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Abstract. Quantum Monte Carlo methods have been used very successfully to calculate the
ground state properties of a variety of nuclear and other strongly interacting many body systems.
An exciting recent development in low energy nuclear physics is the formulation of nuclear
Hamiltonians based on the symmetries of quantum chromodynamics via chiral effective field
theory. However, the usual coordinate space based quantum Monte Carlo implementation is
unsuitable for these Hamiltonians due to the presence of non-localites. Here we report on our
recent work in developing a new quantum Monte Carlo algorithm suitable for these non-local
Hamiltonians, and present some results for pure neutron matter.

1. Introduction

Predicting the properties of nuclei from the underlying theory of strong interactions viz.
quantum chromodynamics (QCD) is one of the long standing goals of nuclear physics. Chiral
effective field theory (χ-EFT) serves as a bridge between QCD and low energy nuclear
physics by providing a systematic expansion for the nuclear forces based on the symmetries
and on the symmetry breakings of QCD [1, 2, 3]. Chiral interactions have already been
employed in calculations of nuclear structure and reactions of light and medium-mass nuclei
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 16, 18, 19], and infinite matter [20, 21, 22, 23, 24, 25, 26].

Amongst the available non-perturbative methods for strongly interacting systems, quantum
Monte Carlo (QMC) methods have proven to be extremely accurate for a variety of systems
[27, 28]. In fact, some of the most accurate calculations for light nuclei and neutron matter
were performed using continuum diffusion based QMC methods, i.e., nuclear Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte Carlo (AFDMC) [29, 30, 31, 32],
in conjunction with the semi phenomenological local Argonne-Urbana family of nuclear forces
[33, 34]. On the other hand, the interactions obtained from chiral EFT are, in general, non-local,
and hence are difficult to incorporate in standard continuum QMC methods 1.

In this work, we report our calculations with a non–local chiral interaction in which a proper
QMC algorithm is used. The interaction we use is the recently developed chiral NNLOopt

interaction [35], which fits the experimantal phase–shifts at χ2 ∼ 1 for laboratory energies less

1 See however [25] for a recent attempt to incorporate chiral interactions in continuum QMC by removing non-
localities up to next-to-next-to-leading order (NNLO).
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than 125 MeV. However, the contribution from the three nucleon forces is smaller with this
parametrization than with the previous ones.

In the next section we present the QMC method and then we will present an application to
neutron matter.

2. Method

Quantum Monte Carlo methods solve the Schroedinger equation for the ground state by looking
at the long τ solution of the imaginary–time equation:

−
∂

∂τ
|Ψ(τ)〉 = H|Ψ(τ)〉 = (K + V )|Ψ(τ)〉 (1)

where K and V are respectively kinetic and potential parts of the total Hamiltonian H.
equation (1) can be recast into the integral equation:

〈μ|Ψ(τ + Δτ)〉 =

∫
dν〈μ|GΔτ |ν〉〈ν|Ψ(τ)〉 (2)

where we employed a (continuous) complete sets of states |ν〉 and |μ〉 for convenience and G is
the Green’s function of equation (1), the so–called imaginary-time propagator. By repeatedly
integrating (2), starting from some initial ansatz for the wave-function, we will project to the
eigenstate of H with the lowest eigenvalue.

Conventional QMC methods formulated in coordinate space (ν, μ ≡ R) rely on the fact that
for small imaginary–time step Δτ we have the factorization

〈R′|GΔτ |R〉 = GΔτ (R
′,R) ≈ Gd

Δτ (R
′,R)Gb

Δτ (R
′) + O(Δτ2) (3)

where Gd
Δτ (R

′,R) is the free-particle Green’s function coming from the kinetic energy term K
and Gb

Δτ (R
′) takes into account the effect of interactions V . Now if Gd

Δτ (R
′,R) is positive–

definite we can interpret it as a probability and use stochastic methods to integrate (2). This
scheme however cannot be followed in the general case where the interaction is non–local in
coordinate space: 〈R′|V |R〉 �= V (R′)δ(R′ − R). In this case in fact transitions to new states is
controlled also by the potential and finding efficient ways to perform the sampling becomes a
challenging task (cf. [52]). Unfortunately in general interactions coming from χ–EFT belong to
this class [1, 2, 3].

These problems associated with non–local potentials are however essentially connected to
fact that we are working in a continuous single–particle basis. Let us then take a finite set S
of sp states of size Ns and consider a general second–quantized fermionic Hamiltonian which
includes only two–body interactions

H =
∑
i∈S

εia
†
iai +

∑
abij∈S

V ab
ij a†aa

†
baiaj , (4)

where a†i creates a particle in the single-particle (sp) state labeled by i (i is a collective label for
all sp quantum numbers) and the V ab

ij are general two-body interaction matrix elements.
The resulting many–body Hilbert space would be spanned by the full set of N–particle Slater

determinants that can be generated using the sp orbitals i ∈ S. At this point we want to solve
for the ground–state of the system by repeatedly applying a projection operator like

〈m|P |n〉 ≡ 〈m|GΔτ |n〉 = 1 − Δτ (H − ET )|n〉

= δm,n − Δτ〈m|H − ET |n〉
(5)
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where ET is just an energy shift used to preserve the norm of the solution.
Since our final purpose is to interpret the off–diagonal terms in (5) as probabilities, we need

the matrix elements 〈m|P |n〉 ≥ 0 (or equivalently 〈m|H|n〉 ≤ 0). In general however P will
have negative–matrix elements which will cause problems, this is once again a manifestation of
the sign–problem.

In principle, one can still produce a stochastic evolution absorbing the signs into the
renormalization factor and sampling off-diagonal moves using |〈m|P |n〉|, but this is accompanied
by an exponential decay of the signal to noise ratio as a function of the projection time τ = MΔτ .
Recently it was shown that by employing an annihilation step in the evolution this problem can
be substantially alleviated [36, 37, 38]. At the end however these algorithms have still an
exponential scaling with system–size, though with a reduced exponent.

In CIMC we instead deal with the sign–problem in a way which is somewhat similar to
standard coordinate–space QMC: we will use an initial ansatz ΦT for the ground–state wave–
function and use that to constrain the random walk in a region of the many–body Hilbert space
where 〈m|P |n〉 ≥ 0 is satisfied. In order to this scheme to be practical one needs a systematic
way for reducing the bias coming from this approximation, e.g. we want the bias to go to zero as
the ansatz ΦT goes towards the ground–state Ψ0. That’s exactly what is done in coordinte-space
fixed–node QMC simulations.

Following the work in [39, 40] we define a new Hamiltonian H, whose off–diagonal matrix
elements are given by

〈m|H|n〉 =

{
0 s(m,n) > 0

〈m|H|n〉 otherwise
, (6)

while the diagonal terms are

〈n|H|n〉 = 〈n|H|n〉 +
∑
m�=n

s(m,n)>0

s(m,n) . (7)

where s(m,n) = ΦT (m)〈m|H|n〉/ΦT (n), and a new propagator

〈m|P|n〉 = δm,n − ΔτΦT (m)〈m|H − ET |n〉/ΦT (n) . (8)

Now the propagator P is, by construction, free from the sign–problem and performing the
corresponding random–walk allows us to filter the state ΦT (n)φ0(n), where now φ0(n) is the
ground–state of the hamiltonian H. The ground–state energy ε obtained following this procedure
is a strict upper bound for the true ground–state energy Egs of the true hamiltonian H and,
moreover, this upper bound is tighter than the variational upper–bound provided by 〈ΦT |H|ΦT 〉
[39, 40, 41].

Up to now we have just discussed real–symmetric hamiltonian matrices but in the case of
χ-EFT interactions in momentum–space we have to deal with a complex–hermitian matrix.
The extension to this more general case of equations (6)-(8) can be actually performed while
preserving all the favorable properties of the method discussed so far: we replace s(m,n) in
equation (6) and equation (7) with

s
′(m,n) =

Re [Φ∗
T (m)〈m|H|n〉ΦT (n)]

|ΦT (n)|2
, (9)

where Re selects the real part, and define the propagator

〈m|P ′|n〉 = δm,n − Δτ
Re [Φ∗

T (m)〈m|H − ET |n〉ΦT (n)]

|ΦT (n)|2
. (10)
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Figure 1. (Color online) The EoS of pure neutron matter (66 neutrons) using the same χ-
EFT interaction with different methods: red squares - our Monte Carlo results, black solid line
Hartree-Fock, green dashed lines PT-2. The inset shows the convergence of our energies as a
function of kmax at ρ = 0.08 fm−3 for 14 (black squares) and 66 (blue circles) particles. The
dotted lines are a guide to the eye.

The proofs of upper bound properties is analogus to the one in the real case and will be reported
elsewhere [42].

Finally, to assure the success of the proposed method a good choice for the importance
function |ΦT 〉 is crucial, we need a wave–function flexible enough to account for the relevant
correlations in the system and that at the same time can be evaluated sufficiently quickly on
a computer. In many strongly–interacting systems coupled–cluster theory provide an ansatz
that fulfills the first criterion. In [51] we showed how to evaluate the overlaps 〈n|ΦT 〉 in a
computationally efficient way in the so–called coupled cluster doubles (CCD) approximation.
Extensions to include singles (CCSD) and triples (CCSDT) corrections, useful for treating
inhomogeneous systems or many–body interactions, are straightforward.

3. Neutron matter in momentum–space

In this work we choose for the sp basis states the eigen–states of momentum and the z
components of spin and iso–spin. Calculations are performed at fixed density ρ by putting
A nucleons in a cubic box of size L3 = A/ρ with periodic boundary conditions. The finiteness of
the box requires the sp states to lie on a cubic lattice in momentum space with lattice constant
l = 2π/L. This scale imposes thus an infra–red (IR) cut off in our scheme, and in order to obtain
a finite basis we impose an additional ultra–violet (UV) cut off kmax so that only sp states with
k2

i ≤ k2
max are included. A sequence of calculations with increasing kmax and decreasing l need

to be performed till convergence is reached.
In the inset of figure 1 we plot the energy per particle as a function of the UV cut off kmax

at ρ = 0.08 fm−3 for for both 14 and 66 neutrons, at all densities considered in this work we
found the same smooth behaviour. The CIMC calculations are considered to have converged
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Figure 2. (Color online) The EoS of pure neutron matter: red squares - our results (66
neutrons), brown circles - AFDMC EoS with the 2b AV8’ [44], blue dashed line - APR EoS with
the 2b AV18 [43], blue solid line - APR EoS with the 2b AV18 + 3b UIX [43], black dashed
dotted line - NL3 EoS [46].

when the difference in energy between two successive values of kmax is less than the statistical
error (≈ 10 − 25 KeV at convergence).

Interestingly UV convergence is obtained for values kmax−kf 450 MeV (where kf is the Fermi
momentum) which is comparable to the momentum–cutoff at 500 MeV in the N2LO interaction.
We find this to be the case for all densities considered.

In figures 1 and 2 we show our results for pure neutron matter. In figure 1 we compare
them with Hartree-Fock (HF) and 2nd order perturbation theory (PT-2) calculations employing
the same interaction. As is apparent neutron matter with this chiral interaction is pretty much
perturbative, with PT-2 numbers consistently overestimating the binding energy but still quite
close to the non–perturbative answer given by CIMC .

In figure 2 we include the variational APR EoSs (two body - AV18 and two plus three
body - AV18+UIX interactions) [43] and the AFDMC EoS (two body - AV8′ interaction)
[44] obtained with realistic interactions fitting the NN phase–shifts data. Most computer
simulations of supernovae use phenomenological EoSs based typically on the liquid drop model,
the most popular being the Lattimer-Swesty EoS [45], or on relativistic mean field theory
[46, 47, 48, 49, 50]. As a prototype of such an EoS we have included the results from the
NL3 EoS [46].

As can be seen the calculations based on microscopic Hamiltonians are consistent (within
about 10%) at low densities (� 0.1 fm−3) and other many–body calculations with realistic
interactions [24, 25, 22, 26, 21, 20] are also consistent with the ones shown in the figure in this
density range.

Phenomenological approaches as the NL3 model on the other hand show a completely different
behaviour even at very low densities. This strong deviation of predictions obtained from these
popular phenomenological models from the results obtained from microscopic calculations was
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also pointed out recently in [26] in the context of χ-EFT interactions.

4. Conclusion

In conclusion, we reported the first quantum Monte Carlo calculations with non-local chiral
interactions. In this preliminary applications we find, unsurprisingly, that the equation of state
of neutron matter at low densities is reasonably model independent as long as the interaction
used is fit to the low energy scattering phase shifts.

The QMC method described in this paper is quite general and can be used for nuclear matter
and finite nuclei, and with three body forces. This work paves the way to a systematic non–
perturbative study of chiral–forces in all this regimes. Work in these directions is in progress.
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