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ABSTRACT OF THE DISSERTATION 

 

Search for Exotic Decays of the Higgs Boson to a Pair of New Light Bosons in the Final 
States with Four Bottom Quarks 

 
by 

Seyyed Mohammad Amin Ghiasi Shirazi 

 

Doctor of Philosophy, Graduate Program in Physics 
University of California, Riverside, March 2019 

Dr. Owen Long, Chairperson 
 

In this dissertation, we present a search for non-standard decay of the Standard Model-like 

Higgs boson to a pair of pseudoscalar lighter bosons 𝐻	 → 𝑎𝑎 with 12	𝐺𝑒𝑣 < 𝑚, <

60	𝐺𝑒𝑉, as predicted in models with extended Higgs sectors like the next-to-minimal 

supersymmetric standard model. The search is done using 35.9 fb23 of 13 TeV center of 

mass pp collision data recorded in 2016 by the Compact Muon Solenoid experiment at the 

Large Hadron Collider.  

In this analysis, only the W Higgs associated production is considered to characterize the 

final state by one isolated high 𝑝5 lepton.  Then, the MVA BDT classifier is used to 

distinguish between signal and background. And finally, The CLs method is used in the 

three and four reconstructed b-quark regions to set upper limits on the branching ratio 

𝐵𝑟(𝐻	 → 𝑎𝑎) × 𝐵𝑟;(𝑎	 → 	𝑏𝑏=). Unfortunately, at the time of writing this dissertation, the 

analysis is not unblinded yet. Therefore, the upper limit plot lacks the observed curve.  
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Introduction 

The idea that matter is made of discrete units goes back to round 440 BC in ancient Greece 

as a philosophical concept[1]. After around 2200 years, chemists in the early 19th century 

observed in their laboratories that matter indeed behaves as if it were made up of atoms. 

The word “atom” originates from the Ancient Greek adjective “atomos”, meaning 

"indivisible".[2] The theoretical explanation of the Brownian motion by Albert Einstein in 

1995 can be considered the first proof of the atomic theory[3]. However, discovering the 

subatomic world started by the discovery of the electron by J.J. Thomson[4] in 1897 and 

continued by the discovery of the proton (in 1911 by Ernest Rutherford)[5] and the neutron 

(in 1932 by James Chadwick)[6]. The fairly simple picture of the world made up of three 

particles, namely electrons, protons, and neutrons had transformed entirely by the mid-

1960s, when the experimentalists discovered so many different species that scientists 

started talking about a particle zoo. Alongside experimentalists, the theorists also continued 

shedding light on the mysteries of the universe and developed the Quantum Field Theory 

and then the Standard Model. In the second half of the twentieth century, high energy 

physics was driven by a sequence of increasingly more powerful particle accelerators; the 

LHC accelerator being the newest, most extensive, and highest energy so far. [7] 
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Chapter 1 Theory and Motivation  

1.1 The Standard Model 

The Standard Model is our best current understanding of the fundamental nature of the 

universe [8] It tries to explain all the measurements in particle physics using the properties 

and interactions of a handful of particles of four distinct types: 

• Two families of fermions named leptons and quarks; Fermions are particles that 

have half-integer spin 

• One family of bosons - named gauge bosons – Bosons are ‘force carriers’ and have 

integer spin;  

• And a spin-0 particle called the Higgs boson, which is responsible for the origin of 

mass within the theory. Without the Higgs boson leptons, quarks, and gauge bosons 

would all be massless according to the SM.  

All the particles in the standard model are assumed to be elementary: that is they are treated 

as point particles, without internal structure or excited states[9]. Figure 1-1 depicts the 

elementary particles that the SM embodies. All these particles have been experimentally 

observed with the last being the discovery of the Higgs Boson at CERN in 2012.  
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Figure 1-1: The Standard Model tries to explain the world using only a handful of elementary particles. This image is 
taken from [10] 

The SM describes three forces between particles: Electromagnetic, weak and strong forces. 

Although it does not formulate gravity, it is not an urgent problem since gravity is 

negligible at subatomic scales. Quantum Chromodynamics (QCD) is the formulation of the 

strong force based on the SU(3) non-Abelian gauge group, and the electroweak theory is a 

unified formulation for the weak and electromagnetic forces based on an 𝑆𝑈(2) × 𝑆𝑈(1) 

symmetry. Therefore, the Standard Model belongs to the symmetry group: 

 𝑆𝑈(3)m × 𝑆𝑈(2)n × 𝑆𝑈(1)n (1) 

Where C stands for color, L denotes that only the left-handed fermions transform 

nontrivially, and Y shows weak hypercharge; the generator of U(1) [11] 
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1.1.1 Quantum Chromodynamics (QCD) 

In early days of nuclear physics, it was a puzzle how protons could stay so close when they 

should repel each other electromagnetically. This puzzle was solved by proposing a new 

force called the strong force. In 1935, Hideki Yukawa proposed a massive boson mediator 

responsible for the short range of the strong interaction.[12] However, this picture was 

entirely changed by mid-1960s when the QCD theory was developed. [7] 

Nowadays, we know that not only is the strong force responsible for the binding of protons 

and neutrons (long range about 1 to 3 fm) but also it is responsible for keeping quarks 

together in protons and neutrons (less than about 0.8 fm, the radius of a nucleon). In the 

latter case, it is also called the color force [13]  

The theory of the strong interactions between quarks and gluons is called Quantum 

ChromoDynamics (QCD). The underlying symmetry is non-Abelian SU(3), and the charge 

is called color which can be red, green, and blue. So far, we have not observed any free 

color charges. In other words, quarks create groups that are neutral together in color. Any 

particle that is strongly interactive is called a Hadron. Two groups of Hadrons have been 

observed so far1 [7]: 

• Mesons are composed of a quark-antiquark pair 

• Baryons are composed of three quarks or three antiquarks 

                                                

1- The LHCb collaboration at CERN confirmed the observation of pentaquarks, i.e. a particle with five 
quarks (14. Aaij, R., et al., Observation of J/ψ p Resonances Consistent with Pentaquark States in Λ 
b 0→ J/ψ K− p Decays. 2015. 115(7): p. 072001.) in 2015. Even more quarks binding in one particle is 
still theatrically possible. However, in this thesis, we will only talk about Mesons and Baryons. 
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Gluons are the mediators of the strong force. They are massless and electrically neutral. 

Gluons are linear combinations of the eight generators of the SU(3) group corresponding 

to eight gauge fields Gaμ. [15] 

 

1.1.1.1 The strong coupling constant  

The Lagrangian density of the QCD reads:  

 

ℒpmq(𝑥) = 	−
1
4𝐺,

st𝐺st, + 𝑖u𝜓=wx𝛾sz𝐷s|x}

~

w�3

𝜓w
} −u𝑚w𝜓=wx𝜓w,x

~

w�3

 

−
1
2𝛼�

𝜕s𝐴s,𝜕s𝐴,
s − 𝜕s𝜑=,𝐷s𝜑, 

(2) 

Where: 

- 𝐺st, = [𝜕s𝐴�, − 𝜕�𝐴s, + 𝑔�𝑓,��𝐴s�𝐴�� ]; 𝑎 ≡ 1,2, … ,8	 are the Yang-Mills field 

strength constructed from the gluon fields 𝐴s,;	𝑓,�� are real structure constants 

which close the SU(3) Lie Algebra  

- 𝜓w is the field of the quark flavor j 

- 𝜑,(𝑥) are eight anti-commuting scalar fields in the 8 of SU(3)  

- z𝐷s|x} ≡ 𝛿x}𝜕s − 𝑖𝑔∑
3
;
𝜆x}, 𝐴s,,  are the covariant derivatives acting on the 

quark color components 𝛼, 𝛽 ≡ red, blue, and yellow; 𝜆x},  are the eight 3×3 color 

matrices[16] 

The strong coupling constant is defined as: 

 𝛼� =
𝑔�;

4𝜋 (3) 
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If we use the perturbation theory to calculate a process, it will include loop diagrams of 

higher-order contributions. The 4-dimensional integrations over those loop momenta will 

diverge. These divergences are called ultraviolet divergences. To sweep the divergences 

under the carpet, we need a renormalization procedure. The bare parameters of the theory, 

like the masses, field strengths, and coupling constants are modified, such that they contain 

counter terms to absorb these divergences. 

No matter what renormalization method we use, the coupling constants change with scale. 

In other words, if we normalize a theory in a scale 𝜇�, we need to calculate the value of 

coupling constants in another scale 𝜇. This means that the coupling constants are not 

actually constant anymore and they run with momentum, a phenomenon commonly called 

running coupling constants [17, 18] If we calculate the dependency at the leading order, 

we have: 

 𝛼�(𝜇;) =
𝛼�(𝜇�;)

1 + 𝛼�(𝜇�;)𝛽� ln �
𝜇;
𝜇�;
�
 (4) 

Where 𝛽� = 11 − ;
�
𝑛� where 𝑛� is the number of quark flavors 

Note how 𝛼� 	→ 0	𝑎𝑛𝑑	𝑔� → 0 when 𝜇 → ∞. This means that any strong interaction is 

proportional to the powers of 𝑔�;. When 𝑔� →	0, it means that the strong interaction 

disappears, and the quark or gluon becomes free. This behavior is called asymptotic 

freedom, and it allows us to use the perturbation theory at high energies. However, at low 

energies where QCD is non-perturbative, the behavior of the strong force is more complex.  
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1.1.2 Electroweak Theory 

The electroweak theory is a perfect example of how the forces we consider different can 

be unified. Before Maxwell’s work in the 1850s, the electric and magnetic forces were 

deemed to be separate. However, his work unified the forces in one formula: 

 𝐹 = 𝑞 �𝐸 + �
𝑣
𝑐 × 𝐻 ¡ 

(5) 

The relative ratio of electric and magnetic forces depends on the velocity and |𝐸|~|𝐻| only 

at relativistic speeds. Therefore, we can say that the scale in which the unification of 

electric and magnetic forces happens is the ultrarelativistic energies of particles. About 100 

years after Maxwell, the Quantum Electrodynamics (QED) could explain the 

electromagnetic interactions very accurately and have the most accurate agreement 

between theory and experiment so far. [19] 

After the unification of the electric and magnetic forces, it was the turn of the weak force 

to be unified with the electromagnetic force. Glashow, Weinberg, and Salam proposed the 

structure which led to their noble prize in 1979. The scale at which the Electroweak 

unification happens is called the electroweak scale (Order of 100 GeV). It seems that the 

next step could be to unify the electroweak and strong forces and Supersymmetry is one of 

the theories that have a structure for this unification as we will discuss later. 
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1.1.2.1 Massive Electroweak Force Carriers 

The Electroweak Lagrangian density can be written as:  

 ℒ¤¥ = ℒ¦ + ℒ� (6) 

Where  

 ℒ¦ = 	−
1
4𝑊

§,s�𝑊s�§ −
1
4𝐵

s�𝐵s� (7) 

describes the interaction between the three W vector bosons and the B vector boson. And the kinetic 

term for the Standard Model fermions is: 

ℒ� = 𝜓=n𝛾s �𝑖𝜕s − 𝑔
1
2𝜎

§.𝑊s§ − 𝑔¨
𝑌
2 𝐵s�𝜓n + 𝜓

=ª𝛾s �𝑖𝜕s − 𝑔¨
𝑌
2 𝐵s�𝜓ª (8) 

With 

 𝑊s§ = 𝜕s𝑊�§ − 𝜕�𝑊s§ − 𝑔𝜀§w¬𝑊s
w𝑊�¬ and 𝐵s� = 𝜕s𝐵� − 𝜕t𝐵s (9) 

Where 𝑊s§ are the 𝑆𝑈(2)n gauge fields, 𝜓n/ª are left/right-handed fermion fields, 𝐵s is the 

𝑈(1) gauge field, and g and g' are the coupling constants of the gauge to the fermion 

fields. The hypercharge (Y) is the generator of U(1) algebra. [20, 21] 

Although photon was known to be massless at the time of electroweak theory development, 

W and Z were expected to have mass due to the short range of the weak force. Also, some 

experiments supported this idea. For example, measurements of the lifetime of the muon 

allowed us to calculate the mass of the W.[22]  

We can include the mass of W and Z in the Lagrangian manually: 

ℒ® = 𝑀¯
;𝑍s𝑍s + 𝑀¥

; 𝑊s±𝑊2,s − ²𝑢=n𝑀´𝑢ª + �̅�n𝑉¶𝑀·𝑑ª + �̅�n𝑀¸𝑒ª + ℎ. 𝑐. ¹ (10) 

Where V is the 3 × 3 unitary CKM matrix.[20]  

However, three problems arise with this Lagrangian:  
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• The mass terms that we added to the Lagrangian violates the gauge invariance.  

• The Feynman propagator of a massive spin-1 particle is 

 −𝑖
𝑔st + 𝑞s𝑞t/𝑀;

𝑞; − 𝑀; + 𝑖𝜀  (11) 

The longitudinal parts, which increase together with q, yield the disturbing property 

of a theory of massive spin-1 particles, namely that Feynman graphs including 

closed loops diverge faster than logarithmically. As a result, renormalization 

constants cannot absorb the divergences, that is, the massive spin-1 quantum field 

theory is not renormalizable.[23] 

• The scattering amplitude for longitudinally polarized W bosons, 𝑊n, scales as 𝐸; 

for high energies E.[20] 

Therefore, adding the mass terms manually to the Lagrangian does not give us a consistent 

theory.  

1.1.2.2 The Electroweak Spontaneous Symmetry Breaking 

Spontaneous symmetry breaking is the trick to let the Lagrangian retain the symmetry 

invariance but drop it for physical states. The Higgs mechanism, also known as the Brout-

Englert-Higgs mechanism, is the simplest model capable of generating massive 

intermediate bosons using spontaneous symmetry breaking. [23] 

In the Higgs mechanism, there is a complex scalar field 𝜙: 

 𝜙 =
1
√2

(𝜙3 + 𝑖𝜙;) (12) 
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With the corresponding Lagrangian being: 

 ℒ = z𝜕s𝜙|
¶z𝜕s𝜙| − 𝑉(𝜙)	𝑤𝑖𝑡ℎ	𝑉(𝜙) = 	𝜇;(𝜙¶𝜙) − 𝜆(𝜙¶𝜙);	 (13) 

For 𝜇; < 0 and 𝜆 > 0, the minimum of the potential does not happen at 𝜙 = (0,0). (Figure 

1-2) In other words, the potential gives us the spontaneous symmetry breaking while the 

Lagrangian respects the symmetry. By expanding the potential around the vacuum state, 

we will get quadratic terms in Lagrangian accounting for the mass of particles and some 

other interaction terms.[22]  

Another way to look at the Higgs mechanism is using the Goldstone theorem. According 

to the Goldstone theorem, since we have spontaneously broken continuous symmetries, we 

get four extra massless particles in the Lagrangian. In the Higgs mechanism, three of the 

four fields pair up with 𝑊±, 	𝑊2𝑎𝑛𝑑	𝑍 to give them mass and the last one is responsible 

for the Higgs boson.[24] The Higgs Boson gains its mass from a self-interaction term in 

Lagrangian.  

 

Figure 1-2: If 𝜇; < 0	while 𝜆 > 0 in the Higgs mechanism, we get the Mexican hat potential on the right with a non-
zero potential minimum. This image is taken from [25] 
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1.1.3 Proton-Proton collisions at LHC 

In this thesis, we have used the data taken by the CMS detector from proton-proton 

collisions happening at the LHC. Hence, a decent knowledge of both the structure of the 

proton and the physics of the proton-proton collisions are necessary.  

1.1.3.1 The Parton Model 

The proton is not an elementary particle and is composed of two up and one down quark 

(|𝑝 >	= |𝑢𝑢𝑑 >). However, at the time of collisions, there might be gluons inside the 

proton binding the quarks and fleeting pairs of quark-antiquark that the gluons have 

produced. Any strongly-interacting particle inside the proton is called a parton. Due to the 

substantial momentum transfer at LHC, partons have asymptotic freedom (explained in 

section 1.1.1.1 The strong coupling constant), and therefore they are almost free and have 

minimum interaction with other partons of the proton. As a result, we can forget protons 

and think of LHC as a parton collider when looking at a single collision. [26] 

Although we know that the energy of each proton is 6.5 TeV, we cannot know for sure 

what portion of the momentum is carried by each parton and especially by the colliding 

parton(s). Instead, we can use probability. The Parton Density Function (PDF) is defined 

as the probability density for finding a parton with a particular longitudinal momentum 

fraction x at resolution scale 𝜇½;  2. [27] PDFs cannot be calculated theoretically due to the 

non-perturbative nature of QCD at lower energies and need to be measured experimentally 

                                                

2- This is the leading-order picture of the PDFs. Generalized Parton Distributions (GPDs) are a more recent 
approach to better understand the hadron structure. [27. Wikipedia_contributors, Parton (particle 
physics), in Wikipedia, The Free Encyclopedia. 2018.] 
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at a given scale. [20] However, when we have the PDF for a given scale 𝜇½, the evolution 

is described by the DGLAP3 formula: 

 𝜇½;
𝜕𝑓,(𝑥, 𝜇½;)
𝜕𝜇½;

=
𝛼¾
2𝜋¿

𝑑𝑧
𝑧

3

Á
𝑃,�(𝑧)𝑓� Ã

𝑥
𝑧 , 𝜇½

;Ä (14) 

Where 𝑓Å(𝑥, 𝜇½;) is the PDF and 𝑃,�(𝑧) is the Altarelli-Parisi splitting function representing 

the probability of parton splitting 𝑎 → 𝑏𝑐 with longitudinal momentum 𝑝� = 𝑧𝑝, [28, 29] 

There are several PDFs based on slightly different sets of data, and with some variation in 

the theoretical assumptions. [30] By knowing PDFs, the inclusive cross-section of the 

production of a final state X in the collision of hadrons ℎ3 and ℎ; is: 

𝜎ÆÇÆÈ→É = 

u ¿𝑑𝑥,
,.�∈{Å,¦}

¿𝑑𝑥� 𝑓,
ÆÇ(𝑥,, 𝜇½;)	𝑓,

ÆÈ(𝑥�, 𝜇½;)¿𝑑𝜙,�→É	
𝑑𝜎,�(𝜙,�→É, 𝜇½;)

𝜙,�→É	
	 

(15) 

Where 𝑓,
ÆÇ(𝑥,, 𝜇½;) are the PDFs. [29] 

                                                

3- Dokshitzer–Gribov–Lipatov–Altarelli–Parisi 
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Figure 1-3: The PDFs from HERAPDF at 𝜇½; = 10	𝐺𝑒𝑉 (Left) and at 𝜇½; = 10,000	𝐺𝑒𝑉 (right). The images are taken 
from [31] 

 

1.1.3.2 Physics of the proton-proton collisions  

Many different phenomena can happen in a proton-proton collision. Figure 1-4 shows the 

most important correction processes that can happen in a proton-proton collision. 



 14 

 

Figure 1-4: Illustration of a typical proton-proton collision event. The incoming partons are in blue, red shows hard 
scattering, underlying events are in purple, and hadronization is shown in green. The image is taken from [20] 

Typical evolution of a collision can be considered as follows. This part is taken from [30] 

1. Initially, two beam particles are coming in towards each other. Normally each 

particle is characterized by a set of parton distributions, which defines the partonic 

substructure in terms of flavor composition and energy sharing.  

2. One shower initiator parton from each beam starts off a sequence of branchings, 

such as q → qg, which build up an initial-state shower.  

3. One incoming parton from each of the two showers enters the hard process, where 

then a number of outgoing partons are produced, usually two. It is the nature of this 

process that determines the main characteristics of the event.  

4. The hard process may produce a set of short-lived resonances, like the Z0/W± 

gauge bosons, whose decay to normal partons has to be considered in close 

association with the hard process itself.  
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5. The outgoing partons may branch, just like the incoming did, to build up final-state 

showers.  

6. In addition to the hard process considered above, further semi hard interactions may 

occur between the other partons of two incoming hadrons.  

7. When a shower initiator is taken out of a beam particle, a beam remnant is left 

behind. This remnant may have an internal structure and a net color charge that 

relates it to the rest of the final state.  

8. The QCD confinement mechanism ensures that the outgoing quarks and gluons are 

not observable, but instead fragment to color neutral hadrons.  

9. Normally the fragmentation mechanism can be seen as occurring in a set of separate 

color singlet subsystems, but interconnection effects such as color rearrangement 

or Bose-Einstein may complicate the picture.  

10. Many of the produced hadrons are unstable and decay further. 

 

1.1.3.2.1 Initial- and final-state radiation 

When a process contains colored or charged particles in the initial or final state, partons 

emit gluon, photon or split into quarks. This process is called initial (final) state radiation 

(ISR/FSR), and the emitted photons are also called “bremsstrahlung”. Categorizing the 

radiation into ISR and FSR is arbitrary, but very convenient. ISR and FSR can play an 

important role in the overall topology of the event. For instance, they can change a 2 → 2 

basic process to a 2 → 3, 2 → 4 and more final-state topologies. [20, 30] 

There are two conventional approaches to model the perturbative corrections: 
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• One is the matrix-element method is which the Feynman diagrams are calculated, 

order by order. This method is the correct approach in principle. However, the 

calculations become increasingly heavier in higher orders. [30] 

• The second approach is called the parton showers. There are many details to be 

considered in the parton shower method. However, the main idea is to use the 

DGLAP equation (eq.14) to convert the inclusive prediction for the occurrence of 

parton a in the beam hadron h into an exclusive prediction for parton a and a certain 

number of additional particles, which are resolved at smaller and smaller 

momentum transfer. [29] (Figure 1-5) 

 

Figure 1-5: Pictorial representation of the DGLAP evolution of PDFs. The white blobs are the incoming hadron. The 
image is taken from [29] 

 

 

1.1.3.2.2 Beam remnants  

For simplicity, let’s assume that the only partons in a proton are two up quarks and one 

down quark (uud). If in a collision, an up quark collides with a parton from the other proton, 

we will have a ud diquark beam remnant. Since this diquark is not color-neutral, it is color-

connected to the hard interaction and forms part of the same fragmentation system. [30] 
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1.1.3.2.3 Multi-parton interactions 

So far in this part, we have assumed that when proton A and proton B collide, always one 

single parton in proton A collides with a single parton in proton B. However, the picture 

can be more complex. Meaning that we can have two simultaneous collisions between 

protons A and B. In other words, we can have two different pairs of partons in protons A 

and B collide independently. Alternatively, we can have a single parton in proton A scatters 

against several different partons in the other beam. These interactions are called “Multi-

parton interactions”. [30] 

1.1.3.2.4 Hadronization 

The next step in an event evolution is what happens to the single partons from the 

abovementioned phenomena. At this point, the partons have low virtualities (𝜇½;), and they 

cannot be considered free anymore. In other words, the strong coupling constant is large 

again and brings the partons together to build color-neutral hadrons. This process is called 

“Hadronization” or “Fragmentation”. [20, 30, 32] 

If the hadrons are still unstable, they decay further to more hadrons, leptons, and photons 

until the particles are stable4. This process creates a cluster of particles moving more or less 

in the direction of the mother parton. In experiments, this cluster is called a “jet”. In order 

to simulate hadronization, we cannot use perturbation theory anymore (Because the strong 

                                                

4- In an experiment, we might observe an unstable hadron if its lifetime is large enough to reach to the 
detector.  
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coupling constant is large) and have to use the phenomenological models: The String model 

or the cluster model.5 [20, 30, 32] 

• The string model comes from the observation that the quark-antiquark potential is 

linear. i.e., 𝑉(𝑟) = 𝜅𝑟 where r is the distance between the quark and anti-quark pair 

and 𝜅 ≈ 1	𝐺𝑒𝑉/𝑓𝑚. In a pair of quark-antiquark, the potential energy stored in the 

string stretched between them can result in a spontaneous creation of a new quark-

antiquark pair and therefore a new hadron. While meson production is explained 

immediately in this model, baryon creation is more complicated. [20, 30, 32] 

• The cluster model is based on the so-called preconfinement property of QCD. In 

other words, the cluster model requires all gluons at the end of the shower to split 

into qq pairs. Then, clusters are formed by connecting neighboring quarks to color-

singlets. The clusters decay isotopically into a pair of hadrons. The energy needed 

for the hadron formation by the qq production is extracted from the cluster field. 

Clusters with too low energy will decay into only one hadron, while massive 

clusters can split into lighter daughter clusters. [20, 30, 32] 

                                                

5- There is a third school called the independent model that is not used anymore. Therefore, we will not talk 
about it in this dissertation.  
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Figure 1-6: Sketches of the Hadronization models. Left: The cluster model and right: The string model [32] 

 

1.1.3 Limitations of the Standard Model 

The Standard model has been put to the test to unrivaled precision, and there has almost 

always been agreement with the experiment. Figure 1-7 shows the level of agreement 

between the predicted and observed cross-sections of various SM processes. However, now 

we know that the SM is not perfect. We will briefly explain the reasons in this section.  

There are many candidate theories for beyond the standard model physics. However, none 

of them is experimentally verified so far. Among all BSM theories, we will only discuss 

MSSM and NMSSM that are related to this dissertation.  
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Figure 1-7: Summary of the cross-section measurements of the Standard Model processes by the CMS collaboration. 
[33] 

1.1.3.1 Theoretical problems 

Hierarchy problem 

When we calculate the mass of the Higgs boson in the SM, we have loop corrections 

from all the particles that couple to the Higgs Boson. Figure 1-8 shows example 

loop corrections from fermions and scalars. 

If we calculate the mass squared of the Higgs boson (𝑚Ï
; ), the correction due to 

diagrams in Figure 1-8 to the first order is 

 Δ𝑚Ï
; =

Ñ𝜆�Ñ
;

8𝜋; Λ�´ÓÔ��
; +

𝜆�
16𝜋; ÕΛ�´ÓÔ��

; − 2𝑚�
; ln �

𝛬�´ÓÔ��
𝑚�

�× + ⋯ (16) 
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Figure 1-8: Single-loop quantum corrections to the Higgs mass squared (𝑚Ï
; ) due to a fermion (left) and a scalar 

(right). This Image is taken from [34] 

Where 𝜆� and 𝜆� are the Higgs couplings to the fermion and the scalar, respectively 

and 𝛬�´ÓÔ�� is the cut off energy at which the SM breaks down and a new theory 

takes over. Examples of 𝛬�´ÓÔ�� are the grand unification scale (𝑂(103Ú)𝐺𝑒𝑉) and 

the Plank scale (𝑂(103Û)𝐺𝑒𝑉). Therefore, the corrections to the Higgs mass are 

orders of magnitude higher than its mass (125 GeV). Solving the problem by 

extreme fine-tuning of the SM parameters is possible but not favorable and the SM 

in incapable of giving us a more natural explanation. [34] 

The hierarchy problem is not necessarily the most puzzling open question of the 

SM, however, it is certainly the most relevant to the collider experiments, since 

most likely, its resolution lies in the TeV energy range. [35] 

Quantum triviality 

As [36] exaplains: “In quantum field theory, charge screening can restrict the value 

of the observable renormalized charge of a classical theory. If the only resulting 

value of the renormalized charge is zero, the theory is said to be "trivial" or 

noninteracting. Substantial evidence supports the idea that a field theory involving 

only a scalar Higgs boson is trivial in four spacetime dimensions.” 
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Strong CP problem 

The theory of QCD allows a CP6 violation phase. However, measurements show 

that this phase is zero or very close to zero. This fine tuning seems unnatural. 

1.1.3.2 Experimental results not explained  

The anomalous magnetic dipole moment of the muon 

The experimentally measured value of muon's anomalous magnetic dipole moment 

seems significantly different from the Standard Model prediction. 

1.1.3.3 Phenomena not explained 

Gravity 

Although the SM is very successful in describing the electroweak and strong forces, 

it is incapable of describing the macroscopic world and the gravity. A hypothetical 

particle called graviton is proposed to be added to the SM; however, the SM is 

incompatible with the most successful theory of gravity so far, general 

relativity.[36] 

Dark matter and Dark energy 

Cosmological observations tell us that only 5% of the universe is made of ordinary 

matter, 23% dark matter and 72% dark energy. The nature of both dark matter and 

dark energy is unknown, and the SM fails to give us a candidate for dark matter. It 

also doesn’t have any explanation for the dark energy. [37] 

 

                                                

6- The combination of the discrete symmetry operations charge conjugation and parity transformation 
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Neutrino masses 

Although neutrinos are massless in the SM, the observation of neutrino flavor 

oscillation is a strong evidence that at least two neutrino generations have mass.  

Matter-antimatter asymmetry 

According to the SM during the creation of the universe an (almost) equal amount 

of matter and antimatter has been produced. SM cannot explain this large 

asymmetry between matter and antimatter that we see today. 
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1.2 Supersymmetry 

As explained in the previous part, one of the major issues with the SM is the enormous 

corrections to the Higgs boson mass-squared parameter – the so-called hierarchy problem. 

One solution to this problem is to add a hypothetical symmetry – very different from what 

we have seen in nature so far - which relates bosons and fermions. In other words, 

Lagrangian is invariant under the operator that changes the spin of particles by ½. In other 

words, this operator transforms bosons to fermions and vice versa. 

 𝑄|𝑏𝑜𝑠𝑜𝑛 >	= Ñ𝑓𝑒𝑟𝑚𝑖𝑜𝑛 >			; 						𝑄¶Ñ𝑓𝑒𝑟𝑚𝑖𝑜𝑛 >	= |𝑏𝑜𝑠𝑜𝑛 >	 (17) 

Where Q is the generator of the supersymmetric transformation.  

Quantum corrections of bosons have the opposite sign to the ones due to fermions. 

Therefore, if the masses and coupling constants of the particles are related, it is possible 

that the corrections cancel each other out.  

1.2.1 Minimal Supersymmetric Standard Model 

The first realistic supersymmetry extension to the SM was proposed in 1981 by 

Dimopoulos, Rabi, and Wilczek [38]. This theory proposed a partner for each elementary 

particle in the SM with the same quantum numbers except for spin, leading to what is called 

the Minimal Supersymmetric Standard Model (MSSM).  

In MSSM, leptons and quarks receive scalar superpartners, sleptons and squarks. Also, 

there are two Higgs bosons in MSSM which get fermionic superpartners, the higgsinos. 

And the electroweak gauge bosons get fermionic superpartners. (Table 1-1) 
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Table 1-1: Supersymmetric particles in MSSM. This table is adapted from [39] 

NAME SPIN GAUGE EIGENSTATES MASS EIGENSTATES 

HIGGSINO 0 𝐻´�	𝐻·�	𝐻´±	𝐻·2 ℎ�	𝐻�	𝐴�	𝐻± 

SQUARKS 0 
𝑢ßn	𝑢ßª	𝑑àn	𝑑àª 

�̃�n	�̃�ª	�̃�n	�̃�ª 

�̃�n	𝑡ª	𝑏ân	𝑏âª 

(same) 

(same) 

�̃�3	�̃�;	𝑏â3	𝑏â; 

SLEPTONS 0 
�̃�n	�̃�ª	𝜐ß¸ 

𝜇ßn	𝜇ª	𝜐ßs 

�̃�n	�̃�ª	𝜐ßå 

(same) 

(same) 

�̃�3	�̃�;	𝜐ßå 

NEUTRALINOS ½ 𝐵â�	𝑊æ�	𝐻æ´�	𝐻æ·� 𝜒ß3�	𝜒ß;�	𝑋��	𝑋Ú� 

CHARGINOS ½ 𝑊æ ±	𝐻æ´±	𝐻æ·2 𝜒ß3
±		𝜒ß;

±	 

GLUINO ½ 𝑔ß (same) 

GOLDESTINO-
GRAVITINO 

½ - 1 ½ 𝐺â (same) 

 

 1.2.1.1 Breaking the symmetry  

After the addition of the supersymmetric particles to the SM, equation 16 changes to 

 ∆𝑚Ï
; =

1
8𝜋 é𝜆� − Ñ𝜆�Ñ

;Λ�´ÓÔ�� + 𝑚¾
; �

𝜆
16𝜋; ln

Λ�´ÓÔ��
𝑚¾

�ê (18) 

Therefore, the SM term and supersymmetry terms cancel each other when 𝜆� = Ñ𝜆�Ñ
;. 

However, a question remains here. If the masses of sparticles are so low, then why have 

not we observed any supersymmetric particle so far? The only answer to this question is to 
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assume that sparticles are heavier than the SM particles and we have not probed higher 

energies to find sparticles yet. Therefore, a symmetry breaking has to happen here. Like in 

the electroweak theory, we want to keep the Lagrangian invariant under the 

supersymmetric transformation and have the vacuum state break the symmetry and at the 

same time keep 𝜆� = Ñ𝜆�Ñ
;. This symmetric breaking is called “soft symmetry breaking” 

[34] 

1.2.1.2 R-parity  

R-Parity is defined as:  

 𝑅 = (−1)�ë±n±;� (19) 

Where B is the baryon number, L the lepton number, and S the spin. All the SM particles 

have R = +1, and all the supersymmetric particles have R=-1. Allowing for the R-parity 

violation has severe consequences. For example, the proton can decay via squark exchange, 

like 𝑝 → 𝑒±𝜋�. Assuming R-parity conservation has a few consequences:  

- Both the baryon and lepton numbers are conserved 

- sparticles can only be produced in pairs 

- sparticles can only decay into an odd number of other sparticles 

- The lightest supersymmetric particle (LSP) is stable 

1.2.1.4 Theoretical motivations 

Naturalness 

Naturalness is the property of a theory that the dimensionless ratios between free 

parameters or physical constants appearing in a physical theory should take values 
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"of order 1" and that free parameters are not fine-tuned.[40] As explained before, 

Supersymmetry can solve the hierarchy problem and bring naturalness to the Higgs 

mass calculation. 

Gauge coupling unification 

Equation 4 shows the evolution of the strong coupling constant 𝛼� as a function of 

𝑄;. If we plot the gauge coupling constants (for Strong, weak and electromagnetic 

forces), there is no scale 𝑄; found for which all three coupling constants intersect 

in SM. However, in MSSM and at 𝑀�ì5 = 103í − 103î, all three coupling 

constants meet allowing for the unification of the forces. Such a theory is called 

Grand Unification Theory (GUT).  

Dark matter 

If Supersymmetry is a true theory and the nature preserves R-parity, then the 

lightest superparticle (LSP) falls into the category of cold dark matter (CDM) 

candidates. In other words, R-parity conservation makes LSP stable and a Weakly 

Interacting Massive Particle (WIMP) which are the requirements for a dark matter 

candidate.  

1.2.1.5 Phenomenological MSSM (pMSSM) 

The unconstrained MSSM has more than 100 parameters in addition to the Standard Model 

parameters. This makes any phenomenological analysis (e.g., finding regions in parameter 

space consistent with observed data) impractical. Under the following three assumptions:  

• No new source of CP-violation  

• No Flavor Changing Neutral Currents  
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• First- and second-generation universality 

one can reduce the number of additional parameters to the following 19 quantities of the 

phenomenological MSSM (pMSSM) 

1.2.1.6 Deficiencies in the MSSM 

The µ-problem 

The supersymmetric invariant Lagrangian is constructed from functions of 

superfields [41]:  

• The Kahler potential which is a real function of the superfields 

• The superpotential which is a holomorphic (analytic) function of the 

superfields 

• The gauge kinetic function which appears in supersymmetric gauge theories  

The superpotential term with conserved R-parity is:  

 𝑊ï��ï = 𝑢=𝑦 𝑄𝐻´ − �̅�𝑦·𝑄𝐻· − �̅�𝑦 𝐿𝐻· + �̅�𝐻´𝐻· (20) 

Where 𝑄 = (𝑢n, 𝑑n)	; 	𝐿 = (𝜐, 𝑒n) and 𝑦 , 𝑦· and 𝑦ñ are the dimensionless Yukawa 

coupling parameters. [42] 

The 𝜇 parameter in eq. 20 has the mass dimension and there is no constraint on it 

in MSSM. However, it should have a value close to the electroweak or SUSY 

breaking scale to get the correct pattern of electroweak symmetry breaking[43]. 

Fine-tuning its magnitude to that of the electroweak scale seems arbitrary and 

without theoretical support. [44] 
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Little hierarchy problem 

Another problem in the MSSM is that the mass of the stop (the supersymmetric 

partner of the top quark) must be quite large - on the order of 1-10 TeV - in order 

for the lightest CP-even Higgs boson to have a mass greater than 115 GeV without 

large stop mixing. However, such large stop masses would produce large loop 

corrections to the Higgs mass and quartic coupling, thus reviving the need for fine-

tuning. This is referred to as the “little hierarchy problem”. 

Flavor universality 

Since no flavor mixing in addition to that predicted by the standard model has been 

discovered so far, the coefficients of the additional terms in the MSSM Lagrangian 

must be, at least approximately, flavor invariant (i.e., the same for all flavors). This 

implies a fine-tuning in NMSSM. 

The smallness of the CP-violating phase 

Since no CP violation additional to that predicted by the standard model has been 

discovered so far, the additional terms in the MSSM Lagrangian must be, at least 

approximately, CP invariant, so that their CP violating phases are small. This 

implies a fine-tuning in NMSSM. 

1.2.2 Next-to-Minimal Supersymmetric Standard Model 

The NMSSM is MSSM with an extended Higgs sector that has an additional complex 

Higgs singlet, S. Therefore, the sfermion and chargino sectors of MSSM are unchanged 

and only the Higgs and Neutralino sectors are different in NMSSM. [42] In other words, 
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the superpotential of the NMSSM has some extra terms compared to the MSSM one. Let’s 

start by fixing the 𝜇-problem in MSSM and have the NMSSM superpotential as: 

 𝑊òï��ï = 𝑊´¬ + 𝜆𝑆𝐻´𝐻· (21) 

 

Where 𝑊´¬ gives the Yukawa couplings for the Standard Model fermions [45]. Here, we 

have replaced the Higgs-Higgsino term in MSSM superpotential (�̅�𝐻´𝐻·) by 𝜆𝑆𝐻´𝐻·. In 

other words, we are dynamically linking 𝜇 to the VEV of a Higgs filed S (which is non-

zero due to spontaneous symmetry breaking) and consequently to the electroweak scale. 

The parameter 𝜆 is to recover the Higgs-Higgsino mass term where the 𝑉𝐸𝑉	𝑜𝑓	〈𝑆〉 = 	𝜇/𝜆. 

[43] 

Looking more carefully at (eq.21), we observe that the superpotential is invariant under the 

U(1) PQ global symmetry[46]: 

 𝜙õ§ → 𝑒§Åö÷ø𝜙õ§ (22) 

This symmetry carries over to the Lagrange density as well.7 Since we want S to gain a 

non-zero VEV, we have to spontaneously break the symmetry and end up having a near 

massless pseudo-Nambu-Goldstone boson (the so-called Peccei–Quinn mode). However, 

there has been no observation of an axion in collider experiments knowing its rare decays 

(e.g. quarkonium decays).[47] This puts strict experimental bounds on the existence of the 

axion in models where the VEV of S (PQ scale) is of the order of the electroweak scale 

                                                

7- In MSSM, the PQ symmetry is broken by the Higgs-Higgsino mass term (�̅�𝐻´𝐻·) 43. Miller, D. and 
R.J.a.p.h.-p. Nevzorov, The Peccei-Quinn axion in the next-to-minimal supersymmetric standard model. 
2003. 
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[48, 49] Adding another term to the superpotential explicitly breaks the PQ symmetry, 

giving mass to the axion and avoids the constraints. 

 𝑊òï��ï = 𝑊´¬ + 𝜆𝑆𝐻´𝐻· +
1
3𝜅𝑆

� (23) 

Where 𝜅 the PQ-symmetry breaking parameter. We chose the cubic form of S to keep 𝜅 

dimentionless (the superpotential has the mass dimension of three). Any term higher than 

trilinear in the fields in superpotential will disrupt the requirements of renormalization. 

[46] 

In summary, by adding S to the theory, 𝜇 changes to:  

 𝜇¸�� = 𝜆𝜈¾ (24) 

Where 𝜈¾ is the (non-zero) vacuum expectation value of the singlet. Therefore, 𝜇¸�� is of 

the order of the electroweak breaking scale and the μ-problem is avoided in the Next-to-

Minimal Supersymmetric Standard Model (NMSSM) [42][17]. The introduction of the 

scalar singlet Higgs field S results in totally seven Higgs bosons in NMSSM8:  

• A pair of charged Higgs bosons (ℎ±) 

• Three CP-even neutral scalars (ℎ3, ℎ;, ℎ� with 𝑚ÆÇ ≤ 𝑚ÆÈ ≤ 𝑚Æû) 

• Two CP-odd neutral pseudoscalars (𝑎3, 𝑎; with 𝑚,Ç ≤ 𝑚,È) 

In general, not only NMSSM keeps the fundamental motivations of MSSM (namely, the 

hierarchy problem, gauge coupling unification, dark matter and so on), it also adds more 

motivation: 

                                                

8- In MSSM, the capital letters are used to denote Higgs bosons, whereas in NMSSM, small letters are 
used.  
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• It solves the µ-problem in MSSM naturally as explained above. 

• The singlet field also contributes to the Higgs mass formulae of MSSM such that 

the tree-level mass of the lightest CP-even Higgs can be raised. This can 

significantly reduce the little hierarchy problem in MSSM since the tree-level Higgs 

mass can be larger than the maximum value of MSSM. [42] 

• In NMSSM, heavier Higgs can decay into lighter ones if the mass of the heavier 

Higgs is at least twice the mass of the lighter Higgs. It means that the current energy 

scale of LHC is enough to discover this phenomenon in NMSSM by observing the 

Higgs-like particle that was discovered in 2012 decaying to lighter Higgs if 

kinematically allowed; Unlike MSSM that might need higher energy scales to be 

discovered 

• There can be a singlino-like neutralino dark matter in NMSSM with exceptionally 

weak couplings to SM particles. Therefore, NMSSM brings more possibilities for 

DM. [50] 

• NMSSM can realize electroweak baryogenesis which can explain the matter-

antimatter asymmetry in the universe. Baryogenesis is the hypothetical physical 

process that could have happened during the early universe to produce baryonic 

asymmetry. [51, 52] 
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Chapter 2 Experimental Apparatus 

The analysis presented in this dissertation uses the data collected by the Compact Muon 

Solenoid (CMS) detector at Large Hadron Collider (LHC) at CERN, Geneva, Switzerland. 

Like any other experimental research, understanding the experimental setup is crucial. 

Therefore, in this chapter, we will briefly introduce the LHC complex and the CMS 

detector.   

2.1 The Large Hadron Collider 

To study particles, first, we have to create them. Einstein’s famous equation 𝐸	 = 	𝑚𝑐; 

shows that mass and energy are equivalent. Therefore, after accelerating particles and 

giving kinetic energy to them, this energy can be released in a collision and convert into 

mass and create more massive particles. This is what happens at the LHC. The LHC is the 

largest and most powerful accelerator ever built and has achieved the current highest 

energy of 5.02 TeV for heavy-ion collisions and 13 TeV for proton collisions. [53] 

The LHC is a 27-kilometer (17 miles) ring-shaped tunnel, buried underground below the 

border of France and Switzerland. The protons are inside 1232 dipole superconducting 

magnets9 that produce a magnetic field of up to 8.3 to steer the protons10 around the ring 

[53] (Figure 2-2). Inside the magnets are two pipes, through which protons beams circulate 

                                                

9- There are higher order magnets at LHC as well. The total number of superconducting magnets are 9593 
which 1.5 tons of superfluid helium-4 keep them at very low temperature of 1.9 K (-271.3 °C) 54. Evans, 
L.R., The Large Hadron Collider: a marvel of technology. 2009: EPFL Press. 
10- In general, having particle-antiparticle (for example proton-antiproton) collisions is a more convenient 
choice (Like HEP at CERN and Tevatron at Fermilab). However, the production of antiprotons for such a 
high luminosity that LHC has achieved is currently not possible.  
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in opposite directions and finally collide at four interaction points. Around the four 

interaction points are four detectors: CMS and ATLAS ([55, 56]) are two general-purpose 

detectors that are designed to support a broad range of particle physics research. And two 

other detectors are called ALICE (dedicated to heavy ion collisions) [57], and LHCb 

(dedicated to in B-quark physics). [58] In recent years, three minor detectors have [59]with 

LHCb; and LHCf11, which shares the interaction point with the ATLAS detector. We will 

only explain the CMS detector since we just used the data taken by it in this dissertation.  

 

Figure 2-1:  The Large Hadron Collider near Geneva, Switzerland. Depth is not to scale. This image is taken from [61] 

                                                

11- Stands for “Large Hadron Collider forward” and it is “dedicated to the measurement of neutral particles 
emitted in the very forward region of LHC collisions. The physics goal is to provide data for calibrating the 
hadron interaction models that are used in the study of Extremely High-Energy Cosmic-Rays” 60. Adriani, 
O., et al., The LHCf detector at the CERN large hadron collider. 2008. 3(08): p. S08006. 
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Figure 2-2: Schematic design of a dipole magnet at LHC. The image is taken from [62] 

The proton beams at LHC are not continuous but grouped in bunches. The LHC can 

circulate up to 2808 bunches of protons in each direction, and each bunch contains up to 

~120 billion protons. [63] When two bunches cross at every 25 ns, more than a pair of 

protons can collide. The number of pairs of protons is called “pile-up” and every proton-

proton collision is called an event. [62] Luminosity is “the number of interactions per 

second per 𝑐𝑚2; of the beam areas” [56] The number of occurrences, N, of a given process 

observed is given by: 

 𝑁 =	ℒ§~Ó. 𝜎 (25) 

Where ℒ§~Ó is the integrated luminosity over some time (for example one year) with the 

unit of 3
,þ¸,

 and 𝜎 is called the cross-section and has the unit of area. For example, a process 
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with a cross-section of 100 fb23 may be expected to occur 1000 times in 10 fb23 of data12. 

This measured cross-section can be compared to the predictions of the adopted theory. [64] 

 

Figure 2-3: The LHC tunnel, with cutaway view of the dipole magnet. This image is taken from [65] 

In June 2014, the CERN Council approved the funding of the High Luminosity LHC (HL-

HLC) to extend the discovery potential of the LHC. Figure 2-4 shows the energy and 

luminosity history and plan for the future of the LHC. 

                                                

12- 1	fb23 = 102�Û	cm; 24. Baggott, J., Higgs: the invention and discovery of the'God Particle'. 
2012: Oxford University Press. 
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Figure 2-4: Evolution of LHC toward HL-LHC. This image is taken from [66] 

 

2.2 The Compact Muon Solenoid Detector  

The Compact Muon Solenoid is one of the two general-purpose detectors at the LHC. It 

has a multilayered array of sub-detectors like an onion. Each sub-detector is designed to 

detect a different kind of particles emerging from the interaction point. [67] The CMS 

consists of silicon pixel and strip trackers, an electromagnetic calorimeter, a hadronic 

calorimeter, a solenoidal magnet, and a muon system. We will briefly explain every layer 

in this section. Detector geometry and sub-detector layering are shown in Figure 2-5 and 

Figure 2-6 respectively. CMS is 15 meters wide and 28.7 meters long and weighs 14,000 

tons. [68] 
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Figure 2-5: Geometry of the CMS detector 

The CMS detector is divided into the barrel region which is the cylindrical body and the 

endcap region which is either of the two plugs that cap off the barrel on both sides. There 

is also an HCAL front region which is on the very front and very back of the CMS close to 

the proton beam.  

2.2.1 Coordinate system 

The origin of the coordinate system of CMS is defined to be at the interaction point. The 

x-axis points radially inward towards the center of LHC, the y-axis points vertically 

upward, and the z-axis points in the direction of the beam towards the Jura mountains.  [69] 

Also, the radial angle is defined as:  
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 𝑟 = "𝑥; + 𝑦; (26) 

And the azimuthal angle 𝜙 is measured from the z-axis.  

Because collisions take place very close to the center of the CMS, it is convenient to use 

the polar coordinate system that gives the particle trajectories in angles. However, using 

the polar angle θ from the spherical coordinates is not convenient because we will need to 

boost between different reference frames in relativistic energies. This is why in collider 

physics; the rapidity is preferred: 

 𝑦 =
1
2 𝑙𝑛

𝐸 + 𝑝#
𝐸 − 𝑝#

 (27) 

The rapidity difference (𝛥𝑦) between two particles remains the same in different reference 

frames, i.e., it is Lorentz invariant. However, to measure rapidity, we need to measure two 

quantities (Energy and 𝑝#). Therefore, physicists prefer a related quantity that is easier to 

measure, pseudorapidity. The pseudorapidity of a moving particle is 

 𝜂 = − ln Õ𝑡𝑎𝑛 �
𝜃
2�× 

(28) 

Which depends only on the polar angle of the particle. In fact, at relativistic velocities 

pseudorapidity converges	to	rapidity. Δφ is also Lorentz invariant because φ is measured 

transverse to the z-axis. Therefore, particle physicists define  

 (∆𝑅); = (∆𝜂); + (∆𝜙);	 (29) 

to define cones around single objects or to measure the separation between two objects in 

a relativistically invariant way. 
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2.2.2 Superconducting Solenoid 

‘S’ in CMS stands for superconducting solenoid which is a remarkable device in CMS in 

the form of a giant coil 12.9 m long and 6.3 m in diameter [70]. It is the most powerful 

superconducting magnet ever built capable of producing a longitudinal magnetic field up 

to 4 T; however, it is run at 3.8T to last longer. The strength of the magnetic field is chosen 

high enough that the CMS detector can determine the charge of a muon carrying 1 TeV of 

momentum [70]. Since it is a superconductor, liquid helium is used to cool it down to ~4 

Kelvin [71]. 

This magnet is used to bend the charged particles emerging from the collisions to measure 

the transverse momentum13 as well as the position of the interaction vertex that the particle 

has originated. Interaction vertices are essential in identifying b jets, the so-called b-

tagging, which will be discussed further in the next chapter. 

                                                

13- The magnetic field is in the z-direction; therefore, the tracker can only measure the momenta of the 
charged tracks in the x-y plane (transverse momentum) not in the z-direction (𝑝#). 
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Figure 2-6: Diagram showing particles interacting with a typical cross-sectional wedge of the CMS detector [67] 

 

2.2.3 Tracking system 

The tracking system measures the trajectories or “tracks” of high 𝑝5 (> 1 GeV) charged 

particles which are used to [72]: 

• measure particle transverse momenta from their curvatures in the magnetic field 

• infer the location of interaction vertices (where multiple tracks originate) 

The interaction of charged particles with silicon detectors creates a blip of electrical current 

at each layer that is read out electronically. Then, the path is reconstructed by “connecting 

the dots”. It is important to mention that neutral particles do not bend in the magnetic field 
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and do not leave any hits in the tracker, therefore, their trajectories and momenta cannot be 

measured by the tracker. 

There are a few requirements that the trigger has to meet. Some challenges of the tracking 

system are [73]: 

• There are tens of collisions that produce thousands of new particles every 25 ns. 

This high flux of particles requires: 

o A very high-resolution trigger to be able to distinguish between the 

thousands of particles simultaneously going through 

o Radiation-hard to operate in a high radiation environment for a few years 

o Fast response as there are thousands of new particles every 25 ns. This 

necessitates on-detector electronics which in turn needs proper cooling 

• The minimum amount of matter should be used to disturb the particle as little as 

possible.  

These requirements lead to the development of an all-silicon detector. Closer to the 

interaction point, there is a higher particle density, and therefore, higher resolution is 

needed. Thus, pixel detectors were chosen to be used (Each pixel is 100 × 150	𝜇𝑚 in size 

[70]).  The inner tracker is wrapped immediately around the beam pipe [72]. In the past, 

there were three layers in the barrel and two in the endcaps [70]. However, the pixel tracker 

was upgraded in the 2016/2017 winter shutdown, and a third pixel layer was added in the 

endcaps and a fourth in the barrel, Also, the hardware that supports the functioning of the 

pixels was slimmed down [74]. 
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The pixel detector constrains the position of interaction vertices precisely. Therefore, 

farther than the pixel detector, the tracker is only used to continue measuring the trajectory 

of particles. Since we just measure the momentum in the x-y plane and not in the z-

direction, accuracy is very important only in the radial direction leading to microstrip 

detectors that are much longer in one direction compared to the other two. Overall, the 

tracker subsystem is 5.8 m long and 2.5 m in diameter making it the largest silicon tracker 

ever built, with ~200	𝑚; of total active silicon covering up to the pseudorapidity of |𝜂| 	<

	2.5	 [72]. A refrigerant liquid is circulated in the tracker to maintains the temperature lower 

than −10	°𝐶 [71]. 

Figure 2.5 shows the geometry of this tracker: 

• Tracker Inner Barrel (TIB) covers 20 < r < 55 cm in Barrel region with four layers 

of silicon microstrips, with a size of at least 10 cm × 80 μm.  

• Tracker Outer Barrel (TOB) defined by r > 55 cm in Barrel region with six layers 

of microstrips with a size of no more than 25 cm × 180 μm.  

• Tracker Inner Discs (TID) sits in the Endcap regions just outside the TIB and 

consist of three layers of discs of strips.  

• The Tracker Endcaps (TEC) is in the Endcap regions just outside the TOB and 

consists of nine discs of silicon strips.  
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Figure 2-7: Schematic overview of a one-quarter (r, z) cross-section of the CMS tracker. This image is taken from [75]. 

 

Figure 2-8: Schematic overview of barrel (green) and forward pixels (orange). This image is taken from [47] 
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2.2.4 Electromagnetic calorimeter 

After the tracker, there are two calorimeters: the electromagnetic calorimeter and Hadronic 

calorimeter. The main idea in the calorimeters is to make the primary particle interact and 

create secondary particles. Then measure the energy deposition of all of the subsequent 

particles as they go through an active material.  

The first calorimeter right after the tracker is called the electromagnetic calorimeter or 

ECAL. It measures the energy of the electromagnetic particles (electrons and photons) 

emerged from the collisions. High energy electrons and positrons interact with matter 

mostly through the bremsstrahlung radiation creating photons which in turn can create an 

electron-positron pair which in turn can create photons and so on.  In the end, showers with 

thousands of electrons, positrons, and photons are created. These electromagnetic showers 

are relatively well-behaved which results in phenomenal resolution in the ECAL14. [65] 

To detect electromagnetic particles, ECAL is made of almost 80,000 lead tungstate 

(𝑃𝑏𝑊𝑂Ú) crystals. Lead tungstate has some desirable properties [77]: 

• It is optically transparent. This helps photons travel inside the crystal 

• Fast scintillation time: lead tungstate crystals release ~80% of their scintillation 

light in the 25 ns window between bunch crossings 

• Lead tungstate is highly radiation-hard: tolerating an absorbed dose of up to 10 

Mrad (100 kGy) 

                                                

14- This high resolution is very important in Higgs boson discovery in the diphoton final state. 76. Heller, 
R.E., A search for supersymmetry with the CMS detector in the single-lepton final state using the sum of 
masses of large-radius jets. 2018, UC, Santa Barbara. 
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• 𝑃𝑏𝑊𝑂Ú is very dense (8.28	𝑔/𝑐𝑚�) which results in short radiation length (𝑋� =

0.89	𝑐𝑚) and Moliere radius (𝑅ï = 2.2	𝑐𝑚).  

The radiation length is defined as the mean free path for emitting Bremsstrahlung radiation 

[78]. And Moliere radius is the radius of a cylinder containing on average 90% of the 

shower's energy deposition [75]. In other words, it can be thought of the transverse distance 

that a particle at the critical energy goes before it dies off [78]. It is 7/9 of the mean free 

path for pair production by photons. The ECAL should be many radiation lengths deep to 

minimize the leakage of energy from the back of the calorimeter. Low Moliere radius of  

𝑃𝑏𝑊𝑂Ú makes the ECAL more compact.  

On the other hand, the main disadvantage of 𝑃𝑏𝑊𝑂Ú is its poor light yield. In other words, 

𝑃𝑏𝑊𝑂Ú only produces 𝑂(100) photons per MeV of energy deposition which is two orders 

of magnitude lower than LYSO or NaI crystals. However, this is not a big problem at LHC 

high energy scale. All these properties make 𝑃𝑏𝑊𝑂Ú a very good active material for the 

ECAL. 

The ECAL (Figure 2-9) is made up of the barrel and endcap components which together 

cover the pseudorapidity of |𝜂| 	< 	315 [70]. When an electromagnetic particle goes through 

the lead tungsten crystal, it produces a blue-green scintillation light that is collected and 

converted to electrons through the photoelectric effect to determine the energy of the 

incident EM particles. In the barrel, this light is collected and read by silicon avalanche 

photodiodes (APDs) placed at the back of each crystal while in the endcaps, vacuum 

                                                

15- Actually, there is a small gap in between the barrel and endcap that allows the electromagnetic particles 
that fall into this “crack” to escape undetected by ECAL 
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phototriodes (VPTs) are used instead. VPTs are photomultipliers with a single gain stage 

which are used in the endcap because the magnetic field is non-uniform and the dose of 

radiation is higher [72]. Then the signal is amplified, digitalized and sent to computing 

equipment outside the detector volume [70]. 

The 𝑃𝑏𝑊𝑂Ú crystals are like tapered rectangular prisms. In the barrel region, they are 230 

mm (25.8 𝑋�) long with front (rear) faces of 22 × 22	𝑚𝑚; (26 × 26	𝑚𝑚;) area. And in 

the endcaps, the crystals are a bit larger with 220 mm of length (24.7 𝑋�) and 

28.62 × 28.6	2	𝑚𝑚; (30 × 30	𝑚𝑚;) front (rear) face areas. After combining crystals to 

3x3 or 5x5 grids (supercrystals), the fluctuations in the lateral leakage result in resolution 

degradation of about 2% at 1 GeV which decreases with √𝐸 [79]. The front faces of the 

barrel crystals are 1.29 m from the beamline. And the endcap crystals are located at |𝑧| 	=

	315.4	𝑐𝑚 from the interaction point [72]. Each endcap is divided into two half-circle 

structures called “Dees”. Each dee holds 138 supercrystals (groupings of 5×5 crystals) and 

18 partial supercrystals.  

Finally, a preshower detector is installed in front of each ECAL endcap whose main job is 

to distinguish boosted 𝜋� decays from isolated photons. 𝜋� that are produced in the p-p 

collisions decay to two photons which can mimic an isolated high-energy photon if they 

are closely-spaced and the ECAL picks them up together.16 This problem mostly happens 

in the endcap region where the angle between two photons of the 𝜋� decay is likely to be 

small enough to cause this problem. The preshower has a much finer granularity compared 

                                                

16- This is especially important in Higgs Boson searches. Since one of the Higgs decays is to photons.  
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to the ECAL and can see each of the pion-produced photons separately. In total, there are 

75,848 crystals in the ECAL which provide very fine spatial granularity.  

 

 

Figure 2-9: One-quarter (r, z) view of the layout of the CMS ECAL. This image is taken from [70]. 

2.2.5 Hadron Calorimeter  

The second calorimeter is the hadron calorimeter, or HCAL. HCAL is designed to measure 

the energy of hadronic jets emerged from the collisions.  It also contributes to measuring 

the pileup from secondary collisions in the event. 

Hadronic showers are inherently more complex than electromagnetic showers, and 

therefore the resolution of hadronic calorimeters is much worse than electromagnetic 

calorimeters. For instance, the energy deposit by hadrons in nuclear breakup or excitation 

is around 30% to 50%, which are invisible or produce signals that are 𝑂(𝜇𝑠) out of time 

[65, 80]. We can estimate the invisible energy from visible energy, however, fluctuations 
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in this ratio deteriorate resolution. Besides, part of the hadronic jets. Therefore, every 

hadronic shower has a large electromagnetic component, containing one-third of the energy 

at low energies and rising logarithmically with energy. Since the response is very different 

between the two components, fluctuations in the electromagnetic fraction dramatically 

broaden the resolution as well.  

The CMS HCAL is a sampling calorimeter, meaning that it uses alternating layers of 

“absorber” and fluorescent “scintillator” approximately 50 mm and 3.8 mm thick, 

respectively. The absorber layers, most of which are made of brass (70% Cu, 30% Zn), 

induce the showering. Brass17 is relatively affordable and also does not perturb the 

magnetic field inside the magnet because it is non-magnetic. This brass alloy has an 

interaction length of 𝜆* = 16.42 cm and a density of 8.53	g/cm�. The scintillating layers 

interleaved with the absorber layers are made of radiation-hard plastic, mostly Kuraray 

SCSN81 and Bicron BC408; however, quartz fiber is also used for its superior radiation 

hardness. Using the energy deposited in the scintillators, we can extrapolate the invisible 

energy and the energy deposited in the brass layers.  

Figure 2-10 shows the geometry of the HCAL. The HCAL is divided into four 

subcomponents:  

• The Barrel (HB): The barrel covers the pseudorapidity range of  |𝜂| 	< 	1.3 and is 

segmented into 36 wedges where each wedge encompasses half of the HB in 𝜂 and 

20° in 𝜑 corresponding to exactly one ECAL supermodule. There are 16 layers of 

                                                

17- It is interesting to know that this brass comes from a million WWII brass shell casements from the 
Russian Navy 
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absorber layers in each wedge of the Barrel region.  The innermost and outermost 

absorber layers are made of stainless steel with 40 mm and 75 mm thickness, 

respectively, which also provide structural support. And the middle fourteen layers 

are brass interlayered with scintillators. The first eight are 50.5 mm thick, and the 

last six are 56.5 mm thick. The scintillators have a granularity of (𝛥𝜂,𝛥𝜑) 	=

	(0.087, 0.087). Every single unit of the scintillator is called a tile; the CMS HCAL 

detector contains about 70,000 tiles. The innermost scintillator layer in the HB is 

made of Bicron BC408 while the remaining 16 layers are made of Kuraray SCSN81 

[71]. 

• The Endcaps (HE): The endcaps are two discs on positive and negative z-directions 

that together cover the rage of 1.3	 < 	 |𝜂| 	< 	3.0. Each disc has 36 wedges and 18 

layers of absorber and scintillator that are made of the same material as HB. 

However, the difference with HB is that the stainless steel is only used for the outer 

absorber layer, to prevent any magnetic interference. The scintillator tiles in HE are 

trapezoidal and provide a granularity of (𝛥𝜂,𝛥𝜑) = (0.087,0.087) for |𝜂| < 	1.6 

(Same as HB), and approximately (𝛥𝜂,𝛥𝜑) = (0.17,0.17) for |𝜂| 	≥ 	1.6. Layers 

1–17 are 3.7 mm thick, and layer 0 is 9 mm thick [71].  

• The outer calorimeter (HO): The space that HCAL can take is very constrained 

because we want HCAL to be inside the magnet to measure hadronic showers 

before they interact with the magnet.  This space constraint makes it very difficult 

to achieve enough stopping power to measure the energy of high-energy and late-

developing jets reliably. Therefore, the outer calorimeter is designed to provide a 



 51 

better measurement for the late-developing jets. It covers the region |𝜂| 	< 	1.3 

(same as HB) and consists of tiles of Bicron BC408 scintillator (10 mm thick) 

mounted inside the iron yoke that gathers the returning magnetic field outside the 

solenoid. This means that the HO uses the solenoid material as the absorber. Due 

to the shape of the return yoke, the HO also is divided into five rings along the z-

axis, with each having 12 sectors in φ. There are gaps between the rings because of 

the power lines and cryogenic that supply the magnet. The scintillator tiles roughly 

follow the (𝛥𝜂,𝛥𝜑) 	= 	 (0.087, 0.087) segmentation of the HB, within the 

constraints of the yoke geometry. 

• The forward calorimeter (HF): The forward calorimeter is placed in the most 

forward region of the CMS (3.0	 < 	 |𝜂| 	< 	5) and is very important for missing 

transverse energy measurement since it is the only component above |𝜂| > 3. It is 

also used to measure the instantaneous luminosity of the LHC [81]. As HF is close 

to the beamline, it experiences enormous radiation doses, near 100 Mrad/year [82]. 

Thus, HF must be considerably more radiation hard than any other component of 

the HCAL. As a result, HF uses quartz fibers with polymer cladding as its active 

material and detects Cherenkov light instead of scintillation light (if the particle 

energy is above Cherenkov threshold of 𝐸 ≥ 190	𝑘𝑒𝑉). Each end of the HF is 

composed of cylindrical stainless-steel absorbers of length 165 cm, from r = 12.5 

cm to r = 130 cm, arranged in 18 azimuthal wedges that are interspersed with quartz 

fibers that run parallel to the beamline. Although HF stands for Hadronic 

Calorimeter Forward, it also measures the energy of electromagnetic particles. 
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Some of the fibers penetrate halfway (short fibers) through the steel plate to allow 

the HF to distinguish between electromagnetic (which goes less deep) and hadronic 

(which goes deeper) showers. The fibers form towers of size (𝛥𝜂,𝛥𝜑) 	=

	(0.175, 0.175) [71]. 

However, quartz calorimetry comes with some challenges that makes the energy 

resolution of HF somewhat coarse:  

o The energy loss due to Cherenkov radiation in quartz is about 10000 times 

smaller than that due to ionization. Thus, the number of photons is small. 

o The light transfer is done by total internal reflection in the fiber at large 

angles. Therefore, only a few percents of the photons are transported to the 

photodetectors. 

o Quartz only occupy around 1% of the HF volume (it is ~10% active volume 

in HBHE). 

o The Cherenkov radiation is much more sensitive to the electromagnetic 

component than the hadronic component of the showers. Thus, changes in 

the shower composition have an even more effect on the resolution than in 

other calorimeters, resulting in poor pion energy resolution. 

Despite the somewhat coarse resolution of HF, it provides vital for the physics 

analyses.  
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Figure 2-10: One-quarter (r,z) view showing the layout of the HCAL components within the CMS detector [72]. 

The light from the plastic scintillator tiles in the HB, HE, and HO is transferred by Kuraray 

Y-11 wavelength-shifting (WLS) fibers to the outside and then using clear optical fibers to 

hybrid photodiodes (HPD) for electronic processing.  

2.2.6 Muon System 

The muon system is the outermost component of the CMS detector. Muons are heavy and 

therefore have high penetrating power which allows them to reach beyond all other layers 

and even go through the magnet. The muon system detects muons as they fly away from 

the collision point and contains three different gas-and-electrode technologies to measure 

the trajectories of muons. These trajectories and tracker trajectory can be combined for 

greater precision. 
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A schematic view of the muon system is presented in Figure 2-11. Like most other 

subsystems, it is also divided into the barrel (cylindrical) and endcap (two discs) regions. 

Muons are detected using a combination of drift tubes (DTs) and resistive plate chambers 

(RPCs) in the barrel, whereas cathode strip chambers (CSC) and RPCs are used in the 

endcaps. All three of these types detect muons exploiting the trail of ionization that the 

muons leave by passing through a gas. The free electrons get attracted to positive electrodes 

and the ions to negative electrodes producing electric signals that are read out. Then using 

the time difference between signals, one can tell how far along the electrode the impact 

occurred. 

 

Figure 2-11: One-quarter (r, z) view of the layout of the CMS muon system [70]. 
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Figure 2-12 shows a basic drift cell comprising the drift tubes (DT). DT is an approximately 

rectangular tube filled with a mixture of 85% Ar and 15% 𝐶𝑂; gases, 42𝑚𝑚	 × 	13𝑚𝑚	 ×

	2.4𝑚 with a 50μm positive wire running down its center. The electric field is ~2 𝑘𝑉/𝑐𝑚 

witch causes the electron drift velocity of 60 s®
~¾

 and the drift time of maximum 380 ns. 

DTs cannot measure the coordinate parallel to the wire and therefore, they provide 1D 

position measurements with a resolution of ~250 μm. 2D position measurement is possible 

by stacking multiple layers which are called a drift tube station. DTs are used because they 

are precise yet inexpensive and well-suited in the muon barrel, where the particle flux is 

low and magnetic field is both low and constant [71]. In the muon endcaps, both particle 

rate is higher and also the magnetic field is not uniform. That is why instead of DTs we use 

a faster detector called CSC (Cathode Strip Chambers). 

The CSC are planar chambers filled with a mixture of 40% Ar, 50% 𝐶𝑂;, and 10% 𝐶𝐹Ú. 

They contain anode wires running in one direction, and cathode strips running 

perpendicularly, providing a 2D position measurement. CSCs are used in the endcap due 

to their precision, fastness (< 225 ns), and operation in the high magnetic field at the fringes 

of the superconducting solenoid [71].  

Resistive plate chambers (RPC) are also planar chambers filled with a mix of 96.2% 

𝐶;𝐻;𝐹Ú, 3.5% 𝑖𝐶Ú𝐻3�, and 0.3% 𝑆𝐹î. They have an anode plate on one face, and a cathode 

plate on the other face. In RPCs, electrons are detected by metal strips outside the 

chambers. RPCs are used to enhance the CSCs and DTs performance mainly due to their 

1 ns timing resolution; although their spatial resolution is not as good as the DTs or the 
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CSCs [71]. The signals coming from these three subsystems are processed by electronics 

inside the detector volume as well as outside of it. 

 

Figure 2-12: A schematic view of CMS muon drift chamber. This image is taken from [72]. 

 

2.2.7 Trigger System 

During 2016 data taking, the peak instantaneous luminosity was 1.5	 × 	10�Ú	𝑐𝑚2;𝑠23 and 

up to 52 collisions per bunch crossing (pileup) were recorded in 2016 [83]. It is not wise 

to keep so many events per 25 ns bunch crossing. Because on one hand it is not possible 

due to technology restrictions and on the other hand most of the events are not even 

interesting. Most interesting events are the ones that contain W or Z bosons, top quarks, or 

Higgs bosons. And these interesting events are 5 to 10 orders of magnitude rarer than 

proton-proton cross-section. Therefore, we need a mechanism to choose interesting events 

and only store them. This mechanism is called the trigger system and it has two levels 

jassem118:  
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• The Level-1 trigger (L1T) which applies a primitive selection that reduces the rate 

from ~40 MHz to ~100 kHz. The L1 trigger seeks signatures such as ionization 

tracks in the muon system, HCAL deposits consistent with jets, ECAL deposits 

consistent with electrons or photons, and so on 

• The High-Level Trigger (HLT) which reduces the rate further to several hundred 

Hz. HLT receives events chosen by L1T and perform an analysis on its farm of 

thousands of CPUs that is close to offline reconstruction with some simplifications. 

After deciding which events contain physics processes of interest, those events are 

stored into different HLT paths.  

Applying triggers can cause some difficulties that must be compensated during physics 

analysis: 

• The trigger selections are not perfect, meaning that they can miss a portion of the 

events they are supposed to trigger on. For instance, a trigger that selects events 

containing muons with 𝑝5 > 17 GeV might only work 98% of the time and the 

efficiency may even depend on the muon 𝑝5. This efficiency is measured and 

accounted for in the physics analyses.  

• A trigger selection (e.g. a single electron) can occur so frequently that the triggers 

cannot handle it. To cope with this flood of desired events, we program the trigger 

software to keep only every 𝑛ÓÆ event (prescaling the trigger), and we weigh that 

event by n.  
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2.3 Reconstruction and Identification  

What we have so far is just electronxcic outputs from the CMS detector. However, we need 

a meaningful picture of what particles and objects are present in the event. This process is 

called event reconstruction (“reco”) and particle identification (“ID”). The CMS 

Collaboration uses a system called particle flow (PF) to do basic reconstruction [75]. 

The particle flow algorithm associates all of the detector readings with known particles. Its 

logic basically follows the logic of scientists who designed the CMS. It starts by 

reconstructing tracks. Tracks allow us to measure the momentum and charge of particles.  

If the particle goes all the way to the muon system, then it is a muon. PF identifies muon 

candidates using muon detector tracks, inner tracks, and calorimeter energy deposits. After 

PF reconstructs all muons, it removes all the corresponding detector signatures and starts 

with the next easiest identifications, and so on. Each successive ID step only uses the 

information that was not consumed by the previous step. Some postprocessing 

considerations are performed at the end [67]. 

2.3.1 Charged Tracks and Vertices  

The PF algorithm starts by reconstructing tracks from the pixel and strip hits in the inner 

tracker. Track reconstruction is performed by a software named the Combinatorial Track 

Finder (CTF) based on the Kalman filter, which is described in References [84] and [85]. 

The main idea in Kalman filter is to connect hits in the successive layers of the tracker and 

fit them to a helical curve. The method puts adjustable constraints on the maximum number 

of missing hits, the minimum number of sequential hits, and also other quantities to ensure 

that tracks that are being reconstructed have a minimum level of quality.  
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Then it starts grouping all the tracks identified in the event into vertices. A vertex is a point 

in space where a collision or a decay took place and we observe some particles emitted 

from it. The method reconstructs vertices by extrapolating tracks backward in time to see 

where they intersect. Every bunch crossing can contain multiple proton-proton collisions 

as well as intermediate particle decays, and thus multiple vertices. The vertex that has the 

highest ∑ 𝑝5;Óþ,�¬¾  is defined as the primary vertex, and all other vertices are secondary. 

Because the primary vertex has the highest energy, we mostly ignore secondary vertices 

when analyzing an event, although displaced secondary vertices are used in reconstructing 

for example b-jets. 

2.3.2 Calorimeter Clusters 

Before starting to reconstruct particles there is one more step to take and it is to identify 

clusters of energy deposits in the ECAL and HCAL. Clusters of energy can be used to 

differentiate between electrons and photons, and also between charged hadrons and neutral 

hadrons. We start from the calorimeter cell that its energy deposit is above some defined 

threshold (it is called the seed). From the seed, we recursively add any adjacent cell with 

sufficient energy forming a cluster, and then fitting a 2D Gaussian to the energy 

distribution. Due to different geometry and detector layout in different regions, separate 

calibrations are applied in the endcap and barrel of each calorimeter [67]. 

2.3.3 Muons	 

Now we have reconstructed the tracks, vertices, and clusters and it is the time to reconstruct 

the muons in the event. Among all particles, muons’ signature is usually very clean and 

distinctive. Muons are reconstructed by lining up a track in the inner tracker with a track 
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in the muon system. The muon that is reconstructed using both tracker and muon-system 

information is known as global muon. It is also possible to reconstruct tracker-only or 

standalone muons, which are reconstructed using the information solely from the inner 

tracker, or the muon system, respectively. Once a muon candidate is identified, its 

associated tracks are removed for future steps [67]. 

2.3.4 Electrons and Isolated Photons  

In the next step, both electrons and isolated photons are identified since the reconstruction 

of both particles relies on ECAL energy deposits. An electron candidate is a charged track 

in the tracker that matches up with a comparable ECAL energy deposit while it is a photon 

candidate if there is an ECAL deposit with no corresponding track. To confirm the 

identification, a number of further criteria are checked. For example, the shape of the 

ECAL energy deposit is a little different for electrons and photons. The tracker bends the 

electrons which have negative charge and therefore, they produce bremsstrahlung (a 

shower of photons). These photons are still high-energy and tend to decay to electron-

positron pairs, which in turn can produce further bremsstrahlung, and so on. This cascade 

which is emitted tangent to the curved trajectory of the electrons causes a long tail in the φ 

direction of their energy deposit in ECAL. To the contrary, photons do not bend and 

therefore create rounder energy deposit distributions in the ECAL [67]. Once an electron 

or photon candidate is identified, its associated signatures are removed for future steps. 

2.3.5 Hadrons  

We have already removed the isolated muon, electron, and isolated photon candidates. 

Therefore, what is left should be hadrons. However, we also want to reconstruct non-
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isolated photons and muons coming from hadron decays. Particle flow assigns any (non-

isolated) ECAL deposit that is not linked to a track as a photon; similarly, any HCAL 

deposit not linked to any track is considered to be a neutral hadron. Finally, any remaining 

HCAL deposit has to be linked to a track and are therefore considered to be charged 

hadrons. When an ECAL deposit, an HCAL deposits, and/or a track overlap, particle flow 

reconstructs them as combinations of charged and neutral hadrons and photons [67]. 
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Chapter 3 𝑯 → 𝒂𝒂 → 𝟒𝒃 Analysis 

3.1 Introduction  

In this dissertation, a search for an NMSSM physics signal in a four-bottom quark final 

state is presented. The signature process sought is the production of an SM-like Higgs 

boson H followed by its decay to a pair of lighter pseudo-scalar Higgs bosons a, each of 

which decays to a pair of bottom quarks. When there is substantial mass difference between 

H and a (𝑎 < 30	𝐺𝑒𝑉 [86]), the a’s are produced with significant boost. Also, due to the 

high QCD background in the 4b final state, the cleanest channel for the SM Higgs 

production is the W associated production channel (Figure 3-1 - left) where a high-𝑝5 

isolated lepton from the vector boson decay provides a convenient trigger. [86] 

 

Figure 3-1: Feynman diagrams of W associated production (left) and Z associate production (right). Only W 
associated production channel is considered in this analysis 

3.2 Motivation 

After the discovery of a Higgs-like particle by the CMS and ATLAS experiments at the 

LHC in 2012 [87, 88], additional measurements of its properties using the full datasets at 

√s = 7	and	8	GeV revealed that the observed state with a mass near 125 GeV is consistent 
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with the predicted SM Higgs [89-91]. The measurements of the Higgs production cross-

sections and branching ratios illustrate this agreement (Figure 3-2) 

 

Figure 3-2: Best fit results for production signal strengths in different Higgs boson production processes’ cross-
sections (left) and branching ratios (right) for the combination of ATLAS and CMS data, normalized to Standard Model 

predictions. The error bars indicate the 1𝜎 (thick lines) and 2𝜎 (thin lines) intervals. [92] 

After this exciting discovery, the experimental investigation of this new state began. This 

experimental investigation includes: 

• Precise measurement of the Higgs couplings to SM particles 

• Search for additional Higgs-like states 

• Search for exotic decays of Higgs 

This dissertation falls in the third category. Exotic or non-standard decays of Higgs are the 

ones that are not predicted by the SM. Higgs boson has a very narrow width (SM 

prediction: 4.2 MeV; LHC run 1: < 22 MeV at 95% CL, subject to various assumptions 

[93]) to mass ratio due to the suppression of tree-level Yukawa couplings. Therefore, even 
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if the coupling to a non-SM light state is small, it can still open non-negligible decay modes. 

[94] 

Among the topologies of exotic decays, the ℎ → 𝑋𝑋 → 2𝑌2𝑌¨ is naturally realized in many 

well-motivated BSM frameworks including R-symmetry limit of the NMSSM, two Higgs 

doublet models containing additional singlet Higgs fields (2HDM+S), extensions of the 

SM with hidden light gauge bosons, the Little Higgs model, extensions of the SM with 

hidden light gauge bosons, and commonly in the Hidden Valley scenario18 [86, 95, 96]. 

The NMSSM is one of the best-studied examples of this topology in which an approximate 

R-symmetry yields a SM-like Higgs boson with considerable branching ratio into a pair of 

light pseudoscalars ‘a’ followed by ‘a’ decaying to 2X2Y with X, Y: fermions (μ, τ), b-

quarks, gluons or γ’s. Table 3-1 summarizes the studies of Higgs exotic decays to 2a to 

2X2Y both in CMS and ATLAS.  

Some of the studies that consider the possible decay of the SM-like Higgs to a pair of 

lighter Higgs bosons are [86, 97-104] in 2HDM context, [86, 105-108] in NMSSM and 

NMSSM-like context and [86, 109, 110] in the general case of adding a singlet field to the 

SM or the 2HDM.  

It is worth mentioning that ℎ → 𝑎𝑍 can also happen in BSM physics if 𝑚, < 𝑚Æ −𝑚¯. 

However, this analysis only pertains to ℎ → 𝑎𝑎 [96]. 

 

                                                

18- But not possible in the (CP-conserving) minimal supersymmetric standard model (MSSM) because of 
the tightly constrained nature of its Higgs sector. 
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Table 3-1: Overview of Run1 [8 TeV] and Run2 [13 TeV] 𝐻 → 𝑎𝑎 searches in ATLAS and CMS. This table is taken 
from [96] and [111]  

Final State CMS Atlas 
Dataset ID arXiv Dataset ID arXiv 

𝑯 → 𝒂𝒂 → 𝟒𝒍 
(𝒉 → 𝒁𝒁𝒅/𝒁𝒅𝒁𝒅 	
→ 𝟒𝒍) 
 

8 TeV 
+ 13 
TeV 

Phys.Lett.B 752 
(2016) 146, 
HIG-18-003 

(PAS) 

1506.00424 13 TeV JHEP06(2018)166 1802.03388 

𝑯 → 𝒂𝒂 → 𝟒𝝉 8 TeV JHEP(2016)079 1510.06534 
1701.02032 - - - 

𝑯 → 𝒂𝒂 → 𝟐𝒃𝟐𝝁 8 TeV JHEP(2017)076 1701.02032 13 TeV Submitted to PLB 1807.00539 

𝑯 → 𝒂𝒂 → 𝟐𝝁𝟐𝝉 
8 TeV 
+ 13 
TeV 

Submitted to 
JHEP 

1701.02032 
1805.04865 8 TeV Phys.Rev.D92 

(2015) 052002 1505.01609 

𝑯 → 𝒂𝒂 → 𝟐𝒃𝟐𝝉 13 TeV Submitted to 
PLB 1805.10191 - - - 

𝑯 → 𝒂𝒂 → 𝟒𝒃 13 TeV This analysis! 13TeV Submitted to 
JHEP 1806.07355 

𝑯 → 𝒂𝒂 → 𝟒𝜸 - - - 8 TeV EPJC 76(4) 2016 1509.05051 

𝑯 → 𝒂𝒂 → 𝟐𝜸𝟐𝒈 - - - 13 TeV Phys.Lett.B 782 
(2018) 750 1803.11145 

 

The more precise measurements of the Higgs Boson decay branching ratios constrain the 

extended Higgs sector more every day. However, the possibility of decays of the type 𝐻 →

ℎℎ (h is a lighter scalar) or 𝐻 → 𝑎𝑎 (a is a lighter pseudoscalar) is still considerable. Using 

the observed decays of the Higgs Boson, we can only put a limit on unseen decays which 

we will show as 𝐻 → 𝑈. These unseen decays potentially contain 𝐻 → 𝑎𝑎  and 𝐻 → ℎℎ. 

According to [112, 113]: 

• 𝐵𝑅(𝐻 → 𝑈) < 0.09 at 95.4% C.L. for a Higgs with completely SM-like couplings 

• 𝐵𝑅(𝐻 → 𝑈) < 0.23 for a SM Higgs if extra loop contributions to its γγ and gg 

couplings are allowed 

• 𝐵𝑅(𝐻 → 𝑈) < 0.22 if the couplings to up quarks, down quarks and vector bosons 

can vary within a general model with only doublets and singlets in the Higgs sector 

(and no extra loop contributions to the gg and 𝛾𝛾 couplings). If the up, down and 
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vector boson couplings are allowed to vary completely freely (except for restricting 

vector boson couplings to be less than their SM values), then all LHC rates can be 

reproduced if all the couplings-squared are increased by a factor of 3
32?@(A→B)

. The 

only limit arises from direct limits on the observed Higgs total width. At the 

moment, this is at the level of ΓDED ≤ 4ΓDEDFG [114].  

If the couplings-squared are all increased by 3
32?@(A→B)

, the rates for 𝑔𝑔 → 𝐻 → 𝑈 and 

other production mechanisms are all increased by a factor of ?@(A→B)
32?@(A→B)

, making such 

modes even more accessible. However, even if one adopts the more conservative approach 

of only considering doublets + singlets models, there is still an excellent prospect for seeing 

Higgs pair modes if BR(H → U) ≤ 0.22.  

BR(H → aa, hh) are constrained by the requirement that BR(H → U) ≤ 	0.22. In other 

words: 

 BR(H → aa) + 	BR(H → hh) < BR(H → U) ≤ 	0.22 (30) 

In the NMSSM, the pseudoscalar mass eigenstate is defined by  

 𝑎 = cos 𝜃N	𝑎ï��ï + sin𝜃N 𝑎� (31) 

Where 𝑎ï��ï is the MSSM-like pseudoscalar and 𝑎� is the singlet pseudoscalar of the 

NMSSM. To keep the 𝐻,, coupling constant small, we must have 

  

 cos 𝜃N	 ≪ 1 (32) 

To suppress the doublet content of the a. 
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3.2.1 Motivation for 𝑯 → 𝒂𝒂 → 𝟒𝒃 channel 

Among the ℎ → 𝑎𝑎 → 2𝑌2𝑌¨ decays, ℎ → 𝑎𝑎 → 4𝑏 is theoretically very motivated mainly 

because 𝑎𝑎 → 4𝑏 can be the dominant decay in some regions of the parameter space 

(Figure 3-3)[96]. 

The 4b final state can be dominant in several classes of models: 

• R-symmetry limit of the NMSSM: In this model, the coupling of a to fermions is 

proportional to the Yukawa matrices, which are intensified by sin β/sin α. This 

creates large decay branching ratios for 𝑎 → 2𝑏 in large regions of the parameter 

space [96]. 

• 2HDM+S: Depending on tanβ, the decay 𝑎 → 2𝑏 is generic in all four 2HDM 

Types if kinematically allowed, i.e., 𝑚, > 2𝑚� [96]. 

• Little Higgs models: Like R-symmetry limit of the NMSSM, the couplings of a to 

SM fermions are again proportional to the SM Yukawa matrices if Minimal Flavor 

Violation (MFV) is imposed. Therefore, the coupling to the b-quark is typically 

increased again [96]. 
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Figure 3-3: Branching ratios of a singlet-like pseudoscalar in different types of the 2HDM+S model; Branching ratio 
of 𝑎 → 𝑏𝑏 often dominates when kinematically allowed, i.e., 𝑚, > 2𝑚� [86] 

 

In a more general view, if NMSSM is a true explanation of the nature, then the SM-like 

Higgs boson could be either the lightest CP-even scalar or the second lightest CP-even 

scalar [105]. Therefore, two scenarios are possible as [115] explains:  

• "NMSSM1 scenario: the lightest Higgs boson acts as the SM-like Higgs boson h. 

In this scenario, the mixing effect19 is to pull down 𝑚Æ, and if the mixing effect is 

dominant, large radiative correction is needed to predict 𝑚Æ ≃ 125 GeV. 

• NMSSM2 scenario: the next-to-lightest Higgs boson acts as the SM-like Higgs 

boson h. In this scenario, the mixing effect is to push up 𝑚Æ. Both the mixing effect 

                                                

19- Meaning the stop mixing that contributes to the SM-like Higgs mass 
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and the additional tree level contribution make the large radiative correction 

unnecessary." 

In other words, two kinds of analyses can be done with 4b final state: 

• NMSSM1: A massive resonance decays to a pair of SM-like Higgs with 4b final 

state (𝑋 → ℎℎ → 4𝑏). A few other models also predict this channel. Some examples 

of this kind of analysis both at CMS and ATLAS are [116-121]. 

• NMSSM2: The SM-like Higgs decays to a pair of lighter pseudo-scalar or 

pseudoscalar Higgs. This scenario is more motivated than NMSSM1 since it does 

not require large radiative correction for 𝑚Æ. Although the ℎ → 𝑎𝑎 → 4𝑏 analysis 

is done in ATLAS ([118, 122]), it was never done in CMS. This analysis is done to 

fill this vacancy.  

If the pair of pseudo-scalar Higgs (a) is boosted (Mass < 20-30 GeV), then ℎ → 𝑎𝑎 → 4𝑏 

in principle exists in ℎ → 2𝑏 search signal region. This is because when the boosted light 

Higgs decays to a 𝑏𝑏= pair, the pair is collimated, and the two b-jets will be reconstructed 

as one jet. The most recent ℎ → 2𝑏 results from CMS and ATLAS confirm this decay with 

the significance of 5.6 and 5.4 standard deviations respectively. Signal strength20 is 1.04 ±

0.2 (for CMS) and 1.01 ± 0.12(𝑠𝑡𝑎𝑡. )2�.3í±�.3î(𝑠𝑦𝑠𝑡. ) for ATLAS [124, 125]. This result can 

be used to limit the branching ratio of ℎ → 2𝑎 → 4𝑏.  

 

                                                

20- Defined as the ratio of the best-fit value for the production cross-section for a 125 GeV Higgs boson, 
relative to the standard model cross-section. 123. Chatrchyan, S., et al., Search for the standard model 
Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. 2014. 89(1): p. 
012003. 
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Figure 3-4: Simulated signal strength in ℎ → 2𝑏 search vs 𝐵𝑟(ℎ → 2𝑎 → 4𝑏) vs efficiency ratio (r). This plot is 
simulated with run 1 setup assuming 𝐵𝑟(ℎ → 2𝑏)�ï = 0.6. This plot is taken from [86] 

Figure 3-4 shows the simulated signal strength of ℎ → 2𝑏 vs the branching ratio of ℎ →

2𝑎 → 4𝑏 vs the efficiency ratio r. The efficiency ratio (The x-axis of Figure 3-4) is defined 

as: 

 𝑟Ú�(𝑚,) = 	
𝜖Æ→;,→Ú�
𝜖Æ→;�

 (33) 

Where 𝜖Æ→;,→Ú� is the probability that a ℎ → 2𝑎 → 4𝑏 decay is confused with ℎ → 2𝑏 and 

ends up in its signal region. And likewise, 𝜖Æ→;� is the probability that a ℎ → 2𝑏 decay is 

identified correctly and put in the signal region [86]. The simulation of [86] using run 1 

configuration gives us the value of 𝑟 = ~1.5 for 𝑚, = 15	𝐺𝑒𝑉. Although this simulation 

is done with run 1 configuration, it can be used as an approximation.  

In 2018 CMS ℎ → 2𝑏 paper, we have 𝑠𝑖𝑔𝑛𝑎𝑙	𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ < 1.24, and therefore from Figure 

3-4 we can read:  

𝐵𝑟(ℎ → 2𝑎 → 4𝑏) < 15% for 𝑚, = 15	𝐺𝑒𝑉 
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In this analysis, we are only interested in the channel shown on the left side of Figure 3-1 

which we call signal. All other processes that happen during proton-proton collisions is 

called background. Although in principle it is possible to have background from other BSM 

theories, we expect the effect to be negligible. Therefore, we only talk about SM 

background.  The main goal of this analysis is to isolate signal events by rejecting SM 

background, then evaluate our performance and the results using statistical methods.  

Background rejection starts while taking the data at CMS as explained in the previous 

chapter (Trigger primitives, Level 1 trigger, and HLT). In other words, the background of 

the data we start with is already strongly suppressed. The next step in our SM background 

suppression is to use our basic understanding of high energy physics and find the so-called 

pre-selection requirements that can distinguish between signal and SM background. This 

is done in section 3.6.1. Then we will mix our knowledge of physics with machine learning 

techniques in part 3.5.2 to reduce SM background even more. However, if we keep making 

more strict requirements to suppress the SM backgrounds, we will also lose signal events. 

Therefore, we have trade off signal acceptance against background rejection. As a result, 

instead of trying to eliminate background even further we continue by estimating the 

amount of remaining background events instead. This is done in part 3.  
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3.3 Datasets 

3.3.1 Data 

In this analysis, we used 35.9 fb23 of proton-proton collision data taken in 2016 at CMS at 

√𝑠 = 13	𝐺𝑒𝑉. The collision data were analyzed using different global tags as shown in 

Table 3-2. Since we only considered the WH production that come with a high-𝑝5 isolated 

lepton, only single lepton datasets (SingleElectron + SingleMu) are used both for the signal 

and control regions. Efficiencies are measured using dedicated trigger paths stored in the 

same datasets as the ones used for our search. All data are analyzed using “Cert 271036-

284044 13TeV 23Sep2016ReReco Collisions16 JSON.txt” file to select the good 

luminosity sections. 

Table 3-2: The MiniAODv2 datasets used for this analysis. The primary datasets correspond to SingleElectron and 
SingleMu. The integrated luminosity and the run-ranges are shown for each data period. 

Dataset Global Tag ¿𝓛 (𝒇𝒃2𝟏) Run range 

/Run2016B-03Feb2017 ver2-v2 80X dataRun2 2016SeptRepro v7 5.933 273150-275376 

/Run2016C-03Feb2017-v1 80X dataRun2 2016SeptRepro v7 2.646 275656-276283 

/Run2016D-03Feb2017-v1 80X dataRun2 2016SeptRepro v7 4.353 276315-276811 

/Run2016E-03Feb2017-v1 80X dataRun2 2016SeptRepro v7 4.117 276831-277420 

/Run2016F-03Feb2017-v1 80X dataRun2 2016SeptRepro v7 3.186 277932-278808 

/Run2016G-03Feb2017-v1 80X dataRun2 2016SeptRepro v7 7.721 278820-280385 

/Run2016H-03Feb2017 ver2-v1 80X dataRun2 Prompt v16 8.636 281207-284035 

/Run2016H-03Feb2017 ver3-v1 80X dataRun2 Prompt v16 0.221 284036-284068 

Total  35.9  
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3.3.2 Background MC 

The Monte Carlo (MC) datasets that we used in this analysis for relevant SM background 

processes are tabulated in Table 3-3 (The cross-sections are based on MCFM from [126]). 

We will briefly explain these SM backgrounds in section 3.6.1. All samples are generated 

using MadGraph5 at LO [127], PYTHIA [30, 128], and POWHEG21 [130] generators and 

a full simulation of the CMS detector based on GEANT4 [131].  

• 𝑡𝑡+̅jets is the dominant irreducible22 SM background in this analysis and it is 

simulated with POWHEG. 

• 𝑊 → 𝑙𝜈 and DY (𝑊 → 𝑙𝑙) are simulated with Madgraph at LO. However, we 

applied the k-factors23 for both processes. For 𝑊 → 𝑙𝜈, the k-factor is 1.21, and for 

DY it is 1.21 and 1.17 in the dilepton mass range of 10-50 and above 50 

respectively.  

• The single top and di-boson processes are simulated with POWHEG with NLO 

cross-sections 

• And aMC@NLO is used for the 𝑡𝑡̅+X processes with NLO cross-sections 

                                                

21- POWHEG is a method for mixing the accuracy of NLO calculations with speed of parton shower 
programs. It generates the hardest emission with NLO accuracy first, which creates events with positive 
weights. Then it uses the LO Shower Monte Carlo programs like Pythia to perform the rest of the shower. 
129. Nason, P., B.J.A.R.o.N. Webber, and P. Science, Next-to-leading-order event generators. 2012. 62: 
p. 187-213. 
22- Irreducible background is defined in section 3. 
23- Ratio of NLO to LO.  
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3.3.3 Signal MC 

The Monte Carlo signal samples for associated WH production were generated at LO with 

MadGraph5 [132] requiring that W decays leptonically (~11% per lepton flavor from the 

inclusive W decays) and 𝐻 → 𝑎𝑎 → 4𝑏 was also forced. The NMSSM model used in 

MadGraph is taken from [133]24 with ickkw=1 (MLM matching) and xqcut = 15. The SM 

Higgs mass in NMSSM was set to 125 GeV which is the mass found at LHC in 2012. Also, 

a mass scan is performed over 𝑚, from 12 (A little higher than 2𝑚�	) up to 60 GeV (just 

below ®WXYYZ

;
) in increments of 12, 15, 20, 25, 30, 40, 50, and 60 GeV. We took the SM 

WH cross-section from the Yellow Report 4 of the LHC Higgs Cross-Section Working 

Group (LHC Higgs XS WG)[134-136] 

We did a study comparing the properties of particles at MC level with and without ISR and 

we observed no noticeable difference. Therefore, we did not consider ISR in our final 

version of MadGraph MC production. The output of the MadGraph was given to Pythia 

8.1 for further decays, hadronization and detector simulation as instructed by the MC 

experts. The final result was ~900k MiniAOD events for each 𝑚, mass point.  

                                                

24- There is a more specific NMSSM model only for 𝐻 → 𝑎𝑎 decays on the “Exotic Higgs Decays” website 
(http://exotichiggs.physics.sunysb.edu/web/wopr/). However, this model does not contain the whole 
NMSSM, and we could not model 𝑊± → 𝑙±𝜐 that is needed in our analysis with it! 
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Figure 3-5: Two plots using MC level information. (left) As a mass decreases, the b quarks from the same parent tend 
to be collimated; (right) b-quarks from the a-decay tend to have very low 𝑝5 in general. 
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Table 3-3: List of the SM MC samples used. S16 is an abbreviation for RunIISummer16MiniAODv2-PUMoriond17 80X 
mcRun2 asymptotic 2016 TrancheIV v6( ext*)-v1. 

Process                       Dataset 𝝈.𝒌(𝒑𝒃) 

𝐖
→
𝐥𝛖

 /WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 61526.7 
/W1JetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 9493 
/W2JetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 3120 
/W3JetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 942.3 
/W4JetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 524.2 

𝐙
→
𝐥	 𝐥

 

/DYJetsToLL M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 18610 
/DY1JetsToLL M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 725 
/DY2JetsToLL M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 394.5 
/DY3JetsToLL M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 96.47 
/DY4JetsToLL M-10to50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 34.84 
/DYJetsToLL M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 5765.4 
/DY1JetsToLL M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 1016 
/DY2JetsToLL M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 331.4 
/DY3JetsToLL M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 96.36 
/DY4JetsToLL M-50_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/S16 51.4 

𝐭𝐭
̅ +
𝐗 

/TT TuneCUETP8M2T4 13TeV-powheg-pythia8/S16 831.76 
/TTGJets_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/S16 3.697 
/TGJets_TuneCUETP8M1_13TeV amcatnlo madspin pythia8/S16 2.967 
/TTWJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-madspin-pythia8/S16 0.2043 
/TTZToLLNuNu M-10_TuneCUETP8M1_13TeV-amcatnlo-pythia8/S16 0.2529 

Si
ng

le
 T

op
 /ST s-channel 4f leptonDecays 13TeV-amcatnlo-pythia8 TuneCUETP8M1/S16 3.362 

/ST t-channel top 4f inclusiveDecays 13TeV-powhegV2-madspin-
pythia8_TuneCUETP8M1/S16 

136.02 

/ST t-channel antitop 4f inclusiveDecays 13TeV-powhegV2-madspin-pythia8 
TuneCUETP8M1/S16 

80.95 

/ST tW antitop 5f inclusiveDecays 13TeV-powheg-pythia8 TuneCUETP8M1/S16 35.6 

D
ib

os
on

s /ZZ_TuneCUETP8M1_13TeV-pythia8/S16 16.523 
/WWTo2L2Nu 13TeV-powheg/S16 12.178 
/WWToLNuQQ 13TeV-powheg/S16 49.997 
/WZ_TuneCUETP8M1_13TeV-pythia8/S16 47.13 

Tr
ib

os
on

s 

/ZZZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/S16 0.01398 
/WZZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/S16 0.05565 
/WWZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8/S16 0.1651 
/WWW 4F_TuneCUETP8M1_13TeV-amcatnlo-pythia8/S16 0.2086 

Q
C

D
 

/QCD Pt-*to*_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16  
/QCD Pt-20toInf MuEnrichedPt15_TuneCUETP8M1_13TeV_pythia8/S16  
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3.3.3.1 Pile-up reweighting  

As defined in the previous chapter, pile-up is the number of interactions per bunch crossing 

[137]. The MC generation at CMS uses a generic pile-up distribution centered at the 

expected number of pile-up interactions in data. This allows researchers to reweight the 

MC pile-up distributions to what they get from data as data taking can happen or continue 

after the MC is generated. In this analysis, we reweighed the in-time pileup distribution of 

MC to the estimated value in data. We chose the minimum-bias cross-section value to be 

69.2 mb to have the best possible agreement with the distribution of the reconstructed 

vertices simulation. The uncertainty of the minimum-bias cross-section value is chosen to 

be 5% to evaluate the sensitivity of the analysis on pileup. Figure 3-6 shows the vertex 

multiplicity distribution before and after reweighting using the one lepton datasets (before 

any cut or requirement). 

 

Figure 3-6: Vertex multiplicity distribution in data and MC before (left) and after (right) the 
pileup reweighting based on the estimated distribution of the number of interactions in each 
event. 
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3.4 Event Selection  

3.4.1 Introduction 

In this part we explain the selections and corrections that are used to: 

• Reduce malfunctions of the detector 

• “Account for known differences between the actual detector and the simulated 

detector. Because the trigger conditions typically vary over the data-taking period, 

it is difficult to model them correctly in simulated event samples. To simplify the 

determination of the trigger efficiency, one typically applies an offline selection 

requirement that is somewhat more stringent than the most stringent trigger 

requirement, establishing a uniform condition over the full running period.“ [138]  

• Isolate the signal process and reject background events 

Before we start. Let’s define Primary vertices. Primary Vertices (PV) are vertices which 

are required to be reconstructed inside a cylindrical region of length 24 cm and radius 2 cm 

surrounding the nominal interaction point. They are in addition required to have a 

minimum of 4 degrees of freedom regarding the vertex fit. When multiple PV’s are present 

in an event, the vertex with the highest ∑ 𝑝5;Óþ,�¬¾  is chosen. 

The triggers used online as the first step of background suppression are listed in Table 3-4 

with the terminology in Table 3-5. The same trigger paths are also used for the control 

regions defined and used for the background estimation.  
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Table 3-4: The online trigger paths used in the analysis to suppress the SM background 

Dataset Trigger path Used for  

SingleMu HLT_IsoMu24 
HLT_IsoTkMu24 

Signal and control 
regions 

SingleElectron HLT_Ele27_WPTight_Gsf 
Signal and control 
regions 

 

Table 3-5: Meaning of the terms in the HLT paths. Isolation is defined in part 3.4.2.5  

Term Meaning 

IsoMuXX Existence of at least one isolated muon with 𝑝5 > 𝑋𝑋 

IsoTkMuXX Existence of at least one isolated muon with tracker 𝑝5 > 𝑋𝑋 

EleXX Existence of at least one electron with 𝑝5 > 𝑋𝑋 

Eta2p1 Within coverage of |𝜂| < 2.1 

WPTight/WPLoose Use of the tight/loose working point 

Gsf Tracks fit with Gsf filter [139] 

 

3.4.2 Preselection 

3.4.2.1 Sample cleanup filters 

Sample clean up filters are applied to minimize [140]: 

• The contamination from beam-gas interactions: As described in the previous 

chapter, the interaction of the beam with the residual gas in the vacuum chamber 

tube can cause machine-induced secondary particles. [141] 
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• Beam-halo: Particles moving far from the beam center. How far may be somewhat 

arbitrary [142, 143]. Beam-halo can create machine-induced secondary particles as 

well by integrating with limiting apertures. [141] 

• Calorimeter noise. 

3.4.2.2 The identification ID requirements  

3.4.2.2.1 Electrons 

We are interested in triggering on the lepton from the WH associated Higgs production. 

We don’t expect this lepton to be low energy, therefore we consider both ECAL and tracker 

electrons with 𝑝5 > 25	𝐺𝑒𝑉 and |𝜂| < 2.5 (tracker range for electrons) in our analysis, 

except for those whose superclusters falling in the barrel-endcap gap region (i.e., 1.4442 <

|𝜂| < 1.5660). As described in the previous chapter, CMS can easily confuse particles due 

to the uncertainties in the measurement of particle properties. Therefore, the requirements 

in Table 3-7 (description in Table 3-6) are imposed to minimize electron mis-identification 

in CMS.  

It is worth mentioning that the cuts on the impact parameter are no longer included in the 

tuned identification criteria (Table 3-7). The main reasons are  

• The cut efficiency depends significantly on the physics of the event  

• And the discrimination power of the variables suffers from the significant pile-up 

increase in 2016.  
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Table 3-6: Description of the variables in Table 3-7. [144-147] 

Requirement Description 

𝝈𝒊𝜼𝒊𝜼 A measure of the spread in η in units of crystals of the 
electron’s energy in a 5×5 block centered on the seed crystal. 

𝚫𝜼𝒊𝒏 Difference in eta between track and supercluster25 

𝚫𝛟𝐢𝐧 Difference in phi between track and supercluster 

𝑯/𝑬 Ratio of the energy deposited in HCAL over energy deposited 
in ECAL within ∆𝑅 < 0.1 

|𝟏/𝐄− 𝟏/𝐩| 

3
¸~¸þ¦l

− 3
®Ô®¸~Ó´®

. Motivation: Many fakes from jets have 
¤
m
< 1 partly because of the low response of ECAL to charged 

pions. However, ¤
m
 is not often measured less than 1 for 

electrinos.  

Missing hits 
Number of missing hits along the track trajectory in the inner 
tracker. This is required to further suppress electrons from 
decays in flight. 

Pass conversion veto 
A flag to identify electrons that originated from photons 
(photon conversions). A real electron should have a compatible 
track in the tracker.  

PF relative isolation Explained in part 3.4.2.5  

 

 

 

 

 

                                                

25- Superclusters are clusters of BasicClusters to collect radiated energy (look at the description of ECAL 
mechanism in the previous chapter). 
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Table 3-7: Electron id requirements[148] 

Requirement 
Barrel Endcap 

Loose Tight Loose Tight 
𝝈𝒊𝜼𝒊𝜼 0.011 0.00998 0.0314 0.0292 

𝚫𝜼𝒊𝒏 0.00477 0.00308 0.00868 0.00605 

𝚫𝛟𝐢𝐧 0.222 0.0816 0.213 0.0394 

𝑯/𝑬	 0.298 0.0414 0.101 0.0641 

|𝟏/𝐄− 𝟏/𝐩| 0.241 0.0129 0.14 0.0129 

Missing hits 1 1 1 1 

Pass conversion veto yes Yes yes yes 

PF relative isolation 0.0994 0.0588 0.107 0.0571 
 

3.4.2.2.2 Muons 

Both tracker and standalone muons with 𝑝5 > 25	𝐺𝑒𝑉 and |𝜂| < 2.4 (tracker range for 

muons) are considered. In order to minimize muon mis-identification, the requirements in 

Table 3-9 (description in Table 3-6) are imposed.  
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Table 3-8: Description of the variables in Table 3-7. [145, 149] 

Requirement Description 

Global 

The muon candidate has to be reconstructed as a global muon. 
For each standalone muon track, a search for tracks matching 
it among those reconstructed in the inner tracking system is 
performed, and the best-matching tracker track is selected.  
The result is referred to as "global muons". 

PF Particle flow reconstruction 

𝛘𝟐/𝐃𝐎𝐅	(𝐆𝐥𝐨𝐛𝐚𝐥) 

If the muon 𝑝5 is less than 200 GeV, 𝛘𝟐 value of the track fit 
normalized to the number of degrees of freedom, 𝛘𝟐/𝑫𝑶𝑭 
must be less than 10. If 𝑝5 is greater than 200 GeV, the 
uncertainty on 𝑝5 must be less than 30% of the measured 𝑝5  
value. 

Valid pixel hits Number of pixel hits. This is required to further suppress 
muons from decays in flight. 

Pixel layers with 
measurement Number of hits in the inner pixel system 

Tracker layers with 
measurement 

Number of tracker layers with hits. This is required to 
guarantee a good 𝑝5 measurement and also suppress muons 
from decays in flight. 

Valid muon hits 
The number of muon-chamber hits included in the global 
muon track fit. This is required to suppress hadronic punch-
through and muons from decays in flight. 

Matched muon stations 
Muon segments in the muon stations. This is required to 
suppress punch-through and accidental track-to-segment 
matches. 

𝒅𝟎(𝒗𝒕𝒙) (cm) 
The transverse impact parameter of the tracker track with 
respect to the PV. This is required to suppress cosmic muons 
and further suppress muons from decays in flight. 

𝒅𝒛(𝒗𝒕𝒙) (cm) 
The longitudinal distance of the tracker track with respect to 
the PV. This is required to suppress cosmic muons, muons 
from decays in flight and tracks from PU. 

PF rel iso Explained in part 3.4.2.5  track rel iso 
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Table 3-9: Muon ID requirements 

Requirement Soft Loose Tight 

Global  Or tracker True 

PF  True True 

𝛘𝟐/𝐃𝐎𝐅	(𝐆𝐥𝐨𝐛𝐚𝐥)   < 10 

Valid pixel hits   > 0 

Pixel layers with measurement > 0   

Tracker layers with measurement > 5  > 5 

Valid muon hits   > 0 

Matched muon stations   > 1 

𝒅𝟎(𝒗𝒕𝒙) (cm) 0.3  0.2 

𝒅𝒛(𝒗𝒕𝒙) (cm) 20  0.5 

PF rel iso  < 0.2 < 0.15 

track rel iso  < 0.1 0.1 
 

 

We apply all electron and muon corrections to account for differences in the energy scale, 

trigger, reconstruction/identification and isolation efficiencies between data and MC. 

It is interesting to know that there is an asymmetry in the production of electrons and 

muons. In other words, 𝑒± and 𝜇± are generated more often than 𝑒2 and 𝜇2 from the W 

decay! This is because 𝑊± is most often made by an up and an anti-down quark while 𝑊± 

is made by an anti-up and a down quark. Since protons have two valence up-quarks and 

one valence down-quark, 𝑊± has a higher chance of being produced!  
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3.4.2.2.3 Jets 

The AK4 algorithm [150, 151] reconstructs jets from all the PF candidates. The 

reconstruction may be seeded using all reconstructed particle flow candidates after having 

removed the charged hadron candidates, which are not associated to the primary vertex of 

the event (charge hadron subtracted ak4PFJetsCHS). The energy of the reconstructed jets 

is corrected in 3 steps:  

• L1 FastJet (for pileup/underlying event subtraction 

• L2 (for relative corrections) 

• L3 for absolute scale corrections.  

For data an extra residual correction is included in the absolute scale correction. The 

median r of the energy density of the reconstructed jets with 𝑝5 > 10 GeV is used as an 

estimator for the contamination of the jet energy scale (or the lepton or photon isolation). 

An extra correction is applied for the simulated jets in order to reproduce the measured jet 

energy resolution. For each jet, the transverse momentum is smeared using the data-MC 

scale factors for the jet energy resolution as provided by the JetMET POG26. Using the 

transverse momentum of the generator level matched jet and the measured data-MC 

resolution ratio, the corrected transverse momentum is given by:  

 𝑝5 → max}0, 𝑝5
¦¸~ + ℊ,´¾(𝑐,̅ 𝜎�) ∙ z𝑝5 − 𝑝5

¦¸~|� (34) 

                                                

26- Physics object Group 



 86 

where c is the core resolution scaling factor, i.e., the data to MC scale factor for the jet 

energy resolution, and 𝜎� is the corresponding uncertainty. In the case where the 

reconstructed jet has no match in MC, no smearing is applied.  

We consider for the analysis all jets with 𝑝5 > 20 GeV and |𝜂| < 4.7 passing the PF-loose 

requirements [152] summarized in Table 3-10. No PU jet id requirement is currently 

imposed. 

Table 3-10: Jet ID requirements 

ID Variable Region Comment 

PF-loose 

𝑛			 > 1 |𝜂| < 2.7 Number of constituents 

𝑛ℎ𝑓 < 0.99 |𝜂| < 2.7 Neutral hadron energy fraction 

𝑛𝑒𝑓 < 0.99 |𝜂| < 2.7 Neutral electromagnetic energy fraction 

𝑐𝑒𝑓 < 0.99 |𝜂| < 2.4 Charged electromagnetic energy fraction 

𝑐ℎ𝑓 > 0 |𝜂| < 2.4 Charged hadron energy fraction 

𝑛𝑐ℎ > 0 |𝜂| < 2.4 Charged multiplicity 

𝑛𝑒𝑓 > 0.01 2.7 < |𝜂| ≤ 3.0 Neutral electromagnetic energy fraction 

𝑛ℎ𝑓 < 0.98 2.7 < |𝜂| ≤ 3.0 Neutral hadron energy fraction 

𝑛𝑛𝑝 > 2 2.7 < |𝜂| ≤ 3.0 Number of neutral particles 

𝑛𝑒𝑓 < 0.9 |𝜂| > 3.0 Neutral electromagnetic energy fraction 

𝑛𝑛𝑝 > 10 |𝜂| > 3.0 Number of neutral particles 
 

 

3.4.2.3 Relative Isolation criteria  

The leptons that we are interested in to trigger on are leptons produced from the WH 

associated production. Other leptons generated from hadronization or other decays are 

expected to be collimated with a jet. Therefore, the isolation of a lepton (that there is no jet 



 87 

near it) is a good way to distinguish between primary and secondary leptons although it 

does not provide a perfect separation. Appling an isolated lepton requirement significantly 

reduces the QCD background.  

The isolation of a lepton is computed as the scalar sum of the 𝑝5 of all PF candidates, 

excluding the lepton itself, within a cone of Δ𝑅 = 0.3 around the lepton direction [153] 

where: 

 Δ𝑅 = "(Δ𝜂); + (Δ𝜙); (35) 

Then the relative isolation is defined as: 

 I��� =
𝐼
𝑝ñ¸m

 (36) 

Transverse momentum of particles is computed independently for the charged hadrons, 

neutral hadrons and photon candidates. When dealing with electron candidates, the neutral 

flux is corrected by using the average energy density due to pileup and underlying event in 

the central region of the detector (r) and an effective area (𝐴¸��) correction which 

normalizes this estimator in such a way that the isolation is independent of the number of 

pileup interactions. The electron isolation is therefore defined as: 

 𝐼þ¸ñ =
1
𝑝5
²𝐼�Æ +max}𝐼~Æ + 𝐼¦ − 𝐴¸�� ∙ 𝜌, 0�¹ (37) 

And for the muons:  

 𝐼þ¸ñ =
1
𝑝5
²𝐼�Æ +max}𝐼~Æ + 𝐼¦ − 0.5 ∙ 𝐼�Æ�ì, 0�¹ (38) 

Where 𝐼�Æ�ì is the “∆𝛽 correction” to correct for pileup contamination. It is calculated as 

the sum of transverse energy of all charged particles not coming from the primary vertex 
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in the cone of interest and the factor 0.5 corresponds to a naive average of neutral to charged 

particles and has been measured in jets in [154, 155].  

3.4.2.4 Missing Transverse Energy (𝑬𝑻𝒎𝒊𝒔𝒔)  

Missing energy exists in our signal region from the neutrino coming from W decay where 

W is coming from the WH production. Therefore, missing energy can be used as a 

discriminator between background and signal. We require than E����� > 25 GeV to suppress 

background. This requirement especially affects QCD background. [138] 

E����� is estimated from the imbalance of the transverse momentum of all the reconstructed 

particle flow candidates as: 

 𝐸5®§¾¾ = −u �⃗�5,§

òö�

§�3

 (39) 

 

The jet energy scale corrections may be reflected in the estimate of the 𝐸5®§¾¾ by adding an 

extra term, which corresponds to the net balance of the clustered flux after correcting 

individually each jet’s energy. This estimator is usually referred to as Type-I 𝐸5®§¾¾ 

estimator and can be written as: 

 

 𝑡𝑦𝑝𝑒𝐼 − 𝐸5®§¾¾ = 𝐸5®§¾¾ − u 𝛿𝑝5,w

ò���Z

§�3

 (40) 

 
The Type-I correction is computed from CHS (ak4PFJetsCHS) [15], as prescribed by the 

JetMET group. 
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3.4.2.5 Transverse Mass 

Transverse mass is defined as (in natural units) [156]: 

 𝑀5 = �𝑚; + 𝑝Á; + 𝑝l; = "𝐸; − 𝑝#; (41) 

And it is useful because it is invariant under the Lorentz boost along the beam direction (z-

direction). If particle a decays to particles b and c, i.e. 𝑎 → 𝑏𝑐, then we will have: 

 

𝑀5,, = �𝐸,; 		− 𝑝#,,; = �(𝐸� + 𝐸�); 		− (𝑝#,� + 𝑝#,�);

= �𝐸�; + 𝐸�; + 2𝐸�𝐸� 	− 𝑝#,�; − 𝑝#,�; − 2𝑝#,� ∙ 𝑝#,�

= �𝑀5,�
; + 𝑀5,�

; 	+ 2(𝐸�𝐸� − 2𝑝#,� ∙ 𝑝#,�) 

(42) 

Therefore, the transverse mass for particle a is: 

 𝑀5,, = �𝑀5,�
; + 𝑀5,�

; 	+ 2𝐸�𝐸�(1 −
m�,�m�,�
¤�¤�

cos𝜙�,�)  (43) 

In the special case of 𝑊 → 𝑙𝜈 which is more relevant to this analysis, we can ignore the 

mass of the lepton (electron or muon) and the neutrino27 at the energy level of LHC. 

Therefore, 𝑝#,ñ ≈ 𝐸ñ and 𝑝#,� ≈ 𝐸�. And since neutrinos escape CMS undetected, they are 

a source of the missing energy (𝐸5®§¾¾). Provided that 𝑊 → 𝑙𝜈 is the main source of 𝐸5®§¾¾ 

in an event, 𝑝#,� ≈ 𝐸� ≈ 𝐸5®§¾¾	and we can try to reconstruct the transverse mass of the W 

using 𝑝5ñ  and 	𝐸5®§¾¾: 

                                                

27- According to the SM, neutrinos are massless. However, now we know that it is not true at least for two 
of the neutrino families.  
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 𝑀5 = �2𝑝5ñ ∙ 𝐸5®§¾¾ Ã1 − cos𝜙ñ,	¤��XZZÄ (44) 

The neutrino from the WH production is the only original source of missing energy in our 

topology. Therefore, if there is no other source of missing energy in an event, if CMS 

measured energy and angle flawlessly, and if the isolated lepton is identified correctly, then 

𝑀5 will be equal to the transverse mass of W which should be distributed around 𝑚¥ =

	80.385	𝐺𝑒𝑉.  By requiring 50	𝐺𝑒𝑉 < 	𝑀5 < 250	𝐺𝑒𝑉, we suppress outliers which are 

mostly background and rarely signal. This requirement mostly affects QCD background. 

3.4.2.6 B-tagged jets 

B-jets are jets arising from the hadronization of b quarks. Some analyses, like the present 

one, heavily depend on b-jet identification, otherwise known as b-tagging. What helps us 

to distinguish b-jets from jets initiated by gluons or light flavor quarks is the long half-life 

of B hadrons (about 1.5 ps). This causes B hadrons to decay at a measurable distance from 

the primary vertex creating a secondary vertex. These secondary vertices are displaced 

hundreds of micrometers away from the primary vertex and therefore, the high resolution 

pixel detector that CMS has is capable of identifying b quarks efficiently. [157] 

Many b-tagging algorithms were used during run 1 in CMS [158]. However, CSV gained 

popularity over time. This b-tagging method uses the following set of variables with high 

discriminating power and low correlation: 

• The vertex category (“real”, “pseudo,” or “no vertex”); 

• The flight distance significance in the transverse plane (“2D”); 

• The vertex mass; 
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• The number of tracks at the vertex; 

• The ratio of the energy carried by tracks at the vertex with respect to all tracks in 

the jet 

• The pseudorapidities of the tracks at the vertex with respect to the jet axis; 

• The 2DIP significance of the first track that raises the invariant mass above the 

charm threshold of 1.5GeV/c2 (tracks are ordered by decreasing IP significance and 

the mass of the system is recalculated after adding each track); 

• The number of tracks in the jet; 

• The 3D IP significances for each track in the jet.[158] 

The DeepCSV approach starts from the same jet features as CSVv2 but extends the range 

of the maximum considered tracks per jets (up to 25) and exploits a more modern deep 

neural network architecture. [159] 

We select events with at least two b-tagged jets identified with the DeepCVS b-tagging 

algorithm. This requirement especially reduces the W+jets and Z+jets backgrounds [138].  

 

Figure 3-7: Performance of the DeepCSV b-jet identification algorithm on (left) 𝐻 → 𝑎𝑎 → 4𝑏 MC simulation with 𝑚, 
= 20 GeV and (right) a 𝑡𝑡̅ background sample.  
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According to the BTV POG group [13], the b-tagging efficiency scale factors is calculated 

as:  

 𝑆𝐹 =
𝜀q,Ó,
𝜀ïm

 (45) 

for b, c and light flavor jets. The scale factors in general depend on the jet flavor, jet 𝑝5, 

and jet h. Usually, the b-tagging methods use machine learning techniques and they are 

optimized using MC simulation. However, due to inaccuracies in simulation, the 

efficiencies measured in data are different than those in the MC simulation. Therefore, the 

scale factors need to be applied to simulated events to take this difference into account. We 

use the period-dependent SFs from Moriond17 eras B-H. The scale factors are used to 

update the b-tagging status on a jet-by-jet basis. In order to upgrade or downgrade the b-

tagging status of each individual jet, a random number generator is utilized. In its simplest 

form with a single operating point being used, the logic of this method is the following. If 

SF < 1, all that needs to be done is to downgrade fraction 

 𝑓 = 1 − 𝑆𝐹 (46) 

 
of the b-tagged jets from the “tagged” status to the “not tagged” status, and in this case, it 

is not necessary to know the MC b-tagging efficiency. If, on the other hand, SF > 1, it is 

necessary to upgrade the b-tagging status of some of the untagged jets and the fraction of 

such jets that needs to be upgraded is 

 𝑓 =
1 − 𝑆𝐹

1 − 1/𝜀ïm
 (47) 

This result follows from a simple requirement that 𝑓(1 − 𝜀ïm) + 𝜀ïm = 𝑆𝐹 × 𝜀ïm  
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3.4.2.6.1 Soft b-tagging 

Soft b-tags are identified using Secondary Vertices (SVs) reconstructed with the Inclusive 

Vertex Finder algorithm. Soft b-tagging from SVs has been previously used and 

commissioned successfully in [160], in order to identify very soft bottom or charm quarks. 

We apply the same selection criteria in SV observables which are the following: 

• The distance in the transverse plane between the SV and the PV is less than 3 cm. 

• The significance of the distance, SIP3D, between the SV and the PV is greater than 

4. 

• The pointing angle, defined as cos((𝑃𝑉, 𝑆𝑉) , 𝑃�⃗��) is greater than 0.98, where 𝑃�⃗�� 

is the total four-momentum of the tracks associated to the SV. 

• The number of tracks associated to the SV is greater or equal to 3. 

• The 𝑝5 of the SV is less than 20 GeV. 

• The distance to any jet, Δ𝑅(𝑗𝑒𝑡, 𝑃�⃗��), is greater than 0.4 to achieve the orthogonality 

to the jets and b-tagged jets. 

Soft b-tags are selected with 𝑝5 < 20 GeV and cross-cleaned from any b-tagged jet with 

Δ𝑅(𝑗𝑒𝑡, 𝑃�⃗��), = 0.4. 

We categorize the selected events based on the number of b-tags identified either with the 

DeepCSV or the soft-b tagging. Only events which have at least two jets and two b-tagged 

jets are kept at the preselection level. The events are then split in the “three b-tag” and the 

“four b-tag” categories.  
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3.4.2.7 Event pre-selection 

To summarize, the pre-selection of the events in our analysis consists of the following 

requirements: 

1- The event has passed at least one of the online triggers summarized in Table 3-4 

2- Exactly one lepton reconstructed in the tracker acceptance (i.e., < 2.5 for electrons 

and < 2.4 for muons) with 𝑝5ñ > 25	𝐺𝑒𝑉. The identification and isolation criteria of 

the leptons can be found in sections 3.4.2.2 and 3.4.2.3 . 

3- 𝐸5®§¾¾ > 25	𝐺𝑒𝑉	and 50	𝐺𝑒𝑉 < 𝑀5 < 250	𝐺𝑒𝑉	(sections 3.4.2.4 and 3.4.2.5 ) 

4- The event has at least two jets and two b-tagged jets identified with the DeepCSV 

algorithm or soft b-tagging satisfying the looseWP (deepFlavourJetTags > 0.2219); 

one of the two b-tagged jets should further satisfy the MediumWP 

(deepFlavourJetTags > 0.6324). The requirement for the jets is considered. 

(sections 3.3.2.5 and 3.3.2.6) 
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A baseline analysis code is developed to implement the pre-selection as described above 

and the analysis that will be described below. The code can be found in [16]. 

3.5 Binned BDT shape analysis  

3.5.1 Introduction 

We can use machine learning methods in experimental high energy physics to help us 

distinguish between signal and background. This is done by training the algorithms using 

MC simulation (where we know which event is signal and which one is background) and 

extrapolating the result to the data taken at LHC. In high energy physics, the two popular 

machine learning methods are boosted decision tree (BDT) and artificial neural network 

(ANN). In this analysis, we decided to use BDT.  

Decision tree is a sequence of yes/no questions. An example is Figure 3-8 showing the 

probability that a person plays video games on a regular basis based on age and gender. At 

each node of a decision tree, the corresponding variable is compared to a cutoff value, and 

depending on the result of the comparison, the decision “yes” or “no” is made, and the 

event is passed to the corresponding next node, which performs the same procedure using 

another variable. The final output of a decision tree is the probability of an event being 

signal. [161] 

If we use a single decision tree to distinguish between signal and background, the 

discriminatory power is ‘weak’ or ‘shallow’. The main idea in boosting is to use many 

decision trees (an ensemble or jungle) and take a weighted average over all of them. In 

order to do so, we have to first train the BDT, meaning: 
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• Reweight misclassified events (i.e. signal events on a background leaf and 

background events on a signal leaf) 

• Build & optimize new trees with reweighted events 

• Score each tree 

• Average over all trees, using the tree-scores as weights [161, 162] 

There are several algorithms that train a BDT sample. In this analysis, we used the 

AdaBoost algorithm in the Toolkit for Multivariable Analysis (TMVA). [163, 164] 

 

Figure 3-8: A made up example of a decision tree that gives the probability that a person plays computer games on a 
regular basis based on that person’s age and gender  

 

TMVA calculates a quantity of every node known as the separation to build and weigh 

decision trees. There are five ways to define the separation within TMVA [163, 165]:  

• Gini index, defined as p(1 − p) 

• Gini index with Laplace’s correction, defined as (F?	±	F	±	?	±	3)
(F	±	?	±	;)È
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• Cross entropy, defined as −2𝑝	 log; 𝑝 − (1 − 𝑝) log;(1 − 𝑝) 

• Misclassification error, defined by 1 −max(𝑝, 1 − 𝑝) 

• Statistical significance, defined by �
�±ë

 

Where S (B) is the number of signal (background) events in the node, and p is the purity 

of the node defined as �
�±ë

. In this analysis, we used the default type of separation which is 

the Gini index. 

Another parameter is a measure of the importance of each discriminating variable. The 

absolute importance of a BDT-classifier X is defined as:	 

Absolute importance of variable X = u ln(𝜔®) 𝐼®,É

ï

®�3

	 (48) 

Where the sum is over the whole ensemble of trees (M being the total number of trees), 

𝜔® is the weight of each tree, and 𝐼®,É is: 

 𝐼®,É =u𝛿§𝑁§

~

§�3

 (49) 

Where the sum is over all nodes in a decision tree (n being the number of nodes in tree m), 

𝛿§ is the separation for each node and 𝑁§ is the number of events in that node.  

Finally, importance is defined as the absolute importance of a variable divided by the sum 

of all absolute importances28. As one can tell from the name, importance shows how helpful 

a variable is to the BDT classifier and discrimination between signal and background. 

Variables with low importance can be removed for simplicity. [161, 165] 

                                                

28- Importance is shown as percentage in this dissertation. 
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3.5.2 BDT input variables 

BDT is a powerful tool for classification, however, it is blind. In other words, BDT 

performs significantly better when physicists cherry-pick training variables that have high 

discriminating power between signal and background [166].  

The current analysis is done for eight different ‘a’ masses from 12 GeV to 60 GeV. In a 

perfect world, we would need to do this analysis eight times separately for each a mass. 

However, we prefer a single analysis that can be used for the whole 12-60 GeV range. 

Therefore, all MC samples (pseudo-scalar Higgs mass of 12-60 GeV) are added up and fed 

to TMVA. On the other hand, all background MC samples are also added up. Namely, 𝑡𝑡̅, 

W/DY + jets, diboson/triboson, single top, and QCD.  

The variables that show high discriminating power between signal and background are 

listed in Table 3-12 and their shapes for signal (a mass = 60 GeV) and background are 

shown in Figure 3-9 and Figure 3-10. Note that Δm��
���	 is only defined in the 4b-tag category 

and is excluded in 3b-tag one.  
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Table 3-12: Input variables of the BDT training  

 BDT Input Variable Description 

1 ∆Rzbb=|��� Average ∆R (equation 34) of the two bb= pairs from 
scalar Higgs decay 

2 ÑΔϕzj,E�����	|Ñ
���

 
Minimum of the phi difference of each jet and E����� 

(equation 39) 

3 M�(W) Transverse mass of the W (Equation 44) 

4 |Δϕ(W,h)| Absolute value of the phi angle difference between W 
and SM Higgs 

5 m���(�)
£  Reconstructed Higgs mass from 4b or 3b jets (see section 

3.4.2.5  

6 E����� Equation 39 

7 p�
��¥ Transverse momentum of the isolated lepton 

8 p�(h) Transverse momentum of the SM Higgs 

9 p�(W) Transverse momentum of the W 

10 H� 𝐻5 = ∑ 𝑝5w¸Ó¾  for jets passing the selection 

11 Δm��
��� Minimum difference among all reconstructed scalar 

Higgs masses from all permutations of b-jet pairs 
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Figure 3-9: Distribution of BDT input variables for the 3b-tag category for background (black line with gray area) and 
signal with 60 GeV pseudo-scalar Higgs mass (blue line with red area). Note that ∆𝑚��

®§~  is not defined in the 3b-tag 
category. 
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Figure 3-10: Distribution of BDT input variables for the 4b-tag category for background (black line with gray area) 
and signal with 60 GeV pseudo-scalar Higgs mass (blue line with red area) 
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Using these variables, the BDT is trained for 3b-tag and 4b-tag categories and the 

importance of each variable is shown in Table 3-13  

 

Table 3-13: Importance of discriminating variables after BDT training for 3b-tag category (left) and 4b-tag category 
(right) 

 

 

3.5.3 Overtraining check and efficiency plots 

In general, a machine learning algorithm is overstrained if it tries to exploit artifacts of the 

training samples (Artifacts always exist due to the finite size of training samples). An 

overstrained algorithm works extraordinarily good on the original training sample that it 

has picked up its fluctuations, however, the fluctuations are not representative of the 

actually expected distributions and the algorithm underperforms on other similar samples 

[161]. In order to check for overtraining, we also used test samples in addition to training 
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samples. If the performance of an algorithm is significantly better for the training sample 

compared to the test sample, then overtraining has occurred. [163, 164] We see a very good 

agreement between training and test samples and therefore no sign of overtraining as shown 

in Figure 3-12, Figure 3-13, and Figure 3-14. 

 

Figure 3-11: Illustrating of overtraining in two dimensions. Left: smooth selection of a regular algorithm output; right: 
selection based on an overtrained algorithm that picks fluctuations of the finite-size training samples. This image is 

taken from [161] 

The output of the BDT algorithm is the probability of an event being signal. Figure 3-12 

shows the distribution of the BDT output for both training and test samples.  

 

Figure 3-12: Distribution of BDT output for signal (black) and background (red). Superimposed on the training 
samples (histograms) are test samples (error bars) for 3b-jet category (left) and 4b-jet category (right) 
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A very basic question that is not answered yet is how well the BDT classifier algorithm is 

performing. To answer this question, we employ two techniques: Cross-validation (CV) 

and Receiver Operating Characteristics (ROC).  

The ROC curve shows the famous type-I (rejecting the hypothesis 𝐻� if 𝐻� is true) and 

type-II (erroneously failing to reject 𝐻�, if 𝐻� is false) errors. It is drawn by varying the cut 

on BDT output and measuring the signal efficiency and background rejection (Figure 3-13) 

[161]. Where: 

signal efficiency = ~´®�¸þ	Ô�	�Ôþþ¸�Óñl	§·¸~Ó§�§¸·	¾§¦~,ñ	¸¦¸~Ó¾
5ÔÓ,ñ	~´®�¸þ	Ô�	¸¦¸~Ó¾	

 

 

 

Figure 3-13: background rejection vs signal efficiency (ROC curve) for various cut values on the BDT classifier output 
for 3b-jet category (left) and 4b-jet category (right) 

The closer the ROC curve is to the upper right corner; the more background events are 

rejected while signal events being correctly recognized. Meaning the better the algorithm 

is. Therefore, the area under the ROC curve can be used as a measure of how well the 

algorithm is performing [167]. 

Cross-validation in its basic form consists of dividing the data sample into n different 

subsets of roughly equal size. Then training BDT on n-1 subsets and using the last one as 
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the test sample for verification. Then retaining the evaluation score and discarding the 

model. This is done n times and every time a different subset is chosen to be the test sample. 

And finally, an average is taken over the evaluation scores and the standard deviation is 

calculated [167]. Figure 3-14 shows the result of the cross-validation technique on our BDT 

model. The evaluation score used is the area under the ROC curve (Figure 3-13). Therefore, 

y-axis is score of our BDT performance (the area under the ROC curve) and x-axis is the 

number of fold (how many times we divided the sample into subsets). The red line shows 

the training samples and the blue line is the test subset.  

 

Figure 3-14: The result of the cross-validation technique on BDT classifier for 3b-jet category (left) and 4b-jet 
category (right). The red line shows the training samples and the blue line is the test subset.  

 

In Figure 3-14 the average score of training samples is equal to the score of the test sample 

which clearly shows that the classifier is not overtrained. Also, the short uncertainty bars 

show consistency of the classifier performance. The right plot has a little more uncertainty 

which comes from having a smaller sample size (there are fewer events passing the 4b-jet 

requirement than 3b-jet requirement). 
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Looking back at Figure 3-12, most of the SM background is below BDT value of ~0.2. 

Therefore, applying a BDT cut around 0.2 looks interesting. We performed a sensitivity 

scan in the a-boson mass parameter space (12-60 GeV) with BDT cut values of cut 0-7: 

0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, and 0.26.  

In Figure 3-15 and Figure 3-16: 

• The two upper plots show the number of events in signal (left) and background 

(right) after applying each BDT cut.  

• The two middle plots show the statistical uncertainties 

•  And the two bottom plots show signal significance ( �
√�±ë

) (left) and signal 

significance with 10% and 20% systematic uncertainties for signal and background 

respectively (right).  

As expected, the signal significance rises with BDT. At low a masses (𝑚, < 30 GeV), the 

a’s become boosted and cause collimated b-pairs. That in-turn causes lower signal 

significance for lower a-boson masses as seen in Figure 3-15 and Figure 3-16. 

We define control regions for the major backgrounds of this analysis (𝑡𝑡̅ + 𝐽𝑒𝑡𝑠 and W + 

Jets) in order to validate the modeling of the input shapes used to train the BDT. 

Background control regions as well as the procedure to commission the BDT output, are 

described in the next section. 
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Figure 3-15: Sensitivity scan over the full a-boson mass space using the MVA BDT discriminant shown as a function of 
the BDT cut index (Cut0-7:0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26). Upper row shows the number of events 
for signal (left) and background (right). Middle plots show the statistical uncertainty on the same events. Bottom plots 
show the signal significance as a function of the BDT cut index (Y-axis), calculated as �

√�±ë
 (left) and assuming a 10% 

systematic uncertainty on the signal and a 20% syst. uncertainty on the background (right). (3b-category) 
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Figure 3-16: Sensitivity scan over the full a-boson mass space using the MVA BDT discriminant shown as a function of 
the BDT cut index (Cut0-7:0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26). Upper row shows the number of events 
for signal (left) and background (right). Middle plots show the statistical uncertainty on the same events. Bottom plots 
show the signal significance as a function of the BDT cut index (Y-axis), calculated as �

√�±ë
 (left) and assuming a 10% 

systematic uncertainty on the signal and a 20% syst. uncertainty on the background (right). (4b-category) 
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3.6 Background Estimation 

3.6.1 Introduction 

The backgrounds considered in this analysis are 𝑊 → 𝑙𝜈, 𝑍 → 𝑙𝑙, 𝑡𝑡̅ + 𝑋, single top, 

dibosons, tribosons, and QCD (Table 3-3). Let’s briefly talk about every background. 

However, before that, it is useful to classify backgrounds in three categories: irreducible, 

reducible, and instrumental. As [168] explains: 

• “Irreducible backgrounds are those that, on an event by event basis, cannot be 

distinguished from the signal, even in presence of a perfect detector. 

• Reducible backgrounds include processes that share the main features of the signal, 

however have in addition some extra elements that would make them in principle 

distinguishable from it. 

• Instrumental backgrounds arise when the characteristic features of the signals are 

due to the inaccuracy of the detector or of the measurement. The most important 

example in this category is QCD multijets, namely final states with only jets”. 

3.6.1.1 𝒕�̅� + 𝑿 

𝑡𝑡̅ + 𝑋 is the most important background in this analysis because it is dominant and 

irreducible. Figure 3-17 shows two example Feynman diagrams in which two top-quarks 

are produced in a collision.  Top-quarks almost always decay as 𝑡 → 𝑊𝑏 and if one or both 

of W’s decay as 𝑊 → 𝑙𝜈, we will have: 

• One or two bottom quarks and also high jet multiplicity due to large top-quark mass. 

Therefore, a 𝑡𝑡̅ + 𝑋 event can pass our requirement of at least two jets and two b-
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tagged jets. (section 3.4.2.) In addition, other jets from QCD radiation can be real 

b-jets (for example from gluon splitting 𝑔 → 𝑏𝑏=) or they can be mis-identified as 

b-jets. Therefore, a 𝑡𝑡̅ + 𝑋 can be in 3b-jet or 4b-jet categories as well. 

• Isolated leptons. If one W decays leptonically (semileptonic channel), we will have 

a single isolated lepton. However, even if both W’s decay as 𝑊 → 𝑙𝜈 (dilepton 

channel), one of the leptons can still be in the blind spot of the trigger29 and does 

not get reconstructed. Therefore, the event is categorized as a single lepton event. 

Hence, if one or both W’s decay leptonically, the 𝑡𝑡̅ + 𝑋 can pass the isolated lepton 

requirement. 

• Missing energy. Neutrino(s) from the W decay(s) can create enough missing energy 

that the 𝑡𝑡̅ + 𝑋 event passes the 𝐸5®§¾¾ > 25	𝐺𝑒𝑉 requirement (section 3.4.2.). The 

missing energy can also come from other sources like mismeasurements of the 

detector.  

Therefore, the 𝑡𝑡̅ + 𝑋 is an irreducible background because even if CMS had a perfect 

response, some 𝑡𝑡̅ + 𝑋 events would not still be distinguishable from the signal events. 

We will define control regions for the 𝑡𝑡̅ + 𝑋  background in the next section (the reason 

will be explained there). Therefore, we have to find regions of the phase space which are 

rich in 𝑡𝑡̅ + 𝑋 events. We know that all 𝑡𝑡̅ + 𝑋 events have at least one (semileptonic 

decay) or two (dilepton decay) real b-jets. Therefore, 1b-jet and especially 2b-jet categories 

are richer than 3b-jet or 4b-jet categories in 𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 background (light means not bb and 

                                                

29- |𝜂| > 2.5 for electrons and |𝜂| > 2.4 for muons. 
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cc). However, if X in 𝑡𝑡̅ + 𝑋  is actually bb or cc, this is not true anymore. For 𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 

(i.e. 𝑡𝑡̅ + 𝑏𝑏 and 𝑡𝑡̅ + 𝑐𝑐), we already have two extra potential b-jets. Therefore, the areas 

that are rich in 𝑡�̈� + ℎ𝑒𝑎𝑣𝑦 background are 3-bjet and 4-jet categories which are the same 

area as signal. In order to distinguish between signal and 𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 CR, we can use the 

higher jet multiplicity due to high mass of the top-quark. To summarize: 

• There is rich 𝑡�̈� + 𝑙𝑖𝑔ℎ𝑡 background when number of b-tagged jets = 2 and number 

of jets = 3 or 4 

• And there is rich 𝑡�̈� + ℎ𝑒𝑎𝑣𝑦 background when number of b-tagged jets = 3 or 4 

and number of jets ≥	5 

We will use these control regions for the	𝑡𝑡̅ + 𝑋 in the next section.  

 

 

Figure 3-17: Feynman diagram of 𝑡𝑡 → (𝑊±𝑏)z𝑊2𝑏=| in semileptonic channel (a) and diboson channel(b). This 
image is taken from [169]. 

3.6.1.2 W + Jets 

The Leading order diagrams describing this process are shown in Figure 3-18 with process 

(b) (quark–gluon interaction) occurring predominately over processes (a) and (c) (quark–

antiquark contribution) because of higher gluon luminosity in the protons. The lepton that 
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passes the pre-selection comes from the W decay. Also, b-quarks can come from gluon 

splitting. Therefore, it is much more common that a W + jets event has two b-quarks rather 

than 3 or 4. In other words, a bin of (number of b-tagged jets = 2, number of jets = 3,4) is 

rich in W + jets background and can be used as a control region. We will use this 

information to define the W + Jets control region in the next section.   

 

 

Figure 3-18: Some representative diagrams for W + jets production. This image is taken from [169] 

3.6.1.3 Drell-Yan process 

The DY process is an effect in which a quark-antiquark pair annihilate to create lepton pair 

through 𝑍 or 𝛾 [170]. If one of the leptons is missed, this event can pass the pre-selection 

requirements (Figure 3-19). This background is small compared to 𝑡𝑡̅ + 𝑋 and 	

W + Jets. 

 

Figure 3-19: Representative Feynman diagram for the DY process. This image is taken from [169] 
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3.6.1.4 Single Top 

Figure 3-20 shows the processes that create a single top. Single top background passes 

our pre-selection more or less for the same reasons that 𝑡𝑡̅ + 𝑋 with only one t decaying 

leptonically can pass the pre-selection requirements. We will not discuss more about this 

background as it only constitutes a small portion of the background.   

 

Figure 3-20: Feynman diagrams of the single top production: t-channel (left), s-channel (center), and W-associated 
production or tW (right) This image is taken from [169] 

  

3.6.1.5 Dibosons and Tribosons 

Some diboson (𝑊𝑊, 𝑍𝑍/𝛾∗, and 𝑊𝑍/𝛾∗) and triboson (WWW, ZWW, and ZZZ) events 

can also pass the pre-selection and contribute to the background.  They also constitute only 

a small portion of the background. The mechanism that they can pass the pre-selection is 

shown in Figure 3-21 and Figure 3-22.  
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Figure 3-21: Some Feynman diagrams of the diboson production which provide a small contribution to the 
background. This image is taken from [171] 

 

Figure 3-22: An example of a triboson production that can contribute to the background if one of the leptons is missed. 
This image is taken from [172] 

3.6.1.6 QCD 

This background is all hadronic events in which a jet is misidentified as a lepton. Therefore, 

QCD is an instrumental background and we also call it the fake lepton background in this 

analysis. The probability of misidentifying a jet as a lepton is not very high, however, QCD 

background is so enormous that even with a very small chance of misidentification, this 

background is considerable. Most requirements applied in the pre-selection also reduce this 

background further.  

Simulating this background is very challenging. This is mainly due to the extremely large 

number of events in this background. The cross-section of this background is so high that 

it is computationally impossible to simulate all of QCD events in a dataset. Therefore, some 
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representative events are simulated and then weighted to account for a large number of 

QCD background events. However, after applying the cuts and killing most of the QCD 

background, we do not get smooth and rich QCD distributions. This is a problem that we 

will address in section 3.6.4.  

 

3.6.2 Background estimation methods 

Both 𝑡𝑡̅ + 𝑋 and W + Jets backgrounds which are the dominant backgrounds in this 

analysis have high jet multiplicities. This means that many QCD events should be 

simulated in the MC simulation of these backgrounds. As we discussed before, QCD 

simulation is not very accurate. Therefore, we will use control regions to have a data-driven 

method for 𝑡𝑡̅ + 𝑋 and W + Jets backgrounds estimation and to not rely solely on MC 

simulation.  This mis-modeling of the additional jets in 𝑡𝑡̅ + 𝑋 is also seen for example in 

[173, 174] 

The inaccuracy in 𝑡𝑡̅ + 𝑋 simulation shows itself more when there is top + heavy flavor as 

there is more QCD events from heavy flavor quarks. Therefore, we separate the 𝑡𝑡̅ + 𝑋 

background to heavy flavor (HF) content (𝑡𝑡̅ + 𝑐𝑐̅ and 𝑡𝑡̅ + 𝑏𝑏=) and light flavor content 

(everything else). The	𝑡𝑡̅ + 𝑏𝑏= background will be normalized using the data, however, the 

shape of 𝑡𝑡̅ + 𝑐𝑐̅ will be derived from MC in the control region. 

The smaller backgrounds of this analysis are DY + jet, diboson, tribosons, and single top 

processes, which will be taken from MC simulation. Finally, a data-driven method will be 

used to model the BDT shape of the QCD background. 
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3.6.3 Background Control samples 

As described in the previous section, we will use control regions for the 𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦, 𝑡𝑡̅ +

𝑙𝑖𝑔ℎ𝑡, and W + Jets backgrounds. Therefore, we have to find (number of b-tags, number 

of jets) bins that are rich in either 𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦/𝑙𝑖𝑔ℎ𝑡 or W + Jets events after imposing pre-

selection requirements (Figure 3-23).  

 

Figure 3-23: Number of events in every (number of b-tags, number of jets) bin for electrons (left) and muons (right). 
We define the (2b, 3j) and (2b, 4j) bins as	𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 and W + Jets CRs. Also, the (3b, 5j) and (4b, 5j) bins are 𝑡𝑡̅ +

ℎ𝑒𝑎𝑣𝑦 control regions. The (3b, 3jets), (3b, 4jets) and (4b, 4jets) bins are SR (signal regions).  

 

We want the CRs to have negligible signal content and be as close as possible to SRs to 

have close BDT shape. Using Figure 3-23: 

• (2b, 3j) and (2b, 4j) bins are chosen to be both the W + Jets CR and 𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 CR.  

The two b-jets should be identified either with the DeepCSV discriminator or the 

soft b-tagging with at least one DeepCSV b-jet satisfying the medium DeepCSV 

working point as well. In other words, CRs are defined as the bin with one less b-
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tag multiplicity with respect to the SR. The reason for this choice is explained in 

section 3.6.1.1 using the 𝑡�̈� + 𝑗𝑒𝑡𝑠 and W + jets topology. The purity of the (2b, 4j) 

control region for 𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 is approximately 65%. Also, the W + bb process is 

approximately 40% of the total background in (2b, 3j). 

• (3b, ≥ 5j) and (4b, ≥ 5j) bins are defined as the 𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 control region. Which 

are the bins with the same b-tag multiplicity as in the SRs and the number of AK4 

jets >= 5. The purity of 𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 processes in the (3b, 5j) and (4b, 5j) bins is 

approximately 65% and 70% respectively. 

 

Figure 3-24: Signal and control regions in (𝑁w¸Ó, 𝑁�w¸Ó) bins.  

3.6.4 QCD Background Estimation  

There are numerous methods for estimating the amount of the fake-lepton background 

originating from QCD processes, and also the shape of it as a function of variables like the 

transverse momentum, pseudorapidity, and in some cases more complicated variables. 
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Since the QCD simulation is challenging and not reliable, all of the QCD background 

estimation methods use “control regions”. Control regions are areas of the phase space with 

rich QCD statistics which have the same QCD shape as in the signal region. In this analysis, 

we choose the so-called “ABCD method”, where we define four regions (one signal region 

and three control regions) as shown in Figure 3-25. 

The main idea in the ABCD method is to have two uncorrelated variables 𝛼 and 𝛽 and their 

respective cuts. Uncorrelation means that the distribution of QCD vs 𝛼 doesn’t change 

when applying the 𝛽 cut and vice versa. This will divide the phase space into four regions 

like Figure 3-25. By definition, the uncorrelation of 𝛼 and 𝛽 means: 

 
𝑁pmqN

𝑁pmqë =
𝑁pmqm

𝑁pmqq  (50) 

Where 𝑁pmqÉ  is the number of QCD events in region X. Therefore: 

 𝑁pmqN =
𝑁pmqm

𝑁pmqq . 𝑁pmqë  (51) 

In other words, by knowing the number (shape) of QCD events in control regions B, C, 

and D, we can extrapolate the number (shape) of QCD events in region A. Region A is our 

signal region where we are looking for new physics. If we define a scale factor as: 

 𝑆𝐹pmq = 	
𝑁pmqm

𝑁pmqq  (52) 

 We will have: 

 𝑁pmqN = 𝑆𝐹pmq. 𝑁pmqë  (53) 

And we can use region B which is richer in QCD events to estimate the number or shape 

of QCD events in region A.  
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In practice, due to difficulties in QCD background simulation, we like to calculate the scale 

factor from data rather than MC, therefore, we change formula 52 and use (Data) – (non - 

QCD background estimation of data) instead of QCD MC.  

 𝑆𝐹pmq = 	
𝑁q,Ó,2~Ô~_pmqm

𝑁q,Ó,2~Ô~_pmqq  (54) 

 

Figure 3-25: Schematic description of the signal and control regions in the ABCD method. The cuts distinguishing the 
regions are not easy to show as described in the text. 

In this analysis, we choose lepton relative isolation and 𝐸5®§¾¾ as uncorrelated variables as 

their uncorrelation has been shown before. More precisely speaking, we combine 𝐸5®§¾¾ 

and 𝑀5 in one cut (𝐸5®§¾¾ > 25	GeV, 𝑀5 > 50	𝐺𝑒𝑉) and use the combined cut vs lepton 

relative isolation cut. Therefore, the four regions are: 

• Region A: relIso < relIso cut, 𝐸5®§¾¾ > 25 GeV, 𝑀5 > 50 GeV 

• Region B: relIso > relIso cut, 𝐸5®§¾¾	> 25 GeV, 𝑀5 > 50 GeV 

• Region C: relIso < relIso cut, 𝐸5®§¾¾ < 25 GeV, 𝑀5 < 50 GeV  

• Region D: relIso > relIso cut, 𝐸5®§¾¾ < 25 GeV, 𝑀5 < 50 GeV  
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Where the relIso cut values are 0.1 for Muons, 0.0588 for electrons in the barrel, and 0.0571 

for electrons in the endcap regions. These cuts are recommendations of [148] 

In order to have a better estimation of the QCD background, in this section, we used the 

whole QCD background datasets as tabulated in Table 3-14. However, even after using the 

whole QCD MC datasets, we still suffer from the lack of enough QCD MC statistics. 

Therefore, we look at the QCD MC shapes at four levels of event selection: right after 

single lepton cut, after 2-jet and 2-bjet cut, after 3b-tag cut, and finally after 4b-tag cut.  
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Table 3-14: List of the SM QCD MC samples used to perform the MC closure tests in QCD background estimation 
section. The last column shows the total cross-section of the MC sample. S16 is used as an abbreviation for 

RunIISummer16MiniAODv2- PUMoriond17 80X mcRun2 asymptotic 2016 TrancheIV v6( ext*)-v1. 

Type                       Dataset 𝝈.𝒌(𝒑𝒃) 

EM
En

ri
ch

ed
 

/QCD Pt-20to30_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16 5352960 

/QCD Pt-30to50_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16 9928000 

/QCD Pt-50to80_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16 2890800 

/QCD Pt-80to120_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16 350000 

/QCD Pt-120to170_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16 62964 

/QCD Pt-170to300_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16 18810 

/QCD Pt-300toInf_EMEnriched_TuneCUETP8M1_13TeV_pythia8/S16 1350 

M
uE

nr
ic

he
dP

t5
 

/QCD Pt-15to20_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 3819570 

/QCD Pt-20to30_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 2960198.4 

/QCD Pt-30to50_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 1652471.46 

/QCD Pt-50to80_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 437504.1 

/QCD Pt-80to120_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 106033.6648 

/QCD Pt-120to170_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 25190.51514 

/QCD Pt-170to300_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 8654.49315 

/QCD Pt-300to470_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 797.35269 

/QCD Pt-470to600_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 79.02553776 

/QCD Pt-600to800_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 25.09505908 

/QCD Pt-800to1000_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 4.707368272 

/QCD Pt-1000toInf_MuEnrichedPt5_TuneCUETP8M1_13TeV_pythia8/S16 1.62131692 

bc
To

E 
Q

C
D

 /QCD Pt 15to20 bcToE_TuneCUETP8M1_13TeV_pythia8/S16 1272980000 

/QCD Pt 20to30 bcToE_TuneCUETP8M1_13TeV_pythia8/S16 557627000 
/QCD Pt 30to80 bcToE_TuneCUETP8M1_13TeV_pythia8/S16 159068000 
/QCD Pt 80to170 bcToE_TuneCUETP8M1_13TeV_pythia8/S1 3221000 
/QCD Pt 170to250 bcToE_TuneCUETP8M1_13TeV_pythia8/S16 105771 
/QCD Pt 250toInf bcToE_TuneCUETP8M1_13TeV_pythia8/S16 21094.1 
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3.6.4.1 Validation of similarity of QCD shapes in ABCD regions 

As explained in the last part, a critical step in the ABCD method is the demonstration that 

the inaccuracy in extrapolation from the control regions to the signal region is small and 

can be estimated reliably. It starts by showing the uncorrelation of the chosen parameters 

which in our case are: 1- lepton relative isolation and 2- missing energy-transverse mass. 

Figure 3-26 to Figure 3-31 show this correlation.  

In all the of these figures, we have a very good ratio of the red line to the blue line in 1lep 

plot. Which clearly shows the uncorrelation of relative isolation and 𝐸5®§¾¾-	𝑀𝑇 cut. 

However, as we apply more cuts on data, the ratio deteriorates.  This is coming from having 

a poor QCD MC statistics because we also see that the uncertainties get bigger. We do not 

expect that applying cuts on the number of b-jets in an event has any effect on the 

uncorrelation of relative isolation and 𝐸5®§¾¾-	𝑀𝑇. Therefore, it is enough to show the 

uncorrelation in l1ep plot and extrapolate the result to 3b-jet and 4b-jet categories.  
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Figure 3-26: Comparison of MET distributions between non-isolated electrons and isolated electrons in Barrel with 
only 1 lepton cut (top left), 2-jet 2-bjet cut (top right), 3b cut (bottom left), and 4b cut  (bottom right). The solid lines 
are after excluding all QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉. The dashed lines show the plots if we kept all datasets. The 

ratio is calculated excluding datasets with 𝑝5 < 80	𝐺𝑒𝑉. 

 

Figure 3-27: Comparison of MET distributions between non-isolated electrons and isolated electrons in Endcap with 
only 1 lepton cut (top left), 2-jet 2-bjet cut (top right), 3b cut (bottom left), and 4b cut  (bottom right). The solid lines 
are after excluding all QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉. The dashed lines show the plots if we kept all datasets. The 

ratio is calculated excluding datasets with 𝑝5 < 80	𝐺𝑒𝑉..  
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Figure 3-28: Comparison of MET distributions between non-isolated muons and isolated muons with only 1 lepton cut 
(top left), 2-jet 2-bjet cut (top right), 3b cut (bottom left), and 4b cut  (bottom right). The solid lines are after excluding 

all QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉. The dashed lines show the plots if we kept all datasets. The ratio is calculated 
excluding datasets with 𝑝5 < 80	𝐺𝑒𝑉. 

 

Figure 3-29: Comparison of Relative Isolation distributions between low-MET electrons and high-MET electrons in 
Barrel with only 1 lepton cut (top left), 2-jet 2-bjet cut (top right), 3b cut (bottom left), and 4b cut  (bottom right). The 

solid lines are after excluding all QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉. The dashed lines show the plots if we kept all 
datasets. The ratio is calculated excluding datasets with 𝑝5 < 80	𝐺𝑒𝑉. 
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Figure 3-30: Comparison of Relative Isolation distributions between low-MET electrons and high-MET electrons in 
Endcap with only 1 lepton cut (top left), 2-jet 2-bjet cut (top right), 3b cut (bottom left), and 4b cut  (bottom right). The 

solid lines are after excluding all QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉. The dashed lines show the plots if we kept all 
datasets. The ratio is calculated excluding datasets with 𝑝5 < 80	𝐺𝑒𝑉. 

 

 

Figure 3-31: Comparison of Relative Isolation distributions between low-MET muons and high-MET muons with only 
1 lepton cut (top left), 2-jet 2-bjet cut (top right), 3b cut (bottom left), and 4b cut  (bottom right). The solid lines are 

after excluding all QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉. The dashed lines show the plots if we kept all datasets. The ratio 
is calculated excluding datasets with 𝑝5 < 80	𝐺𝑒𝑉. 
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3.6.4.2 Similarity of BDT distributions of QCD MC in regions A, B, C, 

and D  

As explained before, we estimate the number of 𝑡𝑡̅ 	+ 	𝐻𝐹 and W + jets background events 

in the signal region from the control regions. However, it is not only in the signal region 

that we suffer from poor QCD MC statistics, we also have poor QCD MC in the Top and 

W control regions. Therefore, in order to improve the Data/MC agreement in the control 

regions we will apply the ABCD method independently in control regions as well to make 

up for the poor QCD statistics. The Data/MC agreement is especially important in the BDT 

shape because we will derive the normalization of the 𝑡𝑡̅ 	+ 	𝐻𝐹 and W + jets backgrounds 

using the BDT shape as we will see later.  

To justify the utilization of the ABCD method, it is important to show that the BDT shape 

of QCD MC does not change in different regions of the ABCD method. Therefore, we 

compare  

• Regions A vs B, and regions D vs C which belong to the same 𝐸5®§¾¾-𝑀5 region but 

different reliso region. 

• Regions A vs C, and regions B vs D which belong to different 𝐸5®§¾¾-𝑀5 region but 

the same reliso region. 

The comparison is done independently for 3b-tag and 4b-tag cuts as shown in Figure 3-32 

to Figure 3-39. As we can see from these plots, the better the statistics the closer the ratio 

is to one. The number of events in every ABCD region is mentioned in the description of 

every photo. Therefore, we can deduce the similarity of BDT distributions in different 
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regions of ABCD method because when there is enough statistics, we see the similarity of 

shape.  

Table 3-15 and Table 3-16 show the results of applying the ABCD method on both Data 

and MC. In other words, they show the number of predicted and observed events in the 

signal and control regions. “𝑆𝐹pmq MC” and “𝑆𝐹pmq measured” are scale factors calculated 

with eq.52 and eq.54 respectively. The last row is the ratio of predicted yield to observed 

yield in every region which should be close to one. Although this ratio is consistent with 

one in most regions, we consider a conservative 50% systematic uncertainty to account for 

uncertainty in prediction coming from poor QCD MC statistics.  

3.6.4.2.1 Electrons in 𝒕�̅� 	+ 	𝑯𝑭 control region  

 

Figure 3-32: Comparison between BDT distributions of different regions of the ABCD method for electrons in the 
tt+HF control region (3b category). The plots are scaled to have the same area. The numbers of events are A:4009.27, 
B:1950, C:2062.27, and D:1188.1. As we can see, the more events we have the better is the agreement. (QCD datasets 

with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 
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Figure 3-33: Comparison between BDT distributions of different regions of the ABCD method for electrons in the 
tt+HF control region (4b category). The plots are scaled to have the same area. The numbers of events are A:912.858, 

B:338.608, C:397.4, and D:310.078. As we can see, the more events we have the better is the agreement. (QCD 
datasets with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 

3.6.4.2.2 Muons in 𝒕�̅� 	+ 	𝑯𝑭 control region 

 

Figure 3-34: Comparison between BDT distributions of different regions of the ABCD method for muons in the tt+HF 
control region (3b category). The plots are scaled to have the same area. The numbers of events are A:2353.99, 
B:4098.94, C:2472.6, and D:3429.97. As we can see, the more events we have the better is the agreement. (QCD 

datasets with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 
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Figure 3-35: Comparison between BDT distributions of different regions of the ABCD method for muons in the tt+HF 
control region (4b category). The plots are scaled to have the same area. The numbers of events are A:301.635, 
B:1230.79, C:468.53, and D:635.34. As we can see, the more events we have the better is the agreement. (QCD 

datasets with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 

3.6.4.2.3 Electrons in W + Jets / 𝒕�̅� 	+ 	𝑳𝑭 control region 

 

Figure 3-36: Comparison between BDT distributions of different regions of the ABCD method for electrons in the 
W/tt+LF control region (3b category). The plots are scaled to have the same area. The numbers of events are 

A:12393.6, B:6783.45, C:7951.47, and D:5715.64. As we can see, the more events we have the better is the agreement. 
(QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 
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Figure 3-37: Comparison between BDT distributions of different regions of the ABCD method for electrons in the 
W/tt+LF control region (4b category). The plots are scaled to have the same area. The numbers of events are 

A:9352.94, B:7362.77, C:6020.9, and D:4852.61. As we can see, the more events we have the better is the agreement. 
(QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 

 

3.6.4.2.4 Muons in W + Jets / 𝒕�̅� 	+ 	𝑳𝑭 control region 

 

Figure 3-38: Comparison between BDT distributions of different regions of the ABCD method for muons in the 
W/tt+LF control region (3b category). The plots are scaled to have the same area. The numbers of events are 

A:8508.14, B:14422.3, C:18194, and D:22220.7. As we can see, the more events we have the better is the agreement. 
(QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 
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Figure 3-39: Comparison between BDT distributions of different regions of the ABCD method for muons in the 
W/tt+LF control region (4b category). The plots are scaled to have the same area. The numbers of events are 

A:6593.12, B:10620.8, C:9605.35, and D:13916. As we can see, the more events we have the better is the agreement. 
(QCD datasets with 𝑝5 < 80	𝐺𝑒𝑉 are removed.) 
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3.6.4.3 Basic kinematic distributions after applying the ABCD method 

The basic kinematic distributions are shown in Figure 3-40 to Figure 3-47 for CRs of W + 

Jets, 𝑡𝑡̅ + 𝐿𝐹, and 𝑡𝑡̅	𝐻𝐹. In W + Jets and 𝑡𝑡̅ 	+ 	𝐿𝐹30 control regions, there are only two 

reconstructed b-jets. Therefore, it is not possible to calculate variable like ∆𝑚��
®§~ that are 

only defined with 3 or 4 b-jets. In this case, we add “fake” b-tags by adding the jet(s) that 

are not tagged as b-jets but have the highest DeepCSV discriminator value. In all plots, the 

fake-lepton background has been replaced by the data-driven estimate as described in 

section 3.6.4.  

 

                                                

30- LF stands for light flavor. 
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Figure 3-40: Analysis variable distributions in the (2b, 3jets) bin (W Control Region) for electrons for 3b-jet category. 
Note that ∆𝑚��

®§~ is not defined in the 3b-tag category.  
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Figure 3-41: Analysis variable distributions in the (2b, 3jets) bin (W Control Region) for muons for 3b-jet category. 
Note that ∆𝑚��

®§~ is not defined in the 3b-tag category.  
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Figure 3-42: Analysis variable distributions in the (2b, 4jets) bin (𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 Control Region) for electrons for 4b-jet 
category. 



 138 

 

Figure 3-43: Analysis variable distributions in the (2b, 4jets) bin (𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 Control Region) for muons for 4b-jet 
category.  
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Figure 3-44: Analysis variable distributions in the (3b, 5jets) bin (𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 Control Region) for electrons for 3b-jet 
category. Note that ∆𝑚��

®§~ is not defined in the 3b-tag category. 
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Figure 3-45: Analysis variable distributions in the (3b, 5jets) bin (𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 Control Region) for muons for 3b-jet 
category. Note that ∆𝑚��

®§~ is not defined in the 3b-tag category. 
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Figure 3-46: Analysis variable distributions in the (4b, 5jets) bin (𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 Control Region) for electrons for 4b-jet 
category. 
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Figure 3-47: Analysis variable distributions in the (4b, 5jets) bin (𝑡𝑡̅ + ℎ𝑒𝑎𝑣𝑦 Control Region) for muons for 4b-jet 
category. 
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3.7 Systematic Uncertainties 

The sources of systematic uncertainties in estimating signal and background yields are 

discussed in this section. The sources are categorized into instrumental and theoretical 

uncertainties.  

3.7.1 Instrumental Uncertainties  

3.7.1.1 Luminosity  

The uncertainty of the luminosity measurement is estimated to be 2.5% in 2016.  

3.7.1.2 Lepton Efficiency  

The E/gamma and Muon groups have recommendations for uncertainties of lepton 

triggering, identification, and isolation efficiencies. These recommended values have been 

evaluated by standard tag-and-probe techniques in Z-boson events. The single-electron 

trigger efficiency is slightly below 100% and thus the systematic uncertainty is estimated 

to be 1%. The single-muon studies contain the trigger efficiency as a function of the 𝑝5 of 

the Z boson, using their plots a 1% systematic uncertainty for the muon trigger efficiency 

is assumed. The uncertainties of identification and isolation efficiencies do not exceed 1% 

for muons and electrons. Therefore, the total uncertainty is 1.6% for muons and 1.5% for 

electron, which we take as a constant 2% for leptons. 

3.7.1.3 Lepton Momentum Scale  

The uncertainty of the muon momentum scale is assumed to be 1%. For electrons, the 

momentum scale uncertainty is estimated to be 0.6% for barrel region, and 1.5% for endcap 

region. The effect of the lepton 𝑝5 uncertainty on 𝐸5®§¾¾	uncertainty is estimated by 
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changing the nominal energy of the lepton by ±1𝜎 and then measuring the effect on 𝐸5®§¾¾. 

Table 3-17 shows the result.  

Table 3-17: Systematic uncertainty of the electron energy scale. The 
uncertainty of muons is negligible in all of the processes. 

Process 
Category 

3b-tag 4b-tag 

𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 0.7% 0.2% 

𝑡𝑡̅ + 𝑏𝑏= 0.3% 0.6% 

𝑊 → 𝑙𝜐 1.3% 5.8% 

𝑝𝑝 → 𝑊ℎ(20) 0.9% 0.9% 

𝑝𝑝 → 𝑊ℎ(60) 2.3% 2.7% 
 

3.7.1.4 Jet Energy scale, Resolution and 𝑬𝑻𝒎𝒊𝒔𝒔  

The uncertainties of the jet energy scale, resolution, and unclustered 𝐸5®§¾¾ scale affect:  

• Categorizing of the events as 3b-tag or 4b-tag 

• The efficiency of b-tagging identification. B-tagging is applied to jets within the 

tracker acceptance and 𝑝5 > 20	𝐺𝑒𝑉 

• The cut on 𝐸5®§¾¾ and 𝑀5 

To estimate these effects, we changed the nominal jet energy scale (or resolution) by ±1𝜎 

according to the prescription of the JetMET group [175, 176]. For the effect of the jet 

energy scale uncertainty on unclustered 𝐸5®§¾¾ we used MiniAOD sample following the 

JetMET group recommendation. The clustered component is added back in order to 

reassess the 𝐸5®§¾¾.  
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The ±1𝜎 variations are used to recompute the 𝐸5®§¾¾ and 𝑀5 for each event and then jets 

are b-tagged if the new corrected 𝑝5 > 20 GeV and |𝜂| 	< 	2.4. The result is shown in Table 

3-18.  

Table 3-18: Systematic uncertainty of the jet energy scale (JES), jet energy resolution(JER) and unclustured 𝐸5®§¾¾ for 
the major SM background processes and signal with 𝑚, = 60	𝐺𝑒𝑉. 

Process 
Category Category 

JES JER u𝐸5®§¾¾ JES JER u𝐸5®§¾¾ 

𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 0.5% 0.4% 5.0% 1.4% 0.7% 5.6% 

𝑡𝑡̅ + 𝑐𝑐̅ 1.5% 0.8% 7.0% 0.7% 0.3% 7.2% 

𝑡𝑡̅ + 𝑏𝑏= 1.8% 1.0% 5.6% 2.0% 1.3% 5.4% 

𝑊 → 𝑙𝜐 4.7% 1.8% 8.0% 3.4% 1.2% 8.2% 

𝑝𝑝 → 𝑊ℎ(60) 1.6% 0.8% 8.6% 3.6% 2.3% 8.4% 
 

3.7.1.5 Jet b-tagging  

Official b-tagging scale factors are applied to jets above 20 GeV in signal and background 

per recommendations from the BTV31 group [177]. We read the systematic uncertainties 

of the b-tag SF from the corresponding CSV file with the official BTagCalibration tool. 

The impact of this uncertainty is estimated by running the “up” and “down” BDT shape 

variations of the b-tag scale factors. The systematic uncertainties related to jet b-tagging 

are thus considered as shape uncertainties.  

Soft-b tagging scale factor uncertainties are taken from [178]. The values have been 

evaluated using 𝑡𝑡 ̅ samples with different configurations in the physics modeling and 

                                                

31- BTV stands for B-Tag & Vertexing. BTV group measures the b-tagging efficiency scale factors for b 
and light flavor jets. 
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detector description (MadGraph at LO and Powheg-new tune NLO). The resulting SF(SV) 

and uncertainty used is 1.05 ± 0.16. 

Table 3-19: Systematic uncertainty of the b-tagging scale factors for the major SM backgrounds and signal with 𝑚, =
60	𝐺𝑒𝑉. 

Process 
b-tagging c-tagging mis-tagging 

3b-tag 4b-tag 3b-tag 4b-tag 3b-tag 4b-tag 

𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 2.3% 2.3% 0.1% 0.4% 5.7% 12.3% 

𝑡𝑡̅ + 𝑏𝑏= 2.1% 2.2% 2.7% 3.7% 1.1% 7.0% 

𝑡𝑡̅ + 𝑐𝑐̅ 2.5% 3.5% 0.7% 1.0% 2.6% 5.5% 

𝑊 → 𝑙𝜐 0.9% 1.6% 1.6% 4.8% 8.3% 11.6% 

𝑝𝑝 → 𝑊ℎ(60) 3.0% 4.8% 0.7% 2.2% 0.9% 2.6% 
 

3.7.2 Theoretical uncertainties 

3.7.2.1 Limited size of the simulated samples 

Although uncertainty due to limited statistics is not a theoretical uncertainty in principle, 

here it reflects an uncertainty in modelling of processes. In this analysis, limited statistics 

is mostly present in these samples: signal, dibosons and tribosons background, and also the 

𝑡𝑡̅ + 𝑋 and single top processes. These uncertainties are shown in Table 3-20 for the 

samples used in this analysis.32 

Table 3-20: Systematic uncertainty due to the limited size of the simulated samples for the major SM backgrounds and 
signal with 𝑚, = 60	𝐺𝑒𝑉. 

Process 
Category 

3b-tag 4b-tag 

𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 0.3% 1.2% 

                                                

32- Bin-by-bin statistical uncertainties are also included in the final limit extraction as will be shown later. 
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𝑡𝑡̅ + 𝑐𝑐̅ 0.3% 1.0% 

𝑡𝑡̅ + 𝑏𝑏= 0.9% 2.2% 
Single top 0.4% 1.9% 

𝑊 → 𝑙𝜐 1.9% 8.3% 

𝑍 → 𝑙𝑙 1.3% 6.2% 

𝑝𝑝 → 𝑊ℎ(60) 1.4% 3.5% 
 

3.7.2.2 Cross-section uncertainties 

We assign a normalization uncertainty to the cross-section of the small electroweak 

backgrounds of this analysis: dibosons/tribosons (50%), DY+jets (2%), 𝑡𝑡̅ + 	𝑙𝑖𝑔ℎ𝑡 (6%) 

and single top (5%).  

3.7.2.3 PDF and 𝜶𝑺 uncertainties 

All the background and the signal samples in this analysis use NNPDF33. The uncertainty 

on the PDF and 𝛼�34 are computed according to the PDF4LHC recommendations [179] and 

are taken as shape uncertainties. 

3.7.2.4 Summary of the systematic uncertainties 

Figure 3-48 and Figure 3-49 show the individual “up” and “down” shape variations in BDT 

variable for each systematic uncertainty described above. The plots are shown for the major 

SM background which is the Top background and for a signal with 𝑚, = 60	𝐺𝑒𝑉).  

                                                

33- This is a collaboration to extract parton distribution functions.  
34- The strong coupling explained in section 1.1.1.1 
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Figure 3-48: Individual “up” and “down” shape variations in BDT variable for each systematic uncertainty for 𝑡𝑡̅ +
𝑙𝑖𝑔ℎ𝑡 background. 

 

Figure 3-49: Individual “up” and “down” shape variations in BDT variable for each systematic uncertainty for signal 
with 𝑚, = 60	𝐺𝑒𝑉. 
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3.8 Statistical analysis 

3.8.1 Introduction 

The current recommended methods by the LHC Higgs Combination Groups are: 

• The hybrid Bayesian-Frequentist limits popularly known as "CLs of LEP or 

Tevatron type" 

• The fully frequentist limits.  

In this analysis, we will use the CLs method.  

3.8.2 Probability, Inference, and Likelihood 

According to the frequentist approach35, “probability is the long-run relative frequency of 

an event.” [181]. However, when we have a theory, probability is the chance of an event 

happening according to the theory. For example, if our theory is that a coin is fair (i.e. 

Prob(tail) = Prob(head) = 0.5), then we can calculate the chance of having 59 tails and 41 

heads. On the other hand, inference is using data to determine an unknown parameter of 

the theory, 𝜇. To have a more accurate definition, [161] defines inference as “The process 

of determining an estimated value �̂� and the corresponding uncertainty 𝛿𝜇 of some 

unknown parameter 𝜇 from experimental data”. An example would be finding the chance 

of Prob(tail) = Prob(head) = 0.5 of a coin by flipping it 1000 times (for example we get 

                                                

35- We will not talk about the Bayesian approach in this dissertation. However, a good discussion on 
Bayesian approach can be found in 180. Sivia, D. and J. Skilling, Data analysis: a Bayesian tutorial. 
2006: OUP Oxford. 
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540 tails and 460 heads). In inference, the equivalent term for probability is “likelihood”. 

Here are examples of probability and inference problems: 

• Probability: Assuming that a coin is fair, what is the probability of getting 540 tails 

and 460 heads? 

• Inference: In an experiment we got 540 tails and 460. What is the likelihood of the 

coin being fair? 

 

Figure 3-50: Relation between probability and inference. This image is taken from [161] 

Our model (ℎ → 2𝑎 → 4𝑏 channel in NMSSM) has two parameters of interest (unknown 

parameters): The mass of the pseudo-scalar Higgs and the branching ratio of the decay. 

However, in order to eliminate one of these unknown parameters, we have chosen eight 

masses of 𝑚, = 12, 15, 20, 25, 30, 40, 50, 60	𝐺𝑒𝑉. Therefore, at each 𝑚,, we only have 

one parameter of interest: the branching ratio36.  

                                                

36- Actually, the parameter of interest that we will estimate is the signal strength. However, we have not 
defined it yet.  
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The mathematical formula for likelihood is37: 

𝐿(𝜇|𝑥) = 𝑓s(𝑥) (55) 

Where f is the PDF of collecting the dataset x if the variable of interest (branching ratio in 

our case) is 𝜇. [182] 

The number of recorded events N is also a variable that depends on 𝜇. For example, the 

number of events that we expect in the signal region depends on the branching ratio of the 

ℎ → 2𝑎 → 4𝑏  decay. Therefore, we define the extended likelihood function as: 

𝐿(𝜇|𝑥) = 𝑃(𝑁(𝜇), 𝜇)¬ 𝑓s(𝑥§)
ò(s)

§�3

 (56) 

Where 𝑃(𝑁, 𝜇) is the probability distribution of the number of events N (N depends on 𝜇). 

From our basic knowledge of probability, we know that 𝑃(𝑁, 𝜇) is a Poisson distribution 

with an average 𝜐(𝜇). Therefore: 

𝐿(𝜇|𝑥) =
𝑒2t(s)𝜐(𝜇)ò

𝑁! ¬𝑓s(𝑥§)
ò

§�3

 (57) 

If data contains both signal and background, both signal yield can depend on 𝜇: 

𝜈	 = 𝑠(𝜇) + 𝑏 (58) 

And: 

𝑓s(𝑥§) =
𝑠

𝑠 + 𝑏 𝑓¾
(𝜇|𝑥) +

𝑏
𝑠 + 𝑏 𝑓�

(𝜇|𝑥) (59) 

                                                

37- Because in this analysis, we only have one variable of interest 𝜇, we defined the likelihood like this. In 
general, we can have m variables of interest 𝜇3, … , 𝜇® 
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Where 𝜐, s, and b are the average of the Poisson distribution, number of signal events, 

and number of background events respectively. Therefore:  

𝐿(𝜇, 𝑠, 𝑏|𝑥) =
𝑒2(¾±�)(𝑠 + 𝑏)ò

𝑁! ¬
𝑠𝑓¾(𝜇|𝑥) + 𝑏𝑓�(𝜇|𝑥)

𝑠 + 𝑏

ò

§�3

= 

=
𝑒2(¾±�)

𝑁! ¬ 𝑠𝑓¾(𝜇|𝑥) + 𝑏𝑓�(𝜇|𝑥)
ò

§�3

 

(60) 

“In case of a very large number of measurements N, computing the likelihood function 

may become unpractical from the numerical point of view, and the implementation could 

require intensive computing power. Machine precision may also become an issue. For this 

reason, it is frequently preferred to perform the parameter estimate using a summary of the 

sample’s information obtained by binning the distribution of the random variable and using 

as information the number of entries in each single bin: (𝑛3, … , 𝑛ò), where the number of 

bins N is typically much smaller than the number of events n.” [161] In this analysis, we 

also use binned BDT distribution with the binning defined in the description of Figure 3-15 

and Figure 3-16. 

In this analysis, we estimate the background yield in the SR from the amount of the 

background in the CRs for the 𝑡𝑡̅ + 𝑋 and W + Jets backgrounds. However, we have some 

degree of Data/MC disagreement coming from mostly 𝑡𝑡̅ + 𝑏𝑏= and W + Jets mismodeling. 

In order to compensate for the mismodeling we do a simultaneous Maximum Likelihood 

fit in the SR, 𝑡𝑡̅ + 𝐻𝐹 CR, and W + Jets CR. Here, we have three independent sets of data. 

Therefore: 
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𝐿ÁZ,Á�Ç,Á�È(𝜃|𝑥¾, 𝑥�3, 𝑥�;) = 𝐿ÁZ(𝜃|𝑥¾)𝐿Á�Ç(𝜃|𝑥�3)𝐿Á�È(𝜃|𝑥�;) (61) 

Where 𝑥¾, 𝑥�3,	and 𝑥�; are the data in SR, 𝑡𝑡̅ + 𝐻𝐹 CR, and W + Jets CR respectively.  

3.8.2 Nuisance parameters 

[183] defines nuisance parameters as “any parameter which is not of immediate interest, 

but which must be accounted for in the analysis of those parameters which are of interest”. 

At CMS, the nuisance parameters come mostly from the theoretical modeling and the 

response of the experimental detector: the finite resolution of the detector, mis-calibrations, 

the presence of background, etc. The probability model that describes the response of the 

CMS detector depends on unknown parameters. These additional unknown parameters are 

called nuisance parameters. [161] 

3.8.3 Maximum Likelihood Method 

Estimator is the function that estimates the unknown parameter (the so-called parameters 

of interest) from the data.[184] The estimator that we will use in this analysis is the 

maximum likelihood estimator which is the most popular estimate method. [161] 

The maximum likelihood method is simply maximizing the likelihood function defined in 

the previous part. It is also called best fit method because it finds the parameter 𝜇 for which 

the theoretical model best fits the experimental data. [161] In other words, we want the 

value of 𝜇 for which: 

𝜕𝐿
𝜕𝜇 = 0 (62) 
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However, instead of finding the maximum of the likelihood function, it is easier to find the 

maximum of its logarithm. It is because logarithm turns all multiplications into summation 

when taking derivative. 

− log 𝐿(𝜃, 𝑠, 𝑏|𝑥) = 𝑠 + 𝑏 +ulog[𝑠𝑓¾(𝜃|𝑥) + 𝑏𝑓�(𝜃|𝑥)]
ò

§�3

− log𝑁! (63) 

3.8.4 The Wilk’s Theorem and the Profile Likelihood  

When there is only one parameter of interest 𝜇 and some nuisance parameters that we show 

by �⃗�, the Wilk’s theorem states that under some condition38 

 

(64) 

behaves as a 𝜒;	distribution with one degree of freedom when 𝑁 → ∞39. [161] 

This is a very useful result as we will see later. We can see eq.64 as the ratio of what we 

define as the profile likelihood: 

             

(65) 

                                                

38- Since this dissertation is not theoretical, the author is not trying to be mathematically accurate. 
39- Here 𝜇� is the value of the parameter of interest under 𝐻�. In this analysis, 𝜇� is the branching ratio of 
the ℎ → 2𝑎 → 4𝑏 decay under 𝐻�	which is equal to zero.  
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Since the maximum of the profile likelihood (PL) has exactly the same 𝜇 as the maximum 

of the likelihood itself, it can be used as a computational tool in maximum likelihood 

calculations.[185, 186]. In general, the profile likelihood can be asymptotically40 used as 

an ordinary likelihood. [186] However, the importance of the Profile Likelihood goes far 

beyond computation as we will see later.  

                                                

40- Meaning at very large number of events.  
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3.8.5 Simultaneous maximum likelihood fit of Top and W normalization 

We will do a simultaneous fit (eq. 61) on the binned BDT shape of the two control regions 

(𝑡𝑡̅ + 𝐻𝐹 and W + jets) as well as the signal region using the maximum profile likelihood 

estimator to derive the normalization of 𝑡𝑡̅ + 𝑏𝑏= and W + Jets backgrounds using the CMS 

Higgs Combine tool. The normalizations are scale factors applied to 𝑡𝑡̅ + 𝑏𝑏=  and W + Jets 

backgrounds to account for Data/MC difference in SR and CRs. These normalizations are 

tied between the signal and the two control regions when fitting. In order to have a better 

result, the QCD component in all signal and control regions is replaced by the data-driven 

estimate (Explained in section 3.6.4  

The initial values of the scale factors are determined using the integral of the histograms 

for the corresponding 𝑡𝑡̅ + 𝑏𝑏= and W + Jets processes and the scale factor parameters are 

therefore treated as multiplicative factors of the nominal scale factor. 

The CMS Higgs Combine tool is a command line interface to the RooFit/RooStats used 

widely inside CMS. [65] RooStats is the statistical framework for combination of the 

results in Higgs boson searches and measurements that the CMS and ATLAS 

collaborations agreed to use. [186-189]. In this framework, the distributions of signal and 

background events, parameters of interest, nuisance parameters, and observed data are 

encoded in a ROOT file called the workspace.  

The input to the Higgs Combine Tool is a data card which defined the details of the 

experiment. [65] Figure 3-51 shows an example data card and what parameters are in it. 

The step to convert the datacard to a binary workspace can be performed by the 

text2workspace.py file.  
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The fitted values of 𝑡𝑡̅ + 𝑏𝑏= and W + Jets normalizations are shown in Table 3-21. The 

extracted scale factors are compatible with similar observations in the VH(bb) analyses 

like [190] 

Table 3-21: data/MC normalizations for the 𝑡𝑡̅ + 𝑏𝑏= and W + Jets backgrounds for the SR+CRs simultaneous fit. The 
values refer to the simultaneous control regions plus signal region including channel masking in the SRs. 

Background B only fit B+S fit 

𝒕�̅� + 𝒃�̈�(𝒆) 𝟏.𝟓𝟑± 𝟎.𝟐𝟕 𝟏.𝟓𝟐± 𝟎.𝟐𝟖 

𝒕�̅� + 𝒃�̈�(𝝁) 𝟏. 𝟒𝟕± 𝟎.𝟐𝟔 𝟏. 𝟒𝟕± 𝟎.𝟐𝟕 

𝑾+ 𝟑𝒃(𝒆) 𝟏.𝟎𝟗	 ± 	𝟎.𝟏𝟐 𝟏.𝟎𝟗	 ± 	𝟎.𝟏𝟑 

𝑾+ 𝟑𝒃(𝝁) 𝟏.𝟑𝟏	 ± 	𝟎.𝟎𝟗 𝟏.𝟑𝟏	 ± 	𝟎.𝟏𝟎 

𝑾+ 𝟒𝒃(𝒆) 𝟏.𝟏𝟔	 ± 	𝟎.𝟑𝟐 𝟏.𝟏𝟓	 ± 	𝟎.𝟑𝟑 

𝑾+ 𝟒𝒃(𝝁) 𝟏.𝟐𝟒	 ± 	𝟎.𝟏𝟗 𝟏.𝟐𝟑	 ± 	𝟎.𝟏𝟗 

 

3.8.6 Post-fit results and fit diagnostics  

Figure 3-52 to Figure 3-59 show the pre- and post-fit BDT distributions in 𝑊/𝑡𝑡̅ + 𝐿𝐹 and 

𝑡𝑡̅ + 𝐻𝐹 control regions. Uncertainties have been calculated considering the full list of 

systematic uncertainties described in section 3.7 by re-sampling of the fit covariance 

matrix, thereby accounting for the full correlation between the parameters of the fit. 

The plots also show the ratio of data event yield to MC event yield with statistical and 

systematic uncertainties both considered in the error band. As expected, including the 

control regions in the fit helped constraining the systematical uncertainties significantly as 

can be seen in the post-fit distributions and the data-MC ratio. 
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Figure 3-52: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑊/𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 CR - (2b, 3jets) , for electrons 

 

Figure 3-53: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑊/𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 CR - (2b, 3jets) , for muons 

 

 

Figure 3-54: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑊/𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 CR - (2b, 4jets) , for electrons 
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Figure 3-55: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑊/𝑡𝑡̅ + 𝑙𝑖𝑔ℎ𝑡 CR - (2b, 4jets) , for muons  

 

Figure 3-56: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑡𝑡̅ + 𝐻𝐹 CR - (3b, 5jets), for electrons 

 

Figure 3-57: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑡𝑡̅ + 𝐻𝐹 CR - (3b, 5jets), for muons 
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Figure 3-58: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑡𝑡̅ + 𝐻𝐹 CR - (4b, 5jets), for electrons 

 

Figure 3-59: Pre-fit (left) and post-fit (right) BDT distributions in the 𝑡𝑡̅ + 𝐻𝐹 CR - (4b, 5jets), for muons 
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Figure 3-60: Pre-fit and post-fit values of the nuisance parameters. For each of those parameters, the plot shows the 
change in value and the post-fit uncertainty, both normalized to their input values. Upper and lower plots correspond 
to the 3b-tag and 4b-tag categories respectively. 
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3.9 Signal Extraction 

3.9.1 Introduction 

The goal of this analysis is to evaluate the ℎ → 2𝑎 → 4𝑏 decay that is predicted in some 

BSM theories using the data taken at CMS in 2016. This is done by looking at the BDT 

distribution of 2016 data to see if it is more consistent with the background BDT 

distribution or the background + signal BDT distribution. Hence, we will start by 

identifying and stating the null (𝐻�) and alternative (𝐻,ñÓ) hypotheses. The null hypothesis 

is the one that we will try to disprove. If we succeed, then the alternative hypothesis is 

automatically proved. However, if we fail to disprove 𝐻�, it means that the data is more 

consistent with the absence of signal than its presence. In this case, the level of the absence 

of signal is characterized by an interval called an exclusion limit.[184] In our analysis, the 

exclusion limit is an upper limit on the  of the ℎ → 2𝑎 → 4𝑏 decay at 95% confidence level 

as we will explain.  

In this analysis, we define the null hypothesis as the hypothesis that ℎ → 2𝑎 → 4𝑏 channel 

does not happen (background only hypothesis) and the alternative hypothesis as that it does 

happen (background+signal hypothesis). Two things about the definition of the 𝐻� and 

𝐻,ñÓ hypotheses:  

• It is also possible to choose 𝐻�: background+signal and 𝐻,ñÓ: background only. i.e. 

trying to disprove the ℎ → 2𝑎 → 4𝑏 channel. However, the abovementioned choice 

makes more logical sense. 
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• The disproval of the 𝐻� can happen in two ways: either if we have too much excess 

of data or too much lack of data compared to the background estimation. However, 

the presence of ℎ → 2𝑎 → 4𝑏 channel shows itself only as the excess of data in this 

analysis. Therefore, the alternative hypothesis is one-sided. We will add this one-

sidedness to our mathematics later in this section.  

3.9.2 The test statistic 

In order to quantitatively evaluate the hypotheses, we reduce the data to one single value 

which is the numerical summary of that data sample. This single numerical value is called 

the test statistic and is usually shown by t. And its probability distribution can be derived 

under 𝐻� and 𝐻,ñÓ from the probability distribution of the observable quantities in the 

experiment. [161, 191] We want the test statistic to be discriminating between a dataset 

with and without signal. Therefore, its probability distribution in general is different for 

the signal and background datasets (Figure 3-61). [161] 

 

 

Figure 3-61: The test statistic variable in general has a different probability distribution for signal and background. 
This image is taken from [161] 

After choosing the test statistic, we have to define a critical region (𝐶x) in its probability 

distribution (Figure 3-61). If the value of the test statistic for the 2016 CMS data falls in 
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the critical region, we claim that we have disproved 𝐻� and discovered 𝐻,ñÓ! We want this 

critical region  

• To be as far as possible from the 𝐻� (background only hypothesis) probability 

distribution  

• The probability that the test statistic value for a background only dataset falls in the 

critical region be less than 𝛼. i.e. Pr(𝑡 ∈ 𝐶x|𝐻�) < 𝛼. We define the confidence 

level as (1 − 𝛼) and it is expressed in percent. [192, 193] 

3.9.3 Type-I and Type-II Errors 

By looking at Figure 3-61 two important questions come to mind: What if the data is 

actually only background, however its test statistic value falls in the critical region by 

chance? Or what if the data contains signal, however the test statistic value falls out of the 

critical region by chance? These errors are called type-I and type-II errors: 

• Type I error: Rejecting 𝐻� when it is actually true. The probability of Type-I error 

is 𝛼 

• Type-II error: Erroneously failing to reject 𝐻� when it is false. We show the 

probability of Type-II error by 𝛽. [184] 

Defining the critical region is kind of arbitrary. We can narrow 𝐶x to decrease the 

probability of type-I error, however we will increase the probability of type-II error. Also, 

if we widen 𝐶x to decrease the probability of type-II error, we will automatically increase 

the probability of type-I error41. Therefore, we have to trade off type-I error against type-II 

                                                

41- We can even plot the type-I vs type-2 error probability in a ROC curve like Figure 3-13. 
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error. This trade off depends on every analysis. Depending on whether we prefer to avoid 

type-I error more or type-II error, we can have two different kinds of analysis:  

• Best discovery potential: If our motivation for the analysis is discovery, avoiding 

type-I error would be more important than avoiding type-II error. This is because 

in high energy physics, we want to be very confident before claiming a discovery. 

Therefore, at CERN the threshold of 5.0 standard errors (it will be explained later) 

is used which corresponds to an alpha-level of approximately 0.000000573. [194]42 

• Best limit setting: However, if our goal is not discovery, probably it is because we 

already know that the signal is weak if not absent. Therefore, our main goal is to 

see any sign of the signal. In other words, we want to maximize prob(accept 𝐻,ñÓ | 

𝐻,ñÓ = TRUE).  We call this probability the statistical power: 

 
𝑃𝑂𝑊𝐸𝑅 = 𝑃𝑟𝑜𝑏(𝑎𝑐𝑐𝑒𝑝𝑡	𝐻,ñÓ|𝐻,ñÓ = 𝑇𝑅𝑈𝐸) = 

= 1 − 𝑃𝑟𝑜𝑏(𝑟𝑒𝑗𝑒𝑐𝑡	𝐻,ñÓ|𝐻,ñÓ = 𝑇𝑅𝑈𝐸) = 1 − 𝛽	 
(66) 

This analysis is also a best limit analysis. This is because we already know that 

none of the analyses in Table 3-1 have seen the ℎ → 2𝑎 → 4𝑏 signal. Therefore, 

we will use 1 − 𝛽 (statistical power) to enhance our chance of seeing the signal as 

we will see later in this part. [184, 196] 

                                                

42- “It should be emphasized that in an actual scientific context, rejecting the background-only hypothesis in 
a statistical sense is only part of discovering a new phenomenon. One’s degree of belief that a new process 
is present will depend in general on other factors as well, such as the plausibility of the new signal hypothesis 
and the degree to which it can describe the data. Here, however, we only consider the task of determining the 
p-value of the background-only hypothesis; if it is found below a specified threshold, we regard this as 
discovery” 195. Cowan, G., et al., Asymptotic formulae for likelihood-based tests of new physics. 2011. 
71(2): p. 1554. 
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In this part, we explained the hypothesis testing in a nut shell. The first step is to choose a 

test statistic. The most common test statistic in experimental high energy physics are the 

Neyman-Pearson (NP) and the Profile Likelihood (PL) [196]. In this analysis, we will use 

the Profile Likelihood test statistic. 

3.9.4 Signal strength 

In a counting experiment like the present one, if n is the number of observed events 

            𝑛 = 𝜇. 𝑠 + 𝑏 (67) 

Where b is the expected background. The signal strength (μ) is defined as:  

            𝜇 = ¸¹�Z
¸º»

 (68) 

3.9.5 The Neyman–Pearson Lemma and the Profile Likelihood test 

statistic 

The Neyman-Pearson lemma states that the optimal test statistic is given by the ratio of the 

likelihood functions 𝐿(�⃗�|𝐻3) and 𝐿(𝑥|𝐻�). Optimal here means that for a fixed 𝛼 

(confidence level) the selection that corresponds to the largest 1 − 𝛽 (statistical power) is 

given by:  [161, 197] 

            𝜆(�⃗�) =
nÃ�⃗�¼𝐻3Ä
nÃ𝑥¼𝐻�Ä

 (69) 

However, as we explained in section 3., we can use the profile likelihood as a regular 

likelihood at asymptotic regions (high number of events). Profile likelihood has the 
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advantage that we know its distribution asymptotically. Therefore, we will use the Profile 

log-Likelihood ratio test statistic defined as:  

            𝑞s = −2 ln
nÃs,ø½½¾Ä

n(s¿ ,ø½¾)
 (70) 

Where 𝜇 is the parameter of interest and 𝜃 represent the nuisance parameters. One hat 

stands for the Maximum Likelihood Estimator (MLE) while the double hat means 

constrained MLE, i.e. the MLE of 𝜃, fixing 𝜇. In this case, we say that 𝜃 is profiled. [196] 

If the parameter of interest is the signal strength (defined in eq.68), we can adjust the PL 

test statistic to account only for excess of data: 

            𝑞� = À−2 ln
nÃ�,ø½½Ä

nzs¿ ,ø½|
	 					𝑖𝑓	�̂� ≥ 	0

										0															𝑖𝑓	�̂� < 	0
 (71) 

 

3.9.6 The p-value, the significance level, and the CLs technique  

Claiming a discovery of a new signal after collecting data requires showing that the sample 

is sufficiently inconsistent with the background-only hypothesis. The test statistic t can be 

used as the measure of inconsistency between the data and 𝐻�. The p-value (standing for 

probability value) is the probability that the test statistic t assumes a value equal or greater 

than the observed one from only pure background fluctuations.[161] Therefore, the smaller 

the p-value, the more improbable it is that the outcome comes from pure fluctuation and 

the more likely it comes from actual signal events. [184] 



 169 

Rather than quoting the p-value, it is often easier to report the equivalent number of 

standard deviations excluding the central area in a normal distribution and leaving the tail 

that has the same p-value (Figure 3-62). In other words, it is preferred to report the ‘𝑍𝜎’ 

significance corresponding to a given p-value. [161] The significance level can be 

calculated using this transformation: 

𝑝 = ∫ 3
√;Â

Ã
¯ 𝑒2

ÄÈ

È 𝑑𝑥 = 1 − 	𝜙(𝑍) = 𝜙(−𝑍)            
(72) 

 

Conventionally, 3𝜎 is referred to as evidence and 5𝜎 as discovery. [161] 

 

Figure 3-62: The relationship between the p-value and significance level(Z). This image is taken from [196] 

As explained in section 3.9.3 , this analysis is a best limit analysis with weak signal if it 

exists. In other words, the statistical power is small in this analysis and the experiment does 

not have sensitivity to reject the 𝐻,ñÓ with high power because it almost rejects 𝐻� as well, 

as seen in Figure 3. [196] The CLs technique suggests using a modified p-value that is 

enhanced by statistical power. Therefore, this modified p-value can be written as [198]: 
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𝑝¾±�¨ = mZÅ�
32m�

            (73) 

Where 𝑝¾±� and 𝑝� are the p-values for the signal+background and background-only 

hypotheses. In other words, we are normalizing the p-value by the acceptance probability 

of 𝐻�. [196] “In most of the cases, the probabilities 𝑝¾±� and 𝑝� are not trivial to obtain 

analytically and are determined numerically using pseudo-experiments generated by 

Monte Carlo.” [161] 

As [196] explains: “The CLs method lacks a frequentist coverage. However, it lacks it in 

places where the experiment is insensitive to the expected signal! And this is not 

necessarily a disadvantage from the physicists’ point of view! Here is what happens: One 

uses the Neyman-Pearson likelihood ratio as a test statistic. When the expected signal is 

very low, the two PDFs are almost overlapping (Figure 3-63). The background might 

fluctuate down resulting in a very small 𝑝¾±�. As a result, we are tempted to exclude the 

signal hypothesis. However, it is not the signal hypothesis that is excluded, but the 

signal+background hypothesis. It is the small expected signal s << s + b that is leading to 

a false exclusion. To protect against such an inference, one uses the modified p-value as a 

criterion for taking a decision of rejecting the signal hypothesis.” 
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Figure 3-63: This plot shows the reasoning of the CLs method. Top plot shows two well separated distributions of the 
test statistic and the bottom plot shows two distributions that are largely overlapping where the experiment has poor 

sensitivity to the signal. This image is taken from [161] 

3.9.7 Upper limits on the signal strength 

We can assess the sensitivity of an experiment using a special dataset called an Asimov 

dataset [131], which is a dataset that all maximum likelihood estimators of all parameters 

are at their true values. Practically, it can be constructed from the total number of predicted 

signal and background events. In other words, the number of entries in the 𝑖ÓÆ	 bin is  

𝑝¾±�¨ = 𝐴§(𝜇,𝜃) 	= 	𝜇𝑠§(𝜃) 	+	𝑏§(𝜃) (74) 
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where A is the Asimov data histogram, and 𝑠§(𝜃) and 𝑏§(𝜃) are the predictions of the signal 

and background events respectively. And nuisance parameters θ show the systematic 

uncertainties. The Asimov dataset is built assuming no statistical uncertainties on the signal 

or background. 

If CLs p-value < 	𝛼, then the signal is excluded at 100 × (1	 − 	𝛼)% CLs confidence level. 

We use 95% CL that is standard at CERN. Therefore, in order to have the exclusion limit 

for each 𝑚, we have to find the signal strength for which CLs p-value = 0.05.  

As the Asimov dataset does not consider statistical variations, it is interesting to see how 

the exclusion limits change as a result of statistical variations in the data. In order to asses 

this, we recompute the expected limit for ±1 and ±2 standard deviations of the signal 

strength. The resulting expected limits then are added to the expected limit plot as ±1 and 

±2 error bands. While we can use the covariance matrix to calculate the standard deviation 

on the signal strength, a computationally easier procedure is the approximation of 𝜎; = 	 s
È

Å¾
 

where 𝜇 is the signal strength, and 𝑞s (eq.71) is computed using the Asimov dataset [131].  

We used the Asimov dataset to refit for the upper limits. In this fit, we used the data-driven 

QCD background estimate described in subsection 3.6.4. Also, we used the normalization 

values for the Top and W backgrounds that were extracted in section 3.8.5.  

The expected upper limit on the signal strength for the 3b-tag and 4b-tag categories are 

shown in Figure 3-64 and Figure 3-65. The results that are presented using the standard 

model cross section 𝜎(𝑝𝑝	 → 	𝑊ℎ) = 	1.37	𝑝𝑏23		with 𝐵𝑅(ℎ	 → 	𝑎𝑎) 	× 	𝐵𝑅(𝑎	 →

	𝑏𝑏); 	= 	1.	Expected upper limit means that instead of data, sum of MC background 
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datasets is used to derive the upper limit. In other words, expected upper limit is the upper 

limit assuming no signal and only SM background. This expected upper limit is compared 

with observed upper limit derived using actual data taken at CMS. However, as we are still 

blind, we cannot look at the data yet. Therefore, only the expected upper limit is shown 

here.   

After  receiving permission to look at the data and adding the observed upper limit, the 

areas above the curve in Figure 3-64 and Figure 3-65 will be excluded at 95% confidence 

level. The y-axis is the signal strength defined as ¸(¥Æ→;,→Ú�)
¸(¥Æ)

. It is impossible that 

𝜎(𝑊ℎ → 2𝑎 → 4𝑏) < 𝜎(𝑊ℎ) as 𝜎(𝑊ℎ) is more general. However, keep in mind that we 

have assumed that 𝐵𝑅(ℎ	 → 	𝑎𝑎) 	× 	𝐵𝑅(𝑎	 → 	𝑏𝑏); 	= 	1 to derive the upper limit as we 

do not know the true values of the branching ratios. Therefore, our goal should be to 

exclude areas much lower than 𝜇 = ¸ÆÇ%
¸�È

= 1. 

 



 174 

 

Figure 3-64: Expected limit on the signal strength when only SRs included in the fit. The solid blue line indicates the 
SM cross-section of 𝜎(𝑝𝑝	 → 	𝑊ℎ) with 𝐵𝑅(ℎ	 → 	𝑎𝑎) 	× 	𝐵𝑅(𝑎	 → 	𝑏𝑏); 	= 	1. 

 

Figure 3-65: Expected limit on the signal strength with a simultaneous fit in the control and signal regions. The signal 
region data have been masked in the likelihood (blinded mode). The solid blue line indicates the SM cross-section 

𝜎(𝑝𝑝	 → 	𝑊ℎ) with	𝐵𝑅(ℎ	 → 	𝑎𝑎) 	× 	𝐵𝑅(𝑎	 → 	𝑏𝑏); 	= 	1. 
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Figure 3-66 to Figure 3-69 show the data-MC comparison for analysis variables in the 

signal regions of the 3b-tag and 4b-tag categories after the fit. We can see a pretty good 

Data/MC agreement here. Also, Figure 3-70 and Figure 3-71 show the pre-fit and post-fit 

BDT shapes. The background components in these plots are prior to fitting to data. Also, 

as we are still blind, we are not allowed to look at the last two BDT bins which are the most 

sensitive ones. Therefore, these two bins are shaded.  

The event yields for all the SM backgrounds and expected signal in 2016 data are shown 

in Table 3-22 and Table 3-23 for the 3b-tag and 4b-tag categories. The data yield in the 

tables match with the total background because we are working in a blind condition and 

data used here is the sum of MC background. 
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Figure 3-66: Analysis variable distributions in the Signal Regions - (3b, 3jets) bin, in the electron channel. Note that 
∆𝑚��

®§~ is not defined in the 3b-tag category. 
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Figure 3-67: Analysis variable distributions in the Signal Regions - (3b, 3jets) bin, in the muon channel. Note that 
∆𝑚��

®§~ is not defined in the 3b-tag category. 
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Figure 3-68: Analysis variable distributions in the Signal Regions - (4b, 4jets) bin, in the electron channel. 
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Figure 3-69: Analysis variable distributions in the Signal Regions - (4b, 4jets) bin, in the muon channel. 
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Figure 3-70: Pre-fit (left) and post-fit (right) BDT shapes in the electron (upper) and muon (lower) channels for the 3b-
tag category, used as input in the final upper limit extraction. The last two bins in BDT are the most sensitive regions 
and are blinded here as we still do not have permission to look at data. The X-axis labels count the number of bins in 

BDT. 
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Figure 3-71: Pre-fit (left) and post-fit (right) BDT shapes in the electron (upper) and muon (lower) channels for the 4b-
tag event categories, used as input in the final upper limit extraction. The last two bins in BDT are the most sensitive 
regions and are blinded here as we still do not have permission to look at data. The X-axis labels count the number of 

bins in BDT. 
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The impact of a nuisance parameter (NP) 𝜃 on the parameter of interest (POI) 𝜇 is defined 

as the shift ∆𝜇 that is induced as 𝜃 is fixed and brought to its +1𝜎 or −1𝜎 post-fit values 

while all other parameters profiled as normal. This is effectively a measure of the 

correlation between the NP and the POI and is useful to determine which NPs have the 

largest effect on the uncertainty of the POI. For the sake of comparison, we first show the 

impacts and pulls on the signal strength for the case where only the signal regions are 

present in the likelihood fit. This is shown in Figure 3-72 for the limit extraction with a 

mass signal point 𝑚, 	= 	60	𝐺𝑒𝑉 and the 3b-tag and 4b-tag categories combined. The 

corresponding impacts and pulls for the simultaneous fit with control regions included are 

shown in Figure 3-73. We observe that in case of the simultaneous fit including the control 

regions, nuisances related to the JES and uMET are overconstrainted. A decorrelation of 

the JES uncertainties into six subcomponents depending on the jet 𝑝5 and eta has been 

implemented as per the JetMET group prescription [199]. The nuisance related to the 

unclustered MET shows the highest impact and is also highly overconstrained. The reason 

for this has been shown to come from the overestimation of this uncertainty while using 

the old-style recipe for smearing the unclustered part in 𝐸5®§¾¾ using a 10% resolution for 

the objects. Nuisances related to the systematic uncertainty on the fake-lepton background 

estimation are also slightly overconstrainted due to the conservative 50% uncertainty 

assigned on the fake-lepton predicted yields. 



 185 

 

Figure 3-72: Impacts and pulls on signal strength for the systematic sources ranked in terms of importance. The 
Asimov S+B fit in the Signal Regions only with 𝑚, = 	60	𝐺𝑒𝑉 signal hypothesis is used. 
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Figure 3-73: Impacts and pulls on signal strength for the systematic sources ranked in terms of importance. The 
Asimov S+B simultaneous fit in the Control Regions with 𝑚, = 60	𝐺𝑒𝑉 signal hypothesis is used. 
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3.10 Summary 

In this dissertation, I explained the analysis documented in AN2018_154 using 35.9 fb23 

of 13 TeV center of mass pp collision data recorded in 2016 by the Compact Muon 

Solenoid experiment at the Large Hadron Collider. The goal of this analysis is to put an 

upper limit on the signal strength of ℎ → 2𝑎 → 4𝑏 decay predicted by a few well-motivated 

beyond-standard-model theories. Here, a is a lighter pseudoscalar Higgs. 

In order to isolate the signal, first a few pre-selection requirements were applied to suppress 

SM background events (section 3.4.2.). Then we trained a BDT multivariable discriminator 

to be able to efficiently distinguish between the remaining background and signal events. 

And finally, this binned BDT distribution was used by the Higgs Combine tool to put an 

upper limit on the signal strength of the ℎ → 2𝑎 → 4𝑏 decay. 

The main backgrounds in this analysis are 𝑡𝑡̅ + 𝑋	and W + jets. We defined and used 

control regions to estimate their shape and yield in the signal region. The shapes of the 

𝑡𝑡̅ + 𝑋	and W + jets backgrounds were taken from MC while their normalizations were 

taken from data using a simultaneous fit in the signal and control regions. Another 

important background is QCD. In this analysis, we suffered from poor QCD MC statistics. 

Therefore, QCD background estimation as well as QCD shape and yield in the control 

regions were derived from the so called ABCD method.  

Unfortunately, at the time of writing this dissertation, we are still not allowed to look at the 

data (we are blind). Therefore, the upper limit plot in this dissertation lacks the observed 

curve. Interested reader can find the updated plot with observed curve in AN2018_154.  
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