to the infinite volume
case where the only independent O(a)-term is the one appearing with coefficient csw

Eq. (5.1.9), is given by the finiteness of the volume. In fact, as extensively discussed in
[44], the cutoff contribution coming from the boundary can isolated as

Sk =

∫
d4xLk(x) + lim

ε→0

∫
d3x

{
Lk(x)|x0=ε + L′k(x)|x0=T−ε

}
(5.5.1)

where Lk(x) and L′k(x) are local operators of dimension 3 + k. Since we are interested in
removing the linear a contribution, restricting to L1, we find

Simp[U, ψ̄, ψ] = S[U, ψ̄, ψ] + δSbulk[U, ψ̄, ψ] + δSG,b[U ] + δSF,b[U, ψ̄, ψ] , (5.5.2)

where the bulk contribution is the one given by Eq. (5.1.9) but without including the first
and last time-slice [44], viz

δSbulk[U, ψ̄, ψ] = a5
T−a∑
x0=a

∑
x

csw(g0)ψ̄(x)
i

4
σµνF̂µν(x)ψ(x) . (5.5.3)

Let us now focus separately on the boundary improvements δSG,b and δSF,b, respectively
for gauge and fermion actions. In pure gauge formulations the only possible operators
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with d ≥ 4 are given by [44]

O9 = Tr{Fkl, Fkl} , (5.5.4)
O10 = Tr{F0k, F0k} . (5.5.5)

For the associated O(a) counter term is taken [17]

δSG,b[U ] =
1

2g2
0

{
(cs(g0)− 1)

∑
ps

Tr[1− U(ps)] + (ct(g0)− 1)
∑
pt

Tr[1− U(pt)]

}
(5.5.6)

where the sums run over all the oriented space-like and time-like plaquettes ps and pt
living at the boundaries. The presence of quark fields allow to create more composite
operators d = 4 which can combine into δSF,b. A basis is given by [44]

O11 = ψ̄P+D0ψ + ψ̄
←
D0 P−ψ , (5.5.7)

O12 = ψ̄P−D0ψ + ψ̄
←
D0 P+ψ , (5.5.8)

O13 = ψ̄P+γkDkψ − ψ̄
←
Dk γkP−ψ , (5.5.9)

O14 = ψ̄P−γkDkψ − ψ̄
←
Dk γkP+ψ , (5.5.10)

O15 = mψ̄ψ . (5.5.11)

With similar consideration to the ones used for the bulk improvement and taking advan-
tage of the equation of motions we reduce to

δSF,b[U, ψ̄, ψ] = a4
∑
x

{
(c̃s(g0)− 1)[Ôs(x) + Ô′s(x)] + (c̃t(g0)− 1)[Ôt(x) + Ô′t(x)]

}
(5.5.12)

where [44]

Ôs(x) =
1

2
ρ̄(x)γk(∇∗k +∇k)ρ(x) (5.5.13)

Ô′s(x) =
1

2
ρ̄′(x)γk(∇∗k +∇k)ρ′(x) (5.5.14)

Ôt(x) = [ψ̄(y)P+∇∗0ψ(y) + ψ̄(y)
←
∇
∗
0 P−ψ(y)]|y=(a,x) , (5.5.15)

Ô′t(x) = [ψ̄(y)P−∇0ψ(y) + ψ̄(y)
←
∇0 P+ψ(y)]|y=(T−a,x) . (5.5.16)

It is observed that ”spatial” improvement are never entering in relevant boundary-to-
bulk correlators. We are left with three improvement parameters to be tuned, ct, c̃t, csw.

In general it is possible to compute the improvement coefficients non-perturbatively
or expanding in g2

0 to some given order. While in the first case the removal of the leading
a effect is completely achieved, in the latter there is a remainder O(g

2(n+1)
0 a) cutoff effect

still present in the interesting quantities, where n denotes the number of loops at which
the computation is carried out.
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Part II

Renormalization of Tensor Currents
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6 Tensor currents

6.1 Motivation

Hadronic matrix elements of tensor currents play an important rôle in several relevant
problems in particle physics. Some prominent examples are rare heavy meson decays
that allow to probe the consistency of the Standard Model (SM) flavour sector (see, e.g., [4,
5, 6] for an overview), or precision measurements of β-decay and limits on the neutron
electric dipole moment (see, e.g., [7, 8, 9] for an up-to-date lattice-QCD perspective).

One of the key ingredients in these computations is the renormalization of the cur-
rent. Indeed, partial current conservation ensures that non-singlet vector and axial cur-
rents require at worst finite normalizations, and fixes the anomalous dimension of scalar
and pseudoscalar densities to be minus the quark mass anomalous dimension. They
however do not constrain the tensor current, which runs with the only other indepen-
dent anomalous dimension among quark bilinears. Controlling the current renormaliza-
tion and running at the non-perturbative level, in the same fashion achieved for quark
masses [72, 43, 73, 74], is therefore necessary in order to control systematic uncertainties,
and allow for solid conclusions in new physics searches.

The anomalous dimension of tensor currents is known to three-loop order in con-
tinuum schemes [75, 76], while on the lattice perturbative studies have been carried out
to two-loop order [77]. Non-perturbative determinations of renormalization constants in
RI/MOM schemes, for the typical few-GeV values of the renormalization scale accessible
to the latter, have been obtained for various numbers of dynamical flavours and lattice ac-
tions [78, 79, 80, 81, 82, 83, 84]. The purpose of this work is to set up the strategy for the ap-
plication of finite-size scaling techniques based on the Schrödinger Functional (SF) [17],
in order to obtain a fully non-perturbative determination of both current renormaliza-
tion constants at hadronic energy scales, and the running of renormalized currents to the
electroweak scale. This completes the ALPHA Collaboration non-perturbative renormal-
ization programme for non-singlet quark field bilinears [72, 43, 73, 74, 85, 86, 87] and
four-quark operators [88, 89, 90, 91, 92, 93, 94].

As part of the strategy, we will set up a family of SF renormalization schemes,
and perform a perturbative study with the main purpose of computing the perturbative
anomalous dimension up to two loops, in order to make safe contact with perturbative
physics at the electroweak scale. Preliminary results of this work have already appeared
as proceedings contributions [95].1 We will then apply our formalism to the fully non-
perturbative renormalization of non-singlet tensor currents in Nf = 0 and Nf = 2 QCD.
Our results for Nf = 3 QCD, that build on the non-perturbative determination of the
running coupling [97, 10, 98] and the renormalization of quark masses [73, 74, 85], will
be provided in a separate publication [99].

The layout of this part of the thesis is as follows. In section 2 we will introduce
our notation and discuss the relevant renormalization group equations. In section 3 we

1During the development of this work, Dalla Brida, Sint and Vilaseca have performed a related pertur-
bative study as part of the setup of the chirally rotated Schrödinger Functional [96]. Their results for the
one-loop matching factor required to compute the NLO tensor anomalous dimensions in SF schemes co-
incide with ours (cf. section 6.3), previously published in [95]. This constitutes a strong crosscheck of the
computation.
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will introduce our SF schemes, generalizing the ones employed for quark mass renor-
malization. In section 4 we will study these schemes in one-loop perturbation theory,
and compute the matching factors that allow to determine the NLO values of anoma-
lous dimensions. In section 5 we will discuss our non-perturbative computations, and
provide results for the running of the currents between hadronic and high-energy scales
and for the renormalization constants needed to match bare hadronic observables at low
energies. Section 6 contains our conclusions. Some technical material, as well as several
tables and figures, are gathered in appendices.

6.2 Renormalization conditions

RG evolution of multiplicative renormalizable operators have been introduced in Chap-
ter 2. We then, refer to the formulae presented in that general context. We remind, the
(flavour non-singlet) tensor bilinear is defined as

Tµν(x) = i ψ̄s1(x)σµνψs2(x) , (6.2.1)

where σµν = i
2
[γµ, γν ], and s1 6= s2 are flavour indices. Since all the Lorentz components

have the same anomalous dimension, as far as renormalization is concerned it is enough
to consider the “electric” operator T0k. As already discussed in the introduction, it is im-
portant to observe that the tensor current is the only bilinear operator that evolves under
RG transformation in a different way respect to the quark mass — partial conservation
of the vector and axial currents protect them from renormalization, and fixes the anoma-
lous dimension of both scalar and pseudoscalar densities to be −τ . We report here, the
one-loop (universal) coefficient of the tensor anomalous dimension is

γ
(0)
T =

2CF

(4π)2
with CF =

N2 − 1

2N
, (6.2.2)

which will enter in several relations.
The renormalization schemes we will consider are based on the Schrödinger Func-

tional [17, 42, 35]. A detailed discussion of the implementation and notation is provided
in Chapter 4. We will always consider L = T and trivial gauge boundary fields (i.e. there
is no background field induced by the latter) and identify the renormalization scale with
the inverse box size, i.e. µ = 1/L.

To define suitable SF renormalization conditions we can follow the same strategy as
in [100, 101, 43, 102], which has been applied successfully also to several other composite
operators both in QCD [103, 104, 105, 88, 89, 90, 91, 92, 86, 87] and other theories.2 We
remind here3 the two-point function in the SF entering in our computation given by

kT(x0) = −1

6

3∑
k=1

〈T0k(x)O[γk]〉 , (6.2.3)

f1 = − 1

2L6
〈O′s2s1 [γ5]Os1s2 [γ5]〉 , (6.2.4)

and

k1 = − 1

6L6
〈O′s2s1 [γk]Os1s2 [γk]〉 . (6.2.5)

2See, e.g., [106] for a recent review.
3all the correlators in the SF are discussed in Chapter 4)
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(a) (b)

zx

FIGURE 6.1: Sketch of correlation function in the SF: bilinear insertion on
the left and boundary-to-boundary on the right.

where

O[Γ] = a6
∑
x,y

ζ̄s2(x) Γ ζs1(y) (6.2.6)

is a source operator built with the x0 = 0 boundary fields ζ, ζ̄. A sketch of the correlation
function in the SF is provided in Fig.6.1. The renormalization constant ZT is then defined
by

ZT(g0, a/L)
kT(L/2)

f
1/2−α
1 kα1

=
kT(L/2)

f
1/2−α
1 kα1

∣∣∣∣∣
m0=mcr, g2

0=0

, (6.2.7)

where m0 is the bare quark mass, and mcr is the critical mass, needed if Wilson fermions
are used in the computation — as will be our case. The factor f1/2−α

1 kα1 cancels the renor-
malization of the boundary fields contained in O[Γ], which holds for any value of the
parameter α; we will restrict ourselves to the choices α = 0, 1/2. The only remaining pa-
rameter in Eq. (6.2.7) is the kinematical variable θ entering spatial boundary conditions;
once its value is specified alongside the one of α, the scheme is completely fixed. We will
consider the values θ = 0, 0.5, 1.0 in the perturbative study discussed in the next section,
and in the non-perturbative computation we will set θ = 0.5.

The condition in Eq. (6.2.7) involves the correlation function kT, which is not O(a)
improved. Therefore, the scaling of the renormalized current towards the continuum
limit,

T (µ) = lim
a→0

ZT(g2
0, aµ)T (g2

0) (6.2.8)

will be affected by O(a) effects. The latter can be removed by subtracting suitable coun-
terterms, following the standard on-shell O(a) improvement strategy for SF correlation
functions [107]. On the lattice, and in the chiral limit, the O(a) improvement pattern of
the tensor currents is given by Eq. (5.3.6), viz

T I
µν = Tµν + acT(g2

0)(∂̃µVν − ∂̃νVµ) , (6.2.9)

where, as usual in this thesis, ∂̃ is the symmetrized lattice derivative and Vµ = ψ̄s1γµψs2
is the vector current. Focusing again only on the electric part, the above formula reduces
to

T I
0k = T0k + acT(g2

0)(∂̃0Vk − ∂̃kV0) , (6.2.10)

which results in an O(a) improved version of the two-point function kT of the form

kI
T(x0) = kT(x0) + cT(g2

0)∂̃0kV(x0) , (6.2.11)
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with

kV(x0) = −1

6

3∑
k=1

〈Vk(x)O[γk]〉 . (6.2.12)

Note that the contribution involving the spatial derivative vanishes. Inserting kI
T in

Eq. (6.2.7), and the resulting ZT in Eq. (6.2.7) alongside the O(a) improved current, will
result in O(a2) residual cutoff effects in the value of the SSF ΣT defined in Eq. (2.2.6),
provided the action and mcr are also O(a) improved.

6.3 Perturbative study

We will now study our renormalization conditions in one-loop perturbation theory. The
aim is to obtain the next-to-leading (NLO) anomalous dimension of the tensor current
in our SF schemes, necessary for a precise connection to RGI currents, or continuum
schemes, at high energies; and compute the leading perturbative contribution to cutoff
effects, useful to better control continuum limit extrapolations.

We will expand the relevant quantities in powers of the bare coupling g2
0 as

X =

∞∑
n=0

g2
0X

(n) (6.3.1)

where X can be any of ZT, kT, kV, f1, or k1. To O(g2
0), Eq. (6.2.10) can be written as

kI
T(x0) = k

(0)
T (x0) + g2

0

[
k

(1)
T (x0) + ac

(1)
T ∂̃0k

(0)
V (x0)

]
+O(ag4

0) , (6.3.2)

with cT(g2
0) = c

(1)
T g2

0 + O(g4
0). The renormalization constant for the improved tensor

correlator kI
T at one-loop is then given by

Z
(1)
T (a/L) =

−
{

1

k
(0)
T (T/2)

[
k

(1)
T (T/2) + c̃

(1)
t kT

(0)
;bi (T/2) +m(1)

cr

∂k
(0)
T (T/2)

∂m0
+ c

(1)
T ∂̃0k

(0)
V (T/2)

]

−
(

1

2
− α

)
1

f
(0)
1

[
f

(1)
1 + c̃

(1)
t f

(0)
1;bi +m(1)

cr

∂f
(0)
1

∂m0

]

− α 1

k
(0)
1

[
k

(1)
1 + c̃

(1)
t k

(0)
1;bi +m(1)

cr

∂k
(0)
1

∂m0

]}
(6.3.3)

where c̃t is the coefficient of the counterterm that subtracts the O(a) contribution coming
from the fermionic action at the boundaries, and am(1)

cr is the one-loop value of the critical
mass, for which we employ the continuum values of am(1)

cr from [89, 107]. The one-loop
value of the improvement coefficient cT has been obtained using SF techniques in [70]. We
have repeated the computation of this latter quantity as a crosscheck of our perturbative
setup as discussed in section 6.3.2.

6.3.1 Perturbative scheme matching

Any two mass-independent renormalization schemes (indicated by primed and unprimed
quantites, respectively) can be related by a finite parameter and operator renormalization
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FIGURE 6.2: One-loop diagrams for boundary-to-bulk correlators.

FIGURE 6.3: One-loop diagrams for boundary-to-boundary correlators.

of the form

g ′2 = χg(g )g 2, (6.3.4)
m′f = χm(g )mf , f = 1, . . . , Nf , (6.3.5)

O
′
j = (χO)jk(g )Ok , (6.3.6)

where, in general, we have assumed O to present mixing. The scheme change factors χ
can be expanded perturbatively as

χ(g)
g∼0≈ 1 + χ(1)g2 +O(g4) . (6.3.7)

Plugging Eqs. (6.3.4, 6.3.5, 6.3.6) into the Callan-Symanzik equations allows to relate a
change in a renormalized quantity to the change in the corresponding RG function, viz.

β′(g′) =

[
β(g)

∂g′

∂g

]
g=g(g′)

, (6.3.8)

τ ′(g′) =

[
τ(g) + β(g)

∂

∂g
log(χm(g))

]
g=g(g′)

, (6.3.9)

γ′(g′) =

[
γ(g) + β(g)

∂

∂g
log(χO(g))

]
g=g(g′)

. (6.3.10)

In particular, expanding Eq. (6.3.10) to order g2 provides a useful relation between the
2-loop coefficient of the anomalous dimension in the two schemes. For the quark masses
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and composite operators with mixing it respectively reads,

d′1 = d1 + 2b0X (1)
m − d0X (1)

g , (6.3.11)

γ′
(1)

= γ(1) + [X (1)
O , γ(0)] + 2b0X (1)

O + bλ0
∂

∂λ
X (1)
O − γ(0)X (1)

g . (6.3.12)

It is easy to observe that if the operator is multiplicatively renormalizable the commuta-
tor in Eq. (6.3.12) vanishes, and we obtain the same structure of Eq. (6.3.11) (where we
assume Landau gauge). The one-loop matching coefficient χ(1)

g for the SF coupling was
computed in [39, 54],

χ(1)
g = 2b0 log(Lµ)− 1

4π
(c1,0 + c1,1Nf) , (6.3.13)

where the logarithm vanishes with our choice µ = 1/L, and for the standard definition
of the SF coupling one has

c1,0 = 1.25563(4) c1,1 = 0.039863(2) . (6.3.14)

The other finite term χO in Eq. (6.3.10) will provide the operator matching between the
lattice-regulated SF scheme and some reference scheme where the NLO anomalous di-
mension is known, such as MS or RI, that we will label as “cont”. The latter usually are
based on variants of the dimensional regularization procedure; our SF schemes will be,
on the other hand, regulated by a lattice. The practical application of Eq. (6.3.12) thus
involves a two-step procedure, in which the lattice-regulated SF scheme is first matched
to a lattice-regulated continuum scheme, that is in turned matched to the dimensionally-
regulated continuum scheme. This yields

[χ
(1)
O ]SF;cont = [χ

(1)
O ]SF;lat − [χ

(1)
O ]cont;lat . (6.3.15)

The one-loop matching coefficients [χ
(1)
O ]cont;lat that we need can be extracted from the

literature [108, 77, 109], while the term [χ
(1)
O ]SF;lat is obtained from our one-loop calcu-

lation of renormalization constants. Indeed, the asymptotic expansion for the one-loop
coefficient of a renormalization constant in powers and logarithms of the lattice spacing
a has the form

Z(1)(L/a) =
∑
n≥0

( a
L

)n
{rn + sn log(L/a)} , (6.3.16)

where s0 = γ
(0)
T and the finite part surviving the continuum limit is the matching factor

we need,

[χ
(1)
0 ]SF;lat = r0 . (6.3.17)

Our results for [χ
(1)
0 ]SF;lat have been obtained by computing the one-loop renormal-

ization constants on a series of lattices of sizes ranging from L/a = 4 to L/a = 48, and
fitting the results to Eq. (6.3.16) to extract the expansion coefficients. The computation has
been carried out with O(a) improved fermions for three values of θ for each scheme, and
without O(a) improvement for θ = 0.5, which allows for a crosscheck of our computation
and of the robustness of the continuum limit (see below). The results for the matching
factors are provided in Table 6.1; details about the fitting procedure and the assignment
of uncertainties are discussed in Appendix F.

Inserting our results in Eq. (6.3.12), we computed for the first time the NLO anoma-
lous dimension in our family of SF schemes for the tensor currents, which are given in
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θ α rα;θ
0;SF (csw = 0) rα;θ

0;SF (csw = 1)

0.0
0 n/a −0.0198519(3)× CF

1/2 n/a −0.0198519(3)× CF

0.5
0 −0.096821(5)× CF −0.05963(4)× CF

1/2 −0.099979(5)× CF −0.06279(4)× CF

1.0
0 n/a −0.0827(2)× CF

1/2 n/a −0.0866(2)× CF

TABLE 6.1: Finite parts of one-loop renormalization constants in the
scheme specified by the parameters θ and α for the unimproved and O(a)-

improved fermion actions
.

θ α γ
(1)
T;SF γ

(1)
T;SF/γ

(0)
T

0.0
0 0.0143209(6)− 0.00067106(3)×Nf 0.84805(3)− 0.0397383(2)×Nf

1/2 0.0143209(6)− 0.00067106(3)×Nf 0.84805(3)− 0.0397383(2)×Nf

0.5
0 0.0069469(8)− 0.00022415(5)×Nf 0.41138(5)− 0.013273(6)×Nf

1/2 0.0063609(8)− 0.00018863(5)×Nf 0.37668(5)− 0.011170(6)×Nf

1.0
0 0.00266(3) + 0.000036(2)×Nf 0.157(2) + 0.0021(1)×Nf

1/2 0.00192(3) + 0.000081(2)×Nf 0.114(2) + 0.0048(1)×Nf

TABLE 6.2: NLO anomalous dimensions for various SF schemes, labeled
by the parameters θ and α. The ratio to the LO anomalous dimension is
also provided, as an indicator of the behaviour of the perturbative expan-

sion. For comparison, γ(1)
T;MS

/γ
(0)
T = 0.1910− 0.091×Nf

.

Table 6.2. We have crosschecked the computation by performing the matching with and
without O(a) improvement, and proceeding through both MS and RI as reference contin-
uum schemes, obtaining the same results in all cases. In this context we observe that the
NLO correction to the running is in general fairly large. It is also worth mentioning that
the choice of θ = 0.5, which leads to a close-to-minimal value of the NLO mass anoma-
lous dimension in SF schemes analogous to the ones considered here [101], is not the
optimal choice for the tensor current4. We will still use θ = 0.5 in the non-perturbative
computation, since our simulations take advantage of the one used for quark mass renor-
malization projects.

Finally, as already mentioned in the introduction, parallel to our work Dalla Brida,
Sint and Vilaseca have performed a related, fully independent perturbative study as part
of the setup of the chirally rotated Schrödinger Functional [96]. Their results for the
one-loop matching factors [χ

(1)
O ]SF;lat are perfectly consistent with ours, providing a very

strong crosscheck.

6.3.2 Perturbative improvement

The improvement coefficient cT for the tensor current can, by definition, be determined
by requiring an O(a) improved approach to the continuum of the renormalized corre-
lation function at any given order in perturbation theory. As discussed previously, the

4We considered three values of θ = 0, 1, 0.5. we notice that the choice θ = 0.5 does not correspond to the
smallest anomalous dimension (among the three), as it happen for the quark masses. Moreover, it should be
noticed that cutoff effects gets larger when increasing θ.
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computation of cT to one loop has been carried out in [70]; here we reproduce it, mainly
as a crosscheck of our perturbative setup.

We introduce the following notation for the renormalized tensor correlator kT;R in the
chiral limit evaluated with SF boundary conditions at x0 = T/2,

hT(θ, a/L) ≡ kT;R(T/2) . (6.3.18)

where the θ as well as the a/L dependence have been made explicit. The one-loop ex-
pansion reads

hT = k
(0)
T (T/2) + g 2{k(1)

T (T/2) + c̃
(1)
t kT

(0)
;bi (T/2) + am

(1)
0

∂k
(0)
T (T/2)

∂m0
+(

Z
(1)
T + 2Z

(1)
ξ

)
k

(0)
T (T/2) + c

(1)
T ∂̃0k

(0)
V (T/2)}+O(g 4) , (6.3.19)

where Zξ is the renormalization constant of the boundary fermionic fields, and cT is the
coefficient we are interested in, providing the O(a) improvement of the operator. In order
to determine c(1)

T we have adopted two different strategies.
The first one proceeds by imposing the condition

hT(θ, a/L)

hT(0, a/L)
= const +O(a2) . (6.3.20)

With some trivial algebra, and observing that ∂̃0k
(0)
V (θ = 0) = 0, we end up with the

relation

k̄
(1)
T (θ, a/L)

k
(0)
T (θ, a/L)

− k̄
(1)
T (0, a/L)

k
(0)
T (0, a/L)

= −c(1)
T

∂̃0k
(0)
V (θ, a/L)|x0=T/2

k
(0)
T (θ, a/L)

, (6.3.21)

where k̄T is a shorthand notation for the correlator including the subtraction of the bound-
ary and mass O(a) terms. The divergent part of Z(1)

T , as well as of Zξ, cancel out in the
ratio, since they are independent of θ at one loop. Following [110], in order to remove
the constant term on the r.h.s. of Eq. (6.3.20) — which is indeed proportional to the dif-
ference of the finite parts at two different values of θ — we take a symmetric derivative
in L, defined as

∂̃Lf(L) =
1

2a
[f(L+ a)− f(L− a)] , (6.3.22)

and apply it to both sides of Eq. (6.3.21), obtaining

R(θ, a/L) = − ∂̃LC(L)

∂̃LA(L)
= c

(1)
T + O(a) , (6.3.23)

with C(L) as the l.h.s of Eq. (6.3.21), and A(L) the r.h.s. without the term with c(1)
T .

As a second strategy to determine cT to one loop, one can exploit the tree-level iden-
tities obtained in [110], which relate k(0)

V , k
(0)
T , f

(0)
A and f (0)

P , and impose

− k̄(1)
T +

1

3
f̄

(1)
P − 2

3
f̄

(1)
A − Z(1)

T k
(0)
T +

1

3
Z

(1)
P f

(0)
P −

c
(1)
T ∂̃0k

(0)
V |x0=T/2 −

2

3
c

(1)
A ∂̃0f

(0)
P |x0=T/2) = const +O(a2). (6.3.24)
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After some simple algebra we find

F (θ, a/L) ≡ ∂̃LC(L)

∂̃LA(L)
− c(1)

A = c
(1)
T + O(a) , (6.3.25)

where now

C(L) = −k̄(1)
T (L/a) +

1

3
f̄

(1)
P (L/a)− 2

3
f̄

(1)
A (L/a)+

8

3(4π2)
log(L/a)[−k(0)

T (L/a)− f (0)
P (L/a)] , (6.3.26)

A(L) = ∂̃0k
(0)
V (T/2) . (6.3.27)

Using the results for c(1)
A quoted in [110], we reproduce with similar size errors the value

quoted in [70], which reads

c
(1)
T = 0.00896(1)CF . (6.3.28)

The comparison between our determination and the one in [70] is displayed in Fig. 6.4.
In all cases, the continuum extrapolation has been performed using similar techniques to
the one employed for the finite part of renormalization constants (see Appendix F).
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FIGURE 6.4: Extraction of c(1)T , compared with the result in [70].

6.3.3 One-loop cutoff effects in the step scaling function

As mentioned above, the RG running is accessed via SSFs, defined in Eq. (2.2.6). It is
thus both interesting and useful to study the scaling of ΣT within perturbation theory.
Plugging the one-loop expansion of the renormalization constant in Eq. (2.2.6), we obtain
an expression of the form

ΣT(u, L/a) = 1 + k(L/a)g 2 +O(g 4) , (6.3.29)

where

k(L/a) = Z
(1)
T (2L/a)− Z(1)

T (L/a) . (6.3.30)
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In order to extract the cutoff effect which quantifies how fast the continuum limit σT is
approached, we define

k(∞) = γ
(0)
T log(2) , (6.3.31)

and the relative cutoff effect δk

δk(L/a) =
k(L/a)

k(∞)
− 1 . (6.3.32)

The one-loop values of δk for both the improved and unimproved renormalization condi-
tions are listed in Table 6.3. The behaviour of δk as a function of the lattice size is shown
in Fig. 6.5. The figure shows that the bulk of the linear cutoff effect is removed by the
improvement of the action, and that the improvement of the current has a comparatively
small impact. Note also that θ = 0.5 leads to the smaller perturbative cutoff effects among
the values explored, cf. Table 6.3.

6.4 Non-perturbative computations

We will now present non-perturbative results for both Nf = 0 and Nf = 2 QCD. The
simulations underlying each of the two cases are those in [88] (which in turn reproduced
and extended the simulations in [72]) and [43], respectively. For Nf = 2 simulations
are performed with non-perturbatively O(a) improved Wilson fermions, whereas in the
quenched case the computation was performed both with and without O(a) improve-
ment, which, along with the finer lattices used, allows for a better control of the contin-
uum limit (cf. below). A gauge plaquette action is always used. In both cases, we rely
on the computation of the SF coupling and its non-perturbative running, given in [39, 72]
for Nf = 0 and [58] for Nf = 2.

6.4.1 Nf = 0

Simulation details for the quenched computation are given in [88]. Simulation parame-
ters have been determined by tuning β such that the value of the renormalized SF cou-
pling is kept constant with changing L/a, and fixing the bare quark mass to the corre-
sponding non-perturbatively tuned value of κc. A total of fourteen values of the renor-
malized coupling have been considered, namely, u = {0.8873, 0.9944, 1.0989, 1.2430,
1.3293, 1.4300, 1.5553, 1.6950, 1.8811, 2.1000, 2.4484, 2.7700, 3.1110, 3.4800}, correspond-
ing to fourteen different physical lattice lengths L. In all cases the renormalization con-
stants ZT are determined, in the two schemes given by α = 0, 1/2, on lattices of sizes
L/a = {6, 8, 12, 16} and 2L/a = {12, 16, 24, 32}, which allows for the determination of
ΣT(u, a/L) at four values of the lattice spacing.

As mentioned above, two separate computations have been performed, with and
without an O(a) improved fermion action with a non-perturbatively determined csw co-
efficient.5 This allows to improve our control over the continuum limit extrapolation
for σT, by imposing a common result for both computations based on universality. It
is important to note that the gauge ensembles for the improved and unimproved com-
putations are different, and therefore the corresponding results are fully uncorrelated.
Another important observation is that the cT coefficient for the O(a) improvement coun-
terterm of the tensor current is not known non-perturbatively, but only to leading order

5The SF boundary improvement counterterms proportional to ct and c̃t are taken into account at two-
and one-loop order in perturbation theory, respectively.
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FIGURE 6.5: Upper panel: cutoff effects as a function of a/L for the various
schemes considered and the O(a) improved fermion action. Results with
and without operator improvement are provided. Lower panel: zoom-in
displaying only results for the schemes with θ = 0.5 (which will be the one
employed in the non-perturbative computation), also including those with

an unimproved fermion action.

in perturbation theory. In our computation of ZT for Nf = 0 we have thus never included
the improvement counterterm in the renormalization condition, even when the action
is improved, and profit only from the above universality constraint to control the con-
tinuum limit, as we will discuss in detail below. The resulting numerical values of the
renormalization constants and SSFs are reported in Tables 6.4 and 6.5.

Continuum extrapolation of SSFs

As discussed above, the continuum limit for ΣT is controlled by studying the scaling of
the results obtained with and without an O(a) improved actions. To that respect, we first
check that universality holds within our precision, by performing independent contin-
uum extrapolations of both datasets. Given the absence of the cT counterterm, we always
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assume that the continuum limit is approached linearly in a/L, and parametrize

Σcsw=0
T (u, a/L) = σcsw=0

T (u) + ρcsw=0
T (u)

a

L
, (6.4.1)

Σcsw=NP
T (u, a/L) = σcsw=NP

T (u) + ρcsw=NP
T (u)

a

L
. (6.4.2)

We observe that, in general, fits that drop the coarsest lattice, corresponding to the step
L/a = 6 → 12, are of better quality; when the ΣT(L/a = 6) datum is dropped, σcsw=0

T (u)
and σcsw=NP

T (u) always agree within ∼ 1σ. The slopes ρcsw=NP
T (u) are systematically

smaller than ρcsw=0
T (u), showing that the bulk of the leading cutoff effects in the tensor

current is subtracted by including the Sheikholeslami-Wohlert (SW) term in the action.
We thus proceed to obtain our best estimate for σT(u) from a constrained extrap-

olation, where we set σcsw=0
T (u) = σcsw=NP

T (u) = σT(u) in Eq. (6.4.1), and drop the
L/a = 6 → 12 step from the fit. The results for both schemes are provided in Table 6.6,
and illustrated in Figs. 6.10, 6.11.

Fits to continuum step-scaling functions

In order to compute the RG running of the operator in the continuum limit, we fit the
continuum-extrapolated SSFs to a functional form in u. The simplest choice, motivated by
the perturbative expression for γT and β, and assuming that σT is a smooth function of the
renormalized coupling within the covered range of values of the latter, is a polynomial
of the form

σT(u) = 1 + p1u+ p2u
2 + p3u

3 + p4u
4 + . . . . (6.4.3)

The perturbative prediction for the first two coefficients of Eq. (6.4.3) reads

ppert

1 =γ
(0)
T log(2) , (6.4.4)

ppert

2 =γ
(1)
T log(2) +

[
(γ

(0)
T )2

2
+ b0γ

(0)
T

]
(log(2))2 . (6.4.5)

Note, in particular, that perturbation theory predicts a dependence on Nf only at O(u2).
We have considered various fit ansätze, exploring combinations of the order of the

polynomial and possible perturbative constraints, imposed by fixing either p1 or both p1

and p2 to the values in Eqs. (6.4.4,6.4.5). We always take as input the results from the joint
csw = 0 and csw = NP extrapolation, discussed above. The results for the various fits
are shown in Table 6.7. All the fits result in a good description of the non-perturbative
data, with values of χ2/d.o.f. close to unity and little dependence on the ansatz. The
coefficients of powers larger than u3 are consistently compatible with zero within one
standard deviation. We quote as our preferred fit the one that fixes p1 to its perturbative
value, and reachesO(u3) (fit B in Table 6.7). This provides an adequate description of the
non-perturbative data, without artificially decreasing the goodness-of-fit by including
several coefficients with large relative errors (cf., e.g., fit E). The result for σT from fit B in
our two schemes is illustrated in Fig. 6.6. It is also worth pointing out that the value for
p2 obtained from fits A and B is compatible with the perturbative prediction within 1 and
1.5 standard deviations, respectively, for the two schemes; this reflects the small observed
departure of σT from its two-loop value until the region u & 2 is reached, cf. Fig. 6.6.
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FIGURE 6.6: Nf = 0 continuum-extrapolated SSFs in the schemes α = 0
(left) and α = 1/2 (right), and their fitted functional forms following fit
B in Table 6.7. The one- and two-loop perturbative predictions are also

shown for comparison.

Determination of the non-perturbative running factor

Once a given fit for σT is chosen, it is possible to compute the running between two well-
separated scales through a finite-size recursion. The latter is started from the smallest
value of the energy scale µhad = L−1

had, given by the largest value of the coupling for which
σT has been computed, viz.

g 2(2µhad) = 3.48 . (6.4.6)

Using as input the coupling SSF σ(u) determined in [72], we construct recursively the
series of coupling values

uk+1 = g 2(2k+2µhad) = σ−1(uk) , u0 = 3.48 . (6.4.7)

This in turn allows to compute the product

U(µhad, µpt) =
n∏
k=0

σT(uk) , µpt = 2n+1µhad , (6.4.8)

where U is the RG evolution operator in Eq. (2.2.5), here connecting the renormalised
operators at scales µhad and 2n+1µhad. The number of iterations n is dictated by the small-
est value of u at which σT is computed non-perturbatively, i.e. u = 0.8873. We find
u7 = 0.950(11) and u8 = 0.865(10), corresponding respectively to 8 and 9 steps of re-
cursion. The latter involves a short extrapolation from the interval in u covered by data,
in a region where the SSF is strongly constrained by its perturbative asymptotics. This
point is used only to test the robustness of the recursion, but is not considered in the
final analysis. The values of uk and the corresponding running factors are given in Ta-
bles 6.8 and 6.9.

Once µpt = 28µhad has been reached, perturbation theory can be used to make contact
with the RGI operator. We thus compute the total running factor ĉ(µ) in Eq. (2.1.12) at
µ = µhad as

ĉ(µhad) =
ĉ(µpt)

U(µhad, µpt)
, (6.4.9)

where ĉ(µpt) is computed using the highest available orders for γ and β in our schemes
(NLO and NNLO, respectively). In order to assess the systematic uncertainty arising
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FIGURE 6.7: Running of the tensor current for Nf = 0 in the schemes α = 0
(left) and α = 1/2 (right), compared to perturbative predictions using the

1/2-, 2/2-, and 2/3-loop values for γT/β.

from the use of perturbation theory, we have performed two crosschecks:

(i) Perform the matching to perturbation theory at all the points in the recursion, and
check that the result changes within a small fraction of the error.

(ii) Match to perturbation theory using different combinations of perturbative orders
in γ and β: other than our NLO/NNLO preferred choice, labeled “2/3” — after the
numbers of loops — in Tables 6.8 and 6.9, we have used matchings at 1/2-, 2/2-,
and 3/3-loop order, where in the latter case we have employed a mock value of
the NNLO anomalous dimension given by γ(2) ≡ (γ(1))2/γ(0) as a means to have a
guesstimate of higher-order truncation uncertainties.

We thus quote as our final numbers

ĉ(µhad)|Nf=0 = 0.9461(95) , scheme α = 0 ;

ĉ(µhad)|Nf=0 = 1.0119(83) , scheme α = 1/2 .
(6.4.10)

In Fig. 6.7 we plot the non-perturbative running of the operator in our two schemes,
obtained by running backwards from the perturbative matching point corresponding to
the renormalized coupling u7 = 0.950(11). with our non-perturbative σT, and compare it
with perturbation theory. In order to set the physical scale corresponding to each value of
the coupling, we have used ΛSF/µhad = 0.422(32), from [72]. The latter work also provides
the value of µhad in units of the Sommer scale r0 [55], viz. (2r0µhad)−1 = 0.718(16) —
which, using r0 = 0.5 fm, translates into µhad = 274(6) MeV. It is important to stress that
the results in Eq. (6.4.10) are given in the continuum, and therefore do not contain any
dependence on the regularization procedures employed to obtain them.

Hadronic matching

The final piece required for a full non-perturbative renormalization is to compute renor-
malization constants at the hadronic scale µhad within the interval of values of the bare
gauge coupling covered by non-perturbative simulations in large, hadronic volumes. We
have thus proceeded to obtainZT at four values of the bare coupling, β = {6.0129,6.1628,6.2885,6.4956},
tuned to ensure that L— and hence the renormalized SF coupling — stays constant when
L/a = {8, 10, 12, 16}, respectively. The results, both with and without O(a) improvement,
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are provided in Tables 6.10 and 6.11. These numbers can be multiplied by the correspond-
ing value of the running factor in Eq. (6.4.10) to obtain the quantity

ẐT(g2
0) = ĉ(µhad)ZT(g2

0, aµhad) , (6.4.11)

which relates bare and RGI operators for a given value of g2
0 . They are quoted in Ta-

ble 6.12; it is important to stress that the results are independent of the scheme within the
∼ 1% precision of our computation — as they should, since the scheme dependence is
lost at the level of RGI operators, save for the residual cutoff effects which in this case are
not visible within errors. A second-order polynomial fit to the dependence of the results
in β

ẐT(g2
0) = z0 + z1(β − 6) + z2(β − 6)2 (6.4.12)

for the numbers obtained from the scheme α = 1/2, which turns out to be slightly more
precise, yields

csw = NP : z0 = 0.9814(9) , z1 = 0.138(8) , z2 = −0.06(2) ;

csw = 0 : z0 = 0.8943(4) , z1 = 0.127(3) , z2 = −0.024(6) ,
(6.4.13)

with correlation matrices among the fit coefficients

C[csw = NP] =

 1.000 −0.766 0.605
−0.766 1.000 −0.955

0.605 −0.955 1.000

 ,

C[csw = 0] =

 1.000 −0.768 0.615
−0.768 1.000 −0.960

0.615 −0.960 1.000

 .

(6.4.14)

These continuous form can be obtained to renormalize bare matrix elements, computed
with the appropriate action, at any convenient value of β.

6.4.2 Nf = 2

In this case all our simulations were performed using an O(a) improved Wilson action,
with the SW coefficient csw determined in[111]. Renormalization constants have been
computed at six different values of the SF renormalized coupling u = {0.9703,1.1814,1.5078,
2.0142,2.4792,3.3340}, corresponding to six different physical lattice lengths L. For each
physical volume, three different values of the lattice spacing have been simulated, cor-
responding to lattices with L/a = 6, 8, 12 and the double steps 2L/a = 12, 16, 24, for
the computation of the renormalization constant ZT(g0, a/L). All simulational details,
including those referring to the tuning of β and κ, are provided in [43].

Concerning O(a) improvement, the configurations at the three weaker values of the
coupling were produced using the one-loop perturbative estimate of ct [17], while for
the three stronger couplings the two-loop value [37] was used. In addition, for L/a = 6,
β = 7.5420 and L/a = 8, β = 7.7206 separate simulations were performed with the
one- and two-loop value of ct, which results in two different, uncorrelated ensembles,
with either value of ct, being available for u = 1.5078. For c̃t the one-loop value is used
throughout. Finally, since, contrary to the quenched case, we do not have two separate
(improved and unimproved) sets of simulations to control the continuum limit, we have
included in our analysis the improvement counterterm to the tensor current, with the
one-loop value of cT [70].
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The resulting values for the renormalization constantsZT and the SSF ΣT are listed in
Table 6.13. The estimate of autocorrelation times has been computed using the “Gamma
Method” of [112].

Continuum extrapolation of SSFs

In this case, our continuum limit extrapolations will assume an O(a2) scaling of ΣT. This
is based on the fact that we implement O(a) improvement of the action (up to small
O(ag4

0) effects in c̃t and O(ag4
0) or O(ag6

0) in ct, cf. above); and that the residual O(ag4
0)

effects associated to the use of the one-loop perturbative value for cT can be expected
to be small, based on the findings discussed above for Nf = 0. Our ansatz for a linear
extrapolation in a2 is thus of the form

ΣT(u, a/L) = σT(u) + ρT(u)
( a
L

)2
. (6.4.15)

Furthermore, in order to ameliorate the scaling we subtract the leading perturbative cut-
off effects that have been obtained in Sec. 6.3, by rescaling our data for ΣT as

Σ′T(u, a/L) =
ΣT(u, a/L)

1 + uδk(a/L)γ
(0)
T log(2)

, (6.4.16)

where the values of the relative cutoff effects δk(a/L) are taken from the last column of
Table 6.3. Continuum extrapolations are performed both taking ΣT and the one-loop
improved Σ′T as input; the two resulting continuum limits are provided in Tables 6.14
and 6.15, respectively. As showed in Fig. 6.5, the effect of including the perturbative im-
provement is in general non-negligible only for our coarsest L/a = 6 lattices. The slope
of the continuum extrapolation is decreased by subtracting the perturbative cutoff effects
at weak coupling, but for u & 2 the quality of the extrapolation does not change signif-
icantly, and the slope actually flips sign. The u = 1.5078 case is treated separately, and
a combined extrapolation to the continuum value is performed using the independent
simulations carried out with the two different values of ct. We quote as our best results
the extrapolations obtained from Σ′T.

Fits to continuum step-scaling functions

Here we follow exactly the same strategy described above for Nf = 0, again consider-
ing several fit ansätze by varying the combination of the order of the polynomial and
the number of coefficients fixed to their perturbative values. The results are listed in Ta-
ble 6.16. As in the quenched case, we quote as our preferred result the fit obtained by
fixing the first coefficient to its perturbative value and fitting through O(u3) (fit B). The
resulting fit, as well as its comparison to perturbative predictions, is illustrated in Fig. 6.8.

Non-perturbative running

Using as input the continuum SSFs, we follow the same strategy as in the quenched
case to recursively compute the running between low and high energy scales. In this
case the lowest scale reached in the recursion, following [43], is given by g 2

SF(µhad) =
4.61. Using the coupling SSF from [58], the smallest value of the coupling that can be
reached via the recursion without leaving the interval covered by data is g 2

SF(µpt) =
1.017(10), corresponding to n = 7 (i.e. a total factor scale of 28 in energy, like in the
Nf = 0 case). The matching to the RGI at µpt is again performed using the 2/3-loop
values of the γ/β functions, and the same checks to assess the systematics are carried out
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FIGURE 6.8: SSF for Nf = 2 in the scheme α = 0 (left) and α = 1/2 (right),
compared with the LO and NLO perturbative predictions.
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ĉ
(µ

)

 

 

1/2

2/2

2/3

10
0

10
1

10
2

10
3

0.9

1

1.1

1.2

1.3

1.4

µ/Λ

ĉ
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FIGURE 6.9: Running of the tensor current for Nf = 2 in the schemes α = 0
(left) and α = 1/2 (right), compared to perturbative predictions using the

1/2-, 2/2-, and 2/3-loop values for γT/β.

as in the quenched case. Now the value obtained for ĉ(µhad) remains within the quoted
error for all n ≥ 3. Detailed results for the recursion in either scheme are provided in
Tables 6.17 and 6.18. We quote as our final results for the running factor

ĉ(µhad)|Nf=2 = 0.998(14) , scheme α = 0 ;

ĉ(µhad)|Nf=2 = 1.050(13) , scheme α = 1/2 .
(6.4.17)

The running is illustrated, and compared with the perturbative prediction, in Fig. 6.9,
where the value of log(ΛSF/µhad) = −1.298(58) from [43] has been used. Using r0ΛSF =
0.30(3) from [58] and r0 = 0.50 fm, this would correspond to a value of the hadronic
matching energy scale µhad ≈ 432(50) MeV.

Hadronic Matching

The computation of the renormalization constants at µhad needed to match bare hadronic
quantities proceeds in a somewhat different way to the quenched case. The value of ZT

in either scheme has been computed at three values of β, namely β = {5.20, 5.29, 5.40},
again within the typical interval covered by large-volume simulations with non-perturbatively
O(a) improved fermions and a plaquette gauge action. For each of the values of β two
or three values of the lattice size L/a have been simulated, corresponding to different
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values of L and therefore to different values of the renormalized coupling. The resulting
values of ZT are given in Table 6.19.

The lattice size L/a = 6 used at β = 5.20 corresponds within errors to L = 1/µhad;
for the other two values of β linear interpolations can be performed to obtain ZT at the
correct value u = 4.610; examples of such interpolations are illustrated in Fig. 6.13. The
resulting values of ZT can then be multiplied times the running factors in Eq. (6.4.17) to
obtain the RGI renormalization factors for each β. The result is provided in Table 6.20. In
this case the g2

0 dependence is barely visible within the quoted errors, and the expected
scheme independence holds only up to ∼ 3σ.

6.5 Summary

In this part of the thesis ([113]) we have set up the strategy for a non-perturbative deter-
mination of the renormalization constants and anomalous dimension of tensor currents
in QCD using SF techniques, and obtained results for Nf = 0 and Nf = 2. In the former
case we employed both O(a) improved and unimproved Wilson fermions, and simula-
tions were performed at four values of the lattice spacing for each of the fourteen differ-
ent values of the renormalization scale, resulting in an excellent control of the continuum
limit. For Nf = 2 our simulations were carried out with O(a) improved fermions, at
only three values of the lattice for each of the six renormalization scales. The precision
of the running factors up to the electroweak scale in the schemes that allow for higher
precision is 0.9% and 1.1%, respectively. The somewhat limited quality of our Nf = 2
dataset, however, could result in the quoted uncertainty for that case not being fully free
of unquantified systematics. We have also provided values of renormalization constants
at the lowest energy scales reached by the non-perturbative running, which allows to
match bare matrix elements computed with non-perturbatively O(a) improved Wilson
fermions and the Wilson plaquette gauge action.

As part of the ALPHA programme, we are currently completing a similar study
in Nf = 3 QCD [99], that builds upon a high-precision determination of the strong cou-
pling [97, 10, 98] and mass anomalous dimension [73, 74, 85]. Preliminary results indicate
that a precision ∼ 1% for the running to low-energy scales is possible even for values of
the hadronic matching scale well below the one reached for Nf = 2. This is an essen-
tial ingredient in order to obtain matrix elements of phenomenological interest with fully
controlled uncertainties and target precisions in the few percent ballpark.
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FIGURE 6.10: Continuum limit extrapolations of the Nf = 0 SSF for the
renormalization scheme α = 0. Blue (red) points correspond to results

with the O(a) improved (unimproved) action, respectively.

α = 0 α = 1/2
u σT(u) χ2/dof σT(u) χ2/dof

0.8873 1.0168(31) 0.23 1.0155(27) 0.20
0.9944 1.0190(34) 0.46 1.0171(30) 0.41
1.0989 1.0127(34) 0.69 1.0115(30) 1.18
1.2430 1.0242(38) 0.61 1.0219(33) 0.54
1.3293 1.0215(42) 1.49 1.0192(36) 1.83
1.4300 1.0295(42) 1.48 1.0265(36) 1.52
1.5553 1.0268(51) 0.20 1.0235(43) 0.20
1.6950 1.0347(50) 0.64 1.0294(42) 0.60
1.8811 1.0380(53) 1.01 1.0320(45) 1.03
2.1000 1.0461(50) 0.58 1.0381(40) 1.08
2.4484 1.0688(57) 3.41 1.0550(45) 3.65
2.7700 1.0912(63) 0.06 1.0677(50) 0.05
3.1110 1.1001(67) 1.00 1.0738(51) 0.86
3.4800 1.1128(76) 1.00 1.0806(57) 1.09

TABLE 6.6: Continuum-extrapolated values for the SSFs for Nf = 0.
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FIGURE 6.11: Continuum limit extrapolations of the Nf = 0 SSF for the
renormalization scheme α = 1/2. Blue (red) points correspond to results

with the O(a) improved (unimproved) action, respectively.

fit p1 p2 p3 p4 χ2/dof

α = 0

A 0.011705 0.00611(32) — — 1.16
B 0.011705 0.0042(12) 0.00072(45) — 1.04
C 0.011705 0.005449 0.00028(11) — 1.04
D 0.011705 0.005449 -0.00005(66) 0.00011(22) 1.11
E 0.011705 -0.0006(37) 0.0051(32) -0.00089(64) 0.96

α = 1/2

A 0.011705 0.00370(25) — — 0.88
B 0.011705 0.0035(10) 0.000072(36) — 0.95
C 0.011705 0.005043 -0.000455(88) — 1.05
D 0.011705 0.005043 -0.00098(54) 0.00017(17) 1.06
E 0.011705 -0.0003(31) 0.0034(26) -0.00068(52) 0.88

TABLE 6.7: Fits to the continuum Nf = 0 SSFs for various choices of poly-
nomial ansatz, cf. Eq. (6.4.3).
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csw = NP csw = 0

β L
a κc ZT κc ZT

6.0219 8 0.135043(17) 1.0401(21) 0.153371(10) 0.9407(19)
6.1628 10 0.135643(11) 1.0606(13) 0.152012(7) 0.9617(16)
6.2885 12 0.135739(13) 1.0738(15) 0.150752(10) 0.9792(24)
6.4956 16 0.135577(7) 1.0950(35) 0.148876(13) 1.0022(35)

TABLE 6.10: Renormalization constants ZT(g20 , L/a) at L = 1/µhad forNf =
0, scheme α = 0.

csw = NP csw = 0

β L
a κc ZT κc ZT

6.0219 8 0.135043(17) 0.9715(15) 0.153371(10) 0.8853(15)
6.1628 10 0.135643(11) 0.9909(9) 0.152012(7) 0.9033(13)
6.2885 12 0.135739(13) 1.0044(11) 0.150752(10) 0.9178(18)
6.4956 16 0.135577(7) 1.0236(24) 0.148876(13) 0.9399(27)

TABLE 6.11: Renormalization constants ZT(g20 , L/a) at L = 1/µhad forNf =
0, scheme α = 1/2.

csw = NP csw = 0

β Ẑα=0
T Ẑ

α=1/2
T Ẑα=0

T Ẑ
α=1/2
T

6.0129 0.984(10) 0.983(8) 0.890(9) 0.896(8)
6.1628 1.003(10) 1.003(8) 0.910(9) 0.914(8)
6.2885 1.016(10) 1.016(8) 0.926(10) 0.929(8)
6.4956 1.036(11) 1.036(9) 0.948(10) 0.951(8)

TABLE 6.12: RGI renormalization factors ẐT for Nf = 0.
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FIGURE 6.12: Continuum extrapolations of SSFs for Nf = 2 in the schemes
α = 0 (left) and α = 1/2 (right). Blue points are the data in Table 6.13; red

points result from subtracting the one-loop value of cutoff effects.
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α = 0 α = 1/2
u σT ρ(u) χ2/dof σT ρ(u) χ2/dof

0.9793 1.0174(32) -0.30(14) 2.26 1.0157(28) -0.20(13) 1.91
1.1814 1.0271(48) -0.49(28) 0.20 1.0252(42) -0.38(24) 0.19

1.5078 1.0311(34)
-0.28(12)

0.25 1.0283(45)
-0.20(12)

0.31
-0.63(20) -0.48(0.20)

2.0142 1.0410(36) -0.26(18) 2.24 1.0356(29) -0.14(15) 1.49
2.4792 1.0647(55) -0.66(40) 1.09 1.0538(43) -0.40(32) 1.11
3.3340 1.102(17) -0.66(97) 2.56 1.069(11) -0.16(64) 2.38

TABLE 6.14: Nf = 2 continuum-extrapolated values of σT without subtrac-
tion of perturbative cutoff effects. The two lines for u = 1.5078 correspond

to the use of the one- and two-loop value of ct, respectively.

α = 0 α = 1/2
u σT(u) ρ(u) χ2/dof σT(u) ρ(u) χ2/dof

0.9793 1.0180(32) -0.03(15) 1.99 1.0161(28) 0.04(13) 1.73
1.1814 1.0279(48) -0.16(28) 0.29 1.0256(42) -0.08(24) 0.26

1.5078 1.0318(34)
0.15(12)

0.32 1.0288(45)
0.18(12)

0.37
-0.21(21) -0.11(20)

2.0142 1.0420(36) 0.31(18) 2.64 1.0361(29) 0.38(15) 1.75
2.4792 1.0659(56) 0.06(40) 0.95 1.0543(44) 0.25(33) 0.99
3.3340 1.103(17) 0.37(99) 2.75 1.070(11) 0.74(65) 2.53

TABLE 6.15: Nf = 2 continuum-extrapolated values of σT with subtraction
of perturbative cutoff effects. The two lines for u = 1.5078 correspond to

the use of the one- and two-loop value of ct, respectively.

fit p1 p2 p3 p4 χ2/dof

α = 0

A 0.011705 0.00559(53) - - 0.72
B 0.011705 0.0061(22) -0.00021(95) - 0.89
C 0.011705 0.005070 0.00021(23) - 0.76
D 0.011705 0.005070 0.0003(11) -0.00003(41) 0.94
E 0.011705 0.0118(63) -0.0056(55) 0.0012(12) 0.87

α = 1/2

A 0.011705 0.00364(43) - - 1.00
B 0.011705 0.0056(18) -0.00083(76) - 0.95
C 0.011705 0.004713 -0.00048(18) - 0.80
D 0.011705 0.004713 -0.00022(85) -0.00010(32) 0.98
E 0.011705 0.0079(56) -0.0028(47) 0.00041(96) 1.20

TABLE 6.16: Fits to the continuum Nf = 2 SSFs for various choices of
polynomial ansatz, cf. Eq. (6.4.3).
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ĉ1
/
2
(µ

h
a
d
)

ĉ2
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β κc L/a ḡ2
SF(L) Zα=0

T Z
α=1/2
T

5.20 0.13600
4 3.65(3) 1.0433(14) 0.9423(11)
6 4.61(4) 1.0797(17) 0.9715(12)

5.29 0.13641
4 3.394(17) 1.0299(13) 0.9403(10)
6 4.297(37) 1.0602(21) 0.9661(14)
8 5.65(9) 1.1057(22) 0.9975(15)

5.40 0.13669
4 3.188(24) 1.0212(12) 0.9416(9)
6 3.864(34) 1.0411(17) 0.9597(13)
8 4.747(63) 1.0760 (17) 0.9862(12)

TABLE 6.19: Renormalization constants ZT(g20 , L/a) at L = 1/µhad forNf =
2.

β Ẑα=0
T Ẑ

α=1/2
T

5.20 1.077(15) 1.020(12)
5.29 1.068(15) 1.020(12)
5.40 1.068(15) 1.031(12)

TABLE 6.20: RGI renormalization factors ẐT for Nf = 2.
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Part III

Renormalization of Quark Masses





97

7 Quark masses renormalization

7.1 Motivation

The masses of the light quarks are not directly accessible to experiment and have to be
determined through non-perturbative calculations, taking as input low-energy hadronic
data (e.g. mK , fK ...). Perturbative approaches, like Chiral perturbation theory [114,
115, 22] are able to estimate the value of quark masses [21] but they still relies on non-
perturbative approaches like Lattice or QCD sum rules (for a review [116]).
In lattice QCD the extraction of quark masses is in principle straightforward, it is less easy
to compute the running from a low-energy scale up to high energies. It is evident, that,
in order to have a reliable determination the renormalization constant and its running
have to be computed non-perturbatively. We follow here a similar strategy to the one
presented in [72, 43], but as discussed in Chapter 4, following what has been done for
the computation of the strong coupling [97, 10] we adopt two schemes, matched at an
intermediate scale called ”switching scale”.

7.2 Strategy

7.2.1 Step-scaling functions

In our computation, as we did for the tensor currents, we will access the renormalisation
group functions β and τ through the quantities σ and σP, repeated here as

ln 2 = −
∫ √σ(u)

√
u

dg
1

β(g)
, (7.2.1)

σP(u) = exp

{
−
∫ √σ(u)

√
u

dg
τ(g)

β(g)

}
, (7.2.2)

and to which we will refer as coupling and mass SSFs, respectively. Notice that σP is
defined as the inverse of Eq. (2.2.2), because the anomalous dimension τ = −γP . They
correspond to the renormalisation group evolution operators for the coupling and quark
mass between scales that differ by a factor of two, viz.

σ(u) = g 2(µ/2)
∣∣
u=g 2(µ)

, σP(u) =
mi(µ)

mi(µ/2)

∣∣∣∣
u=g 2(µ)

. (7.2.3)

The main advantage of these quantities is that they can be computed accurately on the lat-
tice, so that a well-controlled continuum limit is obtained, for a very wide range of scales.
This allows to use a finite-size recursive procedure [72] to reconstruct the renormalisation
group functions non-perturbatively between the hadronic regime and the electroweak
scale, where contact with perturbation theory can safely be established.
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In order to compute the SSF σP, we remind that renormalised quark masses are de-
fined thourgh the PCAC relation already introduced in the context of WI, as

∂µ(AR)ijµ = (mi + mj)P
ij
R , (7.2.4)

where the renormalised, non-singlet (i 6= j) axial current and pseudoscalar density oper-
ators are given by

(AR)ijµ (x) = ZAψ̄i(x)γµγ5ψj(x) , (7.2.5)

(PR)ij(x) = ZPψ̄i(x)γ5ψj(x) . (7.2.6)

In these expressions ZP is the renormalisation constant of the pseudoscalar density in the
regularised theory, and ZA is the finite axial current normalisation required when QCD
is regularised on a lattice. Eq. (7.2.4) implies that current quark masses renormalise with
Z−1

P . Therefore, the SSF σP of Eq. (7.2.2) can be obtained by computing ZP at scales µ and
µ/2 for different values of the lattice spacing a, and taking the continuum limit of their
ratio, viz.

σP(u) = lim
a→0

ΣP(g2
0, aµ)

∣∣
g 2(µ)=u

, ΣP(g2
0, aµ) ≡ ZP(g2

0, aµ/2)

ZP(g2
0, aµ)

, (7.2.7)

where g2
0 is the bare coupling, univocally related to a in mass-independent schemes. The

condition that the value of the renormalised coupling u = g 2(µ) is kept fixed in the
extrapolation ensures that the latter is taken along a line of constant physics.1

7.2.2 Renormalisation schemes

In order to control the connection between hadronic observables and RGI quantities, we
will use intermediate finite-volume renormalisation schemes that allow to define fully
non-perturbative renormalised gauge coupling and quark masses. To that purpose, as
for ZT, ZP will be defined by a renormalisation condition imposed using the SF.

The renormalisation of the pseudoscalar density, and hence of quark masses, is treated
in the same way as in [72]. We remind here the SF correlation functions

fP(x0) = −1

3

∫
d3x〈P ij(x)Oji〉 , (7.2.8)

f1 = −1

3
〈O′ij Oji〉 , (7.2.9)

where P ij is the un-renormalised pseudoscalar density, and O, O′ are operators with
pseudoscalar quantum numbers made up with boundary quark fields,

Oij =
1

L3

∫
d3y

∫
d3z ζ̄i(y)γ5ζj(z) , O′ij =

1

L3

∫
d3y

∫
d3z ζ̄ ′i(y)γ5ζ

′
j(z) . (7.2.10)

The pseudoscalar renormalisation constant is then defined as

ZP

fP(L/2)√
3f1

=
fP(L/2)√

3f1

∣∣∣∣
tree level

, (7.2.11)

1Note that the assumption of a lattice regularisation in Eqs. (7.2.4,7.2.7) is inessential: the construction can
be applied to any convenient regularisation, provided currents are correctly normalised, and σP is obtained
by removing the regulator at constant physics.
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L/a β κ Nmeas(L) Nmeas(2L)

6 8.54030 0.13233610 5000 5000
8 8.73250 0.13213380 5000 2683
12 8.99500 0.13186210 2769 1576
6 8.21700 0.13269030 5000 5000
8 8.40440 0.13247670 5000 2314
12 8.67690 0.13217153 2476 3759
6 7.90910 0.13305719 5000 5000
8 8.09290 0.13283120 5000 2273
12 8.37300 0.13249231 2729 3749
6 7.59090 0.13346930 5000 5000
8 7.77230 0.13322829 5000 2163
12 8.05780 0.13285364 2448 3762
6 7.26180 0.13393369 5000 5000
8 7.44240 0.13367450 5000 4500
12 7.72990 0.13326352 2710 6343
6 6.94330 0.13442200 5000 5000
8 7.12540 0.13414180 5000 2041
12 7.41070 0.13369922 2535 3412
6 6.60500 0.13498289 5000 5000
8 6.79150 0.13467650 5000 1807
12 7.06880 0.13420890 2339 2607
6 6.27350 0.13557130 5000 4435
8 6.46800 0.13523620 5000 4048
12 6.72995 0.13475972 3000 5094 + 512
16 6.93460 0.13441209 4604 2325

L/a β κ Nmeas(L) Nmeas(2L)

8 5.37150 0.13362120 5001 2001
12 5.54307 0.13331407 8000 2400
16 5.70000 0.13304840 7001 500
8 5.07100 0.13421678 5001 2001
12 5.24247 0.13387635 8000 2400
16 5.40000 0.13357851 6001 500
8 4.76490 0.13488555 5001 2001
12 4.93873 0.13450761 5001 2400
16 5.10000 0.13416889 6001 500
8 4.45760 0.13560675 5001 2001
12 4.63465 0.13519986 5001 2400
16 4.80000 0.13482139 5000 2000
8 4.15190 0.13632589 5001 2001
12 4.33166 0.13592664 5001 2400
16 4.50000 0.13552582 5000 2000
8 3.94790 0.13674684 5001 2001
12 4.12822 0.13640300 5001 2100
16 4.30000 0.13600821 5000 2500
8 3.75489 0.13701929 5001 2001
12 3.93682 0.13679805 5001 3682
16 4.10000 0.13647301 3200 2674

TABLE 7.1: Table with bare parameters used to produce gauge ensem-
bles with 2 + 1 dynamical flavours. High energy region simulation (top)
are carried out using Plaquette gauge action and non-perturbatively O(a)-
improved Wilson fermions. We employed SF boundary conditions with-
out BG field. With the same boundary conditions and wilson action but
LW gauge action have been produced gauge ensembles for the coupling

project.
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FIGURE 7.1: Integrated autocorrelation time for ZP as a function of g SF(L),
on the top two plots, and gGF(L) at the bottom. The left and right panel
respectively contain information about L and 2L volume. Note that the
coupling corresponding to a double volume is g 2(2L) = σ(g 2(L)), but for

practical reasons we use the same scale for both volumes.

with all correlation functions computed at zero quark masses. The renormalisation con-
dition is fully specified by fixing the boundary conditions and the box geometry, which
we do as

T = L , C = C ′ = 0 , θ =
1

2
. (7.2.12)

Furthermore, due to computational convenience (cf. below), all correlation functions will
be computed in a fixed topological sector of the theory, which we choose to be the one
with total topological charge Q = 0. This is just part of the scheme definition, and does
not change the ultraviolet structure of the observables.

In order to completely fix the renormalisation scheme for quark masses, it is still
needed to provide a definition of the renormalised coupling. This allows to relate the
scale µ = 1/L to the bare coupling, and hence to the lattice spacing, in an unambiguous
way, so that the continuum limit of ΣP is precisely defined. Following [97, 10], we will in-
troduce two different definitions, to be used in qualitatively different regimes. For renor-
malisation scales larger than some value µ0 ≡ L−1

0 , we will employ the non-perturbative
SF coupling first introduced in [97]. Below that scale, we will use the gradient flow (GF)
coupling defined in [10]. As explained in [11, 117], this allows to optimally exploit the
variance properties of the couplings, so that a very precise computation of the β function,
and ultimately of the Λ parameter, is achieved.2 In our context, the main consequence of

2Also here, both couplings are computed from correlation functions projected to the Q = 0 sector of the
theory.
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this setup is that two different schemes for the mass result above and below µ0; we will
refer to them as SF− SF and SF−GF, respectively.

Note that the schemes differ only by the choice of renormalized coupling g 2: the
definition of ZP is always given by Eq.(7.2.11).

The value of µ0 is implicitly fixed by

g 2
SF(µ0) = 2.0120 . (7.2.13)

This leads to µ0 ' 4.2 GeV [10], i.e. the scheme switching takes place around the b quark
mass scale. The running of the SF coupling is thus known accurately down to the scale
µ0/2, reached by g 2

SF(µ0/2) = σ(2.0120) = 2.452(11). The matching of the two schemes
is completely specified by measuring the value of the GF coupling at µ0/2, for which one
has [10]

g 2
GF(µ0/2) = 2.6723(64) . (7.2.14)

It is important to stress that the scheme definition affects different quantities in distinct
ways. In particular, the mass anomalous dimension τ — which is a function of the cou-
pling — will be different in the two schemes, as will be β function. The values of renor-
malised masses, on the other hand, will be the same in both schemes, since they only
depend on the scale µ, and the definition of ZP, which is fixed. This latter observation
also provides the matching relation for the anomalous dimensions: for any fixed µ we
have

τSF−SF(g
2
SF(µ)) = τSF−GF(g

2
GF(µ)) . (7.2.15)

Another important motivation for this strategy choice is the control over the per-
turbative expansion of the β function and mass anomalous dimension, which becomes
relevant at very high energies. In the SF scheme (as reported at the beginning of this
thesis) the first non-universal perturbative coefficient of the β function, b2, and the next-
to-leading order (NLO) mass anomalous dimension in the SF− SF are known. A similar
computation in the SF−GF scheme is currently not possible, due to the absence of a full
two-loop computation of the finite-volume GF coupling in QCD.

Results for the β-functions

Let us end this section sumarizing the results for the beta function in our choice of
schemes. As discussed above, these results will be essential to determine the anomalous
dimension τ(g ) in the following sections. On the high energy side we have [97]

βSF(g ) = −g 3
3∑

n=0

bng
2n g ∈ [0, 2.45] (7.2.16)

with b0,1 given by eq. (2.0.7), b2 given by eq. (2.0.8), and b3 a fit parameter with value

(4π)2b3 = 4(3) . (7.2.17)

Note that the three leading coefficients are given by the perturbative predictions, which
implies that a safe contact with the asymptotic perturbative behaviour has been made
(this is the reason why eq. (7.2.16) is valid all the way up to g = 0). On the other hand,
on the low energy side, we have [10]

βGF(g ) = − g 3∑2
n=0 png

2n
g ∈ [2.1, 11.3] , (7.2.18a)
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with fit parameters
p0 = 16.07 , p1 = 0.21 , p2 = −0.013 , (7.2.18b)

with covariance matrix

cov(pi, pj) =

 5.12310× 10−1 −1.77401× 10−1 1.32026× 10−2

−1.77401× 10−1 6.60392× 10−2 −5.10305× 10−3

1.32026× 10−2 −5.10305× 10−3 4.06114× 10−4

 . (7.2.18c)

These values are not exactly the same as those quoted as final results in [10]. There
are two reasons for this. First we have added some statistics in some ensembles, where
the uncertainty in ΣP was too large. Second, a consistent treatment of the correlations
and autocorrelations between ZP and g 2

GF requires to determine the joint autocorrelation
function in a consistent way. This requirement results in a different covariance matrix
between the fit parameters. In any case it is very important to point out that both re-
sults (eqs. (7.2.18b, 7.2.18c)) and those quoted in [10] are perfectly compatible. It can
be easily checked that the differences in the β-function are hardly visible and, therefore,
completely negligible within the quoted uncertainties.

7.3 Running in the high-energy region

7.3.1 Determination of ZP and ΣP

Our simulations in the high-energy range above µ0 have been performed at eight differ-
ent values of the renormalised Schrödinger Functional coupling

uSF ∈ {1.1100, 1.1844, 1.2656, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120} , (7.3.1)

for which we have determined the step-scaling function ΣP of Eq. (7.2.7) at three different
values of the lattice spacing L/a = 6, 8, 12. At the strongest coupling uSF = 2.012 we have
also simulated an extra finer lattice with L/a = 16, in order to have a strong crosscheck of
our control over continuum limit extrapolations in the less favourable case. The value of
the hopping parameter κ is tuned to its critical value κc, so that the bare O(a)-improved
PCAC mass

m(g2
0, κ) =

1
2
(∂∗0 + ∂0)fA(x0) + cAa∂

∗
0∂0fP(x0)

2fP(x0)

∣∣∣∣
x0=T/2

, (7.3.2)

vanishes at the corresponding value of β = 6/g2
0.

3

The data for ΣP is corrected by subtracting the cutoff effects to all orders in a and
leading order in g2

0 , using the one-loop computation of [101]

Σ
(I)
P (u, a/L) =

ΣP (u, a/L)

1− ud0 log 2 c(a/L)
, (7.3.3)

where c(a/L) is given in table 7.2. This correction affects mainly our coarser lattice with
L/a = 6, and is well below our statistical uncertainties for L/a > 6.

The results of our simulations are summarised in Table 7.5. Alongside the results for
ZP at each simulation point, we quote the corresponding values of Σ

(I)
P . The size of the

one-loop correction (eq. (7.3.3)) is of the same order of our statistical uncertainties for our
coarser lattices (L/a = 6), and negligible for the finer lattices. Given the non-monotonous

3Details can be found in [10, 97]; a discussion of the systematic impact of this procedure on our data is
provided in Appendix 7.6.
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behaviour of the 1-loop correction for our choices of lattice sizes, we suspect that our
coarser data is contaminated by non O(a2) effects. We cannot be sure that these are com-
pletely removed by our 1-loop correction, so we use the size of this 1-loop correction as
an estimate of the remaining non-O(a2) effects by adding in quadratures the 1-loop cor-
rection to our statistical uncertainty of Σ

(I)
P . The uncertainties of Σ

(I)
P , both statistical and

systematical are quoted in table 7.5.

7.3.2 Determination of the anomalous dimension

L/a c

4 0.213560
6 0.020787
8 -0.002626

10 -0.006178
12 -0.006368
14 -0.005848
16 -0.005210
18 -0.004605
20 -0.004073
22 -0.003615
24 -0.003224

TABLE 7.2: One-loop cut-
off effects in ΣP for the
O(a) improved fermion ac-
tion and N = 3. The
values reported in the sec-
ond column corresponding
to L/a = 6, . . . , 16 repro-
duce those in [101], where
the notation δk is used for

this quantity.

Once the lattice step scaling function ΣP(u, a/L) is known,
our preferred analysis follows from a determination of the
anomalous dimension τ(g ) using eq. (7.2.2). A possibility
consists in first extrapolating Σ

(I)
P (u, a/L) to the continuum

at fixed u
Σ

(I)
P (u, a/L) = σP (u) + ρ

( a
L

)2
, (7.3.4)

and use the continuum values σ(u) to determine τ(g ) from
the relation

log (σP (u)) = −
∫ √σ(u)

√
u

dx

[
τ(x)

β(x)

]
. (7.3.5)

This analysis will be labelled “u-by-u”. The advantage
of this analysis in that one has full control over the con-
tinuum extrapolations, since they are performed indepen-
dently from the determination of the anomalous dimension.
In fact a detailed study of the continuum extrapolations
shows that when extrapolating the data for Σ

(I)
P to the con-

tinuum linearly in (a/L)2, the effect of the 1-loop correction
to our data becomes noticeable (see Fig. 7.2. ). The fits to the
raw uncorrected data have a total χ2/dof = 12.9/9, while
the fits to the corrected data have χ2/dof = 8.6/9. As we
mentioned before, we add the 1-loop uncertainty to our data
for Σ

(I)
P , and this procedure increases the size of the uncer-

tainties of our continuum extrapolated values by about a 20-
30%. Table (7.5) shows the continuum values σ(u) at the eight values of the coupling
determined following this conservative analysis.

A alternative analysis consists in using the lattice data to extrapolate to the contin-
uum at the same time that one determines the anomalous dimension. In this approach
one uses the relation

log

(
Σ

(I)
P (u, a/L)− ρ(u)

( a
L

)2
)

= −
∫ √σ(u)

√
u

dx

[
τ(x)

β(x)

]
, (7.3.6)

where the function ρ(u) parametrizes the cutoff effects in the σP(u) (which we have al-
ready seen to be linear in (a/L)2). We use a simple polynomial ansatze

ρ(u) =

nρ∑
n=2

ρnu
n . (7.3.7)

Note that since our data has been corrected for cutoff effects up to 1-loop, the functional
form that describes the cutoff effects ρ(u) cannot have any constant or linear term in u.
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are obtained by subtracting cutoff effects to all orders in a at order g20 in per-
turbation theory. The continuum-limit extrapolations shown correspond

to these latter, perturbatively improved data.
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In this approach we simultenously determine the τ(g ) and perform a continuum extrap-
olation of our lattice data Σ

(I)
P (u, a/L). This approach will be labelled “global”, and has

two advantages. First one can choose not to include the coarser lattice data points (i.e.
one can use only the data with L/a > 6). Second the data does not need to be tuned to a
constant value of the coupling u.
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Type ns nρ [L/a]min M/m(µ0/2) χ2/dof

FITA 2 2 6 1.758(11) 18 / 22
FITA 2 2 8 1.747(14) 11 / 14
FITB 2 2 6 1.7577(77) 18 / 23
FITB 2 2 8 1.7505(89) 12 / 15
FITB 3 2 6 1.7580(80) 18 / 22
FITB 3 2 8 1.7500(97) 12 / 14

TABLE 7.3: Different fits of the anomalous dimension and results for
M/m(µ0/2) (see eq. (7.3.10) and text for more details).

All that is left is to parametrize the anomalous dimension τ(x) for which we use the
polynomial ansatz

τ(x) = −x2
ns∑
n=0

tnx
2n . (7.3.8)

We always fix the leading universal coefficient with the perturturbative asymptotic pre-
diction t0 = d0 = 8/(4π)2, while we can choose to leave the rest of the coefficients to
be determined by the fit (strategy FITA), or we can also fix the NLO coefficient to the
perturbative prediction t1 = d1 = 2.96871× 10−3 (labelled FITB).

This approach has the advantage that once the function τ(ḡ) is obtained, one can
directly determine the ratio of the RGI quark mass over the renormalized quark masses
at any scale.

All in all, the global and the u-by-u approaches produce completely compatible re-
sults, as we will show in detail in the next section. Here we will just take the results of
the global analysis for the quantity

M

m̄(µ0/2)
= [2b0ḡ

2
SF(µ0/2)]−d0/2b0 exp

{
−
∫ ḡSF(µ0/2)

0
dx

[
τ(x)

β(x)
− d0

b0x

]}
, (7.3.9)

and compare the result for different fits. Table 7.3 shows the results for different fits.
The agreement between different parametrizations of the anomalous dimension is very
good. Fits that do not use the known value for t1 tend to have larger errors, as expected,
since the asymptotic perturbative behaviour is not constrained with the known analytic
results. As final result, we quote

M

m(µ0/2)
= 1.7505(89) . (7.3.10)

This result comes from a conservative approach: we discard our coarser lattices with
L/a = 6, and the statistical error of the points is increased by the value of 1-loop correc-
tion. The result agrees nicely with all other fits. If one wants to be extra-conservative one
can add the maximum spread (8× 10−3) by quadratures to the statistical error, resulting
in

M

m(µ0/2)
= 1.751(12) . (7.3.11)

We quote then the result for the anomalous dimension at high energies, given by

τ(g ) = −g 2
2∑

n=0

tng
2n , (7.3.12)
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with

t0 = 8/(4π)2 , (7.3.13)
t1 = 2.96871× 10−3 , (7.3.14)
t2 = −0.9(2.6)× 10−4 . (7.3.15)

The knowledge of the (non-perturbative) anomalous dimension offer the intriguing
possibility to probe the systematics of perturbation theory. It is, then, instructive to fix
µ0/2 as a reference scale and rephrase Eq. (7.3.10) as the function

F (k1,k2)(λ) =
[
2b0ḡ

2
SF

(µ0

2

)]−d0
2b0 exp

−
∫ λ

0
dx

[
τ (k1)(x)

β(k2)(x)
− d0

b0x

]PT


× exp

{
−
∫ ḡ(µ0

2 )

λ
dx

[
τ(x)

β(x)
− d0

b0x

]}
, (7.3.16)

where τ (k1) and β(k2) are the RG functions up to orders k1 and k2 respectively. The func-
tion F (k1,k2)(λ) measures the effect of using perturbation theory to determine the RGI
mass at scales µ where ḡ(µ) < λ. This observation is reported in Fig. 7.4, where the
above quantity is computed using a standard SSF recursion (see next subsection) or by
integrating the fitted anomalous dimensions.

7.3.3 Comparison between different analyses

In order to have a critical quantitative comparison between the different analysis tech-
niques it is convenient to consider the quantity

R(k) =
m̄(2kµ0)

m̄(µ0/2)
=

k∏
n=0

σP (un) , g 2
SF(µ0) = 2.012 and uk = g 2

SF(2kµ0) . (7.3.17)

Note that the very same quantity can be computed as

R(k) =

∫ √u−1

√
uk

dx
τ(x)

β(x)
, (7.3.18)
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FIGURE 7.5: A comparison between two fits used to determine σP (u) and
our continuum extrapolated data.

providing an excellent way to check that different analysis strategies give the same re-
sults.

Figure 7.5 shows two different fits together with the continuum extrapolated points
of σP (u). As the reader can see, the agreement between the two fits, and our data is
excellent.

In order to perform these checks we need to determine the continuum step scaling
function σP (u). As a first approach we can just parametrise the continuum values of
table (7.5) as a polynomial functional form

σP (u) = 1 + s1u+

ns∑
n=2

cnu
n , (7.3.19)

where the asymptotic universal behaviour for σP is imposed by fixing s1 = −d0 log 2.
The known NLO behaviour of the anomalous dimension can be used to fix the next to
leading coefficient c2 = s2 = −d1 log 2 + ( 1

2
d2

0 − b0d0)(log 2)2. As we did for the case
of the anomalous dimension we will focus on two functional forms: FITA, where c2 is
determined by the data, or FITB, where c2 is fixed to the perturbative prediction.

We can also use a “global” approach and fit the lattice data Σ
(I)
P (u, a/L) to the func-

tional form

Σ
(I)
P (u, a/L) = σP (u) + ρ(u)

( a
L

)2
, ρ(u) =

nρ∑
n=2

ρnu
n . (7.3.20)

Where the continuum σP (u) is parametrized as in FITA or FITB. Note that since our data
has been corrected for cutoff effects up to 1-loop, the functional form that describes the
cutoff effects ρ(u) cannot have any constant or linear term in u.4

Table 7.7 shows a comparison of the fit results for the quantity R(k) coming from
different fit ansatze. In general the agreement is good, but one notice that the fit quality
improves when the data with L/a = 6 is discarded.

In any case the most important point is that the agreement between the analysis
coming from the recursion of the step scaling functions, and the analysis coming from
the determination of the anomalous dimension explained in the previous section have a
very good agreement.

4We have tried to fit the un-improved ΣP (u, a/L) with a similar global fit approach, obtaining compatible
results.
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7.4 Running in the low-energy region

As already explained, at energies µ < µ0/2 it turns out to be convenient to change
to the GF scheme. The objective of the low energy running is to compute the ratio
m(µ0/2)/m(µhad), that together with the ratio M/m(µ0/2) of eq. (7.3.10) will provide the
total running factor.

In the low-energy range below µ0 we have carried out simulations at seven different
values of the renormalised gradient flow coupling uGF approximately fixed. For each
value of uGF we have again determined the step-scaling function ΣP of Eq. (7.2.7) at three
different values of the lattice spacing, now using lattices of size T/a = L/a = 8, 12, 16,
and double lattices of size L/a = 16, 24, 32. This allows to better tackle cutoff effects,
which are expected to be larger because of the stronger coupling, and the larger scaling
violations exhibited by uGF with respect to uSF [11]. Simulations have been carried out
using a tree-level improved Symanzik gauge action [69], and an O(a) fermion action [67]
with the non-perturbative value of the improvement coefficient csw and one-loop values
of the coefficients ct, c̃t for boundary improvement counterterms. The chiral point is set
using the same strategy as before [97, 10]. In contrast to the high energy region, here the
coupling constant g 2

GF and ZP are measured on the same ensembles, and hereafter we
take these correlations into account in our analysis.

As discussed in Section 7.2, computations are carried out at fixed topological charge
Q = 0. The main motivation for this is the onset of topological freezing [117] within
the range of bare coupling values covered by our simulations; setting Q = 0 allows to
circumvent the large computational cost required to allow the charge to fluctuate in the
ensembles involved. The projection is implemented as proposed in [10]. In practice, this
is only an issue for the finest ensembles at the largest values of uGF — for uGF . 4.

The results of our simulations are summarised in Table 7.6. Note that contrary to
the high energy region, here the value of uGF is not exactly tuned to a constant value for
different L/a. In practice the slight mistuning is not visible when extrapolating our data
to the continuum (Fig. 7.2, 7.3) , but in order to account for this effect, we decided to use
the same global approach described in the previous section. This approach only requires
to have pair of lattices of sizes L/a and 2L/a simulated at the same values of the bare
parameters.

Moreover, there is no guarantee that when computing m(µ0/2)/m(µhad) the scale
factor µhad/µ0 is an integer power (indeed, our SSF setup would require a step ∝ 2).
This speaks in favour of performing also this part of the analysis using the anomalous
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dimension. As in the previous section, we will use the available information on the β-
function eq. (7.2.18). We will parametrize the ratio of RG functions

f(x) =
τ(x)

β(x)
=

1

x

nf∑
n=0

fnx
2n , (7.4.1)

and determine the fit parameters fn via a fit to the usual relation

log
[
ΣP(u, a/L)− ρ(u)(a/L)2

]
= −

∫ √σ(u)

√
u

dx f(x) . (7.4.2)

Once more ρ(u) describes the cutoff effects in σP(u).
When the fit parameters fn are determined, we can reconstruct the anomalous di-

mension thanks to the relation

f(g ) =
τ(g )

β(g )
=⇒ τ(g ) = −g 2

∑nf
n=0 fng

2n∑kt
k=0 pkg

2k
. (7.4.3)

(Recall that the parameters pn define our β-function in eq. (7.2.18)).
As for the high energy region, we also report our fit results in Tab 7.8 where a com-

parison with u-by-u analysis is provided only as a cross-check. In the table FIT1 and FIT2
differ by the definition of the cutoff effect. In the first case ρ(u) =

∑nρ
n=0 rn(a/L)2un while

in the second case the lowest order in u is O(u). From our best fit labelled in Tab 7.8 as
FIT2 nf = 2 nρ = 2 , we quote the value of parameters fn:

f0 = 0.84(6) , (7.4.4)
f1 = −0.010(27) , (7.4.5)
f2 = 0.008(3) , (7.4.6)

with covariance

C =

 0.416511× 10−2 −0.165838× 10−2 0.153855× 10−3

−0.165838× 10−2 0.734154× 10−3 −0.745845× 10−4

0.153855× 10−3 −0.745845× 10−4 0.835009× 10−5

 , (7.4.7)

It worth to notice, that f0 is compatible within less than one standard deviation with the
perturbative value d0/b0 = 0.8889.

7.5 Hadronic matching and total renormalisation factor

The last step in our strategy requires the computation of quark mass renormalisation
factors of bare PCAC masses Zm at hadronic scales, cf. Eq. (7.3.2). The latter can be
written as

Zm(g2
0, aµhad) =

ZA(g2
0)

ZP(g2
0, aµhad)

(7.5.1)

Since the values of the axial current normalisation ZA are available from a separate com-
putation [118, 96, 119], in order to obtain Zm we just need to determine ZP(g2

0, aµhad) at a
fixed value of µhad for changing bare coupling g2

0 . The values of g2
0 have to be in the range

used in large-volume simulations; for practical purposes, we will thus target the interval
β ∈ [3.40, 3.85] currently covered by CLS ensembles [56].
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Our strategy proceeds as follows. We first choose a value of uhad = g 2
GF(µhad) such

that the relevant interval of values of g2
0 is covered using accessible values of L/a. The

precise value of uhad is fixed by simulating at one of the finest lattices. Finally, other lattice
sizes are simulated, such that we can obtain an interpolating formula for ZP(g2

0, aµhad)
as a function of g2

0 along the line of constant physics fixed by uhad. In order to have
a crosscheck of the final result for renormalised masses, we have devised two different
lines of constant physics, given by uhad = 8.63 and uhad = 9.25, respectively. In the first
case (which does not cover the CLS finest ensembles) we have fixed the value of uhad

by simulating on an L/a = 16 lattice at β = 3.70; lattice sizes L/a = 12, 10, 8 are then
used at smaller β. In the second case, the value of uhad has been fixed by simulating on
an L/a = 20 lattice at β = 3.79; lattice sizes L/a = 16, 12, 10 have then been used at
smaller β, and two L/a = 24 lattices have been added so that the finest β = 3.85 point
can be safely interpolated. Using the results in [98], the values of uhad we consider can be
translated into hadronic matching energy scales as

uhad = 9.25 ↔ µ0/19.05(36) = µhad ≈ 221(4) MeV ,

uhad = 8.63 ↔ µ0/17.77(34) = µhad ≈ 236(4) MeV ,
(7.5.2)

while our smallest SF coupling

min(uSF) = 1.1100 ↔ µ0 × 27.04(60) = µpt ≈ 114(3) GeV , (7.5.3)

Our simulation results are summarised in Table 7.9. Deviations from the target values
of uhad induce a small but visible effect on ZP, that can be safely described by a linear
term in (uGF − uhad) in the fit function. The measured values of the PCAC mass are often
beyond our tolerance |Lm| . 0.001 (cf. App. 7.6), especially for the smaller lattice sizes.
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This is a consequence of the fact that the interpolating formula for κc as a function of g2
0

loses precision for L/a = 10, and of the small cutoff effect induced by computing at zero
topological charge (which is part of our renormalisation condition). The dependence of
ZP on this effect is however very small, and again it can be safely fitted with a linear
term in Lm. The L/a = 8 lattices employed for the matching at uhad = 8.63 yield the
target value of uGF at a value of β significantly below 3.40. In this regime the GF coupling
exhibits significant cutoff effects. Consequently, these lattices will be dropped from our
fits. Note that, with this latter restriction, the values of ZP that enter the fit functions at
either value of uhad are never further away than 2.6 standard deviations from the value
on the lattice that defines the line of constant physics. The fitted dependences on g2

0 , uGF,
and Lm are thus very mild.

The measured values of ZP are fitted to a function of the form

ZP(g2
0, uGF, Lm) = Zhad

P (g2
0) + t1 (uGF − uhad) + t2 Lm ,

Zhad
P (g2

0) = z0 + z1(β − β0) + z2(β − β0)2 ,
(7.5.4)

where uhad is the target value and we fix β0 = 3.70 and β0 = 3.79 for uhad = 8.63 and
uhad = 9.25, respectively. As discussed above, the terms with t1 and t2 parameterise the
small deviations from the intended lines of constant physics, while Zhad

P is the interpolat-
ing function we are interested in. Note that the ensembles are fully uncorrelated among
them, but within each ensemble the values of uGF, Lm, and ZP are strongly correlated,
which we take into account in the fit procedure. The results we obtain for Zhad

P are

z0 = 0.3685 , z1 = 0.0233 , z2 = 0.1240 , uhad = 8.63 ; (7.5.5)
z0 = 0.3488 , z1 = 0.0187 , z2 = 0.0643 , uhad = 9.25 , (7.5.6)

with covariance matrices for fit parameters

C =

 0.100327× 10−5 0.945168× 10−5 0.208942× 10−4

0.945168× 10−5 0.291366× 10−3 0.112858× 10−2

0.208942× 10−4 0.112858× 10−2 0.485953× 10−2

 , uhad = 8.63 ;

(7.5.7)

C =

 0.317679× 10−6 0.148966× 10−6 −0.227555× 10−5

0.148966× 10−6 0.243264× 10−4 0.645229× 10−4

−0.227555× 10−5 0.645229× 10−4 0.206467× 10−3

 , uhad = 9.25 .

(7.5.8)

The respective values of the χ2/d.o.f. are 0.26/2 and 3.41/6. The typical precision of the
values of ZP extracted from the interpolating function is thus at the few permille level.5

The fits are illustrated in Fig. 7.8.
Now we can finally assemble the various factors entering (i.e. running factor and

hadronic renormalization constants). Using the results from the previous section (low en-
ergy region) we can compute the running m(µ0/2)/m(µhad) between the scheme-switching
scale and hadronic matching scale, and multiply it times the value of M/m(µ0/2) given
in Eq. (7.3.10). Combining the errors in quadrature, we obtain

M

m(µhad)
=

{
0.966(9) , uhad = 8.63 ;

0.919(10) , uhad = 9.25 .
(7.5.9)

5In the case of uhad = 8.63, the extrapolations to β = 3.4 and β = 3.85 yield errors of 0.5% and 1.2%,
respectively, which shows that precision is rapidly lost outside the region covered by data. In the uhad = 9.25
case the errors are 0.13% and 0.34%.
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lines correspond to the β values of CLS ensembles.

The precision of these numbers is 1% and 1.1%, respectively. It is important to stress
that the latter result is given in the SF−GF scheme and holds in the continuum, i.e. it is
independent of any detail of the lattice computation. We can then take our interpolating
formula for ZP and the known results for ZA, and build the total factor ZM that relates
bare PCAC masses computed with a Wilson fermion action to RGI masses,

ZM(g2
0) =

M

m(µhad)

ZA(g2
0)

ZP(g2
0, aµhad)

. (7.5.10)

Recall that the dependence of ZM on µhad has to cancel exactly, up to residual terms in
the cutoff effects of ZM(g2

0)m(g2
0). Using as input the very precise determination of ZA

in [96, 119],6 and our results for ZP at uhad = 9.25, we finally obtain the interpolating
formula

ZM(g2
0) = Z

(0)
M + Z

(1)
M (β − 3.79) + Z

(2)
M (β − 3.79)2 ;

Z
(0)
M = 2.2799× M

m(µhad)
, Z

(1)
M = 0.0997× M

m(µhad)
, Z

(2)
M = −0.3059× M

m(µhad)
,

(7.5.11)
6We thank the authors of [96, 119] for the private communication of the final results for ZA prior to

publication.
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β ZM Ztm
M

3.40 2.016(22) 2.615(29)
3.46 2.033(23) 2.627(29)
3.55 2.056(23) 2.639(30)
3.70 2.084(23) 2.642(30)
3.85 2.099(23) 2.623(30)

TABLE 7.4: Values of the renormalisation factors Zw

M and Ztm

M connect-
ing RGI and bare PCAC masses in the standard Wilson and twisted-mass

cases, respectively, at the values of β for CLS ensembles.

with covariance matrix

C =

 0.135692× 10−4 0.953937× 10−5 −0.868592× 10−4

0.953937× 10−5 0.130764× 10−2 0.342913× 10−2

−0.868592× 10−4 0.342913× 10−2 0.107999× 10−1

× [ M

m(µhad)

]2

.

(7.5.12)

The quoted errors only contain the uncertainties from the determination of ZA and ZP at
the hadronic scale. The error of the total running factor for uhad = 9.25 in Eq. (7.5.9) has
to be added in quadrature to the error in the final result for the RGI mass, since it only
affects the continuum limit.

Finally, our results can be also used to obtain renormalised quark masses when a
twisted-mass QCD Wilson fermion regularisation [120, 121] is employed in the compu-
tation. In that case the bare PCAC mass coincides with the bare twisted mass parameter,
which can be renormalised with

Ztm
m (g2

0, aµhad) =
1

ZP(g2
0, aµhad)

. (7.5.13)

The total renormalisation factor then acquires the form

Ztm
M (g2

0) =
M

m(µhad)

1

ZP(g2
0, aµhad)

, (7.5.14)

and values can be obtained by directly using our interpolating formula for Zhad
P .

The same comment about uncertainties as above applies.
Eqs. (7.5.9,7.5.11,7.5.14) are the final, and most important, results of this work. Recall

that, contrary to the running factor, which depends only on the renormalisation scheme,
the expressions for ZM and Ztm

M depend on the action used in the computation, and hold
for a non-perturbatively O(a) improved fermion action and a tree-level Symanzik im-
proved gauge action. The values of ZM and Ztm

M at the β values of CLS ensembles are
given in Table 7.4.

7.6 Systematic uncertainties in the determination of step-scaling functions

7.6.1 Tuning of the critical mass

The tuning of the chiral point, as part of setting our lines of constant physics, is treated
in detail in [97, 10]. Briefly, a set of tuning runs at various values of β and κ are used to
compute the PCAC massm in Eq. (7.2.4), and interpolate at fixed β values for κc such that
Lm ≤ 0.001, with an uncertainty of at most the same order. This implies that the values
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of the quark mass at which the renormalisation condition in Eq. (7.2.11) is imposed are
not exactly zero.

In order to assess the relevant systematics, we have performed a dedicated set of
simulations at strongest coupling covered in the SF− SF scheme, uSF = 2.0120, where
the value of ΣP(2.0120, L/a = 6) has been computed at the same value of β = 6.2735
indicated in Table 7.5, and four different values of κ, on top of the nominal one for κc

given in Table 7.5. This is expected to be the simulation point within the high-energy
regime where this systematics may have a stronger impact. The result of this exercise is
shown in Fig. 7.9. A linear fit to the data allows to estimate the slope coefficient

ρκc ≡
1

L

∂ΣP

∂m

∣∣∣∣
u,L

, (7.6.1)

which can then be used to assign a systematic uncertainty to ΣP as

δκcΣP = ρκctol(Lm) , (7.6.2)

where tol(Lm) = 0.001 is our tolerance for defining the critical point. We obtain ρκc =
−0.15(15), which implies that the systematic uncertainty can be estimated as δκcΣP =
0.00015(15).7

Besides being compatible with zero within 1σ, the central value is more than four
times smaller than the statistical uncertainty quoted for ΣP(2.0120, L/a = 6) in Table 7.5.
For larger lattices or smaller values of the renormalised coupling this systematics is ex-
pected to decrease further. On the other hand, it will be larger as the value of the renor-
malised coupling is increased, but there is no obvious reason why its relative size with
respect to the statistical uncertainty may grow as well. We thus conclude that the sys-
tematic uncertainty related to the tuning to zero quark mass is negligible at the level of
precision we attain in the computation of σP.

7Our value for the slope ρκc is in the same ballpark as the ones obtained in [72], where a similar study
using Nf = 2 simulations was performed at values of the SF coupling uSF = 0.9793 and uSF = 2.4792,
finding ρκc = −0.0755(10) and ρκc = −0.1130(27), respectively.
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7.6.2 Tuning of the gauge coupling

Our lines of constant physics are formally defined by a nominal value of either the SF
or the GF coupling, that is to be kept fixed in the lattices at which the denominator of
Eq. (7.2.7) is computed. In practice, this is so only within some finite precision, due to
two different reasons:

(i) The value of either uSF or uGF is itself computed to within some finite precision.

(ii) In the computations in the SF− SF scheme, the value of the coupling, and the cor-
responding tuning of β and κ, is performed using independent ensembles with
respect to the ones employed for the computation of ZP, due to the need to work
at non-vanishing background field. The resulting lines of constant physics are ex-
pected to differ by O(a2) effects.

In order to assess whether the finite precision on the value of the gauge coupling has
an impact on the computation of the continuum σP, we have

(i) repeated the continuum-limit extrapolations of ΣP at fixed u, introducing a hori-
zontal error on the value of (a/L)2 propagated from the uncertainty on u at each
value of a/L. To that purpose one can use either the perturbative relation between
u and L, or the known non-perturbative β functions [97, 10], with little practical
differences.

(ii) repeated fits to the continuum-extrapolated σP as a function of u, introducing an
uncertainty on u that covers the spread of the computed values along that particular
line of constant physics.

In either case, we have found that the impact of introducing the additional uncertainties
in the final description of σP are negligible within our current level of precision. This
source of systematic uncertainty is therefore ignored in our final analyses.

7.6.3 Perturbative values of boundary improvement coefficients

In our computation, we use perturbative values for the coefficients ct and c̃t that appear
in Schrödinger Functional boundary O(a) improvement counterterms, employing the
highest available order for the relevant lattice action. In computations in the high-energy
region, where the plaquette gauge action is used, we are able to use the corresponding
two-loop value of ct [37]. In the low-energy region, where the gauge action is tree-level
Symanzik improved, the two-loop coefficient is not known, and we take the one-loop
value. In the case of c̃t, we employ the one-loop value throughout. Contributions from
these boundary counterterms to the step-scaling function σP start at two-loop order in
perturbation theory, and the effects of perturbative truncation in the values of ct, c̃t are
therefore expected to be small. A careful study of these systematic uncertainties in the
SF-SF scheme was carried out in theNf = 0 [72] andNf = 2 [43] computations. Especially
in the former case, a precise statement could be made that perturbative truncation effects
do not change the result for the continuum limit of ΣP even at the largest values of the
coupling. In our computation, we have performed a dedicated analysis at two values of
the coupling, to check the size of the resulting effects in both the SF− SF and SF−GF
schemes.

In order to have a quantitative handle on the effect from a shift on boundary im-
provement coefficients, let us formally expand ZP, considered as a function of, e.g., ct, in
a power series of the form

ZP +
∂ZP

∂ct

( a
L

)
∆ct + . . . (7.6.3)
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where ∆ct is the deviation with respect to the value of ct at which ZP is computed. The
factor (a/L) is made explicit to stress that the perturbative truncation is leaving uncan-
celled O(a) terms, which we are parameterising. By simulating at a number of values
of ct, keeping all other simulation parameters fixed, it is possible to estimate the slope
(∂ZP/∂ct). A systematic uncertainty can then be assigned to ZP as

δctZP ≈
∣∣∣∣∂ZP

∂ct

∣∣∣∣ ( aL) δct , (7.6.4)

where δct is some conservative estimate of the perturbative truncation error. Linear error
propagation then yields the corresponding systematic uncertainty on ΣP = ZP(2L)/ZP(L)
as

δctΣP

ΣP

≈
∣∣∣∣∂ZP

∂ct

[
1

2ZP(2L)
− 1

ZP(L)

]∣∣∣∣ ( aL) δct . (7.6.5)

The systematic uncertainty due to the truncation in the value of c̃t can be estimated in
exactly the same way.

We have performed dedicated simulations to estimate (∂ZP/∂ct) and (∂ZP/∂c̃t) in
the SF− SF scheme at u = 2.0120 and in the SF−GF scheme at u = 4.4901, considering
several values of ct and c̃t in an interval given by artificially augmenting the size of the
perturbative correction to the tree-level value 1 by factors of up to 4. The simulations
are performed in L/a = 6 and L/a = 8 lattices, which should be affected by the largest
uncertainty. The results are illustrated in Fig. 7.10. By fitting the results for ZP linearly in
the value of the improvement coefficient we find

∂ZP

∂ct

∣∣∣∣
SF−SF;L/a=6

= −0.016(15) ,
∂ZP

∂c̃t

∣∣∣∣
SF−SF;L/a=6

= 0.022(21) ; (7.6.6)

∂ZP

∂ct

∣∣∣∣
SF−SF;L/a=8

= −0.003(26) ,
∂ZP

∂c̃t

∣∣∣∣
SF−SF;L/a=8

= −0.074(19) ; (7.6.7)

∂ZP

∂ct

∣∣∣∣
SF−GF;L/a=8

= 0.110(14) ,
∂ZP

∂c̃t

∣∣∣∣
SF−GF;L/a=8

= −0.090(4) . (7.6.8)

If now we use values of ∆ct and ∆c̃t given by 1 − cpert

t and 1 − c̃pert

t , respectively — i.e.,
we assign a 100% uncertainty to the perturbative correction to the tree-level value 1 —
we finally obtain

uSF = 2.0120 , L/a = 6 : δctΣP ≈ 0.00014 , δc̃tΣP ≈ 0.000063 ; (7.6.9)
uSF = 2.0120 , L/a = 8 : δctΣP ≈ 0.000019 , δc̃tΣP ≈ 0.00015 ; (7.6.10)
uGF = 4.4901 , L/a = 8 : δctΣP ≈ 0.00037 , δc̃tΣP ≈ 0.00014 . (7.6.11)

In all cases, these figures are much smaller than the quoted statistical error of ΣP. This
justifies neglecting this source of systematic uncertainty in our analysis.
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7.7 Summary

To summarise, in this part of the thesis we have presented the strategy and results for the
non-perturbative calculation of the running and the anomalous dimension of the quark
masses in Nf = 3 QCD.
For the first time, we have considered two renormalization schemes, defined on two en-
ergy regions, non-perturbatively matched at the intermediate scale µ0/2 ∼ mc.
In the high-energy region we performed simulations at three value of the lattice spac-
ing (L/a = 6, 8, 12) for each of the eight renormalized couplings, while in the low-energy
one, taking advantage of the simulations did for computation of the running of the strong
coupling, we computed the SSFs three point L/a = 8, 12, 16 for seven different scales.
For the first time, we computed non-perturbatively the mass anomalous dimension, pre-
senting a new, more flexible, way to compute the running factor without relying on the
SSFs recursion. Our results for the running factors at µ0 and µhad respectively show a
sub-percent and ∼ 1% uncertainty.

As a part of the shared effort between ALPHA and CLS collaborations, we are cur-
rently completing the calculation of the bare strange quark mass in large volumes, which,
together with the computation of the non-perturbative running presented here will yield
to the determination of its physical value.
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L/a β κ uGF Lm ZP(g2
0, L/a) # cfg

*8 3.3530 0.136423000000000 8.839(10) 0.0088(23) 0.3823(20) 1528
*8 3.3530 0.136497440000000 8.867(10) -0.0090(23) 0.3790(23) 1683
*8 3.3682 0.136530000000000 8.643(10) 0.0033(23) 0.3879(23) 1645
*8 3.4000 0.136691350000000 8.120(10) -0.0136(25) 0.4043(23) 1288
10 3.4500 0.136876730000000 8.651(14) 0.0178(18) 0.3723(18) 1521
10 3.4500 0.136935450000000 8.557(14) -0.0092(28) 0.3715(28) 1170
12 3.5100 0.137078900000000 8.897(18) -0.0100(40) 0.3584(39) 1575
12 3.5320 0.137101170000000 8.738(18) -0.0028(28) 0.3652(28) 2812
12 3.5470 0.137113150000000 8.460(10) -0.0036(35) 0.3723(33) 1938
12 3.5543 0.137118080000000 8.514(25) -0.0020(47) 0.3711(46) 821
16 3.7000 0.137128980000000 8.633(18) -0.0020(39) 0.3682(38) 3468

10 3.4000 0.136804050000000 9.282(10) -0.0221(28) 0.3484(27) 2489
10 3.4110 0.136765000000000 9.290(10) 0.0189(18) 0.3526(18) 4624
12 3.4800 0.137038980000000 9.406(14) -0.0115(33) 0.3417(32) 1828
12 3.4880 0.137021000000000 9.393(14) 0.0035(25) 0.3430(25) 2667
12 3.4970 0.137062990000000 9.118(18) -0.0102(40) 0.3487(39) 1491
16 3.6490 0.137157650000000 9.423(18) -0.0024(35) 0.3430(33) 4560
16 3.6576 0.137154130000000 9.186(18) -0.0039(33) 0.3492(32) 3079
16 3.6710 0.137147560000000 9.045(28) 0.0009(52) 0.3526(50) 1553
20 3.7900 0.137048000000000 9.251(23) -0.0008(48) 0.3508(47) 4133
24 3.8934 0.136894444635332 9.382(20) -0.0001(49) 0.3474(48) 4709
24 3.9122 0.136862164369907 9.132(23) 0.0001(47) 0.3543(47) 5086

TABLE 7.9: Results for ZP in the SF−GF scheme, used to determine quark
mass renormalization constants at the two hadronic matching points con-
sidered — uhad = 8.63 (upper panel) and uhad = 9.25 (lower panel). Along-
side the values of uGF and ZP, we also quote the value of the PCAC massm
in units of the physical lattice length, and the statistics for each ensemble.
L/a = 8 lattices carry an asterisk as a reminder that they are excluded from

the fit to the interpolating function.
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Part IV

Renormalization of Four-Fermion
Operators
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8 Four-Fermion Operators
Renormalization

The renormalization constants of lattice operators are necessary ingredients in the pre-
diction of physical amplitudes from lattice matrix elements. Schematically, the physical
amplitude Aı→f associated to the transition from an initial state i to a final state f in-
duced by the composite operator O is given, in the formalism of the Operator Product
Expansion (OPE), by

Aı→f = CW (µ)ZO(aµ)〈i|O(a)|f〉 (8.0.1)

where CW (µ) is the Wilson Coefficient encoding the high-energy contribution to the am-
plitude and 〈i|O(a)|f〉 is the bare matrix element relevant to the physical process con-
taining the low-energy non-perturbative dynamics of the theory. As usual, µ denote the
renormalization scale, and a is the lattice spacing. The renormalization constant ZO(aµ)
is the connection between the bare operator and its renormalized counterpart in the con-
tinuum limit. In this section we focus on the beyond standard model four-fermion opera-
tors which play a crucial rôle in putting constraint of the possible extension of the SM. In
particular we focus on the operator with a net change in flavour number. The operators
are classified according to their discrete symmetries and an operator basis, convenient
for our choice, is chosen. The major problem, when dealing with a lattice regularisation
which breaks explicitly the chiral symmetry (like Wilson fermions in the current case)
is given by the mixing with lower dimensional operators involving then power subtrac-
tions.

8.1 Renormalisation of four-quark operators

The mixing under renormalisation of four-quark operators that do not require subtrac-
tion of lower-dimensional operators has been determined in full generality in [122]. The
absence of subtractions is elegantly implemented by using a formalism in which the op-
erators are made of four different quark flavours; a complete set of Lorentz-invariant
operators is

Q±1 = O±VV+AA , Q±1 =O±VA+AV ,

Q±2 = O±VV−AA , Q±2 =O±VA−AV ,

Q±3 = O±SS−PP , Q±3 =O±PS−SP ,

Q±4 = O±SS+PP , Q±4 =O±SP+PS ,

Q±5 = −2O±TT , Q±5 =−2O±
TT̃

,

(8.1.1)

where

O±Γ1Γ2
=

1

2

[
(ψ̄1Γ1ψ2)(ψ̄3Γ2ψ4) ± (ψ̄1Γ1ψ4)(ψ̄3Γ2ψ2)

]
, (8.1.2)
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O±Γ1Γ2±Γ2Γ1
≡ O±Γ1Γ2

± O±Γ2Γ1
, and the labeling is adopted V → γµ, A → γµγ5, S → 1,

P → γ5, T → σµν , T̃ → 1
2
εµνρτσρτ , with σµν = i

2
[γµ, γν ]. In the above expression round

parentheses indicate spin and colour scalars, and subscripts are flavour labels. Note that
operators Q±k are parity-even, and Q±k are parity-odd.

It is important to stress that this framework is fairly general. For instance, with the
assignments

ψ1 = ψ3 = s , ψ2 = ψ4 = d (8.1.3)

the operators Q−k vanish, while Q+
1 enters the SM amplitude for K0–K̄0 mixing, and

Q+
2,...,5 the contributions to the same amplitude from arbitrary extensions of the SM. Idem

for B0
(s)–B̄

0
(s) mixing with

ψ1 = ψ3 = b , ψ2 = ψ4 = d/s . (8.1.4)

If one instead chooses the assignments

ψ1 = s , ψ2 = d , ψ3 = ψ4 = u, c ,

ψ1 = s , ψ4 = d , ψ2 = ψ3 = u, c ,
(8.1.5)

the resultingQ±1 will be the operators in the SM ∆S = 1 effective weak Hamiltonian with
an active charm quark, which, in the chiral limit, do not mix with lower-dimensional op-
erators. By proceeding in this way, essentially all possible four-quark effective interac-
tions with net flavour change can be easily seen to be comprised within our scope.

In the following we will assume a mass-independent renormalisation scheme. Renor-
malised operators can be written as

Q̄±k = Zkl(δlm + ∆lm)Q±m ,

Q̄±k = Zkl(δlm + Dlm)Q±m
(8.1.6)

(summations over l,m are implied), where the matrices Z,Z are scale-dependent and
reabsorb logarithmic divergences, while ∆,D are (possible) finite subtraction coefficients
that only depend on the bare coupling. They have the generic structure

Z =


Z11 0 0 0 0
0 Z22 Z23 0 0
0 Z32 Z33 0 0
0 0 0 Z44 Z45

0 0 0 Z54 Z55

 , ∆ =


0 ∆12 ∆13 ∆14 ∆15

∆21 0 0 ∆24 ∆25

∆31 0 0 ∆34 ∆35

∆41 ∆42 ∆43 0 0
∆51 ∆52 ∆53 0 0

 ,

(8.1.7)

and similarly in the parity-odd sector. If chiral symmetry is preserved by the regulariza-
tion, both ∆ and D vanish. The main result of [122] is that D = 0 even if chiral symmetry
is broken explicitly by a Wilson term, due to residual discrete flavour symmetries that
are preserved by the latter. In particular, the left-left operators Q±VA+AV that mediate
Standard Model-allowed transitions renormalise multiplicatively, while operators that
appear as effective interactions in extensions of the Standard Model do always mix.1

Interestingly, in [122] some identities relate the renormalisation matrices for (Q+
2 ,Q+

3 )
and (Q−2 ,Q−3 ) in RI-MOM schemes. In Appendix B we discuss the underlying symmetry

1The use of twisted mass Wilson regularisations leads to a different chiral symmetry breaking pattern,
which changes the mixing properties. This can be exploited in specific cases to achieve favorable mixing
patterns, see e.g. [122].
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structure in some more detail, and show how it can be used to derive constraints between
matrices of anomalous dimensions in generic schemes.

Reminding the notation presented in Chapter 2, we have

q
∂

∂q
O j(q) =

∑
k

γjk(g (q))Ok(q) (8.1.8)

and the perturbative expansion of the anomalous dimension matrix γ as

γ(g) ≈
g∼0
−g2(γ0 + γ1g

2 + . . .) . (8.1.9)

The universal, one-loop coefficients of the anomalous dimension matrix for four-fermion
operators were first computed in [25, 123] and [124]. With our notational conventions the
non-zero entries read

γ
+,(0)
11 =

(
6− 6

N

)
(4π)−2 ,

γ
+,(0)
22 =

(
6

N

)
(4π)−2 ,

γ
+,(0)
23 = 12(4π)−2 ,

γ
+,(0)
33 =

(
−6N +

6

N

)
(4π)−2 ,

γ
+,(0)
44 =

(
6− 6N +

6

N

)
(4π)−2 ,

γ
+,(0)
45 =

(
1

2
− 1

N

)
(4π)−2 ,

γ
+,(0)
54 =

(
−24− 48

N

)
(4π)−2 ,

γ
+,(0)
55 =

(
6 + 2N − 2

N

)
(4π)−2 ,

γ
−,(0)
11 =

(
−6− 6

N

)
(4π)−2 ,

γ
−,(0)
22 =

(
6

N

)
(4π)−2 ,

γ
−,(0)
23 = −12(4π)−2 ,

γ
−,(0)
33 =

(
−6N +

6

N

)
(4π)−2 ,

γ
−,(0)
44 =

(
−6− 6N +

6

N

)
(4π)−2 ,

γ
−,(0)
45 =

(
−1

2
− 1

N

)
(4π)−2 ,

γ
−,(0)
54 =

(
24− 48

N

)
(4π)−2 ,

γ
−,(0)
55 =

(
−6 + 2N − 2

N

)
(4π)−2 .

(8.1.10)

8.1.1 Perturbative expansion of RG evolution functions

As discussed in chapter 2 the definition of the RGI for mixing operators cannot be simply
generalised from the one for multiplicative renormalizable operators. The matrix W (µ)
defined in Eq. (2.1.16) which contains all the corrections beyond LO can be expanded
perturbatively, with2

W (µ) ≈ 1 + g 2(µ)J1 + g 4(µ)J2 + g 6(µ)J3 + g 8(µ)J4 + . . . (8.1.11)

2It is easy to check that this is indeed the correct form of the expansion for W . If terms with odd powers
g 2k+1, k = 0, 1, . . . are allowed, the consistency between the left- and right-hand sides of Eq. (2.1.16) requires
them to vanish. The same applies if a dependence of Jn on µ is allowed — consistency then requires ∂Jn

∂µ
= 0.
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we find for the first four orders in the expansion the conditions

2b0J1 − [γ0, J1] =
b1
b0
γ0 − γ1 , (8.1.12)

4b0J2 − [γ0, J2] = J1

(
b1
b0
γ0 − γ1

)
+

(
b2
b0
− b21
b20

)
γ0 +

b1
b0
γ1 − γ2 , (8.1.13)

6b0J3 − [γ0, J3] = J2

(
b1
b0
γ0 − γ1

)
+ J1

{(
b2
b0
− b21
b20

)
γ0 +

b1
b0
γ1 − γ2

}
+

+

(
b3
b0
− 2b2b1

b20
+
b31
b30

)
γ0 +

(
b2
b0
− b21
b20

)
γ1 +

b1
b0
γ2 − γ3 , (8.1.14)

8b0J4 − [γ0, J4] = J3

(
b1
b0
γ0 − γ1

)
+ J2

{(
b2
b0
− b21
b20

)
γ0 +

b1
b0
γ1 − γ2

}
+

+ J1

{(
b3
b0
− 2b2b1

b20
+
b31
b30

)
γ0 +

(
b2
b0
− b21
b20

)
γ1 +

b1
b0
γ2 − γ3

}
+

+

(
−b

4
1

b40
+ 3

b21b2
b30
− b22
b20
− 2

b1b3
b20

+
b4
b0

)
γ0 +

(
b3
b0
− 2b2b1

b20
+
b31
b30

)
γ1+

+

(
b2
b0
− b21
b20

)
γ2 +

b1
b0
γ3 − γ4 . (8.1.15)

Modulo sign and normalisation conventions (involving powers of 4π related to expand-
ing in g 2 rather than α/(4π)), and the dependence on gauge fixing (which does not apply
to our context), Eq. (8.1.12) coincides with Eq. (24) of [25]. All four equations, as well as
those for higher orders, can be easily solved to obtain Jn for given values the coefficients
in the perturbative expansion of γ. The LO, NLO, and NNLO and NNNLO matching for
the RGI operators is thus obtained from Eq. (2.1.20) by using the expansion in powers of
g 2 in Eq. (8.1.11) up to zeroth, first, second, and third order, respectively.

8.2 Anomalous dimensions in SF schemes

8.2.1 Strategy for the computation of NLO anomalous dimensions in SF schemes

The technology to match two renormalization scheme at one-loop has been introduced
in the context of the tensor renormalization, we then refer for the details to chapter 6.
Following what we did for the tensor current, Eq. (6.3.12) is the key ingredient for our
computation of (matrix) anomalous dimensions to two loops in SF schemes, using as
starting point known two-loop results in MS or RI schemes. Indeed, our strategy will
be to compute the one-loop matching coefficient between the SF schemes that we will
introduce presently, and the continuum schemes where γ(1) is known. γ(1);MS can be
found in [125, 126, 24], while γ(1);RI can be computed from both [25] and [24]; we gather
them in Appendix C.

The one-loop matching coefficients [X (1)
O ]cont;lat required by Eq. (6.3.15) can be ex-

tracted from the literature. For the RI-MOM scheme they can be found in [127], while
for the MS scheme they can be extracted from [128, 129, 108] 3). We gather the RI-MOM
results in Landau gauge in Appendix E. χ(1)

g can be found in [54].

3We are grateful to S. Sharpe for having converted for us, in the case of Fierz + operators, the MS scheme
used in [128] to the one defined in [24].
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8.3 SF renormalisation conditions

We now consider the problem of specifying suitable renormalisation conditions on four-
quark operators, using the SF formalism. In this context, the first applications involved
the multiplicatively renormalisable operatorsQ±1 of Eq. (8.1.1) (which, as explained above,
enter Standard Model effective Hamiltonians for ∆F = 1 and ∆F = 2 processes) [88,
89, 90, 91], as well as generic ∆B = 2 operators in the static limit [92, 91]. The latter
studies are extended in this paper to cover the full set of relativistic operators. It is im-
portant to stress that, while these schemes will be ultimately employed in the context
of a non-perturbative lattice computation of renormalisation constants and anomalous
dimensions, the definition of the schemes is fully independent of any choice of regulator.

We use the standard SF setup as described in [107], where the reader is referred for
full details including unexplained notation. We will work on boxes with spacial extent
L and time extent T ; in practice, T = L will always be set. Source fields are made up of
boundary quarks and antiquarks,

Oαβ[Γ] = a6
∑
y,z

ζ̄α(y)Γζβ(z) , (8.3.1)

O′αβ[Γ] = a6
∑
y,z

ζ̄ ′α(y)Γζ ′β(z) , (8.3.2)

where α, β are flavour indices, unprimed (primed) fields live at the x0 = 0 (x0 = T )
boundary, and Γ is a spin matrix that must anticommute with γ0, so that the boundary
fermion field does not vanish. This is a consequence of the structure of the conditions
imposed on boundary fields,

ζ(x) = 1
2
(1− γ0)ζ(x) , ζ̄(x) = ζ̄(x) 1

2
(1 + γ0) , (8.3.3)

and similarly for primed fields. The resulting limitations on the possible Dirac structures
for these operators imply e.g. that it is not possible to use scalar bilinear operators, unless
non-vanishing angular momenta are introduced. This can however be expected to lead
to poor numerical behaviour; thus, following our earlier studies [88, 89, 92, 91], we will
work with zero-momentum bilinears and combine them suitable to produce the desired
quantum numbers.

Renormalisation conditions will be imposed in the massless theory, in order to ob-
tain a mass-independent scheme by construction. They will furthermore be imposed
on parity-odd four-quark operators, since working in the parity-even sector would en-
tail dealing with the extra mixing due to explicit chiral symmetry breaking with Wilson
fermions, cf. Eq. (8.1.7). In order to obtain non-vanishing SF correlation functions, we
will then need a product of source operators with overall negative parity; taking into
account the above observation about boundary fields, and the need to saturate flavour
indices, the minimal structure involves three boundary bilinear operators and the intro-
duction of an extra, “spectator” flavour (labeled as number 5, keeping with the notation
in Eq. (8.1.2)). We thus end up with correlation functions of the generic form

F±k;s(x0) = 〈Q±k (x)Ss〉 , (8.3.4)

G±k;s(x0) = ηk〈Q±k (x)S ′s〉 , (8.3.5)
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FIGURE 8.1: Feynman diagrams for the four-quark correlation functions
F±
k;s and the boundary-to-boundary correlators f1, k1 at tree level. Eu-

clidean time goes from left to right. The double blob indicates the four-
quark operator insertion, and dashed lines indicate the explicit time-like

link variable involved in boundary-to-boundary quark propagators.

where Ss is one of the five source operators

S1 =W[γ5, γ5, γ5] , (8.3.6)

S2 =
1

6

3∑
k,l,m=1

εklmW[γk, γl, γm] , (8.3.7)

S3 =
1

3

3∑
k=1

W[γ5, γk, γk] , (8.3.8)

S4 =
1

3

3∑
k=1

W[γk, γ5, γk] , (8.3.9)

S5 =
1

3

3∑
k=1

W[γk, γk, γ5] (8.3.10)

with

W[Γ1,Γ2,Γ3] = L−3O′21[Γ1]O′45[Γ2]O53[Γ3] , (8.3.11)

and similarly for S ′s. The constant ηk is a sign that ensures F±k;s(x0) = G±k;s(x0) for all
possible indices; it is easy to check that η2 = −1, ηs6=2 = +1.4 We will also use the
two-point functions of boundary sources

f1 = − 1

2L6
〈O′21[γ5]O12[γ5]〉 , (8.3.12)

k1 = − 1

6L6

3∑
k=1

〈O′21[γk]O12[γk]〉 . (8.3.13)

Finally, we define the ratios

A±k;s,α =
F±1;s(T/2)

f
3
2−α

1 kα1

, (8.3.14)

where α is an arbitrary real parameter. The structure of F±k;s and f1, k1 is illustrated
in Fig. 8.1.

4Since the correlation functions F andG are related by invariance under time reversal, and are thus iden-
tical only after integration over the whole ensemble of gauge fields, computing both of them in a numerical
simulation and averaging the results will allow to reduce statistical noise at negligible computational cost.
From now on, we will proceed by using only F , and leave possible usage of G at the numerical level, or for
cross-checks of results, implicit.
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We then proceed to impose renormalisation conditions at bare coupling g0 and scale
µ = 1/L by generalising the condition introduced in [88, 89] for the renormalisable mul-
tiplicative operators Q±1 : the latter reads

Z±1;s,αA±k;s,α = A±k;s,α

∣∣∣
g2
0=0

, (8.3.15)

while for operators that mix in doublets, we impose5

(
Z±22;s1,s2,α

Z±23;s1,s2,α

Z±32;s1,s2,α
Z±33;s1,s2,α

)( A±2;s1,α
A±2;s2,α

A±3;s1,α
A±3;s2,α

)
=

( A±2;s1,α
A±2;s2,α

A±3;s1,α
A±3;s2,α

)
g2
0=0

, (8.3.16)

and similarly forQ±4,5. The products of boundary-to-boundary correlators in the denomi-
nator of Eq. (8.3.14) cancels the renormalisation of the boundary operators in F±k;s, and
therefore Z±k;s,α only contains anomalous dimensions of four-fermion operators. Fol-
lowing [72, 88, 91], conditions are imposed on renormalisation functions evaluated at
x0 = T/2, and the phase that parameterises spatial boundary conditions on fermion
fields is fixed to θ = 0.5. Together with the L = T geometry of our finite box, this fixes
the renormalisation scheme completely, up to the choice of boundary source, indicated
by the index s, and the parameter α. The latter can in principle take any value, but we
will restrict to the choices α = 0, 1, 3/2.

One still has to check that renormalisation conditions are well-defined at tree-level.
While this is straightforward for Eq. (8.3.15), it is not so for Eq. (8.3.16): it is still possible
that the matrix of ratios A has zero determinant at tree-level, rendering the system of
equations for the matrix of renormalisation constants ill-conditioned. This is indeed the
obvious case for s1 = s2, but the determinant turns out to be zero also for other non-
trivial choices s1 6= s2. In practice, out of the ten possible schemes one is only left with
six, viz.6

(s1, s2) ∈ {(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (3, 5)} . (8.3.17)

It has to be stressed that this property is independent of the choice of θ and α. Thus,
we are left with a total of 15 schemes for Q±1 , and 18 for each of the pairs (Q±2 ,Q±3 ) and
(Q±4 ,Q±5 ).

8.3.1 One-loop results in the SF

Let us now carry out a perturbative computation of the SF renormalisation matrices in-
troduced above, using a lattice regulator. For any of the correlation functions as already
discussed in chapter 6, the perturbative expansion (even in the matrix case) reads

X = X(0) + g2
0

[
X(1) +m(1)

cr

∂X(0)

∂m0

]
+O(g4

0) , (8.3.18)

where X is one of F±k;s(x0), f1, k1, or some combination thereof; where m0 is the bare

quark mass; andm(1)
cr the one-loop coefficient in the perturbative expansion of the critical

mass. The derivative term in the square bracket is needed to set the correlation function
X to zero renormalised quark mass, when every term in the r.h.s. of the equation is
computed at vanishing bare mass. Also in this context, we use the values for the critical

5These renormalisation conditions were first introduced by S. Sint [130].
6Note that schemes obtained by exchanging s1 ↔ s2 are trivially related to each other.
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mass (e.g. see [131]),

m(1)
cr = −0.20255651209CF (csw = 1) ,

m(1)
cr = −0.32571411742CF (csw = 0) ,

(8.3.19)

with CF = (N2 − 1)/(2N), and the (tree-level) value of the Sheikholeslami-Wohlert (SW)
coefficient csw indicating whether the computation is performed with or without an O(a)-
improved action.

The entries of the renormalisation matrix admit a similar expansion,

Z(g0, L/a) = 1 + g2
0Z

(1)(L/a) +O(g4
0) , (8.3.20)

where we have indicated explicitly the dependence of the quantities on the bare coupling
and the lattice spacing-rescaled renormalisation scale aµ = a/L. The explicit expression
of the one-loop order coefficient Z(1) for the multiplicatively renormalisable operators
Q±1 is

Z(1) = −
{
F (1)

F (0)
+
F

(1)
b

F (0)
+m(1)

cr

∂

∂m0
logF (0)

}

+

(
3

2
− α

)f (1)
1

f
(0)
1

+
f

(1)
1;b

f
(0)
1

+m(1)
cr

∂

∂m0
log f

(0)
1


+ α

k(1)
1

k
(0)
1

+
k

(1)
1;b

k
(0)
1

+m(1)
cr

∂

∂m0
log k

(0)
1

 ,
(8.3.21)

while for the entries of each 2× 2 submatrix that renormalises operator pairs one has

Z
(1)
ij = −A(1)

ik

[(
A(0)

)−1
]
kj

, (8.3.22)

with

A(0)
ij =

F
(0)
ij[

f
(0)
1

]3/2−α [
k

(0)
1

]α ,
A(1)
ij =

{[
F

(1)
ij + F

(1)
ij;b +m(1)

cr

∂

∂m0
F

(0)
ij

]

−
(

3

2
− α

)f (1)
1

f
(0)
1

+
f

(1)
1;b

f
(0)
1

+m(1)
cr

∂

∂m0
log f

(0)
1

F (0)
ij

− α

k(1)
1

k
(0)
1

+
k

(1)
1;b

k
(0)
1

+m(1)
cr

∂

∂m0
log k

(0)
1

F (0)
ij

[f (0)
1

]α−3/2 [
k

(0)
1

]−α
.

(8.3.23)

Contributions with the label “b” arise from the boundary terms that are needed in ad-
dition to the SW term in order to achieve full O(a) improvement of the action in the
SF [107]. They are neglected in the unimproved case. We will set them to zero in the im-
proved case as well, since they vanish in the continuum limit and thus will not contribute
to our results for NLO anomalous dimensions.7

7These terms do enter perturbative cutoff effects. Note however that we will not include in our com-
putation the required subtractions of dimension 7 operators to render correlation functions O(a) improved,
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The computation of the r.h.s. of the four-quark operator correlators F±k;s requires the
evaluation of the Feynman diagrams in Figure 8.1 at tree level, and of those in Figures 8.2
and 8.3 at one loop. The one-loop expansion of the boundary-to-boundary correlators f1

is known from [101] and k1 from [89]. Each diagram can be written as a loop sum of a
Dirac trace in time-momentum representation, where the Fourier transform is taken over
space only. The sums have been performed numerically in double precision arithmetics
using a Fortran 90 code, for all even lattice sizes ranging from L/a = 4 to L/a = 48. The
results have been cross-checked against those of an independent C++ code, also employ-
ing double precision arithmetics.

The expected asymptotic expansion for the one-loop (matrix) coefficient of renor-
malisation constants is (operator and scheme indices not explicit), as in the multiplicative
renormalizable case,

Z(1)(L/a) =
∞∑
n=0

( a
L

)n
{rn + sn ln(L/a)} . (8.3.24)

In particular, the coefficient s0 of the log that survives the continuum limit will be the
corresponding entry of the anomalous dimension matrix, while the finite part r0 will
contribute to the one-loop matching coefficients we are interested in. In particular, one
has

[X (1)
O ]SF;lat = r0 , (8.3.25)

which is the required input for the matching condition in Eq. (6.3.15). We thus proceed
as follows:

(i) Compute tree-level and one-loop diagrams for all correlation functions.

(ii) Construct one-loop renormalisation constants using Eq. (8.3.21) and Eq. (8.3.22).

(iii) Fit the results to the ansatz in Eq. (8.3.24) as a function of (a/L), using the known
value of the entries of the leading-order anomalous dimension matrix γ(0) as fixed
parameters, and extract r0.

The description of the procedure employed to extract the finite parts as well as our results
are provided in Appendix F.

8.3.2 NLO SF anomalous dimensions

Having collected [X (1)
O ]SF;lat, [X (1)

O ]cont;lat, γ(1);cont and X (1)
g we have finally been able to

compute the matrix γ(1);SF for both the “+” and the “-” operator basis and for all the 18
schemes presented in Section 8.3. The results are collected in Appendix G.

We have performed two strong consistency checks of our calculation:

• In our one-loop perturbative computation, we have obtained [X (1)
O ]SF;lat for both

csw = 0 and csw = 1 values. The results for [X (1)
O ]cont;lat are known for generic

values of csw. We have thus been able to compute [X (1)
O ]SF;cont for both csw = 0 and

csw = 1 in such a way to check its independence from csw.

• For the “+” operators, we have checked the independence of γ(1);SF from the ref-
erence scheme used (either the RI-MOM or the MS). This is a strong check of the

and therefore the scaling to the continuum limit will be dominated by terms linear in a up to logarithms —
cf. Eq. (8.3.24) below. The missing boundary contributions are actually expected to be subdominant with
respect to the missing counterterms to four-fermion operators.
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FIGURE 8.2: Feynman diagrams of the self-energy type entering the one-
loop computation of F±

k;s.

FIGURE 8.3: Feynman diagrams with gluon exchanges between quark
lines entering the one-loop computation of F±

k;s.

calculations from the literature of the NLO anomalous dimensions γ(1);cont and one-
loop matching coefficients [X (1)

O ]cont;lat in both the RI-MOM and MS scheme.
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The resulting values of γ(1) exhibit a strong scheme dependence. In order to define
a reference scheme for each operator, we have devised a criterion that singles out those
schemes with the smallest NLO corrections: given the matrix

16π2 γ(1);SF (γ(0))−1 , (8.3.26)

we compute the the trace and the determinant of each non-trivial submatrix, and look
for the smallest absolute value of both quantities. Remarkably, in all cases (2-3 and 4-5
operator doublets, both in the Fierz + and − sectors) this is satisfied by the scheme given
by s = 6, α = 3/2.

8.4 Renormalisation group running in perturbation theory

In this section we will discuss the perturbative computation of the RG running factor
Ũ(µ) in Eq. (2.1.20). The main purpose of this exercise is to understand the systematic
of perturbative truncation, both in view of our own non-perturbative computation of the
RG running factor [93] (which involves a matching to NLO perturbation theory around
the electroweak scale), and in order to assess the extensive use of NLO RG running
down to hadronic scales in the phenomenological literature. In view of our upcoming
publication of a non-perturbative determination of the anomalous dimensions for QCD
with Nf = 2, the analysis below will be performed for that case; the qualitative conclu-
sions are independent of the precise value of Nf . The scale will be fixed using the value

Λ
MS;Nf=2
QCD = 310(20) MeV quoted in [132].

At leading order in perturbation theory the running factor is given byULO in Eq. (2.1.13).
Beyond LO, the running factor is given by Eq. (2.1.14), where W (µ) satisfies Eq. (2.1.16).
In the computation of W , the β and the γ functions are known only up to 3 loops and 2
loops, respectively. In order to asses the systematic, we will compute the running factor
for several approximations that will be labeled through a pair of numbers “nγ/nβ” where
nγ is the order used for the γ function while nβ is the order used for the β function. We
will consider the following cases:

(i) “1/1”, i.e. the LO approximation in which W ≡ 1;

(ii) “2/2”, in which both γ and β are taken at NLO;

(iii) “2/3”, in which β is taken at NNLO and γ at NLO;

(iv) “+3/3”, in which β is taken at NNLO and for the NNLO coefficient γ2 we use a
guesstimate given by γ2γ

−1
1 = γ1γ

−1
0 ;

(v) “-3/3”, in which β is taken at the NNLO and for the NNLO coefficient γ2 we use a
guesstimate given by γ2γ

−1
1 = −γ1γ

−1
0 ;

Beyond LO we have first computed the perturbative expansion of the running factor, Eq. (2.1.14)
and Eq. (8.1.11), by including all the Jn’s corresponding to the highest order used in the
combinations of β/γ functions chosen above. The Jn have been computed from Eq. (8.1.12)
and Eq. (8.1.13) setting the unknown coefficients to zero. Namely: J1 in the 2/2 case, J1

and J2 (with γ2 = 0) in the 2/3 case, J1 and J2 with γ2 set to the guesstimates above in
the +3/3 and -3/3 cases. We have compared these results with the numerical solution
of Eq. (2.1.16) in which the perturbative expansions for γ and β at the chosen orders are
plugged in. We have chosen two cases in which perturbation theory seems particularly
ill-behaved, namely the matrix for operators 4 and 5 with both Fierz + and - in the RI-
MOM scheme, and we show the comparison in Fig. 8.4. As one can see, the two methods
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are not in very good agreement in the region of few GeV scales. This is obvious, because
by expanding W in powers of g2 and including only the first/second coefficients J1, J2,
substantial information is lost.

We have then included in the perturbative expansion the next order, computed from
Eq. (8.1.13) and Eq. (8.1.14), setting again the unknown coefficients to zero. Namely: J2

(with b2 = γ2 = 0) in the 2/2 case, J3 (with b3 = γ3 = γ2 = 0) in the 2/3 case, J3

(with b3 = γ3 = 0 and γ2 set to the guesstimates above) in the +3/3 and -3/3 cases.
The comparison, again with the corresponding numerical solution of Eq. (2.1.16) (which
remains unchanged), is shown in Fig. 8.5 and shows a reasonable agreement for the Fierz
+ matrix while still noticeable desagreement for some of the Fierz - matrix elements.

In the the Fierz - case we have thus proceeded by introducing the next order, namely:
J3 (with b2 = γ2 = b3 = γ3 = 0) in the 2/2 case, J4 (with b4 = b3 = γ4 = γ3 = γ2 = 0) in
the 2/3 case, J4 (with b4 = b3 = γ4 = γ3 = 0 and γ2 set to the guesstimates above) in the
+3/3 and -3/3 cases. The comparison, again with the corresponding numerical solution
of Eq. (2.1.16), is shown in Fig. 8.6a. The agreement between the numerical solution
and the perturbative expansion further improves in all cases except for the 55 matrix
element in the ±3/3 cases where the perturbative expansion further moves away from
the numerical solution. From both examples of Fierz ± 4-5 matrix, we understand that
by including more and more orders in the perturbative expansion ofW (µ) Eq. (8.1.11), we
approximate better and better the numerical solution of Eq. (2.1.16) 8, which can thus be
considered the best approximation of the running factor given a fixed order computation
of the β and γ functions.

There is still a subtle technical issue concerning the numerical integration of Eq. (2.1.16)
which needs to be discussed, because it becomes relevant in practice. Since γ and β have
simple expressions in terms of g (µ) rather than in terms of µ, Eq. (2.1.16) is most easily
solved by rewriting it in terms of the derivative with respect to the coupling, viz.

W̃ ′(g) = −W̃ (g)
γ(g)

β(g)
+

γ0

b0g
W̃ (g) , (8.4.1)

where W̃ (g (µ)) ≡ W (µ). While both terms on the right hand side diverge as g → 0, the
divergence cancels in the sum due to Eq. (2.1.17). However, it is not straightforward to
implement this latter initial condition at the level of the numerical solution to Eq. (8.4.1):
a stable numerical solution requires fixing the initial condition Eq. (2.1.17) at an extremely
small value of the coupling, and consequently the use of a sophisticated and computa-
tionally expensive integrator. A simpler solution is to substitute Eq. (2.1.17) by an initial
condition of the form

W̃ (gi) = 1 + g2
i J1 + g4

i J2 + g6
i J3 + g8

i J4 + . . . , (8.4.2)

at some very perturbative coupling gi (but still a significantly larger value than required
by Eq. (2.1.17)), where we include exactly the same coefficients Jn, n = 1, . . . that we use
in the perturbative expansion of the running factor, and which are computed by using
the same amount of perturbative information employed in the ratio γ/β used for the
numerical integration.9 Note that indeed the numerical value of gi needs not be extremely
small for this to make physical sense, e.g. for Nf = 2 (which will be of particular interest
to us) and at the Planck scale one has g 2

MS
(MP ) ≈ 0.221 ↔ αMS

s (MP ) ≈ 0.0176 and
g 2

SF(MP ) differs with respect to g 2
MS

(MP ) only on the third decimal digit.

8Except for the 55 matrix element where, in presence of a non-zero γ2 the expansion looks like an alter-
nating series.

9For Nf = 3 Eq. (8.4.2) is not practical, and Eq. (2.1.17) becomes mandatory, cf. Appendix D.
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In Fig. 8.6b we compare the results for the numerical integration of W (µ) when
matched at gi with the perturbative expansion at the order used in Fig. 8.4 and Fig. 8.5
respectively and the results turn out to be indistiguishable. We have also changed the
value of the coupling chosen for the matching in a broad range of g 2 without observing
any noticeable difference in the solution. These checks prove the stability of the numer-
ical procedure and give us confidence in the corresponding results, which will be used
below to assess the systematic uncertainties. In the following we won’t consider anymore
the perturbative expansion of the running factor except for the 2/2 case where only J1 is
included (we will call this 2/2 at O(g2)), which is the case usually considered in literature,
both for phenomenological application and in lattice computations.

According to the previous discussion, we have chosen to quote as our best estimate
of the running factors the 2/3 results (which encode the maximum of information at our
disposal for the β and γ functions) obtained through numerical integration. They are
presented in Tab. 8.9 at the scale µ = 3 GeV. In alternative we quote also the results
for the 2/2 case perturbatively expanded at O(g2) (i.e. including J1 only), which are the
results usually considered in literature. We present them in Tab. 8.10 again at the scale
µ = 3 GeV.

The systematic uncertainties in Tab. 8.9 (respectively Tab. 8.10) are estimated by con-
sidering the maximal deviation of the 2/3 case (respectively the 2/2, O(g2) case) from the
other 3 (respectively 4) numerical cases.

The results for the LO running factor ULO(µ) Eq. (2.1.13) and the numerically inte-
grated Ũ(µ) running factors beyond LO (ii)-(v) described above are illustrated in Figs. (8.15),
(8.16), (8.17), (8.18), (8.19), (8.20) together with the 2/2 O(g2) perturbative expansion,
for the four doublets of operators and three different schemes (MS, RI and a chosen SF
scheme).

Some important observations are:

• The convergence of LO respect to NLO and NNLO seems to be slow in all the
schemes under investigation for almost all the operators. In particular, for the ma-
trix elements involving tensor current (4-5 sub-matrices) the convergence is very
poor. Note that the LO anomalous dimensions for these submatrices are already
very large compared with the others.

• the 2/3 numerical running factors have always symmetric systematic errors, be-
cause most of the systematics is due to the inclusion of the guesstimate for γ2 with
+ and - sign, and these effects turn out to be always symmetric with respect to the
2/3 (and also 2/2) cases.

• the 2/2 O(g2) running factors are, for several matrix elements, quite far from the
2/3 (and also the 2/2) numerical ones. Possibly even further away than the ±3/3
and have thus very large, asymmetric errors.

• For both 4-5 sub-matrices (Fierz + and -) the ratio γ1γ
−1
0 turns out to have large

matrix elements. As a consequence, our plausibility argument for the guesstimates
γ2γ
−1
1 = ±γ1γ

−1
0 leads to large systematic uncertainties. In particular, for the 54

matrix element the error is huge in the RI scheme and large also in the MS and
SF schemes, already for the 2/3 numerical solution (for the 2/2 O(g2) perturbative
expansion the situation is much worse). This obviously poses serious doubts on all
the computations of ∆F = 2 matrix elements beyond the Standard Model which
use perturbative running (in all cases through the 2/2 O(g2) expansion) down to
scales of 3 GeV or less.
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8.5 One-loop cutoff effects in the step scaling function

As an outcome of the perturbative calculation carried out in the previous section ([94])
we can compute the O(ag2) effects on the SSFs10. Following the same conventions used
in [101], at one-loop order in perturbation theory the lattice (matrix) SSFs read

ΣO(g2, a/L) = 1 + k(L/a)g2 +O(g2) (8.5.1)

with

k(L/a) = Z(1)(2L/a)− Z(1)(L/a) (8.5.2)

where k and Z are matrices.
In order to see the relative deviation from the perturbative prediction, we define

k(∞) = γ(0) log(2). (8.5.3)

The 1-loop cutoff effect for the SSFs is then given by

δk(L/a) = k(L/a)[k(∞)]−1 − 1. (8.5.4)

Numerical values and plots are reported in Appendix A. The chosen schemeα = 3/2,(s1, s2) =
(4, 5) is plotted with a blue “triangle” marker).

8.6 Perturbative expansion of step-scaling functions

Step-scaling functions for four-quark operators are given by

σO(g 2(µ)) = U(µ/2, µ) = T exp

{∫ g (µ/2)

g (µ)
dg

1

β(g)
γ(g)

}
, (8.6.1)

Taking advantage of the factorisation of LO and NLO, the SSFs can be rewritten as

σO(g 2(µ)) = U(µ/2, µ) ≡ [W (µ/2)]−1 ULO(µ/2, µ)W (µ) . (8.6.2)

Furthermore, the step-scaling function σ for the gauge coupling, is as usual defined as

− ln 2 =

∫ √σ(u)

√
u

dg

β(g)
. (8.6.3)

Defining the perturbative expansions, up to two loops, as

σ(u) = u(1 + s1u+ s2u
2) , (8.6.4)

σO(u) = 1 + r1u+ r2u
2 , (8.6.5)

one finds for the coefficients of the coupling step-scaling function the expressions

s1 = 2b0 ln 2 , (8.6.6)

s2 = 2b1 ln 2 + 4b20 ln2 2 . (8.6.7)

10While O(a2) scaling toward the continuum is guaranteed for the fermionic and gauge actions by the
presence of bulk and boundary counter terms, there is a remainderO(a) contribution coming from the four-
fermions correlation functions whose counterterm have never been computed.
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u σ
α=3/2,(3,5),+
(23)

(u) σ
α=3/2,(3,5),−
(23)

(u)

0.9793
(

1.0112(71) 0.067(21)
0.0095(40) 0.9227(100)

) (
1.0003(74) −0.074(11)
−0.0094(41) 0.918(11)

)
1.1814

(
1.0167(90) 0.054(23)
0.0073(44) 0.919(10)

) (
1.0098(83) −0.059(11)
−0.0055(40) 0.918(12)

)
1.5078

(
1.016(12) 0.065(30)
0.0116(57) 0.882(14)

) (
1.007(12) −0.089(17)
−0.0106(60) 0.883(18)

)
2.0142

(
1.0061(100) 0.101(33)
0.0186(55) 0.829(11)

) (
0.9952(85) −0.117(11)
−0.0213(55) 0.835(14)

)
2.4792

(
0.988(20) 0.087(42)
0.0171(76) 0.794(22)

) (
0.986(14) −0.095(14)
−0.0200(75) 0.812(21)

)
3.3340

(
0.990(30) 0.138(55)
0.049(11) 0.691(20)

) (
0.950(19) −0.141(21)
−0.0500(95) 0.716(22)

)

TABLE 8.1: Continuum SSFs for Op 2, 3 in the specific renormalization
scheme (s1, s2) = (3, 5).

Thus the three pieces on r.h.s. of Eq. (8.6.2) can be expanded

ULO(µ/2, /mu) = exp

{
γ(0)

2b0
ln

[
σ(u)

u

]}

≈ 1 + uγ(0) ln 2 + u2

[(
b0 ln 2 +

b1
b0

)
γ(0) ln 2 +

ln2 2

2

(
γ(0)

)2
]
,

(8.6.8)

and ,

W (µ) ≈ 1 + uJ + cu2 + . . . , (8.6.9)

[W (µ/2)]−1 ≈ 1− σ(u)J ≈ 1− uJ − u2s1J + u2J2 − cu2 + . . . (8.6.10)

In these latter expressions, cu2 is the O(u2) correction to Eq. (8.1.11), while the other
u2 terms in [W (µ/2)]−1 come from the power-series expansion of σ(u) and the inverse
matrix. By putting everything together one finally finds

r1 = γ(0) ln 2 , (8.6.11)

r2 = γ(1) ln 2 + b0γ
(0) ln2 2 +

1

2

(
γ(0)

)2
ln2 2 , (8.6.12)

where we have used Eq. (8.1.12) to simplify the term [γ(0), J ]. We thus see explicitly that
O(u2) corrections to W do not contribute to r2, consistently with the fact that the O(u)
correction already contains all NLO contributions. Remarkably, the above expression
is the same one found for operators that renormalise multiplicatively, cf. e.g. Eq. (6.6)
in [89].

8.7 Non-perturbative results

We use here the same Nf = 2 gauge ensembles introduced in the context of the renormal-
ization of the tensor currents in chapter 6.11 Concerning the statistical analysis, since it
involves the computation several correlation functions which are then combined together
in order to extract the (matrix) renormalization coefficient, a robust analysis that takes
into account the autocorrelations is crucial. In order to achieve that, we proceeded with a

11As in [91], for u = 1.578 we neglected the different perturbative orders of ct, keeping only the data with
highest order. We observed that this approximation does not have any relevant impact in our analysis with
respect to our accuracy.
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block bootstrap analysis and the Gamma Method [112] choosing the same bin-length ( or
window size in the case of the latter ) for all the matrix elements, choosed conservatively
to be the largest among them. We have found a very good agreement between the two
procedures. An interesting proof of the robustness of our technique to estimate the error
is provided by the agreement of the bin-length estimated starting from the integrate au-
tocorrelation time τint and one given from blocking. Using Eq. (8.3.16) we compute the
(matrix) renormalization constants, Z(g0, a/L) and its double-sizeZ(g0, a/2L), numerical
values are collected in Tab. 8.7, 8.8.

We define the lattice SSFs as

ΣO(g0, a/L) = [Z(g0, a/2L)][Z(g0, a/L)]−1 , (8.7.1)

Notice that in Eq. (8.7.1) we have chosen to multiply with Z−1 to the right. This
imply the ordering which enter the definition of the evolution coefficient (as we will see).

8.7.1 Lattice computation of step-scaling functions

In the lattice setup employed for this work the O(a) counter terms for the four-fermion
operators have not been included. A preliminary study [133, 134] on the O(1/m) coun-
terterms for the static four-fermion operators entering in HQET computations, which
share a similar structure to the ones required for achieving O(a) improvement, reason-
ably suggests that≥ 10 improvement parameters would need to be tuned. A possible so-
lution, which simplify enormously the task is given by the Chirally Rotated Schrödinger
Function (χSF). It has been proved [135], that the employment of this slightly different
renormalization scheme 12 provides an automatic O(a)-improvement. Preliminary study
in this directions are ongoing [136], but out of the scope of this thesis.

The only linear cutoff effects which are removed from Σ(u, a/L) are those cancelled
by the non-perturbative improvement of the fermion action, and by the boundary im-
provements as discussed above.
We therefore expect linear cut-off effects to be still present and correspondingly we fit to
the ansatz

[ΣO(u, a/L)]ij = [σO]ij(u) + [ρO]ij(u)(a/L) , (8.7.2)

where the subscripts i, j denote elements of the matrices ΣO, the continuum SSF σO and
slope ρO. In practice, to remove part of the linear cutoff effects at O(ag2) we define a
”subtracted” matrix SSF as

Σ̃O(u, a/L) = [ΣO(u, a/L)][1 + u log(2)δk(a/L)γ(0)]−1
∣∣∣
u=g2

SF(L)
(8.7.3)

the details about the definition of the relative 1-loop cutoff effects [δk(a/L)]ij are pro-
vided in section 8.5 and numerical values in Appendix A. In order to have a good control
about the continuum σO(u) we performed the extrapolation on both the ΣO and Σ̃O,
leading to a good agreement within one standard deviation for all the matrix elements
except for the ones with a very large LO anomalous dimensions (e.g. O5,4). We have
checked that, in most case, in particular at large coupling, linear fits to all three data-
points and weighted averages of the two results from the finest lattices lead to contin-
uum limit estimates compatible within one standard deviation. However this is not true
at the smallest coupling where the statistical error is smaller. Conservatively we then
quote, as our best results, those obtained from linear extrapolation involving all three
data-points of the ”subtracted” SSF with a systematic error added in quadrature to the

12Which require completely different correlation functions respect to the ones in the ”standard” SF
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u σ
α=3/2,(3,5),+
(45)

(u) σ
α=3/2,(3,5),−
(45)

(u)

0.9793
(

0.9554(90) −0.00212(78)
−0.256(41) 1.0479(76)

) (
0.8870(94) −0.00092(79)
0.093(37) 1.0040(66)

)
1.1814

(
0.957(12) −0.0005(10)
−0.195(56) 1.076(11)

) (
0.883(11) −0.0024(10)
0.009(46) 1.0012(95)

)
1.5078

(
0.930(16) −0.0016(15)
−0.252(76) 1.089(16)

) (
0.833(18) −0.0026(13)
0.022(62) 0.994(10)

)
2.0142

(
0.896(14) −0.0034(11)
−0.355(67) 1.105(12)

) (
0.763(11) −0.0021(12)
0.046(55) 0.988(12)

)
2.4792

(
0.874(18) −0.0020(14)
−0.288(82) 1.136(17)

) (
0.718(19) −0.0039(18)
−0.066(67) 0.959(17)

)
3.3340

(
0.812(25) −0.0098(32)
−0.52(13) 1.204(36)

) (
0.587(20) 0.0012(23)
−0.056(92) 0.948(22)

)

TABLE 8.2: Continuum SSFs for Op 4, 5 in the specific renormalization
scheme (s1, s2) = (3, 5).

one from the fit given from the discrepancy of the extrapolated values between the raw
data and the ”subtracted” ones. The results of continuum extrapolation of ΣO can be
found in Tab. 8.1, 8.2, and plots for a specific renormalization scheme are provided in in
Fig. (8.11,8.12,8.13,8.14).

8.7.2 Non-perturbative running in the continuum

In order to compute the RG running of the operators in the continuum limit, the contin-
uum SSFs have to be fitted to the functional form showed below in Appendix 8.6.
We performed the fit with different Ansatz, considering different orders in the polyno-
mial expansion and keeping different combination of parameter fixed to their perturba-
tive values,

[σO(u)]ij = δij + [r1]O,iju+ [r2]O,iju
2 + [r3]O,iju

3 +O(u4) , (8.7.4)

but we quote as best Ansatz the one at O(u3) with matrices of parameters r1 and r2 fixed
to their perturbative values and r3 left as free parameters. As a check we found that fitted
values of r2 turned out to be close to the perturbative prediction of Eq. (8.6.12).
An important remark here is that since the deviations from LO are large for some matrix
elements (in particular σ+

54) the knowledge of the NLO anomalous dimension γ
(1)
SF from

perturbative calculations is necessary in order to have a good convergence of the fit since
it enters in the definition of r2. The plots of the SSFs for an example scheme are collected
in Fig. (8.7,8.8). In practice, as stressed several times in this thesis, the SSFs allow to access
to RG evolution, in fact, using Eq. (8.6.2) we can compute the evolution by taking product
of SSFs as

U(µhad, 2
nµhad) = σO(u0)σO(u1) · · ·σO(un−1) , (8.7.5)

with

σ(u0) = 4.61 = u(µhad) , (8.7.6)
uk = σ(uk−1) . (8.7.7)
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The running factor (expressed in terms of renormalization constants) from the hadronic
scale µhad to a formal infinite scale then is given by

Ũ(µhad) =

[
g 2(µpt)

4π

]− γ(0)

2b0

W (µpt) [U(µhad, µpt)]
−1 , (8.7.8)

It is easy to see from the above equation that µpt plays no rôle to the formal definition of
the running once the scale is taken to be large enough to apply safely PT. The effect of
varying the perturbative matching point in a specific scheme is described in Tab. (8.3,8.4).
In the present work, as a consequence of the recursive SSFs procedure, the perturbative
matching point is defined to be µpt = 2nµhad. In the current work, we use n = 8 which
is the maximum possible without extrapolating from our non-perturbative data. Playing
the reverse game, i.e. keeping µpt = 28µhad and changing the value of µhad in Eq. (8.7.8)
yields to Fig. (8.9, 8.10). In Tables 8.3, 8.4 is showed the dependence on the perturbative
matching point in the running from µhad. We observe that for n > 5 the value stabilises
and the PT systematics became negligible. In implementing Eq. (8.7.8), we used the nu-
merical integration as described in section 8.4.

8.7.3 Hadronic Matching

Having computed the universal NLO evolution factors defined through Eq. (8.7.8), which
provide the RG-running from the low energy matching scale µhad to a formally infinite
one, we proceeded to establish the connection between bare lattice operators and their
RGI counterparts. As showed in previous sections, ZRGI factors do not depend on any
renormalisation scale and carries a dependence upon the renormalization condition only
via cutoff effects.
In order to obtain Z(g0, aµhad) we computed Z(g0, aµ) at three values of the lattice spac-
ing, namely β = {5.20, 5.29, 5.40}, which belong to range of inverse couplings commonly
used for simulations of two-flavours QCD in physically large volumes. The numerical
values are listed in Tab. (8.7,8.8). In order to interpolate u(µhad) = 4.61 we performed an
interpolation (whose parameters are available upon request) with a global fit given by

[Zhad(β, u)]ij =

Nβ∑
n=0

a
(n)
i,j [β − 5, 20]n +

Nu∑
m=1

b
(m)
i,j [u]m +

Nlog∑
k=1

c
(k)
i,j [log(u)]k + mixed terms .

(8.7.9)

In the current case, given the limited statistics and quality of the hadronic renormaliza-
tion constant we found as the following ansatz to describe better our data

a
(0)
i,j + a

(1)
i,j [β − 5.20] + a

(2)
i,j [β − 5.20]2

+ b
(1)
i,j u+ c

(1)
i,j log(u) + [β − 5.20](d

(1)
i,j u+ e

(1)
i,j log(u)) + d

(2)
i,j u

2[β − 5.20]2 . (8.7.10)
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n Ũ+
23(2nµhad) Ũ−23(2nµhad)

0
(

1.215505 −0.363611
−0.077786 0.472123

) (
1.132141 −0.607507
0.063161 0.431281

)
1

(
1.2016(190) −0.1649(270)
−0.0532(22) 0.4562(80)

) (
1.1837(126) −0.6972(172)
0.0484(24) 0.4185(67)

)
2

(
1.2022(283) −0.0773(425)
−0.0476(29) 0.4580(112)

) (
1.2057(186) −0.7419(277)
0.0452(32) 0.4200(94)

)
3

(
1.2030(336) −0.0212(499)
−0.0453(32) 0.4595(129)

) (
1.2177(221) −0.7693(344)
0.0440(36) 0.4213(110)

)
4

(
1.2035(369) 0.0212(559)
−0.0441(34) 0.4599(138)

) (
1.2250(243) −0.7886(387)
0.0433(38) 0.4216(118)

)
5

(
1.2035(395) 0.0542(609)
−0.0434(35) 0.4595(144)

) (
1.2298(258) −0.8027(422)
0.0428(40) 0.4212(124)

)
6

(
1.2033(412) 0.0808(644)
−0.0429(35) 0.4588(147)

) (
1.2333(268) −0.8135(447)
0.0424(41) 0.4206(127)

)
7

(
1.2031(426) 0.1022(674)
−0.0425(36) 0.4580(150)

) (
1.2358(276) −0.8220(468)
0.0422(41) 0.4200(130)

)
8

(
1.2028(436) 0.1202(692)
−0.0423(36) 0.4572(152)

) (
1.2377(281) −0.8289(486)
0.0420(42) 0.4192(131)

)

TABLE 8.3: Dependence on the perturbative matching scale for Op 2, 3.

n Ũ+
45(2nµhad) Ũ−45(2nµhad)

0
(

0.522119 0.028246
2.648160 2.098693

) (
0.492746 −0.032468
−2.607554 0.771786

)
1

(
0.5417(73) 0.0242(7)

2.3620(1360) 2.1229(300)

) (
0.4531(96) −0.0304(5)
−2.2066(850) 0.8223(81)

)
2

(
0.5537(106) 0.0232(9)
2.2306(2151) 2.1222(446)

) (
0.4474(134) −0.0305(7)
−2.0604(1298) 0.8502(119)

)
3

(
0.5602(126) 0.0228(10)
2.1242(2675) 2.1205(534)

) (
0.4443(159) −0.0307(8)
−1.9636(1558) 0.8670(142)

)
4

(
0.5636(136) 0.0226(11)
2.0255(3040) 2.1214(585)

) (
0.4411(172) −0.0309(8)
−1.8862(1750) 0.8779(154)

)
5

(
0.5652(143) 0.0225(11)
1.9411(3365) 2.1237(619)

) (
0.4379(181) −0.0311(8)
−1.8213(1884) 0.8854(163)

)
6

(
0.5656(150) 0.0225(11)
1.8581(3668) 2.1266(643)

) (
0.4350(186) −0.0312(9)
−1.7669(2009) 0.8905(168)

)
7

(
0.5659(154) 0.0224(11)
1.7872(3884) 2.1292(663)

) (
0.4322(191) −0.0314(9)
−1.7212(2105) 0.8947(174)

)
8

(
0.5657(158) 0.0224(11)
1.7245(4070) 2.1317(679)

) (
0.4297(195) −0.0315(9)
−1.6825(2182) 0.8976(176)

)

TABLE 8.4: Dependence on the perturbative matching scale for Op 4, 5.
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Ũ
(µ

)

1000 2000 3000 4000 5000
0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

µ [MeV]

Ũ
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FIGURE 8.4: RG running matrix for the Op 4, 5 in the RI scheme. Top
half (a): Fierz +. Bottom half (b): Fierz −. The four cases nγ/nβ =
{2/2, 2/3,+3/3,−3/3} are plotted respectively in red, black, magenta and
blue. Dashed lines correspond to the numerical integration of W (µ). Solid
lines correspond to the perturbative expansion up to O(g2) (i.e. J1) for the

2/2 case and up to O(g4) (i.e. J2) for the 2/3, +3/3 and −3/3 cases.
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FIGURE 8.5: RG running matrix for the Op 4, 5 in the RI scheme. Top
half (a): Fierz +. Bottom half (b): Fierz −. The four cases nγ/nβ =
{2/2, 2/3,+3/3,−3/3} are plotted respectively in red, black, magenta and
blue. Dashed lines correspond to the numerical integration of W (µ). Solid
lines correspond to the perturbative expansion up to O(g4) (i.e. J2) for the

2/2 case and up to O(g6) (i.e. J3) for the 2/3, +3/3 and −3/3 cases.
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Ũ
(µ

)

1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

µ [MeV]

Ũ
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FIGURE 8.6: RG running matrix for the Op 4, 5 Fierz − in the RI scheme.
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FIGURE 8.7: Continuum matrix SSFs for Op 2, 3 top, 4, 5 bottom with fierz
”+”. LO approximationO(u) is represented by the dotted black line, while
NLO O(u2) is given by the dashed blue line. Red line is the fit O(u3) with

a correspondent error band.
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FIGURE 8.8: Continuum matrix SSFs for Op 2, 3 top, 4, 5 bottom with fierz
”-”. LO approximation O(u) is represented by the dotted black line, while
NLO O(u2) is given by the dashed blue line. Red line is the fit O(u3) with

a correspondent error band.
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FIGURE 8.9: Non-perturbative running of Op 2, 3 (Op 4, 5) on the top
(bottom) with fierz ”+”. Results are compared with the perturbative ones
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−0.0277(10) 0.6420(16)

) (
1.0040(21) −0.0568(45)
−0.0026(14) 0.9215(28)

)
10.05755 0.131069 12

(
1.2029(14) 0.2361(27)
0.04650(80) 1.4813(25)

) (
0.8418(32) −0.1770(34)
−0.0302(13) 0.6284(34)

) (
1.0044(42) −0.0633(57)
−0.0070(18) 0.9239(56)

)

1.1814
8.50000 0.132509 6

(
1.2763(15) 0.2281(25)
0.06654(82) 1.5057(24)

) (
0.8000(23) −0.1615(34)
−0.0323(13) 0.6079(25)

) (
1.0102(34) −0.0607(59)
−0.0008(18) 0.9078(45)

)
8.72230 0.132291 8

(
1.2627(26) 0.2609(42)
0.0644(13) 1.5455(46)

) (
0.8110(16) −0.1758(23)
−0.03383(87) 0.5988(18)

) (
1.0127(28) −0.0600(45)
−0.0042(14) 0.9166(38)

)
8.99366 0.131975 12

(
1.2437(17) 0.2982(31)
0.06091(98) 1.5937(30)

) (
0.8219(26) −0.1912(22)
−0.03184(97) 0.5797(28)

) (
1.0107(35) −0.0597(44)
−0.0043(14) 0.9145(48)

)

1.5078
7.54200 0.133705 6

(
1.3425(17) 0.2977(28)
0.08950(82) 1.6457(28)

) (
0.7646(17) −0.1822(17)
−0.03943(92) 0.5461(17)

) (
1.0102(25) −0.0723(36)
−0.0040(13) 0.8869(30)

)
7.72060 0.133497 8

(
1.3295(34) 0.3403(68)
0.0886(21) 1.7028(62)

) (
0.7765(30) −0.2011(34)
−0.0405(14) 0.5319(30)

) (
1.0143(49) −0.0787(71)
−0.0067(21) 0.8915(64)

)
8.02599 0.133063 12

(
1.3040(46) 0.3987(88)
0.0858(26) 1.7652(88)

) (
0.7873(35) −0.2226(47)
−0.0406(17) 0.5114(36)

) (
1.0076(57) −0.0792(98)
−0.0089(27) 0.8864(79)

)

2.0142
6.60850 0.135260 6

(
1.4601(24) 0.4226(35)
0.1357(12) 1.8967(42)

) (
0.7107(13) −0.2099(13)
−0.04891(53) 0.4548(13)

) (
1.0092(24) −0.0978(33)
−0.00972(94) 0.8419(29)

)
6.82170 0.134891 8

(
1.4195(56) 0.4610(75)
0.1223(30) 1.9437(87)

) (
0.7288(21) −0.2327(21)
−0.0515(12) 0.4451(16)

) (
1.0060(46) −0.1166(59)
−0.0187(21) 0.8414(49)

)
7.09300 0.134432 12

(
1.3903(33) 0.5490(66)
0.1259(24) 2.0377(67)

) (
0.7451(24) −0.2508(24)
−0.0502(13) 0.4277(25)

) (
1.0042(38) −0.1019(61)
−0.0160(19) 0.8436(53)

)

2.4792
6.13300 0.136110 6

(
1.5594(39) 0.5362(61)
0.1815(21) 2.1251(69)

) (
0.6741(37) −0.2273(29)
−0.0565(18) 0.3925(32)

) (
1.0097(68) −0.1217(65)
−0.0169(28) 0.8037(75)

)
6.32290 0.135767 8

(
1.5131(30) 0.6039(49)
0.1678(21) 2.2016(54)

) (
0.6854(38) −0.2428(24)
−0.0545(17) 0.3758(34)

) (
0.9962(57) −0.1208(70)
−0.0194(26) 0.7946(73)

)
6.63164 0.135227 12

(
1.4544(40) 0.6853(76)
0.1586(30) 2.2771(86)

) (
0.7177(41) −0.2635(17)
−0.0553(16) 0.3752(31)

) (
1.0019(64) −0.1080(61)
−0.0208(26) 0.8163(78)

)

3.3340
5.62150 0.136665 6

(
1.7596(65) 0.7674(91)
0.2862(43) 2.597(12)

) (
0.6020(53) −0.2474(28)
−0.0741(28) 0.2977(42)

) (
0.9882(98) −0.1803(75)
−0.0450(42) 0.716(11)

)
5.80970 0.136608 8

(
1.6746(64) 0.850(14)
0.2609(51) 2.664(15)

) (
0.6190(48) −0.2516(46)
−0.0754(16) 0.2997(28)

) (
0.9710(78) −0.145(12)
−0.0479(26) 0.7344(78)

)
6.11816 0.136139 12

(
1.5789(79) 0.924(16)
0.2346(74) 2.710(18)

) (
0.6588(47) −0.2865(40)
−0.0755(18) 0.2924(23)

) (
0.9733(74) −0.168(10)
−0.0504(32) 0.7229(72)

)

TABLE 8.5: Renormalization constants and lattice SSFs for Op 2, 3 for both
fierz ”+,-” in the renormalization scheme α = 3/2, (s1, s2) = (3, 5).
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ḡ2SF (L) β kcr L/a
[
Z
α=3/2,(3,5),+
(45)

(g0, a/L)
]−1

Z
α=3/2,(3,5),+
(45)

(g0, a/2L) Σ
α=3/2,(3,5),+
(45)

(g0, a/L)

0.9793
9.50000 0.131532 6

(
1.3013(20) 0.00768(15)
0.8563(75) 1.0872(15)

) (
0.7328(14) −0.00488(16)
−0.7433(64) 0.9690(19)

) (
0.9495(23) 0.00031(20)
−0.138(10) 1.0479(25)

)
9.73410 0.131305 8

(
1.3213(18) 0.00683(18)
0.8960(86) 1.0678(16)

) (
0.7228(17) −0.00473(36)
−0.789(14) 0.9851(20)

) (
0.9508(26) −0.00011(41)
−0.160(20) 1.0465(27)

)
10.05755 0.131069 12

(
1.3389(19) 0.00600(18)
0.9538(82) 1.0363(15)

) (
0.7180(25) −0.00528(31)
−0.884(11) 1.0188(35)

) (
0.9562(38) −0.00115(35)
−0.211(17) 1.0505(39)

)

1.1814
8.50000 0.132509 6

(
1.3671(20) 0.00986(18)
1.0429(87) 1.1019(15)

) (
0.6919(27) −0.00566(47)
−0.845(18) 0.9711(45)

) (
0.9400(41) 0.00059(53)
−0.142(27) 1.0618(50)

)
8.72230 0.132291 8

(
1.3865(33) 0.00919(29)
1.103(12) 1.0754(24)

) (
0.6906(14) −0.00607(26)
−0.9209(87) 1.0022(20)

) (
0.9509(30) −0.00019(36)
−0.171(18) 1.0694(35)

)
8.99366 0.131975 12

(
1.4106(22) 0.00796(22)
1.1609(94) 1.0381(17)

) (
0.6780(32) −0.00536(40)
−0.984(12) 1.0382(43)

) (
0.9501(47) −0.00017(40)
−0.182(20) 1.0700(48)

)

1.5078
7.54200 0.133705 6

(
1.4600(23) 0.01299(19)
1.2985(86) 1.1144(18)

) (
0.6422(24) −0.00750(31)
−0.998(10) 0.9825(37)

) (
0.9278(37) −0.00002(38)
−0.180(18) 1.0819(43)

)
7.72060 0.133497 8

(
1.4907(51) 0.01228(49)
1.381(20) 1.0858(37)

) (
0.6360(43) −0.00776(54)
−1.081(15) 1.0163(55)

) (
0.9372(68) −0.00064(61)
−0.208(29) 1.0904(70)

)
8.02599 0.133063 12

(
1.5172(63) 0.01140(51)
1.471(23) 1.0442(45)

) (
0.6214(33) −0.00777(69)
−1.175(18) 1.0523(64)

) (
0.9308(66) −0.00102(78)
−0.236(36) 1.0849(80)

)

2.0142
6.60850 0.135260 6

(
1.6235(31) 0.01888(23)
1.7229(97) 1.1352(20)

) (
0.5644(17) −0.01041(21)
−1.2111(59) 1.0006(32)

) (
0.8983(32) −0.00114(27)
−0.242(12) 1.1131(42)

)
6.82170 0.134891 8

(
1.6431(61) 0.01625(58)
1.743(23) 1.0896(38)

) (
0.5624(22) −0.01143(44)
−1.324(11) 1.0439(36)

) (
0.9044(48) −0.00330(56)
−0.355(27) 1.1162(53)

)
7.09300 0.134432 12

(
1.6778(56) 0.01590(50)
1.890(18) 1.0359(35)

) (
0.5494(19) −0.01069(34)
−1.4154(83) 1.0946(36)

) (
0.9016(40) −0.00233(44)
−0.306(22) 1.1116(51)

)

2.4792
6.13300 0.136110 6

(
1.7653(57) 0.02424(41)
2.075(17) 1.1435(34)

) (
0.5112(34) −0.01334(62)
−1.380(16) 1.0334(63)

) (
0.8747(60) −0.00287(73)
−0.294(27) 1.1484(75)

)
6.32290 0.135767 8

(
1.7950(40) 0.02187(39)
2.133(13) 1.0929(23)

) (
0.4950(39) −0.01251(59)
−1.452(15) 1.0690(87)

) (
0.8621(73) −0.00284(67)
−0.326(28) 1.1366(96)

)
6.63164 0.135227 12

(
1.8152(59) 0.01965(57)
2.224(18) 1.0303(33)

) (
0.5009(24) −0.01228(34)
−1.5776(83) 1.1426(48)

) (
0.8820(52) −0.00283(43)
−0.323(21) 1.1463(64)

)

3.3340
5.62150 0.136665 6

(
2.0537(100) 0.03521(64)
2.720(21) 1.1637(50)

) (
0.4202(72) −0.0213(15)
−1.662(33) 1.079(15)

) (
0.805(12) −0.0099(15)
−0.479(40) 1.196(17)

)
5.80970 0.136608 8

(
2.0571(90) 0.03204(84)
2.758(27) 1.0912(47)

) (
0.4272(61) −0.0214(11)
−1.770(29) 1.153(14)

) (
0.819(11) −0.0097(11)
−0.458(36) 1.202(15)

)
6.11816 0.136139 12

(
2.052(14) 0.0275(12)
2.771(37) 1.0145(70)

) (
0.4279(39) −0.0219(13)
−1.950(28) 1.241(14)

) (
0.8171(75) −0.0106(13)
−0.563(41) 1.206(16)

)

ḡ2SF (L) β kcr L/a
[
Z
α=3/2,(3,5),−
(45)

(g0, a/L)
]−1

Z
α=3/2,(3,5),−
(45)

(g0, a/2L) Σ
α=3/2,(3,5),−
(45)

(g0, a/L)

0.9793
9.50000 0.131532 6

(
1.5644(33) −0.00363(17)
−0.5050(81) 1.1866(11)

) (
0.5723(14) −0.00084(12)
0.2759(46) 0.83999(93)

) (
0.8957(29) −0.00308(18)
0.0073(97) 0.9956(15)

)
9.73410 0.131305 8

(
1.6118(35) −0.00099(22)
−0.5070(92) 1.1835(11)

) (
0.5548(19) −0.00178(28)
0.280(11) 0.8424(21)

) (
0.8952(37) −0.00267(36)
0.023(19) 0.9967(26)

)
10.05755 0.131069 12

(
1.6685(36) 0.00201(20)
−0.5117(99) 1.17541(97)

) (
0.5338(26) −0.00232(23)
0.2988(79) 0.8526(16)

) (
0.8920(47) −0.00166(30)
0.062(15) 1.0027(21)

)

1.1814
8.50000 0.132509 6

(
1.7063(38) −0.00486(20)
−0.6226(89) 1.2260(11)

) (
0.5133(25) −0.00119(31)
0.291(11) 0.8139(28)

) (
0.8766(49) −0.00395(40)
−0.009(19) 0.9964(36)

)
8.72230 0.132291 8

(
1.7642(57) −0.00233(32)
−0.643(15) 1.2165(17)

) (
0.4994(21) −0.00162(21)
0.3023(76) 0.8242(11)

) (
0.8821(48) −0.00313(29)
0.004(16) 1.0019(21)

)
8.99366 0.131975 12

(
1.8399(44) 0.00194(25)
−0.636(12) 1.2090(10)

) (
0.4773(24) −0.00316(25)
0.2918(91) 0.8278(24)

) (
0.8801(49) −0.00288(33)
0.010(18) 1.0014(30)

)

1.5078
7.54200 0.133705 6

(
1.9239(42) −0.00667(20)
−0.7804(88) 1.2815(13)

) (
0.4388(22) −0.00085(24)
0.3045(66) 0.7780(16)

) (
0.8450(45) −0.00400(33)
−0.021(13) 0.9950(22)

)
7.72060 0.133497 8

(
2.0113(90) −0.00333(55)
−0.809(22) 1.2730(25)

) (
0.4203(35) −0.00157(36)
0.3177(100) 0.7884(38)

) (
0.8470(77) −0.00340(53)
−0.000(25) 1.0026(53)

)
8.02599 0.133063 12

(
2.112(14) 0.00116(67)
−0.844(29) 1.2565(27)

) (
0.3959(38) −0.00270(40)
0.323(12) 0.7938(21)

) (
0.8380(97) −0.00291(53)
0.013(30) 0.9978(32)

)

2.0142
6.60850 0.135260 6

(
2.3354(67) −0.01089(30)
−1.059(11) 1.3788(19)

) (
0.3342(11) −0.00052(14)
0.3116(33) 0.7219(12)

) (
0.7808(38) −0.00436(22)
−0.037(10) 0.9920(22)

)
6.82170 0.134891 8

(
2.405(15) −0.00394(70)
−1.025(27) 1.3541(36)

) (
0.3200(15) −0.00089(22)
0.3311(50) 0.7392(20)

) (
0.7702(60) −0.00249(38)
0.039(19) 0.9996(39)

)
7.09300 0.134432 12

(
2.570(11) 0.00073(73)
−1.111(22) 1.3266(27)

) (
0.3004(15) −0.00244(21)
0.3275(48) 0.7489(18)

) (
0.7751(49) −0.00303(34)
0.009(18) 0.9939(35)

)

2.4792
6.13300 0.136110 6

(
2.737(11) −0.01545(61)
−1.300(18) 1.4600(33)

) (
0.2654(21) −0.00006(36)
0.2997(81) 0.6818(36)

) (
0.7264(65) −0.00421(60)
−0.067(23) 0.9909(55)

)
6.32290 0.135767 8

(
2.8542(96) −0.00675(53)
−1.288(16) 1.4303(23)

) (
0.2483(34) −0.00164(38)
0.2972(87) 0.6861(34)

) (
0.711(10) −0.00401(58)
−0.035(26) 0.9792(51)

)
6.63164 0.135227 12

(
2.992(14) 0.00089(77)
−1.343(20) 1.3787(29)

) (
0.2424(28) −0.00267(43)
0.3056(54) 0.7129(36)

) (
0.7286(98) −0.00346(62)
−0.043(19) 0.9830(56)

)

3.3340
5.62150 0.136665 6

(
3.640(20) −0.0259(11)
−1.759(25) 1.6207(53)

) (
0.1619(27) 0.00166(52)
0.2764(65) 0.6050(52)

) (
0.586(10) −0.00149(84)
−0.058(24) 0.9736(88)

)
5.80970 0.136608 8

(
3.750(24) −0.0150(13)
−1.758(36) 1.5532(45)

) (
0.1617(23) 0.00119(34)
0.2714(49) 0.6194(59)

) (
0.6044(91) −0.00055(55)
−0.073(23) 0.9581(96)

)
6.11816 0.136139 12

(
3.836(26) −0.0011(17)
−1.736(43) 1.4802(54)

) (
0.1535(15) 0.00048(57)
0.2928(68) 0.6551(37)

) (
0.5883(80) 0.00053(92)
−0.013(31) 0.9694(66)

)

TABLE 8.6: Renormalization constants and lattice SSFs for Op 4, 5 for both
fierz ”+,-” in the renormalization scheme α = 3/2, (s1, s2) = (3, 5).
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β kcr L/a ḡ2SF (L) Z
α=3/2,(3,5),+
(23)

Z
α=3/2,(3,5),−
(23)

5.20 0.13600 4 3.65
(

0.5992(11) 0.31835(83)
0.08539(42) 0.35980(88)

) (
0.5048(11) −0.12417(81)
−0.08479(37) 0.39148(77)

)
6 4.61

(
0.6026(12) 0.34048(59)
0.08647(33) 0.29400(61)

) (
0.50745(86) −0.17402(63)
−0.08586(34) 0.31768(58)

)

5.29 0.13641
4 3.39

(
0.6179(11) 0.31837(69)
0.08123(33) 0.38268(82)

) (
0.53117(83) −0.12960(76)
−0.08047(41) 0.41335(68)

)
6 4.30

(
0.6212(11) 0.33681(81)
0.07975(35) 0.31743(68)

) (
0.53520(90) −0.17551(80)
−0.07941(40) 0.34077(70)

)
8 5.65

(
0.6274(13) 0.35466(78)
0.08400(49) 0.27293(68)

) (
0.5317(10) −0.2035(10)
−0.08554(50) 0.29424(62)

)

5.40 0.13669
4 3.19

(
0.6367(10) 0.31526(70)
0.07672(32) 0.40904(83)

) (
0.55721(81) −0.13146(75)
−0.07610(28) 0.43891(82)

)
6 3.86

(
0.63422(95) 0.33226(72)
0.07429(37) 0.34047(67)

) (
0.55768(81) −0.17545(73)
−0.07358(35) 0.36360(59)

)
8 4.75

(
0.6422(13) 0.35228(79)
0.07738(41) 0.29670(64)

) (
0.55925(84) −0.20644(70)
−0.07761(50) 0.31681(65)

)

TABLE 8.7: Renormalization constants at hadronic β = [5.20, 5.29, 5.40] for
Op 2, 3

β kcr L/a ḡ2SF (L) Z
α=3/2,(3,5),+
(45)

Z
α=3/2,(3,5),−
(45)

5.20 0.13600 4 3.65
(

0.4921(11) −0.02039(13)
−1.1531(32) 0.8350(19)

) (
0.24875(92) 0.01084(10)
0.2681(16) 0.5416(10)

)
6 4.61

(
0.4293(10) −0.02340(19)
−1.3971(38) 0.9190(18)

) (
0.17779(68) 0.00886(11)
0.2660(16) 0.5373(11)

)

5.29 0.13641
4 3.39

(
0.5133(12) −0.01910(13)
−1.1264(31) 0.8385(15)

) (
0.27459(88) 0.009909(86)
0.2838(16) 0.56761(95)

)
6 4.30

(
0.4509(12) −0.02075(23)
−1.3442(46) 0.9189(20)

) (
0.20420(76) 0.00734(13)
0.2741(19) 0.5621(11)

)
8 5.65

(
0.4120(11) −0.02498(26)
−1.5596(49) 1.0027(26)

) (
0.15562(58) 0.00676(17)
0.2607(14) 0.5514(11)

)

5.40 0.13669
4 3.19

(
0.5372(10) −0.01782(13)
−1.0918(31) 0.8416(15)

) (
0.30436(89) 0.008962(76)
0.2935(16) 0.59197(98)

)
6 3.86

(
0.4717(12) −0.01848(20)
−1.2852(44) 0.9099(19)

) (
0.23038(72) 0.006133(95)
0.2827(18) 0.5833(11)

)
8 4.75

(
0.43354(94) −0.02131(20)
−1.4867(41) 0.9867(18)

) (
0.18096(60) 0.00509(12)
0.2753(16) 0.5788(10)

)

TABLE 8.8: Renormalization constants at hadronic β = [5.20, 5.29, 5.40] for
Op 4, 5
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Ũ
(µ

)

10
3

10
4

10
5

10
6

0.005

0.01

0.015

0.02

0.025

0.03

0.035

µ [MeV]

Ũ
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Ũ
(µ

)

10
3

10
4

10
5

10
6

1

1.5

2

2.5

3

3.5

4

4.5

5

µ [MeV]

Ũ
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FIGURE 8.15: RG running matrices for the Fierz + Op. 2, 3 (top half) and
Op. 4, 5 (bottom half) in the MS scheme. Solid lines correspond to the LO
plotted (cyan) and the perturbative expansion for the NLO 2/2 case up to
O(g2) - i.e. including J1 (green). Dashed lines correspond to the numerical
solution forW (µ) in the cases nγ/nβ = {2/2, 2/3,+3/3,−3/3} respectively

in red, black, magenta and blue.
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FIGURE 8.16: RG running matrices for the Fierz + Op. 2, 3 (top half) and
Op. 4, 5 (bottom half) in the RI scheme. Solid lines correspond to the LO
(cyan) and the perturbative expansion for the NLO 2/2 case up to O(g2) -
i.e. including J1 (green). Dashed lines correspond to the numerical solu-
tion for W (µ) in the cases nγ/nβ = {2/2, 2/3,+3/3,−3/3} respectively in

red, black, magenta and blue.
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FIGURE 8.17: RG running matrices for the Fierz + Op. 2, 3 (top half) and
Op. 4, 5 (bottom half) in the SF scheme. Solid lines correspond to the LO
(cyan) and the perturbative expansion for the NLO 2/2 case up to O(g2) -
i.e. including J1 (green). Dashed lines correspond to the numerical solu-
tion for W (µ) in the cases nγ/nβ = {2/2, 2/3,+3/3,−3/3} respectively in

red, black, magenta and blue.
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FIGURE 8.18: RG running matrices for the Fierz − Op. 2, 3 (top half) and
Op. 4, 5 (bottom half) in the MS scheme. Solid lines correspond to the LO
(cyan) and the perturbative expansion for the NLO 2/2 case up to O(g2) -
i.e. including J1 (green). Dashed lines correspond to the numerical solu-
tion for W (µ) in the cases nγ/nβ = {2/2, 2/3,+3/3,−3/3} respectively in

red, black, magenta and blue.
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Ũ
(µ

)

10
3

10
4

10
5

10
6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

µ [MeV]

Ũ
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FIGURE 8.19: RG running matrices for the Fierz − Op. 2, 3 (top half) and
Op. 4, 5 (bottom half) in the RI scheme. Solid lines correspond to the LO
(cyan) and the perturbative expansion for the NLO 2/2 case up to O(g2) -
i.e. including J1 (green). Dashed lines correspond to the numerical solu-
tion for W (µ) in the cases nγ/nβ = {2/2, 2/3,+3/3,−3/3} respectively in

red, black, magenta and blue.
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FIGURE 8.20: RG running matrices for the Fierz − Op. 2, 3 (top half) and
Op. 4, 5 (bottom half) in the SF scheme. Solid lines correspond to the LO
(cyan) and the perturbative expansion for the NLO 2/2 case up to O(g2) -
i.e. including J1 (green). Dashed lines correspond to the numerical solu-
tion for W (µ) in the cases nγ/nβ = {2/2, 2/3,+3/3,−3/3} respectively in

red, black, magenta and blue.
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8.8 Summary

In this part of the thesis we have reviewed the renormalisation and RG running prop-
erties of the four-quark operators relevant for BSM analyses, and introduced a family
of SF schemes that allow to compute them in a fully non-perturbative way. Our non-
perturbative results for Nf = 2 QCD will be presented in a separate publication [137].13

Here we have focused on the perturbative matching of our schemes to commonly used
perturbative schemes and to RGI operators. One of our main results in this context is the
full set of NLO operator anomalous dimensions in our SF schemes.

We have also conducted a detailed analysis of perturbative truncation effects in oper-
ator RG running in both the SF schemes introduced here, and in commonly used MS and
RI-MOM schemes. We conclude that when NLO perturbation theory is used to run the
operators from high-energy scales down to the few GeV range, large truncation effects
appear. One striking example is the mixing of tensor-tensor and scalar-scalar operators,
where all the available indications point to extremely large anomalous dimensions and
very poor perturbative convergence. One important point worth stressing is that, in the
computation of the running factor W (µ), the use of the truncated perturbative expansion
in Eq. (8.1.11) leads to a significantly worse behaviour than the numerical integration of
Eq. (2.1.16) with the highest available orders for γ and β.

A context where these findings might have an important impact is e.g. the compu-
tation of BSM contributions to neutral kaon mixing. At present, few computations of
the relevant ∆S = 2 operators exist with dynamical fermions [139, 140, 141, 142, 143],
all of which use perturbative RG running (and, in the case of [142], perturbative oper-
ator renormalisation as well). There are substantial discrepancies between the various
results in [139, 140, 141, 142, 143], which may be speculated to stem, at least in part,
from perturbative truncation effects. Another possible contribution to the discrepancy
is the delicate pole subtraction required in the RI-MOM scheme — indeed, results in-
volving perturbative renormalisation and non-perturbative renormalisation constants in
RI-SMOM schemes are consistent. At any rate, future efforts to settle this issue, as well
as similar studies for ∆B = 2 amplitudes, should put a strong focus on non-perturbative
renormalisation.

Moreover, we performed a set of simulations in Nf = 2 QCD at three value of the
lattice spacing for 6 energy scales, allowing us to obtain the (matrix) SSFs. The latter
have been used to compute the non-perturbative running over ∼ 250 energy scales. As
emerged by the perturbative calculations, we confirm large non-perturbative effects. This
exploratory work is the first application of the SF recursive technique to operators with
mixing. All the technology developed to achieve the computation will be an essential
material for future calculations in Nf = 3 QCD

13A comparison of perturbative and non-perturbative results for the running of these operators in RI-
MOM schemes for a small region in the few-GeV ballpark can be found in [138].
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Conclusions

In this thesis we have computed the non-perturbative running for a set of composite
operators, namely, the quark masses (Nf = 2+1), the tensor currents (Nf = 0,Nf = 2) and
four-fermion operators with ∆F = 1, 2 (Nf = 2). The first case is a shared effort with the
running coupling project [10] which proceeded in parallel during the realisation of this
work. For the first time two renormalization schemes have been adopted for the high
and low energy region allowing us to cover a largest range of energy scales respect to
the past while obtaining an unprecedented accuracy, where all the source of systematic
errors have been carefully taken into account. The quark mass running, together with
the value of the renormalization constants computed at the hadronic scales are provided
in this work, making a step toward the ongoing computation of the strange quark mass.
The latter constitute a natural development of this work whose results will be available
in a short time.

Another important results of this work is the running of tensor currents. In this case,
taking advantage of 1-loop perturbative computations we have computed, for the first
time, the NLO anomalous dimension for the tensor in the SF scheme and 1-loop cutoff
effects of the SSFs. This, together with the non-perturbative computation of the running
on the ensemble Nf = 0 and Nf = 2 provide a complete analysis on this topic, preparing
the ground for a Nf = 2 + 1 calculation which is ongoing. The last, but not least, result
concerns the four-fermion operators. On the same line as for the tensor, we discussed the
renormalization properties in perturbation theory, extracting for the first time 1-loop SSFs
cutoff effects and NLO anomalous dimensions. We then discussed the definition of the
RGI, overcoming the difficulties posed by the mixing, which do not allow for a straight-
forward extension respect to operators which renormalise multiplicatively. We observed
large perturbative systematics at around charm mass for a variety of schemes (lattice,
and continuum). We then provided a non-perturbative study of the running, which ex-
hibit strong deviation respect to perturbative description in the low energy. This, together
with the strong perturbative systematics speaks in favour of treating these operators with
a full non-perturbative approach, or at least to apply perturbation theory at a very high
scale. Also in this case, our results are essential for further extension to Nf = 2 + 1.
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Conclusiones

En esta tesis hemos calculado el running no perturbativo de un conjunto de operadores
compuestos, a saber, las masas de quark (Nf = 2 + 1), corrientes tensoriales (Nf = 0,Nf =
2), y operadores de cuatro fermiones con ∆F = 1, 2 (Nf = 2).

El primer cálculo es parte de un proyecto conjunto con el cálculo del acoplamiento
renormalizado [10], que ha tenido lugar en paralelo durante el desarrollo de este trabajo.
Por primera vez han sido adoptados dos esquemas distintos para las regiones de alta
y baja energı́a, lo que nos permite cubrir un rango mayor de escalas energı́a respecto a
estudios anteriores, manteniendo al mismo tiempo una precisión mayor, con todas las
incertidumbres sistemáticas tenidas en cuenta de manera cuidadosa. El running de las
masas de quark, junto con el valor de las constantes de renormalización calculadas en
escalas hadrónicas, son los resultados de este trabajo, y constituyen un paso crucial para
el cálculo en curso de la masa del quark extraño. Este último es un desarrollo natural de
este trabajo, y será completado en un plazo breve.

Otro importante resultado de este trabajo es el running de las corrientes tensoriales.
En este caso, gracias a nuestros cálculos a un loop, hemos determinado por primera vez
la dimensión anómala NLO del tensor en esquemas SF, y los efectos de cutoff a un loop
en las SSF. Esto, junto a un cálculo no perturbativo del running para Nf = 0 y Nf = 2,
dan lugar a un análisis completo de este problema, preparando el terreno para un cálculo
Nf = 2 + 1 en curso.

El último, pero no menos importante resultado concierne operadores de cuatro fermiones.
En la misma lı́nea que para el tensor, hemos discutido las propiedades de renormal-
ización en teorı́a de perturbaciones, extrayendo por primera vez efectos de cutoff de
las SSF y las dimensiones anómalas NLO en nuestros esquemas. También hemos dis-
cutido la definición de RGI, superando las dificultades planteadas por la mezcla de op-
eradores, que no permite una extensión trivial del caso multiplicativamente renormaliz-
able. Hemos observado una sistemática perturbativa grande alrededor de la masa del
charm para una gran variedad de esquemas. A continuación hemos presentado un es-
tudio no perturbativo del running, que a bajas energı́as exhibe grandes desviaciones re-
specto a la descripción perturbativa. Esto, junto a la sistemática perturbativa, es una
fuerte motivación para tratar estos operadores de manera completamente no perturba-
tiva, o al menos de la aplicación de teorı́a de perturbaciones sólo a escalas muy altas.
También en este caso nuestros resultados son esenciales en vista de una extensión a
Nf = 2 + 1.
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FIGURE A.1: Matrix of the 1-loop cutoff effects with csw = 1 of the SSF
for Op 2, 3 (4, 5) fierz “+” on the top (bottom). Color denote the different

choice of α and markers are sources s.
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FIGURE A.2: Matrix of the 1-loop cutoff effects with csw = 1 of the SSF
for Op 2, 3 (4, 5) fierz “−” on the top (bottom). Color denote the different
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3.211378 5.236303

) (
0.393235 0.031881
−1.865444 −0.041070

) (
0.314036 0.632269
1.996419 3.051790

)
6

(
0.360832 0.026906
−0.907110 −0.331808

) (
0.083096 0.213740
2.639245 4.926161

) (
0.086802 0.016542
−1.156020 0.013281

) (
0.119120 0.373079
0.736291 0.802921

)
8

(
0.340234 0.018988
−0.466335 −0.282722

) (
0.097391 0.147874
2.149300 4.203452

) (
0.022327 0.010258
−0.776005 0.025993

) (
0.063469 0.240718
0.351217 0.234227

)
10

(
0.308242 0.014678
−0.277130 −0.237795

) (
0.097575 0.113428
1.790539 3.583070

) (
0.000572 0.007095
−0.569481 0.030288

) (
0.039145 0.168897
0.180364 0.008998

)
12

(
0.278023 0.011975
−0.180140 −0.203058

) (
0.093222 0.092219
1.527657 3.099067

) (
−0.008433 0.005262
−0.443270 0.030817

) (
0.026045 0.125824
0.092686 −0.093092

)
14

(
0.251877 0.010121
−0.124242 −0.176481

) (
0.087627 0.077803
1.329668 2.722092

) (
−0.012424 0.004096
−0.359273 0.029790

) (
0.018172 0.097923
0.043715 −0.141307

)
16

(
0.229686 0.008772
−0.089343 −0.155782

) (
0.081969 0.067351
1.176128 2.423499

) (
−0.014147 0.003303
−0.299932 0.028210

) (
0.013104 0.078774
0.014706 −0.163650

)
18

(
0.210851 0.007745
−0.066253 −0.139304

) (
0.076660 0.059420
1.053939 2.182368

) (
−0.014760 0.002737
−0.256116 0.026503

) (
0.009676 0.065031
0.003208 −0.172802

)
20

(
0.194763 0.006937
−0.050289 −0.125917

) (
0.071819 0.053193
0.954545 1.984093

) (
−0.014807 0.002317
−0.222634 0.024843

) (
0.007267 0.054810
0.014590 −0.174959

)
22

(
0.180910 0.006285
−0.038863 −0.114844

) (
0.067455 0.048172
0.872187 1.818430

) (
−0.014560 0.001995
−0.196335 0.023295

) (
0.005523 0.046986
0.021945 −0.173333

)
24

(
0.168880 0.005748
−0.030454 −0.105542

) (
0.063534 0.044036
0.802870 1.678076

) (
−0.014162 0.001743
−0.175208 0.021879

) (
0.004229 0.040850
0.026729 −0.169666

)

TABLE A.1: SSFs 1-loop cutoff for Op.2, 3 and 4, 5 for the scheme denoted
by α = 3/2 and (s1, s2) = (3, 5)
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B Constraints on anomalous
dimensions from chiral symmetry

In section 5.3 of [122] the authors derive an identity between the the renormalisation ma-
trices for (Q+

2 ,Q+
3 ) and (Q−2 ,Q−3 ), valid in the RI-MOM scheme considered in that paper.

Here we discuss how such an identity can be derived from generic considerations based
on chiral symmetry, and how (or, rather, under which conditions) it can be generalised to
other renormalisation schemes.

Let us consider a renormalised matrix element of the form 〈f |Q̄±k |i〉, where Q±k is a
parity-even operator and |i, f〉 are stable hadron states with the same, well-defined par-
ity. Simple examples would be the matrix elements of ∆F = 2 operators providing the
hadronic contribution to K0–K̄0 or B0–B̄0 oscillation amplitudes (cf. Section ??). Bare
matrix elements can be extracted from suitable three-point Euclidean correlation func-
tions

〈Of (x)Q±k (0)Oi(y)〉 =
1

Z

∫
D[ψ]D[ψ̄]D[A] e−S Of (x)Q±k (0)Oi(y) (B.0.1)

whereOi,f are interpolating operators for the external states |i, f〉. If we perform a change
of fermion variables of the form

ψ → ψ′ = eiγ5Tψ , ψ̄ → ψ̄′ = ψ̄eiγ5T , (B.0.2)

where ψ is a fermion field with Nf flavour components and T is a traceless matrix act-
ing on flavour space, this will induce a corresponding transformationQ±k → Q′k

±,Oi,f →
O′i,f of the involved composite operators. If the regularised theory employed to define the
path integral preserves exactly the SU(Nf)A axial chiral symmetry of the formal contin-
uum theory, the equality 〈Of (x)Q±k (0)Oi(y)〉 = 〈O′f (x)Q′k

±(0)O′i(y)〉 will hold exactly;
otherwise, it will only hold upon renormalisation and removal of the cutoff. At the level
of matrix elements, one will then have

〈f |Q̄±k |i〉(ψ,ψ̄) = 〈f |Q̄′k
±|i〉(ψ′,ψ̄′) , (B.0.3)

where the subscript remarks that the interpretation of the operator depends on the fermion
variables used on each side of the equation. If the flavour matrix T is not traceless, the
argument will still hold if the fermion fields entering composite operators are part of a
valence sector, employed only for the purpose of defining suitable correlation functions.

The result in Eq. (B.0.2) is at the basis e.g. of the definition of twisted-mass QCD lat-
tice regularisations, and is discussed in more detail in [121, 144, 145]. Indeed, the rotation
in Eq. (B.0.2) will in general transform the mass term of the action. One crucial remark
at this point is that, if a mass-independent renormalisation scheme is used, renormalisa-
tion constants for any given composite operator will be independent of which fermion
variables are employed in the computation of the matrix element.
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Let us now consider a particular case of Eq. (B.0.2) given by

T =
π

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , (B.0.4)

where ψ = (ψ1, ψ2, ψ3, ψ4)T comprises the four, formally distinct flavours that enter
Q±k ,Q±k . Under this rotation, the ten operators of the basis in Eq. (8.1.1) transform as

Q±1 → iQ±1 ,
Q±2 → −iQ∓2 ,
Q±3 → iQ∓3 ,
Q±4 → iQ±4 ,
Q±5 → iQ±5 .

(B.0.5)

In the case of operators 1,4,5 the rotation is essentially trivial, in that it preserves Fierz
(2 ↔ 4 exchange) eigenstates. However, in the rotation of operators 2,3 the Fierz eigen-
value is exchanged. One thus has, at the level of renormalised matrix elements,

〈f |Q̄+(µ)|i〉(ψ,ψ̄) = R〈f |Q̄−(µ)|i〉(ψ′,ψ̄′) , (B.0.6)

where Q+ = (Q+
2 , Q

+
3 )T , Q− = (Q−2 ,Q−3 )T , and R = −iτ3. In this latter expression

we have written explicitly the renormalisation scale µ. If we now use the RG evolution
operators discussed in Section ?? to run Eq. (B.0.6) to another scale µ′, one then has (recall
that the continuum anomalous dimensions of Q+

k and Q+
k — respectively, Q−k and Q−k —

are the same)

〈f |Q̄+(µ′)|i〉(ψ,ψ̄) = U+(µ′, µ)〈f |Q̄+(µ)|i〉(ψ,ψ̄)

= U+(µ′, µ)R〈f |Q̄−(µ)|i〉(ψ′,ψ̄′)
= U+(µ′, µ)R[U−(µ′, µ)]−1〈f |Q̄−(µ′)|i〉(ψ′,ψ̄′)
= U+(µ′, µ)R[U−(µ′, µ)]−1R−1〈f |Q̄+(µ′)|i〉(ψ,ψ̄) ,

(B.0.7)

which implies

U+(µ′, µ) = RU−(µ′, µ)R−1 ∀µ, µ′ . (B.0.8)

It is then immediate that the anomalous dimension matrices entering U± are related as

γ+ =

(
γ+

22 γ+
23

γ+
32 γ+

33

)
= τ3γ−τ3 =

(
γ−22 −γ−23

−γ−32 γ−33

)
. (B.0.9)

The correct interpretation of this identity is that, given an anomalous dimension
matrix for, say, Q+

2,3 and Q+
2,3, one can use Eq. (B.0.9) to construct a correct anomalous

dimension matrix for Q−2,3 and Q−2,3, and vice versa. However, it does not guarantee that,
given two different renormalisation conditions for each fierzing, the resulting matrices of
anomalous dimensions will satisfy Eq. (B.0.9). This will only be the case if the renormali-
sation conditions can be related to each other by the rotation in Eq. (B.0.4); otherwise, the
result of applying Eq. (B.0.9) to the γ− that follows from the condition imposed on Fierz
- operators will lead to value of γ+ in a different renormalisation scheme than the one
defined by the renormalisation condition imposed directly on Fierz + operators.

The RI-MOM conditions of [122], as well as typical MS renormalisation conditions,
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result in schemes that satisfy the identity directly, since the quantities involved respect
the underlying chiral symmetry — e.g. the amputated correlation functions used in RI-
MOM rotate in a similar way to the three-point functions discussed above. Indeed, the
known NLO anomalous dimensions in RI-MOM and MS given in Appendix C, as well as
(within uncertainties) the non-perturbative values of RI-MOM renormalisation constants,
fulfill Eq. (B.0.9). Our SF renormalisation conditions, on the other hand, are not related
among them via rotations with R, due to the chiral symmetry-breaking effects induced
by the non-trivial boundary conditions imposed on the fields. As a consequence, the
finite parts of the matrices of SF renormalisation constants, and hence γSF

2 , do not satisfy
the identity. It has to be stressed that, as a consequence of the existence of schemes where
Eq. (B.0.9) is respected, the identity is satisfied by the universal matrices γ±0 , as can be
readily checked in Eq. (8.1.10); therefore, the violation of the identity in e.g. SF schemes
appears only at O(g4

0) in perturbation theory.
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C NLO anomalous dimensions in
continuum schemes

The two-loop anomalous dimension matrices in the RI-MOM scheme (in Landau gauge) [25,
24] and MS scheme [24] are given by (the factor (4π)−4 has been omitted below to sim-
plify the notation):

γ
+,(1);RI
22 =

(297 + 16 log(2))N2 + 45

6N2
−Nf

2(15 + 4 log(2))

3N
,

γ
+,(1);RI
23 =

2
(
4N2(45 + 2 log(2))− 9

)
3N

−Nf
4

3
(15 + 4 log(2)) ,

γ
+,(1);RI
32 =

(53 + 160 log(2))N2 + 108

12N
−Nf

2

3
(1 + 2 log(2)) ,

γ
+,(1);RI
33 =

−379N4 + 5(99 + 32 log(2))N2 + 45

6N2
+Nf

2
(
13N2 − 4 log(2)− 15

)
3N

,

γ
+,(1);RI
44 =

−379N4 + 2(261− 88 log(2))N3 + 140(3 + 2 log(2))N2 − 4(−6 + 60 log(2))N − 81

6N2
+

+ Nf
2
(
13N2 + (−15 + 8 log(2))N − 4 log(2)− 15

)
3N

,

γ
+,(1);RI
45 =

(157− 368 log(2))N3 + (−494 + 556 log(2))N2 − 4(−39 + 30 log(2))N − 72

36N2
+

+ Nf
((−11 + 16 log(2))N − 20 log(2) + 28)

18N
,

γ
+,(1);RI
54 =

4
(
(−165 + 16 log(2))N3 + (−230 + 76 log(2))N2 − 4(−39 + 30 log(2))N − 72

)
3N2

+

+ Nf
8((15 + 16 log(2))N − 20 log(2) + 28)

3N
,

γ
+,(1);RI
55 =

343N4 − 2(−343 + 616 log(2))N3 + 4(−95 + 142 log(2))N2 + (504 + 720 log(2))N − 531

18N2
+

− Nf
2
(
13N2 + (41− 56 log(2))N + 52 log(2)− 11

)
9N

.
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γ
−,(1);RI
22 =

15

2N2
+

8 log(2)

3
+

99

2
−Nf

2(15 + 4 log(2))

3N
,

γ
−,(1);RI
23 = −8

3
(45 + 2 log(2))N +

6

N
+Nf

4

3
(15 + 4 log(2)) ,

γ
−,(1);RI
32 = − 1

12
(53 + 160 log(2))N − 9

N
+Nf

2

3
(1 + 2 log(2)) ,

γ
−,(1);RI
33 =

−379N4 + 5(99 + 32 log(2))N2 + 45

6N2
+Nf

2
(
13N2 − 4 log(2)− 15

)
3N

,

γ
−,(1);RI
44 =

−379N4 + 2(−261 + 88 log(2))N3 + 140(3 + 2 log(2))N2 + 24(−1 + 10 log(2))N − 81

6N2
+

+ Nf
2
(
13N2 − (−15 + 8 log(2))N − 4 log(2)− 15

)
3N

,

γ
−,(1);RI
45 =

(−157 + 368 log(2))N3 + (−494 + 556 log(2))N2 + 12(−13 + 10 log(2))N − 72

36N2
+

− Nf
((−11 + 16 log(2))N + 20 log(2)− 28)

18N
,

γ
−,(1);RI
54 = −4

(
(−165 + 16 log(2))N3 + (230− 76 log(2))N2 + (156− 120 log(2))N + 72

)
3N2

+

− Nf
8((15 + 16 log(2))N + 4(−7 + 5 log(2)))

3N
,

γ
−,(1);RI
55 =

343N4 + 14(−49 + 88 log(2))N3 + 4(−95 + 142 log(2))N2 − 72(7 + 10 log(2))N − 531

18N2
+

− Nf
2
(
13N2 + (−41 + 56 log(2))N + 52 log(2)− 11

)
9N

.

γ
+,(1);MS
22 =

15

2N2
+

137

6
−Nf

22

3N
,

γ
+,(1);MS
23 =

200N

3
− 6

N
−Nf

44

3
,

γ
+,(1);MS
32 =

71N

4
+

9

N
−Nf2 ,

γ
+,(1);MS
33 = −203N2

6
+

479

6
+

15

2N2
+Nf

(
10N

3
− 22

3N

)
,

γ
+,(1);MS
44 = −203N2

6
+

107N

3
+

136

3
− 12

N
− 107

2N2
+Nf

(
10N

3
− 2

3
− 10

3N

)
,

γ
+,(1);MS
45 = −N

36
− 31

9
+

9

N
− 4

N2
+Nf

(
1

9N
− 1

18

)
,

γ
+,(1);MS
54 = −364N

3
− 704

3
− 208

N
− 320

N2
+Nf

(
136

3
+

176

3N

)
,

γ
+,(1);MS
55 =

343N2

18
+ 21N − 188

9
+

44

N
+

21

2N2
+Nf

(
−26N

9
− 6 +

2

9N

)
.
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γ
−,(1);MS
22 =

15

2N2
+

137

6
−Nf

22

3N
,

γ
−,(1);MS
23 = −200N

3
+

6

N
+Nf

44

3
,

γ
−,(1);MS
32 = −71N

4
− 9

N
+Nf2 ,

γ
−,(1);MS
33 = −203N2

6
+

479

6
+

15

2N2
+Nf

(
10N

3
− 22

3N

)
,

γ
−,(1);MS
44 = −203N2

6
− 107N

3
+

136

3
+

12

N
− 107

2N2
+Nf

(
10N

3
+

2

3
− 10

3N

)
,

γ
−,(1);MS
45 =

N

36
− 31

9
− 9

N
− 4

N2
+Nf

(
1

18
+

1

9N

)
,

γ
−,(1);MS
54 =

364N

3
− 704

3
+

208

N
− 320

N2
+Nf

(
176

3N
− 136

3

)
,

γ
−,(1);MS
55 =

343N2

18
− 21N − 188

9
− 44

N
+

21

2N2
+Nf

(
−26N

9
+ 6 +

2

9N

)
.
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D Perturbative expansion of RG
evolution for Nf = 3

It is well-known that the condition in Eq. (8.1.12) that determines the leading non-trivial
coefficient in the NLO perturbative expansion of the RG evolution operator, Eq. (8.1.11),
is ill-behaved for the operators Q±2,3 for Nf = 30 and, more relevantly, for Nf = 3 [146,
147]. The reason is that, when Eq. (8.1.12) is written as a linear system, the 4 × 4 matrix
that multiplies the vector of elements of J1 has zero determinant, rendering the system
indeterminate.

A simple way to understand the anatomy of this problem in greater detail proceeds
by writing the explicit solution to Eq. (8.1.12) as a function of the parameter ε = 3−Nf ; if
the NLO anomalous dimension matrix in the scheme under consideration is written as

γ±1 =
1

(4π)4

(
g±22 g±23

g±32 g±33

)
(D.0.1)

then one finds

J±1 =
1

ε
J±1,−1 + J±1,0 + εJ±1,1 +O(ε2) , (D.0.2)

with

J±1,−1 =
1

(4π)2

(
0 ±1

2(g±22 − g±33)− 3
4g
±
23 + 1

3g
±
32

0 0

)
, (D.0.3)

J±1,0 =
1

(4π)2

(
1

162(128− 9g±22 ∓ 3g±32) 1
27(±128∓ g±22 − g±32 ± g±33)

− 1
36g
±
32

1
162(−1024± 3g±32 − 9g±33)

)
, (D.0.4)

J±1,1 =
1

(4π)2

(
1

4374(172 + 18g±22 ± 9g±32) ± 1
2187(516 + 6g±22 ± 7g±32 − 6g±33)

1
972g

±
32

1
4374(−1376∓ 9g±32 + 18g±33)

)
. (D.0.5)

In the limit ε → 0 the element 23 of J±1 diverges; it is easy to check that the aforemen-
tioned 4×4 matrix, consistently, has determinant∝ ε. A similar expansion of the matrices

Ũ±LO(µ) ≡ [αs(µ)]
−
γ±0
2b0 yields

Ũ±LO(µ) = Ũ±LO,0(µ) + εŨ±LO,1(µ) +O(ε2) , (D.0.6)

with

Ũ±LO,0(µ) =

(
α−1/9

s (µ) ∓2
3 [α8/9

s (µ)− α−1/9
s (µ)]

0 α8/9
s (µ)

)
, (D.0.7)

Ũ±LO,1(µ) =

(
2

243α
−1/9
s (µ) ± 4

729 [8α8/9
s (µ) + α−1/9

s (µ)]

0 − 16
243α

8/9
s (µ)

)
log[αs(µ)] . (D.0.8)



190 Appendix D. Perturbative expansion of RG evolution for Nf = 3

When these expressions are plugged in Eq. (2.1.14), and the perturbative expansion Eq. (8.1.11)
is used, one gets

Ũ±(µ) = Ũ±LO,0(µ) + g 2(µ)

[
1

ε
Ũ±LO,0(µ)J±1,−1 + Ũ±LO,0(µ)J±1,0 + Ũ±LO,1(µ)J±1,−1 +O(ε)

]
+O(g 4(µ)) ,

(D.0.9)

which is still divergent as ε→ 0. This implies, in particular, that RGI operators cannot be
defined consistently using the above form of the perturbative expansion for W . The RG
evolution operator U(µ2, µ1) = [Ũ(µ2)]−1Ũ(µ1), on the other hand, is finite: the divergent
part has the form

1

ε

{
g 2(µ1)U±LO(µ2, µ1)J±1,−1 − g 2(µ2)J±1,−1U

±
LO(µ2, µ1)

}
=
±1

2(g±22 − g±33)− 3
4g
±
23 + 1

3g
±
32

4πε
M ,

(D.0.10)

with

M = U±LO(µ2, µ1)

(
0 αs(µ2)
0 0

)
−
(

0 αs(µ1)
0 0

)
U±LO(µ2, µ1) , (D.0.11)

and it is easy to check, using the explicit expression for Ũ±LO,0(µ) and the identityU±LO(µ2, µ1) =
[U±LO,0(µ2)]−1U±LO,0(µ1), that M = 0.1 The full expression for U(µ2, µ1) in the ε → 0 limit
still receives contributions from J1,−1, via the products with the O(ε) terms in the expan-
sion of ŨLO, which actually give rise to the only dependence of the expanded U(µ2, µ1)
on γ±1 .

A number of solutions to this problem have been proposed in the literature [146, 147,
149, 148], consisting of various regularisation schemes to treat the singular terms in 3−Nf .
Here we note that the problem can be entirely bypassed by using the numerical integra-
tion of the RG equation in Eq. (2.1.16), as done in this paper to explore the case Nf = 2 in
detail. Indeed, applying exactly the same procedure forNf = 3 — i.e., solving Eq. (2.1.16)
after having substituted the perturbative expressions for γ and β to any prescribed order
— is well-behaved numerically, which in turn allows to construct both the RG evolution
matrix and RGI operators without trouble. The only point in the procedure where the
expansion coefficient J1 may enter explicitly is the initial condition in Eq. (8.4.2), where
for the Nf = 2 case we have employed W (µ0) = 1 + g 2(µ0)J1 at some very high energy
scale µ0. However, this can be replaced by the initial condition W (µ0) = 1 at an even
higher scale, thus again avoiding the appearance of any singularity; it turns out that the
required value of g 2(µ) has to be extremely small, such that the systematics associated
to the choice of coupling for the initial condition is negligible at the level of the result
run down to g 2(µ) ∼ 2. This in turn requires using an expensive numerical integrator to
work across several orders of magnitude, which is easy e.g. using standard Mathematica
functions, provided proper care is taken to chose a stable integrator.

As a crosscheck of the robustness of our numerical approach we have computed
explicitly the function W (µ) for Nf = 3, using our numerical integration and W = 1
as an initial condition, set at an extremely small value of the coupling. Our result for W ,
displayed in Fig. D.1, can then be fitted to an ansatz where J is taken to have a polynomial
dependence in g 2, to check whether the first coefficient J1 is compatible within systematic
fit errors (obtained by trying different polynomial orders up toO(g 8) and coupling values
for the initial condition) with the one quoted in Eq.(2.30) of [148]. Note that in order to
have a direct comparison it has to be taken into account that we are using a different

1This is completely analogous e.g. to the discussion leading to Eq. (53) in [148].



Appendix D. Perturbative expansion of RG evolution for Nf = 3 191

0.0 0.5 1.0 1.5 2.0
0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

g

W
2

2
Hg

L

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

g

W
2

3
Hg

L

0.0 0.5 1.0 1.5 2.0
-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

g

W
3

2
Hg

L

0.0 0.5 1.0 1.5 2.0
0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

g

W
3

3
Hg

L

FIGURE D.1: W as a function of the coupling constant, with Nf = 3 for
operators O2, O3 fierz ”+”, in the MS scheme.

relative normalization between operators O2, O3 than the one in [148] which translates
into a factor −2 and −1/2 respectively for [Jfit

1 ]23, [Jfit
1 ]32 and that, since we are working

with the renormalization constants instead of the Wilson coefficients, the convention used
for the J is this work corresponds to JT in [148] . What we obtain is

Jfit
1 =

1

(4π)2

(
−1.0470(8) 70.13(38)
−1.39583(1) 5.78550(8)

)
(D.0.12)

which is indeed well-compatible with the above-mentioned result. Note that the coef-
ficient 23 contains a precise numerical value of the parameter t employed in [148] to
regularise the divergence of J in 3−Nf .

As a further crosscheck, we have also compared the result of computing the Nf = 2
evolution with the two possible initial conditions. The outcome is that, if the value of
the coupling at which W = 1 is sufficiently small, the two results are equal up to several
significant figures down to values of the coupling g 2 & 2, where the hadronic regimes is
entered.
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E Finite parts of RI-MOM
renormalisation constants in Landau
gauge

In this appendix we gather the results for the finite part of the one-loop matching coef-
ficients [X (1)

O ]RI;lat between the lattice and the RI-MOM scheme in Landau gauge. They
can be extracted from [127] and are given by

[X+,(1)
22 ]RI;lat = 0.0272369 c2

sw + 0.0485167 csw − 0.294894 ,

[X+,(1)
23 ]RI;lat = 0.0218485 c2

sw + 0.0632421 csw + 0.0753979 ,

[X+,(1)
32 ]RI;lat = 0.00755569 ,

[X+,(1)
33 ]RI;lat = −0.00553581 c2

sw − 0.0463464 csw − 0.362656 , (E.0.1)

[X+,(1)
44 ]RI;lat = 0.00538842 c2

sw − 0.0147254 csw − 0.351294 ,

[X+,(1)
45 ]RI;lat = 0.000303451 c2

sw + 0.000878362 csw − 0.00178318 ,

[X+,(1)
54 ]RI;lat = −0.0728282 c2

sw − 0.210807 csw − 0.266293 ,

[X+,(1)
55 ]RI;lat = 0.0442301 c2

sw + 0.0977049 csw − 0.290267 .

[X−,(1)
22 ]RI;lat = 0.0272369 c2

sw + 0.0485167 csw − 0.294894 ,

[X−,(1)
23 ]RI;lat = −0.0218485 c2

sw − 0.0632421 csw − 0.0753979 ,

[X−,(1)
32 ]RI;lat = −0.00755569 ,

[X−,(1)
33 ]RI;lat = −0.00553581 c2

sw − 0.0463464 csw − 0.362656 , (E.0.2)

[X−,(1)
44 ]RI;lat = −0.01646 c2

sw − 0.0779674 csw − 0.374019 ,

[X−,(1)
45 ]RI;lat = −0.00151725 c2

sw − 0.00439181 csw + 0.0013602 ,

[X−,(1)
54 ]RI;lat = 0.0145656 c2

sw + 0.0421614 csw + 0.24599 ,

[X−,(1)
55 ]RI;lat = 0.0223817 c2

sw + 0.0344629 csw − 0.257729 .
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F Finite parts of SF renormalisation
constants

In this appendix we discuss how to determine the dependence on a/L of the one-loop
renormalization constants Z(1) defined in chapters 6, 8. The approach is essentially an
application of the present context to the techniques discussed in Appendix D of [37].
Defining ` = L/awe will hence considerF (`) = Z(1) as a pure function of ` = {`1, . . . , `N}.
We will also assume that all divergences have been removed from F (`), which in general
means linear divergences related to the additive renormalisation of quark masses and
proportional to the one-loop value of the critical mass m(1)

cr , and logarithmic divergences
proportional to a LO anomalous dimension. To ensure the robustness of our method we
performed separate fits, and we checked, for each ansatz, the fitted value of γ(0) was the
correct one within the available precision. First of all a roundoff error has to be assigned
to F (`), which takes into account the uncertainties coming from the numerical compu-
tation itself. Following [37], we choose as an estimate for this error, in the case that the
computation has been carried out in double precision,

δF (`) ≡ ε(`)|F (`)| , (F.0.1)

ε(`) =

(
`

2

)3

× 10−14. (F.0.2)

As showed in Section 7.3 the expected behaviour of F (`) leads to the consideration of an
asymptotic expansion of the form

F (`) = α0 +
n∑
k=1

1

`k
(αk + βk log `) +Rn(`) , (F.0.3)

where the residue Rn(`) is expected to decrease faster as ` → ∞ than any of the terms
in the sum. To determine the coefficients (αk, βk) we minimise a quadratic form in the
residues

χ2 = (F − fξ)T (F − fξ) , (F.0.4)

where F and ξ are the N− and (2n+ 1)−column vectors (F (`1), . . . , F (`))T and
(α0, α1, . . . , αn, β1, . . . , βn)T , respectively, and f is the N × (2n+ 1) matrix

f =


1 `−1

1 · · · `−n1 `−1
1 log `1 · · · `−n1 log `1

1 `−1
2 · · · `−n2 `−1

2 log `2 · · · `−n2 log `2
...

...
...

...
...

...
...

1 `−1
N · · · `−nN `−1

N log `N · · · `−nN log `N

 (F.0.5)
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Again following [37], we have not introduced a matrix of weights in the definition of χ2.
A necessary condition to minimise χ2 is

fξ = PF (F.0.6)

where we have assumed that the columns of f are linearly independent vectors (assum-
ing 2n + 1 � N ), and P is the projector onto the subspace of RN generated by them.
Eq. (F.0.6) can be solved using the singular value decomposition of f , which has the form
of

f = USV T (F.0.7)

where U is an N × (2n+ 1) matrix such that

UTU = 1 , UUT = P (F.0.8)

S is diagonal, and (2n+ 1)× (2n+ 1) matrix V is orthonormal. With this decomposition
one has

ξ = V S−1UTF . (F.0.9)

Finally, the uncertainty in the result for ξk can be modelled using error propagation as

δξ2
k =

N∑
l=1

(V S−1UT )2
kl(δF )2

l , (F.0.10)

where (δF )k ≡ δF (`k).
As a remark on the above method regarding practical applications, it has to be pointed
out that the choice of Eq. (F.0.4) for the quadratic form χ2 implies, in particular, that
small values of ` might be given excessive weight. This problem has been dealt with by
considering a range [`min, `max] with changing `min. For this work the better convergence
in results for (αk, βk) was given by `min = 16 and `max = 46. The estimation of systematic
uncertainty of the fitting procedure has be performed using the proposal by the authors
of [37]. We considered two independent fits at order n and n+1, i.e. extending the Ansatz
in Eq. (F.0.3) by terms 1/`n+1 and log `/`n+1 with coefficients αn+1 and βn+1 respectively.
The systematic uncertainty of the finite part r0 = α0 is defined as the difference of the
value of the parameter α0 extracted by the two different fits. In the present work we have
used n = 2 in the fit Ansatz for the O(a)-improved data, and n = 3 for unimproved ones.



Appendix F. Finite parts of SF renormalisation constants 197

α s (r0)+
23(csw = 0) (r0)−23(csw = 0)

0

1

(
−0.2973(1) 0.12889(6)
0.02613(1) −0.20350(10)

) (
−0.3055(1) 0.008223(4)
−0.02778(1) −0.19359(9)

)
2

(
−0.3027(1) 0.13105(6)
0.02322(1) −0.20234(9)

) (
−0.3212(2) 0.03063(1)
−0.03590(2) −0.18199(8)

)
3

(
−0.3172(1) 0.13685(7)
0.03615(2) −0.20751(10)

) (
−0.3252(2) 0.03643(2)
−0.02962(1) −0.19096(9)

)
4

(
−0.2991(1) 0.11812(6)
0.03093(1) −0.17471(8)

) (
−0.3104(1) 0.03794(2)
−0.03310(2) −0.16164(8)

)
5

(
−0.3045(1) 0.12028(6)
0.02802(1) −0.17355(8)

) (
−0.3261(2) 0.06035(3)
−0.04123(2) −0.15004(7)

)
6

(
−0.3190(2) 0.12608(6)
0.04095(2) −0.17872(8)

) (
−0.3302(2) 0.06615(3)
−0.03494(2) −0.15901(7)

)

3/2

1

(
−0.3100(1) 0.12889(6)
0.02613(1) −0.2161(1)

) (
−0.3181(2) 0.008223(4)
−0.02778(1) −0.20623(10)

)
2

(
−0.3154(1) 0.13105(6)
0.02322(1) −0.2150(1)

) (
−0.3338(2) 0.03063(1)
−0.03590(2) −0.19462(9)

)
3

(
−0.3299(2) 0.13685(7)
0.03615(2) −0.2201(1)

) (
−0.3379(2) 0.03643(2)
−0.02962(1) −0.20360(9)

)
4

(
−0.3118(1) 0.11812(6)
0.03093(1) −0.18734(9)

) (
−0.3231(2) 0.03794(2)
−0.03310(2) −0.17428(8)

)
5

(
−0.3172(1) 0.12028(6)
0.02802(1) −0.18618(9)

) (
−0.3387(2) 0.06035(3)
−0.04123(2) −0.16267(8)

)
6

(
−0.3317(2) 0.12608(6)
0.04095(2) −0.19135(9)

) (
−0.3428(2) 0.06615(3)
−0.03494(2) −0.17165(8)

)

1

1

(
−0.3057(1) 0.12889(6)
0.02613(1) −0.21192(10)

) (
−0.3139(1) 0.008223(4)
−0.02778(1) −0.20202(9)

)
2

(
−0.3111(1) 0.13105(6)
0.02322(1) −0.21076(10)

) (
−0.3296(2) 0.03063(1)
−0.03590(2) −0.19041(9)

)
3

(
−0.3257(2) 0.13685(7)
0.03615(2) −0.2159(1)

) (
−0.3336(2) 0.03643(2)
−0.02962(1) −0.19938(9)

)
4

(
−0.3075(1) 0.11812(6)
0.03093(1) −0.18313(9)

) (
−0.3188(2) 0.03794(2)
−0.03310(2) −0.17007(8)

)
5

(
−0.3129(1) 0.12028(6)
0.02802(1) −0.18197(9)

) (
−0.3345(2) 0.06035(3)
−0.04123(2) −0.15846(7)

)
6

(
−0.3275(2) 0.12608(6)
0.04095(2) −0.18714(9)

) (
−0.3386(2) 0.06615(3)
−0.03494(2) −0.16744(8)

)
TABLE F.1: Numerical results of the 1-loop finite parts for operators
VA-AV,PS-SP in the 18 SF renormalisation schemes under investigation de-

fined by the source s and the parameter α as in Eq. (8.3.23).
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α s (r0)+
23(csw = 1) (r0)−23(csw = 1)

0

1

(
−0.22165(6) 0.21392(6)
0.026133(6) −0.25536(2)

) (
−0.22981(8) −0.0767(1)
−0.027786(8) −0.24544(3)

)
2

(
−0.22703(5) 0.21608(6)
0.02324(1) −0.25420(2)

) (
−0.24545(4) −0.05439(7)
−0.035896(8) −0.233856(10)

)
3

(
−0.24151(2) 0.22187(7)
0.03613(2) −0.25936(3)

) (
−0.24950(3) −0.04859(6)
−0.029622(1) −0.24282(2)

)
4

(
−0.22344(6) 0.20317(4)
0.030919(6) −0.22664(5)

) (
−0.23475(7) −0.04710(4)
−0.033097(6) −0.21357(5)

)
5

(
−0.22882(4) 0.20532(5)
0.0280232(1) −0.22548(5)

) (
−0.25039(3) −0.02475(2)
−0.04121(2) −0.20199(7)

)
6

(
−0.24330(1) 0.21111(6)
0.04092(3) −0.23064(4)

) (
−0.25444(2) −0.01896(3)
−0.03493(1) −0.21095(6)

)

3/2

1

(
−0.23423(2) 0.21392(6)
0.026133(6) −0.26795(7)

) (
−0.24239(3) −0.0767(1)
−0.027786(8) −0.25803(8)

)
2

(
−0.239614(2) 0.21608(6)

0.02324(1) −0.26679(7)

) (
−0.258036(7) −0.05439(7)
−0.035896(8) −0.24644(6)

)
3

(
−0.25409(3) 0.22187(7)
0.03613(2) −0.27195(8)

) (
−0.26209(1) −0.04859(6)
−0.029622(1) −0.25541(7)

)
4

(
−0.23602(1) 0.20317(4)
0.030919(6) −0.239229(3)

) (
−0.24733(2) −0.04710(4)
−0.033097(6) −0.226161(3)

)
5

(
−0.241406(4) 0.20532(5)
0.0280232(1) −0.238070(6)

) (
−0.26298(2) −0.02475(2)
−0.04121(2) −0.21458(3)

)
6

(
−0.25589(3) 0.21111(6)
0.04092(3) −0.243229(6)

) (
−0.26703(3) −0.01896(3)
−0.03493(1) −0.22354(1)

)

1

1

(
−0.23004(3) 0.21392(6)
0.026133(6) −0.26375(5)

) (
−0.23820(5) −0.0767(1)
−0.027786(8) −0.25383(6)

)
2

(
−0.23542(1) 0.21608(6)
0.02324(1) −0.26259(5)

) (
−0.253840(9) −0.05439(7)
−0.035896(8) −0.24225(4)

)
3

(
−0.24990(2) 0.22187(7)
0.03613(2) −0.26775(6)

) (
−0.2578952(9) −0.04859(6)
−0.029622(1) −0.25121(6)

)
4

(
−0.23183(3) 0.20317(4)
0.030919(6) −0.23503(2)

) (
−0.24314(4) −0.04710(4)
−0.033097(6) −0.22197(2)

)
5

(
−0.23721(1) 0.20532(5)
0.0280232(1) −0.23387(2)

) (
−0.258780(6) −0.02475(2)
−0.04121(2) −0.21038(4)

)
6

(
−0.25169(2) 0.21111(6)
0.04092(3) −0.23903(1)

) (
−0.26283(1) −0.01896(3)
−0.03493(1) −0.21934(3)

)
TABLE F.2: Numerical results of the 1-loop finite parts for operators
VA-AV,PS-SP in the 18 SF renormalisation schemes under investigation de-
fined by the source s and the parameter α as in Eq. (8.3.23). These results

have been computed including the clover term in the fermonic action.
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α s (r0)+
45(csw = 0) (r0)−45(csw = 0)

0

1

(
−0.20786(10) −0.008176(4)
−0.16835(8) −0.3844(2)

) (
−0.18729(9) 0.012475(6)

0.3886(2) −0.2278(1)

)
2

(
−0.20612(10) −0.008902(4)
−0.15539(8) −0.3898(2)

) (
−0.19077(9) 0.010444(5)

0.3826(2) −0.2313(1)

)
3

(
−0.20882(10) −0.007780(4)
−0.15920(8) −0.3882(2)

) (
−0.18302(9) 0.014967(7)

0.3788(2) −0.2335(1)

)
4

(
−0.18240(8) −0.009086(4)
−0.11374(6) −0.3863(2)

) (
−0.15486(7) 0.014097(7)

0.3496(2) −0.2298(1)

)
5

(
−0.18066(8) −0.009811(5)
−0.10078(5) −0.3917(2)

) (
−0.15835(7) 0.012065(6)

0.3436(2) −0.2333(1)

)
6

(
−0.18335(9) −0.008689(4)
−0.10459(5) −0.3901(2)

) (
−0.15059(7) 0.016589(8)

0.3398(2) −0.2355(1)

)

3/2

1

(
−0.2205(1) −0.008176(4)
−0.16835(8) −0.3970(2)

) (
−0.19992(9) 0.012475(6)

0.3886(2) −0.2404(1)

)
2

(
−0.2188(1) −0.008902(4)
−0.15539(8) −0.4024(2)

) (
−0.20341(10) 0.010444(5)

0.3826(2) −0.2439(1)

)
3

(
−0.2214(1) −0.007780(4)
−0.15920(8) −0.4008(2)

) (
−0.19565(9) 0.014967(7)

0.3788(2) −0.2462(1)

)
4

(
−0.19503(9) −0.009086(4)
−0.11374(6) −0.3989(2)

) (
−0.16750(8) 0.014097(7)

0.3496(2) −0.2424(1)

)
5

(
−0.19329(9) −0.009811(5)
−0.10078(5) −0.4043(2)

) (
−0.17098(8) 0.012065(6)

0.3436(2) −0.2459(1)

)
6

(
−0.19599(9) −0.008689(4)
−0.10459(5) −0.4028(2)

) (
−0.16322(8) 0.016589(8)

0.3398(2) −0.2481(1)

)

1

1

(
−0.2163(1) −0.008176(4)
−0.16835(8) −0.3928(2)

) (
−0.19571(9) 0.012475(6)

0.3886(2) −0.2362(1)

)
2

(
−0.2145(1) −0.008902(4)
−0.15539(8) −0.3982(2)

) (
−0.19920(9) 0.010444(5)

0.3826(2) −0.2397(1)

)
3

(
−0.2172(1) −0.007780(4)
−0.15920(8) −0.3966(2)

) (
−0.19144(9) 0.014967(7)

0.3788(2) −0.2419(1)

)
4

(
−0.19082(9) −0.009086(4)
−0.11374(6) −0.3947(2)

) (
−0.16329(8) 0.014097(7)

0.3496(2) −0.2382(1)

)
5

(
−0.18908(9) −0.009811(5)
−0.10078(5) −0.4001(2)

) (
−0.16677(8) 0.012065(6)

0.3436(2) −0.2417(1)

)
6

(
−0.19177(9) −0.008689(4)
−0.10459(5) −0.3985(2)

) (
−0.15901(7) 0.016589(8)

0.3398(2) −0.2439(1)

)
TABLE F.3: Numerical results of the 1-loop finite parts for operators
PS+SP,TT̃ in the 18 SF renormalisation schemes under investigation de-

fined by the source s and the parameter α as in Eq. (8.3.23).
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α s (r0)+
45(csw = 1) (r0)−45(csw = 1)

0

1

(
−0.21719(1) −0.0069948(4)
−0.4517(3) −0.24249(6)

) (
−0.28168(3) 0.006568(2)

0.4451(2) −0.17105(8)

)
2

(
−0.215453(7) −0.007719(1)
−0.4388(2) −0.24787(4)

) (
−0.28516(4) 0.004541(6)

0.4392(2) −0.17453(6)

)
3

(
−0.21814(1) −0.0065985(6)
−0.4426(2) −0.24629(4)

) (
−0.27742(2) 0.009054(4)

0.4354(2) −0.17674(6)

)
4

(
−0.19179(6) −0.007902(2)
−0.3972(1) −0.24444(5)

) (
−0.24934(5) 0.008185(2)

0.4062(1) −0.17299(7)

)
5

(
−0.19006(6) −0.008626(4)
−0.38433(7) −0.24982(3)

) (
−0.25281(4) 0.006158(2)
0.40026(9) −0.17647(6)

)
6

(
−0.19275(6) −0.007506(2)
−0.38813(7) −0.24823(3)

) (
−0.24507(6) 0.010672(8)
0.39646(9) −0.17869(6)

)

3/2

1

(
−0.22978(6) −0.0069948(4)
−0.4517(3) −0.255079(8)

) (
−0.29427(8) 0.006568(2)

0.4451(2) −0.18363(3)

)
2

(
−0.22804(6) −0.007719(1)
−0.4388(2) −0.260460(9)

) (
−0.29775(9) 0.004541(6)

0.4392(2) −0.18711(1)

)
3

(
−0.23073(6) −0.0065985(6)
−0.4426(2) −0.258875(8)

) (
−0.29001(7) 0.009054(4)

0.4354(2) −0.18933(1)

)
4

(
−0.204380(9) −0.007902(2)
−0.3972(1) −0.257024(3)

) (
−0.2619224(2) 0.008185(2)

0.4062(1) −0.18558(3)

)
5

(
−0.20264(1) −0.008626(4)
−0.38433(7) −0.26241(1)

) (
−0.265398(7) 0.006158(2)

0.40026(9) −0.189057(9)

)
6

(
−0.205331(9) −0.007506(2)
−0.38813(7) −0.26082(1)

) (
−0.257660(10) 0.010672(8)

0.39646(9) −0.191276(8)

)

1

1

(
−0.22558(4) −0.0069948(4)
−0.4517(3) −0.25088(2)

) (
−0.29007(7) 0.006568(2)

0.4451(2) −0.17944(5)

)
2

(
−0.22384(4) −0.007719(1)
−0.4388(2) −0.256264(6)

) (
−0.29355(7) 0.004541(6)

0.4392(2) −0.18292(3)

)
3

(
−0.22653(4) −0.0065985(6)
−0.4426(2) −0.254679(7)

) (
−0.28581(6) 0.009054(4)

0.4354(2) −0.18514(3)

)
4

(
−0.20018(2) −0.007902(2)
−0.3972(1) −0.25283(2)

) (
−0.25773(2) 0.008185(2)

0.4062(1) −0.18138(4)

)
5

(
−0.19845(3) −0.008626(4)
−0.38433(7) −0.258210(1)

) (
−0.261202(9) 0.006158(2)

0.40026(9) −0.18486(2)

)
6

(
−0.20114(2) −0.007506(2)
−0.38813(7) −0.256624(2)

) (
−0.25346(3) 0.010672(8)
0.39646(9) −0.18708(2)

)
TABLE F.4: Numerical results of the 1-loop finite parts for operators
PS+SP,TT̃ in the 18 SF renormalisation schemes under investigation de-
fined by the source s and the parameter α as in Eq. (8.3.23). These results

have been computed including the clover term in the fermonic action.
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α s γ(1)+
23

0

1

(
0.001519(10) +Nf [−0.000057850(2)] 0.00983(2) +Nf [−0.00034710(1)]

0.006188(1) +Nf [−0.000080203] −0.006776(8) +Nf [−0.00001842(2)]

)
2

(
0.001080(8) +Nf [−0.000057850(2)] 0.00936(2) +Nf [−0.00034710(1)]

0.005504(3) +Nf [−0.000080203] −0.006855(7) +Nf [−0.00001842(2)]

)
3

(
−0.001673(4) +Nf [−0.000057850(2)] 0.00870(2) +Nf [−0.00034710(1)]

0.008552(4) +Nf [−0.000080203] −0.00651(1) +Nf [−0.00001842(2)]

)
4

(
0.000936(10) +Nf [−0.000057850(2)] 0.00743(2) +Nf [−0.00034710(1)]

0.007320(1) +Nf [−0.000080203] −0.00290(2) +Nf [−0.00001842(2)]

)
5

(
0.000497(6) +Nf [−0.000057850(2)] 0.00695(2) +Nf [−0.00034710(1)]
0.0066351(1) +Nf [−0.000080203] −0.00297(2) +Nf [−0.00001842(2)]

)
6

(
−0.002256(4) +Nf [−0.000057850(2)] 0.00629(2) +Nf [−0.00034710(1)]

0.009684(7) +Nf [−0.000080203] −0.00263(2) +Nf [−0.00001842(2)]

)

3/2

1

(
−0.000022(3) +Nf [−0.000057850(2)] 0.00983(2) +Nf [−0.00034710(1)]

0.006188(1) +Nf [−0.000080203] −0.00832(2) +Nf [−0.00001842(2)]

)
2

(
−0.000461(1) +Nf [−0.000057850(2)] 0.00936(2) +Nf [−0.00034710(1)]

0.005504(3) +Nf [−0.000080203] −0.00840(2) +Nf [−0.00001842(2)]

)
3

(
−0.003214(6) +Nf [−0.000057850(2)] 0.00870(3) +Nf [−0.00034710(1)]

0.008552(4) +Nf [−0.000080203] −0.00805(3) +Nf [−0.00001842(2)]

)
4

(
−0.000605(3) +Nf [−0.000057850(2)] 0.00743(1) +Nf [−0.00034710(1)]

0.007320(1) +Nf [−0.000080203] −0.004438(2) +Nf [−0.00001842(2)]

)
5

(
−0.0010440(6) +Nf [−0.000057850(2)] 0.00695(1) +Nf [−0.00034710(1)]

0.0066351(1) +Nf [−0.000080203] −0.004516(2) +Nf [−0.00001842(2)]

)
6

(
−0.003797(7) +Nf [−0.000057850(2)] 0.00629(2) +Nf [−0.00034710(1)]

0.009684(7) +Nf [−0.000080203] −0.004167(4) +Nf [−0.00001842(2)]

)

1

1

(
0.000492(5) +Nf [−0.000057850(2)] 0.00983(2) +Nf [−0.00034710(1)]

0.006188(1) +Nf [−0.000080203] −0.00780(2) +Nf [−0.00001842(2)]

)
2

(
0.000053(3) +Nf [−0.000057850(2)] 0.00936(2) +Nf [−0.00034710(1)]

0.005504(3) +Nf [−0.000080203] −0.00788(2) +Nf [−0.00001842(2)]

)
3

(
−0.002700(4) +Nf [−0.000057850(2)] 0.00870(2) +Nf [−0.00034710(1)]

0.008552(4) +Nf [−0.000080203] −0.00753(2) +Nf [−0.00001842(2)]

)
4

(
−0.000092(5) +Nf [−0.000057850(2)] 0.00743(1) +Nf [−0.00034710(1)]

0.007320(1) +Nf [−0.000080203] −0.003924(7) +Nf [−0.00001842(2)]

)
5

(
−0.000530(2) +Nf [−0.000057850(2)] 0.00695(1) +Nf [−0.00034710(1)]

0.0066351(1) +Nf [−0.000080203] −0.004002(7) +Nf [−0.00001842(2)]

)
6

(
−0.003283(5) +Nf [−0.000057850(2)] 0.00629(2) +Nf [−0.00034710(1)]

0.009684(7) +Nf [−0.000080203] −0.003654(6) +Nf [−0.00001842(2)]

)
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α s γ(1)−
23

0

1

(
0.00051(1) +Nf [−0.000118203(2)] −0.00803(4) +Nf [0.00070922(1)]
−0.006546(2) +Nf [0.000063796] −0.00660(1) +Nf [0.00056285(2)]

)
2

(
−0.002017(7) +Nf [−0.000118203(2)] −0.00577(2) +Nf [0.00070922(1)]
−0.008464(2) +Nf [0.000063796] −0.004564(4) +Nf [0.00056285(2)]

)
3

(
−0.002036(5) +Nf [−0.000118203(2)] −0.00609(2) +Nf [0.00070922(1)]
−0.0069803(3) +Nf [0.000063796] −0.006138(8) +Nf [0.00056285(2)]

)
4

(
−0.00049(1) +Nf [−0.000118203(2)] −0.00498(2) +Nf [0.00070922(1)]
−0.007802(1) +Nf [0.000063796] −0.00229(2) +Nf [0.00056285(2)]

)
5

(
−0.003025(6) +Nf [−0.000118203(2)] −0.00272(1) +Nf [0.00070922(1)]
−0.009719(5) +Nf [0.000063796] −0.00026(3) +Nf [0.00056285(2)]

)
6

(
−0.003045(4) +Nf [−0.000118203(2)] −0.00305(1) +Nf [0.00070922(1)]
−0.008236(3) +Nf [0.000063796] −0.00183(2) +Nf [0.00056285(2)]

)

3/2

1

(
−0.001026(6) +Nf [−0.000118203(2)] −0.00803(4) +Nf [0.00070922(1)]
−0.006546(2) +Nf [0.000063796] −0.00814(3) +Nf [0.00056285(2)]

)
2

(
−0.003558(2) +Nf [−0.000118203(2)] −0.00577(2) +Nf [0.00070922(1)]
−0.008464(2) +Nf [0.000063796] −0.00611(2) +Nf [0.00056285(2)]

)
3

(
−0.003577(2) +Nf [−0.000118203(2)] −0.00609(2) +Nf [0.00070922(1)]
−0.0069803(3) +Nf [0.000063796] −0.00768(2) +Nf [0.00056285(2)]

)
4

(
−0.002034(3) +Nf [−0.000118203(2)] −0.00498(1) +Nf [0.00070922(1)]
−0.007802(1) +Nf [0.000063796] −0.003835(2) +Nf [0.00056285(2)]

)
5

(
−0.004566(5) +Nf [−0.000118203(2)] −0.002722(8) +Nf [0.00070922(1)]
−0.009719(5) +Nf [0.000063796] −0.00180(1) +Nf [0.00056285(2)]

)
6

(
−0.004586(5) +Nf [−0.000118203(2)] −0.00305(1) +Nf [0.00070922(1)]
−0.008236(3) +Nf [0.000063796] −0.003374(6) +Nf [0.00056285(2)]

)

1

1

(
−0.000512(8) +Nf [−0.000118203(2)] −0.00803(4) +Nf [0.00070922(1)]
−0.006546(2) +Nf [0.000063796] −0.00763(2) +Nf [0.00056285(2)]

)
2

(
−0.003044(2) +Nf [−0.000118203(2)] −0.00577(2) +Nf [0.00070922(1)]
−0.008464(2) +Nf [0.000063796] −0.00559(1) +Nf [0.00056285(2)]

)
3

(
−0.0030635(3) +Nf [−0.000118203(2)] −0.00609(2) +Nf [0.00070922(1)]
−0.0069803(3) +Nf [0.000063796] −0.00717(2) +Nf [0.00056285(2)]

)
4

(
−0.001521(6) +Nf [−0.000118203(2)] −0.00498(1) +Nf [0.00070922(1)]
−0.007802(1) +Nf [0.000063796] −0.003321(7) +Nf [0.00056285(2)]

)
5

(
−0.004052(3) +Nf [−0.000118203(2)] −0.002722(8) +Nf [0.00070922(1)]
−0.009719(5) +Nf [0.000063796] −0.00129(2) +Nf [0.00056285(2)]

)
6

(
−0.004072(3) +Nf [−0.000118203(2)] −0.00305(1) +Nf [0.00070922(1)]
−0.008236(3) +Nf [0.000063796] −0.00286(1) +Nf [0.00056285(2)]

)
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α s γ(1)+
45

0

1

(
0.002303(3) +Nf [0.00012884(1)] −0.00169802(7) +Nf [0.0000026054(2)]
0.00172(8) +Nf [0.00179861(4)] 0.00081(2) +Nf [−0.00035752(1)]

)
2

(
0.002685(2) +Nf [0.00012884(1)] −0.0018770(3) +Nf [0.0000026054(2)]
0.00336(7) +Nf [0.00179861(4)] −0.00001(1) +Nf [−0.00035752(1)]

)
3

(
0.002077(4) +Nf [0.00012884(1)] −0.0015930(3) +Nf [0.0000026054(2)]
0.00232(7) +Nf [0.00179861(4)] 0.00046(1) +Nf [−0.00035752(1)]

)
4

(
0.00558(2) +Nf [0.00012884(1)] −0.0019027(6) +Nf [0.0000026054(2)]
0.00795(6) +Nf [0.00179861(4)] 0.00040(1) +Nf [−0.00035752(1)]

)
5

(
0.00597(2) +Nf [0.00012884(1)] −0.002082(1) +Nf [0.0000026054(2)]
0.00959(4) +Nf [0.00179861(4)] −0.00043(1) +Nf [−0.00035752(1)]

)
6

(
0.00536(1) +Nf [0.00012884(1)] −0.0017978(6) +Nf [0.0000026054(2)]
0.00856(4) +Nf [0.00179861(4)] 0.000048(10) +Nf [−0.00035752(1)]

)

3/2

1

(
0.00076(2) +Nf [0.00012884(1)] −0.00169802(7) +Nf [0.0000026054(2)]
0.00172(8) +Nf [0.00179861(4)] −0.000727(3) +Nf [−0.00035752(1)]

)
2

(
0.00114(1) +Nf [0.00012884(1)] −0.0018770(3) +Nf [0.0000026054(2)]
0.00336(7) +Nf [0.00179861(4)] −0.001556(3) +Nf [−0.00035752(1)]

)
3

(
0.00054(2) +Nf [0.00012884(1)] −0.0015930(3) +Nf [0.0000026054(2)]
0.00232(7) +Nf [0.00179861(4)] −0.001082(3) +Nf [−0.00035752(1)]

)
4

(
0.004044(3) +Nf [0.00012884(1)] −0.0019027(5) +Nf [0.0000026054(2)]
0.00795(3) +Nf [0.00179861(4)] −0.001138(2) +Nf [−0.00035752(1)]

)
5

(
0.004426(5) +Nf [0.00012884(1)] −0.002082(1) +Nf [0.0000026054(2)]
0.00959(2) +Nf [0.00179861(4)] −0.001966(5) +Nf [−0.00035752(1)]

)
6

(
0.003817(3) +Nf [0.00012884(1)] −0.0017978(5) +Nf [0.0000026054(2)]
0.00856(2) +Nf [0.00179861(4)] −0.001492(5) +Nf [−0.00035752(1)]

)

1

1

(
0.00128(1) +Nf [0.00012884(1)] −0.00169802(7) +Nf [0.0000026054(2)]
0.00172(8) +Nf [0.00179861(4)] −0.000214(7) +Nf [−0.00035752(1)]

)
2

(
0.00166(1) +Nf [0.00012884(1)] −0.0018770(3) +Nf [0.0000026054(2)]
0.00336(7) +Nf [0.00179861(4)] −0.001042(3) +Nf [−0.00035752(1)]

)
3

(
0.00105(1) +Nf [0.00012884(1)] −0.0015930(3) +Nf [0.0000026054(2)]
0.00232(7) +Nf [0.00179861(4)] −0.000568(3) +Nf [−0.00035752(1)]

)
4

(
0.004557(7) +Nf [0.00012884(1)] −0.0019027(6) +Nf [0.0000026054(2)]
0.00795(4) +Nf [0.00179861(4)] −0.000624(6) +Nf [−0.00035752(1)]

)
5

(
0.004940(9) +Nf [0.00012884(1)] −0.002082(1) +Nf [0.0000026054(2)]
0.00959(3) +Nf [0.00179861(4)] −0.001453(2) +Nf [−0.00035752(1)]

)
6

(
0.004331(7) +Nf [0.00012884(1)] −0.0017978(5) +Nf [0.0000026054(2)]
0.00856(2) +Nf [0.00179861(4)] −0.000979(1) +Nf [−0.00035752(1)]

)
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α s γ(1)−
45

0

1

(
−0.01620(2) +Nf [0.00069509(2)] 0.001678(1) +Nf [−0.0000064430(8)]
0.00879(7) +Nf [−0.002125401(8)] 0.00907(1) +Nf [−0.0004158697(7)]

)
2

(
−0.01676(2) +Nf [0.00069509(2)] 0.001156(2) +Nf [−0.0000064430(8)]
0.00887(6) +Nf [−0.002125401(8)] 0.008779(9) +Nf [−0.0004158697(7)]

)
3

(
−0.01560(1) +Nf [0.00069509(2)] 0.002266(2) +Nf [−0.0000064430(8)]
0.00841(6) +Nf [−0.002125401(8)] 0.008299(9) +Nf [−0.0004158697(7)]

)
4

(
−0.01236(2) +Nf [0.00069509(2)] 0.001914(1) +Nf [−0.0000064430(8)]
0.00755(4) +Nf [−0.002125401(8)] 0.00896(1) +Nf [−0.0004158697(7)]

)
5

(
−0.01292(2) +Nf [0.00069509(2)] 0.0013917(10) +Nf [−0.0000064430(8)]
0.00762(3) +Nf [−0.002125401(8)] 0.008664(8) +Nf [−0.0004158697(7)]

)
6

(
−0.01176(2) +Nf [0.00069509(2)] 0.002502(3) +Nf [−0.0000064430(8)]
0.00716(3) +Nf [−0.002125401(8)] 0.008184(8) +Nf [−0.0004158697(7)]

)

3/2

1

(
−0.01774(3) +Nf [0.00069509(2)] 0.001678(1) +Nf [−0.0000064430(8)]
0.00879(7) +Nf [−0.002125401(8)] 0.007530(5) +Nf [−0.0004158697(7)]

)
2

(
−0.01830(4) +Nf [0.00069509(2)] 0.001156(2) +Nf [−0.0000064430(8)]
0.00887(6) +Nf [−0.002125401(8)] 0.007238(3) +Nf [−0.0004158697(7)]

)
3

(
−0.01714(3) +Nf [0.00069509(2)] 0.002266(2) +Nf [−0.0000064430(8)]
0.00841(6) +Nf [−0.002125401(8)] 0.006758(3) +Nf [−0.0004158697(7)]

)
4

(
−0.013901(2) +Nf [0.00069509(2)] 0.0019137(8) +Nf [−0.0000064430(8)]
0.00755(3) +Nf [−0.002125401(8)] 0.007415(4) +Nf [−0.0004158697(7)]

)
5

(
−0.014461(4) +Nf [0.00069509(2)] 0.0013917(6) +Nf [−0.0000064430(8)]
0.00762(2) +Nf [−0.002125401(8)] 0.007123(2) +Nf [−0.0004158697(7)]

)
6

(
−0.013305(5) +Nf [0.00069509(2)] 0.002502(2) +Nf [−0.0000064430(8)]
0.00716(2) +Nf [−0.002125401(8)] 0.006643(2) +Nf [−0.0004158697(7)]

)

1

1

(
−0.01722(3) +Nf [0.00069509(2)] 0.001678(1) +Nf [−0.0000064430(8)]
0.00879(7) +Nf [−0.002125401(8)] 0.008043(7) +Nf [−0.0004158697(7)]

)
2

(
−0.01778(3) +Nf [0.00069509(2)] 0.001156(2) +Nf [−0.0000064430(8)]
0.00887(6) +Nf [−0.002125401(8)] 0.007751(5) +Nf [−0.0004158697(7)]

)
3

(
−0.01663(2) +Nf [0.00069509(2)] 0.002266(2) +Nf [−0.0000064430(8)]
0.00841(6) +Nf [−0.002125401(8)] 0.007271(5) +Nf [−0.0004158697(7)]

)
4

(
−0.013388(7) +Nf [0.00069509(2)] 0.0019137(10) +Nf [−0.0000064430(8)]
0.00755(3) +Nf [−0.002125401(8)] 0.007928(6) +Nf [−0.0004158697(7)]

)
5

(
−0.013947(4) +Nf [0.00069509(2)] 0.0013917(6) +Nf [−0.0000064430(8)]
0.00762(3) +Nf [−0.002125401(8)] 0.007637(4) +Nf [−0.0004158697(7)]

)
6

(
−0.01279(1) +Nf [0.00069509(2)] 0.002502(2) +Nf [−0.0000064430(8)]
0.00716(3) +Nf [−0.002125401(8)] 0.007156(4) +Nf [−0.0004158697(7)]

)



205

H Error Propagarion in the SSF
recursion

We summarise here the analytical error propagation along the coupling and (non-mixing)
operators SSFs. In the actual calculation (in particular the running mass) this procedure
has been crosschecked with bootstrap analysis. In the final analysis we opted anyway
for the latter since it allow more flexibility, but the following is still valid. The general
procedure is the following:

(i) Define L by fixing the value of the renormalised coupling to some number, u0 =
g 2(L). Then construct a recursive sequence of couplings such that uk−1 = σ(uk) —
explicitly

u0 = ḡ2(L) ,

σ−1(u0) =u1 = ḡ2(L/2) ,

σ−1(u1) =u2 = ḡ2(L/4) ,

...

σ−1(un−1) =un = ḡ2(L/2n) . (H.0.1)

(ii) Construct the sequence vk = σP(uk)vk−1, with v0 = 1 — explicitly 1

v0 = 1 , (H.0.2)
v1 = σP(u1) ,

v2 = σP(u2)σP(u1) ,

...
vn = σP(un) · · ·σP(u2)σP(u1) .

(iii) Use the identity

M

m(L)
= ĉ(un) vn , (H.0.3)

computing ĉ(un) in perturbation theory. To that purpose, un has to be small enough
so that the perturbative expansion employed for τ and β can be trusted within some
reasonable precision.

The main application of this strategy would be to a case where L = Lhad, such that
Lhad is a convenient scale to match to bare quark masses obtained from large-volume
computations.
We now assume that σ and σP have been computed and are given, within some range of

1This is not what have been done for the running mass. Since in that case v0 = σP(u0). However we
present this in this way since this is the kind of recursion used for the Nf = 2 composite operators running.
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values of u, by polynomials of the form

σ(u) = u(1 + s1u+ s2u
2 + . . .+ smu

m) , (H.0.4)

σP(u) = 1 + p1u+ p2u
2 + . . .+ pnu

n , (H.0.5)

with covariance matrices Cu and CP for the fitted coefficients, respectively. We will as-
sume in the following that the two sets of coefficients are uncorrelated.2

H.0.1 Coupling

To derive an error propagation formula for the sequence {uk}, we start by considering
the change δiuk−1 of the element uk−1 in the sequence due to a variation δsi of the fit
parameter si, viz.

δiuk−1 = δi[σ(uk)] =
∂σ

∂si

∣∣∣∣
uk

δsi +
∂σ

∂u

∣∣∣∣
uk

δiuk . (H.0.6)

Since u0 is errorless by construction, for the first step one has

δiu0 = 0 =
∂σ

∂si

∣∣∣∣
u1

δsi +
∂σ

∂u

∣∣∣∣
u1

δiu1 (H.0.7)

⇓

δiu1 = −
[
∂σ

∂u

∣∣∣∣
u1

]−1
∂σ

∂si

∣∣∣∣
u1

δsi. (H.0.8)

The squared error of the coupling value u1 can then be computed as

(∆u1)2 = Cu
ijδu

(i)
1 δu

(j)
1 , (H.0.9)

where

δu
(i)
1 = −

[
∂σ

∂u

∣∣∣∣
u1

]−1
∂σ

∂si

∣∣∣∣
u1

. (H.0.10)

It is then trivial to iterate the procedure for the rest of the sequence applying Eq. (H.0.6),
with the result

(∆uk)
2 = Cu

ijδu
(i)
k δu

(j)
k , (H.0.11)

where

δu
(i)
k =

[
∂σ

∂u

∣∣∣∣
uk

]−1(
δu

(i)
k−1 −

∂σ

∂si

∣∣∣∣
uk

)
,

δu
(i)
0 = 0 .

(H.0.12)

2This is the case in the Alpha computation of the running mass for Nf = 0, 2, under the assumption that
in the fit for σP it is fair to neglect the uncertainty on the values of u that fix the constant physics lines are
negligible. For Nf = 3 it is again true for the part of the running performed using the SF coupling, but not
on the GF side.
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These quantities can be easily evaluated using

∂σ

∂si

∣∣∣∣
uk

= (i+ 1)uik . (H.0.13)

H.0.2 Pseudoscalar

We chose the pseudoscalar as an example, but the procedure is rather general. In this
case there are two sources of uncertainty: the errors on the fit coefficients pi, and the
uncertainties born by the values uk of the coupling at which σP is evaluated.

Let us first neglect the uncertainty coming from the coupling. In that case the error
on vk can be written as

(∆vk)
2 = CP

ij ∂vk
∂pi

∂vk
∂pj

. (H.0.14)

By inserting the explicit form of vk one gets

(∆v1)2 = CP
ij ∂σP

∂pi

∣∣∣∣
u1

∂σP

∂pj

∣∣∣∣
u1

,

(∆v2)2 = CP
ij

[
σP(u2)

∂σP

∂pi

∣∣∣∣
u1

+
∂σP

∂pi

∣∣∣∣
u2

σP(u1)

]
×

×
[
σP(u2)

(
∂σP

∂pj

)
u1

+
∂σP

∂pj

∣∣∣∣
u2

σP(u1)

]
,

. . . . . .

(H.0.15)

and it is easy to check by induction that

(∆vk)
2 = v2

k CP
ijδv

(i)
k δv

(j)
k ,

δv
(i)
k = δv

(i)
k−1 +

1

σP(uk)

∂σP

∂pi

∣∣∣∣
uk

, δv
(i)
0 = 0 ,

(H.0.16)

which again can be easily evaluated using

∂σP

∂pi

∣∣∣∣
uk

= iui−1
k . (H.0.17)

Let us now incorporate the uncertainty coming from the coupling. To that purpose
we have to compute the change δiσP(uk) in σP(uk) due to a variation δsi of the fit param-
eter si. Using the notation introduced above for the uncertainties in uk, one finds

δi[σP(uk)] =
∂σP

∂si

∣∣∣∣
uk

δsi +
∂σP

∂u

∣∣∣∣
uk

δu
(i)
k , (H.0.18)

where the first term on the rhs vanishes (under the hypotesis of no-correlation between
σP and σ) . After some easy algebra one then obtains for (∆vk)

2 the final formula

(∆vk)
2 = v2

k

[
CP

ijδv
(i)
k δv

(j)
k + Cu

ijδũ
(i)
k δũ

(j)
k

]
, (H.0.19)
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where δũ(i)
k can be obtained from the recursion

δũ
(i)
k = δũ

(i)
k−1 +

1

σP(uk)

∂σP

∂u

∣∣∣∣
uk

δu
(i)
k , δũ

(i)
0 = 0 . (H.0.20)

H.0.3 Matching to perturbation theory

Finally, we come back to Eq. (H.0.3) and compute the final uncertainty onM/m(L). There
are four different sources for the latter:

(i) The uncertainty ∆vn on the nonperturbative evolution.

(ii) The error on the matching factor ĉ(un) induced by the uncertainty ∆un on un.

(iii) The uncertainty coming from the errors on the perturbative coefficients bn, dn (which
are known to finite precision in SF schemes, due to the need of numerical integra-
tions in their computation).

(iv) The uncertainty coming from the perturbative truncation in ĉ(un).

The last two sources of uncertainty can be estimated separately, since they are completely
decorrelated from ∆vn and ∆un. The uncertainty coming from ∆un and ∆vn can be
written as[

∆

(
M

m(L)

)]2

un,vn

=ĉ(un)2(∆vn)2 +

(
∂ĉ(un)

∂u

∣∣∣∣
un

)2

v2
n(∆un)2+

+
∂(M/m(L))

∂un

∂(M/m(L))

∂vn

[
Ciju δu

(i)
n vnδũ

(j)
n

]
,

(H.0.21)

where the last term takes into account the correlation between un and vn,and one can use

∂ĉ(un)

∂u

∣∣∣∣
un

= − 1

2gm

τ(gm)

β(gm)
ĉ(un) , (H.0.22)

g2
m ≡ un . (H.0.23)

(Recall that vkδũ
(j)
k is the fluctuation of vk due to a change in uk related to the uncertainty

on sj .) Thus one finally has the result3

[
∆

(
M

m(L)

)]2

un,vn

=

(
M

m(L)

)2

×

×

(∆vn
vn

)2

+

(
∂ĉ(u)

∂u

∣∣∣∣
un

1

ĉ(un)

)2

(∆un)2 +
∂ĉ(u)

∂u

∣∣∣∣
un

1

ĉ(un)

[
Ciju δu

(i)
n δũ

(j)
n

] .

(H.0.24)

Typically, the total relative error will be dominated by the relative error ∆vn/vn of the σP

recursion, but the contribution from the coupling coming with ∆un will not be negligible.

3This formula is the one that can be found in the old quenched analysis codes from the Capitani et al.
paper, but for the factor of 1/gm in Eq. (H.0.22) — which results in a very small effect anyway, since g2

m ∼ 1
and this term appears in the smallest contribution to the error.
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I Correlated random samples

Bootstrap resampling methods are vastly discussed in literature (among others [150])
and have a large application when dealing with the autocorrelation of data coming from
a stocastic process, like a Markov Chain Monte Carlo (MCMC). In order to apply such a
resampling, the starting point is to have a sample. We report here a general method to
take advantage of bootstrap from parameters with a given covariance, instead of a bunch
of data.
Suppose we have a vector ofN parameters x = (x1, . . . , xN ) with anN×N semi-positive
definite covariance matrix C. What we need in order to use a resampling methods is to
build the ”original” samples starting from x and C. We built a gaussian random distri-
bution x̃i with i = 1, . . . , N so that

〈x̃i〉 = 1 , σ2
x̃i = 1 . (I.0.1)

Given the properties of C it is possible to apply the Cholesky decomposition and write it as
C = LLT with L an upper triangular matrix. The correct mean value and correlation for
our gaussian samples are given by

x̃′j = x̃iLij + xi ⊗ 1N×N , (I.0.2)

where the sum is intended for every random component of the sample x̃i. Finally we
have

〈x̃′i〉 = xi COV (x̃′i, x̃
′
j) = Cij . (I.0.3)

Once the ”original” samples are obtained it is straightforward to proceed with the stan-
dard bootstrap and propagate the error to any interesting derived observable. While this
seems a useless exercise, it offer a very flexible tool to crosscheck or eventually avoid
cumbersome error propagation (like the one in Appendix H). Moreover it finds a natural
application in non-linear fitting procedures.
Suppose we want to fit some data Y exp

i with uncertainty dY exp
i for i = 1, . . . ,M to a

model F (k1, . . . , kn, p1, . . . , pm;X) with parameters k1, . . . , kn, p1, . . . , pm. We denote by
k1, . . . , kn some theoretically-fixed parameters (i.e. coming from a previous analysis) with
a covariance K and p1, . . . , pm free fitting parameter. Choosing the χ2 as the likelyhood
function which can test the goodness of our data model we can write is as the sum over
normalized residues R as

χ2 =
data∑
i

(Ri)
2

(δRi)2
with Ri = (Y exp

i − F (k1, . . . , kn, p1, . . . , pm;Xi)) . (I.0.4)

In general, δRi can be very difficult to calculate, and can contain fit parameters pi mak-
ing the regression non-linear and thus the minimization of the χ2 computationally and
theoretically challenging1. One way to proceed can be to first create correlated bootstrap
samples of the parameters ki and then linearise (in terms of parameters) the χ2 with the

1because of the possible presence of relative minima
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following factorisation

χ2
l =

data∑
i

(Y exp
i − F (k̄l1, . . . , k̄

l
n, p

l
1, . . . , p

l
m;Xi))

2

(dY exp
i )2

+

n∑
j

(k̄lj − klj)2

Kjj
(I.0.5)

where l is the bootstrap index and k̄ are some ”additional” fit parameters which does
not count as degrees of freedom. The χ2

l is than minimized for all l and errors on fitting
parameters is simply given by the covariance computed over the samples. This proce-
dure have been crosschecked all the times with both an analitical and numerical error
propagation.
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[61] M. Dalla Brida and M. Lüscher, The gradient flow coupling from numerical stochastic
perturbation theory, PoS LATTICE2016 (2016) 332, [arXiv:1612.0495].

[62] M. Bruno et. al., Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively
improved Wilson fermions, JHEP 02 (2015) 043, [arXiv:1411.3982].

[63] M. Bruno, M. Dalla Brida, P. Fritzsch, T. Korzec, A. Ramos, S. Schaefer, H. Simma,
S. Sint, and R. Sommer, The Λ-parameter in 3-flavour QCD and αs(mZ) by the ALPHA
collaboration, PoS LATTICE2016 (2016) 197, [arXiv:1701.0307].

[64] K. Symanzik, Some Topics in Quantum Field Theory, in Mathematical Problems in theo-
retical Physics. Proceedings, 6th International Conference on Mathematical Physics, West
Berlin, Germany, August 11-20, 1981, pp. 47–58, 1981.

[65] K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 1. Principles
and phi**4 Theory, Nucl. Phys. B226 (1983) 187–204.

[66] K. Symanzik, Continuum Limit and Improved Action in Lattice Theories. 2. O(N) Non-
linear Sigma Model in Perturbation Theory, Nucl. Phys. B226 (1983) 205–227.

[67] B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD
with Wilson Fermions, Nucl. Phys. B259 (1985) 572.

[68] P. Weisz, Renormalization and lattice artifacts, in Modern perspectives in lattice QCD:
Quantum field theory and high performance computing. Proceedings, International
School, 93rd Session, Les Houches, France, August 3-28, 2009, pp. 93–160, 2010.
arXiv:1004.3462.

[69] M. Luscher and P. Weisz, On-Shell Improved Lattice Gauge Theories, Commun. Math.
Phys. 97 (1985) 59. [Erratum: Commun. Math. Phys.98,433(1985)].

[70] S. Sint and P. Weisz, Further one loop results in O(a) improved lattice QCD, Nucl. Phys.
Proc. Suppl. 63 (1998) 856–858, [hep-lat/9709096].

http://xxx.lanl.gov/abs/hep-lat/9508012
http://xxx.lanl.gov/abs/hep-lat/9310022
http://xxx.lanl.gov/abs/1608.0890
http://xxx.lanl.gov/abs/1110.6365
http://xxx.lanl.gov/abs/hep-lat/0411025
http://xxx.lanl.gov/abs/1006.0672
http://xxx.lanl.gov/abs/hep-lat/9207010
http://xxx.lanl.gov/abs/1612.0495
http://xxx.lanl.gov/abs/1411.3982
http://xxx.lanl.gov/abs/1701.0307
http://xxx.lanl.gov/abs/1004.3462
http://xxx.lanl.gov/abs/hep-lat/9709096


BIBLIOGRAPHY 215

[71] A. Ramos, The gradient flow running coupling with twisted boundary conditions, JHEP
11 (2014) 101, [arXiv:1409.1445].
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