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CHAPTER 0

Introduction

Abstract. In the first quarter of this dissertation, we investigate the problem

of how far a walker travels after n unit steps, each taken along a uniformly random

direction; the short-step behaviour of this random walk was unknown. Utilising

functional equations, we fully analyse the three- and four-step walks, finding the

moments and densities of the distance from the origin. Our methods involve a blend

of combinatorics, probability, and complex analysis.

The derivatives of random walk moments turn out to be Mahler measures. We

fruitfully study them using elementary techniques (different to those used by other

researchers), namely generating functions of log-sine integrals and trigonometry. On

the other hand, some random walk moments can be written as moments of products

of complete elliptic integrals. These are studied, culminating in a complete solution

for the moments of the product of two elliptic integrals. We also give some results

when more elliptic integrals are involved. These endeavours occupy the second

quarter of this dissertation.

A spectacular application of elliptic integrals is their ability to produce rational

series which converge to 1/π, as observed by Ramanujan. Using modular forms

and hypergeometric transforms, we produce new classes of 1/π series which involve

Legendre polynomials and Apéry-like sequences. We give a diverse range of series for

related constants, including some based on Legendre’s relation. The third quarter

of this dissertation is devoted to this topic.

In the last quarter we apply experimental methods to better understand a num-

ber of areas encountered in our prior investigations. We simplify proofs for some

multiple zeta value identities, give new ones and outline how they may be found.

We give a method to quickly generate contiguous relations for hypergeometric se-

ries. Lastly, we look at orthogonal polynomials, in particular a new application of

Gaussian quadrature to multi-dimensional lattice sums.

xi
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J. G. Wan, Some notes on weighted sum formulae for double zeta values. Number The-

ory and Related Fields, in memory of Alf van der Poorten, in: Springer Proceedings in

Mathematics & Statistics 43 (2013), 361–379.

I wish to thank John Zucker and Wadim Zudilin for illuminating discussions,

and Yasuo Ohno for pointing out a reference. I am extremely grateful to Wadim

Zudilin who actually typeset the first version of Section 13.6.

Section 13.2 gives shorter proofs of known identities. Sections 13.3 –13.4 are

original. Section 13.5 first provides simpler proofs of known results (of note is

remark 13.5.2), then proceeds to give a number of new ones, such as Propositions

13.3 – 13.5, Theorem 13.7 and Lemma 13.2. Section 13.6 gives a neater proof of a

recent theorem. The last 2 sections have not previously appeared in print.

Chapter 14 has not appeared in print, except that a very brief and edited summary

of Section 14.3 will appear in the book [52],
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University Press, to appear August 2013, ∼380 pages.

I am grateful to O-Yeat Chan for much help and discussions, and for his draft

and summary of ideas for the material on Gaussian quadrature.

Section 14.1 unifies several known approaches and gives new ones, thus simpli-

fying proofs of many contiguous relations. Section 14.2 gives a new way to look at

some orthogonal polynomials and produces some identities. Section 14.3 introduces

the new idea of using Gaussian quadrature to approximate multiple sums.

0.2. Overview

0.2.1. Experimental mathematics. This dissertation explores a range of

related topics in number theory and special functions, starting from investigations

of uniform random walks on the plane, using techniques from experimental math-

ematics where possible. As such, it is not an attempt to solve a single difficult

problem nor does it try to develop a unified theory. Each chapter contains new

results discovered and proven experimentally, facilitated by the computer.
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Modern experimental mathematics [21, 43, 44] seeks to fully utilise the com-

puter’s capability beyond mere calculations and simulations. More thoughtful con-

trol of the computer allows one to use graphics to suggest underlying mathematical

principles, test and falsify conjectures, and confirm analytical results. Intelligent

experiments allow the computer to help us gain intuition and insight, discover new

patterns, and suggest approaches for proofs.

Two strands of algorithms are prominent in experimental mathematics. The

first is creative telescoping, which achieves automatic evaluation of many sums and

integrals, in particular sums involving binomial coefficients. Its long lineage of

algorithms starts with Celine, followed by Gosper and then Wilf-Zeilberger (WZ),

and more are still being actively developed and refined. Both Celine’s and the WZ

algorithm attempt to find a recursion in n for the sum F (n) :=
∑n

k=a a(n, k), while

Gosper’s algorithm tries to write a(n, k) as b(n, k + 1) − b(n, k), making the sum

into a telescoping one (and providing a proof if no b exists).

Thus, a typical proof of a sum identity
∑n

k=a a(n, k) = R(n) in experimental

mathematics looks like this: apply a suitable algorithm to find a recursion satisfied

by the left hand side; check that the right hand side satisfies the same recursion;

check enough initial conditions and conclude the the two sides are equal. By the

same token, a proof of an identity between analytic functions would involve produc-

ing a differential equation for one side (if this side is a generating function, then a

differential equation can come from a recursion satisfied by the coefficients), check-

ing that the other side is annihilated by the differential equation, and checking some

initial conditions. We will use these approaches time and again.

The other strand involves reverse engineering, and outstanding examples include

the PSLQ and LLL algorithms. PSLQ takes an input vector v of real numbers, and

attempts to find an integer vector u, such that v · u = 0 within the prescribed

precision. If no u is found, it can certify that no such vector below a certain norm

exists. PSLQ can be used when trying to write a numerically computed answer

in terms of supplied, well-known constants, or as the root of a polynomial. Often,

knowing a closed form answer brings one much closer to a proof. Moreover, in

many cases once an answer is found, it can be easily proved, though finding the

answer can be computationally expensive; in these instances PSLQ can be used to
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replace analytical computations and arrive at a checkable answer more efficiently.

We adhere to this practice often.

The very nature of experimental mathematics lends itself to problem solving. It

is also conducive to interdisciplinary research, in particular with sciences wherein

traditional experimentation is deeply entrenched. These strengths are hopefully

reflected in the diverse background of problems presented, investigated, and solved

here. Additionally, experimental methods tend to reduce formerly difficult analysis

to much simpler algebra, for instance creative telescoping uses not much more than

linear algebra, but unifies proofs previously requiring much ingenuity. In the same

spirit, we try to give elementary proofs of results whenever possible.

0.2.2. Notations. Throughout, we will use the standard notation for the gen-

eralised hypergeometric series,

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
,

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol, and Γ(z) is the Gamma

function. Generalised hypergeometric series provide a framework which unifies

many binomial sums and special functions. In particular, 2F1’s and 3F2’s enjoy

many transformations and exhibit rich structures. By saying that an expression

has a closed form, we mean that it can written in terms of hypergeometric series

and well-known constants (such as π).

Two Gaussian hypergeometric functions (2F1’s) which receive our special at-

tention are the elliptic integrals of the first and second kinds, given respectively

by

K(x) =
π

2
2F1

( 1
2 ,

1
2

1

∣∣∣∣x2

)
=

∫ π/2

0

dt√
1− x2 sin2 t

,

E(x) =
π

2
2F1

(
−1

2 ,
1
2

1

∣∣∣∣x2

)
=

∫ π/2

0

√
1− x2 sin2 tdt.

We also denote the complementary modulus
√

1− x2 by x′, and use K ′(x) :=

K(x′), E′(x) := E(x′). We denote the pth singular value of K by kp: that is, kp is

the unique real number satisfying K ′(kp)/K(kp) =
√
p. It is known that when p is

a natural number, kp is algebraic and effectively computable, see [46, 175, 206].
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The Riemann zeta function is given, for Re s > 1, by

ζ(s) =

∞∑
n=1

1

ns
,

and can be analytically continued to the whole complex plane except for the simple

pole at s = 1.

When an equality is only conjectural (for instance, based on numerical evidence),

we indicate it using the symbol
?
=.

Other notations will be introduced in the chapters as they appear.

0.2.3. Random walks. The first four chapters of this dissertation are con-

cerned with random walks; specifically, we investigate the century-old problem of

how far a random walker travels after n steps, each step being of unit length and

taken along a uniformly random direction in the plane. Such walks date back to

Rayleigh and Pearson, and find applications in modeling Brownian motion, super-

position of waves, quantum chemistry, and migration of organisms.

While the asymptotics of this walk were understood, the short-step behaviour

was not known – such was the impetus for us to embark on this study. Denoting

the sth moment of the distance from the origin of the n-step walk by Wn(s), and

the radial probability density by pn(x), we have

Wn(s) =

∫ n

0
xspn(x) dx =

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πixk

∣∣∣∣sdx. (0.1)

In Chapter 1, we first gain intuition using numerical integration, which allows

us to combinatorially deduce the even moments:

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (0.2)

The recursion in k satisfied by the right hand side gives us a recurrence relation

for Wn(2k), which lifts to a functional equation by Carlson’s theorem. This lets

us analytically continue Wn(s) to the complex plane with poles at certain negative

integers; the poles are crucial to our understanding of pn via techniques such as the

Mellin transform.

Inspired by a combinatorial convolution satisfied by (0.2), we conjecture

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j), (0.3)
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which is used in numerical checks, and is a driving force for subsequent chapters.

The conjecture holds when s is an even positive integer, and when n = 1.

While it is easy to find

p2(x) =
2

π
√

4− x2
, W2(s) =

(
s

s/2

)
, (0.4)

a closed form formula for W3(s) involves more effort. Our result is in terms of the

generalised hypergeometric series: for integer k,

W3(k) = Re 3F2

( 1
2 ,−

k
2 ,−

k
2

1, 1

∣∣∣∣4). (0.5)

To prove this, we take a typical approach in experimental mathematics. Using

creative telescoping, we show that both sides satisfy the same three-term recurrence,

and therefore we only need to prove the identity for k = ±1. This is accomplished

using some classical analysis, in particular transformation formulas for the complete

elliptic integrals K and E. As a consequence, we were the first to discover the

expected distance for the 3-step walk,

W3(1) =
3

16

21/3

π4
Γ6
(1

3

)
+

27

4

22/3

π4
Γ6
(2

3

)
, (0.6)

as well as

W3(−1) =
3

16

21/3

π4
Γ6

(
1

3

)
. (0.7)

In Chapter 2, we manage to express both W3(s) and W4(s) in terms of Meijer

G-functions, and then as hypergeometric functions. A careful analysis using these

special functions gives the new result

W4(−1) =
π

4
7F6

( 5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1), (0.8)

and a closed form for W4(1) as the sum of two 7F6’s. Together they give all the

integer moments of the 4-step walk. Using conditional probability, we ultimately

deduce that

W4(−1) =
8

π3

∫ 1

0
K2(k) dk =

4

π3

∫ 1

0
K ′(k)2 dk. (0.9)

Moreover, we find the series expansion for p3 and the poles of W3(s), all in terms

of W3(2k). Various connections with Bessel functions are given.

While p3 was known as the real part of a function involving K, p4 was unknown

before our work. Shifting focus to the densities, in Chapter 3 we give the beautiful
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formulas

p3(x) =
2
√

3

π

x

(3 + x2)
2F1

( 1
3 ,

2
3

1

∣∣∣∣x2
(
9− x2

)2
(3 + x2)3

)
, (0.10)

p4(x) =
2

π2

√
16− x2

x
Re 3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
. (0.11)

The first formula is inspired by a functional equation we found for p3, itself a

serendipitous discovery. A careful analysis of p4 using asymptotics, pole structures,

and differential equations allows us to write down the second formula, which admits

a modular parametrisation. We also find the first residue of W5.

To complete our analysis of three and four step walks (where all our closed forms

are new), we again appeal to Carlson’s theorem and existing literature on Bessel

functions to give a single hypergeometric form for W3(s) where s is not a negative

integer less than −1:

W3(s) =
3s+3/2

2π

Γ(1 + s/2)2

Γ(s+ 2)
3F2

( s+2
2 , s+2

2 , s+2
2

1, s+3
2

∣∣∣∣14
)
. (0.12)

This is done by recasting W3 as integrals of modified Bessel functions. A formula

where s is a negative integer is also found. We also give a single Meijer G represen-

tation for W4(s), valid for all s:

W4(s) =
22s+1

π2 Γ(1
2(s+ 2))2

G2,4
4,4

(
1, 1, 1, s+3

2
s+2

2 , s+2
2 , s+2

2 , 1
2

∣∣∣∣1
)
. (0.13)

Finally, we are able to give a proof of the conjecture (0.3) for n = 2 and s an integer.

In Chapter 4, we look at at a number of related problems. The first is the

average displacement of a 3-step walk with step sizes 1, 1, a. When a = 2, the

average is 48π
Γ(1/4)4

+ Γ(1/4)4

4π3 . The second problem involves an elementary derivation

of p3(x). Thirdly we look at some random walks in higher dimensions; dimension 3

is particularly easy and we find all the densities. We also look at some asymptotic

behaviour. Finally, we study random walks in the plane with restricted numbers of

directions, and find a curious phenomenon where some even moments of distances

traveled for these walks agree exactly with the moments of the uniform random

walk. Many of the results in this chapter have not appear previously in print.

0.2.4. Elliptic integrals. The ubiquitous appearance of the complete elliptic

integrals in random walks (such as equation (0.9)) leads us to a full study of the

moments of these integrals. Complete elliptic integrals first appeared in the exact



xxii 0. INTRODUCTION

expression for the period of a pendulum and the perimeter of an ellipse, but since

then have found applications in diverse pure and applied areas. In Chapter 5,

we revise some basic properties satisfied by the complete elliptic integrals (such

as Legendre’s relation), and use standard techniques to compute in closed form

integrals involving a single E or K, as well as their hypergeometric generalisations

Ks and Es. We give many closed forms, including a class of constants which are

good candidates for being generalisations of Catalan’s constant, expressible in terms

of the digamma function; here contour integration, Carlson’s theorem, and other

standard techniques are recalled and used. We also include a range of 3F2 identities.

In Chapters 6 and 7, we use a variety of strategies to give closed form evaluations

of integrals, where the integrands involve (mostly products of) the elliptic integrals

K, K ′, E and E′. The strategies include interchanging the order of summation

and integration, using the quadratic transformations of E and K, appealing to a

Fourier series, applying Legendre’s relation, integrating by parts, and using a result

of Zudilin that converts certain triple integrals into 7F6’s.

In Chapter 6, we give explicit proofs that the odd moments of K ′2, E′2,K ′E′,

K2, E2 and KE can be written as a+bζ(3), with a, b ∈ Q, while the odd moments of

K(x)K ′(x), E(x)K ′(x),K(x)E′(x) and E(x)E′(x) are rational linear combinations

of π and π3. We use techniques in experimental mathematics to give recursions

satisfied by the moments of those functions, and to prove results such as

∫ 1

0

x

1− t2x2
K(x)K ′(x) dx =

π

4
K(t)2.

We derive the Fourier series for K(sin t) and E(sin t) along with some applications,

and give many equivalent integral formulations of W4(−1) in Theorem 6.4.

In Chapter 7, we more fruitfully study integrals of the form
∫ 1

0 G(x)(1 +x)n dx.

Our main result is elegant, and states that for n ∈ Z and G a product of up to two

elliptic integrals,
∫ 1

0 G(x)(1 + x)n dx can be written as a Q-linear combination of

elements taken from the set

{1, π, π2, π3, π log 2, G, ζ(3), A,B,C,D},

where A,B,C,D are hypergeometric series defined there and G is Catalan’s con-

stant studied before. In particular, this implies all moments of the product of two



0.2. OVERVIEW xxiii

elliptic integrals can all be expressed in closed form, and thus any linear relationship

between them (first observed by Bailey and Borwein) can be routinely verified.

In the same chapter we record a number of sporadic integrals of varying gen-

erality (many are original), give a list of indefinite integrals with closed forms,

and discover a hypergeometric transform. Manipulations of hypergeometric series

feature more heavily in this chapter, for instance the following identity implicitly

involves closed form hypergeometric evaluations:∫ 1

0

( x
x′

) 1
2
± 1

4
K(x) dx =

π2

12

√
5± 1√

2
.

We resolve some experimental observations raised in the previous chapter re-

garding the integral of K3. Using Fourier series, θ functions, and lattice sums, we

give the first closed form evaluation of the cube of an elliptic integral:∫ 1

0
K ′(x)3 dx = 3

∫ 1

0
K(x)2K ′(x) dx = 5

∫ 1

0
xK ′(x)3dx =

Γ8 (1/4)

128π2
. (0.14)

Combined with Legendre’s relation, we also evaluate other integrals involving the

product of three elliptic integrals. On the other hand, such evaluations are in-

timately connected with L-values of modular forms, and provide new results on

lattice sums, such as ∑
(m,n) 6=(0,0)

(−1)m+nm2n2

(m2 + n2)3
=

Γ8(1/4)

29 3π3
− π log 2

8
.

0.2.5. Mahler measures. While investigating moments of random walks as

analytic objects in the first four chapters, it became natural to ask for the derivatives

of the moments, W ′n(s). What we obtain are examples of Mahler measures of

a polynomial, studied extensively in number theory via techniques dissimilar to

ours. In particular, we give elementary computations for W ′3(0) = 1
π Cl

(
π
3

)
and

W ′4(0) = 7
2
ζ(3)
π2 (here Cl denotes the Clausen function), which turned out to be

classical evaluations of higher Mahler measures.

For k polynomials in n variables, the multiple higher Mahler measure is defined

by

µ(P1, P2, . . . , Pk) :=

∫ 1

0
· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn.

The connection with random walks is that

W (m)
n (0) = µm(1 + x1 + . . .+ xn−1),
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where µm(P ) = µ(P, . . . , P ) with P repeated m times. In Chapter 8, we collect

some basic facts, evaluation techniques and conjectures about Mahler measures, in

particular the powerful Jensen’s formula, and a closely related trigonometric version

which seems more versatile:∫ 1

0
log
∣∣2a+ 2b cos(2πx)

∣∣dx = log
(
|a|+

√
a2 − b2

)
, |a| ≥ |b| > 0. (0.15)

The formula leads to a quick proof of two of Boyd’s conjectures, namely

µ(y2(x+ 1)2 + y(x2 + 6x+ 1) + (x+ 1)2) =
16G

3π
,

µ(y2(x+ 1)2 + y(x2 − 10x+ 1) + (x+ 1)2) =
20

3π
Cl
(π

3

)
,

while finding a new evaluation. Many classical results, such as µ(a + bx + cy) and

µ((2 sin s)n + (x+ y)n), can all be found using (0.15).

In the same chapter, we give an elementary evaluation of µk = µ(k+ x+ 1/x+

y + 1/y), and using integrals of K, produce a functional equation for this Mahler

measure in terms of k, recovering results such as 2µ5 = µ1 + µ16. We also use

elementary methods to reduce µ((1 + x)(1 + y) + z) to a single integral, thereby

confirming another of Boyd’s conjectures numerically to 1000 digits.

In Chapter 9, we find that many Mahler measures can be expressed in terms

of log-sine integrals, studied for instance by Lewin. Some classes of log-sine inte-

grals conveniently have very nice generating functions, which means certain Mahler

measures can be computed easily (in fact, entirely symbolically).

We fruitfully apply the epsilon expansion technique borrowed from physics, to

find an expression for µ2(1 + x+ y) in terms of a log-sine integral, namely

µ2(1 + x+ y) =
3

π
Ls3

(
2π

3

)
+
π2

4
. (0.16)

We also give a conjectural closed form for µ3(1 + x+ y). We then digress into com-

binatorics, and produce a sequence of results coming from a blend of enumeration

and trigonometry, which pave the way for potentially useful analysis of some higher

Mahler measures, including µ2(1+x+y). In doing so, we also produce closed forms

for multiple polylogarithms of low weights. The technique used in the last part is

essentially the shuffle relation of the multiple zeta values, which we come back to

in Chapter 13.

In Section 9.6, we give a third, and more analytical evaluation of µ2(1 + x+ y).
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0.2.6. Series for 1/π. The functions Es and Ks studied in Chapter 5 are

crucial in proving Ramanujan’s original series for the transcendental constant 1/π.

In Chapter 10, we investigate a new type of Ramanujan-type series first conjectured

by Sun. Such series take the form

∞∑
n=0

(s)n(1− s)n
n!2

(A+Bn)Pn(x0)zn0 =
C

π
,

where s ∈ {1/2, 1/3, 1/4, 1/6}, Pn(x) denotes the Legendre polynomial, and fre-

quently the summands are rational numbers.

In order to prove such new series, we appeal to an all-but-forgotten generating

function due to Brafman,

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)zn = 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ− z
2

)
· 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ+ z

2

)
,

(0.17)

where ρ = (1− 2xz+ z2)1/2. Writing the 2F1 as F , Brafman’s formula assumes the

form
∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)zn = F (α)F (β).

We notice that when α and β are related by a modular equation, namely, α = t(τ0)

and β = t(τ0/N), where t is a suitable modular function, then the right hand side of

(0.17) can be written in terms of F 2(α) and its z-derivative in terms of F (α)F ′(α).

These two terms can be related, by Clausen’s formula, to building blocks of the

classical Ramanujan series,

∞∑
n=0

(1
2)n(s)n(1− s)n

n!3
(a+ bn)

(
4α(1− α)

)n
=
c

π
,

for which we have a well-developed theory. Therefore, all of Sun’s conjectures are

reduced to classical Ramanujan series and proven. We provide detailed calcula-

tions, and give many more new series and their ‘companions’. A range of other

techniques, involving hypergeometric transformations and singular values of K, are

also presented. An example of a new series with rational summands is

∞∑
n=1

(1
4)n(3

4)n

n!2
(841 + 9520n)Pn

(
4097

4095

)(
455

29241

)n
=

513
√

114

2π
,

and a connection between rational series and class numbers is observed.
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In Section 10.10, we give a heavily modular method to produce complex series

for 1/π which are rarer but have been observed in our work. A number of other

complex series are included.

In Chapter 11, we continue our study of 1/π series and Legendre polynomials,

by first giving a very general generating function,

∞∑
n=0

unPn

(
(X + Y )(1 + cXY )− 2aXY

(Y −X)(1− cXY )

)(
Y −X

1− cXY

)n
= (1− cXY )

{ ∞∑
n=0

unX
n

}{ ∞∑
n=0

unY
n

}
, (0.18)

where un is an Apéry-like sequence, satisfying (n + 1)2un+1 = (an2 + an + b)un −

cn2un−1, u−1 = 0 and u0 = 1. We find it significant that both the statement

and the proof of the generating function were found with the help of computers.

Manipulating (0.18) gives generating functions for rarefied Legendre polynomials,

for instance

∞∑
n=0

(1
2)2
n

n!2
P2n

(
(X + Y )(1−XY )

(X − Y )(1 +XY )

)(
X − Y
1 +XY

)2n

=
1 +XY

2
2F1

(1
2 ,

1
2

1

∣∣∣∣ 1−X2

)
2F1

(1
2 ,

1
2

1

∣∣∣∣ 1− Y 2

)
. (0.19)

We are thus able to find new series for 1/π whose summands involve Apéry-like

sequences or rarefied Legendred polynomials, examples of which include

∞∑
n=0

(1
2)2
n

n!2
(2 + 15n)P2n

(
3
√

3

5

)(
2
√

2

5

)2n

=
15

π
,

∞∑
n=0

(1
3)n(2

3)n

n!2
(1 + 9n)P3n

(
4√
10

)(
1√
10

)3n

=

√
15 + 10

√
3

π
√

2
,

∞∑
n=0

{ n∑
k=0

k∑
j=0

(
n

k

)(
−1

8

)k(k
j

)3}
nPn

(
5

3
√

3

)(
4

3
√

3

)n
=

9
√

3

2π
.

In Chapter 12, we first investigate some other consequences of Brafman’s for-

mula and their implications for special functions. We describe the Borweins’ ap-

proach for producing 1/π series, and summarise some other methods used, in par-

ticular hypergeometric summation formulas and Fourier-Legendre expansion. We

also use contiguous relations (studied later) to analyse some closely related series.

Next, using a new class of generating functions shown using the Wilf-Zeilberger
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algorithm, we prove many more conjectured series for 1/π. An example of a new

generating function is

∞∑
n=0

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)2(2n

n

)
xk+n

(1 + 4x)2n+1
= 3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108x2(1− 4x)

)
,

and we also discus their curious ‘satellite identities’.

The last part of Chapter 12 introduces the new idea of proving 1/π series using

only Legendre’s relation and (simple) modular transforms. The calculations are

very involved, albeit elementary. We discover an unusual formula,

∞∑
n=0

(
2n

n

)2

Pn

(
1

2

)(
3

128

)n
(3 + 14n) =

8
√

2

π
,

which cannot be explained by the general theory of Chapter 10, but also recover

many classical Ramanujan series, such as

∞∑
n=0

(1
6)n(1

2)n(5
6)n

n!3

(
4

125

)n
(1 + 11n) =

5
√

15

6π
,

thereby suggesting that our approach may provide an alternative route to those

series. Lastly, we use Orr-type theorems to give series that converge to other well-

known constants.

0.2.7. Multiple zeta values. Multiple zeta values are special values of the

multiple polylogarithm studied in Chapter 9. In Chapter 13, we give a unified and

elementary approach for studying sum formulas for double zeta values, defined by

ζ(a, b) =

∞∑
n=1

n−1∑
m=1

1

namb
,

as well as the alternating versions of these sums (replacing the 1 in the numerator

by, say, (−1)m), and finally sums where the numerators are replaced by Dirichlet

characters.

In particular, we find the first elementary proof of an identity by Ohno and

Zudilin,
s−1∑
j=2

2jζ(j, s− j) = (s+ 1)ζ(s), (0.20)

as discover its alternating companion,

s−1∑
j=2

2jζ(j, s− j) = (3− 22−s − s)ζ(s). (0.21)
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Moreover, we give some new results for the Mordell-Tornheim double sums,

and use a generating function approach to prove a new evaluation involving the

harmonic numbers Hn,

∞∑
n=0

Hn

(2n+ 1)2s−1
= (1− 4−s)(2s− 1)ζ(2s)− (2− 41−s) log(2)ζ(2s− 1)

+ (1− 2−s)2ζ(s)2 −
s∑

k=2

2(1− 2−k)(1− 2k−2s)ζ(k)ζ(2s− k).

We showcase a number of experimental methods. For instance, an experimental

approach can be used to discover or to rule out sum identities for the double zeta

values. Then, using recursions of the Riemann zeta function, we prove new sum

identities such as

n−2∑
j=2

(j − 1)(2j − 1)(n− j − 1)(2n− 2j − 1)ζ(2j, 2n− 2j)

=
3

8
(n− 1)(3n− 2)ζ(2n)− 3(2n− 5)ζ(4)ζ(2n− 4). (0.22)

In Section 13.5, we prove some of the recursions used earlier in the chapter, plus

some others which involve the product of three or more zeta terms. Using these, we

give elementary proofs of summation formulas for weight 3, 4 and 5 multiple zeta

values. Some of our results are new, the most interesting example being∑
a+b+c+d+e=n

ζ(2a, 2b, 2c, 2d, 2e) =
945

16
ζ(2n)− 315

8
ζ(2)ζ(2n− 2) +

45

8
ζ(4)ζ(2n− 4).

To prove the above sum, we need a new ζ convolution identity which was first

discovered experimentally. Results such as the above, where the right hand side is

a rational multiple of π2n, also exist in higher dimensions.

In the last section of Chapter 13, we simplify the proof of an involved evaluation

of a multiple zeta value given by Zagier. The simplification maximises the use

of experimental techniques (here, Gosper’s algorithm), which results in minimal

analyses being required.

0.2.8. Further applications. Applications of experimental mathematics to

classical and new fields are by no means limited to some of the chapters we have

investigated so far. In Chapter 14, we describe two useful tools that are easily

implemented using computer algebra systems (CAS). The first concerns contiguous

relations, that is, linear relations among hypergeometric series whose parameters
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differ by integers. The method presented here allows us to check and generate all the

contiguous relations required in the previous chapters. We prove a theorem which

states that any series contiguous to F can be expressed as a linear combination of

F and its derivatives. While the result was essentially known to Bailey, we take

advantage of the speed of modern computers and the PSLQ algorithm to rapidly

produce said linear combinations. The resulting contiguous relations can be used,

for instance, to produce some new 1/π formulas in Chapter 12.

We also collect and derive many contiguous versions of the classical hyper-

geometric summation theorems in this Chapter, namely the theorems of Gauss,

Kummer, Bailey, Saalschütz, Dixon, Watson and Whipple. Some of these results

are previously known but scattered in the literature, moreover most are not yet

implemented in computer algebra systems.

The second part of Chapter 14 deals with Gaussian quadrature, a general

method that uses orthogonal polynomials to approximate integrals. Gaussian quad-

rature has been used to numerically check several sums and integrals encountered

in the other chapters. We recap some basic results in the area, and give an account

of a recent development where Gaussian quadrature (applied to a discrete measure)

can be used to approximate infinite sums. We give an experimental method to

rediscover, from scratch, some well-known orthogonal polynomials and their prop-

erties, complementing the heavy role that orthogonal polynomials played in our

earlier chapters.

We then develop a new approach, which uses multiple Gaussian quadrature for

summing over orthogonal rational functions. This approach lends itself unexpect-

edly well to the numerical evaluation of lattice sums, giving excellent results for a

wide class of sums which previously could only be approximated using some levels

of ingenuity. For example, we can obtain around 1.4 correct digits per weight used

for the famous Madelung constant.





CHAPTER 1

Arithmetic Properties of Short Random Walk Integrals

Abstract. We study the moments of the distance from the origin for a walk in

the plane with unit steps in random directions. Our interest lies in closed forms

for the moment functions and their values at the integers for a small number of

steps. A closed form is obtained for the average distance traveled in three steps.

This evaluation and its proof rely on combinatorial properties, such as recurrence

equations of the even moments (which are lifted to functional equations). A

general conjecture for even length walks is made.

1.1. Introduction, history and preliminaries

We consider, for various values of s, the n-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πixk

∣∣∣∣∣
s

dx (1.1)

which occurs in the theory of uniform random walks in the plane, where at each step

a unit-step is taken in a random direction – see Figure 1. As such, the integral (1.1)

expresses the sth moment of the distance to the origin after n steps. Our interest in

these integrals is from the point of view of (symbolic) computation. In particular,

we seek explicit closed forms of the moment functions Wn(s) for small n as well as

closed form evaluations of these functions at integer arguments. Of special interest

is the case Wn(1), the expected distance after n steps.

While the general structure of the moments and densities of the random walks

studied here is understood from a modern probabilistic point of view (for instance,

the characteristic function of the distance after n steps is simply the Bessel function

Jn0 – a fact reflected in (1.14) and (1.30)), there has been little research on the

question of closed forms. This is exemplified by the fact that W3(1) has apparently

not been evaluated in the literature before (in contrast, the case W2(1) = 4
π is easy).

As a consequence of a more general result, we show in Section 1.5 that

W3(1) =
3

16

21/3

π4
Γ6
(1

3

)
+

27

4

22/3

π4
Γ6
(2

3

)
(1.2)

1
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where Γ is the Gamma function [11].

(a) Several 4-step walks (b) A 500-step walk

Figure 1. Random walks in the plane.

A related second motivation for our work is of numerical nature. In fact, more

than 70 years after the problem was posed, [148] remarks that for the densities of

4, 5 and 6-steps walks, “it has remained difficult to obtain reliable values”. One

challenge lies in the difficulty of computing the involved integrals, such as (1.30)

which is highly oscillatory, to reasonably high precision (see [177] for a general

scheme). Some comments on obtaining high precision numerical evaluations of

Wn(s) are given in Appendix 1.6. A more comprehensive study of the numerics of

such multiple-integrations is conducted in [19].

A lot is known about the one-dimensional random walk, the most basic random

walk. It is a rather standard exercise in counting that the probability density for

the n-step walk is 2−n
(

n
(d+n)/2

)
, where d is the signed distance from the origin.

When the bottom term in the binomial coefficient is not an integer, the coefficient

is understood to be 0. From this, it is easy to work out that the average distance

from the origin after n steps is (n− 1)!!/(n− 2)!! for n even and n!!/(n− 1)!! for n

odd; and the second moment of the distance is n. (Here n!! = n · (n−2) · (n−4) · · ·

is the double factorial.) Asymptotically the average distance behaves like
√

2n/π.

For the two-dimensional walk no such explicit expressions were known, though

the expected value for the root-mean-square distance is known to be
√
n; in this case

the implicit square root in (1.1) disappears which greatly simplifies the problem.
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The term “random walk” first appears in a question by Karl Pearson in Nature

in 1905 [159]. He asked for the probability density of a two-dimensional random

walk expressed in the language of how far a “rambler” might walk. This triggered a

response by Lord Rayleigh [165] just one week later. Rayleigh replied that he had

considered the problem earlier in the context of the composition of vibrations of

random phases, and gave the probability distribution 2x
n e
−x2/n for large n, x being

the radial distance. This quickly leads to a good approximation for Wn(s) for large

n and fixed s = 1, 2, 3, . . . .

Another week later, Pearson again wrote in Nature, see [160], to note that G. J.

Bennett had given a solution for the probability distribution for n = 3 which can

be written in terms of the complete elliptic integral of the first kind K:

p3(x) =

√
x

π2
Re K

(√
(x+ 1)3(3− x)

16x

)
, (1.3)

see e. g. [118] or [158]; Chapter 4 produces an elementary derivation. Pearson

concluded that there was still great interest in the case of small n which, as he had

noted, is dramatically different from that of large n, for the densities p3, p4 and p5

have remarkable features of their own.

The results obtained here, as well as in a follow-up study in Chapter 2 ([56]),

have been crucial in the discovery of a closed form for the density p4 of the distance

traveled in 4 steps. It should be noted that the progress we make rely on techniques,

for instance analysis of Meijer G-functions and their relationship with generalised

hypergeometric series, that were fully developed only much later in the 20th century.

We remark that much has been done in generalising the problem posed by Pear-

son. For instance, Kluyver [123] made an analysis of the cumulative distribution

function of the distance traveled in the plane for various choices of step lengths.

Other generalisations include allowing walks in three dimensions (where the analy-

sis is actually simpler, see [195, §49] and Chapter 4), confining the walks to different

kinds of lattices, or calculating whether and when the walker would return to the

origin. A good source of these sorts of results is [118].

Applications of two-dimensional random walks are numerous and well-known;

for instance, [118] mentions that they may be used to model the random migra-

tion of an organism possessing flagella; analysing the superposition of waves (e. g.,
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n s = 2 s = 4 s = 6 s = 8 s = 10 [180]

2 2 6 20 70 252 A000984

3 3 15 93 639 4653 A002893

4 4 28 256 2716 31504 A002895

5 5 45 545 7885 127905 A169714

6 6 66 996 18306 384156 A169715

Table 1. Wn(s) at even integers.

n s = 1 s = 3 s = 5 s = 7 s = 9

2 1.27324 3.39531 10.8650 37.2514 132.449

3 1.57460 6.45168 36.7052 241.544 1714.62

4 1.79909 10.1207 82.6515 822.273 9169.62

5 2.00816 14.2896 152.316 2037.14 31393.1

6 2.19386 18.9133 248.759 4186.19 82718.9

Table 2. Wn(s) at odd integers.

from a laser beam bouncing off an irregular surface); and vibrations of arbitrary

frequencies. The subject also finds use in Brownian motion and quantum chemistry.

We learned of the special case for s = 1 of (1.1) from the common room at the

University of New South Wales. It had been written down by Peter Donovan as a

generalisation of a discrete cryptographic problem [87]. Some numerical values of

Wn evaluated at integers are shown in Tables 1 and 2. One immediately notices the

integrality of the sequences for the even moments, where the square root for s = 2

gives the root-mean-square distance. For n = 2, 3, 4 these sequences were found in

the On-line Encyclopedia of Integer Sequences [180] – the cases n = 5, 6 are in the

database as a consequence of this work.

By numerical observation, experimentation and some sketchy arguments we

quickly conjectured and strongly believed that, for k a nonnegative integer

W3(k) = Re 3F2

( 1
2 ,−

k
2 ,−

k
2

1, 1

∣∣∣∣4). (1.4)

The evaluation (1.2) of W3(1) can be deduced from (1.4). Based on results in

Sections 1.2 and 1.3, (1.4) is established in Section 1.5.
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In Section 1.2 we prove that the even moments Wn(2k) are given by integer

sequences and study the combinatorial features of fn(k) := Wn(2k), k a nonnegative

integer. We show that there is a recurrence relation for the numbers fn(k).

In Section 1.3 some analytic results are collected, and the recursions for fn(k)

are lifted to Wn(s) by the use of Carlson’s theorem. The recursions for n = 2, 3, 4, 5

are given explicitly. These recursions then give further information regarding the

pole structure of Wn(s). Plots of the analytic continuation of Wn(s) on the negative

real axis are given in Figure 2. Inspired by a general combinatorial convolution given

in Section 1.2, we conjecture (1.28), which will be partially resolved in Chapter 3.
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(a) W3
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(b) W4
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(c) W5
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(d) W6

Figure 2. Various Wn and their analytic continuations.

1.2. The even moments and their combinatorial features

In the case s = 2k the square root implicit in the definition (1.1) of Wn(s)

disappears, resulting in the fact that the even moments Wn(2k) are integers. In

this section we gather several of the combinatorial features of these moments which

provide important guidance and foundation. For instance, the combinatorial ex-

pression for W3(2k) will eventually lead to the evaluation of all integer moments

W3(k) in Section 1.5; the recurrence equation for W4(2k) is at the heart of the

derivation of the closed form p4 in Chapter 3 ([57]).
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In fact, the even moments are given as sums of squares of multinomials – as is

detailed next. While this result may also be obtained from probabilistic principles

starting with the observation that the characteristic function of the distance trav-

eled in n steps is Jn0 , we prefer to give an elementary derivation starting from the

definition (1.1) of Wn(s).

Proposition 1.1. For nonnegative integers k and n,

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (1.5)

Proof. From the residue theorem of complex analysis, if f(x1, . . . , xn) has a

Laurent expansion around the origin then

ct f(x1, . . . , xn) =

∫
[0,1]n

f(e2πix1 , . . . , e2πixn) dx, (1.6)

where ‘ct’ extracts the constant term. In light of (1.6), (1.1) may be restated as

Wn(s) = ct ((x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))s/2 . (1.7)

In the case s = 2k the right-hand side may be finitely expanded to yield the claim:

on using the multinomial theorem,

(x1+ · · ·+ xn)k (1/x1 + · · ·+ 1/xn)k

=
∑

a1+···+an=k

(
k

a1, . . . , an

)
xa11 · · ·x

an
n

∑
b1+···+bn=k

(
k

b1, . . . , bn

)
x−b11 · · ·x−bnn ,

and the constant term is now obtained by matching a1 = b1, . . . , an = bn. �

Remark 1.2.1. In the case that s is not an even integer, the right-hand side of

(1.7) may still be expanded, say, when Re s ≥ 0 to obtain the series evaluation

Wn(s) = ns
∑
m>0

(−1)m
(
s/2

m

) m∑
k=0

(−1)k

n2k

(
m

k

) ∑
a1+···+an=k

(
k

a1, . . . , an

)2

. (1.8)

In the spirit of experimental mathematics, we briefly outline the genesis of the

evaluation given in Proposition 1.1.

In our first proof of the proposition, we showed that∣∣∣∣∑
k

e2πxki

∣∣∣∣2 = n2 − 4
∑
i<j

sin2(π(xj − xi)),
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and therefore, via binomial expansion, we have

Wn(s) = ns
∑
m≥0

(−1)m

n2m

(
s/2

m

)∫
[0,1]n

(
4
∑
i<j

sin2(π(xj − xi))
)m

dx. (1.9)

Let In,m be defined by the multiple integral above. The sequence 22mI3,m is

Sloane’s A093388 [180] where a link to [188] is given. That paper mentions that

22mI3,m is the coefficient of (xyz)m in

(8xyz − (x+ y)(y + z)(z + x))m.

Observe also that 22mI2,m is the coefficient of (xy)m in (4xy− (x+ y)(y+x))m. We

then noticed that

8xyz − (x+ y)(y + z)(z + x) = 32xyz − (x+ y + z)(xy + yz + zx),

and this line of extrapolation led to the correct form, i. e. the next case would involve

42wxyz−(w+x+y+z)(wxy+xyz+yzw+zwx). We thus conjectured that 22mIn,m

is the constant term of

(n2 − (x1 + · · ·+ xn)(1/x1 + · · ·+ 1/xn))m,

which was proven by expanding the integrand in In,m and invoking some combina-

torial features of the expansion. This leads to (1.8), from which we may recover

(1.5) for even s, using the binomial transform (see (11.12)). ♦

In light of Proposition 1.1, we consider the combinatorial sums

fn(k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (1.10)

These numbers also appear in [166] in the following way: fn(k) counts the number

of abelian squares of length 2k over an alphabet with n letters (that is, strings xx′

of length 2k from an alphabet with n letters such that x′ is a permutation of x).

Given this enumerative interpretation, it is not hard to see that

fn1+n2(k) =
k∑
j=0

(
k

j

)2

fn1(j) fn2(k − j), (1.11)
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for two non-overlapping alphabets with n1 and n2 letters. In particular, we may

use (1.11) to obtain f1(k) = 1, f2(k) =
(

2k
k

)
, as well as

f3(k) =
k∑
j=0

(
k

j

)2(2j

j

)
= 3F2

( 1
2 ,−k,−k

1, 1

∣∣∣∣4) =

(
2k

k

)
3F2

(
−k,−k,−k
1,−k + 1

2

∣∣∣∣14
)
,

(1.12)

f4(k) =
k∑
j=0

(
k

j

)2(2j

j

)(
2(k − j)
k − j

)
=

(
2k

k

)
4F3

( 1
2 ,−k,−k,−k
1, 1,−k + 1

2

∣∣∣∣1). (1.13)

Here and below pFq denotes the generalised hypergeometric function. In general,

(1.11) can be used to write fn as a sum with at most dn/2e− 1 summation indices.

We remark that a generating function for (fn(k))∞k=0 is used in [20]. Let In(z)

denote the modified Bessel function of the first kind. Then∑
k>0

fn(k)
zk

k!2
=

(∑
k>0

zk

k!2

)n
= 0F1(1; z)n = I0(2

√
z)n. (1.14)

It can be anticipated from (1.10) that, for fixed n, the sequence fn(k) will satisfy

a linear recurrence with polynomial coefficients. A procedure for constructing these

recurrences has been given in [29]; that paper gives the recursions for 3 ≤ n ≤ 6

explicitly. An explicit general formula for the recurrences is given in [189]:

Theorem 1.1. For fixed n ≥ 2, the sequence fn(k) satisfies a recurrence of order

λ = dn/2e with polynomial coefficients of degree n− 1:

∑
j≥0

[
kn−1

∑
α1,...,αj

j∏
i=1

(−αi)(n+ 1− αi)
( k − i
k − i+ 1

)αi−1
]
fn(k − j) = 0. (1.15)

Here, the sum is over all sequences α1, . . . , αj such that 0 ≤ αi ≤ n and αi+1 ≤

αi − 2.

The recursions for n = 2, 3, 4, 5 are listed in Example 1.3.2, formulated in terms

of Wn(s) as per Theorem 1.4. As a consequence of Theorem 1.1, we obtain:

Theorem 1.2. For fixed n ≥ 2, the sequence fn(k) satisfies a recurrence of order

λ = dn/2e with polynomial coefficients of degree n− 1:

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0 (1.16)

where cn,0(k) = (−1)λn!!2
(
k +

n

4

)n+1−2λ
λ−1∏
j=1

(k + j)2 , (1.17)

and cn,λ(k) = (k + λ)n−1.
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Proof. The claim for cn,λ follows straight from (1.15). By (1.15), cn,0 is given

by

cn,0(k − λ) =

[
kn−1

∑
α1,...,αλ

λ∏
i=1

(−αi)(n+ 1− αi)
( k − i
k − i+ 1

)αi−1
]

(1.18)

where the sum is again over all sequences α1, . . . , αλ such that 0 ≤ αi ≤ n and

αi+1 ≤ αi − 2.

If n is odd then there is only one such sequence, namely {n, n − 2, n − 4, . . .},

and it follows that

cn,0(k − λ) = (−1)λn!!2
λ−1∏
j=1

(k − j)2 (1.19)

in accordance with (1.17).

When n = 2λ is even, there are λ + 1 sequences, namely α0 = {n, n − 2, n −

4, . . . , 2}, and αi for 1 ≤ i ≤ λ, where αi is constructed from α0 by subtracting all

elements by 1 starting from the (λ+ 1− i)th position.

Now by (1.18), we have

cn,0(k − λ) = (−1)λ
(λ−1∏
i=1

(k − i)2

) λ∑
j=0

( λ∏
i=1

aji (n+ 1− aji )
)

(k − λ+ j), (1.20)

where aji denotes the ith element of aj .

The sum in (1.20) has some symmetry, so writing it backwards and adding that

to itself, we factor out the term involving k:

2
λ∑
j=0

( λ∏
i=1

aji (n+ 1− aji )
)

(k − λ+ j) = (2k − λ)
λ∑
j=0

λ∏
i=1

aji (n+ 1− aji ). (1.21)

As we know the sequences aj explicitly, the product on the right of (1.21) simplifies

to

(2λ)!

(
2j
j

)(
2λ−2j
λ−j

)(
2λ
λ

) .

Hence the sum on the right of (1.21) is

λ∑
j=0

(2λ)!

(
2j
j

)(
2λ−2j
λ−j

)(
2λ
λ

) = 22λλ!2, (1.22)

which can be verified, for instance, using the snake oil method [197]. Substituting

this into (1.20) gives (1.17) for even n. �
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Remark 1.2.2. For fixed k, the map n 7→ fn(k) can be given by the evaluation of

a polynomial in n of degree k. This follows from

fn(k) =

k∑
j=0

(
n

j

) ∑
a1+···+aj=k

ai>0

(
k

a1, . . . , aj

)2

, (1.23)

because the right-hand side is a linear combination (with positive coefficients only

depending on k) of the polynomials
(
n
j

)
= n(n−1)···(n−j+1)

j! in n of degree j for

j = 0, 1, . . . , k.

From (1.23) the coefficient of
(
n
k

)
is seen to be k!2. We therefore formally obtain

the first-order approximation Wn(s) ≈n ns/2Γ(s/2 + 1) for n going to infinity, see

also [123]. In particular, Wn(1) ≈n
√
nπ/2. (This says that the sum of n random

unit vectors in the plane has length around the order of
√
n.)

Similarly, the coefficient of
(
n
k−1

)
is k−1

4 k!2, which gives rise to the second-order

approximation

k!2
(
n

k

)
+
k − 1

4
k!2
(

n

k − 1

)
= k!nk − k(k − 1)

4
k!nk−1 +O(nk−2)

of fn(k). We therefore obtain

Wn(s) ≈n ns/2−1

{(
n− 1

2

)
Γ
(s

2
+ 1
)

+ Γ
(s

2
+ 2
)
− 1

4
Γ
(s

2
+ 3
)}

, (1.24)

which is exact for s = 0, 2, 4; it is even indicative of the pole at s = −2 (see below).

In particular, Wn(1) ≈n
√
nπ/2+

√
π/n/32. More general approximations are given

in [81]. ♦

Remark 1.2.3. It follows straight from (1.10) that, for primes p, fn(p) ≡ n modulo

p. Further, for k > 1, fn(k) ≡ n mod 2. This may be derived inductively from the

recurrence (1.11) since, assuming that fn(k) ≡ n mod 2 for some n and all k > 1,

fn+1(k) =
k∑
j=0

(
k

j

)2

fn(j) ≡ 1 +
k∑
j=1

(
k

j

)
n = 1 + n(2k − 1) ≡ n+ 1 (mod 2).

Hence for odd primes p,

fn(p) ≡ n (mod 2p). (1.25)

The congruence (1.25) also holds for p = 2 since fn(2) = (2n− 1)n – compare with

(1.23). In particular, (1.25) confirms that the last digit in the column for s = 10 is

always n mod 10 – an observation from Table 1. ♦
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Remark 1.2.4. The integers f3(k) (respectively f4(k)) also arise in physics, see for

instance [20], and are referred to as hexagonal (respectively diamond) lattice inte-

gers. The corresponding entries in Sloane’s online encyclopedia [180] are A002893

and A002895. Both f3(k) and f4(k) are also Apéry-like sequences; see Chapter

11. We recall the following formulas [20, (186)–(188)], relating these sequences in

non-obvious ways:(∑
k>0

f3(k)(−x)k
)2

=
∑
k>0

f2(k)3 x3k

((1 + x)3(1 + 9x))k+ 1
2

=
∑
k>0

f2(k)f3(k)
(−x(1 + x)(1 + 9x))k

((1− 3x)(1 + 3x))2k+1
=
∑
k>0

f4(k)
xk

((1 + x)(1 + 9x))k+1
.

We are unable to find similar formulas connecting f5(k). ♦

1.3. Analytic features of the moments

This section collects analytic features of the moments Wn(s) as a function in

s. In particular, it is shown that the recurrences for the even moments Wn(2k)

extend to functional equations. This is deduced in the usual way from Carlson’s

theorem. We give the details, since the explicit form of the functional equations and

the resulting pole structures are crucial for the discovery and proof of the closed

forms in the cases n = 3, 4, 5 obtained in here and in Chapter 2 and 3.

1.3.1. Analyticity. We start with a preliminary investigation of the analyt-

icity of Wn(s) for a given n. This analyticity also follows from the general principle

that the moment functions of bounded random variables are always analytic in a

strip of the complex plane containing the right half-plane.

Proposition 1.2. Wn(s) is analytic at least for Re s > 0.

Proof. Let s0 be a real number such that the integral in (1.1) converges for

s = s0. Then we claim that Wn(s) is analytic in s for Re s > s0. To this end, let s

be such that s0 < Re s 6 s0 + λ for some real λ > 0. For any real 0 6 a 6 n,

|as| = aRe s 6 nλas0 ,

and therefore

sup
s0<Re s6s0+λ

∫
[0,1]n

∣∣∣∣∣
∣∣∣∣ n∑
k=1

e2πixk

∣∣∣∣s
∣∣∣∣∣dx 6 nλWn(s0) <∞.
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This local boundedness implies (see for instance [145]) that Wn(s) as defined by the

integral in (1.1) is analytic in s for Re s > s0. Since the integral clearly converges

for s = 0, the claim follows. �

This result will be extended in Theorem 1.5 and Corollary 1.1.

1.3.2. n = 1 and n = 2. It follows straight from the integral definition, or

from the physical interpretation of the problem, that W1(s) = 1. In the case n = 2,

direct integration of (1.39) below yields

W2(s) = 2s+1

∫ 1/2

0
cos(πt)sdt =

(
s

s/2

)
, (1.26)

which may also be obtained using (1.8). In particular, W2(1) = 4/π. It may be

worth noting that neither Maple 14 nor Mathematica 7 can evaluate W2(1) if it is

entered näıvely in form of the defining (1.1) (or expanded as the square root of a

sum of squares), each returning the symbolic answer 0.

1.3.3. Functional equations. We may lift the recursive structure of fn, de-

fined in Section 1.2, to Wn on appealing to Carlson’s theorem [185]. We recall that

a function f is of exponential type in a region if |f(z)| ≤Mec|z| for some constants

M and c.

Theorem 1.3 (Carlson). Let f be analytic in the right half-plane Re z ≥ 0 and of

exponential type with the additional requirement that

|f(z)| ≤Med|z|

for some d < π on the imaginary axis Re z = 0. If f(k) = 0 for k = 0, 1, 2, . . . then

f(z) = 0 identically.

Example 1.3.1. One obvious function f for which f(k) = 0 for k = 0, 1, 2, . . . is

f(z) = sin(πz). Here Carlson’s theorem does not apply because the growth constant

on the imaginary axis is exactly π. ♦

Theorem 1.4. Given that fn(k) satisfies a recurrence

cn,0(k)fn(k) + · · ·+ cn,λ(k)fn(k + λ) = 0
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with polynomial coefficients cn,j(k) (see Theorem 1.2), then Wn(s) satisfies the cor-

responding functional equation

cn,0(s/2)Wn(s) + · · ·+ cn,λ(s/2)Wn(s+ 2λ) = 0, for Re s > 0.

Proof. Let

Un(s) := cn,0(s)Wn(2s) + · · ·+ cn,λ(s)Wn(2s+ 2λ).

Since fn(k) = Wn(2k) by Proposition 1.1, Un(s) vanishes at the nonnegative integers

by assumption. Consequently, Un(s) is zero throughout the right half-plane and we

are done, once we confirm that Theorem 1.3 applies. By Proposition 1.2, Wn(s) is

analytic for Re s > 0, and clearly |Wn(s)| 6 nRe s. Thus

|Un(s)| ≤
(
|cn,0(s)|+ |cn,1(s)|n2 + · · ·+ |cn,λ(s)|n2λ

)
n2 Re s.

In particular, Un(s) is of exponential type. Further, Un(s) is polynomially bounded

on the imaginary axis Re s = 0. Thus Un satisfies the growth conditions of Carlson’s

Theorem. �

Example 1.3.2. For n = 2, 3, 4, 5 we find

(s+ 2)W2(s+ 2)− 4(s+ 1)W2(s) = 0,

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0,

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0,

(s+ 6)4W5(s+ 6)− (35(s+ 5)4 + 42(s+ 5)2 + 3)W5(s+ 4) +

(s+ 4)2(259(s+ 4)2 + 104)W5(s+ 2)− 225(s+ 4)2(s+ 2)2W5(s) = 0.

♦

We note that in each case the recursion lets us determine significant information

about the nature and position of any poles of Wn(s). We exploit this in the next

theorem for n ≥ 3. The case n = 2 is transparent, since W2(s) =
(
s
s/2

)
which has

simple poles at the negative odd integers.

Theorem 1.5. Let an integer n ≥ 3 be given. The recursion guaranteed by Theo-

rem 1.4 provides an analytic continuation of Wn(s) to all of the complex plane with

poles of at most order two at certain negative integers.
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Proof. Proposition 1.2 proves analyticity in the right half-plane. It is clear

that the recursion given by Theorem 1.4 ensures an analytic continuation with poles

only possible at negative integer values compatible with the recursion. Indeed, with

λ = dn/2e we have

Wn(s) = −
cn,1(s/2)Wn(s+ 2) + · · ·+ cn,λ(s/2)Wn(s+ 2λ)

cn,0(s/2)
(1.27)

with the cn,j as in (1.16). We observe that the right side of (1.27) only involves

Wn(s+ 2k) for k ≥ 1. Therefore the least negative pole can only occur at a zero of

cn,0(s/2) which is explicitly given in (1.17). We then note that the recursion forces

poles to be simple or of order two, and to be replicated as claimed. �

Corollary 1.1. If n ≥ 3 then Wn(s), as given by (1.1), is analytic for Re s > −2.

Proof. This follows directly from Theorem 1.5, the fact that cn,0(s/2) given

in (1.17) has no zero for s = −1, and the proof of Proposition 1.2. �

Example 1.3.3. In Figure 2, the analytic continuations for each of W3, W4, W5,

and W6 are plotted. Using the recurrence given in Example 1.3.2, we find that W3(s)

has simple poles at s = −2,−4,−6, . . .. Similarly, we find that W4 has double poles

at −2,−4,−6, . . .. ♦

Remark 1.3.1. More generally, it would appear that Theorem 1.5 can be extended

to show that

• for n odd Wn has simple poles at −2p for p = 1, 2, 3, . . ., while

• for n even Wn has simple poles at −2p and 2(1−p)−n/2 for p = 1, 2, 3, . . .

which overlap when 4|n.

This conjecture is further investigated in Chapter 2.

Knowledge about the poles of Wn for instance reveals the asymptotic behaviour

of the probability densities at 0; this is detailed in Chapter 3. ♦

1.3.4. Convolution series. Our attempt to lift the convolution sum (1.11) to

Wn(s) resulted in the following conjecture:

Conjecture 1.1. For positive integers n and complex s,

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (1.28)
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The right-hand side of (1.28) refers to the analytic continuation of Wn as guar-

anteed by Theorem 1.5. Conjecture 1.1, which is consistent with the pole structure

described in Remark 1.3.1, has been confirmed by David Broadhurst [65] using a

Bessel integral representation for Wn, given in (1.30), for n = 2, 3, 4, 5 and odd

integers s < 50 to a precision of 50 digits. By (1.11) the conjecture clearly holds

for s an even positive integer. For n = 1, we obtain from (1.28),

W2(s) =
∑
j>0

(
s/2

j

)2

=

(
s

s/2

)
which agrees with (1.26).

A partial resolution of Conjecture 1.1 is one of our focuses; this is achieved in

Chapter 3.

1.4. Bessel integral representations

As noted in the introduction, Kluyver [123] made a lovely analysis of the cumu-

lative distribution function of the distance traveled for various fixed step lengths. In

particular, for our uniform walk Kluyver provides the Bessel function representation

Pn(t) = t

∫ ∞
0

J1(xt) Jn0 (x) dx. (1.29)

Here and below Jn(z) denotes the Bessel function of the first kind, defined by the

series

Jn(z) =
∞∑
m=0

(−1)m

m! Γ(m+ n+ 1)

(z
2

)2m+n
.

Thus,

Wn(s) =

∫ n

0
ts pn(t) dt, where pn = P ′n.

From here, Broadhurst [65] obtains

Wn(s) = 2s+1−k Γ(1 + s
2)

Γ(k − s
2)

∫ ∞
0

x2k−s−1
(
−1

x

d

dx

)k
Jn0 (x) dx (1.30)

for real s and is valid as long as 2k > s > max(−2,−n
2 ).

1.5. The odd moments of a three-step walk

In this section, we combine the results of the previous sections to finally prove

the hypergeometric evaluation (1.4) of the moments W3(k) in Theorem 1.6.
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It is elementary to express the distance y of an (n + 1)-step walk conditioned

on a given distance x of an n-step walk. By a simple application of the cosine rule,

we find

y2 = x2 + 1 + 2x cos(θ),

where θ is the exterior angle of the triangle with sides of lengths x, 1, and y:

\θx

yjjjjjjjjjjjj

jjjjjjjjjjjj
1

����

����

It follows that the sth moment of an (n + 1)-step walk conditioned on a given

distance x of an n-step walk is

gs(x) :=
1

π

∫ π

0
ys dθ = |x+ 1|s 2F1

( 1
2 ,−

s
2

1

∣∣∣∣ 4x

(x+ 1)2

)
. (1.31)

Observe that gs(x) does not depend on n. Since Wn+1(s) is the sth moment of the

distance of an (n+ 1)-step walk, we obtain

Wn+1(s) =

∫ n

0
gs(x) pn(x) dx, (1.32)

where pn(x) = P ′n(x) is the density of the distance x for an n-step walk. Clearly,

for the 1-step walk we have p1(x) = δ1(x), a Dirac delta function at x = 1. It is

also easily shown that the probability density for a 2-step walk is given by p2(x) =

2/(π
√

4− x2) for 0 ≤ x ≤ 2 and 0 otherwise. The density p3(x) is given in (1.3).

More details for 2- and 3-step walks are given in Chapter 4.

For n = 3, based on (1.12) we define

V3(s) := 3F2

( 1
2 ,−

s
2 ,−

s
2

1, 1

∣∣∣∣4), (1.33)

so that by Proposition 1.1, W3(2k) = V3(2k) for nonnegative integers k. This led

us to explore V3(s) more generally numerically and so to conjecture and eventually

prove the following:

Theorem 1.6. For nonnegative even integers and all odd integers k:

W3(k) = ReV3(k).

Remark 1.5.1. Note that, for all complex s, the function V3(s) also satisfies the

recursion given in Example 1.3.2 for W3(s) – as is routine to prove using creative
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telescoping [161]. However, V3 does not satisfy the growth conditions of Carlson’s

Theorem 1.3. Thus, it yields another illustration that the hypotheses can fail. ♦

Proof of Theorem 1.6. It remains to prove the result for odd integers. Since,

as noted in Remark 1.5.1, for all complex s, the function V3(s) also satisfies the

recursion given in Example 1.3.2, it suffices to show that the values given for s = 1

and s = −1 are correct. From (1.32), we have the following expression:

W3(s) =
2

π

∫ 2

0

gs(x)√
4− x2

dx =
2

π

∫ π/2

0
gs(2 sin(t))dt. (1.34)

For s = 1: combining equation (1.31), [46, Exercise 1c], and Jacobi’s imaginary

transformations [46, Exercises 7a & 8b], we have

π

2
g1(x) = (x+ 1)E

(
2
√
x

x+ 1

)
= Re

(
2E(x)− (1− x2)K(x)

)
. (1.35)

Thus, from (1.34) and (1.35), and using the integral definitions of the complete

elliptic integrals E and K,

W3(1) =
4

π2
Re

∫ π/2

0

(
2E(2 sin(t))− (1− 4 sin2(t))K(2 sin(t))

)
dt

=
4

π2
Re

∫ π/2

0

∫ π/2

0
2

√
1− 4 sin2(t) sin2(r) dtdr

− 4

π2
Re

∫ π/2

0

∫ π/2

0

1− 4 sin2(t)√
1− 4 sin2(t) sin2(r)

dtdr.

Amalgamating the two last integrals and parameterising, we consider

Q(a) :=
4

π2

∫ π/2

0

∫ π/2

0

1 + a2 sin2(t)− 2 a2 sin2(t) sin2(r)√
1− a2 sin2(t) sin2(r)

dtdr. (1.36)

We now use the binomial theorem to integrate (1.36) term-by-term for |a| < 1

and substitute

2

π

∫ π/2

0
sin2m(t) dt = (−1)m

(
−1

2

m

)
throughout. Evaluation of the consequent infinite sum produces

Q(a) =
∑
k≥0

(−1)k
(
−1

2

k

)[
a2k

(
−1

2

k

)2

− a2k+2

(
−1

2

k

)(
−1

2

k + 1

)
− 2a2k+2

(
−1

2

k + 1

)2]

=
∑
k≥0

(−1)ka2k

(
−1

2

k

)3
1

(1− 2k)2
= 3F2

(
−1

2 ,−
1
2 ,

1
2

1, 1

∣∣∣∣a2

)
.

Analytic continuation to a = 2 yields the claimed result for s = 1.
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For s = −1: we similarly and more easily use (1.31) and (1.34) to derive

W3(−1) = Re
4

π2

∫ π/2

0
K(2 sin(t)) dt

= Re
4

π2

∫ π/2

0

∫ π/2

0

1√
1− 4 sin2(t) sin2(r)

dtdr = V3(−1).

The corresponding imaginary transformation is 1
x+1K

(
2
√
x

1+x

)
= ReK(x). �

Example 1.5.1. Theorem 1.6 allows us to establish the following equivalent ex-

pressions for W3(1):

W3(1) =
4
√

3

3

(
3F2

(
−1

2 ,−
1
2 ,−

1
2

1, 1

∣∣∣∣14
)
− 1

π

)
+

√
3

24
3F2

( 1
2 ,

1
2 ,

1
2

2, 2

∣∣∣∣14
)

= 2
√

3
K2 (k3)

π2
+
√

3
1

K2 (k3)

=
3

16

21/3

π4
Γ6
(1

3

)
+

27

4

22/3

π4
Γ6
(2

3

)
. (1.37)

These rely on using Legendre’s relation, Orr-type theorems, and the evaluation of

K(k3) where k3 =
√

3−1
2
√

2
is the third singular value of K [46]. (We come back to

these tools in Chapter 12.)

More simply but similarly, we have

W3(−1) = 2
√

3
K2 (k3)

π2
=

3

16

21/3

π4
Γ6
(1

3

)
. (1.38)

Using the recurrence presented in Example 1.3.2, it follows that similar expressions

can be given for W3 evaluated at odd integers; see also Section 3.7. ♦

Remark 1.5.2. As with (1.37),

ImV3(1) = −1

8
3F2

( 1
2 ,

1
2 ,

1
2

2, 2

∣∣∣∣14
)
, ReV3(−3) =

√
3

72
3F2

( 1
2 ,

1
2 ,

1
2

2, 2

∣∣∣∣14
)
.

From the expansion (1.8) and the closed form for W3(1), we are thus able to evaluate

the following sums:

W3(1) = 3

∞∑
n=0

(1
2

n

)(
−8

9

)n n∑
k=0

(
n

k

)(
−1

8

)k k∑
j=0

(
k

j

)3

= 3

∞∑
n=0

(−1)n
(1

2

n

) n∑
k=0

(
n

k

)(
−1

9

)k k∑
j=0

(
k

j

)2(2j

j

)
.

♦
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1.5.1. Conclusion. The behaviour of these two-dimensional walks provides a

fascinating blend of probabilistic, analytic, algebraic and combinatorial challenges.

In the next three chapters, we will continue our analysis of these walks, with a

particular focus on the four-step walk.

1.6. Appendix: Numerical evaluations

A one-dimensional reduction of the integral (1.1) may be achieved by taking

symmetry into account:

Wn(s) =

∫
[0,1]n−1

∣∣∣∣∣1 +

n−1∑
k=1

e2πixk

∣∣∣∣∣
s

d(x1, . . . , xn−1). (1.39)

Note, though, that this form breaks the symmetry in the integrand and is not

conducive for proofs, such as that of Proposition 1.1. For n > 5, it is very hard to

evaluate high dimensional integrals such as (1.39) to any reasonable precision using

schemes like Gaussian or tanh-sinh quadrature [23].

From (1.39), we note that quick and rough estimates are easily obtained using

the Monte Carlo method. Moreover, since the integrand function is periodic this

seems like an invitation to use lattice sequences – a quasi-Monte Carlo method.

E. g. the lattice sequence from [79] can be straightforwardly employed to calculate

an entire table in one run by keeping a running sum over different values of n and

s. A standard stochastic error estimator can then be obtained by random shifting.

Generally, however, Broadhurst’s representation (1.30) seems very good for high

precision evaluations of Wn(s). We close by commenting on the special cases n =

3, 4.

Example 1.6.1. The first high precision evaluations of W3 were performed by

David Bailey who confirmed Theorem 1.6 for s = 2, . . . , 7 to 175 digits. This was

done on a 256-core LBNL system in roughly 15 minutes by applying tanh-sinh

integration to

W3(s) =

∫ 1

0

∫ 1

0

(
9− 4(sin2(πx) + sin2(πy) + sin2(π(x− y)))

)s/2
dydx,

which is obtained from (1.39). More practical is the one-dimensional form (1.34)

which can deliver high precision results in minutes on a laptop. For integral s,

Theorem 1.6 allows extremely high precision evaluations. ♦
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Example 1.6.2. Assuming that Conjecture 1.1 holds for n = 2 (for a proof, see

Chapter 3), Theorem 1.6 implies that for nonnegative integers k

W4(k) = Re
∑
j>0

(
s/2

j

)2

3F2

( 1
2 ,−

k
2 + j,−k

2 + j

1, 1

∣∣∣∣4).
This representation is very suitable for high precision evaluations of W4, since

roughly one correct digit is added by each term of the sum. ♦



CHAPTER 2

Three-Step and Four-Step Random Walk Integrals

Abstract. We investigate the moments of distances of 3- and 4-step uniform

random walks in the plane. We further analyse a formula conjectured in Chapter

1 expressing 4-step moments in terms of 3-step moments. Diverse related results

including hypergeometric and elliptic closed forms for W4(±1) are given.

2.1. Introduction and preliminaries

Continuing research commenced in [53] (Chapter 1), for complex s, we consider

the n-dimensional integral

Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx (2.1)

which occurs in the theory of uniform random walks in the plane, where at each

step a unit-step is taken in a random direction. As such, the integral (2.1) expresses

the sth moment of the distance to the origin after n steps. The study of such walks

provides interesting numeric and symbolic computation challenges; indeed, nearly

all of our results were discovered experimentally.

We recall that for n ≥ 3, the integral (2.1) is well-defined and analytic for

Re s > −2, and admits an analytic continuation to the complex plane with poles at

certain negative integers.

For s an even positive integer, we have

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

. (2.2)

Furthermore, as proved in Chapter 1, we have

W3(1) =
3

16

21/3

π4
Γ6

(
1

3

)
+

27

4

22/3

π4
Γ6

(
2

3

)
, (2.3)

W3(−1) =
3

16

21/3

π4
Γ6

(
1

3

)
. (2.4)

21
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Using the two-term recurrence for W3, it follows that similar expressions can be

given for W3 evaluated at any odd integer. It is one of the goals of this chapter to

give similar evaluations for a 4-step walk.

2.2. Bessel integral representations

We start with the result of Kluyver [123], amplified in [195, §31.48] and ex-

ploited in Chapter 1, to the effect that the probability that an n-step walk ends up

within a disc of radius α is

Pn(α) = α

∫ ∞
0

J1(αx)Jn0 (x) dx. (2.5)

From this, Broadhurst [65] obtains

Wn(s) = 2s+1−k Γ(1 + s
2)

Γ(k − s
2)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x) dx (2.6)

valid as long as 2k > s > −n/2.

Example 2.2.1 (Wn(±1)). In particular, from (2.6), for n > 2, we can write:

Wn(−1) =

∫ ∞
0

Jn0 (x) dx, Wn(1) = n

∫ ∞
0

J1(x)J0(x)n−1 dx

x
. (2.7)

For 0 < s < n/2, we have

Wn(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx, (2.8)

so that Wn(−s) essentially is the analytic continuation of the Mellin transform (see

e. g. [118]) of the nth power of the Bessel function J0. ♦

Example 2.2.2. Using (2.8), the fact that W1(s) = 1 and W2(s) =
(
s
s/2

)
translates

into the evaluations∫ ∞
0

xs−1J0(x) dx = 2s−1 Γ(s/2)

Γ(1− s/2)
,∫ ∞

0
xs−1J2

0 (x) dx =
1

2Γ(1/2)

Γ(s/2)Γ(1/2− s/2)

Γ(1− s/2)2

in the region where the left-hand side converges.

The Mellin transforms of J3
0 and J4

0 in terms of Meijer G-functions appear in

the proofs of Theorems 2.2 and 2.3. ♦
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Remark 2.2.1. Here, we demonstrate how Ramanujan’s ‘master theorem’ may be

applied to find the Bessel integral representation (2.6) in a natural way.

Ramanujan’s master theorem [112, 9] states that, under certain conditions on

the analytic function ϕ,∫ ∞
0

xν−1

( ∞∑
k=0

(−x)k

k!
ϕ(k)

)
dx = Γ(ν)ϕ(−ν). (2.9)

The proof is based on the residue theorem and the inverse Mellin transform.

Based on the evaluation (2.2), we have, as noted in Chapter 1, the generating

function ∑
k≥0

Wn(2k)
(−x)k

(k!)2
=

(∑
k≥0

(−x)k

(k!)2

)n
= J0(2

√
x)n (2.10)

for the even moments. Applying Ramanujan’s master theorem (2.9) to ϕ(k) :=

Wn(2k)/k!, we find

Γ(ν)ϕ(−ν) =

∫ ∞
0

xν−1Jn0 (2
√
x) dx. (2.11)

Upon a change of variables and setting s = 2ν,

Wn(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1Jn0 (x) dx.

This is the case k = 0 of (2.6). The general case follows from the fact that if F (s) is

the Mellin transform of f(x), then (s− 2)(s− 4) · · · (s− 2k)F (s− 2k) is the Mellin

transform of
(
− 1
x

d
dx

)k
f(x). ♦

2.2.1. Pole structure. A very useful consequence of equation (2.8) is the

following proposition.

Proposition 2.1 (Poles). The structure of the poles of Wn is as follows:

(a) (Reflection) For n = 3, we have for k = 0, 1, 2, . . . that

Res(−2k−2)(W3) =
2

π
√

3

W3(2k)

32k
> 0,

and the corresponding poles are simple.

(b) For each integer n ≥ 5, Wn(s) has a simple pole at −2k − 2 for integers 0 ≤

k < (n− 1)/4 with residue given by

Res(−2k−2)(Wn) =
(−1)k

4kk!2

∫ ∞
0

x2k+1Jn0 (x) dx. (2.12)
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(c) Moreover, for odd n ≥ 5, all poles of Wn(s) are simple as soon as the first

(n− 1)/2 are.

In fact, we believe that for odd n, all poles of Wn(s) are simple as stated in

Conjecture 2.1. For individual n this may be verified as in Example 2.2.3. This was

done by the authors for n ≤ 45.

Proof. (a) Res−2(W3) = 2/(
√

3π) from [195, p. 412], since it is the value of∫∞
0 xJ3

0 (x) dx in accordance with (2.12). Letting r3(k) := Res(−2k)(Wn), the

explicit residue equation is

r3 (k) =

(
10 k2 − 30 k + 23

)
r3(k − 1)− (k − 2)2r3(k − 2)

9 (k − 1)2
,

which has the asserted solution, when compared to the recursion for W3(s),

(s+ 4)2W3(s+ 4)− 2(5s2 + 30s+ 46)W3(s+ 2) + 9(s+ 2)2W3(s) = 0. (2.13)

We give another derivation in Example 2.3.2.

(b) For n ≥ 5 we note that the integral in (2.12) is absolutely convergent since

|J0(x)| ≤ 1 on the real axis and J0(x) ≈
√

2/(πx) cos(x− π/4), see [2, (9.2.1)].

Since

lim
s→2k

(s− 2k)Γ(1− s/2) =
2(−1)k

(k − 1)!
,

the residue is as claimed by (2.8).

(c) As shown in Chapter 1, Wn for odd n satisfies a recursion of the form

(−1)λn!!2
λ−1∏
j=1

(s+ 2j)2 Wn(s) + c1(s)Wn(s+ 2) + · · ·+ (s+ 2λ)n−1Wn(s+ 2λ) = 0,

with polynomial coefficients of degree n − 1 where λ = (n + 1)/2. From this,

on multiplying by (s + 2k)(s + 2k − 2) · · · (s − 2k + 2λ), one may derive a

corresponding recursion for Res(−2k)(Wn) for k = 1, 2, . . . Inductively, this lets

us establish that the poles are simple. The argument breaks down if one of the

initial values is infinite as it is when 4|n.

�
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Example 2.2.3 (Poles of W5). We illustrate Proposition 2.1 in the case n = 5. We

start with the recursion:

(s+ 6)4W5(s+ 6)− (35(s+ 5)4 + 42(s+ 5)2 + 3)W5(s+ 4)

+ (s+ 4)2(259(s+ 4)2 + 104)W5(s+ 2) = 225(s+ 4)2(s+ 2)2W5(s).

From here,

lim
s→−2

(s+ 2)2W5(s) =
4

225
(285W5(0)− 201W5(2) + 16W5(4)) = 0

which shows that the first pole is indeed simple as is also guaranteed by Proposition

2.1b. Similarly,

lim
s→−4

(s+ 4)2W5(s) = − 4

225
(5W5(0)−W5(2)) = 0

showing that the second pole is simple as well. It follows from Proposition 2.1c

that all poles of W5 are simple. More specifically, let r5(k) := Res(−2k)(W5). With

initial values r5(0) = 0, r5(1) and r5(2), we derive that

r5(k + 3) =
k4r5(k)−

(
5 + 28 k + 63 k2 + 70 k3 + 35 k4

)
r5(k + 1)

225(k + 1)2(k + 2)2

+

(
285 + 518 k + 259 k2

)
r5(k + 2)

225(k + 2)2
.

♦

Example 2.2.4 (Poles of W4). Let r4(k) := lims→−2k(s + 2k)2W4(s), then the

recursion for W4(s)

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0

gives

r4(k + 2) =
1

32

(2k + 1)(5k2 + 5k + 2)

(k + 1)3
r4(k + 1)− 1

64

k3

(k + 1)3
r4(k).

We also compute that

3

2π2
= r4(1) = lim

s→−2
(s+ 2)2W4(s) =

3 + 4W ′4(0)−W ′4(2)

8
.

The first equality is obtainable from (2.19) in the next chapter. Further, L’Hôpital’s

rule shows that the residue at s = −2 is

lim
s→−2

d

ds
((s+ 2)2W4(s)) =

9 + 18W ′4(0)− 3W ′4(2) + 4W ′′4 (0)−W ′′4 (2)

16
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with a numerical value of 0.316037 . . . which we were able to identify as 9
2π2 log(2).

This is proven in Chapter 3, section 6.

We finally record a remarkable identity related to the pole of W4 at −2 that

was established in [195, p. 415]:∫ ∞
0

J4
ν (x)x1−2ν dx =

1

2π

Γ(2ν)Γ(ν)

Γ(3ν)Γ(ν + 1/2)
.

♦

2.2.2. Meijer G-function representations. The Meijer G-function was in-

troduced in 1936 by the Dutch mathematician Cornelis Simon Meijer (1904–1974).

It is defined, for parameter vectors a and b [32], by

Gm,np,q

(
a

b

∣∣∣∣x) = Gm,np,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x)
=

1

2πi

∫
L

∏m
k=1 Γ(bk − t)

∏n
k=1 Γ(1− ak + t)∏q

k=m+1 Γ(1− bk + t)
∏p
k=n+1 Γ(ak − t)

xt dt. (2.14)

In the case |x| < 1 and p = q the contour L is a loop that starts at infinity on a

line parallel to the positive real axis, encircles the poles of the Γ(bk − t) once in

the negative sense and returns to infinity on another line parallel to the positive

real axis. L is a similar contour when |x| > 1. Moreover Gp,qm,n is analytic in each

parameter, in consequence so are the compositions arising below.

Our main tool below is the following consequence of the Mellin convolution

formula [118], giving the Mellin transform of a product.

Theorem 2.1. Let G(s) and H(s) be the Mellin transforms of g(x) and h(x) re-

spectively. Then∫ ∞
0

xs−1g(x)h(x) dx =
1

2πi

∫ δ+i∞

δ−i∞
G(z)H(s− z) dz (2.15)

for any real number δ in the common region of analyticity.

This leads to:

Theorem 2.2 (Meijer form for W3). For all complex s

W3(s) =
Γ(1 + s/2)√
πΓ(−s/2)

G2,1
3,3

(
1, 1, 1

1/2,−s/2,−s/2

∣∣∣∣14
)
. (2.16)
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Proof. We apply Theorem 2.1 to J3
0 = J2

0 · J0 for s in a vertical strip. Using

Example 2.2.2 we then obtain∫ ∞
0

xs−1J3
0 (x) dx =

1

2πi

∫ δ+i∞

δ−i∞

2s−z−2

Γ(1/2)

Γ(z/2)Γ(1/2− z/2)

Γ(1− z/2)2

Γ(s/2− z/2)

Γ(1− s/2 + z/2)
dz

=
2s

2Γ(1/2)

1

2πi

∫ δ/2+i∞

δ/2−i∞
4−t

Γ(t)Γ(1/2− t)Γ(s/2− t)
Γ(1− t)2Γ(1− s/2 + t)

dt

=
2s

2Γ(1/2)
G2,1

3,3

(
1, 1, 1

1/2, s/2, s/2

∣∣∣∣14
)

where 0 < δ < 1. The claim follows from (2.8) by analytic continuation. �

Similarly we obtain:

Theorem 2.3 (Meijer form for W4). For all complex s with Re s > −2

W4(s) =
2s

π

Γ(1 + s/2)

Γ(−s/2)
G2,2

4,4

(
1, (1− s)/2, 1, 1

1/2,−s/2,−s/2,−s/2

∣∣∣∣1). (2.17)

Proof. We now apply Theorem 2.1 to J4
0 = J2

0 · J2
0 , again for s in a vertical

strip. Using once more Example 2.2.2, we obtain∫ ∞
0

xs−1J4
0 (x) dx =

1

2πi

∫ δ+i∞

δ−i∞

Γ(z/2)Γ(1/2− z/2)

4πΓ(1− z/2)2

Γ(s/2− z/2)Γ(1/2− s/2 + z/2)

Γ(1− s/2 + z/2)2
dz

=
1

2π
G2,2

4,4

(
1, (1 + s)/2, 1, 1

1/2, s/2, s/2, s/2

∣∣∣∣1)
where 0 < δ < 1. The claim again follows from (2.8). �

We illustrate with graphs of W3,W4 in the complex plane in Figure 1. Note

the poles, which are white, and zeros, which are black (other complex numbers are

assigned a non-unique color depending on argument and modulus in such a way

that the order of poles and zeros is visible). These graphs were produced employing

the Meijer forms in their hypergeometric form as presented in the next section. In

the case n = 4, the functional equation was employed for s with Re s ≤ −2.

2.2.3. Hypergeometric representations. Slater’s theorem [142, p. 57] ex-

pands certain classes of Meijer G-functions in terms of hypergeometric functions.

In particular, W3(s) and W4(s) as given in Theorems 2.2 and 2.3 can be expanded.

Corollary 2.1 (Hypergeometric forms). For s not an odd integer, we have

W3(s) =
tan

(
πs
2

)
22s+1

(
s
s−1

2

)2

3F2

( 1
2 ,

1
2 ,

1
2

s+3
2 , s+3

2

∣∣∣∣14
)

+

(
s
s
2

)
3F2

(− s
2 ,−

s
2 ,−

s
2

1,− s−1
2

∣∣∣∣14
)
, (2.18)
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(a) W3 (b) W4

Figure 1. W3 via (2.16) and W4 via (2.17) in the complex plane.

and, if also Re s > −2, we have

W4(s) =
tan

(
πs
2

)
22s

(
s
s−1

2

)3

4F3

( 1
2 ,

1
2 ,

1
2 ,

s
2 + 1

s+3
2 , s+3

2 , s+3
2

∣∣∣∣1)+

(
s
s
2

)
4F3

( 1
2 ,−

s
2 ,−

s
2 ,−

s
2

1, 1,− s−1
2

∣∣∣∣1).
(2.19)

These analytic continuations of W3 and W4, first found in [81], can also be

obtained by symbolic integration of (2.6) in Mathematica. We note that for s = 2k =

0, 2, 4, . . . the first term in (2.18) (resp. (2.19)) is zero and the second is a formula

given in (1.12) (resp. (1.13)). Thus, one can in principle also prove (2.18) and (2.19)

by applying Carlson’s theorem – after showing the singularities at 1, 3, 5, . . . are

removable.

Example 2.2.5. From (2.18) and taking the limit using L’Hôpital’s rule, we have

W3(−1) =
16

π3
K2

(√
3− 1

2
√

2

)
log 2 +

3

π

∞∑
n=0

(
2n
n

)3
44n

2n∑
k=1

(−1)k

k
.

In conjunction with (2.4), we obtain the sum

∞∑
n=0

(
2n

n

)3 ∑2n
k=1

(−1)k

k

44n
=

Γ6(1
3)(3π − 8

√
3 log 2)

24 · 22/3π4
.

For comparison, (2.19) produces

W4(−1) =
4

π

∞∑
n=0

(
2n
n

)4
44n

∞∑
k=2n+1

(−1)k+1

k
. (2.20)

♦
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We see that while Corollary 2.1 makes it easy to analyse the poles, the removable

singularities at the odd integers are much harder to resolve explicitly. For W4(−1)

we proceed as follows:

Theorem 2.4 (Hypergeometric form for W4(−1)).

W4(−1) =
π

4
7F6

( 5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1). (2.21)

Proof. Using Theorem 2.3 we write

W4(−1) =
1

2π
G2,2

4,4

(
1, 1, 1, 1
1
2 ,

1
2 ,

1
2 ,

1
2

∣∣∣∣1).
Using the definition (2.14) of the Meijer G-function as a contour-integral, we see

that the corresponding integrand is

Γ(1
2 − t)

2Γ(t)2

Γ(1
2 + t)2Γ(1− t)2

xt =
Γ(1

2 − t)
2Γ(t)4

Γ(1
2 + t)2

· sin2(πt)

π2
xt, (2.22)

where we have used the reflection formula Γ(t)Γ(1 − t) = π/ sin(πt) [196]. We

choose the contour of integration to enclose the poles of Γ(1
2 − t). Note then that

the presence of sin2(πt) does not interfere with the contour or the residues (for

sin2(πt) = 1 at half integers). Hence we may ignore sin2(πt) in the integrand

altogether. The right-hand side of (2.22) can then be identified with the integrand

of another Meijer G-function; thus we have shown that

G2,2
4,4

(
1, 1, 1, 1
1
2 ,

1
2 ,

1
2 ,

1
2

∣∣∣∣1) =
1

π2
G2,4

4,4

(
1, 1, 1, 1
1
2 ,

1
2 ,

1
2 ,

1
2

∣∣∣∣1). (2.23)

The same argument shows that the factor of 1
π2 applies to all W4(s) when we change

from G2,2
4,4 to G2,4

4,4.

Now, using the transformation [32]

xαGm,np,q

(
a

b

∣∣∣∣x) = Gm,np,q

(
a + α

b + α

∣∣∣∣x) (2.24)

we deduce that

W4(−1) =
1

2π3
G2,4

4,4

( 1
2 ,

1
2 ,

1
2 ,

1
2

0, 0, 0, 0

∣∣∣∣1).
Finally, we appeal to Bailey’s identity [24, (3.4)]:

7F6

(
a, 1 + a

2 , b, c, d, e, f
a
2 , 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a− f

∣∣∣∣1)
=

Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a− d)Γ(1 + a− e)Γ(1 + a− f)

Γ(1 + a)Γ(b)Γ(c)Γ(d)Γ(1 + a− b− c)Γ(1 + a− b− d)Γ(1 + a− c− d)Γ(1 + a− e− f)

×G2,4
4,4

(
e+ f − a, 1− b, 1− c, 1− d

0, 1 + a− b− c− d, e− a, f − a

∣∣∣∣1). (2.25)
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The claim follows upon setting all parameters to 1/2. �

An attempt to analogously apply Bailey’s identity for W4(1) fails, since its

Meijer G representation as obtained from Theorem 2.3 does not meet the precise

form required in the formula. Nevertheless, a combination of Nesterenko’s theorem

[153] and Zudilin’s theorem [207] gives the following result:

Theorem 2.5 (Hypergeometric form for W4(1)).

W4(1) =
3π

4
7F6

( 7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1)− 3π

8
7F6

( 7
4 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 2, 1

∣∣∣∣1). (2.26)

Proof. We first prove a result that will allow us to apply Nesterenko’s theorem,

which converts the Meijer G form ofW4(1) to a triple integral. We need the following

identities which can be readily verified:

d

dz

(
z−b1G2,2

4,4

(
a1, a2, a3, a4

b1, b2, b3, b4

∣∣∣∣z)) = −z−1−b1G2,2
4,4

(
a1, a2, a3, a4

b1 + 1, b2, b3, b4

∣∣∣∣z), (2.27)

d

dz

(
z1−a1G2,2

4,4

(
a1, a2, a3, a4

b1, b2, b3, b4

∣∣∣∣z)) = z−a1G2,2
4,4

(
a1 − 1, a2, a3, a4

b1, b2, b3, b4

∣∣∣∣z). (2.28)

Let a(z) := G2,2
4,4

(
0,1,1,1

− 1
2
, 1
2
,− 1

2
,− 1

2

∣∣z). Note that a(1) = −2πW4(1) by Theorem 2.3.

Applying (2.27) to a(z) and using the product rule, we get 1
2a(1)+a′(1) = c1, where

c1 := −G2,2
4,4

(
0, 1, 1, 1

1
2 ,

1
2 ,−

1
2 ,−

1
2

∣∣∣∣1).
Applying (2.28) and (2.24) to a(z), we obtain a′(1) = b1 where

b1 := G2,2
4,4

(
−1

2 ,−
1
2 ,

1
2 ,

1
2

0,−1,−1,−1

∣∣∣∣1).
Appealing to

Gm,np,q

(
a

b

∣∣∣∣x) = Gn,mq,p

(
1− b

1− a

∣∣∣∣1x
)
, (2.29)

we see that b1 = −c1. Hence a(1) = 4c1. Converting c1 to a G2,4
4,4 as in (2.23), which

finally satisfies the conditions of Nesterenko’s theorem, we obtain:

W4(1) =
4

π3

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− y)(1− z)

(1− x)yz(1− x(1− yz))
dx dy dz.

We now make a change of variable Z = 1− z. Writing

Z
1
2 = Z−

1
2 (1− (1− Z)) = Z−

1
2 − Z−

1
2 (1− Z)

splits the previous triple integral into two terms. Each term satisfies Zudilin’s

theorem and so can be written as a 7F6. We thus obtain the result as claimed. �
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Zudilin’s theorem will again be used in Chapter 6, and a statement of the

theorem can be found there. Armed with closed forms for W4(±1), we may thus find

W4(s) for positive integer s using the recursion. The following alternative relation

was first predicted by the integer relation algorithm PSLQ [18] in a computational

hunt for results similar to that in Theorem 2.4:

Theorem 2.6 (Alternative hypergeometric form for W4(1)).

W4(1) =
9π

4
7F6

( 7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1)− 2π7F6

( 5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1). (2.30)

Proof. For notational convenience, let

A :=
3π4

128
7F6

( 7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1),
B :=

3π4

256
7F6

( 7
4 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 2, 1

∣∣∣∣1),
C :=

π4

16
7F6

( 5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1).
By (2.26), W4(1) = (32/π3)(A − B), and the truth of (2.30) is equivalent to the

evaluation W4(1) = (32/π3)(3A−C). Thus, we only need to show 2A+B−C = 0.

The triple integral for A encountered in the application of Zudilin’s theorem is

A =
1

8

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− y)

(1− x)yz(1− z)(1− x(1− yz))
dx dy dz,

and can be reduced to a one dimensional integral:

A = A1 :=

∫ 1

0

(K ′(k)− E′(k))2

1− k2
dk.

Here, as usual, K ′(k) := K(
√

1− k2) and E′(k) := E(
√

1− k2).

Happily, we may apply a non-trivial action on the exponents of x, y, z and leave

the value of the integral unchanged ([208], remark after lemma 8). We obtain

A =
1

8

∫ 1

0

∫ 1

0

∫ 1

0

√
1− x(1− yz)

xyz(1− x)(1− y)(1− z)
dx dy dz

= A2 :=

∫ 1

0
K ′(k)E′(k) dk.

The like integral for B can also be reduced to a one dimensional integral,

B = B2 :=

∫ 1

0
k2K ′(k)2 dk.
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But B also satisfies the conditions of Bailey’s identity and Nesterenko’s theorem

[153], from which we are able to produce an alternative triple integral, and reduce

it to:

B = B1 :=

∫ 1

0

(
K ′(k)− E′(k)

) (
E′(k)− k2K ′(k)

) dk

1− k2
.

As for C, equation (2.51) below details its evaluation, which we also record here:

C =

∫ 1

0
K ′(k)2 dk.

Now 2A + B − C = A1 + A2 + B1 − C = 0, because the integrand of the latter

expression is zero. �

Note that the theorem gives the identity

2

∫ 1

0
K ′(k)E′(k) dk =

∫ 1

0
(1− k2)K ′(k)2 dk, (2.31)

among others. Equivalently, an independent proof of this identity means the non-

trivial action is not needed – this is done in Chapter 6.

Remark 2.2.2. Each of the 7F6’s involved in Theorems 2.4, 2.5 and 2.6 can also

be easily written as a sum of two 6F5’s. In Chapter 6, we actually express W4(−1)

as the sum of two 4F3’s.

The first 7F6 term in Theorem 2.6 satisfies the conditions of Bailey’s identity

(2.25) (with a = e = f = 3
2 , b = c = d = 1

2):

7F6

( 7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1) = − 16

3π4
G2,4

4,4

( 3
2 ,

1
2 ,

1
2 ,

1
2

1, 0, 0, 0

∣∣∣∣1). (2.32)

We can thence convert the right-hand side of (2.30) to a Meijer G form. On the

other hand,

W4(1) = − 1

2π3
G2,4

4,4

(
0, 1, 1, 1

1
2 ,−

1
2 ,−

1
2 ,−

1
2

∣∣∣∣1).
So we obtain the non-trivial identity:

G2,4
4,4

( 1
2 ,

3
2 ,

3
2 ,

3
2

1, 0, 0, 0

∣∣∣∣1) = 24G2,4
4,4

( 3
2 ,

1
2 ,

1
2 ,

1
2

1, 0, 0, 0

∣∣∣∣1)+ 8G2,4
4,4

( 1
2 ,

1
2 ,

1
2 ,

1
2

0, 0, 0, 0

∣∣∣∣1). (2.33)

♦

Corollary 2.2 (Elliptic integral representation for W4(1)). We have

W4(1) =
16

π3

∫ 1

0
(1− 3k2)K ′(k)2 dk. (2.34)
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Proof. The conclusion of Theorem 2.6 implies (π3/16)W4(1) = C − 3B =

C − 3B2, and the corollary follows. �

2.3. Probabilistically inspired representations

In this section, we build on the probabilistic approach taken in Chapter 1. We

may profitably view a (m+ n)-step walk as a composition of an m-step and n-step

walk for m,n ≥ 1. Different decompositions make different structures apparent.

We express the distance z of an (n+m)-step walk conditioned on a given distance

x of the first n steps as well as the distance y of the remaining m steps. Following

the analysis in Chapter 1 using the cosine rule, for s > 0, the sth moment of an

(n+m)-step walk conditioned on the distance x of the first n steps and the distance

y of the remaining m steps is

gs(x, y) :=
1

π

∫ π

0
zs dθ = |x− y|s 2F1

( 1
2 ,−

s
2

1

∣∣∣∣− 4xy

(x− y)2

)
. (2.35)

Remark 2.3.1 (Alternate forms for gs). Using Kummer’s quadratic transformation

[11], we obtain

gs(x, y) = Re ys 2F1

(
− s

2 ,−
s
2

1

∣∣∣∣x2

y2

)
(2.36)

for general positive x, y. This provides an analytic continuation of s 7→ gs(x, y). In

particular, we have

g−1(x, y) = Re
2

πy
K

(
x

y

)
,

g1(x, y) = Re
2y

π

{
2E

(
x

y

)
−
(

1− x2

y2

)
K

(
x

y

)}
.

This second equation has various re-expressions. ♦

Denote by pn(x) the probability density of the distance x for an n-step walk.

Since Wn+m(s) is the sth moment of the distance of an (n+m)-step walk, we obtain

Wn+m(s) =

∫ n

0

∫ m

0
gs(x, y) pn(x)pm(y) dy dx, (2.37)

for s ≥ 0. Since for the 1-step walk we have p1(x) = δ1(x), this generalises the

corresponding formula given for Wn+1(s) in equation (1.32).

In (2.37), if n = 0, then we may take p0(x) = δ0(x), and regard the limits of

integration as from −ε and +ε, ε→ 0. Then gs = ys as the hypergeometric function
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collapses to 1, and we recover the basic form

Wm(s) =

∫ m

0
yspm(y) dy. (2.38)

Remark 2.3.2. We can use the sine rule to make a change variable, changing the

dy integral in (2.37) into dz, where y =
√
x2 + z2 − 2xz cos t:

Wn+m(s) =

∫ n+m

0
zs
{∫ n

0

∫ π

0

z

πy
pn(x)pm(y) dtdx

}
dz. (2.39)

By uniqueness of the density, the expression inside the braces is pn+m. As one

consequence, we obtain a numerically workable expression,

p4(α) =
8α

π3

∫ 2

0
Re

K
(√

16xα
(x+α)2(4−(x−α)2

)
(x+ α)

√
4− (x− α)2

dx√
4− x2

. (2.40)

♦

The density p3(x) for 0 ≤ x ≤ 3 can be expressed by

p3(x) = Re

√
x

π2
K

(√
(x+ 1)3(3− x)

16x

)
, (2.41)

using p2 and (2.39). To make (2.41) more accessible we can use the following cubic

identity.

Proposition 2.2. For all 0 ≤ x ≤ 1 we have

K

(√
16x3

(3− x)3(1 + x)

)
=

3− x
3 + 3x

K

(√
16x

(3− x)(1 + x)3

)
.

Proof. The proof is typical of the ‘automatic’ approached championed in ex-

perimental mathematics. Both sides satisfy the differential equation

4x2(x+3)2f(x)+(x−3)(x+1)2((x3−9x2−9x+9)f ′(x)+x(x3−x2−9x+9)f ′′(x)) = 0,

and both of their function values and derivative values agree at the origin. Note that

this is actually a re-parametrisation of the degree 3 modular equation (10.22). �

We apply Jacobi’s imaginary transform [46, p. 73], ReK(x) = 1
xK

(
1
x

)
for x > 1,

to express p3(x) as a real function over [0, 1] and [1, 3], leading to

W3(−1) =

∫ 3

0

p3(x)

x
dx = 4

∫ 1

0

K
(√

16x
(3−x)(1+x)3

)
π2
√

(3− x)(1 + x)3
dx+

∫ 3

1

K
(√

(3−x)(1+x)3

16x

)
π2
√
x

dx.
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The change of variables x → 3−t
1+t in the last integral transforms it into the

middle integral. Therefore,

W3(−1) = 2

∫ 1

0

p3(x)

x
dx. (2.42)

To make sense of this observation more abstractly, let

σ(x) =
3− x
1 + x

, λ(x) =
(1 + x)3(3− x)

16x
.

Then for 0 < x < 3 we have σ2(x) = x and λ(x)λ(σ(x)) = 1. In consequence σ is

an involution that sends [0, 1] to [1, 3] and

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)). (2.43)

Example 2.3.1 (Series for p3 and W3(−1)). We know that

W3(2k) =
k∑
j=0

(
k

j

)2(2j

j

)
is the sum of squares of trinomials (see (2.2)). Using Proposition 2.2, we may now

apply equation (184) in [20, Section 5.10] to obtain

p3(x) =
2x

π
√

3

∞∑
k=0

W3(2k)
(x

3

)2k
, (2.44)

with radius of convergence 1. For 1 < x < 3, on using (2.43) we obtain

p3(x) =
8x

π
√

3(x+ 1)2

∞∑
k=0

W3(2k)

(
3− x
3 + 3x

)2k

. (2.45)

From (2.44) and (2.42) we deduce

W3(−1) =
4

π
√

3

∞∑
k=0

W3(2k)

9k(2k + 1)
,

compare with (2.56). ♦

Example 2.3.2 (Poles of W3). From here we may efficiently recover the explicit

form for the residues of W3 given in Proposition 2.1a. Fix integers N > 2k > 0 and

0 < α < 1. Use the series p3(x) =
∑

j≥0 ajx
2j+1 in (2.44) to write

W3(s)−
∫ 3

α
p3(x)xs dx−

∫ α

0

∞∑
j=N

ajx
2j+1+s dx =

∫ α

0

N−1∑
j=0

ajx
2j+1+s dx

=

N∑
j=1

aj−1
α2j+s

2j + s
, (2.46)
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and observe that all sides are holomorphic and so (2.46) holds in a neighborhood

of s = −2k. Since only the first term on the left has a pole at −2k, we may deduce

that Res(−2k)(W3) = ak−1. Equivalently,

Res(−2k−2)(W3) =
2

π
√

3

W3(2k)

32k
,

which exposes a reflection property. ♦

Remark 2.3.3 (W5). Using (2.37) we may express W5(s) and W6(s) as double

integrals, for example,

W5(−1) =
4

π4

∫ 3

0

∫ 2

0

√
x

y
√

4− y2
ReK

(
x

y

)
ReK

(√
(x+ 1)3(3− x)

16x

)
dydx.

We also have an expression based on taking two 2-step walks and a 1-step walk:

W5(−1) =
8

π4

∫ π
2

0

∫ π
2

0

∫ π

0
ReK

(
2
√

sin2 a+ sin2 b+ 2 sin a sin b cos c
)

dcdadb,

but we have been unable to make further progress with these forms. ♦

2.3.1. Elliptic integral representations. From (2.37), we derive

W4(s) =
2s+2

π2

∫ 1

0

∫ 1

0

gs(x, y)√
(1− x2)(1− y2)

dx dy

=
2s+2

π2

∫ π/2

0

∫ π/2

0
gs(sinu, sin v) dudv,

where s > −2. In particular, for s = −1, again using Jacobi’s imaginary transfor-

mation, we have:

W4(−1) =
4

π3
Re

∫ 1

0

∫ 1

0

K(x/y)

y
√

(1− x2)(1− y2)
dx dy (2.47)

=
8

π3

∫ 1

0

∫ 1

0

K(t)√
(1− t2y2)(1− y2)

dy dt =
8

π3

∫ 1

0
K2(k) dk. (2.48)

The corresponding integral at s = 1 is

W4(1) =
32

π3

∫ 1

0

(k + 1)(K(k)− E(k))

k2
E

(
2
√
k

k + 1

)
dk. (2.49)

Starting with Nesterenko’s theorem [153], we have

W4(−1) =
1

2π3

∫
[0,1]3

dxdydz√
xyz(1− x)(1− y)(1− z)(1− x(1− yz))

. (2.50)



2.3. PROBABILISTICALLY INSPIRED REPRESENTATIONS 37

Upon computing the dx integral, followed by the change of variable k2 = yz, we

get:

W4(−1) =
1

π3

∫ 1

0

∫ 1

0

K(
√

1− yz)√
yz(1− y)(1− z)

dy dz (2.51)

=
2

π3

∫ 1

0

∫ 1

k2

K(
√

1− k2)√
y(1− y)(y − k2)

dy dk =
4

π3

∫ 1

0
K ′(k)2 dk. (2.52)

Compare this with the corresponding (2.47). In particular, appealing to Theo-

rem 2.4 we derive the closed forms:

2

∫ 1

0
K(k)2 dk =

∫ 1

0
K ′(k)2 dk =

(π
2

)4

7F6

( 5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1). (2.53)

This relation will be made more transparent in Chapter 6.

Recalling Corollary 2.2 and equation (2.31), we also deduce that

W4(1) =
96

π3

∫ 1

0
E′(k)K ′(k) dk − 8W4(−1).

If we make a trigonometric change of variables in (2.51), we obtain

W4(−1) =
4

π3

∫ π/2

0

∫ π/2

0
K
(√

1− sin2 x sin2 y
)

dx dy.

We may rewrite the integrand as a sum, and then interchange integration and

summation to arrive at a slowly convergent representation of the same general form

as Conjecture 1.1:

W4(−1) =
1

2

∞∑
n=0

(
−1

2

n

)2

3F2

( 1
2 ,

1
2 ,−n
1, 1

∣∣∣∣1).
Remark 2.3.4. Integrals of the form (2.50) are related to Beukers’ integrals, which

were used in the elementary derivation of the irrationality of ζ(3):

Beukers [37] showed that∫
[0,1]3

(x(1− x)y(1− y)z(1− z))n

(1− (1− xy)z)n+1
=
An +Bnζ(3)

d3
n

,

where An, Bn, dn are integers and dn < 3n is the lowest common multiple of the

first n natural numbers. It is easy to bound the integral, hence

0 <
|An +Bnζ(3)|

d3
n

< 3(
√

2− 1)4n.

Therefore 0 < |An +Bnζ(3)| <
(

4
5

)n
, implying irrationality.

We revisit such integrals in Chapter 6, some of which also evaluate to ζ(3), but

the bounds for their integrands are too poor. ♦
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Remark 2.3.5 (Watson integrals). From the evaluation (2.4) we note that W3(−1)

is twice the value of one of the triple integrals considered by Watson in [194]:

W3(−1) =
1

π3

∫ π

0

∫ π

0

∫ π

0

dudvdw

3− cos v cosw − cosw cosu− cosu cos v
. (2.54)

This is derived in [44] and various related extensions are found in [20].

Watson’s integral (2.54) also gives the alternative representation:

W3(−1) = π−5/2G3,2
3,3

( 1
2 ,

1
2 ,

1
2

0, 0, 0

∣∣∣∣4). (2.55)

The equivalence of this and the Meijer G representation coming from Theorem 2.2

can be established similarly to the proof of Theorem 2.4, upon using the transfor-

mation (2.29). ♦

Remark 2.3.6 (Probability of return to the unit disk). By a simple geometric

argument, there is a 1
3 chance of returning to the unit disk in a 2-step walk. Similarly,

for a 3-step walk, if the second step makes an angle θ with the first step, then the

third step can only vary over a range of θ to return to the unit disk (it can be

parallel to the first step, to the second step, or anywhere in between). Thus the

probability of returning to the unit disk in three steps is

1

4π2

∫ π

−π
|θ|dθ =

1

4
=

∫ 1

0
p3(x) dx.

Appealing to (2.44) we deduce that

∞∑
k=0

W3(2k)

9k(k + 1)
=

√
3π

4
. (2.56)

In fact, as Kluyver shows in [123], the probability of an n-step walk ending in the

unit disk is 1/(n+ 1). This is obtained by setting α = 1 in (2.5). See also [33] for a

very short proof of this fact; the amazing proof uses not much more than the sum

of angles in a triangle. Moreover, [33] gives an extension: for two walkers starting

at the origin, who take m and n steps respectively, the probability that the first

walker ends up further than the second walker is m/(m+ n) (for m = 1 we recover

Kluyver’s result; the m = n case is obvious). In terms of integrals, this gives the

non-trivial identity ∫ m

0
Pn(x)pm(x) dx =

m

m+ n
.
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One example of such an integral is (using p3 from Chapter 3)∫ 2

0

4
√

3x cos−1(x2 )

π2(3 + x2)
2F1

( 1
3 ,

2
3

1

∣∣∣∣ x2(9− x2)2

(3 + x2)3

)
dx =

2

5
.

♦

2.4. Partial resolution of the conjecture

We may now investigate Conjecture 1.1 which states, for positive integers n and

complex s,

W2n(s)
?
=
∑
j>0

(
s/2

j

)2

W2n−1(s− 2j). (2.57)

We can resolve this conjecture modulo a technical estimate given in Conjecture

2.2. The proof outline below explains the conjecture by identifying the terms of the

infinite sum as natural residues.

Proof. Using (2.8) we write W2n as a Bessel integral

W2n(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1J2n
0 (x) dx.

Then we apply Theorem 2.1 to J2n
0 = J2n−1

0 · J0 for s in a vertical strip. Since,

again by (2.8), we have∫ ∞
0

xs−1J2n
0 (x) dx = 2s−1 Γ(s/2)

Γ(1− s/2)
Wn(−s),

we obtain

W2n(−s) = 21−sΓ(1− s/2)

Γ(s/2)

∫ ∞
0

xs−1J2n−1
0 (x) · J0(x) dx (2.58)

=
Γ(1− s/2)

Γ(s/2)

1

2πi

∫ δ+i∞

δ−i∞

1

2

Γ(z/2)Γ(s/2− z/2)

Γ(1− z/2)Γ(1− s/2 + z/2)
W2n−1(−z) dz

where 0 < δ < 1.

Observe that the integrand has poles at z = s, s + 2, s + 4, . . . coming from

Γ(s/2− z/2). On the other hand, the term W2n−1(−z) has at most simple poles at

z = 2, 4, 6, . . . which are canceled by the corresponding zeros of Γ(1 − z/2). This

asserted pole structure of W2n−1 was shown in Example 2.2.3 for n = 3 and may

be shown analogously for each n = 4, 5, . . . based on Proposition 2.1.

Since Γ(s/2− z/2) has a residue of −2(−1)j/j! at z = s+ 2j, the residue of the

integrand is

− (−1)jΓ(s/2 + j)

j!2Γ(1− s/2− j)
W2n−1(−(2j + s)) = − Γ(s/2)

Γ(1− s/2)

(
−s/2
j

)2

W2n−1(−s− 2j).
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Thus it follows that

W2n(−s) =
∑
j>0

(
−s/2
j

)2

W2n−1(−s− 2j), (2.59)

which is what we want to prove, provided that the contour of the integral after

(2.58) can be closed in the right half-plane. �

This proof is thus rigorous provided that the next two conjectures hold. Con-

jecture 2.1 is easily checked for individual n.

Conjecture 2.1 (Poles of W2n−1). For each n ≥ 1 all poles of W2n−1 are simple.

Conjecture 2.2 (Growth of W2n−1). For given s,

lim inf
r→∞

∫
γr

Γ(z/2)Γ(s/2− z/2)

Γ(1− z/2)Γ(1− s/2 + z/2)
W2n−1(−z) dz = 0,

where γr is a right half-circle of radius r around δ ∈ (0, 1).

Remark 2.4.1 (Other approaches to Conjecture 2.57). We restrict ourself to the

core case with n = 2. One can prove using creative telescoping that both sides of

the needed identity satisfy the recursion for W4. Hence, it suffices to show that the

conjecture is correct for s = ±1. Working entirely formally with (2.6) and ignoring

the restriction on s,∑
j>0

(
−1

2

j

)2

W3(−1− 2j) =
∞∑
j=0

(
−1

2

j

)2

2−2j Γ(1
2 − j)

Γ(1
2 + j)

∫ ∞
0

x2jJ3
0 (x) dx

=

∫ ∞
0

J3
0 (x)

∞∑
j=0

(
−1

2

j

)2
Γ(1

2 − j)
Γ(1

2 + j)

(x
2

)2j
dx

=

∫ ∞
0

J4
0 (x) dx = W4(−1),

on appealing to Example 2.2.1, since for x > 0

∞∑
j=0

(
−1

2

j

)2
Γ(1

2 − j)
Γ(1

2 + j)
x2j = J0(2x).

There is a corresponding (formal) manipulation for s = 1. In Chapter 3, we rigor-

ously prove the conjecture for n = 2 and s an integer. ♦



CHAPTER 3

Densities of Short Uniform Random Walks

Abstract. We continue our study of the densities of uniform random walks in

the plane, focusing on three and four steps, and less so on five steps. As a main

result, we obtain a hypergeometric representation of the density for four steps. It

appears unrealistic to expect similar results for more than five steps. New results

are also presented concerning the moments of the walks. Relations with Mahler

measures are discussed.

3.1. Introduction

Recall that an n-step uniform random walk is a walk in the plane that starts

at the origin and consists of n steps of length 1 each taken in a uniformly random

direction. The study of such walks largely originated with Pearson more than a

century ago [159, 160, 158] who posed the problem of determining the distribution

of the distance from the origin after a certain number of steps. Here we study the

(radial) densities pn of the distance from the origin after n steps. This continues

research commenced in [53, 56] (Chapters 1, 2) where the focus was on the moments

of these distributions:

Wn(s) :=

∫ n

0
pn(t)ts dt.

The densities for walks of up to 8 steps are depicted in Figure 1. As established

by Lord Rayleigh [165], pn quickly approaches the probability density 2x
n e
−x2/n for

large n. This limiting density is superimposed in Figure 1 for n ≥ 5.

Closed forms were only known in the cases n = 2 and n = 3. The evaluation,

for 0 ≤ x ≤ 2,

p2(x) =
2

π
√

4− x2
(3.1)

is elementary. On the other hand, the density p3(x) for 0 ≤ x ≤ 3 can be expressed

in terms of elliptic integrals by

p3(x) = Re

√
x

π2
K

(√
(x+ 1)3(3− x)

16x

)
. (3.2)

41
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Figure 1. Densities pn with the limiting behaviour superimposed

for n ≥ 5.

One of the main results of this chapter is a closed form evaluation of p4 as a hy-

pergeometric function given in Theorem 3.6. In (3.17) we also provide a single

hypergeometric closed form for p3 which, in contrast to (3.2), is real and valid on

all of [0, 3]. For convenience, we list these two closed forms here:

p3(x) =
2
√

3

π

x

(3 + x2)
2F1

( 1
3 ,

2
3

1

∣∣∣∣x2
(
9− x2

)2
(3 + x2)3

)
, (3.3)

p4(x) =
2

π2

√
16− x2

x
Re 3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
. (3.4)

A striking feature of the 3- and 4-step densities is their modularity. It is this

circumstance which allows us to express them via hypergeometric series; we will

continue our study of modular functions in Chapters 10 and 11.

In Section 3.2 we give general results for the densities pn and prove that they

satisfy certain linear differential equations. In Sections 3.3 – 3.5 we provide special

results for p3, p4, and p5. Particular interest is taken in the behaviour near the points

where the densities fail to be smooth. In Section 3.6 we study the derivatives of

the moment function and make a connection to multidimensional Mahler measures.

Finally in Section 3.7 we provide some related new evaluations of moments and so

resolve a central case of the conjecture in Chapter 1.
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We close this introduction with a historical remark illustrating the fascination

arising from these densities. H. Fettis devotes the entire paper [92] to proving that

p5 is not linear on the initial interval [0, 1] as ruminated upon by Pearson [158].

This will be explained in Section 3.5.

3.2. The densities pn

It is a classical result of Kluyver [123] that pn has the following Bessel integral

representation:

pn(x) =

∫ ∞
0

xtJ0(xt)Jn0 (t) dt. (3.5)

It is visually clear from the graphs in Figure 1 that pn is getting smoother for

increasing n. This can be made precise from (3.5) using the asymptotic formula for

J0 for large arguments [155] and dominated convergence:

Proposition 3.1. For each integer n ≥ 0, the density pn+4 is bn/2c times contin-

uously differentiable.

We note from Figure 1 that the only points preventing pn from being smooth

appear to be integers. This will be made precise in Theorem 3.1.

We recall a few things about the sth moments Wn(s) of the density pn which

are given by

Wn(s) =

∫ ∞
0

xspn(x) dx =

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx. (3.6)

It was shown in Chapter 1 and 2 that Wn(s) admits an analytic continuation to all

of the complex plane with poles of at most order two at certain negative integers.

In particular, W3(s) has simple poles at s = −2,−4,−6, . . . and W4(s) has double

poles at these integers.

Moreover, from the combinatorial evaluation

Wn(2k) =
∑

a1+···+an=k

(
k

a1, . . . , an

)2

(3.7)

it followed that Wn(s) satisfies a functional equation, coming from the inevitable

recursion that exists for the right-hand side of (3.7), see e. g. (3.8).

The first part of equation (3.6) can be rephrased as saying that Wn(s−1) is the

Mellin transform of pn [150]. We denote this by Wn(s−1) =M [pn; s]. Conversely,

the density pn is the inverse Mellin transform of Wn(s − 1). We intend to exploit

this relation as detailed for n = 4 in the following example.



44 3. DENSITIES OF SHORT UNIFORM RANDOM WALKS

Example 3.2.1 (Mellin transform). For n = 4, the moments W4(s) satisfy the

functional equation

(s+ 4)3W4(s+ 4)− 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2) + 64(s+ 2)3W4(s) = 0. (3.8)

Recall the following rules for the Mellin transform: if F (s) = M [f ; s] then in the

appropriate strips of convergence

• M [xµf(x); s] = F (s+ µ),

• M [Dxf(x); s] = −(s− 1)F (s− 1).

Here, and below, Dx denotes differentiation with respect to x, and for the second

rule to be true, we have to assume, for instance, that f is continuously differentiable.

Thus, purely formally, we can translate the functional equation (3.8) of W4 into

the differential equation A4 · p4(x) = 0 where A4 is the operator

A4 = x4(θ + 1)3 − 4x2θ(5θ2 + 3) + 64(θ − 1)3 (3.9)

= (x− 4)(x− 2)x3(x+ 2)(x+ 4)D3
x + 6x4

(
x2 − 10

)
D2
x

+ x
(
7x4 − 32x2 + 64

)
Dx +

(
x2 − 8

) (
x2 + 8

)
, (3.10)

where θ = xDx. However, it should be noted that p4 is not continuously differen-

tiable. Moreover, p4(x) is approximated by a constant multiple of
√

4− x as x→ 4−

(see Theorem 3.3) so that the second derivative of p4 is not even locally integrable.

In particular, it does not have a Mellin transform in the classical sense. ♦

Theorem 3.1. Let an integer n ≥ 1 be given.

• The density pn satisfies a differential equation of order n− 1.

• If n is even (respectively odd) then pn is real analytic except at 0 and the

even (respectively odd) integers m ≤ n.

Proof. As illustrated for p4 in Example 3.2.1, we formally use the Mellin trans-

form method to translate the functional equation of Wn into a differential equation

An · y(x) = 0. Since pn is locally integrable and compactly supported, it has a

Mellin transform in the distributional sense as detailed for instance in [150]. It

follows rigorously that pn solves An · y(x) = 0 in a distributional sense. In other

words, pn is a weak solution of this differential equation. The degree of this equation

is n − 1 because the functional equation satisfied by Wn has coefficients of degree

n− 1 as shown in Chapter 1.



3.2. THE DENSITIES pn 45

The leading coefficient of the differential equation (in terms of Dx as in (3.10))

turns out to be

xn−1
∏

2|(m−n)

(x2 −m2) (3.11)

where the product is over the even or odd integers 1 ≤ m ≤ n depending on whether

n is even or odd. This is discussed below in Section 3.2.1.

Thus the leading coefficient of the differential equation is nonzero on [0, n] ex-

cept for 0 and the even or odd integers already mentioned. On each interval not

containing these points it follows, as described for instance in [116, Cor. 3.1.6], that

pn is in fact a classical solution of the differential equation. Moreover the analyticity

of the coefficients, which are polynomials in our case, implies that pn is piecewise

real analytic as claimed. �

Remark 3.2.1. It is a basic property of the Mellin transform, see for instance [94,

Appendix B.7], that the asymptotic behaviour of a function at zero is determined

by the poles of its Mellin transform which lie to the left of the fundamental strip.

Since the poles of Wn(s) occur at specific negative integers and are at most of second

order, this translates into the fact that pn has an expansion at 0 as a power series

with additional logarithmic terms in the presence of double poles. This is made

explicit in the case of p4 in Example 3.4.1.

3.2.1. An explicit recursion. We close this section by providing details for

the claim made in (3.11). Recall that the even moments fn(k) := Wn(2k) satisfy

a recurrence of order λ := dn/2e with polynomial coefficients of degree n − 1. An

entirely explicit formula for this recurrence is given in [189], see Theorem 1.1.

Observe that (3.11) is easily checked for each fixed n by applying Theorem 1.1.

We explicitly checked the cases n ≤ 1000. The fact that (3.11) is true in general is

recorded in Theorem 3.2 below.

For fixed n, write the recurrence for fn(k) in the form
∑n−1

j=0 k
jqj(K) where

qj are polynomials and K is the shift k → k + 1. Then qn−1 is the characteristic

polynomial of this recurrence, and, by the rules in Example 3.2.1, we find that the

differential equation satisfied by pn(x) is of the form qn−1(x2)θn−1+ lower order

terms in θ.

We claim that the characteristic polynomial of the recurrence in Theorem 1.1

satisfied by fn(k) is
∏

2|(m−n)(x −m2) where the product is over the integers 1 ≤
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m ≤ n such that m ≡ n modulo 2. This implies (3.11). By Theorem 1.1 the

characteristic polynomial is

λ∑
j=0

[ ∑
α1,...,αj

j∏
i=1

(−αi)(n+ 1− αi)

]
xλ−j (3.12)

where λ = dn/2e and the sum is again over all sequences α1, . . . , αj such that

0 ≤ αi ≤ n and αi+1 ≤ αi − 2. The claimed evaluation is thus equivalent to the

identity in the theorem below, first proven by P. Djakov and B. Mityagin [86],

and communicated to us by D. Zagier. Zagier also gives a very neat and purely

combinatorial proof [57], which uses experimental mathematics, and the key step

involves inserting a dummy variable and finding a recursion in terms of that variable.

Another combinatorial proof is given in [173].

Theorem 3.2. For all integers n, j ≥ 1,

∑
06m1,...,mj<n/2

mi<mi+1

j∏
i=1

(n− 2mi)
2 =

∑
16α1,...,αj6n
αi6αi+1−2

j∏
i=1

αi(n+ 1− αi). (3.13)

3.3. The density p3

The elliptic integral evaluation (3.2) of p3 is suitable for extracting information

about the features of p3 exposed in Figure 1. It follows, for instance, that p3 has a

singularity at 1. Moreover, using the known asymptotics for K(x) [46, Ch. 1], we

may deduce that the singularity is of the form

p3(x) =
3

2π2
log

(
4

|x− 1|

)
+O(1) (3.14)

as x→ 1.

We also recall from Chapter 2 that p3 has the expansion, valid for 0 ≤ x ≤ 1,

p3(x) =
2x

π
√

3

∞∑
k=0

W3(2k)
(x

3

)2k
(3.15)

where

W3(2k) =

k∑
j=0

(
k

j

)2(2j

j

)
is the sum of squares of trinomials. The following functional relation holds,

p3(x) =
4x

(3− x)(x+ 1)
p3

(
3− x
1 + x

)
, (3.16)
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so that (3.15) determines p3 completely and also makes apparent the behaviour at

3. We close this section with two more alternative expressions for p3.

Example 3.3.1 (Hypergeometric form for p3). Using the techniques in [75] we can

deduce from (3.15) that

p3(x) =
2
√

3x

π (3 + x2)
2F1

( 1
3 ,

2
3

1

∣∣∣∣x2
(
9− x2

)2
(3 + x2)3

)
, (3.17)

which is found in a similar way to the hypergeometric form of p4 given in Theorem

3.6. Once obtained, this identity is easily proven using the differential equation from

Theorem 3.1 satisfied by p3 (note that the right hand side satisfies a modification

of the hypergeometric differential equation, (14.3)) – as is typical in experimental

mathematics. From (3.17) we see, for example, that p3(
√

3)2 = 3
2π2W3(−1). ♦

Example 3.3.2 (Iterative form for p3). The expression (3.17) can be interpreted

in terms of the cubic AGM, AG3 [45]. Recall that AG3(a, b) is the limit of iterating

an+1 =
an + 2bn

3
, bn+1 =

3

√
bn

(a2
n + anbn + b2n

3

)
,

beginning with a0 = a and b0 = b. The iterations converge cubically, thus allowing

for very efficient high-precision evaluation. On the other hand,

1

AG3(1, s)
= 2F1

( 1
3 ,

2
3

1

∣∣∣∣1− s3

)
,

so we have, for 0 ≤ x ≤ 3,

p3(x) =
2
√

3

π

x

AG3(3 + x2, 3 |1− x2|2/3)
. (3.18)

♦

3.4. The density p4

The densities pn are recursively related. As in [118], setting φn(x) = pn(x)/(2πx),

we have for integers n ≥ 2

φn(x) =
1

2π

∫ 2π

0
φn−1

(√
x2 − 2x cosα+ 1

)
dα. (3.19)

We use this recursive relation to get some quantitative information about the

behaviour of p4 at x = 4.
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Theorem 3.3. As x→ 4−,

p4(x) =

√
2

π2

√
4− x− 3

√
2

16π2
(4− x)3/2 +

23
√

2

512π2
(4− x)5/2 +O

(
(4− x)7/2

)
.

Proof. Set y =
√
x2 − 2x cosα+ 1. For 2 < x < 4,

φ4(x) =
1

π

∫ π

0
φ3(y) dα =

1

π

∫ arccos
(
x2−8
2x

)
0

φ3(y) dα

since φ3 is only supported on [0, 3]. Note that φ3(y) is continuous and bounded in

the domain of integration. By the Leibniz integral rule, we can thus differentiate

under the integral sign to obtain

φ′4(x) = − 1

π

(x2 + 8)φ3(3)

x
√

(16− x2)(x2 − 4)
+

1

π

∫ arccos(x
2−8
2x

)

0
(x− cos(α))

φ′3(y)

y
dα. (3.20)

This shows that φ′4, and hence p′4, have a singularity at x = 4. More specifically,

φ′4(x) = − 1

8
√

2π3
√

4− x
+O(1) as x→ 4−.

Here, we used φ3(3) =
√

3
12π2 . It follows that

p′4(x) = − 1√
2π2
√

4− x
+O(1)

which, upon integration, is the claim to first order. Differentiating (3.20) twice

more proves the claim. �

Remark 3.4.1. The situation for the singularity at x = 2+ is more complicated

since in (3.20) both the integral (via the logarithmic singularity of φ3 at 1, see

(3.14)) and the boundary term contribute. Numerically, we find, as x→ 2+,

p′4(x) = − 2

π2
√
x− 2

+O(1).

The derivative of p4 at 2 from the left is quite marvelously given by

p′4(2−) =
1

2
√

3π
W3(1), (3.21)

compare with (3.29). These observations can be proven in hindsight from Theorem

3.5; the latter makes use of contiguous relations found in Chapter 14. ♦

We now turn to the behaviour of p4 at zero which we derive from the pole

structure of W4 as described in Remark 3.2.1.
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Example 3.4.1. From Chapter 2, we know that W4 has a pole of order 2 at −2 as

illustrated in Figure 2(b) of Chapter 1. More specifically, results in Section 3.6 give

W4(s) =
3

2π2

1

(s+ 2)2
+

9 log 2

2π2

1

s+ 2
+O(1)

as s→ −2. It therefore follows that

p4(x) = − 3

2π2
x log(x) +

9 log 2

2π2
x+O(x3)

as x→ 0. ♦

More generally, W4 has poles of order 2 at −2k for k a positive integer. Define

s4,k and r4,k by

W4(s) =
s4,k−1

(s+ 2k)2
+
r4,k−1

s+ 2k
+O(1) (3.22)

as s→ −2k. We thus obtain that, as x→ 0+,

p4(x) =
K−1∑
k=0

x2k+1(r4,k − s4,k log x) +O
(
x2K+1

)
.

In fact, knowing that p4 solves the linear Fuchsian differential equation (3.9) with

a regular singularity at 0, we may conclude:

Theorem 3.4. For small values x > 0,

p4(x) =

∞∑
k=0

(r4,k − s4,k log(x)) x2k+1. (3.23)

Note that

s4,k =
3

2π2

W4(2k)

82k
,

as the two sequences satisfy the same recurrence and initial conditions (this is a

common technique used in many of our proofs). The numbers W4(2k) are also

known as the Domb numbers [20], and their hypergeometric generating function is

given in [171] and has been further studied in [75]. We thus have

∞∑
k=0

s4,k x
2k+1 =

6x

π2 (4− x2)
3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108x2

(x2 − 4)3

)
(3.24)

which is readily verified to be an analytic solution to the differential equation sat-

isfied by p4.

For future use, we note that (3.24) can also be written as

∞∑
k=0

s4,k x
2k+1 =

24x

π2 (16− x2)
3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108x4

(16− x2)3

)
(3.25)
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which follows from the transformation

(1− 4x)3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣− 108x

(1− 16x)3

)
= (1− 16x)3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108x2

(1− 4x)3

)
(3.26)

given in [75, (3.1)].

On the other hand, as a consequence of (3.22) and the functional equation (3.8)

satisfied by W4, the residues r4,k can be obtained from the recurrence relation

128k3r4,k = 4(2k − 1)(5k2 − 5k + 2)r4,k−1 − 2(k − 1)3r4,k−2

+ 3
(
64k2s4,k − (20k2 − 20k + 6)s4,k−1 + (k − 1)2s4,k−2

)
(3.27)

with r4,−1 = 0 and r4,0 = 9
2π2 log(2).

Remark 3.4.2. In fact, before realising the connection between the Mellin trans-

form and the behaviour of p4 at 0, we empirically found that p4 on (0, 2) should

be of the form r(x) − s(x) log(x) where s and r are odd and analytic. We then

numerically determined the coefficients and observed the relation with the residues

of W4 as given in Theorem 3.4.

The accidental discovery of the required form was amusing and we recount it

here. Interested in plotting p′4(x) for small x, the author resorted to the most nu-

merically stable method available then – (2.40) and derivation using first principles.

However, instead of using the correct derivative formula

lim
h→0

p4(x+ h)− p4(x)

h
,

a typographical error was made and the following formula was used instead:

lim
h→0

p4(x+ h)− p4(h)

x
.

Upon correcting the mistake, it was noticed, amazingly, that the two plots produced

were almost exactly related by a vertical translation of 0.14 units. This means that

p4 ‘almost’ satisfies a differential equation

f ′(x) + a =
f(x)

x
,

whose solution is f(x) = bx − ax log x, where a ≈ 0.14 and b ≈ 0.33 (since∫ 1
0 f(x) dx = 1

5). The log form of p4, and the numerical connection between a, b

and the coefficients of the poles, then became apparent. ♦
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The differential equation for p4 has a regular singularity at 0; a basis of solutions

at 0 can therefore be obtained via the Frobenius method, see for instance [119].

Since the indicial equation has 1 as a triple root, the solution (3.24) is the unique

analytic solution at 0 while the other solutions have a logarithmic or double log-

arithmic singularity. The solution with a logarithmic singularity at 0 is explicitly

given in (3.32), and from (3.23), it is clear that p4 on (0, 2) is a linear combination

of the analytic and the logarithmic solution.

Moreover, the differential equation for p4 is a symmetric square; in other words,

it can be reduced to a second order differential equation, which after a quadratic

substitution, has 4 regular singularities and is thus of Heun type. After much work,

a hypergeometric representation of p4 with rational argument is possible.

Theorem 3.5. For 2 < x < 4,

p4(x) =
2

π2

√
16− x2

x
3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
. (3.28)

Proof. Denote the right-hand side of (3.28) by q4(x) and observe that the

hypergeometric series converges for 2 < x < 4. It is routine to verify that q4 is

a solution of the differential equation A4 · y(x) = 0 given in (3.9), which is also

satisfied by p4 as proven in Theorem 3.1. Together with the boundary conditions

supplied by Theorem 3.3 it follows that p4 = q4. �

We note that Theorem 3.5 gives 2
√

16− x2/(π2x) as an approximation to p4(x)

near x = 4, which is much more accurate than the elementary estimates established

in Theorem 3.3. We also get the evaluation

p4(2) =
27/3π

3
√

3 Γ6(2/3)
=

√
3

π
W3(−1). (3.29)

Quite marvelously, as first discovered numerically:

Theorem 3.6. For 0 < x < 4,

p4(x) =
2

π2

√
16− x2

x
Re 3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− x2

)3
108x4

)
. (3.30)
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Proof. To obtain the analytic continuation of the 3F2 for 0 < x < 2 we employ

the formula [136, (5.3)], valid for all z,

q+1Fq

(
a1, . . . , aq+1

b1, . . . , bq

∣∣∣∣z) =

∏
j Γ(bj)∏
j Γ(aj)

q+1∑
k=1

Γ(ak)
∏
j 6=k Γ(aj − ak)∏

j Γ(bj − ak)
(−z)−ak

× q+1Fq

(
ak, {ak − bj + 1}j
{ak − aj + 1}j 6=k

∣∣∣∣1z
)
, (3.31)

which requires the aj to not differ by integers. Therefore we apply it to

3F2

( 1
2 + ε, 1

2 ,
1
2 − ε

5
6 ,

7
6

∣∣∣∣z).
and take the limit as ε→ 0. This ultimately produces, for z > 1,

Re 3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣z) =
log(108z)

2
√

3z
3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣1z
)

(3.32)

+
1

2
√

3z

∞∑
n=0

(1
3)n(1

2)n(2
3)n

n!3

(
1

z

)n
(5Hn − 2H2n − 3H3n).

Here Hn =
∑n

k=1 1/k is the nth harmonic number. Now, insert the appropriate

argument for z and the factors so the left-hand side corresponds to the claimed

closed form. Observing that(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

=
(2n)!(3n)!

108nn!2
,

we thus find that the right-hand side of (3.30) is given by − log(x)S4(x) plus

6

π2

∞∑
n=0

(2n)!(3n)!

n!5
x4n+1

(16− x2)3n

(
5Hn − 2H2n − 3H3n + 3 log(16− x2)

)
where S4 is the solution to the differential equation for p4 given in (3.25). This

combination can now be verified to be a formal and hence actual solution of the

differential equation for p4. Together with the boundary conditions supplied by

Theorem 3.4 this proves the claim. �

Remark 3.4.3. Let us indicate how the hypergeometric expression for p4 given in

Theorem 3.5 was discovered. Consider the generating series

y0(z) =

∞∑
k=0

W4(2k)zk (3.33)

which is just a rescaled version of (3.24). Corresponding to (3.25), the hypergeo-

metric form for this series is

y0(z) =
1

1− 4z
3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108z2

(1− 4z)3

)
(3.34)
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which converges for |z| < 1/16. y0 satisfies the differential equation B4 · y0(z) = 0

where

B4 = 64z2(θ + 1)3 − 2z(2θ + 1)(5θ2 + 5θ + 2) + θ3. (3.35)

Up to a change of variables this is (3.9); y0 is the unique solution which is analytic

at zero and takes the value 1 at zero; the other solutions have a single or double

logarithmic singularity. Let y1 be the solution characterised by

y1(z)− y0(z) log(z) ∈ zQ[[z]]. (3.36)

Note that it follows from (3.36), as well as Theorem 3.4 together with the initial

values s4,0 = 3
2π2 and r4,0 = s4,0 log(8), that p4 for small positive argument is given

by

p4(x) = − 3x

4π2
y1

(
x2

64

)
. (3.37)

If x ∈ (2, 4) and z = x2/64 then the argument t = 108z2

(1−4z)3
in (3.34) takes values

in (1,∞). We therefore consider the solutions of the corresponding hypergeometric

equation at infinity. A standard basis for these is

t−1/3
3F2

( 1
3 ,

1
3 ,

1
3

2
3 ,

5
6

∣∣∣∣1t
)
, t−1/2

3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣1t
)
, t−2/3

3F2

( 2
3 ,

2
3 ,

2
3

4
3 ,

7
6

∣∣∣∣1t
)
. (3.38)

In fact, the second element suffices to express p4 on the interval (2, 4) as shown in

Theorem 3.5. ♦

We close this section by showing that, remarkably, p4 has modular structure.

Remark 3.4.4. As shown in [75], the series y0 defined in (3.33) possesses the

modular parameterisation

y0

(
−η(2τ)6η(6τ)6

η(τ)6η(3τ)6

)
=

η(τ)4η(3τ)4

η(2τ)2η(6τ)2
. (3.39)

Here η is the Dedekind eta function defined as

η(τ) = q1/24
∞∏
n=1

(1− qn) = q1/24
∞∑

n=−∞
(−1)nqn(3n+1)/2, (3.40)

where q = e2πiτ . Moreover, the quotient of the logarithmic solution y1 defined in

(3.36) and y0 are related by

exp

(
y1(z)

y0(z)

)
= e(2τ+1)πi = −q. (3.41)
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Combining (3.39), (3.41) and (3.37), one obtains the modular representation

p4

(
8i
η(2τ)3η(6τ)3

η(τ)3η(3τ)3

)
=

6(2τ + 1)

π
η(τ)η(2τ)η(3τ)η(6τ), (3.42)

valid when the argument of p4 is small and positive. This is the case for τ =

−1/2 + iy when y > 0. Remarkably, the argument attains the value 1 at the

quadratic irrationality τ = (
√
−5/3 − 1)/2 (the (5/3)rd singular value of the next

section). As a consequence, the value p4(1) has a nice evaluation which is given in

Theorem 3.7. ♦

3.5. The density p5

As shown in Chapter 2, W5(s) has simple poles at −2,−4, . . ., compare Figure

2(c) in Chapter 1. We write r5,k = Res−2k−2W5 for the residue of W5 at s = −2k−2.

A surprising bonus is the evaluation of r5,0 = p4(1) ≈ 0.3299338011, the residue at

s = −2. This is because in general for n ≥ 4, one has

Res−2Wn+1 = p′n+1(0) = pn(1), (3.43)

as follows from Proposition 2.1; here p′n denotes the derivative from the right.

Explicitly, using Theorem 3.6, we have,

r5,0 = p′5(0) =
2
√

15

π2
Re 3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣125

4

)
,

from which we get

r5,0 =

√
5/3

π
2F1

( 1
3 ,

2
3

1

∣∣∣∣1−√5

2

)2

, (3.44)

using Clausen’s formula [11, p. 116] and a quadratic transformation.

Based on the modularity of p4 discussed in Remark 3.4.4, we find:

Theorem 3.7.

r5,0 =

√
5

40

Γ( 1
15)Γ( 2

15)Γ( 4
15)Γ( 8

15)

π4

=
3
√

5

π3

(√
5− 1

)
2

K2
15 =

√
15

π3
K5/3K15, (3.45)

where K15 and K5/3 are the complete elliptic integral at the 15th and (5/3)rd sin-

gular values.
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Proof. Let φ = (
√

5 − 1)/2 (the golden ratio). In the notation of Section

10.2, it can be verified that the value τ = i√
3 2F1(1

3 ,
2
3 ; 1; 1 + φ)/2F1(1

3 ,
2
3 ; 1; −φ)

is a quadratic irrationality (it being (1 +
√
−5/3)/2). As such, it is known that

2F1(1
3 ,

2
3 ; 1; −φ) may be effectively computed in terms of algebraic numbers and

Gamma functions by the Chowla–Selberg formula [175]. A proof with every minute

detail attended to has been written down (A. Straub, private communication, July

2012). �

Remarkably, these evaluations appear to extend to r5,1 ≈ 0.006616730259, the

residue at s = −4. We discovered and checked to 400 places using (3.51) and (3.52)

that

r5,1
?
=

13

225
r5,0 −

2

5π4

1

r5,0
. (3.46)

We summarise our knowledge as follows:

Theorem 3.8. The density p5 is real analytic on (0, 5) except at 1 and 3 and

satisfies the differential equation A5 · p5(x) = 0 where A5 is the operator

A5 = x6(θ + 1)4 − x4(35θ4 + 42θ2 + 3)

+ x2(259(θ − 1)4 + 104(θ − 1)2)− (15(θ − 3)(θ − 1))2 . (3.47)

Moreover, for small x > 0,

p5(x) =
∞∑
k=0

r5,k x
2k+1, where (3.48)

(15(2k + 2)(2k + 4))2 r5,k+2 =
(
259(2k + 2)4 + 104(2k + 2)2

)
r5,k+1

−
(
35(2k + 1)4 + 42(2k + 1)2 + 3

)
r5,k + (2k)4r5,k−1 (3.49)

with explicit initial values r5,−1 = 0 and r5,0, r5,1 given by (3.45) and (3.46).

Proof. First, the differential equation (3.47) is computed as was that for p4.

Next, as detailed in Chapter 2, the residues satisfy the recurrence relation (3.49)

with the given initial values. Finally, proceeding as for (3.23), we deduce that (3.48)

holds for small x > 0. �

Numerically, the series (3.48) appears to converge for |x| < 3 which is in accor-

dance with 1
9 being a root of the characteristic polynomial of the recurrence (3.49).
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Since the poles of W5 are simple, no logarithmic terms are involved in (3.48). In

particular, by computing a few more residues from (3.49),

p5(x) = 0.329934x+ 0.00661673x3 + 0.000262333x5 + 0.0000141185x7 +O(x9)

near 0, explaining the strikingly straight shape of p5(x) on [0, 1] – see Figure 1

(c). This phenomenon was observed by Pearson [158] who stated that for p5(x)/x

between x = 0 and x = 1,

“the graphical construction, however carefully reinvestigated, did

not permit of our considering the curve to be anything but a

straight line. . . ”

This conjecture was investigated in [92] where the nonlinearity was first rigorously

established. The difficulty of computing the underlying Bessel integrals is hence

manifest.

Remark 3.5.1. The moments W3, W4, W5, as well as the Apéry-like sequences

studied in Chapter 11, are closely related to solutions of Calabi-Yau type differential

equations [8], which can be identified with differential equations for the periods of

Calabi-Yau manifolds in theoretical physics. For example, the generating function

for W5(2k) is an analytic solution of equation 34 tabulated in [7]. ♦

3.6. Derivative evaluations of Wn

As illustrated by Theorem 3.4, the residues of Wn(s) are very important for

studying the densities pn as they directly translate into behaviour of pn at 0. The

residues may be obtained as a linear combination of the values of Wn(s) and W ′n(s).

Example 3.6.1 (Residues of Wn). Using the functional equation for W3(s) and

L’Hôpital’s rule we find that the residue at s = −2 can be expressed as

Res−2(W3) =
8 + 12W ′3(0)− 4W ′3(2)

9
. (3.50)

This works in general and we likewise obtain:

Res−2(W5) =
16 + 1140W ′5(0)− 804W ′5(2) + 64W ′5(4)

225
, (3.51)

Res−4(W5) =
26 Res−2(W5)− 16− 20W ′5(0) + 4W ′5(2)

225
. (3.52)
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In the presence of double poles, as for W4,

lim
s→−2

(s+ 2)2W4(s) =
3 + 4W ′4(0)−W ′4(2)

8
(3.53)

and for the residue:

Res−2(W4) =
9 + 18W ′4(0)− 3W ′4(2) + 4W ′′4 (0)−W ′′4 (2)

16
. (3.54)

Equations (3.53, 3.54) are used in Example 3.4.1 and each unknown is evaluated

below. ♦

We are therefore interested in evaluating the derivatives of Wn for even argu-

ments.

Example 3.6.2 (Derivatives of W3 and W4). Differentiating the double integral

for W3(s) (3.6) under the integral sign, we have

W ′3(0) =
1

8π2

∫ 2π

0

∫ 2π

0
log(3 + 2 cosx+ 2 cos y + 2 cos(x− y)) dx dy (3.55)

=
1

2

∫ 1

0

∫ 1

0
log(4 sin(πy) cos(2πx) + 3− 2 cos(2πy)) dx dy.

Then, using∫ 1

0
log(a+ b cos(2πx)) dx = log

a+
√
a2 − b2
2

for a > b > 0, (3.56)

we deduce

W ′3(0) =

∫ 5/6

1/6
log(2 sin(πy)) dy =

1

π
Cl
(π

3

)
, (3.57)

where Cl denotes the Clausen function, given by

Cl(t) =

∞∑
n=1

sin(nt)

n2
= −

∫ t

0
log
∣∣∣2 sin

x

2

∣∣∣dx. (3.58)

Knowing that the residue at s = −2 is 2/(
√

3π), we can also obtain from (3.50)

W ′3(2) = 2 +
3

π
Cl
(π

3

)
− 3
√

3

2π
.

In like fashion,

W ′4(0) =
3

2

∫ 1
2

0

∫ 1
2

0
log
(
(1 + cos(2πx) + cos(2πy))2 + (sin(2πx) + sin(2πy))2

)
dx dy

=
3

8π2

∫ π

0

∫ π

0
log
(
3 + 2 cosx+ 2 cos y + 2 cos (x− y)

)
dx dy (3.59)

=
7

2

ζ(3)

π2
.
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The final equality will be shown in Example 3.6.3.

The superficial similarity between W ′3(0) in (3.55) and W ′4(0) in (3.59) comes

from applying the formula (see Chapter 8)

∫ 1

0
log
(
(a+ cos 2πx)2 + (b+ sin 2πx)2

)
dx =

 log(a2 + b2) if a2 + b2 > 1,

0 otherwise

to the triple integral of W ′4(0). (As this reduction breaks the symmetry, we cannot

apply it to W ′5(0) to get a similar integral.)

The factor of 3 in the numerator of (3.59) can be explained: after applying

the reduction above and symmetry, we are actually required to evaluate the first

double integral in (3.59) in the region bounded by y = x+ 1/2, y = 0, y = 1/2 and

x = 1/2. This region splits into a right isosceles triangle and a square; let the value

of the integral be Ib and Ia in them respectively. Now, in the region bounded by

y = x+ 1/2, y = x, y = 0, and y = 1/2 (i. e. Ib and half of Ia), the transformation

x 7→ y−x leaves the integrand invariant but maps the region into a; thus Ib = Ia/2,

and on the whole region the integral has value 3Ia/2. ♦

Remark 3.6.1. In general, differentiating the Bessel integral expression [65]

Wn(s) = 2s+1−k Γ(1 + s
2)

Γ(k − s
2)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x) dx, (3.60)

under the integral sign gives

W ′n(0) = n

∫ ∞
0

(
log
(2

x

)
− γ
)
Jn−1

0 (x)J1(x) dx

= log(2)− γ − n
∫ ∞

0
log(x)Jn−1

0 (x)J1(x) dx, (3.61)

where γ is the Euler-Mascheroni constant (a novel method for the computation of

which can be found in Section 14.3), and

W ′′n (0) = n

∫ ∞
0

(
log
(2

x

)
− γ
)2

Jn−1
0 (x)J1(x) dx.

Likewise

W ′n(−1) = (log(2)− γ)Wn(−1)−
∫ ∞

0
log(x)Jn0 (x) dx,

W ′n(1) =

∫ ∞
0

n

x
Jn−1

0 (x)J1(x) (1− γ − log(2x)) dx.
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We may therefore obtain many identities by comparing the above equations to

known values, for instance

3

∫ ∞
0

log(x)J2
0 (x)J1(x) dx = log(2)− γ − 1

π
Cl
(π

3

)
.

♦

In fact, the hypergeometric representation of W3 and W4, (2.18) and (2.19)

proven in Chapter 2, also make derivation of the derivatives of W3 and W4 possible.

Example 3.6.3 (Evaluation of W ′3(0) and W ′4(0)). If we write (2.18) or (2.19) as

Wn(s) = f1(s)F1(s)+f2(s)F2(s), where F1, F2 are the corresponding hypergeometric

functions, then it can be readily verified that f1(0) = f ′2(0) = F ′2(0) = 0. Thus,

differentiating (2.18) by appealing to the product rule, we get

W ′3(0) =
1

π
3F2

( 1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣14
)

=
1

π
Cl
(π

3

)
.

The last equality follows from setting θ = π/6 in the identity

2 sin(θ) 3F2

( 1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣sin2 θ

)
= Cl (2 θ) + 2 θ log (2 sin θ) , (3.62)

Likewise, differentiating (2.19) gives

W ′4(0) =
4

π2 4F3

( 1
2 ,

1
2 ,

1
2 , 1

3
2 ,

3
2 ,

3
2

∣∣∣∣1) =
∞∑
n=0

1

(2n+ 1)3
=

7ζ(3)

2π2
, (3.63)

thus verifying (3.59). ♦

Differentiating (2.18) at s = 2 leads to the evaluation

3F2

( 1
2 ,

1
2 ,

1
2

5
2 ,

5
2

∣∣∣∣14
)

=
27

4

(
Cl
(π

3

)
−
√

3

2

)
,

while from (2.19) at s = 2 we obtain

W ′4(2) = 3 +
14ζ(3)− 12

π2
. (3.64)

Thus we have enough information to evaluate (3.53) (with the answer 3/(2π2)).

Note that with two such starting values, all derivatives of W3(s) or W4(s) at even

s may be computed recursively.

The same technique yields

W ′′3 (0) =
π2

12
+

4 log(2)

π
Cl
(π

3

)
− 4

π

∞∑
n=0

(
2n
n

)
42n

∑n
k=0

1
2k+1

(2n+ 1)2
, (3.65)
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and, quite remarkably,

W ′′4 (0) =
π2

12
+

7ζ(3) log(2)

π2
+

4

π2

∞∑
n=0

Hn − 3Hn+1/2

(2n+ 1)3
(3.66)

=
24Li4

(
1
2

)
− 18ζ(4) + 21ζ(3) log(2)− 6ζ(2) log2(2) + log4(2)

π2
,

where the very final evaluation is obtained from results in [58, §5] (more sums of

this type are evaluated in Chapter 13). Here Li4(x) is the polylogarithm of order

4, while the continuation of Hn is given by γ + Ψ(n + 1) and Ψ is the digamma

function (see (5.24)). So for non-negative integers n, we have Hn =
∑n

k=1 1/k as

before, and

Hn+1/2 = 2

n+1∑
k=1

1

2k − 1
− 2 log(2).

An evaluation of W ′′3 (0) in terms of polylogarithmic constants is given in [55]

and reprised in Chapter 9. In particular, this gives an evaluation of the sum on the

right-hand side of (3.65).

Finally, the corresponding sum for W ′′4 (2) may be split into a telescoping part

and a part containing W ′′4 (0). Therefore, it can also be written as a linear combina-

tion of the constants used in (3.66). In summary, we have all the pieces to evaluate

(3.54), obtaining the answer 9 log(2)/(2π2).

3.6.1. Relations with Mahler measures. For a (Laurent) polynomial

f(x1, x2, . . . , xn), its logarithmic Mahler measure, see for instance [168], is defined

as

µ(f) =

∫ 1

0
. . .

∫ 1

0
log
∣∣f (e2πit1 , . . . , e2πitn

)∣∣dt1 · · · dtn. (3.67)

Recall that the sth moments of an n-step random walk are given by

Wn(s) =

∫ 1

0
. . .

∫ 1

0

∣∣∣∣ n∑
k=1

e2πitk

∣∣∣∣sdt1 · · · dtn = ‖x1 + . . .+ xn‖ss

where ‖ · ‖p denotes the p-norm over the unit n-torus, and hence

W ′n(0) = µ(x1 + · · ·+ xn) = µ(1 + x1 + · · ·+ xn−1). (3.68)

Thus the derivative evaluations in the previous sections are also Mahler measure

evaluations. In particular, we rediscovered

W ′3(0) =
1

π
Cl
(π

3

)
= µ(1 + x1 + x2),
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along with

W ′4(0) =
7ζ(3)

2π2
= µ(1 + x1 + x2 + x3)

which are both due to C. Smyth [168, (1.1) and (1.2)] with proofs first published

in [60, Appendix 1].

With this connection realised, we find the following conjectural expressions put

forth by Rodriguez-Villegas, mentioned in a different form in [93],

W ′5(0)
?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt, (3.69)

W ′6(0)
?
=

(
3

π2

)3 ∫ ∞
0

η2(e−t)η2(e−2t)η2(e−3t)η2(e−6t) t4 dt, (3.70)

where η was defined in (3.40). We have confirmed numerically that the evaluation

of W ′5(0) in (3.69) holds to 600 places, and that (3.70) holds to 80 places. Details

of these somewhat arduous confirmations are given in [19].

Differentiating the series expansion for Wn(s) obtained in Chapter 2 term by

term, we obtain

W ′n(0) = log(n)−
∞∑
m=1

1

2m

m∑
k=0

(
m

k

)
(−1)kWn(2k)

n2k
. (3.71)

On the other hand, from [168] we find the strikingly similar

W ′n(0) =
1

2
log(n)− γ

2
−
∞∑
m=2

1

2m

m∑
k=0

(
m

k

)
(−1)kWn(2k)

k!nk
. (3.72)

Finally, we note that Wn(s) itself is a special case of zeta Mahler measure as in-

troduced recently in [5]. We come back to Mahler measures in Chapters 8 and

9.

3.7. New results on Wn

In this section, we resolve a central case of Conjecture 1.1, among proving other

identities. We heavily borrow results from [20].

From [20, equation (23)], we have for even k > 0,

W3(k) =
3k+3/2

π 2k Γ(k/2 + 1)2

∫ ∞
0

tk+1K0(t)2I0(t)dt, (3.73)

where I0(t),K0(t) denote the modified Bessel functions of the first and second kinds,

respectively.
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Similarly, [20, (55)] states that for even k > 0,

W4(k) =
4k+2

π2 Γ(k/2 + 1)2

∫ ∞
0

tk+1K0(t)3I0(t)dt. (3.74)

Equation (3.73) can be reduced to a closed form as a 3F2, below (for instance

using Mathematica). We are thus led to:

Theorem 3.9 (Single hypergeometric for W3(s)). For s not a negative integer less

than −1,

W3(s) =
3s+3/2

2π

Γ(1 + s/2)2

Γ(s+ 2)
3F2

( s+2
2 , s+2

2 , s+2
2

1, s+3
2

∣∣∣∣14
)
. (3.75)

Proof. It can be easily checked that both sides agree for k = −1, 0, 1, 2, and

also satisfy the same recursion (using Zeilberger’s algorithm). Therefore they agree

for all integers s > −2. We shall now use Carlson’s theorem, recorded as Theorem

1.3 in Chapter 1. Both sides of (3.75) are of exponential type, and standard esti-

mate shows that the right-hand side is bounded by e|y|π/2 on the imaginary axis.

Therefore the conditions of Carlson’s theorem are satisfied and the identity holds

whenever the right-hand side converges. It also follows that (3.73) holds for all k

with Re k > −2. �

Turning our attention to the negative integers, we have for integer k ≥ 0:

W3(−2k − 1) =
4

π3

(
2kk!

(2k)!

)2 ∫ ∞
0

t2kK0(t)3dt, (3.76)

because the two sides satisfy the same recursion [20, (8)], and agree when k = 0, 1

[20, (47) and (48)].

Remark 3.7.1. Equation (3.76) however does not hold when k is not an integer.

Also, combining (3.76) and (3.73) for W3(−1), we deduce∫ ∞
0

K0(t)2I0(t) dt =
2√
3π

∫ ∞
0

K0(t)3 dt =
π2

2
√

3

∫ ∞
0

J0(t)3 dt.

Integrals of t2kK0(t)3 and t2k+1K0(t)3I0(t), among others, have been studied re-

cently in a statistical mechanics context [156]. ♦

From (3.76), we experimentally determined a single hypergeometric for W3(s)

at negative odd integers:
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Lemma 3.1. For k ≥ 0 an integer,

W3(−2k − 1) =

√
3
(

2k
k

)2
24k+132k 3F2

( 1
2 ,

1
2 ,

1
2

k + 1, k + 1

∣∣∣∣14
)
. (3.77)

Proof. It is easy to check that both sides agree at k = 0 and 1. Therefore

we need only to show that they satisfy the same recursion. The recursion for the

left-hand side implies a contiguous relation for the right-hand side, which is easily

verified by Maple, or can be readily checked by Zeilberger’s algorithm. A different

proof is also illustrative: denote the right hand side of (3.77), with argument x

instead of 1/4, by Fk(x). In Chapter 14, a general method is given which allows us

to write Fk+1(x) as a differential operator of Fk(x). Therefore, the recursion satisfied

by the W3 side gives a differential expression for Fk, which can be simplified using

the third order differential equation also satisfied by Fk. In the simplified expression,

the factor 1− 4x emerges, so it equals 0 identically when x = 1/4. �

The integral in (3.76) shows that W3(−2k−1) decays to 0 rapidly – very roughly

like 9−k as k →∞ – and so is never 0 when k is an integer.

To show that (3.74) holds for more general k required more work. Using Nichol-

son’s integral representation in [195],

I0(t)K0(t) =
2

π

∫ π/2

0
K0(2t sin a) da,

the integral in (3.74) simplifies to

2

π

∫ π/2

0

∫ ∞
0

tk+1K0(t)2K0(2t sin a) dtda. (3.78)

The inner integral in (3.78) simplifies in terms of a Meijer G-function; Mathematica

is able to produce
√
π

8 sink+2 a
G3,2

3,3

(
−1

2 ,−
1
2 ,

1
2

0, 0, 0

∣∣∣∣ 1

sin2 a

)
,

which transforms, via (2.29), to

√
π

8 sink+2 a
G2,3

3,3

(
1, 1, 1
3
2 ,

3
2 ,

1
2

∣∣∣∣ sin2 a

)
.

Let t = sin2 a in the above function, so the outer integral in (3.78) transforms to

√
π

16

∫ 1

0
t−

k+3
2 (1− t)−

1
2 G2,3

3,3

(
1, 1, 1
3
2 ,

3
2 ,

1
2

∣∣∣∣t) dt. (3.79)
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We can resolve this integral by applying the Euler-type integral∫ 1

0
t−a(1− t)a−b−1Gm,np,q

(
c

d

∣∣∣∣zt)dt = Γ(a− b)Gm,n+1
p+1,q+1

(
a, c

d, b

∣∣∣∣z) . (3.80)

Indeed, when k = −1, the application of (3.80) recovers the Meijer G representation

of W4(−1) in Chapter 2; that is, (3.74) holds for k = −1.

When k = 1, the resulting Meijer G-function is

G2,4
4,4

(
2, 1, 1, 1
3
2 ,

3
2 ,

1
2 ,

3
2

∣∣∣∣1) ,
to which we apply Nesterenko’s theorem [153], turning it into the triple integral

(up to a constant factor)

∫ 1

0

∫ 1

0

∫ 1

0

√
x(1− x)z

y(1− y)(1− z)(1− x(1− yz))3
dxdydz.

We can reduce the triple integral to a single integral,∫ 1

0

8E′(t)
(
(1 + t2)K ′(t)− 2E′(t)

)
(1− t2)2

dt.

Now applying the change of variable t 7→ (1 − t)/(1 + t), followed by quadratic

transformations for K and E [46], we finally get the expression∫ 1

0

4(1 + t)

t2
E

(
2
√
t

1 + t

)(
K(t)− E(t)

)
dt, (3.81)

which is, indeed, the correct constant multiple times the expression for W4(1) in

(2.49).

(In fact, in view of our results and techniques presented in Chapters 6 and 7,

we can simplify the integral (3.81) directly. Cleaning up the first E term using a

quadratic transform, we then integrate 1−t2
t (5E(t)K(t)−2K(t)2−3E(t)2) by parts

and add the result to our integral in order to clear the 1/t2 in the denominator.

The expression produced is a linear combination of the moments of E(t)2,K(t)2

and E(t)K(t), which can be simplified to (2.34).)

We finally observe that both sides of (3.74) satisfy the same recursion [20, (9)],

hence they agree for k = 0, 1, 2, . . .. Carlson’s theorem applies since the growth on

the imaginary axis is the same as for (3.73), so we have proven:

Lemma 3.2. Equation (3.74) holds for all k with Re k > −2.
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Theorem 3.10 (Alternative Meijer G representation for W4(s)). For all s,

W4(s) =
22s+1

π2 Γ(1
2(s+ 2))2

G2,4
4,4

(
1, 1, 1, s+3

2
s+2

2 , s+2
2 , s+2

2 , 1
2

∣∣∣∣1). (3.82)

Proof. Apply (3.80) to (3.79) for general k, and equality holds by Lemma

3.2. �

Note that Lemma 3.2 combined with the formula for W4(−1) in Chapter 2 gives

the Bessel identity

4

π3

∫ ∞
0

K0(t)3I0(t) dt =

∫ ∞
0

J0(t)4 dt. (3.83)

Armed with the knowledge of Lemma 3.2, we may now resolve a very special

but central case (corresponding to n = 2) of Conjecture 1.1.

Theorem 3.11. For integer s,

W4(s) =

∞∑
j=0

(
s/2

j

)2

W3(s− 2j). (3.84)

Proof. In Chapter 1 it is shown that both sides satisfy the same three-term

recurrence, and agree when s is even. Therefore, we only need to show that the

identity holds for two consecutive odd values of s.

For s = −1, the right-hand side of (3.84) is

∞∑
j=0

(
−1/2

j

)2

W3(−1− 2j) =
∞∑
j=0

22−2j

π3j!2

∫ ∞
0

t2jK0(t)3 dt

upon using (3.76). After interchanging summation and integration (which is justi-

fied as all terms are positive), this reduces to

4

π3

∫ ∞
0

K0(t)3I0(t) dt,

which is the value for W4(−1) by Lemma 3.2.

We note that the recursion for W4(s) gives the pleasing reflection property

W4(−2k − 1) 26k = W4(2k − 1).

In particular, W4(−3) = 1
64 W4(1). Now computing the right-hand side of (3.84) at

s = −3, and interchanging summation and integration as before, we obtain

∞∑
j=0

(
−3/2

j

)2

W3(−3− 2j) =
4

π3

∫ ∞
0

t2K0(t)3I0(t) dt =
1

64
W4(1) = W4(−3).

Therefore (3.84) holds when s = −1,−3, and thus holds for all integer s. �





CHAPTER 4

More Results on Uniform Random Walks

Abstract. In this chapter we include a number of results on random walks

which do not fit into the context of the first three chapters. In particular, we in-

vestigate uniform random walks with different step sizes, or confined to a limited

number of directions, or lifted to higher dimensions.

4.1. Elementary derivations of p2 and p3

The probability density p2 (equation (3.1), Chapter 3) may be derived from

completely elementary considerations. Without loss of generality, we start from

the origin and let the first step land on the point (0, 1). For the second step to

land inside the circle with radius r centred at the origin, it must be contained

between the two tangents to the circle from (0, 1). Using basic trigonometry, the

angle between the two tangents is 4asin(r/2), therefore the cumulative distribution

P2(r) = 4asin(r/2)/(2π). Taking the derivative with respect to r recovers

p2(x) =
2

π
√

4− x2
.

Example 4.1.1. We can achieve a bit more with the same argument. Let pa2(r)

denote the probability density of a 2-step walk where the step lengths are 1 and a

(without loss of generality, in this order). We consider the angle θ between these

two steps, such that the walker ends up in a circle of radius r. The cosine rule gives

|θ| ≤ acos
(
a2+1−r2

2a

)
. Consequently,

pa2(r) =
2r

π
√

4a2 − (1 + a2 − r2)2
, |a− 1| ≤ r ≤ a+ 1. (4.1)

The general expression for the sth moment of the distance from the origin is

1

π

∫ π

0

(
a2 + 1 + 2a cos(t)

)s/2
dt = (1 + a)s 2F1

(
− s

2 ,
1
2

1

∣∣∣∣ 4a

(1 + a)2

)
, (4.2)

67
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since after a change of variable, the left hand side integral is of Euler-type for a 2F1

[11], i. e. it is of the form∫ 1

0
xb−1(1− x)c−b−1(1− zx)−a dx =

Γ(b)Γ(c− b)
Γ(c)

2F1

(
a, b

c

∣∣∣∣z). (4.3)

In particular, the (−1)st, 1st and 2nd moments are, respectively, 2
π(a+1)K

(2
√
a

a+1

)
,

2(a+1)
π E

(2
√
a

a+1

)
and a2 + 1. ♦

We know give an elementary derivation for the density p3. Again, let the first

step fall on (0, 1), and let the second step form an angle t with the positive x-axis

(by symmetry let t ≥ 0); it therefore lands on the point (1 + cos(t), sin(t)). Now

consider a circle of radius r > 1; the r ≤ 1 case is very similar. The third step needs

to be confined within this circle, so it must be contained between the two blue radii

shown on the right of Figure 1. The angle s between these two radii can be found

using trigonometry, using the coordinates of the intersections between the circles

x2 + y2 = r2 and (x− 1− cos(t))2 + (y − sin(t))2 = 1.

Figure 1. Elementary derivation of p3. The origin is on the left;

lengths and angles are marked.

The two circles do not always intersect; for r > 1, they intersect when 0 ≤ t ≤ t1,

where t1 = acos(1
2(r2 − 2r − 1)). For t in this domain, we can calculate that

4 sin
s

2
=

√
8r2 − 8 cos(t)− 2(r2 − 1)2

1 + cos(t)
.
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Therefore, when r > 1, we have

p3(r) =
1

2π2

d

dr

∫ t1

0
sdt. (4.4)

After a few trigonometric and linear changes of variables, we simplify (4.4) down to

p3(r) =
1

2π2

∫ 1

0

[
t(1− t)

(
(3− r)(1 + r)

4r
− t
)(

(r − 1)2

4r
+ t

)]−1/2

dt.

This can be computed using the help of∫ 1

0

dt√
t(1− t)(a− t)(b− t)

=
2√

a(b− 1)
K

(√
b− a
a(b− 1)

)
. (4.5)

When r ≤ 1, the only difference we make to the above derivation is that the two

circles intersect when t0 ≤ t ≤ t1, where t0 = acos(1
2(r2 + 2r − 1)), and we proceed

similarly for the rest of the calculation. We thus obtain

p3(r) =


√
r

π2
K

(√
(3− r)(1 + r)3

16r

)
if r > 1

4r

π2
√

(3− r)(1 + r)3
K

(√
16r

(3− r)(1 + r)3

)
if r ≤ 1.

Relating the two cases using Jacobi’s imaginary transformation [46], the formulas

for p3 obtained above agree with equation (3.2).

Remark 4.1.1. We remark that (4.5) itself can be proven by the change of variable

x = (b−1)t/(b− t) – that is, a Mobius transformation fixing two of the singularities

in the integrand and sending another to infinity – this makes the denominators into

the square root of a cubic. Evaluations like this are not flukes, but merely reflect

the fact that the underlying algebraic curves have genus one (see e. g. [178]). ♦

4.2. Three-step walk with different step lengths

We now look at the 3-step walk in which the step sizes are different. Without

loss of generality, we can let the first step length be 1, the second be a, and the third

be b. Then, mirroring the integral in (1.1), the average distance from the origin is∫ 1

0

∫ 1

0

√
(1 + a cos(2πs) + b cos(2πt))2 + (a sin(2πs) + b sin(2πt))2 dsdt.

We follow closely the analysis for W3(1) in Chapter 1; thus we first attempt to

simplify the trigonometric expression in the integrand. It turns out that a clean
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reduction is only possible when (without loss of generality) b = 1, so in this case,

denoting the average distance from the origin by Da, we have

Da =

∫ 1

0

∫ 1

0

√
2 + a2 + 2 cos(2πt) + 4a cos(π(2s− t)) cos(πt) dsdt. (4.6)

From the periodicity of the integral in (4.6), we make a change of variable and

obtain

Da =

∫ 1

0

∫ 1

0

√
2 + a2 + 2 cos(2πt) + 4a cos(2πs) cos(πt) dsdt. (4.7)

Since ∫ π

0

√
A+B cos(t) dt = 2

√
A+BE

(√
2B

A+B

)
, (4.8)

we can evaluate the t integral in (4.7); after a trigonometric change of variable, we

get

Da =
4a2

π2

∫ 2/a

0

1 + x√
4− a2x2

E

(
2
√
x

1 + x

)
dx.

As was done for the analysis for W3(1), we apply Jacobi’s imaginary transformations

(1.35) to the E term, which leads to

Da =
4a2

π2
Re

∫ 2/a

0

2E(x)− (1− x2)K(x)√
4− a2x2

dx.

Next, we expand E and K as series, interchange the order of summation and inte-

gration and appeal to analytic continuation. This gives the next theorem:

Theorem 4.1. With f(a) :=
√

(1−
√

1− 4/a2)/2, we have

Da =
4a

π

(
6E(f(a))2−4(2−f(a)2)E(f(a))K(f(a))+(3−2f(a)2)K(f(a))2

)
. (4.9)

In particular, f(2) = 1/
√

2 is the first singular value, so the elliptic integrals

can be easily evaluated, producing the following closed form:

Corollary 4.1. In a 3-step uniform random walk, the average distance from the

origin when the step sizes are 1, 1 and 2 is

D2 =
48π

Γ4(1
4)

+
Γ4(1

4)

4π3
. (4.10)

Note that we may work out the (−1)st moment analogously, using instead the

formula ∫ π

0

dt√
A+B cos(t)

=
2√

A+B
K

(√
2B

A+B

)
, (4.11)
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and the imaginary transformation

K(1/k) = k(K(k) + iK ′(k)).

It follows that the (−1)st moment of a 3-step walk with step sizes 1, 1 and 2 is

Γ4(1/4)/(4π3).

4.3. Higher dimensions

We start with a motivating example.

Example 4.3.1. The geometric argument from which we found p2 in Section 4.1

generalises to give a very simple expression for the 2-step probability density of a

uniform random walk in three dimensions, which we denote by p
(3)
2 . Here, instead

of seeking the arc-length subtended by the half-angle t = 2asin(r/2) from the origin,

we need to find the surface area of a spherical cap subtended by a cone with the

same half-angle. The surface area of a (unit-)spherical cap is conveniently 2πh,

where h is the height of the cap. Since in this case h = 1− cos(t), we have the very

elegant formula

p
(3)
2 =

d

dr

2π
(
1− cos(2 asin r2)

)
4π

=
r

2
. (4.12)

From this, we easily obtain that the sth moment of the distance for the 2-step

walk in 3D is 2s+1/(s+ 2). The 1st moment, 4/3, can also be found independently

as an elementary single integral, by fixing the first step and then using spherical

coordinates and the Jacobian. ♦

We will now compute two general results using elementary multi-dimensional

integrals. The first result is the sth moment (of the distance from the origin) of

the 2-step walk in any dimension d, denoted by W
(d)
2 (s). The second result is the

2nd moment of the n-step walk in any dimension d, W
(d)
n (2). We again begin with

simpler examples.

Example 4.3.2. We first show that in 3D, the 2nd moment for the n-step walk is

n. Indeed, using spherical coordinates, we have

W (3)
n (2) =

1

(4π)n

∫ π

t1=0
· · ·
∫ π

tn=0

∫ 2π

s1=0
· · ·
∫ 2π

sn=0
dt1 · · · dtnds1 · · · dsn sin(t1) · · · sin(tn)

×
[( n∑

i=1

sin(ti) cos(si)
)2

+
( n∑
i=1

sin(ti) sin(si)
)2

+
( n∑
i=1

cos(ti)
)2
]
,
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where the first line of the integrand contains the Jacobian. By symmetry (since

we can rotate the coordinate system), the second line of the integrand may be

replaced by 3(
∑n

i=1 cos(ti))
2. We expand out the new integrand and note that only

the cos2(ti) terms do not vanish; now the claimed evaluation follows by elementary

integration. ♦

A more involved computation, similar to Example 4.3.2, leads to:

Theorem 4.2. The 2nd moment of the distance from the origin for the n-step walk

in d-dimensions is n.

Proof. We proceed as we did for the 3D case. For d-dimensions we need the

hyper-spherical coordinates, the expression for the Jacobian, the surface area of the

d-dimensional unit sphere, and we again appeal to symmetry. Gathering everything

together, we have

W (d)
n (2) = d

(
Γ(d/2 + 1)

d πd/2

)n ∫
C

( n∑
i=1

cos(t1i)
)2

d−2∏
j=1

n∏
k=1

sind−1−j(tjk),

where
∫
C involves integrating with respect to the variables tjk where 1 ≤ j ≤ d− 2

and 1 ≤ k ≤ n; the interval of integration is from 0 to 2π for t(d−1)k, and from 0 to

π for all other tjk.

As in the 3D case, only the cos2(t1i) terms survive the expansion, and we have,

after simplification,

W (d)
n (2) = d

(
Γ(d/2 + 1)

d πd/2

)n
(2π)nn

∫ π
0 cos2(t) sind−2(t) dt∫ π

0 sind−2(t) dt

(d−2∏
j=1

∫ π

0
sinj(r)dr

)n
.

All the integrals on the right hand side are beta integrals (see equation (5.21)), and

as such evaluate in terms of Gamma functions. The resulting product telescopes,

and ultimately simplifies to n. �

Example 4.3.3. We now find the sth moment of a 2-step walk in 4D. It is not

hard to write down the integral,

W
(4)
2 (s) =

1

2π2

∫ 2π

0

∫ π

0

∫ π

0
dtdsdr sin2(t) sin(s)×[√

(cos t+ 1)2 + (sin t cos s)2 + (sin t sin s cos r)2 + (sin t sin s sin r)2
]s
.
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The radical in the integrand simplifies to 2 cos(t/2), and therefore we end up with

a beta integral, with the evaluation

W
(4)
2 (s) =

2s+2 Γ(3+s
2 )

√
π Γ(3 + s

2)
. (4.13)

As expected, the 2nd moment is 2; more interestingly, the 1st moment (average) is

64
15π . ♦

We may generalise the result Example 4.3.3 in the following theorem:

Theorem 4.3. The sth moment of the distance from the origin for the 2-step walk

in d-dimensions is

W
(d)
2 (s) =

2d+s−2 Γ(d2) Γ(d+s−1
2 )

√
π Γ(d+ s

2 − 1)
. (4.14)

Proof. In hyper-spherical coordinates, fix the first step in an axis direction

such that the second step only depends on the angle t1, so the distance from the

origin may be modeled by 2 cos(t1/2) (as in the 4D case). Inserting the volume for

the n-dimensional unit sphere and the Jacobian, we have

W
(d)
2 (s) =

Γ(d2 + 1)

d πd/2

∫ 2π

0

∫ π

0
· · ·
∫ π

0
sind−2(t1) sind−3(t2) · · · sin(td−2)

×
(

2 cos
t1
2

)s
dt1 · · · dtd−1.

This factors into a product of beta integrals; the product also telescopes, and sim-

plifies to the claimed evaluation. �

Since the probability density is the inverse Mellin transform of the moments

(c.f. Chapter 3, Section 2), by residue calculus we immediate have the following

result:

Corollary 4.2. The probability density for the 2-step walk in d-dimensions is

p
(d)
2 (r) =

rd−2

√
π 2d−3

Γ(d2)

Γ(d−1
2 )

(4− r2)(d−3)/2. (4.15)

This recaptures the formula (4.12) for p
(3)
2 (r) and also gives p

(4)
2 (r) = r2

√
4− r2/π.
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4.3.1. A closer look at three dimensions. Watson [195] records a general

formula for the cumulative distribution for the n-step walk in d-dimensions:∫ r

0
p(d)
n (s)ds = Γ

(d
2

)n−1
rd/2

∫ ∞
0

(2

t

)(n−1)(d/2−1)
Jd/2(rt)Jd/2−1(t)n dt. (4.16)

Since the Bessel function is elementary at half integer orders, (4.16) allows us to

analyse the probability density in odd-dimensions.

Example 4.3.4. For instance, the n-step density in 3D is given by the integral

2

π

∫ ∞
0

r sinn(t) sin(rt)

tn−1
dt, (4.17)

and since the (indefinite) integral evaluates in terms of the sine integral, we find for

instance

p
(3)
3 (r) =


r2

2 if r ∈ [0, 1]

r(3−r)
4 if r ∈ [1, 3],

(4.18)

and therefore W
(3)
3 (s) = 3(3s+2−1)

4(s+2)(s+3) , in particular the average distance is 13/8. Note

the expression for W
(3)
3 (s) has an analytic continuation to the whole complex plane

with a simple pole at −3. Similarly,

p
(3)
4 (r) =


r2(8−3r)

16 if r ∈ [0, 2]

r(4−r)2
16 if r ∈ [2, 4],

(4.19)

and therefore W
(3)
4 (s) = 2s+3(2s+2−1)

(s+2)(s+3)(s+4) , in particular the average distance is 28/15.

The expression for W
(3)
4 (s) is meromorphic with simple poles at −3 and −4. ♦

Indeed, we have:

Theorem 4.4. The probability density for the distance from the origin for the n-

step walk in 3D is given by the following piecewise-polynomial,

p(3)
n (r) =

r(n− 2i− r)n−2

2n(n− 2)!

n∑
i=0

(
n

i

)
(−1)isgn(n− 2i− r), (4.20)

where sgn(x) denotes the sign of x.

Proof. Using the formula

sinn t =


∑n

i=0

(
n
i

)
(−1)i+n/22−n cos((n− 2i)t) if n is even∑n

i=0

(
n
i

)
(−1)i+(n−1)/22−n sin((n− 2i)t) if n is odd,

(4.21)
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we find after some algebra that

dn−2

dtn−2
sinn(t) sin(rt) =

n∑
i=0

(
n

i

)
(−1)i(n− 2i− r)n−22−n sin((n− 2i− r)t). (4.22)

We also need the fact that ∫ ∞
0

sin(rt)

t
dt =

π

2
sgn(r). (4.23)

Now, equation (4.20) follows from integrating (4.17) by parts (n − 2) times, and

simplifying the result using (4.22) and (4.23). �

We may use equation (4.20) to find (the analytic continuations of) the moments

in 3D, which are elementary expressions. On the other hand, we may use elementar-

ily derived results to evaluate non-trivial integrals which are special cases of (4.16).

For example, Theorem 4.2 combined with (4.16) produces∫ ∞
0

∫ n

0
rd/2+2tn−d(n−1)/2 Jd/2−1(t)nJd/2−1(rt) drdt =

n 2(d/2−1)(1−n)

Γ(d2)n−1
. (4.24)

Similarly, Theorem 4.3 combined with (4.16) gives the evaluation∫ ∞
0

∫ 2

0
rd/2+st2−d/2 Jd/2−1(t)2Jd/2−1(rt) drdt =

2d/2+s−1 Γ(d+s−1
2 )

√
π Γ(d+ s

2 − 1)
. (4.25)

And finally, with (4.1), we obtain∫ ∞
0

t J0(t)J0(at)J0(rt) dt =
2

π
√

4a2 − (1 + a2 − r2)2
.

Remark 4.3.1 (Probability of return). We can also use (4.16) to find the proba-

bility of returning to the unit sphere after n steps in 3 dimensions. Indeed, putting

r = 1 and simplifying the resulting integral by parts, the required probability is

2

(n+ 1)π

∫ ∞
0

sinc(t)n+1 dt, (4.26)

where sinc(t) = sin(t)/t. A treatment of the sinc integrals (4.26) has been given by

many authors (see for instance [38]); expressions in terms of finite sums are known,

for we may apply (4.21) and integration by parts to deduce∫ ∞
0

sinc(t)n dt =
π

2n(n− 1)!

[n
2

]∑
i=0

(
n

i

)
(−1)i(n− 2i)n−1. (4.27)

When n is even, the right hand sum conveniently simplifies:∫ ∞
0

sinc(t)2n dt =
π

2(2n− 1)!

〈2n− 1

n− 1

〉
.
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Here
〈
n
k

〉
is an Eulerian numbers, i. e. the number of permutations of n elements

that have exactly k ascending runs [197, Ch. 1].

For n = 2, 3, . . ., the probabilities of returning to the unit sphere are given by

1

4
,

1

6
,

23

192
,

11

120
,

841

11520
, . . .

where the first value (1/4) follows also by simple geometric considerations. Asymp-

totically, the probability of returning after n steps is roughly
√

6
π(n+1)3

(see for

instance [147], or use (4.28) below). ♦

Example 4.3.5 (Asymptotics). By the central limit theorem (see also the next

section) and the Mellin transform, it is not hard to find the asymptotic behaviour

of the 3D walk for large n:

p(3)
n (r) ≈ 3

√
6

π
n−

3
2 r2e−

3r2

2n , W (3)
n (s) ≈ 2√

π

(2n

3

) s
2
Γ
(s+ 3

2

)
. (4.28)

In particular, the average distance from the origin after n steps is around
√

8n
3π .

For the uniform random walk on the plane, we may obtain better approximations

of pn than Rayleigh’s 2x
n e
−x2/n for large n. We follow Pearson’s approach in [158],

starting from writing Kluyver’s expression (3.5) as

pn(x) =

∫ ∞
0

xtJ0(xt)
(
J0(t)et

2/4
)n
e−nt

2/4 dt. (4.29)

We expand out the parenthesised term as a series around t = 0. Truncating the

series after k terms (let us call this truncation Sk(t)) gives a good approximation for

(J0(t)et
2/4)n for small t, while for large t the e−nt

2/4 factor compensates. Even for

S2(t) (the partial expansion being 1−nt4/64), we obtain the better approximation

pn(x) ≈ xe−
x2

n

(
4n3 − 2n2 + 4nx2 − x4

2n4

)
. (4.30)

This gives a more refined approximation to the mean Wn(1) (
√
nπ/2 +

√
π/n/32),

and for the standard deviation (
√
n(1− π/4)− π/32); compare with Remark 1.2.2.

Because of the connection (3.68) between W ′n(0) and Mahler measures, we can

use Pearson’s idea to give an asymptotic expansion for the measure µ(1 +x1 + · · ·+

xn−1) by computing the integral∫ n

0

∫ ∞
0

Sk(t)e
−nt2/4J0(xt)xt log(x) dtdx. (4.31)
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The double integral may be evaluated in closed form, thanks to the presence of

the exponential. We take the answer of (4.31) and discard all terms that decay

exponentially. For instance, using S3(t), we have

µ(1 + x1 + · · ·+ xn−1) ∼ log n

2
− γ

2
+

1

8n
+

5

288n2
− 1

192n3
+O(n−4).

Unfortunately, the approximation is not great; for S5, we get only 6 digits of agree-

ment for n = 20. ♦

4.4. Limiting the number of directions

In this section, we briefly comment on some asymptotic similarities between the

two dimensional uniform random walk and the random walk with a limited number

of directions. For instance, when we limit the walk to the four cardinal directions,

then we end up with a walk on a square lattice [118].

Example 4.4.1. In the square lattice case, it is a simple combinatorial exercise

to find the probability of ending up at coordinate (u, v) after n steps. Therefore,

we may look quantitatively at the moments of the distance from the origin, which

we call Wln(s). Indeed, Wln(2), being a double sum, may be evaluated, albeit

tediously, by using contiguous versions of Dixon’s identity (see Chapter 14). It

transpires that Wln(2) is exactly n, which equals the 2nd moment of a uniform

random walk.

The 4th and the 6th moments are more unwieldy, and to evaluate them the

multiple-Zeilberger algorithm [202] is the method of choice. In each case, perhaps

unexpectedly, an order 1 recurrence is produced. Solving the recurrences, we have

the results

Wln(4) = Wn(4), W ln(6) = Wn(6).

However, agreement does not continue beyond this point, since Wl2(2s) = (4s +

2s+1)/4 and W2(2s) =
(

2s
s

)
; therefore the 8th and higher even moments for these

two walks are different. This phenomenon is more general: numerical evidence

suggests that for the walk with k possible, evenly spread directions, the 0th, 2nd,

4th, . . . (2k−2)th moments, and only these, agree with the corresponding moments

of Wn. ♦
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In a recent paper [14], the asymptotic behaviour of a random walk restricted

to k directions (being the vertices of a regular k-gon) is considered. Applying the

multivariate central limit theorem and using some trigonometric identities, it is

shown that when k > 2, the resulting covariance matrix does not depend on k, and

hence in the limit k →∞ we recover the uniform random walk. It follows that the

asymptotic behaviour of the sth moment of the distance of an n-step walk (for any

k > 2) is

E
[
χs2
] (n

2

)s/2
,

where E[χs2] denotes the expectation of the sth power of the χ distribution with 2

degrees of freedom. It follows by a standard change of variable and integration that

asymptotically this is ns/2Γ(s/2+1), in agreement with a result obtained in Chapter

1. In particular, this shows that the average distance from the origin, regardless of

the restriction on the number of directions, behaves like Wn(1) when n is large.

The remaining case not covered by the asymptotics above is when k = 2 (the 1D

lattice). In this case, unsurprisingly the asymptotic behaviour of the sth moment

is ns/2 times the expectation of the sth power of the half-normal distribution (that

is, the normal distribution ‘folded’ around the mean at 0). This comes out to be

(2n)s/2 Γ(1+s
2 )

√
π

,

and therefore, we recover the asymptotic distance from the origin,
√

2n/π.

Remark 4.4.1. We wrap up our foray into random walks by showing that when

s = 2, the asymptotic behaviour of the distance from the origin, n, found above

agrees with the exact result of the 2nd moment. This can be proven since the exact

expression for the 2nd moment, when the walk is confined to k directions, is

1

kn

k∑
ti=1

(
cos

2πt1
k

+cos
2πt2
k

+· · ·+cos
2πtn
k

)2

+

(
sin

2πt1
k

+sin
2πt2
k

+· · ·+sin
2πtn
k

)2

.

We expand the brackets and observe that all the cross terms disappear in the

summation. We then collect the cos2(t) + sin2(t) terms and the answer n follows. ♦



CHAPTER 5

Moments of Elliptic Integrals and Catalan’s Constant

Abstract. We investigate the moments of Ramanujan’s alternative elliptic in-

tegrals and of related hypergeometric functions. Along the way we are able to

give some surprising closed forms for Catalan-related constants and various hy-

pergeometric identities.

5.1. Introduction and background

As in [46, pp. 178–179], for 0 ≤ s < 1/2 and 0 ≤ k ≤ 1, define the generalised

elliptic integrals by

Ks(k) :=
π

2
2F1

( 1
2 − s,

1
2 + s

1

∣∣∣∣k2

)
, (5.1)

Es(k) :=
π

2
2F1

(
−1

2 − s,
1
2 + s

1

∣∣∣∣k2

)
. (5.2)

We use the standard notation for hypergeometric functions, e. g.

2F1

(
a, b

c

∣∣∣∣z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n!

and its analytic continuation. One of the key early results, due to Gauss (1812), is

the closed form

2F1

(
a, b

c

∣∣∣∣1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(5.3)

when Re(c− a− b) > 0.

We are interested in the moments given by

Kn = Kn,s :=

∫ 1

0
knKs(k) dk, En = En,s :=

∫ 1

0
knEs(k) dk. (5.4)

for both integer and real values of n. We immediately note that Ks = K(−s). Also,

Euler’s transform [11, Eqn. (2.2.7)] and a contiguous relation yield

E(−s) =
4s
(
1− k2

)
2s− 1

Ks +
2s+ 1

2s− 1
Es.

79
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An integral form of Ks is given by

Ks(k) =
cosπs

2

∫ 1

0

ts−1/2

(1− t)1/2+s(1− k2 t)1/2−s dt. (5.5)

This and many more forms for Ks, Es can be obtained from http://dlmf.nist.

gov/15.6. There are four values for which these integrals are truly special:

s ∈ Ω :=

{
0,

1

6
,
1

4
,
1

3

}
,

that is, when cos2(πs) is rational. We return to these special values in Chapters 10

and 12. These give Ramanujan’s alternative elliptic integrals as displayed in [164]

and first decoded in [46]. A comprehensive study is given in [34] (see also [113]

and [10]). These four cases all produce modular functions [46, §5.5], and there is

currently a renewal of interest regarding related series for 1/π (e. g. [31], [70], [174]

and [47]).

5.1.1. Series for π. Truly novel series for 1/π, based on elliptic integrals, were

discovered by Ramanujan around 1910 [31]. A famous one, with s = 1/4 is:

1

π
=

2
√

2

9801

∞∑
k=0

4k! (1103 + 26390k)

k!43964k
. (5.6)

Each term of (5.6) adds eight correct digits. Gosper used (5.6) for the computation

of a then-record 17 million digits of π in 1985 – thereby completing the first proof

of (5.6) (based on the idea that algebraic numbers with bounded degree and height

cannot be too close to each other numerically) [46, Ch. 3]. Shortly thereafter, David

and Gregory Chudnovsky found the following variant, which uses s = 1/3 and lies

in the quadratic field Q(
√
−163) rather than Q(

√
−58):

1

π
= 12

∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)

(3k)! k!3 6403203k+3/2
. (5.7)

Each term of (5.7) adds 14 correct digits. The Chudnovsky brothers used this

formula several times, culminating in a 1994 calculation of π to over four billion

decimal digits. Remarkably, (5.7) was used again in late 2009 for the then-record

computation of π to 2.7 trillion places. A striking recent series due to Yang, see

[209], is

1

π
=

√
15

18

∞∑
n=0

n∑
k=0

(
n

k

)4 4n+ 1

36n
. (5.8)

Further work has been done on similar series, see for example Chapter 12.

http://dlmf.nist.gov/15.6
http://dlmf.nist.gov/15.6
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5.1.2. Classical results. A coupling equation between Es and Ks is given in

[46, p. 178]:

Es = (1− k2)Ks +
k(1− k2)

1 + 2s

d

dk
Ks. (5.9)

Integrating this by parts leads to

K2,s =
(1 + 2s)E0,s − 2sK0,s

2− 2s
. (5.10)

In the same fashion, multiplying by kn before integrating the coupling provides a

recursion for Kn+2,s:

Kn+2,s =
(n− 2 s)Kn,s + (1 + 2 s)En,s

n+ 2 (1− s)
. (5.11)

We also consider the complementary integrals:

K
′s(k) := Ks(

√
1− k2) and E

′s(k) := Es(
√

1− k2).

The four integrals then satisfy a version of Legendre’s identity,

EsK ′
s

+KsE′
s −KsK ′

s
=
π

2

cosπs

1 + 2s
(5.12)

for all 0 ≤ s ≤ 1. We will come back to this amazing identity later in Chapters 6

and 12.

In [46, pp. 198–99] the moments are determined for the original complete elliptic

integrals K and E. These are linked by the equations

E = (1− k2)K + k(1− k2)
dK

dk
, (5.13)

which is (5.9) with s = 0 and

E = K + k
dE

dk
, (5.14)

from which we derive the following recursions:

Theorem 5.1 (s = 0). For n = 0, 1, 2, . . .

(a) Kn+2 =
nKn + En
n+ 2

and (b) En =
Kn + 1

n+ 2
. (5.15)

The recursion holds for real n. Moreover,

K0 = 2G, K1 = 1, E0 = G+
1

2
, E1 =

2

3
. (5.16)
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Here

G :=
∑
n≥0

(−1)n

(2n+ 1)2
= L−4(2) (5.17)

is Catalan’s constant whose irrationality is still not proven. Indeed [3] uses the

moment K0 as a definition of G.

The current record for computation of G is 31.026 billion decimal digits in 2009.

Computations often use the following central binomial formula due to Ramanujan

[46, last formula] or its recent generalisations [62]:

3

8

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

+
π

8
log(2 +

√
3) = G. (5.18)

Early in 2011, a string of base-4096 digits of Catalan’s constant beginning at position

10 trillion was computed on an IBM Blue Gene/P machine [22].

5.2. Basic results

We commence in this section with various fundamental representations and

evaluations. Then in Section 3 we provide a generalisation of Catalan’s constant

arising as the expectation of Ks. In Section 4 we consider related contour integrals.

Finally, in section 5 we look at negative and fractional moments.

5.2.1. Hypergeometric closed forms. A concise closed form for the mo-

ments is

Theorem 5.2 (Hypergeometric forms). For 0 ≤ s < 1
2 we have

Kn,s =
π

2(n+ 1)
3F2

( 1
2 − s,

1
2 + s, n+1

2

1, n+3
2

∣∣∣∣1), (5.19)

En,s =
π

2(n+ 1)
3F2

(−1
2 − s,

1
2 + s, n+1

2

1, n+3
2

∣∣∣∣1). (5.20)

These also hold in the limit for s = 1
2 .

Proof. We use the following standard technique which makes use of the beta

integral,

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
ta−1(1− t)b−1dt. (5.21)
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After interchanging the order of summation and integration:∫ 1

0
xu−1(1− x)v−1

2F1

(
a, 1− a

b

∣∣∣∣x)dx =
∞∑
n=0

(a)n(1− a)n
(b)nn!

∫ 1

0
xn+u−1(1− x)v−1dx

=
∞∑
n=0

(a)n(1− a)n(u)n
(b)n(u+ v)nn!

Γ(u)Γ(v)

Γ(u+ v)

=
Γ(u)Γ(v)

Γ(u+ v)
3F2

(
a, 1− a, u
b, u+ v

∣∣∣∣1). (5.22)

Similarly,

Γ(u)Γ(v)

Γ(u+ v)
3F2

(
a,−a, u
b, u+ v

∣∣∣∣1) =

∫ 1

0
xu−1(1− x)v−1

2F1

(
a,−a
b

∣∣∣∣x)dx.

By applying these to (5.1) and (5.2) we immediately get (5.19) and (5.20). �

As long as 0 < s < 1/2, the first series (5.19) is Saalschütztian [179]. That is,

the denominator parameters sum to one more than those in the numerator, but it

is not well-poised, and can be reduced to Gamma functions only for n = ±1 since

then it reduces to a 2F1. The second (5.20) is not even Saalschützian, although it

is nearly well-poised (see [179]) and also can be reduced to Gamma functions for

n = ±1. Thus, for |s| < 1/2 we find

K1,s =
cosπs

1− 4s2
, E1,s =

2

2s+ 3

cosπs

1− 4s2
. (5.23)

A cleaner form for Kn,0 is recorded in equation (7.21).

In what follows, we will be using the digamma function, given in terms of the

Gamma function and the Euler-Mascheroni constant by:

Ψ(x) :=
Γ′(x)

Γ(x)
= −γ +

∞∑
n=1

x− 1

n(n+ x− 1)
. (5.24)

(So Ψ(1) = −γ.) We prove:

Theorem 5.3 (Odd moments of Ks). For odd integers 2m+ 1 and m = 0, 1, 2, . . .,

K2m+1,s =
cosπsm!2

4 Γ
(

3
2 − s+m

)
Γ
(

3
2 + s+m

) m∑
k=0

Γ
(

1
2 − s+ k

)
Γ
(

1
2 + s+ k

)
k!2

. (5.25)

Proof. The Legendre polynomial (which we will more thoroughly investigate

in Chapters 10, 11 and 12),

y = Pν(x) := 2F1

(
−ν, ν + 1

1

∣∣∣∣1− x2

)
,
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is a solution of the differential equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ ν(ν + 1)y = 0.

In consequence we may deduce that

2F1

(
a, 1− a

1

∣∣∣∣z) =
sinπa

π

∞∑
k=0

(a)k(1− a)k
k!2

(1− z)k× (5.26)

{2Ψ(1 + k)−Ψ(a+ k)−Ψ(1− a+ k)− log(1− z)} ,

using [138, p. 44, first formula (b = 1− a)].

Now, by integrating the series (5.26) term-by-term and applying (5.22), we have

3F2

(
a, 1− a, n
1, n+ 1

∣∣∣∣1) = n

∫ 1

0
zn−1

2F1

(
a, 1− a

1

∣∣∣∣z) dz

=
n! sinπa

π

∞∑
k=0

(a)k(1− a)k
k!(k + n)!

{Ψ(1 + k) + Ψ(n+ 1 + k)−Ψ(a+ k)−Ψ(1− a+ k)} .

(This offers an apparently new approach for summing this class of hypergeometric

series.) Then, by creative telescoping on the right hand side, one finds for any

positive integer n,

3F2

(
a, 1− a, n
1, n+ 1

∣∣∣∣1) =
Γ(n) Γ(1 + n)

Γ(a+ n) Γ(1− a+ n)

n−1∑
k=0

(a)k(1− a)k
k!2

. (5.27)

Now, with n = m+ 1 in (5.27), we conclude the proof of Theorem 5.3. �

For m = 0, Theorem 5.3 reduces to the evaluation given in (5.23). A prettier

partial fraction decomposition is

K2m+1,s =
cosπs

2

m∑
k=0

m!2

(m− k)!(m+ k + 1)!

(
1

2k + 1− 2s
+

1

2k + 1 + 2s

)
,

(5.28)

which can easily be confirmed inductively, using (5.65) below.

For s = 0 the result of Theorem 5.3 originates with Ramanujan. Adamchik [3]

reprises its substantial history and extensions which include a formula due inde-

pendently to Bailey and Hodgkinson in 1931 and which subsumes (5.27). A special

case of Bailey’s formula is

3F2

(
a, b, c+ n− 1

a+ b+ n, c

∣∣∣∣1) =
Γ(n)Γ(a+ b+ n)

Γ(a+ n)Γ(b+ n)

n−1∑
k=0

(a)k(b)k
(c)k(1)k

. (5.29)

This identity, once found, can be easily checked by Zeilberger’s algorithm.
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Example 5.2.1 (Odd moments of Es). The corresponding form for E2m+1,s is

E2m−1,s =
cosπs

2(s+m) + 1

{
1

2s+ 1
+

m−1∑
k=0

(m− 1)!2

(m− 1− k)!(m+ k)!

(2s+ 1)(2k + 1)

(2k + 1)2 − 4s2

}
,

(5.30)

on combining (5.25) with (5.66) below. ♦

Example 5.2.2 (Digamma consequences). For 0 < a < 1/2, we use

γ(ν) :=
1

2

[
Ψ

(
ν + 1

2

)
−Ψ

(
ν

2

)]
,

for which

γ

(
1

2

)
=
π

2
, γ

(
1

4

)
=

π√
2
−
√

2 log(
√

2− 1),

γ

(
1

3

)
=

π√
3

+ log 2, γ

(
1

6

)
= π +

√
3 log(2 +

√
3).

More generally,

∞∑
k=0

(a)k(1− a)k(
3
2

)
k
k!

[
Ψ(k + 1) + Ψ

(
k +

3

2

)
−Ψ(k + a)−Ψ(k + 1− a)

]

=
2γ(a)− π csc(πa)

1− 2a
.

This in turn gives

3F2

(
a, 1− a, 1

2

1, 3
2

∣∣∣∣1) =
2 sin(πa)

π(1− 2a)
γ(a)− 1

1− 2a
. (5.31)

Taking the limit as a→ 1/2 in (5.31) gives two useful specialisations:

3F2

( 1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣1) =
4G

π
, Ψ′

(
1

4

)
= π2 + 8G. (5.32)

♦

Example 5.2.3 (Half-integer values of s). For s = m + 1/2, and m,n = 0, 1, 2 . . .

we can obtain a terminating representation using Saalschütz’s theorem (14.10),

Kn,m+1/2 =
π

2(n+ 1)
3F2

(−m,m+ 1, n+1
2

1, n+3
2

∣∣∣∣1)
=

(−1)mπ

4

Γ2
(
n+1

2

)
Γ
(
n+1

2 −m
)

Γ
(
n+3

2 +m
) , (5.33)

and likewise

En,m+1/2 =
(−1)m(m+ 1)π

4

Γ2
(
n+1

2

)
Γ
(
n+1

2 −m
)

Γ
(
n+5

2 +m
) , (5.34)
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by equation (14.12) in Chapter 14. ♦

5.2.2. The complementary integrals. By contrast, the complementary in-

tegral moments are less recondite.

Theorem 5.4 (Complementary moments). For n = 0, 1, 2, . . . and 0 ≤ s < 1
2 ,

K ′n,s =
π

4

Γ2
(
n+1

2

)
Γ
(
n+2−2s

2

)
Γ
(
n+2+2s

2

) , (5.35)

E′n,s =
π

2(n+ 1)

Γ2
(
n+3

2

)
Γ
(
n+2−2s

2

)
Γ
(
n+4+2s

2

) . (5.36)

These also hold in the limit for s = 1
2 .

In particular, we recursively obtain for all real n:

(a) K ′n+2,s =
(n+ 1)2

(n+ 2)2 − 4s2
K ′n,s, (b) E′n,s =

n+ 1

n+ 2 + 2 s
K ′n,s, (5.37)

with (c) K ′0,s =
π

4

sin (π s)

s
, (d) K ′1,s =

cosπs

1− 4s2
.

Proof. To establish (5.35) we recall that

Ks′ =
π

2
2F1

( 1
2 − s,

1
2 + s

1

∣∣∣∣1− k2

)
, (5.38)

and so

K ′n,s =
π

2

∫ 1

0
xn 2F1

( 1
2 − s,

1
2 + s

1

∣∣∣∣1− x2

)
dx

=
π

4

∫ 1

0
(1− x)

n+1
2
−1

2F1

( 1
2 − s,

1
2 + s

1

∣∣∣∣x)dx

=
π

2(n+ 1)
3F2

( 1
2 − s,

1
2 + s, 1

1, n+3
2

∣∣∣∣1) =
π

2(n+ 1)
2F1

( 1
2 − s,

1
2 + s

n+3
2

∣∣∣∣1),
which is summable, by Gauss’ formula (5.3), to the desired result.

The proof of (5.36) is similar, and the recursions follow. �

Example 5.2.4 (Complementary closed forms). With s = 0 and n = 0, 1 we recover

K
′
0 =

π2

4
, E

′
0 =

π2

8
, K

′
1 = 1, E

′
1 =

2

3
,

as discussed in [46, p. 198]. Correspondingly

K ′0,1/6 =
3π

4
, K ′1,1/6 =

9
√

3

16
, E′0,1/6 =

9π

28
, K ′1,1/6 =

27
√

3

80
,

K ′0,1/3 =
3
√

3π

8
, K ′1,1/3 =

9

10
, E′0,1/3 =

9
√

3π

64
, E′1,1/3 =

27

55
.
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We note that π, not π2 appears in these evaluations, since in (5.37, c), sin(πs)/s→ π

as s→ 0. ♦

We note that a comparison of Theorems 5.3 and 5.4 shows that (trivially)

K ′1,s = K1,s and E′1,s = E1,s.

Remark 5.2.1. The formula∫ 1

0
K (k)

dk

1 + k
=

∫ 1

0
K

(
1− h
1 + h

)
dh

1 + h
=

1

2

∫ 1

0
K ′ (k) dk (5.39)

is recorded in [46, p. 199]. It is proven by using the quadratic transform [46, Thm

1.2 (b)] for the second equality and a substitution for the first. This implies

2
∞∑
n=0

(−1)nKn =
π2

4
= K ′0, (5.40)

on appealing to Theorem 5.4.

The corresponding identity for s = 1/6 is best written as∫ 1

0
2F1

( 1
3 ,

2
3

1

∣∣∣∣1− t3)dt = 3

∫ 1

0
2F1

( 1
3 ,

2
3

1

∣∣∣∣t3) dt

1 + 2 t
, (5.41)

which follows analogously from the cubic transformation [45, (2.1)] and a change

of variables. This is a beautiful counterpart to (5.39), especially when the latter is

written in hypergeometric form:∫ 1

0
2F1

( 1
2 ,

1
2

1

∣∣∣∣1− k2

)
dk = 2

∫ 1

0
2F1

( 1
2 ,

1
2

1

∣∣∣∣k2

)
dk

1 + k
. (5.42)

Additionally, [46, p. 188] outlines how to derive∫ 1

0

K(k) dk√
1− k2

= K

(
1√
2

)2

.

Using the same technique, we generalise this to∫ 1

0

Ks(k) dk√
1− k2

= Ks

(
1√
2

)2

=
cos2(πs)

16π
Γ2

(
1 + 2s

4

)
Γ2

(
1− 2s

4

)
. (5.43)

Here we have used Gauss’ formula (5.3) for the evaluation of Ks(1/
√

2). By the gen-

eralised Legendre’s identity (5.12), which simplifies as the complementary integrals

coincide with the original ones at 1/
√

2, we obtain

Es
(

1√
2

)
=
Ks
(

1√
2

)
2

+
π cosπs

4(2s+ 1)Ks( 1√
2
)
.

♦



88 5. MOMENTS OF ELLIPTIC INTEGRALS AND CATALAN’S CONSTANT

5.3. Closed form initial values

Empirically, we discovered the algebraic relation

2(1 + s)E0,s − (1 + 2s)K0,s =
cosπs

1 + 2s
. (5.44)

On using (5.10) to eliminate E0,s in (5.44), it becomes

K2,s =
K0,s + cos (π s)

4− 4s2
(5.45)

which in turn is a special case of (5.65) below with r = 1
2 (as is justified by Carlson’s

Theorem 1.3), thus proving our empirical observation.

Hence, to resolve all integral values for a given s, we are left with looking for

satisfactory representations only for K0,s. We will write

Gs :=
1

2
K0,s =

π

4
3F2

( 1
2 ,

1
2 − s,

1
2 + s

1, 3
2

∣∣∣∣1) (5.46)

and call this the generalised Catalan constant.

5.3.1. Evaluation of Gs. From (5.19) we obtain

K0,s =
π

2
3F2

( 1
2 ,

1
2 − s,

1
2 + s

1, 3
2

∣∣∣∣1) =
cosπs

2

∞∑
n=0

Γ
(

1
2 + n+ s

)
Γ
(

1
2 + n− s

)
(2n+ 1)n!2

=
cosπ s

2

∞∑
n=0

β
(
n+

1

2
− s, n+

1

2
+ s
) (

2n
n

)
2n+ 1

=
cosπs

4

∫ 1

0

arcsin
(

2
√
t− t2

)
t1+s (1− t)1−s dt

=
cosπs

2

∫ π/2

0

{
tan2s

(
θ

2

)
+ cot2s

(
θ

2

)}
θ

sin θ
dθ. (5.47)

Here we again write the Gamma terms as a beta integral, and exchange the order

of integration and summation, followed by various trigonometric substitutions. For

example, we have

K0,0 =

∫ π/2

0

θ

sin θ
dθ = 2G.

The final equality has various derivations [46, 3]; these include contour integration

as explored in Section 5.4.

If we now make the trigonometric substitution t = tan(θ/2) in (5.47), and

integrate the two resulting terms separately, we arrive at the following evaluation.



5.3. CLOSED FORM INITIAL VALUES 89

Theorem 5.5 (Generalised Catalan constants). For 0 ≤ s ≤ 1
2 , we have

K0,s = cosπs

∫ 1

0

(
t2s−1 + t−2s−1

)
arctan tdt

=
cosπs

8s

{
Ψ
(3− 2s

4

)
+ Ψ

(1 + 2s

4

)
−Ψ

(1− 2s

4

)
−Ψ

(3 + 2s

4

)}
=

cosπs

4 s

{
Ψ
(s

2
+

1

4

)
−Ψ

(s
2

+
3

4

)}
+

π

4 s
= 2Gs. (5.48)

Note that for s = 0, applying L’Hôpital’s rule to (5.48) yields

K0,0 =
1

8
Ψ′
(

1

4

)
− 1

8
Ψ′
(

3

4

)
which is precisely 2G.

The digamma expression in (5.48) simplifies entirely when s ∈ Ω.

Corollary 5.1 (generalised Catalan values for s ∈ Ω).

G0 = G, G1/6 =
3
√

3

4
log 2, G1/4 = log

(
1+
√

2
)
, G1/3 =

3
√

3

8
log
(
2+
√

3
)
. (5.49)

Mathematica, which currently knows more about the Ψ function than Maple,

can evaluate the integral in Theorem 5.5 symbolically for some s. For example, for

s = 1/12, after simplification we get

G1/12 = 3 (
√

3 + 1)
{

log
(√

2− 1
)

+

√
3

2
log
(√

3 +
√

2
)}
.

More generally, the evaluation requires only knowledge of sin(πs/2), and hence we

can determine which s gives a reduction to radicals. As a last example,

G1/5 =
5

8

√
5 + 2

√
5

{√
5− 1

2
arcsinh

(√
5 + 2

√
5

)
− arcsinh

(√
5− 2

√
5

)}
.

5.3.2. Other generalisations of G. Other famous representations of G in-

clude

G = −
∫ π/2

0
log

(
2 sin

t

2

)
dt (5.50)

=

∫ π/2

0
log

(
2 cos

t

2

)
dt, (5.51)

and G = −
∫ π/2

0
log (tan t) dt, (5.52)
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which easily follow from (5.50) and (5.51) . To prove (5.50), which is an example

of a log-sin integral more carefully studied in Chapter 9, we integrate by parts and

obtain

−
∫ π/2

0
log

(
2 sin

t

2

)
dt = 2

∫ π/4

0
t cot tdt− π

4
log 2

= 2

∫ π/4

0
2F1

( 1
2 ,

1
2

3
2

∣∣∣∣sin2 t

)
cos tdt− π

4
log 2

= 2

∫ 1/
√

2

0

arcsinx

x
dx− π

4
log 2

=
(
G+

π

4
log 2

)
− π

4
log 2 = G.

The second and third equalities hold since x 2F1(1
2 ,

1
2 ; 3

2 ;x2) = arcsinx. The final

equality follows on integrating arcsin(x)/x term by term. Inter alia, we have shown

that

2G =

∫ π/2

0

t

sin t
dt =

∫ π/2

0
2F1

( 1
2 ,

1
2

3
2

∣∣∣∣sin2 t

)
dt. (5.53)

We may generalise (5.50) or equivalently (5.53) to:

Proposition 5.1.

Gs =
cosπs

2

∫ π/2

0
tan2s t 2F1

( 1
2 ,

1
2 − s
3
2

∣∣∣∣sin2 t

)
dt. (5.54)

Proof. We write

Gs =
1

2

∫ 1

0
Ks(k) dk =

π

4

∫ 1

0
2F1

( 1
2 − s,

1
2 + s

1

∣∣∣∣k2

)
dk

=
cosπs

4

∫ 1

0
ts−1/2(1− t)−s−1/2 dt

∫ 1

0
(1− k2t)s−1/2 dk

=
cosπs

4

∫ 1

0
ts−1/2(1− t)−s−1/2

2F1

( 1
2 ,

1
2 − s
3
2

∣∣∣∣t) dt

=
cosπs

2

∫ π/2

0
tan2s u 2F1

( 1
2 ,

1
2 − s
3
2

∣∣∣∣sin2 u

)
du.

�

Note that from Theorem 5.2 and (5.31), we recover Theorem 5.5 in the equiva-

lent form

Gs =
π

4
3F2

( 1
2 − s,

1
2 + s, 1

2

1, 3
2

∣∣∣∣1) =
cosπs

4s
γ
(1

2
+ s
)
− π

8s
. (5.55)
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5.4. Contour integrals for Gs

By contour integration of t/ sin t on the infinite rectangle above [0, π/2], we

obtain

G0 =
1

2

∫ ∞
0

t

cosh t
dt =

∫ ∞
0

te−t

1 + e−2t
dt =

∑
n≥0

(−1)n

(2n+ 1)2
= G. (5.56)

Here we have used the geometric series and integrated term by term.

Done carefully, contour integration over the same rectangle, converting to expo-

nentials, and then integrating term by term, provides a general integral evaluation:

Lemma 5.1 (Contour integral for Gs). For 0 ≤ s < 1/2 we have

2Gs = K0,s = 22s sin (2πs)

∫ ∞
0

cosh4s t− sinh4s t

sinh2s+1 2t
tdt

+ cos (πs)

∫ ∞
0

cos (2 s arctan (sinh t))

cosh t
t dt. (5.57)

Now write (5.57) as

K0,s = sin (2πs)S(s) + cos (πs)C(s). (5.58)

To evaluate S(s) we make a substitution u = tanh(t). We obtain

S(s) =
1

2

∫ 1

0
(u−2s−1 − u2s−1) arctanh(u) du

=
−1

8s

(
2γ + 4 log(2) + Ψ

(1

2
− s
)

+ Ψ
(1

2
+ s
))

. (5.59)

To evaluate C(s) we note that

cos (2 s arctan (sinh t)) = cos (2 s arcsin (tanh t)) = 2F1

(
s,−s

1
2

∣∣∣∣tanh2 t

)
(5.60)

and so we obtain a converging series

C(s) =

∫ ∞
0

cos (2 s arctan (sinh t))

cosh t
t dt =

∞∑
n=0

(s)n (−s)n(
1
2

)
n

τn
n!

where

τn :=

∫ ∞
0

x2n

(1 + x2)n+1 arcsinh(x) dx.

Moreover,

τm+2 =

(
13 + 8m2 + 20m

)
τm+1 − 2 (m+ 1) (2m+ 1) τm

2 (m+ 2) (2m+ 3)
(5.61)

where τ0 = K0 = 2G and τ1 = E0 = G+ 1
2 . In particular C(0) = 2G.
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A closed form for τn is easily obtained by creative telescoping. It is

τn = β
(
n+

1

2
,
1

2

){2G

π
+

1

4

n∑
k=1

Γ2(k)

Γ2
(
k + 1

2

)}. (5.62)

Collecting up evaluations, we deduce that

K0,s = sin (2π s)

{
−1

8s

(
2γ + 4 log(2) + Ψ

(1

2
− s
)

+ Ψ
(1

2
+ s
))}

+

sin(2π s)

πs

{
G− π

∞∑
k=0

Γ (k + s+ 1) Γ (k − s+ 1)− k!2

8 Γ
(
k + 3

2

)2 }
.

This ultimately yields:

Theorem 5.6 (Contour series for Gs).

Gs =
sin 2πs

16s

[ ∞∑
k=1

Γ2(k)− Γ(k + s)Γ(k − s)
Γ2(k + 1

2)
+2Ψ

(1

2

)
−2Ψ

(
s+

1

2

)
+π tan(πs)+

8G

π

]
.

(5.63)

5.5. Closed forms at negative integers

We observe that (5.19) and (5.20) give analytic continuations which allow us to

study negative moments. In [3] Adamchik studies such moments of K.

5.5.1. Negative moments. Adamchik’s starting point is the study of Kn =

Kn,0, for which Ramanujan appears to have known that

(2r + 1)2K2r+1 − (2r)2K2r−1 = 1, (5.64)

for Re r > −1/2. For integer r this is a direct consequence of (5.25).

Experimentally, we found the following extension for general s by using integer

relation methods with s := 1/n to determine the coefficients:(
(2r + 1)2 − 4s2

)
K2r+1,s − (2r)2K2r−1,s = cosπs. (5.65)

For integer r this is established as follows – the general case then follows by Carlson’s

Theorem 1.3. Using (5.25) and the functional relation for the Γ function, we have:(
(2r + 1)2 − 4s2

)
K2r+1,s − 4r2K2r−1,s

=
π r!2

Γ(1
2 + r − s)Γ(1

2 + r + s)

{
r∑

k=0

(1
2 − s)k(

1
2 + s)k

k!2
−

r−1∑
k=0

(1
2 − s)k(

1
2 + s)k

k!2

}

=
π r!2

Γ(1
2 + r − s)Γ(1

2 + r + s)

(1
2 − s)r(

1
2 + s)r

r!2
= cos(πs).
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Equation (5.11), when combined with (5.65), implies

En,s =
(2s+ 1)2Kn,s + cosπs

(2s+ 1)(2s+ n+ 2)
, (5.66)

which extends (5.15) and completes the proof in Example 5.2.1.

Remark 5.5.1 (Terminating sums). While studying [3] we distilled the following.

(1) For 0 < a ≤ 1

3F2

( 1
2 ,

1
2 , a

1, 1 + a

∣∣∣∣1) =
4a

π
3F2

(
1, 1, 1− a

3
2 ,

3
2

∣∣∣∣1). (5.67)

In particular, when a = 1/2 or 1/4,

3F2

( 1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣1) =
2

π
3F2

(
1, 1, 1

2
3
2 ,

3
2

∣∣∣∣1) =
4

π
G,

3F2

( 3
4 , 1, 1
3
2 ,

3
2

∣∣∣∣1) =
Γ4(1

4)

16π
,

the last evaluation takes advantage of Dixon’s theorem (14.14).

(2) Moreover, for n = 1, 2, 3, . . .

3F2

( 1
2 ,

1
2 , n

1, 1 + n

∣∣∣∣1)
always terminates (this is a specialisation of (5.29)). For example,

3F2

( 1
2 ,

1
2 , 1

1, 2

∣∣∣∣1) =
4

π
.

(3) Also for n = 1, 2, . . .

(2n+ 1)2
3F2

(
1, 1,−n

3
2 ,

3
2

∣∣∣∣1)− 4n2
3F2

(
1, 1, 1− n

3
2 ,

3
2

∣∣∣∣1) = 1,

3F2

(
1, 1, 1− n

3
2 ,

3
2

∣∣∣∣1) =
42n−1

n2
(

2n
n

)2 n−1∑
k=0

(
2k
k

)2
42k

,

3F2

(
1, 1, 1

2 − n
3
2 ,

3
2

∣∣∣∣1) =

(
2n
n

)2
42n

{
2G+

n−1∑
k=0

42k(
2k
k

)2
(2k + 1)2

}
.

(4) For 0 < a ≤ 1 and n = 1, 2, . . .

3F2

(
1, 1, 1− n− a

3
2 ,

3
2

∣∣∣∣1) =
(a)2

n

(a+ 1
2)2
n

{
3F2

(
1, 1, 1− a

3
2 ,

3
2

∣∣∣∣1)+
1

4 a2

n−1∑
k=0

(a+ 1
2)2
k

(a+ 1)2
k

}
.

(5) Finally,

n∑
k=0

(−1)kk!

Γ2(k + 3
2)(n− k)!

=
n!

πΓ2(n+ 3
2)

n∑
k=0

Γ2(k + 1
2)

k!2
.
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♦

5.5.2. Analyticity of Kr,s for 0 ≤ s < 1/2. The analytic structure of r 7→

Kr,s is similar qualitatively for all s. There are simple poles at odd negative integers

with computable residues.

Theorem 5.7 (Poles of Kr,s). Let Rn,s denote the residue of Kr,s at r = −2n+ 1.

Then

(a) Rn+1,s =

(
n− 1

2

)2 − s2

n2
Rn,s, (b) R1,s =

π

2
. (5.68)

Explicitly

(c) Rn,s =
cosπsΓ

(
n− 1

2 + s
)

Γ
(
n− 1

2 − s
)

2 Γ2(n)
. (5.69)

Proof. Recursion (5.68, a) follows from multiplying (5.65) by 2(r+n) = (2r+

1)− (1− 2n) and computing the limits as r → −n.

Directly from Theorem 5.2, we have

R1,s =
π

2
lim
r→−1

r + 1

r + 1
3F2

( 1
2 − s,

1
2 + s, r+1

2

1, r+3
2

∣∣∣∣1) =
π

2
,

which is (b); part (c) follows easily as a telescoping product. �

5.5.3. Other rational values of s. For s = 0 only, K−1/2,s reduces to a case

of Dixon’s theorem and yields

K−1/2,0 =
Γ4(1

4)

16π
, (5.70)

a result known to Ramanujan. A closed form is also possible for K ′−1/3,1/6, or

equivalently

H =
π

2

∫ 1

0
2F1

( 1
3 ,

2
3

1

∣∣∣∣1− t3) dt. (5.71)

We first write

H =
π

6

∫ 1

0
x−

2
3 2F1

( 1
3 ,

2
3

1

∣∣∣∣1− x)dx =
π

6

∫ 1

0
(1− x)−

2
3 2F1

( 1
3 ,

2
3

1

∣∣∣∣x)dx.

Now the integral (5.22) shows this is π
2 2F1(1

3 , 1; 4
3 , 1). By Gauss’ formula (5.3) we

arrive at

H =

√
3

12
Γ3
(1

3

)
. (5.72)

This also follows directly from the analytic continuation of the formula (5.35).



CHAPTER 6

Moments of Products of Elliptic Integrals

Abstract. We consider the moments of products of complete elliptic integrals

of the first and second kinds. In particular, we derive new results using a variety

of means, aided by computer experimentation and a theorem of Zudilin (which

has been used in Chapter 2).

6.1. Motivation and general approach

We recall the definitions of the complete elliptic integral of the first kind K(x),

and the second kind E(x):

Definition 6.1.

K(x) =
π

2
2F1

( 1
2 ,

1
2

1

∣∣∣∣x2

)
, E(x) =

π

2
2F1

(
−1

2 ,
1
2

1

∣∣∣∣x2

)
; (6.1)

K(x) =

∫ π/2

0

dt√
1− x2 sin2 t

, E(x) =

∫ π/2

0

√
1− x2 sin2 t dt. (6.2)

As usual, K ′(x) = K(x′), E′(x) = E(x′), where x′ =
√

1− x2.

The complete elliptic integrals, apart from their theoretical importance in ar-

bitrary precision numerical computations [46] and the theory of theta functions

(see also Chapters 10 – 12), are also of significant interest in applied fields such as

electrodynamics, statistical mechanics, and random walks [56, 57]. They associate

in many ways with various lattices [110]. K and E were first used to provide ex-

plicit solutions to the perimeter of an ellipse (among other curves) as well as the

exact period of an ideal pendulum. They can be used to integrate algebraic expres-

sions involving square roots of cubic or quartic polynomials (e. g. see Chapter 4).

Their properties were investigated by Wallis, Landen, Fagnano, Euler, Lagrange,

Legendre, Gauss, Jacobi, among others; many such properties are recorded on the

general reference site http://functions.wolfram.com.

95
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The author was first drawn to the study of integral of products of K and E in

[56] (Chapter 2), in which it is shown that

2

∫ 1

0
K(x)2 dx =

∫ 1

0
K ′(x)2 dx, (6.3)

by relating both sides to a moment of the distance from the origin in a four step

uniform random walk on the plane. A much less recondite proof was only found

later: set x = (1− t)/(1 + t) on the left hand side of (6.3), and apply the quadratic

transform (6.4) below, and the result readily follows.

The four quadratic transforms [46], which we will use over and over, are:

K ′(x) =
2

1 + x
K

(
1− x
1 + x

)
(6.4)

K(x) =
1

1 + x
K

(
2
√
x

1 + x

)
(6.5)

E′(x) = (1 + x)E

(
1− x
1 + x

)
− xK ′(x) (6.6)

E(x) =
1 + x

2
E

(
2
√
x

1 + x

)
+

1− x2

2
K(x). (6.7)

In the following sections we will consider definite integrals involving products

of K,E,K ′, E′, especially the moments of the products, as a continuation of our

study in Chapter 5. A goal of this chapter is to produce closed forms for these

integrals whenever possible. When this is not achieved, closed forms for certain

linear combinations of integrals are instead obtained. Thus, we are able to prove a

large number of experimentally observed identities in [19].

The somewhat rich and unexpected results lend themselves for easy discov-

ery, thanks to the methods of experimental mathematics: for instance, the inte-

ger relations algorithm PSLQ [91], the Inverse Symbolic Calculator (ISC, hosted

at Newcastle, http://isc.carma.newcastle.edu.au/), the Online Encyclopedia

of Integer Sequences (OEIS, [180]), the Maple package gfun, Gosper’s algorithm

(which finds closed forms for indefinite sums of hypergeometric terms, [161]), and

Sister Celine’s method [161]. Indeed, large scale computer experiments [19] reveal

that there is a huge number of identities in the flavour of (6.3). Once discovered,

many results can be routinely established by the following elementary techniques:

(1) Connections with and transforms of hypergeometric and Meijer G-functions

(see also Chapter 2), as in the case of random walk integrals (Section 6.3).

http://isc.carma.newcastle.edu.au/
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(2) Interchange order of summation and integration, which is justified as all

terms in the relevant series are positive (Section 6.4) (we may use either

the series or the integrals for E or K).

(3) Change the variable x to x′, usually followed by a quadratic transform

(Section 6.5).

(4) Use a Fourier series originally due to Tricomi (Section 6.6).

(5) Apply Legendre’s relation (Section 6.7).

(6) Differentiate a product and integrate by parts (Section 6.8).

Section 6.2 and most of Section 6.7 are expository. The propositions in Section

6.4 are well-known, but the arithmetic nature of the moments, Theorem 6.3 and

Lemma 6.3 in Section 6.6 seem to be original. Section 6.3 contains new general

formulas for the moments of the product of two elliptic integrals, and Section 6.8

contains many new, though mostly easy, linear relations between the moments.

Some useful identities of elliptic integrals are also gathered throughout the chapter.

6.2. One elliptic integral

The moments of a single K,E,K ′, E′ are well known (e. g. see [46]). For com-

pleteness here we state a slightly more general result.

It follows by a straightforward application of the beta integral (5.21) that∫ 1

0
x′nxmK(x) dx =

π

4

Γ
(

1
2(m+ 1)

)
Γ
(

1
2(n+ 2)

)
Γ
(

1
2(m+ n+ 3)

) 3F2

( 1
2 ,

1
2 ,

m+1
2

1, m+n+3
2

∣∣∣∣1), (6.8)

∫ 1

0
x′nxmE(x) dx =

π

4

Γ
(

1
2(m+ 1)

)
Γ
(

1
2(n+ 2)

)
Γ
(

1
2(m+ n+ 3)

) 3F2

(−1
2 ,

1
2 ,

m+1
2

1, m+n+3
2

∣∣∣∣1). (6.9)

Using the obvious transformation x 7→ x′, we have∫ 1

0
x2n+1K(x)aE(x)bK ′(x)cE′(x)ddx =

∫ 1

0
x(1−x2)nK ′(x)aE′(x)bK(x)cE(x)ddx,

(6.10)

an equation which we appeal to often. Thus, using (6.10), we see that (6.8, 6.9)

also encapsulate the moments for K ′ and E′. We note that for convergence, m >

−1, n > −2. When m = 1 both formulas reduce to a 2F1 and can be summed by

Gauss’ theorem (5.3).

If in addition 2m + n + 1 = 0 in (6.8), then Dixon’s theorem (14.14) applies

and we may sum the 3F2 explicitly in terms of the Γ function. For instance, we

may compute
∫ 1

0 K(x)/x′ dx (which also follows from the Fourier series in Section
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6.6). In (6.9), Dixon’s theorem may only be applied to the single special case∫ 1
0 x
′E(x) dx = Γ4(1/4)/(48π).

In [40] (Chapter 5), the corresponding results for the moments of the generalised

elliptic integrals are derived similarly.

Remark 6.2.1. It is also possible to work out, using the beta integral, a number

of other results, such as

∫ 1

0
xm(1− x)nK(x) dx =

π

2

Γ(m+ 1)Γ(n+ 1)

Γ(m+ n+ 2)
4F3

( 1
2 ,

1
2 ,

m+1
2 , m+2

2

1, m+n+2
2 , m+n+3

2

∣∣∣∣1).
The above simplifies, for instance, when m = n = −1/2. ♦

6.3. Two complementary elliptic integrals

Though the simple cases corresponding to n = 0 in this section are tabulated

in [66], the general results appear to be new.

In [207], Zudilin’s Theorem connects, as a special case, triple integrals of ratio-

nal functions over the unit cube with generalised hypergeometric functions 7F6’s.

We state a restricted form of the theorem which is sufficient for our purposes:

Theorem 6.1 (Zudilin). Given h0, . . . , h5 for which both sides converge,

∫
[0,1]3

xh2−1yh3−1zh4−1(1− x)h0−h2−h3(1− y)h0−h3−h4(1− z)h0−h4−h5
(1− x(1− y(1− z)))h1

dx dy dz

=
Γ(h0 + 1)

∏4
j=2 Γ(hj)

∏4
j=1 Γ(h0 + 1− hj − hj+1)∏5

j=1 Γ(h0 + 1− hj)
×

7F6

(
h0, 1 + h0

2 , h1, h2, h3, h4, h5

h0
2 , 1 + h0 − h1, 1 + h0 − h2, 1 + h0 − h3, 1 + h0 − h4, 1 + h0 − h5

∣∣∣∣1
)
.

(6.11)

In Chapter 2, this theorem is used to derive hypergeometric evaluations for the

moments of random walks from their triple integral representations.

The idea here is to write a single integral involving products of elliptic integrals

as a double, then a triple integral of the required form, and then apply Theorem
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6.1. To do so, we require the following formulas, which are readily verified [1]:∫ 1

0

dx√
x(1− x)(a− x)

=
2√
a
K

(
1√
a

)
, (6.12)∫ 1

0

√
a− x

x(1− x)
dx = 2

√
a E

(
1√
a

)
, (6.13)∫ 1

a

dy√
y(1− y)(y − a)

= 2K ′(
√
a), (6.14)∫ 1

a

√
y√

(1− y)(y − a)
dy = 2E′(

√
a). (6.15)

Using the above relations, we have, for instance,∫ 1

0
E′(y)2 dy =

1

2

∫ 1

0

∫ 1

a2

√
y

(1− y)(y − a2)
E(
√

1− a2) dyda

=
1

4

∫ 1

0

∫ 1

0

√
y

(1− y)z(1− z)
E(
√

1− yz) dydz

=
1

8

∫ 1

0

∫ 1

0

∫ 1

0

√
y(1− yz)

(1− y)z(1− z)

√
1

1−yz − x
x(1− x)

dxdydz

=
1

8

∫
[0,1]3

√
y(1− x(1− y(1− z)))
x(1− x)(1− y)z(1− z)

dxdydz.

The first equality follows from (6.15), the second from changing a2 7→ yz, the third

from (6.13), and the fourth from z 7→ 1 − z. Now Theorem 6.1 applies to the last

integral.

Similarly, by building up the E′ integral then K ′, we obtain:

∫ 1

0
E′(x)K ′(x) dx =

1

8

∫
[0,1]3

√
1− x(1− y(1− z))

x(1− x)y(1− y)z(1− z)
dxdydz.

Alternatively, by building up the K ′ integral then E′, we get:

∫ 1

0
E′(x)K ′(x) dx =

1

8

∫
[0,1]3

√
y dxdydz√

x(1− x)(1− y)z(1− z)(1− x(1− y(1− z)))
.

Finally, we also have

∫ 1

0
K ′(x)2 dx =

1

8

∫
[0,1]3

dxdydz√
x(1− x)y(1− y)z(1− z)(1− x(1− y(1− z)))

.

Slightly generalising this strategy, we are led to:
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Proposition 6.1. For all real n > −1,

(1)∫ 1

0
xnE′(x)2 dx =

24n(n+ 1)3(n+ 3)2

16(n+ 2)3(n+ 4)

Γ8
(
n+1

2

)
Γ4(n+ 1)

7F6

(−1
2 ,

1
2 ,

1
2 ,

3
2 ,

n+3
2 , n+3

2 , n+7
4

1, n+3
4 , n+2

2 , n+4
2 , n+4

2 , n+6
2

∣∣∣∣1),
(6.16)

(2)∫ 1

0
xnE′(x)K ′(x) dx =

24n(n+ 1)2

16(n+ 2)

Γ8
(
n+1

2

)
Γ4(n+ 1)

7F6

(−1
2 ,

1
2 ,

1
2 ,

1
2 ,

n+1
2 , n+1

2 , n+5
4

1, n+1
4 , n+2

2 , n+2
2 , n+2

2 , n+4
2

∣∣∣∣1)

=
24n(n+ 1)3(n+ 3)

16(n+ 2)3

Γ8
(
n+1

2

)
Γ4(n+ 1)

7F6

( 1
2 ,

1
2 ,

1
2 ,

3
2 ,

n+3
2 , n+3

2 , n+7
4

1, n+3
4 , n+2

2 , n+4
2 , n+4

2 , n+4
2

∣∣∣∣1), (6.17)

(3)∫ 1

0
xnK ′(x)2 dx =

24n(n+ 1)

16

Γ8
(
n+1

2

)
Γ4(n+ 1)

7F6

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

n+1
2 , n+1

2 , n+5
4

1, n+1
4 , n+2

2 , n+2
2 , n+2

2 , n+2
2

∣∣∣∣1).
(6.18)

When n is odd, the 7F6’s reduce to known constants, which we prove below.

Theorem 6.2. When n is odd, the nth moment of K ′2, E′2,K ′E′,K2, E2 and KE

is expressible as a+ bζ(3), where a, b ∈ Q.

Proof. We prove the case for the pair K ′2 and K2; the other two pairs are

similar.

Firstly, when n is odd, the summand of the 7F6 for K ′2 is a rational function:

(2k +m+ 1)(k + 1)2(k + 2)2 · · · (k +m)2

(k + 1/2)4(k + 3/2)4 · · · (k +m+ 1/2)4
; (6.19)

here we have ignored the rational constants at the front and wrote n = 2m+ 1. We

can explicitly sum (6.19) and verify the statement of the theorem for the first few

moment of K ′2. By using the change of variable x 7→ x′ as in (6.10), we can likewise

do this for K2.

Now it is not hard to show that the moments of K2 satisfy a recursion:

(n + 1)3Kn+2 − 2n(n2 + 1)Kn + (n − 1)3Kn−2 = 2. Results like this are proven in

Section 6.8.2. The recursion shows that the statement holds for all odd moments

of K2. Then (6.10) gives the result for K ′2. �

Remark 6.3.1. Note that by computing the moment of E′(x)K ′(x) in two ways,

we obtain a transformation formula for the 7F6’s involved. Also, by either one of
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the two known transformations for non-terminating 7F6’s [25, pp. 29 and 62], we

can write each of our 7F6 as the sum of two 4F3’s, where one series readily simplifies

to known constants when n is odd, while the harder term becomes reducible in light

of Theorem 6.2. When n is even the reduction is more troublesome; after taking a

limit, we have, for instance,

2

∫ 1

0
K ′(x)2 dx =

∞∑
k=0

Γ4(k + 1
2)

Γ4(k + 1)

(
Hk −Hk−1/2

)
,

where Hn stands for the nth harmonic number; this result has already been recorded

in Chapter 2. ♦

Remark 6.3.2. Therefore, by Theorem 6.2, all the odd moments of K ′2, E′2,K ′E′

have particularly simple forms involving ζ(3). By using (6.10), we can iteratively

obtain all the odd moments of K2, E2,KE. For example,∫ 1

0
x3K(x)2 dx =

1

8
(2 + 7ζ(3)),

∫ 1

0
xK ′(x)2dx =

7

4
ζ(3).

♦

Remark 6.3.3. We sketch another proof of Theorem 6.2 by expanding (6.19) into

partial fractions.

As each partial fraction has at most a quartic on the denominator, the irra-

tional constants from the sum can only come from {ζ(2), ζ(3), ζ(4)}, and possible

contribution from the linear denominators. But as the linear terms must converge,

their sum must eventually telescope, and hence contribute only a rational number.

We recall that partial fractions can be obtained via a derivative process akin to

computing Taylor series coefficients; indeed, if we write

f(x)

(x− a)n
=

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
,

then An = f(a), An−1 = f ′(a)/1!, . . . , A1 = f (n−1)(a)/(n− 1)!.

When applied to (6.19), it is easy to check that, when n ≡ 3 (mod 4), the

presence of the numerator 2k +m+ 1 makes the terms with quadratic and quartic

denominators telescope out, leaving us with rational numbers (these terms occur

in pairs related by the transformation k 7→ −n+1
2 − k, where said linear numerator

switches sign). Similarly, the terms with cubic denominators double.
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When n ≡ 1 (mod 4), 2k + m + 1 cancels out with one of the factors, making

the corresponding denominator a cubic. We check that its partial fraction has no

quadratic term: this is equivalent to showing (6.19) with all powers of 2k + m + 1

removed has 0 derivative at k = −n+1
4 , which holds as it is symmetric around that

point. So in both cases only the cubic terms remain, giving us ζ(3).

This type of partial fraction argument is at the heart of the result that infinitely

many odd zeta values are irrational (see [28], which, incidentally, is the motivation

for Zudilin’s Theorem 6.1).

Chronologically this was our first proof, after experimentally noticing that Maple

was able to evaluate the relevant 7F6’s without any trouble; upon increasing the

printlevel, it became apparent that Maple was not using any transformations or

summation formulas, so it was surmised that a more elementary method was used

to evaluate the sum, i. e. partial fractions. ♦

6.4. One elliptic integral and one complementary elliptic integral

Here we take advantage of the closed form for moments of K ′, E′ which follow

from (6.8) and (6.9):∫ 1

0
xnK ′(x) dx =

π Γ2(1
2(n+ 1))

4 Γ2(1
2(n+ 2))

,

∫ 1

0
xnE′(x) dx =

π Γ2(1
2(n+ 3))

2(n+ 1) Γ(1
2(n+ 2))Γ(1

2(n+ 4))
,

and the series for K,E equivalent to Definition 6.1:

K(x) =

∞∑
k=0

Γ2(k + 1/2)

Γ2(k + 1)

x2k

2
, E(x) =

∞∑
k=0

−Γ(k − 1/2)Γ(k + 1/2)

Γ2(k + 1)

x2k

4
. (6.20)

Hence, the proposition below may be simply proved by interchanging the order

of summation and integration.

Proposition 6.2. We have the following moments:

(1)∫ 1

0
xnK(x)K ′(x) dx =

π2

8

Γ2(1
2(n+ 1))

Γ2(1
2(n+ 2))

4F3

( 1
2 ,

1
2 ,

n+1
2 , n+1

2

1, n+2
2 , n+2

2

∣∣∣∣1), (6.21)

(2)∫ 1

0
xnE(x)K ′(x) dx =

π2

8

Γ2(1
2(n+ 1))

Γ2(1
2(n+ 2))

4F3

(−1
2 ,

1
2 ,

n+1
2 , n+1

2

1, n+2
2 , n+2

2

∣∣∣∣1), (6.22)
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(3)∫ 1

0
xnK(x)E′(x) dx =

π2

8

(n+ 1)Γ2(1
2(n+ 1))

(n+ 2)Γ2(1
2(n+ 2))

4F3

( 1
2 ,

1
2 ,

n+1
2 , n+3

2

1, n+2
2 , n+4

2

∣∣∣∣1), (6.23)

(4)∫ 1

0
xnE(x)E′(x) dx =

π2

8

(n+ 1)Γ2(1
2(n+ 1))

(n+ 2)Γ2(1
2(n+ 2))

4F3

(−1
2 ,

1
2 ,

n+1
2 , n+3

2

1, n+2
2 , n+4

2

∣∣∣∣1). (6.24)

When n is odd, the moments yield a closed form as a rational multiple of π3

plus a rational multiple of π, as we can expand the summand (a rational function)

as partial fractions much like in Remark 6.3.3. To prove this observation, we need

Legendre’s relation [46]:

E(x)K ′(x) + E′(x)K(x)−K(x)K ′(x) =
π

2
. (6.25)

Note that by using the symmetry between parts (2) and (3), as well as by applying

(6.25), we obtain linear identities connecting these 4F3’s. Due to the lack of Taylor

expansions of E′,K ′ around the origin as well as sufficiently simple moments for

E,K, this method cannot be used to evaluate other moments.

Lemma 6.1. For odd n, the nth moment of K(x)K ′(x) is a rational multiple of

π3, and the nth moment of E(x)K ′(x),K(x)E′(x) and E(x)E′(x) is π
4(n+1) plus a

rational multiple of π3.

Proof. We experimentally discover that, letting gn :=
∫ 1

0 x
2n−1K(x)K ′(x) dx,

we have the recursion

2n3gn+1 − (2n− 1)(2n2 − 2n+ 1)gn + 2(n− 1)3gn−1 = 0.

This contiguous relation (see Chapter 14), once discovered, can be proven by ex-

tracting the summand, simplifying and summing using Gosper’s algorithm. Thus,

after computing two starting values, the claim is proven for the moments of KK ′.

Note that the recursion also holds when n is not an integer.

For the moments of EK ′ or KE′, we take the derivative of x2nK(x)K ′(x) via the

product rule, and integrate each piece in the result. By using (6.25) and the proven

claim for the moments of KK ′, we deduce that the term involving π is π
4(n+1) . For

the moments of EE′, we instead consider the derivative of (1 − x2)x2nE(x)E′(x)

and use the proven results for EK ′ and KE′. This trick involving integration by

parts is exploited in Section 6.8. �
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Experimentally, we find that the sequence h(n) := π316n+1gn+1 matches entry

A036917 of the On-line Encyclopedia of Integer Sequences; indeed, they share the

same recursion and initial values. Moreover, the OEIS provides

h(n) =
n∑
k=0

(
2n− 2k

n− k

)2(2k

k

)2

=
16nΓ2(n+ 1

2)

π Γ2(n+ 1)
4F3

( −n,−n, 1
2 ,

1
2

1
2 − n,

1
2 − n, 1

∣∣∣∣1). (6.26)

The first equality is routine as we can produce a recurrence for the binomial sum

– for instance, using Sister Celine’s method; the second equality is notational. The

sequence h(n) will make another appearance in Chapter 12.

The generating function for h(n) is simply

∞∑
n=0

h(n)tn =
4

π2
K
(

4
√
t
)2
,

which is again easy to prove using the series for K(t). Recall that h(n) is related

to the moments of K(x)K ′(x), and thus we have:

Theorem 6.3. ∫ 1

0

x

1− t2x2
K(x)K ′(x) dx =

π

4
K(t)2. (6.27)

Equation (6.27) seems to be a remarkable extension of its (much easier) cousins,∫ 1

0

1

1− t2x2
K ′(x) dx =

π

2
K(t) and

∫ 1

0

1

1− t2x2
E′(x) dx =

π

2t2
(K(t)− E(t)).

(6.28)

Manipulations of (6.27, 6.28) give myriads of integrals, we list some of them

below (G denotes Catalan’s constant, investigated in Chapter 5):∫ 1

0

arctan(x)

x
K ′(x) dx = πG,∫ 1

0

2

x
K(x)K ′(x)(K(x)− E(x)) dx =

∫ 1

0
K(x)2E′(x) dx,∫ 1

0
2F1

(
1, n+1

2
n+3

2

∣∣∣∣x2

)
xK(x)K ′(x) dx =

(n+ 1)π

4

∫ 1

0
tnK(t)2 dt.

The last identity specialises to∫ 1

0

− log(1− x2)

x
K(x)K ′(x) dx =

7

8
πζ(3), (6.29)

while it is possible to similarly find∫ 1

0

− log(1− x2)

x
K(x)E′(x) dx =

π3

12
.
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By setting t = i in (6.27) (this also works for (6.28)) and appealing to (6.33), we

obtain ∫ 1

0

xK(x)K ′(x)

1 + x2
dx =

Γ4(1
4)

128
. (6.30)

6.5. Sporadic results

We list some results found by ad hoc methods; some are not moment evaluations

per se, while others are preparatory for later sections.

6.5.1. Explicit primitives. Curiously, a small number of integrals happen to

have explicit primitives; we list some here:

xnK(x), xnE(x),
xnE(x)

1− x2
,
E(x)

1± x
and

xF (x)

(1− x2)3/2
,

where F can be K,K ′, E or E′. The primitives are expressible in terms of K and

E when n > 0 is odd or when n < 0 is even in the first three cases (and also when

n = 0 in the third case). Moreover, (E(x)−K(x))/x has a primitive (being E(x)).

The last case, and many other integrals, are found in [101]. We sample two

other integrals from [101] to show the flavour of the identities therein:∫ 1

0

xK(x)

(1− z2x2)x′
dx =

π

2z′
K(z),

proven by x 7→ x′, and∫ 1

0
xPn(1− 2x2)K(x) dx =

(−1)n

(2n+ 1)2
,

which involves the Legendre polynomials.

Trivially, transformations of the above list still yield explicit primitives. We note

that some computer algebra systems, when used näıvely, struggle to find primitives

which come from this very short list, one example is given by applying x 7→ x′ in

the last case: ∫
K ′(x)

x2
dx =

E′(x)−K ′(x)

x
.

These cases also give rise to interesting definite integrals, we only record a couple

here: ∫ 1

0

E′(x)− 1

x
dx = 2 log 2− 1,

∫ 1

0

E′(x)− 1

x2
dx = 1. (6.31)

A more thorough investigation is undertaken in Chapter 7.
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6.5.2. Imaginary argument. In [1] vol III, some integrals with the argument

ix are considered, e. g. ∫ 1

0
xK ′(x)K(ix) dx =

1

2
Gπ.

This can be proven by expanding xK(ix) as a series and summing the moments

of K ′(x). Other evaluations are done similarly; for instance, we can easily obtain

recursions for the moments of K(ix) and E(ix).

We also record here that Euler’s hypergeometric transformation [11]

2F1

(
a, b

c

∣∣∣∣z) = (1− z)−a 2F1

(
a, c− b

c

∣∣∣∣ z

z − 1

)
(6.32)

gives

E(ix) =
√
x2 + 1 E

(
x/
√
x2 + 1

)
, K(ix) = 1/

√
x2 + 1 K

(
x/
√
x2 + 1

)
. (6.33)

6.5.3. Quadratic transforms. Using the quadratic transforms (6.4, 6.5), we

obtain ∫ 1

0
K(x)n dx =

1

2

∫ 1

0
K ′(t)n

(1 + t

2

)n−2
dt,∫ 1

0
K ′(x)n dx = 2

∫
K(t)n(1 + t)n−2 dt. (6.34)

Setting n = 1 we recover the known special case∫ 1

0

K(x)

x+ 1
dx =

π2

8
.

Using a cubic transform of the Borweins [45], this identity is generalised in

Chapter 5. The appropriate generalisation of (6.3) – itself obtained by setting

n = 2 in (6.34) – is∫ 1

0
2F1

( 1
3 ,

2
3

1

∣∣∣∣1− x3

)2

dx = 3

∫ 1

0
2F1

( 1
3 ,

2
3

1

∣∣∣∣x3

)2

dx.

Using (6.5) on the integrand xK(x)3, we get∫ 1

0
2(1− x)K(x)3 dx =

∫ 1

0
xK(x)3 dx,

when combined with (6.34), we deduce∫ 1

0
K ′(x)3 dx =

10

3

∫ 1

0
K(x)3 dx = 5

∫ 1

0
xK(x)3 dx = 5

∫ 1

0
xK ′(x)3 dx. (6.35)
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Using (6.6, 6.7), we have∫ 1

0
E(x)n

2n+1

(x+ 1)n+2
dx =

∫ 1

0
(E′(x) + xK ′(x))n dx, (6.36)∫ 1

0
E′(x)n

2n+1

(x+ 1)n+2
dx =

∫ 1

0
(2E(x)− (1− x2)K(x))n dx. (6.37)

When n = 1, 2 we obtain closed forms, such as∫ 1

0

E(x)

(x+ 1)3
dx =

π2

32
+

1

4
,

∫ 1

0

E′(x)

(x+ 1)3
dx =

G

8
+

5

16
.

6.5.4. Relationship to random walks. In Chapter 2, many moment rela-

tions are derived while computing W4(n), the nth moment of the distance from the

origin of a 4-step uniform random walk on the plane. For instance, we have:

W4(1) =
16

π3

∫ 1

0
(1− 3x2)K ′(x)2 dx.

In [57] (Chapter 3) and [20, formula (89)], the following identities are given via

Meijer G-functions:

π3

4
W4(−1) =

∫ π/2

0
K(sin t)2 sin t dt = 2

∫ π/2

0
K(sin t)2 cos tdt

=

∫ π/2

0
K(sin t)K(cos t) dt = 2

∫ π/2

0
K(sin t)K(cos t) cos2 tdt. (6.38)

The last equality follows from the general identity (proven by x 7→ x′)∫ 1

0
2F (x2)F (1− x2)

√
1− x2 dx =

∫ 1

0
F (x2)F (1− x2)

dx√
1− x2

.

6.6. Fourier series

As recorded in [20], we have the following Fourier (sine) series valid on (0, π):

Lemma 6.2.

K(sin t) =
∞∑
n=0

Γ2(n+ 1/2)

Γ2(n+ 1)
sin((4n+ 1)t). (6.39)

For completeness, we sketch a proof here:

Proof. By symmetry we see that only the coefficients of sin((2n + 1)t) are

non-zero. Indeed, by a change of variable cos t 7→ x, the coefficients are

4

π

∫ 1

0
K ′(x)

sin((2n+ 1)t)

sin t
dt.
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The fraction in the integrand is precisely U2n(x), where Un(x) denotes the Chebyshev

polynomial of the second kind, given by

U2n(x) =

n∑
k=0

(−1)k
(

2n− k
k

)
(2x)2n−2k.

We now interchange summation and integration, and use the moments of K ′. The

resulting coefficient contains a 3F2, which after a transformation [25, section 3.2]

becomes amenable to Saalschütz’s theorem (14.10), and we obtain (6.39). �

The same method gives a Fourier sine series for E(sin t) valid on (0, π), which

we have not been able to locate in the literature. In mirroring the last step, the

resulting 3F2 is reduced to the closed form below using Sister Celine’s method:

Lemma 6.3.

E(sin t) =

∞∑
n=0

Γ2(n+ 1/2)

2 Γ2(n+ 1)
sin((4n+ 1)t) +

∞∑
n=0

(n+ 1/2)Γ2(n+ 1/2)

2(n+ 1)Γ2(n+ 1)
sin((4n+ 3)t).

(6.40)

Parseval’s formula [125, p. 156] applied to (6.39) and (6.40) gives∫ π/2

0
K(sin t)2 dt = 2

∫ π/2

0
K(sin t)E(sin t) dt

=

∫ 1

0

K(x)2

√
1− x2

dx =

∫ 1

0

K ′(x)2

√
1− x2

dx =

∫ 1

0

1 + x√
x
K(x)2 dx

=2

∫ 1

0

K(x)E(x)√
1− x2

dx = 2

∫ 1

0
K(x)K ′(x) dx =

π3

4
4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣1) . (6.41)

We also get
∫ π/2

0 K(sin t)2 cos(4t) dt as a sum of three 4F3’s, and
∫ π/2

0 E(sin t)2 dt

as a sum of four 4F3’s. Section 3.7 of [20] provides a number of identities of this

sort with more exotic arguments, as well as connections with Meijer G-functions.

Experimentally we find the surprisingly simple answer to the integral∫ π/2

0
K(sin t)2 sin 4t

4
dt =

∫ 1

0
K(x)2(x− 2x3) dx =

∫ 1

0
xK(x)(x′2K(x)− E(x)) dx

=

∫ 1

0
K ′(x)2(2x3 − x) dx =

∫ 1

0
xK ′(x)(x2K ′(x)− E′(x)) dx

=

∫ 1

0
xK2(x)− 2xE(x)K(x) dx = −1

2
. (6.42)

All equalities are routine to check except for the last one, which is equivalent to∫ 1

0
xK(x)2 + 2xE(x)2 − 3xK(x)E(x) dx = 0,
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and so the equality holds as we know all the odd moments.

Inserting a factor of cos2 t before squaring the Fourier series (6.39) and integrat-

ing, we are led to∫ 1

0
x′K(x)2 dx =

π3

16

(
2 4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣1)− 1

)
=

∫ 1

0

√
x

x+ 1
K ′(x)2 dx. (6.43)

Subtracting (6.43) from (6.41) gives∫ 1

0
x′K ′(x)2 dx =

∫ 1

0

x2

x′
K(x)2 dx =

∫ 1

0

4
√
x

x+ 1
K(x)2 dx

=
π3

16

(
2 4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣1)+ 1

)
. (6.44)

The Fourier series (6.39) combined with a quadratic transform gives:∫ π/2

0
K(sin t) dt =

∫ 1

0

K(x)√
1− x2

dx =

∫ 1

0

K ′(x)√
1− x2

dx =

∫ 1

0

K(x)√
x

dx

=
1

2

∫ 1

0

K ′(x)√
x

dx = K

(
1√
2

)2

=
1

16π
Γ4
(1

4

)
. (6.45)

A generalisation of this result is found in Chapter 5.

Finally, we give a more exotic example: using the Fourier series expansion of

cos(t)K(sin(t))K(sin(2t)), we get∫ 1

0
K(x)K(2xx′) dx =

π3

8
4F3

( 1
4 ,

1
4 ,

3
4 ,

3
4

1, 1, 1

∣∣∣∣ 1

)
.

6.7. Legendre’s relation

Legendre’s relation EK ′ + E′K −KK ′ = π
2 is related to the Wronskian of K

and E, and shows that the two integrals are closely coupled (we have already seen

its role in the proof of Lemma 6.1).

If we multiply both sides of Legendre’s relation (6.25) by K ′(x) and integrate,

we arrive at ∫ 1

0
3E′(x)K ′(x)K(x)−K(x)K ′(x)2 dx =

π3

8
. (6.46)

Similarly, had we multiplied by K(x), the result would be∫ 1

0
3E(x)K(x)K ′(x)− 2K(x)2K ′(x) dx

=

∫ 1

0
2E′(x)K(x)2 − E(x)K(x)K ′(x) dx = πG. (6.47)
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Using closed forms of the moments, we also have:∫ 1

0
2xE′(x)K(x)2K ′(x)− xK(x)2K ′(x)2 dx =

π4

32
,∫ 1

0
2xE′(x)2K(x)E(x)− xK(x)K ′(x)E(x)E′(x) dx =

π2

16
+

π4

128
.

Of course, we can multiply Legendre’s relation by any function whose integral

vanishes on the interval (0, 1) to produce another relation. Suitable candidates for

the function include x(K(x)−K ′(x)), x(2K ′(x)− 3E′(x)), 2E′(x)−K ′(x), 2E(x)−

K(x)− 1, and a vast range of polynomials. For instance one could obtain∫ 1

0
2E′2(x)K(x) + 2E(x)E′(x)K ′(x)− 5E′(x)K(x)K ′(x) +K(x)K ′(x)2 dx = 0.

It seems difficult to ‘uncouple’ any of the above sums and differences to obtain a

closed form for the integral of a single product, without the results in Conjecture

6.2. However, (6.46), (6.47) do yield closed forms as we later prove that conjecture

– these results will be made clear in Chapter 7.

6.8. Integration by parts

The following simple but fruitful idea is crucial to this section. We look at the

derivative (1−x2)n d
dx(xkK(x)aE(x)bK ′(x)cE′(x)d) (the formulas for the derivatives

of E and K can be found in Section 5.1), and integrate by parts to yield∫ 1

0
(1− x2)n

d

dx

(
xkK(x)aE(x)bK ′(x)cE′(x)d

)
dx

=

∫ 1

0
2nx(1− x2)n−1xkK(x)aE(x)bK ′(x)cE′(x)d dx+ C, (6.48)

where the constant C 6= 0 if and only if the integrand is a power of E or E′.

In practice, we take n, k ∈ {0, 1, 2} to produce the cleanest identities. We also

explore the cases when n is a half-integer, as well as replacing 1 − x2 by 1 − x in

(6.48).

6.8.1. Bailey’s tables for products of two elliptic integrals. We now

systematically analyse the tables kindly provided by D. H. Bailey, the construction

of which is described in [19]. The tables contain all known (in fact, probably all)

linear relations for integrals of products of up to k elliptic integrals (k ≤ 6) and a

polynomial in x with degree at most 5. In this subsection we exclusively look at

the case k = 2 and spell out the details.
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We use x d
dxE(x)2 = 2E(x)2 − 2E(x)K(x) and integrate by parts to deduce∫ 1

0
3E(x)2 − 2E(x)K(x) dx = 1. (6.49)

More generally,

1 = (n+ k + 1)

∫ 1

0
xkE(x)n − nxkE(x)n−1K(x) dx. (6.50)

Two more special cases of the above are prominent:∫ 1

0
5x2E(x)2 − 2x2E(x)K(x) dx = 1, (6.51)∫ 1

0
(n+ 2)xn−1E(x)2 − 2xn−1E(x)K(x) dx = 1. (6.52)

The derivative of K(x)E(x) (via integration by parts) gives∫ 1

0
(1− 3x2)E(x)K(x) + E(x)2 − (1− x2)K(x)2 dx = 0, (6.53)

which is part of the more general∫ 1

0
nxn−1E(x)K(x)− (n+ 2)xn+1E(x)K(x) + xn−1E(x)2

− xn−1K(x)2 + xn+1K(x)2 dx = 0. (6.54)

The derivative of K(x)2 produces∫ 1

0
(1 + x2)K2(x) dx = 2

∫ 1

0
K(x)E(x) dx, (6.55)

while more generally,∫ 1

0
2xn−1E(x)K(x) + (n− 2)xn−1K(x)2 − nxn+1K(x)2 dx = 0. (6.56)

The derivative of E′(x)2 gives (using (6.10) for the first equality)∫ 1

0
2xE′(x)2 − xE′(x)K ′(x)dx =

∫ 1

0
2xE(x)2 − xE(x)K(x) dx =

1

2
.

The derivative of K ′(x)2 gives∫ 1

0
2K ′(x)E′(x)− (1− x2)K ′(x)2 dx = 0, (6.57)

re-confirming a result from Chapter 2, which is first proven in a much more round-

about way via a non-trivial group action on the integrand.

The derivative of E′(x)K ′(x) gives∫ 1

0
(1− 3x2)E′(x)K ′(x) dx =

∫ 1

0
E′(x)2 − x2K ′(x)2 dx,
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which, when combined with our last result, gives∫ 1

0
(1 + 3x2)E′(x)K ′(x) dx =

∫ 1

0
K ′(x)2 − E′(x)2 dx.

The derivative of K(x)K ′(x) gives∫ 1

0
x2K(x)K ′(x) +K(x)E′(x)−K ′(x)E(x) dx = 0,

which, when combined with Legendre’s relation (6.25), results in∫ 1

0
2E′(x)K(x)− (1− x2)K(x)K ′(x) dx =

π

2
.

Our results here and in previous sections actually provide direct proofs of most

entries in Bailey’s tables where the polynomial is linear. In fact, it would simply be

a matter of tenacity to prove many entries involving polynomial of higher degrees.

As an example, we indicate how to prove an entry which requires more work:∫ 1

0
E(x)(3E′(x)−K ′(x)) dx =

π

2
. (6.58)

We write the left hand side as two 4F3’s, combine their summands into a single

term and simplify; the result can be summed explicitly by Gosper’s algorithm, and

the limit on the right hand side follows.

The same method applies to other entries, e. g.∫ 1

0
E′(x)K(x)− E(x)K ′(x) + x2K(x)K ′(x) dx = 0,∫ 1

0
K ′(x)2 − 4E′(x)K ′(x) + 3E′(x)2 dx = 0.

There is only one entry in Bailey’s tables (for linear polynomials) that we cannot

prove in this chapter, though it is true to at least 1500 digits:

Conjecture 6.1.∫ 1

0
2K(x)2 − 4E(x)K(x) + 3E(x)2 −K ′(x)E′(x) dx

?[1]
= 0. (6.59)

(The notation
?[k]
= denotes the equivalence of conjectural identities, where all

equations with the same k are equivalent as conjectures.)

We note that, among moments of products of two elliptic integrals, there are

only five that we cannot find closed forms for in this chapter:

E(x)2, x2E(x)2, E(x)K(x), x2E(x)K(x), x2K(x)2,
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as all the odd moments are known, and the other even moments may be obtained

from these ignition values. In this chapter we can only prove four equations connect-

ing them, namely (6.49, 6.51, 6.53, 6.55). A proof of (6.59) would give us enough

information to solve for all five moments; for instance, we would have

32

π4

∫ 1

0
E(x)K(x) dx

?[1]
=

16

π4
+7F6

( 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

5
4

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1)−1

2
7F6

(−1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

5
4

1
4 , 1, 1, 1, 1, 2

∣∣∣∣1).
This is resolved in Chapter 7.

6.8.2. Recurrences for the moments. As already hinted in the proof of

Lemma 6.1, the moments enjoy recurrences with polynomial coefficients. For ex-

ample, by combining (6.52, 6.54, 6.56), we obtain, with Kn :=
∫ 1

0 x
nK(x)2 dx,

(n+ 1)3Kn+2 − 2n(n2 + 1)Kn + (n− 1)3Kn−2 = 2. (6.60)

This shows that Kn is a rational number plus a rational multiple of ζ(3) for odd n,

as this approach is used in the proof of Theorem 6.2.

Similarly, recurrences for other products may be obtained, though the linear

algebra becomes more prohibitive. We have, for En :=
∫ 1

0 x
nE(x)2 dx,

(n+ 1)(n+ 3)(n+ 5)En+2 − 2(n3 + 3n2 + n+ 1)En + (n− 1)3En−2 = 8, (6.61)

while the recursion for the moments of EK follows from this and (6.52). The

recursion for the moments of K ′2, and, amazingly, for KK ′, are identical to (6.60)

except the right hand side is 0. Moreover, the ζ(3) parts in the odd moments of

K ′2 and K2 are equal, and satisfy the same recursion (with proportional initial

conditions) as the odd moments of KK ′.

6.8.3. More results. We discover some results not found in Bailey’s tables by

incorporating constants such as π and G into the search space. Below we highlight

some of the prettier formulas.

Taking (1− x2) d
dx(x2K(x)2) and integrating by parts, we obtain∫ 1

0
xK(x)K ′(x) dx =

∫ 1

0
2x3K(x)K ′(x) dx =

∫ 1

0

1− x
1 + x

K(x)K ′(x) dx =
π3

16
.

(6.62)

The derivative of x2nK(x)K ′(x) together with (6.25) gives∫ 1

0
x2n−1(E′(x)K(x) + n(x2 − 1)K(x)K ′(x)) dx =

π

8n
. (6.63)
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We can take n = 1
2 in (6.48); for instance, the derivative of xx′K(x) gives∫ 1

0

E(x)

x′
dx =

∫ 1

0

x2K(x)

x′
dx,

while the derivative of xx′K(x)2 recaptures (6.41).

The derivative of x′K(x) gives∫ 1

0

K(x)− E(x)

xx′
dx =

π

2
,

note that each part does not converge. In fact,

K(x)− E(x) =
πx2

4
2F1

( 1
2 ,

3
2

2

∣∣∣∣x2

)
, (6.64)

therefore for example∫ 1

0

K(x)− E(x)

x
dx =

π

2
− 1,

∫ 1

0

K(x)− E(x)

x2
dx = 1,

∫ 1

0

K(x)− E(x)

xx′
dx =

π

2
.

The general case is∫ 1

0
xmx′n(K(x)− E(x)) dx =

πΓ(3+m
2 )Γ(2+n

2 )

8 Γ(5+m+n
2 )

3F2

( 1
2 ,

3
2 ,

3+m
2

2, 5+m+n
2

∣∣∣∣ 1

)
.

The derivative of xE(x) gives

2E(x)−K(x) =
π

2
2F1

(
−1

2 ,
3
2

1

∣∣∣∣x2

)
,

so for instance ∫ 1

0
xx′(2E(x)−K(x)) dx =

π2

32
,

and the general case is∫ 1

0
xmx′n(2E(x)−K(x)) dx =

π Γ(1+m
2 )Γ(2+n

2 )

4 Γ(3+m+n
2 )

3F2

(−1
2 ,

3
2 ,

1+m
2

1, 3+m+n
2

∣∣∣∣ 1

)
.

We can clearly analyse a number of other 2F1’s this way.

The derivative of x(1− x)K(x)2 gives∫ 1

0

2K(x)E(x)

x+ 1
dx =

∫ 1

0
K(x)2 dx.

Collecting what we know about the integral of K(x)2, we have the following:
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Theorem 6.4. The alternative forms of equation (6.3) are:∫ 1

0
K(x)2 dx =

1

2

∫ 1

0
K ′(x)2 dx =

∫ 1

0
K ′(x)2 x

x′
dx

=

∫ 1

0
K(x)K ′(x)x′ dx =

1

2

∫ 1

0
K(x)K ′(x)

dx

x′

=

∫ 1

0

(1 + x)K(x)K ′(x)

4
√
x

dx =

∫ 1

0

2
√
xK(x)K ′(x)

1 + x
dx

=

∫ 1

0

(1− x)K ′(x)2

8
√
x

dx =

∫ 1

0

(1− x)K(x)2

√
x

dx

=

∫ 1

0

2K(x)E(x)

x+ 1
dx

=
2

π

∫ 1

0

arcsinx√
1− x2

K(x)K ′(x) dx =
4

π

∫ 1

0
arctanh(x)K(x)K ′(x) dx.

Proof. The last two equalities follow from (6.27); the rest has been proven

elsewhere (e. g. use (6.38), and the quadratic transformations). �

Note that the first integral in the third line above breaks up into two moments

of KK ′, thus we can decompose the 7F6 this way:∫ 1

0
K(x)2 dx =

Γ4(1
4)

64
4F3

( 1
4 ,

1
4 ,

1
2 ,

1
2

3
4 ,

3
4 , 1

∣∣∣∣ 1

)
+

π4

Γ4(1
4)

4F3

( 1
2 ,

1
2 ,

3
4 ,

3
4

1, 5
4 ,

5
4

∣∣∣∣ 1

)
. (6.65)

6.8.4. Bailey’s tables for products of three elliptic integrals. We now

consider the linear relations involving the product of three elliptic integrals (k = 3

in the tables). As the number of relations found is huge, we restrict most of our

attention to a class of integrals that turns out to be pair-wise related by a rational

factor.

Below we tabulate all the products for which ‘neat’ integrals may be deduced

by differentiating them and integrating by parts:

Product: Integral:

K(x)3
∫ 1

0 2K(x)3 − 3K(x)2E(x) dx = 0

K(x)2K ′(x)
∫ 1

0 K(x)2E′(x) +K(x)2K ′(x)− 2K(x)K ′(x)E(x) dx = 0

K ′(x)2K(x)
∫ 1

0 E(x)K ′(x)2 − 2E′(x)K(x)K ′(x) dx = 0

K ′(x)3
∫ 1

0 K
′(x)3 − 3K ′(x)2E′(x) dx = 0

E′(x)3
∫ 1

0 5xE′(x)3 − 3xE′(x)2K ′(x) dx = 1

E(x)3
∫ 1

0 4E(x)3 − 3E(x)2K(x) dx = 1
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We can prove ∫ 1

0
K(x)2K ′(x) dx =

2

3

∫ 1

0
K(x)K ′(x)2 dx,

by making the change of variable x 7→ 1−x
1+x to the left hand side and using the

quadratic transform (6.4). The integral splits into two pieces; we apply x 7→ 2
√
x

1+x to

one piece followed by another quadratic transform (6.5). We obtain∫ 1

0
3xK(x)K ′(x)2 dx =

∫ 1

0
K(x)K ′(x)2 dx;

finally the claim is proven by combining the pieces.

If we make the change of variable x 7→ 1−x
1+x , then apply (6.6), we have∫ 1

0

K(x)2E(x)

1 + x
dx =

4

9

∫ 1

0
K(x)3 dx.

Integrating x2(1−x)K(x)3 by parts, we can show that
∫ 1

0 xK(x)2E(x)/(x+1) dx

is also linearly related to the above integral.

Therefore, gathering the results in this section and equation (6.35), we have

determined:

Theorem 6.5. Any two integrals in each of the following two groups are related by

a rational factor:

K(x)3,K ′(x)3, xK(x)3, xK ′(x)3,K(x)2E(x),K ′(x)2E′(x),
K2(x)E(x)

1 + x
,
xK2(x)E(x)

1 + x
;

K(x)K ′(x)2,K(x)2K ′(x), xK(x)K ′(x)2, xK(x)2K ′(x). (6.66)

From the results in this chapter, we cannot yet show that any two integrals, one

from each group, are related by a rational factor, though this is resolved in Chapter

7. In fact, the Inverse Symbolic Calculator gives the remarkable evaluation:

Conjecture 6.2. ∫ 1

0
K ′(x)3 dx

?[2]
= 2K

( 1√
2

)4
=

Γ8(1
4)

128π2
. (6.67)

Once proven, this would give explicit closed forms for the integrals of E′K ′K,

EK ′K, and E′K2 by the results of Section 6.7.
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In view of Theorem 6.5, (6.21) and (6.26), interchanging the order of summation

and integration gives an equivalent form of Conjecture 6.2:

∞∑
n=0

8

(2n+ 1)2 4F3

( 1
2 ,

1
2 , n+ 1, n+ 1

1, n+ 3
2 , n+ 3

2

∣∣∣∣1)

=
∞∑
n=0

Γ4(n+ 1
2)

Γ4(n+ 1)
4F3

( 1
2 ,

1
2 ,−n,−n

1, 1
2 − n,

1
2 − n

∣∣∣∣1) ?[2]
=

Γ8(1
4)

24π4
. (6.68)

In fact, the integral in Conjecture 6.2 has re-expressions as integrals over prod-

ucts of theta, or of Dedekind η functions. These alternative forms make the conjec-

ture easier to attack, and we prove the conjecture in Section 7.9.

6.8.5. Products of four elliptic integrals and conclusion. If we take the

derivative of K(x)4, use the integral (6.34) connecting K ′(x)4 and K(x)4, plus a

quadratic transform, then we obtain∫ 1

0
24E(x)K(x)3 − 8K(x)4 −K ′(x)4 dx = 0, (6.69)

which is one of the first non-trivial identities in Bailey’s tables for k = 4. Many

more tabulated relations for products of three and four elliptic integrals can be

proven, albeit the complexity of the proofs increases. As perceptively noted in [19],

“[it] seems to be more and more the case as experimental computa-

tional tools improve, our ability to discover outstrips our ability to

prove.”





CHAPTER 7

More Integrals of K and E

Abstract. We study integrals of elliptic integrals more closely. In particular, it

transpires that more fruitful relations can be seen by looking at integrals of the

form
∫ 1

0
F (x)(1 + x)n dx than by looking at the raw moments. Using this line of

inquiry, as well as other new ideas, we resolve all the conjectures in Chapter 6.

7.1. One elliptic and one complementary elliptic integral

In this section we take a close look at integrals containing the product of an ellip-

tic integral with a complementary elliptic integral. Let A denote
∫ 1

0 K(x)K ′(x) dx

and B denote
∫ 1

0 x
2K(x)K ′(x) dx. Integration by parts (see Chapter 6) gives

2

∫ 1

0
K(x)E′(x) dx =

π

2
+A−B,

which we implicitly use in the rest of this section.

Example 7.1.1 (Starting values). Our first goal is to find, in terms of A and B,

evaluations of
∫ 1

0 G(x)H ′(x)/(1 +x)l dx, where G,H ∈ {E,K}, and l ∈ {1, 2}. The

details are given below.

Integrating x(1− x)K ′(x)K(x) by parts, we arrive at

A =

∫ 1

0

E(x)K ′(x)−K(x)E′(x) +K(x)K ′(x)

1 + x
dx,

which, when combined with Legendre’s relation (6.25), gives∫ 1

0

E(x)K ′(x)

1 + x
dx =

A

2
+
π

4
log 2. (7.1)

Similarly, integrating x(1− x)K(x)E′(x) by parts, we obtain∫ 1

0
2xK(x)E′(x)− xK(x)K ′(x) dx+ (A−B)

=

∫ 1

0

E(x)E′(x)−K(x)E′(x) +K(x)K ′(x)

1 + x
dx,

119
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but as all the odd moments are known (Chapter 6), the left hand side reduces to

π/4 +A−B. Combining this result with Legendre’s relation and (7.1), we get∫ 1

0

E(x)E′(x)

1 + x
dx =

B

2
+
π

4
log 2. (7.2)

Let x 7→ (1 − x)/(1 + x) in the integrand K(x)K ′(x)/(1 + x). Applying both

quadratic transforms (6.4) and (6.5), it turns into K(x)K ′(x)(1 + x)/2, and we

obtain ∫ 1

0

K(x)K ′(x)

1 + x
dx =

A

2
+
π3

32
. (7.3)

It also follows that ∫ 1

0

K(x)E′(x)

1 + x
dx =

π

4
log 2 +

π3

32
. (7.4)

Letting x 7→ (1 − x)/(1 + x) in K(x)K ′(x)/(1 + x)2, followed by quadratic

transforms, gives ∫ 1

0

K(x)K ′(x)

(1 + x)2
dx =

A+B

4
+
π3

32
. (7.5)

We integrate x(1−x)/(1 +x)K(x)K ′(x) by parts; the evaluations (7.1) – (7.5),

together with Legendre’s relation, give∫ 1

0

E(x)K ′(x)

(1 + x)2
dx =

A−B
4

+
π

8
+
π3

32
, (7.6)∫ 1

0

K(x)E′(x)

(1 + x)2
dx =

B

2
+
π

8
. (7.7)

Armed with these two equations and integrating x(1−x)/(1 +x)K(x)E′(x) by

parts, we have ∫ 1

0

E(x)E′(x)

(1 + x)2
dx =

A− 5B

4
+
π

8
+
π3

32
. (7.8)

The desired evaluations have now all been found. ♦

In fact, the quadratic transforms lead to∫ 1

0

K(x)K ′(x)

(1 + x)n
dx =

∫ 1

0

(
1 + x

2

)n
K(x)K ′(x), (7.9)

where for positive integer n, the right hand side is a linear combination of A,B and

π3, using the recursion satisfied by the moments of KK ′ (see Chapter 6, Section 6).

Thus (7.9) gives us the definite integrals of KK ′/(1 + x)n for all n ∈ Z.

Integrating x(1 − x)/(1 + x)n−1KK ′ and x(1 − x)/(1 + x)n−1KE′ by parts, to-

gether with Legendre’s relation, we obtain three equations relating the integral of

KE′/(1 + x)n, EK ′/(1 + x)n, EE′/(1 + x)n to the same objects except with the
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indices n − 1 and n − 2 (together with integrals involving KK ′ which we know

from (7.9)). These three equations can be solved, see below. With the starting

values (7.1) – (7.8), we thus obtain all the integrals of the form F/(1 + x)n for

integer n > 0, where F is one of KK ′,KE′, EK ′, EE′. We observe that such inte-

grals are always a rational linear combination of A,B, π, π log 2, π3. By running the

recursions ‘backwards’, we note that the integrals of F (x)(1 + x)n are also linear

combinations of A,B, π, π3 for integer n ≥ 0. Thus we have the following:

Theorem 7.1. For n ∈ Z, let F be one of KK ′, KE′, EK ′ or EE′, then∫ 1

0
F (x)(1 + x)n dx

can be expressed as a Q-linear combination of elements from the set {A,B, π, π log 2, π3},

where π log 2 may appear only when n = −1, and where

A =
π3

8
4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

∣∣∣∣ 1

)
, B =

π3

32
4F3

( 1
2 ,

1
2 ,

3
2 ,

3
2

1, 2, 2

∣∣∣∣ 1

)
.

Proof. The values of A are B are given in Chapter 6, Section 4. The constant

π log 2 essentially comes from Legendre’s relation, so by some inspection it does not

occur when n 6= −1. By the discussion preceding the theorem, we only require the

recursions below, and the starting values (7.1) – (7.8) given in Example 7.1.1.

We exhibit the recursions here: let KK ′n denote
∫ 1

0 K(x)K ′(x)/(1+x)n dx (from

(7.9), they can all be computed from the moments of KK ′). The other integrals

are denoted similarly, and in terms of KK ′n they are:

KE′n =
π

4(1 + x)n
+ nKK ′n −

3n− 2

2
KK ′n−1 +

n− 1

2
KK ′n−2,

EK ′n =
π

4(1 + x)n
− (n− 1)KK ′n +

3n− 2

2
KK ′n−1 −

n− 1

2
KK ′n−2,

EE′n =
πx(x(3− n) + n)

4(1 + x)n
− (1− n)(1− 2n)KK ′n +

12n2 − 31n+ 22

2
KK ′n−1

− 13n2 − 48n+ 47

2
KK ′n−2 +

6n2 − 29n+ 36

2
KK ′n−3 −

(n− 3)2

2
KK ′n−4.

�

Remark 7.1.1. We know that∫ 1

0

E(x)

1 + x
dx = 1,

∫ 1

0

K(x)

1 + x
dx =

π2

8
.
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Using integration by parts, we have

∫ 1

0

nE(x)

(1 + x)n+1
dx =

1

2n
+

∫ 1

0

K(x)

(1 + x)n
+

(n− 2)E(x)

(1 + x)n
dx,∫ 1

0

2nK(x)

(1 + x)n+1
dx =

∫ 1

0

(3n− 1)K(x)

(1 + x)n
− (n− 1)K(x)

(1 + x)n−1
− E(x)

(1 + x)n+1
dx.

Therefore, for integer n, all integrals of the form
∫ 1

0 E(x)(1 + x)n dx,
∫ 1

0 K(x)(1 +

x)n dx can be expressed as a Q-linear combination of elements from {1, π2}.

A very similar argument, using the starting values

∫ 1

0

E′(x)

1 + x
dx = 2G− 1,

∫ 1

0

K ′(x)

1 + x
dx = 2G,

shows that for all integer n, integrals of the form
∫ 1

0 E
′(x)(1 +x)n dx,

∫ 1
0 K

′(x)(1 +

x)n dx can be expressed as a Q-linear combination of elements of {1, G}. Here, as

usual, G denotes Catalan’s constant. ♦

7.2. Two complementary elliptic integrals

In this section we further analyse integrals which contain the product of two

complementary elliptic integrals. Let C denote
∫ 1

0 K
′(x)2 dx and let D denote∫ 1

0 x
2K ′(x)2 dx. From Chapter 6 it is known that

∫ 1
0 E(x)K(x)/(1 + x) dx = C/4,

and some manipulations involving quadratic transforms lead to

∫ 1

0

E′(x)K ′(x)

1 + x
dx =

7ζ(3)

4
. (7.10)

As was done in Example 7.1.1, our first aim is to produce integrals of the above

form with denominators (1+x) and (1+x)2, and then find recursions when (1+x)n

is involved. Indeed, integration by parts using x(1− x)E′(x)2, x(1− x)K ′(x)2 and

x(1− x)E′(x)K(x) gives

∫ 1

0

K ′(x)2

1 + x
dx =

7ζ(3)

4
+
C

2
, (7.11)∫ 1

0

E′(x)2

1 + x
dx =

7ζ(3)

4
− 1

2
− D

2
. (7.12)
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Similarly, integrating the same functions divided by (1 + x) by parts, we obtain∫ 1

0

E′(x)K ′(x)

(1 + x)2
dx = 1 +

D

2
, (7.13)∫ 1

0

K ′(x)2

(1 + x)2
dx =

1

2
+

7ζ(3)

4
+
C +D

4
, (7.14)∫ 1

0

E′(x)2

(1 + x)2
dx =

5

2
− 7ζ(3)

4
+

7D − C
4

. (7.15)

Finally, integrating the aforementioned functions divided by (1 + x)n by parts, we

produce second order recursions in terms of n. The recursions, like those in the

proof of Theorem 7.1, are rather involved and we do not exhibit them here. We can

also run the recursion backwards to account for negative integer n’s (so for instance∫ 1
0 (1 + x)2E′(x)K ′(x) dx = 1/2 + 7ζ(3)/4 + (5C − D)/9). In summary, we have

actually a proof of the following:

Theorem 7.2. For n ∈ Z, let F be one of E′2, EK ′ or K ′2, then∫ 1

0
F (x)(1 + x)n dx

can be expressed as a Q-linear combination of elements from the set {1, ζ(3), C,D},

where

C =

∫ 1

0
K ′(x)2 dx, D =

∫ 1

0
x2K ′(x)2 dx,

and their 7F6 representations are given in Chapter 6, Section 3.

Remark 7.2.1. Evaluations in this section in terms of ζ(3), such as (7.10), were

first discovered experimentally using PSLQ. Those discoveries convinced the author

of the existence of transformations from the integrals involved to odd moments of

F (x), and proofs were soon found. ♦

7.3. Two elliptic integrals

We established in Theorem 6.4 that∫ 1

0

E(x)K(x)

1 + x
dx =

C

4
.

Similarly, ∫ 1

0

K(x)2

1 + x
dx =

7ζ(3)

16
+
C

4
.
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A quadratic transform gives∫ 1

0

2K ′(x)2

(1 + x)2
dx =

∫ 1

0
(1 + x)2K(x)2 dx,

and since the left hand side is known from the last section, we deduce that∫ 1

0
x2K(x)2 dx = 1 +

D

2
. (7.16)

As noted in Chapter 6, among moments of products of two elliptic integrals, there

were only five that we did not possess closed forms of:

E(x)2, x2E(x)2, E(x)K(x), x2E(x)K(x), x2K(x)2,

since only four independent linear relations connecting them were found. Impor-

tantly, equation (7.16) is the desired fifth independent relation. Thus, studying

integrals of F (x)(1 + x)n (in particular, K ′(x)2/(1 + x)2) brings about the resolu-

tion of the Conjecture 6.1. We now have:∫ 1

0
E(x)2 dx =

4 + C +D

6
, (7.17)∫ 1

0
x2E(x)2 dx =

44− C + 11D

90
, (7.18)∫ 1

0
E(x)K(x) dx =

2 + C +D

4
, (7.19)∫ 1

0
x2E(x)K(x) dx =

26− C + 11D

36
. (7.20)

Proposition 7.1. Conjecture 6.1 is true.

Proof. Using the closed forms found above, the conjecture reduces to the

equivalent form ∫ 1

0
2E′(x)K ′(x) dx = C −D,

which has been proved in Chapter 6, equation (6.57). �

Continuing, we find with integration by parts, armed with our new closed forms:∫ 1

0

E(x)2

1 + x
dx =

C −D
4

,

∫ 1

0

E(x)2

(1 + x)2
dx =

1 +D

2
,∫ 1

0

K(x)2

(1 + x)2
dx =

7ζ(3)

16
+
C +D

8
,

∫ 1

0

E(x)K(x)

(1 + x)2
dx =

7ζ(3)

16
+
C −D

8
.

Thus all the starting values are given; as was done in the last two sections, recursions

based on these values can be found; again we omit the unpleasant details. In

summary, we have
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Theorem 7.3. For n ∈ Z, let F be one of E2, EK or K2, then∫ 1

0
F (x)(1 + x)n dx

can be expressed as a Q-linear combination of elements from the set {1, ζ(3), C,D},

and where

C =

∫ 1

0
K ′(x)2 dx, D =

∫ 1

0
x2K ′(x)2 dx.

From the results in these three sections, we have succeeded in proving

Corollary 7.1. For n ∈ Z and G a product of up to two elliptic integrals,
∫ 1

0 G(x)(1+

x)n dx can be written as a Q-linear combination of elements taken from a small set

S of special constants, where

S = {1, π, π2, π3, π log 2, G, ζ(3), A,B,C,D}.

7.4. More on explicit primitives

A small number of functions with explicit primitives are listed in Section 6,

Chapter 6. We now return to this topic more systematically and add a few more

results.

First we claim that for odd n > 0, we may find explicit primitives of xnK(x)

and xnE(x). Indeed, the claim is easy for n = 1. Now, integrating xn+2K(x) by

parts, we obtain∫
xn+2K(x) dx =

xn+1

n+ 2

(
E(x) + (x2 − 1)K(x)

)
+
n+ 1

n+ 2

∫
xn
(
K(x)− E(x)

)
dx.

This allows us to find the primitive of xn+2K(x). For xn+2E(x), simply observe

that ∫
xn+2

(
(n+ 4)E(x)−K(x)

)
dx = xn+3E(x).

Therefore, the claim is proven inductively.

Next, for even n < 0, we may find explicit primitives of xnK(x) and xnE(x).

Again, the base case is simple. The inductive step follows easily from the pair of

equations: ∫
(2− n)E(x)−K(x)

xn
dx =

E(x)

xn−1
,∫

E(x) +
(
(n− 2)x2 − n

)
K(x)

xn
dx =

(1− x2)K(x)

xn−1
.
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Now, for odd n > 0, and for even n < 0, explicit primitives of xnK ′(x) and

xnE′(x) can be found. The relevant equations are∫
xn
(
E′(x) + ((n+ 2)x2 − (n+ 1))K ′(x)

)
dx = xn+1(x2 − 1)K ′(x),∫

xn
(
((4 + n)x2 − (n+ 1))E′(x)− x2K ′(x)

)
dx = xn+1(x2 − 1)E′(x).

Therefore, by letting x 7→ x′, and using F to denote one of the four elliptic

integrals, we see that there exists an explicit primitive for
xF (x)

x′m
, where m > 1 is

odd – this generalises a result in [101] and a number of results scattered around

integral tables elsewhere.

By a quadratic transform, we also obtain the closed forms for the integrals of

(1− x)n/(1 + x)n+1K(x) or K ′(x), for n > 0 odd or n < 0 even.

Moreover, since
∫
E(x)/(1±x) dx has a closed form, using partial fractions and

the results above, we can obtain the explicit integral for xnE(x)/(1−x2), with n > 0

odd, n < 0 even, or n = 0. By x 7→ x′, this gives the primitive for E′(x)/(xx′m),

with m > 0 odd or m = 0.

Finally, we record the primitives
∫
xn((n+1)K ′(x)−(n+2)E′(x)) dx = xn+1(K ′(x)−

E′(x)) and
∫
xn((n+2)E(x)−K(x)) dx = xn+1E(x); a few more are found in [104,

section 5.1].

7.5. Some other integrals

7.5.1. Better expression of the moments. By applying Thomae’s 3F2 trans-

form [25, p. 14], we see that the nth moment of K can be nicely expressed as∫ 1

0
xnK(x) dx = 3F2

(
1, 1, 1−n

2
3
2 ,

3
2

∣∣∣∣ 1

)
, (7.21)

and this form often allows us to interchange the order of summation when the left

hand integral appears in a sum.

For instance, interchanging the order of summation allows us to obtain∫ 1

0

x

1− tx2
K(x) dx =

1

1− t 3F2

(
1, 1, 1

3
2 ,

3
2

∣∣∣∣ t

t− 1

)
. (7.22)

Similarly, the nth moment of E is

2

3
3F2

(
1, 2, 1−n

2
3
2 ,

5
2

∣∣∣∣ 1

)
,
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so the generating function for the odd moments is∫ 1

0

x

1− tx2
E(x) dx =

2

3(1− t) 3F2

(
1, 1, 2

3
2 ,

5
2

∣∣∣∣ t

t− 1

)
.

As a harder example, consider the integral
∫ 1

0 xK(x/
√

2)K(x) dx. Expand

xK(x/
√

2) as a series, interchange the order of summation and integration, ap-

ply (7.21) and finally interchange the order of summation. The resulting inner sum

is a 2F1 with argument 1/2 which simplifies [25, p. 11]. Therefore we obtain∫ 1

0

√
πx

2
K
( x√

2

)
K(x) dx =

Γ2(1
4)

8
5F4

( 1
4 ,

1
4 ,

1
2 , 1, 1

3
4 ,

3
4 ,

5
4 ,

5
4

∣∣∣∣ 1

)
+

Γ2(3
4)

9
5F4

( 3
4 ,

3
4 , 1, 1,

3
2

5
4 ,

5
4 ,

7
4 ,

7
4

∣∣∣∣ 1

)
.

7.5.2. Differentiation. We may differentiate the results in Theorem 6.3 with

respect to t, and produce integrals such as∫ 1

0

K ′(x)

(1 + x2)2
dx =

√
π

2

[
π2

4Γ2(1
4)

+
3Γ2(1

4)

32

]
,∫ 1

0

xK(x)K ′(x)

(1 + x2)2
dx =

π2

32
+ Γ4

(5

4

)
. (7.23)

By a quadratic transform, we have∫ 1

0

xK(x)K ′(x)

1 + x2
dx =

∫ 1

0

K(x)K ′(x)

1 + x2
dx− 1

2

∫ 1

0
K(x)K ′(x) dx, (7.24)

thus the middle term may be expressed in closed form using (6.30). So, by partial

fractions, the moments ∫ 1

0

xn

1 + x2
K(x)K ′(x) dx

can all be worked out for positive integers n.

7.5.3. Logarithms. A number of integrals involving E, K and logs can be

computed using integration by parts (and many are already known [66]). For

example,∫
x log(x)K(x) dx = (log(x)− 2)E(x) + (1− log(x))(1− x2)K(x).

Many such integrals are possible, e. g. if we replaced K by E or used a higher power

of x. We give one more example:∫
log(1− x)

x
(E(x)−K(x)) dx = (1 + x)K(x) + (log(1− x)− 1)E(x).
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Remark 7.5.1. On the other hand, the constant log 2 appears in some definite

integrals (see also Theorem 7.1). Using the series for E(x), we have∫ 1

0

E(x)− π/2
x

dx = − π

16
4F3

( 1
2 , 1, 1,

3
2

2, 2, 2

∣∣∣∣ 1

)
= 1− 2G− π

2
+ π log 2,

where the last equality follows from a contiguous relation and a 4F3 identity [3,

Prop. 2.1]. Similarly, ∫ 1

0

K(x)− π/2
x

dx = π log 2− 2G;

compare with (6.31). ♦

7.5.4. More results on two elliptic integrals. We collect some miscella-

neous integrals involving the product of two elliptic integrals.

Example 7.5.1. Whilst we may easily add and subtract the moments of K ′K,K ′E

etc. obtained in Chapter 6 Section 4, a few extra relations may be obtained by using

the 2F1 representation of K−E (6.64) due to its double zero at the origin, namely:∫ 1

0

K ′(x)

x
(K(x)− E(x)) dx =

π log 2

2
,

∫ 1

0

E′(x)

x
(K(x)− E(x)) dx =

π

4
,∫ 1

0

K ′(x)

x2
(K(x)− E(x)) dx =

∫ 1

0
K(x)E′(x) dx,∫ 1

0

E′(x)

x2
(K(x)− E(x)) dx =

∫ 1

0
K ′(x)E(x)−K(x)E′(x) dx.

♦

Example 7.5.2. By using quadratic transforms, x 7→ x′, and integration by parts,

we have the following chain of equalities:∫ 1

0

K ′(x)2

x′
dx =

∫ 1

0

K(x)2

x′
dx = 2

∫ 1

0

E(x)K(x)

x′
dx

=

∫ 1

0

1 + x√
x
K(x)2 dx =

∫ 1

0

1 + x

4
√
x
K ′(x)2 dx. (7.25)

The last term is a linear combination of moments of K ′2, and so (7.25) may be

written as the sum of two 7F6’s (Chapter 6, Section 3). Since quadratic transform

also gives ∫ 1

0
K(x)2 dx =

∫ 1

0

1− x√
x
K(x)2 dx,
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we may combine the last formula with (7.25) to produce closed forms for the inte-

grals of K(x)2/
√
x and K(x)2√x. Other fractional moments of K2 seem beyond

our reach. ♦

7.6. Incomplete moments

We may use a special case of the Clausen’s formula [11, p. 116]

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣ t) =
4

π2
K

(√
1−
√

1−t
2

)2

(7.26)

to produce some incomplete moments.

As an example, multiply both sides of (7.26) by tn, integrate from t = 0 to 1

followed by a change of variable. We obtain∫ 1/
√

2

0
x2n+1(1− x2)n(1− 2x2)K(x)2 dx =

π2

22n+5(n+ 1)
4F3

( 1
2 ,

1
2 ,

1
2 , n+ 1

1, 1, n+ 2

∣∣∣∣ 1

)
.

In fact, the integral with respect to t of (7.26) is t 3F2(1
2 ,

1
2 ,

1
2 ; 1, 2; t), which has

a closed form because it is contiguous to the 3F2 in (7.26) (see Chapter 14). The

closed form is, using X =

√
1−
√

1−t
2 ,∫

K(X)2 dt = 4
(
1 +
√

1− t
)
E(X)K(X)− 4E(X)2 − 2

(
1 +
√

1− t− t
)
K(X)2.

Therefore, a number of incomplete moments where the limits of integration are

singular values may be expressed in closed form; for instance,∫ 1/
√

2

0
x(1− 2x2)K(x)2 dx =

Γ4(1
4)

128π
− π3

2Γ4(1
4)
, (7.27)

∫ 3−2
√

2

0
x(1− 2x2)K(x)2 dx =

(
√

2− 1)3π

4

[
1− 4π2

(
√

2− 1)Γ4(1
4)

+
(
√

2− 1)2Γ4(1
4)

16π2

]
.

For the integrand below, we can use (7.26) to write it as a 3F2 series. Inter-

changing the order of summation and integration, and using the evaluation of a 2F1

at 1/2 [25], we have∫ 1/
√

2

0
K(x)2x2a(x′)2a−1 dx =

∫ 1

1/
√

2
K ′(x)2x2a(x′)2a−1 dx

=
π

5
2 Γ(1

2 + a)

4a+2 Γ(1 + a)
4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2 + a

1, 1, 1 + a

∣∣∣∣ 1

)
. (7.28)
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We can therefore work out all these odd incomplete moments of K2. A special case

is ∫ 1/
√

2

0
xK(x)2 dx =

∫ 1

1/
√

2
xK ′(x)2 dx =

πG

4
.

A similar analysis can be done with a range of 3F2’s, for instance, using contiguous

relations in Chapter 14,

π2

4
3F2

(
−1

2 ,
1
2 ,

1
2

1, 1

∣∣∣∣4x2(1− x2)

)
= K(x)2 − 2E(x)K(x) + 2E(x)2.

When combined with (7.28), we get for instance∫ 1/
√

2

0
xE(x)(K(x)− E(x)) dx =

π

32
(2G− 1).

We can also apply quadratic transforms on (7.28), an example being∫ 3−2
√

2

0

1− x
1 + x

K(x)2 dx =
πG

8
.

Finally, by using the derivative of a 5F4 recorded in [111], other kinds of results

may be obtained, such as∫ 1/
√

2

0

1− 2x2

x(1− x2)

(
4K(x)2 − π2

)
dx =

π2

16
5F4

(
1, 1, 3

2 ,
3
2 ,

3
2

2, 2, 2, 2

∣∣∣∣ 1

)
.

7.7. One elliptic integral with parameters

In this section we prove a number of integrals involving a single elliptic integral

and several parameters.

Example 7.7.1. We first use a transform relating K1/4 to K (in the notation of

Chapter 5),

2F1

( 1
4 ,

3
4

1

∣∣∣∣t2) =
1√

1 + t
2F1

( 1
2 ,

1
2

1

∣∣∣∣ 2t

1 + t

)
, (7.29)

then evaluate the general moments of the left hand side, which translate to

J(a, b) :=

∫ 1

0

x2ax′bK(x)

(2− x2)a+b+1
dx =

πΓ(2a+1
4 )Γ( b+2

2 )

2b+
7
2 Γ(2a+2b+5

4 )
3F2

( 1
4 ,

3
4 ,

2a+1
4

1, 2a+2b+5
4

∣∣∣∣1). (7.30)

This generalises an entry in [101]. Now via quadratic transforms, we also get

J(a, b) =

∫ 1

0

xa−1/2(1− x2)b+1

2b−a+1(1 + x2)a+b+1
K(x) dx =

∫ 1

0

2bxb/2(1− x)2a(1 + x)b+1

(1 + 6x+ x2)a+b+1
K ′(x) dx.

(7.31)
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Letting x 7→ x′ in any of the integrals for J(a, b) also gives reformulations. In

some cases, we can evaluate the right hand side of J(a, b) using Dixon’s theorem or

Clausen’s formula. A special case of the second equality in (7.31) is∫ 1

0

(1− x)2a

(1 + x)ax
a+1
2

K ′(x) dx =
π

2
3
2
−2a

Γ2(1−a
2 )Γ(1+2a

4 )

Γ2(3
4)Γ(3−2a

4 )
.

Other examples include

√
2

∫ 1

0

K(x)√
1 + x2

dx =

∫ 1

0

K ′(x)√
1 + x2

dx =
Γ2(1

8)Γ2(3
8)

32
√

2π
, (7.32)

where the first equality is also a special case of (7.36) (after x 7→ x′, with b = −c =

1/2). ♦

Example 7.7.2. Using the transform [46, Prop. 5.6]

K(t) =
π

2
2F1

( 1
4 ,

1
4

1

∣∣∣∣4t2(1− t2)

)
,

we replace K below by the 2F1 and make a change of variable. The result is (as

recorded in [101])∫ 1

0
K
( x√

2

)
x2a+1(1− x2)b−1(2− x2)b dx =

π

8

Γ(a+ 1)Γ( b2)

Γ(a+ b
2 + 1)

3F2

( 1
4 ,

1
4 , a+ 1

1, a+ b
2 + 1

∣∣∣∣1).
(7.33)

The right hand side sometimes simplifies, e. g.∫ 1

0

K( x√
2
)√

(1− x2)(2− x2)
dx =

Γ2(1
8)Γ2(3

8)

32
√

2π
.

♦

Example 7.7.3. By using a quadratic transform followed by a change of variables,

we have∫ 1

0
K ′(x)(1 + x)a(1− x)bxc dx = 2a+b+1

∫ 1

0

xb(1− x)c

(1 + x)a+b+c+1
K(x) dx. (7.34)

In some cases, the left hand side can be evaluated in closed form by writing the

rational function as a series and interchanging the order of integration and summa-

tion. On the other hand, we may sometimes integrate the right hand side term by

term after expanding K as a series. A similar relation holds for E:∫ 1

0
(1 + x)a(1− x)bxc

(
E′(x) + xK ′(x)

)
dx = 2a+b+2

∫ 1

0

xb(1− x)c

(1 + x)a+b+c+3
E(x) dx.
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Some consequences of the development above include∫ 1

0

K ′(x)√
1 + x

dx =
√

2

∫ 1

0

K(x)√
1 + x

dx, (7.35)∫ 1

0

K ′(x)√
x(1 + x)

dx =

∫ 1

0

√
2K(x)√
1− x

dx =

∫ 1

0

K ′(x)√
2x(1− x)

dx =

∫ 1

0

K(x)√
x(1− x)

dx.

The second line evaluates to
Γ2( 1

8
)Γ2( 3

8
)

16π by Whipple’s formula for a 3F2 at 1 [25];

note that this constant (and its algebraic multiples) appears often in this section.

We will return to the evaluation of the first line (7.35) later. ♦

Example 7.7.4. Also recorded in [101] is the identity∫ 1

0
x(1− x2)b−1(1− zx2)cK(x) dx =

π(1− z)c Γ2(b)

4 Γ2(b+ 1
2)

3F2

(
b, b,−c

b+ 1
2 , b+ 1

2

∣∣∣∣ z

z − 1

)
.

(7.36)

(A similar formula holds when K is replaced by E.) An equivalent form is∫ 1

0
x2b−1(1− zx2)cK ′(x) dx =

π Γ2(b)

4 Γ2(b+ 1
2)

3F2

(
b, b,−c

b+ 1
2 , b+ 1

2

∣∣∣∣ z) .
The proof is illustrative:

Proof of (7.36). We expand K(x) as a series and interchange the order of

integration and summation. The integral is of Euler type (4.3) and produces

2F1(−c, 1 + k; 1 + k+ b; z). We then apply one of Euler’s transforms (6.32), sending

the 2F1 to

(1− z)c 2F1

(
−c,−b

1 + k − b

∣∣∣∣ z

z − 1

)
.

Importantly, this reduces the dependence of the 2F1 parameters on k. Having done

so, we write the 2F1 as a sum and interchange the order of summation. The inner

k sum is now simpler, being a 2F1 with argument 1. The right hand side of (7.36)

follows by completing the outer summation. �

7.8. Fourier series and three elliptic integrals

It is remarked below Theorem 6.5 that based on numerical evidence, the inte-

grals of K ′3 and K2K ′ are related by a rational multiple, namely∫ 1

0
K ′(x)3 dx = 3

∫ 1

0
K(x)2K ′(x) dx. (7.37)

We prove this observation here.
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Lemma 7.1. For any function F where the integrals below converge and where the

sum and integral may be interchanged,

∞∑
n=0

∫ π/2

0

Γ2(n+ 1
2)

Γ2(n+ 1)
cos((4n+2)t) cos(t)F (sin t) dt =

∫ 1

0

(
x′K ′(x)−xK(x)

)
F (x) dx.

(7.38)

Proof. We write the right hand side as a Fourier series (6.39); the trigonomet-

ric coefficients are

cos(t) cos((4n+ 1)t)− sin(t) sin((4n+ 1)t) = cos((4n+ 2)t),

which correspond to the coefficients on the left hand side. �

Remark 7.8.1. Clearly, if the right hand side of (7.38) used + instead of −, then

the left hand side would have cos(4nt) instead of cos((4n + 2)t). If the right hand

side had xK ′ ± x′K, then sin((4n + 1 ± 1)t) would appear on the left. Similar

trigonometric manipulations also lead to identities such as∫ 1

0
(K(x)+K ′(x))F (x)

dx√
2

=

∞∑
n=0

∫ π/2

0

Γ2(n+ 1
2)

Γ2(n+ 1)
sin
(

(4n+1)t+
π

4

)
cos(t)F (sin t) dt,

and

2K(e2ix) = e−ix
(
K(cosx) + iK(sinx)

)
. (7.39)

An equivalent expression for the left hand side of (7.38) is

∞∑
n=0

∫ 1

0

Γ2(n+ 1
2)

Γ2(n+ 1
T4n+2(x)F (x) dx,

where Tn(x) = cos(n cos−1 x) denotes the Chebyshev polynomial of the first kind.

Indeed, when n = 0, this leads to∫ 1

0

2x2 − 1

x′
K(x)2 dx =

π3

8
, (7.40)

an identity first observed experimentally, and it is in the attempt to prove (7.40)

that the Lemma 7.1 was discovered. A more general form of (7.40) is∫ 1

0

T2n(x)

x′
K(x)2 dx =

π2 Γ2(n+1
2 )

4 Γ2(n+2
2 )

4F3

( 1
2 ,

1
2 ,

n+1
2 , n+1

2

1, n+2
2 , n+2

2

∣∣∣∣ 1

)
.

♦
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We continue our proof of (7.37). In (7.38), take F (x) = K(x)2/x′. The right

hand side can be simplified by x 7→ x′, and on the left hand side, orthogonality

causes massive cancellations to occur. The result is

∞∑
n=0

π2 Γ4(n+ 1
2)

8 Γ4(n+ 1)
4F3

( 1
2 ,

1
2 ,−n,−n

1, 1
2 − n,

1
2 − n

∣∣∣∣ 1

)
=

∫ 1

0
K ′(x)3 −K(x)2K ′(x) dx. (7.41)

However, the left hand side is precisely 2
∫ 1

0 K(x)2K ′(x) dx, as established in (6.68).

The key result (7.37) then follows, linking together the two groups of integrals

mentioned in Theorem 6.5. An evaluation of (7.37) in terms of Gamma functions

is described in the next section.

Remark 7.8.2. The quadratic transforms for K may be written in terms of trigono-

metric variables:

cos2 tK(sin 2t) = K(tan2 t). (7.42)

The change of variable x 7→ tan2 t , followed by applying (7.42) and expansion into

the Fourier series can be quite effective. ♦

7.9. Proof of the conjecture

It is expected that closed form evaluations of the integral of the cube of a special

function are rare. Therefore a large portion of the recent work [169] is devoted to

two such evaluations, including a proof of an equivalent form of Conjecture 6.2,∫ 1

0
xK ′(x)3 dx =

Γ8
(

1
4

)
640π2

. (7.43)

We summarise the main argument in [169] and some other results here.

We start with the parametriations in terms of Jacobi’s theta functions [46,

Ch. 2], with log q = −πK ′(k)/K(k),

K(k) =
π

2
θ2

3(q), k =
θ2

2(q)

θ2
3(q)

, k′ =
θ2

4(q)

θ2
3(q)

,
dk

dq
=
θ2

2(q)θ4
4(q)

2q θ2
3(q)

.

Therefore, we can write the integral in (7.43) (which we call I) as

I =

∫ 1

0

− log3 q

16q
θ4

2(q)θ2
3(q)θ4

4(q) dq =

∫ 1

0

− log3 q

q
η4(q)η2(q2)η4(q4) dq, (7.44)

where we have written the θ functions in terms of the Dedekind η function (3.40).

Now with q = e2πiτ , f(τ) = η4(τ)η2(2τ)η4(4τ) is a weight 5 cusp form (see e. g.



7.9. PROOF OF THE CONJECTURE 135

[12, 176]), and admits a Fourier series

f(τ) =

∞∑
n=1

ane
2πinτ . (7.45)

Therefore the last integral in (7.44) is the following L-series (as can be seen by

taking a Mellin transform):

I = 6
∞∑
n=1

an
n4
.

This is known as a critical L-value of f , L(f, 4). It can be shown by standard

methods [100] that in fact

f(τ) =
1

4

∞∑
m,n=−∞

(n− im)4qn
2+m2

,

and so our integral reduces to

I =
3

2

∑
m,n

′ (n− im)4

(n2 +m2)4
=

3

2

∑
m,n

′ 1

(n+ im)4
.

The prime means the m = n = 0 term is omitted in the sum. It is a known property

of the Weierstrass invariant g2 (an Eisenstein series) that

4

15
g2(τ) =

∑
n,m

′ 1

(n+ τm)4
=

16

45
(1− k2 + k4)K4(k), (7.46)

which, when evaluated at τ = i (corresponding to the first singular value), gives a

closed form for I, and hence equation (7.43) follows.

We note that similar calculations give L(f, 3) = 1
2π

∫ 1
0 xK

′(x)2K(x) dx (L(f, 3)

is the L-series with n3 in the denominator). By (7.37) and Theorem 6.5, L(f, 4) =

2π/5L(f, 3). This way all critical L-values of f are related by π and rational

constants.

Using L(f, 3), the multiplicativity of the coefficients of f [143], and results from

[205], we deduce the new lattice sums

∑
m,n

′ (−1)m+nm2n2

(m2 + n2)3
=

Γ8(1
4)

29 3π3
− π log 2

8
, (7.47)

∑
m,n

′ (−1)m+nm4

(m2 + n2)3
= −

Γ8(1
4)

29 3π3
− 3π log 2

8
, (7.48)

∑
m,n

′ (−1)mm2n2

(m2 + n2)3
= −

Γ8(1
4)

210 3π3
− π log 2

16
. (7.49)



136 7. MORE INTEGRALS OF K AND E

Remark 7.9.1. It can also be shown (W. Zudilin, private communication, Feb

2013), using techniques found in [212], that

L(g, 4) =
π2

3
L
(η12(τ)η8(4τ)

η10(2τ)
, 2
)
,

thus, writing the right hand side as an integral, we obtain

Γ8(1
4)

1280π2
=

∫ 1

0
k2K(k)K ′(k)2 dk =

∫ 1

0
kk′K(k)2K ′(k) dk

=

∫ 1

0

(1− k)2

1 + k
K(k)2K ′(k) dk =

3

7

∫ 1

0
K(k)2K ′(k)

dk

1 + k
(7.50)

where the last three integrals follow from the transformations k 7→ k′, k 7→ 2
√
k/(1+

k) and partial fractions, respectively.

Further work along the same lines of inquiry as [212] produces another proof

of (7.37). ♦

The other integral of a cubic we consider in [169] is∫ 1

0

K ′(x)3

√
x(1− x2)3/4

dx =
3 Γ8(1

4)

32
√

2π2
. (7.51)

To prove (7.51), we use the same procedure to convert the integral into an L-value

of a modular form; this time it is 192L(h, 4) where

h(τ) :=
η38(8τ)

η14(4τ)η14(16τ)
.

The q-expansion for h is found experimentally to be

1

2

∞∑
m,n=−∞

(−1)m(2n+ 1− 2im)4 q(2m)2+(2n+1)2 .

Once found, this can be proven by standard methods, for instance by using the

derivatives of θ2(q4) and θ4(q4). Therefore, we are reduced to showing

∞∑
m,n=−∞

(−1)m

(2n+ 1 + 2im)4
=

Γ8(1
4)

1024
√

2π2
. (7.52)

This can be achieved by elementary sum manipulations of (7.46); indeed, we get∑
m,n

(−1)m

(2n+ 1 +mτ)4
=

1

60

(
g2(τ/2)− 18g2(τ) + 32g2(2τ)

)
. (7.53)

Now (7.52) follows from (7.53) by using τ = 2i and the 1st, 4th and 16th singular

values [46]. Therefore (7.51) is true. We have in fact found explicit evaluations of

integrals containing higher powers of K ′ in [169].
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We collect some more results from [169]. It is proven there that for g̃(τ) =

η3(rτ)η3(sτ), where r + s ≡ 0 (mod 8),

L(g̃, 2) =
8√
rs3

kr/s k
′
r/sK

2(kr/s), (7.54)

where, as usual, kp denotes the pth singular value. Therefore, with r = 4, s = 4 or

r = 6, s = 2, we produce closed forms for the critical L-values of those odd weight

modular forms. In the second case, we can convert the η product in terms of elliptic

integrals, thus obtaining the evaluation

L(g̃, 2) =

∫ 1

0
(3 + 6p)−

1
2K

(
p

3
2 (2 + p)

1
2

(1 + 2p)
1
2

)
dp =

Γ6(1
3)

2
17
3 π2

,

where we have used the parametrisation of the degree 3 modular equation and

multiplier (see (10.22)). This equation, after a change of variable, has already

appeared in a very different context as (2.42) in random walks.

Another connection with random walks is given by the modular form

h̃(τ) = η3(3τ)η3(5τ) + η3(τ)η3(15τ). While (7.54) is able to produce closed forms

for L(h̃, 2) and L(h̃, 1) with little difficulty, we see that equation (3.69) connects

L(h̃, 4) with the Mahler measure W ′5(0). This is a non-critical L-value and so (3.69)

is believed to be hard.

Using the multiplicativity of the coefficients of these η products, we are able to

rewrite some L-values as conditionally convergent lattice sums; therefore we obtain

new results such as

∑
m,n

′
(−1)m+1 m2 − 2n2

(m2 + 2n2)2
=

Γ2(1
8)Γ2(3

8)

48π
, (7.55)

∑
m,n

′
(−1)m+n+1 m2 − 3n2

(m2 + 3n2)2
=

Γ6(1
3)

2
14
3 π2

, (7.56)

∑
m,n

′
(−1)m+1 m2 − 4n2

(m2 + 4n2)2
=

Γ4(1
4)

32π
. (7.57)

The last two sums correspond to the r = 4 and r = 6 cases outlined above; for a

proof of the first one, we refer to the next section.

Example 7.9.1. As Conjecture 6.2 is fully proven, we may uncouple some of the

integrals produced by Legendre’s relation in Chapter 6 to give some new closed
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forms; they are:∫ 1

0
E′(x)K(x)K ′(x) dx =

π3

24
+

Γ8(1
4)

768π2
,

∫ 1

0
E(x)K(x)K ′(x) dx =

πG

3
+

Γ8(1
4)

576π2
,∫ 1

0
E′(x)K(x)2 dx =

2πG

3
+

Γ8(1
4)

1152π2
,

∫ 1

0
E(x)K ′(x)2 dx =

π3

12
+

Γ8(1
4)

384π2
.

(7.58)

♦

Finally, we note that Y. Zhou, in a 2013 preprint [203], used methods based on

spherical harmonics to prove both Conjecture 6.2 and equation (7.37).

7.10. Some hypergeometric identities

7.10.1. A hypergeometric transform. We consider the integral∫ 1

0

x

1 + x2
K(x) dx. (7.59)

To evaluate (7.59), we could use the transform x 7→ x′; or, we could apply a qua-

dratic transform followed by a change of variable. In either case, we complete the

calculation by interchanging the order of summation and integration, then appeal

to the closed form for the moments of K ′. The two answers obtained must be the

same, and therefore we get the interesting identity

3F2

(
1, 1, 1

3
2 ,

3
2

∣∣∣∣ 1

2

)
+ 3F2

(
1, 1, 1

3
2 ,

3
2

∣∣∣∣ −1

)
=
√

2π Γ2
(5

4

)
. (7.60)

Along the way we obtain∫ 1

0

x

1 + x2
K(x) dx =

1

2
3F2

(
1, 1, 1

3
2 ,

3
2

∣∣∣∣ 1

2

)
,

∫ 1

0

1 + x

1 + x2
K(x) dx =

√
2π Γ2

(5

4

)
,

c. f. the t = −1 case in (7.22).

It is observed that the 3F2 above can also be written with argument 1. This

suggests the transform

3F2

(
1, 1, 1

3
2 , 1 + 2v

∣∣∣∣ 1

2

)
= 3F2

( 1
2 ,

1
2 , 1

3
2 , 1 + v

∣∣∣∣ 1

)
. (7.61)

Proof of (7.61). Using the beta integral (as is done in the proof of Theorem

5.2), the left hand side of (7.61) can be written as∫ 1

0

8v(1− x2)2v−1

√
2− x2

sin−1
( x√

2

)
dx.
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We apply the formula 2 sin−1(x) = sin−1(2x
√

1− x2) to this integral, followed by a

change of variable, leading to the equivalent integral∫ 1

0
2v(1− x2)v−1 sin−1(x) dx,

which is the beta integral for the right hand side of (7.61). �

7.10.2. Hypergeometric evaluations. We return to (7.35) and (7.55). De-

note I1 :=
∫ 1

0
K(x)√

1+x
dx; using the moments of K ′, we have∫ 1

0

K(x)√
1 + x

dx =
1√
2

∫ 1

0

K ′(x)√
1 + x

dx =
1

2
√

2

[
Γ2(1

8)Γ2(3
8)

16π
− 4F3

( 3
4 , 1, 1,

5
4

3
2 ,

3
2 ,

3
2

∣∣∣∣ 1

)]
.

(7.62)

Similarly, we have I2 :=∫ 1

0

K(x)√
x(1 + x)

dx =
1√
2

∫ 1

0

K ′(x)√
1− x

dx =
1

2
√

2

[
Γ2(1

8)Γ2(3
8)

16π
+ 4F3

( 3
4 , 1, 1,

5
4

3
2 ,

3
2 ,

3
2

∣∣∣∣ 1

)]
.

(7.63)

We experimentally observe that (7.63) evaluates to twice the value of (7.62), which

we now prove.

It is known that I1/(2
√

2) = L(f1, 2), where f1(τ) = η2(τ)η(2τ)η(4τ)η2(8τ), and

f1 may be written as 1
2

∑′

n,m(m2 − 2n2)qm
2+2n2

for small q ≥ 0. Thus, as a lattice

sum, I1 can be obtained by summing over expanding ellipsesm2+2n2 ≤M, M →∞

(the convergence here is rather subtle and relies on the convergence of L-values of

modular forms):

I1 =
√

2
∑
m,n

′ m
2 − 2n2

(m2 + 2n2)2
.

On the other hand, it can be verified that I2/(2
√

2) = L(f2, 2), where f2(q) :=

−f1(−q) (this comes from the changing
√

1 + x in the denominator to
√

1− x).

Consequently, we have

I2 =
√

2
∑
m,n

′(−1)m+1 m2 − 2n2

(m2 + 2n2)2
.

Now, the lattice sum for I2 − I1 simplifies to I1. Therefore,

I2 = 2I1, (7.64)

as claimed. This result may be arrived at without passing to lattice sums, as we

can look at the q-expansion of f2 − f1 and use the fact that the coefficients of f1

(being a Hecke eigenform) are multiplicative [143].
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A number of results now follow. By using (7.62), (7.63) and (7.64), we have

4F3

( 3
4 , 1, 1,

5
4

3
2 ,

3
2 ,

3
2

∣∣∣∣ 1

)
=

Γ2(1
8)Γ2(3

8)

48π
=
√

2 I1 =
1√
2
I2, (7.65)

and equations (7.35) and (7.55) are now proven.

Remark 7.10.1. Moreover, we also have

√
2 I1 =

2π

3
4F3

( 1
8 ,

3
8 ,

1
2 ,

1
2

1, 9
8 ,

11
8

∣∣∣∣ 1

)
=

1

2

∫ 1

0

K(x)

x3/4
dx− 1

2

∫ 1

0

K(x)

x1/4
dx. (7.66)

The second equality in (7.66) follows by a contiguous relation and the formulas for

the moments of K; the first equality can be shown by using the Fourier trick (7.42)

on the integral definition of I1.

In fact, in (7.66), the ratio between the two integrals is 3
√

2+2
3
√

2−2
, or equivalently,∫ 1

0

K(x)

x3/4
dx = 2π3F2

( 1
8 ,

1
2 ,

1
2

1, 9
8

∣∣∣∣ 1

)
= 3F2

( 7
8 , 1, 1
3
2 ,

3
2

∣∣∣∣ 1

)
=

(2 + 3
√

2) Γ2(1
8)Γ2(3

8)

96π
.

(7.67)

The last equality follows from a generalisation of Saalschütz’s theorem [25, §3.8,

eqn. (2)]. We start with the first 3F2 in (7.67) and apply said generalisation; the

result is a ratio of Γ terms plus another 3F2. We apply Thomae’s transformation

[25, p. 14] to this 3F2 and find it to be some Γ factors times the 3F2 for
∫ 1

0
K(x)

x1/4
dx.

The desired equality follows by using (7.65) and (7.66) (the
√

2 is due to cos π4

appearing in the calculations).

A neat consequence following from (7.67) is∫ 1

0

( x
x′

) 1
2
± 1

4
K(x) dx =

π2

12

√
5± 1√

2
, (7.68)

after applying Thomae’s transformation. ♦



CHAPTER 8

Elementary Evaluations of Mahler Measures

Abstract. In this chapter, we advocate the use of a trigonometric version of

Jensen’s formula, and demonstrate its versatility in giving an evaluation and a

functional equation for a two-dimensional Mahler measure, and in reducing a

three-dimensional measure to a computable integral. We then prove two conjec-

tures of Boyd. We also record some basic facts about Mahler measures, and list

some Jensen-like integrals.

8.1. Jensen’s formula and Mahler measures

In Section 3.6, we used the formula∫ 1

0
log
(
a+ b cos(2πx)

)
dx = log

a+
√
a2 − b2
2

, a ≥ |b| (8.1)

to give a very quick evaluation of W ′3(0), recovering a classical result of Smyth. We

sketch a proof of equation (8.1) here.

Proof of (8.1). It is in fact sufficient to prove the formula for a = 1. Dif-

ferentiating the left hand side of (8.1) with respect to b, the resulting integral is

elementary: ∫ 1

0

cos(2πx)

1 + b cos(2πx)
dx =

1

b
− 1

b
√

1− b2
.

Integrating both sides with respect to b, we obtain∫ 1

0
log
(
a+ b cos(2πx)

)
dx = log

(
1 +

√
1− b2

)
+ C,

where C is a constant to be determined. Setting b = 1, this integral reduces to∫ 1

0
log
(
2 cos2(πx)

)
dx = C.

In order to conclude that C = − log 2, we are required to show∫ π/2

0
log cosx dx = − log(2)π

2
.

141
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Even though this is equivalent to the easy result that Ls2(π) = 0 in the notation of

Chapter 9, we prove it here. We have

π

2
C =

∫ π/2

0
log cosx dx =

∫ π/2

0
log sinx dx,

so by adding the two integrals, we get

πC =

∫ π/2

0
log

sin(2x)

2
dx.

By a change of variable we have

πC =
1

2

∫ π

0
log sinx dx− log(2)π

2
.

However the last integral is πC by symmetry, therefore πC = πC/2 − log(2)π/2

and we are done. �

Remark 8.1.1. By the identity a sin2 t + b cos2 t = 1
2((a + b) − (a − b) cos 2t), an

equivalent formulation of (8.1) is∫ π/2

0
log
(
a sin2 t+ b cos2 t

)
dt = π log

√
a+
√
b

2
. (8.2)

We record a different proof [68] for (8.2):

Denote the integral by F (a, b). Adding F (a, b) to F (b, a) and using symmetry,

we obtain 2F (a, b) = F ((a+b
2 )2, ab).

Now consider the iteration

xn+1 =
(xn + yn)2

4
, yn+1 = xnyn, with x0 = x, y0 = y.

If we write an = (
√
xn +

√
yn)/2, bn = (

√
xn −

√
yn)/2, and dn = bn/an, then it is

easy to check that dn+1 = d2
n and 0 ≤ dn < 1. Thus, yn/xn = (1−dn)2/(1+dn)2 →

1.

Hence, F (x, y) = 2−nF (xn, yn) = π2−n log
√
xn+2−nF (1, yn/xn) from the inte-

gral. From the limit we just established, the second term approaches 0 as n→∞.

For the first term, since an+1 = a2
n, the limit is found to be limn→∞ π2−n log an =

π log a0 = π log((
√
x+
√
y)/2). ♦

It is not hard to deduce from (8.1) the slightly more general formula, valid for

real |a| ≥ |b| > 0,∫ 1

0
log
∣∣2a+ 2b cos(2πx)

∣∣ dx = log
(
|a|+

√
a2 − b2

)
. (8.3)
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Formula (8.3) can be thought of as a trigonometric version of Jensen’s formula,

which is commonly written as∫ 1

0
log
∣∣a− e2πit

∣∣dt = max(log |a|, 0), (8.4)

and indeed can be proven from (8.3). From a psychological viewpoint, it seems

to be the case that (8.3) may be used more efficiently or creatively than Jensen’s

formula, and many Mahler measures can be simplified this way, as we illustrate in

this chapter.

Remark 8.1.2 (Related formulas). A range of integrals related to (8.1) can be

found. In Chapter 3 we already encountered

∫ 1

0
log
(
(a+ cos 2πx)2 + (b+ sin 2πx)2

)
dx =

log(a2 + b2) if a2 + b2 > 1,

0 otherwise.

This can be proven by expanding the squares in the integrand, writing the sum of

sin and cos as a single cos term, then appealing to periodicity and finally to (8.1).

Likewise, we can compute∫ 1

0

(
(a+ cos 2πx)2 + (b+ sin 2πx)2

)
log
(
(a+ cos 2πx)2 + (b+ sin 2πx)2

)
dx

=

2 + (a2 + b2 + 1) log(a2 + b2) if a2 + b2 > 1,

2(a2 + b2) otherwise.

We also have∫ 1

0

{cos

sin

}
(2πx) log

(
(a+ cos 2πx)2 + (b+ sin 2πx)2

)
dx =

{ab}
max(a2 + b2, 1)

.

The integrals below may be proven by differentiating under the integral sign:∫ 1

0
cos(2πx) log(a+b cos 2πx) dx =

∫ 1

0
sin(2πx) log(a+b sin 2πx) dx =

a−
√
a2 − b2
b

,

while on the other hand, symmetry dictates that∫ 1

0
sin(2πx) log(a+ b cos 2πx) dx =

∫ 1

0
cos(2πx) log(a+ b sin 2πx) dx = 0.

An integral similar to Jensen’s formula is

∫ 2π

0
log |a+ eit|eit dt =


π
a if |a| ≥ 1,

πa if |a| < 1.
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And finally, we record that∫ 1/4

0

log(1 + b cos 2πx)

cos 2πx
dx =

π

16
− acos2b

4π
.

♦

8.1.1. Mahler measures. For k Laurent polynomials in n variables, the mul-

tiple Mahler measure, introduced in [126], is defined as

µ(P1, P2, . . . , Pk) :=

∫ 1

0
· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn. (8.5)

When P = P1 = P2 = · · · = Pk this devolves to a higher Mahler measure, µk(P ),

also examined in [126]. When k = 1 both reduce to the standard (logarithmic)

Mahler measure [60], which we encountered in Section 3.6.

An easy consequence of Jensen’s formula is that for complex constants a and b,

µ(ax+ b) = max(log |a|, log |b|). (8.6)

Therefore, the Mahler measure of a monic, single variable polynomial equals
∑

i log |ri|,

where ri are the roots outside the unit disc. Note that by reversing the coefficients

of a polynomial p, the Mahler measure does not change; thus µ(P ) is also equal to

log |P (0)| −
∑

i log |si|, where si are the roots inside the unit disc. Sometimes the

exponential Mahler measure is used, defined by

M(P ) = eµ(P ),

and so M(P ) is the product of the roots outside the unit circle. Note that M is

multiplicative.

We give some basic facts about the Mahler measures of a single variable poly-

nomial, since they are of historical and continuing interest. Let P be such a poly-

nomial; let L denote the sum of absolute values of the coefficients of P , H be the

size of the largest coefficient and d be its degree, then it is well known that [139]

M(P ) ≤ L ≤ 2dM(P ).

The second inequality follows by using Jensen’s formula and expressing the coeffi-

cients in terms of the roots, giving |ck| ≤
(
d
k

)
M , where ck is the kth coefficient of

P . Mahler [139] also showed that

H2−d ≤M(P ) ≤ H
√
d+ 1.
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Jensen’s formula implies that the Mahler measure of a cyclotomic polynomial

is 0, and that the exponential measure of an integer polynomial is an algebraic

number.

Kronecker showed that if the Mahler measure of a monic integer polynomial is

0 (that is, if all roots lie in the unit disc), then every root is either 0 or a root of

unity. The proof uses invariance under automorphisms of the splitting field and the

pigeon hole principle.

A famous open problem involving Mahler measures is as follows. D. H. Lehmer

investigated ∆n(P ) =
∏r
i=1(ani − 1), where ai are the roots of a monic integer

polynomial P . ∆n is an integer; moreover, when n is a prime, ∆n may be a large

prime whose primality may be checked relatively easily. If we wish for ∆n to grow

slowly with respect to n, that is, we want limn→∞ |∆n+1/∆n| to be small, then

it transpires that the µ(P ) needs to be small. This motivates Lehmer’s problem

(1933) (see e. g. [59]): find the integer polynomial with the smallest non-zero Mahler

measure. Note that x3− x− 1 has small measure, though the current winner is the

polynomial

x10 − x9 + x7 − x6 + x5 − x4 + x3 − x+ 1.

8.1.2. Multiple Mahler measures. There is much intrinsic interest in study-

ing multiple Mahler measures. For instance, using expansions of algebraic functions,

Boyd and Lawton showed that [60]

lim
n→∞

µ(P (x, xn)) = µ(P (x, y)),

(a similar result is true in higher dimensions), so every multiple measure is the limit

of one dimensional measures. Another general, deep and difficult connection is with

L-series. Loosely speaking, in some cases when a two-variable polynomial whose

zero set defines a genus-one curve C, its Mahler measure corresponds to a rational

multiple of an L-value of the (modular) elliptic curve arising from C [60, 84]. In

a way this ‘generalises’ Jensen’s formula, since in one dimension the L-series at

argument 1 evaluates in terms of logarithms, so for two dimensions we may expect

the measure to be the L-series at 2 – see e. g. Theorem 8.1. (We briefly looked at

some L-values in Chapter 7.)

In physics, multiple Mahler measures occur as certain lattice sums or constants

associated with lattices [111, 170].
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We now look at some simple techniques for evaluating multiple Mahler measure

[181]. An important observation is the following: if there exists an aj with |aj | ≥∑
i 6=j |ai|, then by Jensen’s formula, we have

M(a0 + a1x1 + · · ·+ anxn) = aj . (8.7)

(Recall that M = eµ.) We also note trivially that switching the sign of any of the

ai corresponds to a translation in the integral, and does not change the measure.

From (8.7), we have for instance

M((x+ y)2 + k) = k, k ≥ 4,

M(a+ x+ y) = a, a ≥ 2, (8.8)

M(x2 − y2 + xy + 3x− y + 1) = φ2, φ =
√

5+1
2 ,

the last being true since the polynomial factorises as (x+φy+φ2)(x− y/φ+ 1/φ2).

Another fundamental principle is to notice that the two dimensional Mahler

measure is an integral over a torus, so if for functions F and G,

G(x, y) = F
(
xayb, xcyd

)
, ad− bc = 1,

then µ(G) = µ(F ). This is because the change of variables (x, y) 7→ (ax+by, cx+dy)

has Jacobian 1, and takes the unit square to another fundamental domain of the

torus. (This periodicity idea is used in e. g. Section 4.2, and also in this chapter.)

A third basic technique for finding multiple Mahler measures is to apply Jensen’s

formula creatively – by writing the polynomial as A + yB where A and B do not

depend on y. For instance, Smyth’s original evaluation of µ(1 + x + y + z) starts

by writing it as µ((1 + x) + y(1 + z/y)) = µ(max(|1 + x|, |1 + z|)), by a change

of variable and Jensen’s formula (8.4). Often Jensen’s formula needs to be applied

multiple times.

This technique easily leads to µ(1 + xy) = 0, as well as

µ(1+x+y−xy) =
2G

π
, µ(1+x+x2 +y) =

8G

3π
, µ(1+x+y+x2y) =

3Cl(π3 )

π
, (8.9)

where G denotes Catalan’s constant and Cl is the Clausen function.

We give here a slight modification to the above approach, which is to use formula

(8.3) instead. The procedure is to write the integrand as a trigonometric expression,

which allows us to apply sum-to-product and product-to-sum formulas (including
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double angle formulas) liberally. Combined with translations which are allowed due

to periodicity, our aim is to ‘isolate’ a variable (y) so that (8.3) can be applied.

Although this method is by no means a panacea, it does have its advantages. We

get more freedom and control over the manipulations, and computers can be used to

automate (or exhaust) our searches, which are often non-trivial as there are often

many ways to group different trigonometric terms together, or to split them up.

Moreover, we often succeed in completing a one- or two-dimensional reduction; the

resulting integrals often appear as log-sine integrals (Chapter 9), or are at least

amenable to numerical integration. All of the measures in (8.9) can be done with

this method with great ease. We will apply these methods below, especially in

Section 8.4.

Example 8.1.1. We apply (8.3) to the Mahler measure µ(a+ x+ y).

First note that the a > 2 case has been dealt with in (8.8). Write µ using its

definitional integral. The integrand inside the log simplifies to

2 + a2 + 4a cos(π(x− y)) cos(π(x+ y)) + 2 cos(2π(x− y)).

Using the change of variable u = x − y, v = x + y and symmetries in the region

of integration, we are able to apply (8.3) to deduce that for for a = 2 sin(s/2) and

s ∈ (0, π),

µ(a+ x+ y) =

∫ (π−s)/(2π)

0
2 log(2 cosπu) du+

s log 2(1− cos s)

2π
,

which simplifies to

µ
(

2 sin
s

2
+ x+ y

)
=

1

π

(
Cl(s) + s log

(
2 sin

s

2

))
. (8.10)

Moreover, combined with (8.4) and the fact that max{|xn|, |yn|} = max{|x|, |y|}n,

we obtain

µ
((

2 sin
s

2

)n
+ (x+ y)n

)
=
n

π

(
Cl(s) + s log

(
2 sin

s

2

))
.

The exact result by Cassaigne-Maillot [141] for µ(a+ bx+ cy) can also be deduced

in the same way. ♦

An asymptotic expansion for the Mahler measure µ(1 + x1 + · · ·+ xn) is given

in Section 4.3.
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8.2. On µ(k + x+ 1/x+ y + 1/y)

We give an independent and elementary evaluation of the Mahler measure

µk := µ(k + x+ 1/x+ y + 1/y).

This measure is considered in [167], and many of its properties have been rediscov-

ered several times. It has been pointed out to us that our main results, equations

(8.15) and (8.16), were first found in [127].

Nevertheless, our analysis was carried out without any knowledge of previous

work, and due to its brevity we record it below. As outlined in the last section,

we first convert the exponentials in the double integral of µk into trigonometric

functions, so we are reduced to computing

µk =

∫ 1

0

∫ 1

0
log
∣∣k + 2 cos(2πx) + 2 cos(2πy)

∣∣ dxdy.

We do not apply (8.3) yet. Upon writing the sum of cosines as a product, we obtain

the equivalent formula

µk =

∫ 1

0

∫ 1

0
log
∣∣k + 4 cos(π(x− y)) cos(π(x+ y))

∣∣ dxdy.

Now make the change of variable x − y = u, x + y = v, appeal to periodicity and

apply the trigonometric version of Jensen’s formula (8.3). (This change of variable

corresponds to the equality µ(k+ x+ 1/x+ y+ 1/y) = µ(k+ (x+ 1/x)(y+ 1/y)).)

After cleaning up the | · | in the resulting single integral, we obtain

µk =

∫ 1

0
log

∣∣∣∣k2 +

√
k2

4
− 4 cos2 πu

∣∣∣∣du. (8.11)

We consider the two cases, k ≥ 4 and k ≤ 4. If k ≥ 4, then we may disregard

the | · | in (8.11). After a trigonometric change of variable, we obtain

µk =
1

π

∫ 1

0

log
(

1 +
√

1− 16t
k2

)
√
t(1− t)

dt+ log
k

2
.

We can legally expand the log as a series, exchange the order of summation and

integration, and observe that the integral gives a 2F1. Writing that as a series, we

then interchange the order of summation, and arrive at the closed form

µk = log k − 2

k2 4F3

(
1, 1, 3

2 ,
3
2

2, 2, 2

∣∣∣∣16

k2

)
, k ≥ 4. (8.12)
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If, on the other hand, k ≤ 4, then the absolute value in (8.11) splits the integral

into two parts, which give

π µk = Cl
(

2 sin−1 k

4

)
+ 2 sin−1

(k
4

)
log
(k

2

)
+
k

4

∫ 1

0

log(1 +
√

1− t)√
t(1− k2t

16 )
dt. (8.13)

We apply the same tricks as in the k ≥ 4 case above to treat the last integral.

One additional detail we need to take care of is that, after the second exchange of

summation, we split up the inner sum over even and odd terms. The result is the

sum of two hypergeometric functions:

π 3F2

( 1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣k2

16

)
− 2 3F2

( 1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣∣k2

16

)
.

We now observe that one 3F2 above cancels with the first two terms in (8.13) by

equation (3.62); thus we have

µk =
k

4
3F2

( 1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣k2

16

)
=

2

π

∫ k
4

0
K(x) dx, k ≤ 4. (8.14)

Note that at k = 4, we obtain the reduction (c. f. (5.32))

µ4 =
4G

π
.

Moreover, by inverting the argument of the 3F2 in (8.12) using equation (3.31),

we obtain

Theorem 8.1. For k ≥ 0,

µk =
k

4
Re 3F2

( 1
2 ,

1
2 ,

1
2

1, 3
2

∣∣∣∣k2

16

)
. (8.15)

The identification of µk with the real part of incomplete moments of K, as in

(8.14), allows us to find linear relations for various values of k. For instance, if we

start with µ5, apply Jacobi’s imaginary transformation followed by the quadratic

transform (6.5), then we are able to split it into two Mahler measures; that is,

µ5 =
2

π

(
2G+

∫ 1

4
5

K(x)

x
dx

)
=

1

π

(
2G+

∫ 1

1
4

K(x)

x
dx

)
+

1

π

(
2G−

∫ 1

1
4

K(x) dx

)
.

Identifying each piece using (8.14) and some transforms, the end result is

2µ5 = µ1 + µ16.

Indeed, this method in general gives the functional equation

µ4k2 + µ4/k2 = 2µ2k+2/k, (8.16)
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therefore, the last formula corresponds to the k = 2 case; another visually pleasing

case is µ2 + µ8 = 2µ3
√

2.

Unfortunately, (8.16) does not resolve Boyd’s observations that µ8 = 4µ2 and

µ5 = 6µ1, which are proved in [129] and [128] respectively.

We remark that µ1 was conjectured by Deninger to evaluate as

µ(1 + x+ y + 1/x+ 1/y) =
15

4π2
L(f, 2), (8.17)

where f(τ) = η(τ)η(3τ)η(5τ)η(15τ). The conjecture has recently been proven in

[170].

8.3. On µ((1 + x)(1 + y) + z).

In this section, we provide strong numerical evidence for a conjecture by Boyd,

who also numerically validated it to 28 digits by an illustrative use of the Cassaigne-

Maillot formula; the history is given in [61]. Let P = (1 + x)(1 + y) + z, and let

µ∗ := µ(P ). The conjecture is

µ∗
?
= 2L′(EN ,−1) =

4N2

(2π)4
L(EN , 3), (8.18)

where EN is the elliptic curve of conductor (see e. g. [178]) N = 15, defined by

P = 0, and L is the L-series attached to EN .

We find an easily integrable one dimensional integral for µ∗. We follow the

methods outlined in Section 8.1.2 and proceed via the following steps:

(1) Write the integrand as trigonometric terms and factorise in such a way

that z only appears in one term.

(2) Now that z is ‘isolated’, make the change of variable z − (x + y)/2 7→ z,

which is justified by periodicity.

(3) Apply the trigonometric version of Jensen’s formula, (8.3).

(4) Factorise the expression in the resulting integrand.

(5) Find the region on which the integrand is positive (and note that it is 0

elsewhere).

(6) Appeal to symmetry.

Carrying out the first five steps, it is not hard to arrive at

µ∗ =
4

π2

∫ cos−1 1
4

0

∫ cos−1 sec x
4

0
log(4 cos(x) cos(y)) dxdy.
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(E. g. the outcome of steps 1 and 2 is the expression, after a linear change of variable,

5 + 8 cos(x− y) cos(x+ y) + 4 cos(2x) cos(2y) + 8 cos(x) cos(y) cos(2z).)

By symmetry of the integration region, we obtain the single integral,

µ∗ =
8

π2

∫ cos−1 1
4

0
cos−1

(secx

4

)
log(2 cosx) dx =

8

π2

∫ 4

1

sec−1(t) log t
2√

16− t2
dt. (8.19)

This procedure works more generally: for b ∈ (0, 4), we have

µ∗b := µ
(
(1 + x)(1 + y) + bz

)
= log(b) +

8

π2

∫ 4

b

arccos
(
b
x

)
log
(

x
2
√
b

)
√

16− x2
dx. (8.20)

Note that for b ≥ 4, µ∗b = log(b), which is a simple consequence of (8.7).

Even though (8.19) is not a closed form, the integral is very easy to compute

numerically. The singularity at 4 is rather mild, and can be removed with a number

of quadrature schemes such as tanh-sinh or Gaussian quadrature; we do not explore

those here and only mention that Gaussian quadrature is investigated in Chapter

14.

After discovering (8.19), we used it to verify (8.18) to 500 digits in under 3

minutes. The integral was evaluated by running Mathematica 7 on a modest

laptop, using the NIntegrate command with increased WorkingPrecision and

PrecisionGoal options, and no other quadrature schemes; the L-series is easy to

compute and its digits are in fact well-tabulated. Later (in March 2012) we verified

(8.18) to 1000 digits, which took under 30 minutes of computing time.

8.4. Proofs of two conjectures of Boyd

We recapture the following evaluations conjectured by Boyd in 1998 and first

proven in [186] using Bloch-Wigner dilogarithms. Below, L−n denotes the primitive

L-series mod n.

Theorem 8.1. We have

µ(y2(x+ 1)2 + y(x2 + 6x+ 1) + (x+ 1)2) =
16

3π
L−4(2) =

16G

3π
, (8.21)

as well as

µ(y2(x+ 1)2 + y(x2 − 10x+ 1) + (x+ 1)2) =
5
√

3

π
L−3(2) =

20

3π
Cl2

(π
3

)
. (8.22)
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Proof. Let Pc = y2(x+ 1)2 + y(x2 + 2cx+ 1) + (x+ 1)2 and µc = µ(Pc) for a

real variable c. We set x = e2πit, y = e2πiu and note that

|Pc| = |(x+ 1)2(y2 + y + 1) + 2(c− 1)xy|

=
∣∣(x+ x−1 + 2)(y + y−1 + 1) + 2(c− 1)

∣∣
= |2(cos(2πt) + 1)(2 cos(2πu) + 1) + 2(c− 1)|

= 2 |c+ 2 cos(2πu) + (1 + 2 cos(2πu)) cos(2πt)|.

(This factorisation was discovered experimentally, by first converting |Pc| into trigono-

metric terms, and then, aided by a computer, by considering the many possible ways

to repeatedly combine two of the terms into a single term using the prosthaphaeresis

formulas.)

Applying (8.3), with a = c+ 2 cos(2πu) and b = 1 + 2 cos(2πu) to
∫ 1

0 log |Pc|dt,

we get

µc =

∫ 1

0
log
∣∣∣c+ 2 cos(2πu) +

√
(c2 − 1) + 4(c− 1) cos(2πu)

∣∣∣ du. (8.23)

If c2 − 1 = ±4(c − 1), that is if c = 3 or c = −5, then the surd is a perfect square

and also |a| ≥ |b|.

(a) When c = 3 for (8.21), by symmetry, and after factorisations we obtain

µ3 =
1

π

∫ π

0
log(1 + 4| cos θ|+ 4| cos2 θ|) dθ =

4

π

∫ π/2

0
log(1 + 2 cos θ) dθ

=
4

π

∫ π/2

0
log

(
2 sin 3θ

2

2 sin θ
2

)
dθ =

4

3π

(
1

3
Cl2

(π
2

)
+ Cl2

(π
2

))
=

16G

3π
,

where for the penultimate equality we have split up the integrand and used a few

basic transformations.

(b) When c = −5 for (8.22), we likewise obtain
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µ−5 =
2

π

∫ π

0
log
(√

3 + 2 sin θ
)

dθ =
2

π

∫ 4π/3

π/3
log
(√

3 + 2 sin
(
θ − π

3

))
dθ

=
2

π

∫ 4π/3

π/3

{
log 2

(
sin

θ

2

)
+ log 2

(
sin

θ + π
3

2

)}
dθ

=
2

π

∫ 4π/3

π/3
log 2

(
sin

θ

2

)
dθ +

2

π

∫ 5π/3

2π/3
log 2

(
sin

θ

2

)
dθ

=
4

π
Cl2

(π
3

)
− 4

π
Cl2

(
4π

3

)
=

20

3π
Cl2

(π
3

)
,

since Cl2
(

4π
3

)
= −2

3 Cl2
(
π
3

)
. �

When c = 1 the cosine in the surd of (8.23) disappears, and we obtain µ1 = 0,

which is trivial as in this case the polynomial factorises as (1 + x)2(1 + y+ y2). For

c = −1 we are able to obtain a new Mahler measure evaluation:

Theorem 8.2. We have

µ−1 = µ
(
(x+ 1)2(y2 + y + 1)− 4xy

)
(8.24)

=
β(1

4 ,
1
4)

4π
3F2

( 1
4 ,

1
4 , 1

3
4 ,

5
4

∣∣∣∣14
)
−
β(3

4 ,
3
4)

6π
3F2

( 3
4 ,

3
4 , 1

5
4 ,

7
4

∣∣∣∣14
)
.

Here, β(s, t) = Γ(s)Γ(t)
Γ(s+t) denotes the Euler beta function.

Proof. We only sketch the proof here. First, using (8.23) we have

µ−1 =
4G

3π
+

4

π

∫ 1

0

x log(1 +
√

2x)√
1− x4

dx.

Replacing the
√

2 in the integrand by a, Mathematica is able to evaluate the integral

in terms of three 3F2’s with argument a4. For |a| < 1, one can show that the

evaluation is indeed correct, by writing the 3F2’s as Euler-type integrals of 2F1’s as

done in (5.22). By analytic continuation, the evaluation also holds for a =
√

2; it

remains to invert the argument in the 3F2’s using (3.31), and to note that one of

hypergeometrics cancels with the Catalan constant term. �





CHAPTER 9

Log-sine Evaluations of Mahler Measures

Abstract. We study higher and multiple Mahler measures using log-sine inte-

grals. This motivates a detailed study of multiple polylogarithms. Our techniques

enable the reduction of several multiple Mahler measures.

9.1. Introduction

In [55] the classical log-sine integrals and their extensions are used to develop a

variety of results relating to higher and multiple Mahler measures [60, 126]. Log-

sine evaluations are used in physics: they appear for instance in the calculation of

the ε-expansion of various Feynman diagrams [120]. They also come up in number

theory and analysis: classes of inverse binomial sums can be expressed in terms of

generalised log-sine integrals [51, 83].

The structure of this chapter is as follows. In Section 9.2 our basic tools and

results are described. We turn to relationships between random walks and Mahler

measures in Section 9.3. In particular, we will be interested in the multiple Mahler

measure µn(1 + x+ y) which has a hypergeometric generating function (9.22) and

a trigonometric representation (9.24) as a double integral.

In Section 9.4 we directly expand (9.22) and use results from the ε-expansion of

hypergeometric functions [82, 83] to obtain µn(1+x+y) in terms of multiple inverse

binomial sums. For n = 1, 2, 3 this leads to explicit polylogarithmic evaluations.

An alternative approach based of the double integral representation (9.24) is

taken up in Section 9.5 which considers the evaluation of the inner integral in (9.24).

Aided by combinatorics, we show that these can always be expressed in terms of

multiple polylogarithms. Accordingly, we demonstrate in Section 9.5.2 how these

polylogarithms can be reduced explicitly for low weights. In Section 9.6 we reprise

from [55] the evaluation of µ2(1 + x+ y).

155
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9.2. Preliminaries and log-sine integrals

We will need the definition of a multiple Mahler measure (8.5).

µ(P1, P2, . . . , Pk) :=

∫ 1

0
· · ·
∫ 1

0

k∏
j=1

log
∣∣Pj (e2πit1 , . . . , e2πitn

)∣∣ dt1dt2 . . . dtn.

In the following development, we let

Lia1,...,ak(z) :=
∑

n1>···>nk>0

zn1

na11 · · ·n
ak
k

(9.1)

denote the generalised polylogarithm as is studied in [51] and [44, Ch. 3]. For

example, Li2,1(z) =
∑∞

k=1
zk

k2
∑k−1

j=1
1
j . In particular, Lik(x) :=

∑∞
n=1

xn

nk
is the

polylogarithm of order k. The dilogarithm function Li2 [199] has a particularly rich

structure.

Moreover, multiple zeta values (see Chapter 13) are denoted by

ζ(a1, . . . , ak) := Lia1,...,ak(1). (9.2)

Similarly, we consider the multiple Clausen functions (Cl) and multiple Glaisher

functions (Gl) of depth k which are given by

Cla1,...,ak (θ) =

{
Im Lia1,...,ak(eiθ) if w even

Re Lia1,...,ak(eiθ) if w odd
, (9.3)

Gla1,...,ak (θ) =

{
Re Lia1,...,ak(eiθ) if w even

Im Lia1,...,ak(eiθ) if w odd
, (9.4)

where w = a1 + . . .+ ak is the weight of the function.

For n = 1, 2, . . ., we consider the log-sine integrals defined by

Lsn (σ) := −
∫ σ

0
logn−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ dθ, (9.5)

and, for k = 0, 1, . . . , n− 1, their generalised versions

Ls(k)
n (σ) := −

∫ σ

0
θk logn−1−k

∣∣∣∣2 sin
θ

2

∣∣∣∣ dθ. (9.6)

This is the notation used by Lewin [133, 134].

Clearly, Ls1 (σ) = −σ and that Ls
(0)
n (σ) = Lsn (σ). In particular,

Ls2 (σ) = Cl2 (σ) :=
∞∑
n=1

sin(nσ)

n2
(9.7)
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is the Clausen function. In Section 5.3 we proved Cl2(π/2) = G from the integral

definition. Various log-sine integral evaluations may be found in [134, §7.6 & §7.9].

9.2.1. Log-sine integrals at π. Log-sine integrals at π can always be eval-

uated in terms of zeta values. This is a consequence of the (easy) exponential

generating function

− 1

π

∞∑
m=0

Lsm+1 (π)
um

m!
=

Γ (1 + u)

Γ2
(
1 + u

2

) =

(
u

u/2

)
. (9.8)

This will be revisited in Section 9.3. It is not hard to see from the definition that

log-sine integrals at π correspond to higher Mahler measures:

µm(1 + x) = − 1

π
Lsm+1 (π) (9.9)

Example 9.2.1 (Values of Lsn (π)). For instance, we have Ls2 (π) = 0 as well as

−Ls3 (π) =
1

12
π3

Ls4 (π) =
3

2
π ζ(3)

−Ls5 (π) =
19

240
π5

Ls6 (π) =
45

2
π ζ(5) +

5

4
π3ζ(3)

−Ls7 (π) =
275

1344
π7 +

45

2
π ζ2(3)

and so forth. Note that these values may be conveniently obtained from (9.8) by a

computer algebra system with a one line command.

Many more results may be obtained from these. For instance, integrating Ls3 (π)

by parts, we find ∫ π

0
t cot

( t
2

)
log
(

2 sin
t

2

)
dt = π log(2)2 − π3

12
.

It is straightforward to see that as n → ∞, Lsn (π) → Lsn (π/3). A change of

variable in the integral of the latter gives, as n→∞,∣∣∣Lsn

(π
3

) ∣∣∣ =

∫ 1/2

0

2| logn−1(2x)|√
1− x2

dx =

∫ 1/2

0

(
2 + x2 +

3x4

4
+ · · ·

)∣∣logn−1(2x)
∣∣dx

= Γ(n)
(

1 +
1

8 · 3n
+

3

128 · 5n
+ · · ·

)
, (9.10)

which gives the asymptotic behaviour of the Mahler measures (9.9) and (9.51) below.

♦
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For general log-sine integrals, the following computationally effective exponen-

tial generating function was obtained in [54].

Theorem 9.1 (Generating function for Ls
(k)
n+k+1 (π)). For 2|µ| < λ < 1 we have

∑
n,k≥0

Ls
(k)
n+k+1 (π)

λn

n!

(iµ)k

k!
= −i

∑
n≥0

(
λ

n

)
(−1)n eiπ

λ
2 − eiπµ

µ− λ
2 + n

. (9.11)

One may extract one-variable generating functions from (9.11). For instance,

∞∑
n=0

Ls
(1)
n+2 (π)

λn

n!
=
∞∑
n=0

(
λ

n

)−1 + (−1)n cos πλ2(
n− λ

2

)2 .

9.2.2. Extensions of the log-sine integrals. It is possible to consider the

log-sine-cosine integrals

Lscm,n (σ) := −
∫ σ

0
logm−1

∣∣∣∣2 sin
θ

2

∣∣∣∣ logn−1

∣∣∣∣2 cos
θ

2

∣∣∣∣ dθ. (9.12)

Then Lscm,1 (σ) = Lsm (σ) and Lscm,n (σ) = Lscn,m (σ). As in (9.9), these are

related to multiple Mahler measures. Namely, if we set

µm,n(1− x, 1 + x) := µ(1− x, · · · , 1− x︸ ︷︷ ︸
m

, 1 + x, · · · , 1 + x︸ ︷︷ ︸
n

) (9.13)

then, from the definition, we obtain the following:

Theorem 9.2 (Evaluation of µm,n(1− x, 1 + x)). For non-negative integers m,n,

µm,n(1− x, 1 + x) = − 1

π
Lscm+1,n+1 (π) . (9.14)

In every case this is evaluable in terms of zeta values. Indeed, using the result

in [134, (7.114)], we obtain the generating function

gs(u, v) := − 1

π

∞∑
m,n=0

Lscm+1,n+1 (π)
um

m!

vn

n!
=

2u+v

π

Γ
(

1+u
2

)
Γ
(

1+v
2

)
Γ
(
1 + u+v

2

) . (9.15)

We have

gs(u, 0) =

(
u

u/2

)
= gs(u, u),

so clearly (9.15) is an extension of (9.8).
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Example 9.2.2 (Values of Lscn,m (π)). For instance,

µ1,1(1− x, 1 + x) = −π
2

24
,

µ2,1(1− x, 1 + x) = µ1,2(1− x, 1 + x) =
1

4
ζ(3),

µ3,2(1− x, 1 + x) =
3

4
ζ(5)− 1

8
π2ζ(3).

As in Example 9.2.1, these can be easily obtained with a line of code. ♦

Remark 9.2.1. From gs(u,−u) = sec(πu/2) we may deduce that

n∑
k=0

(−1)kµk,n−k(1− x, 1 + x) = |E2n|
(π/2)2n

(2n)!
=

4

π
β(2n+ 1),

where E2n are the Euler numbers: 1,−1, 5,−61, 1385 . . ., see also Section 13.4. ♦

Using Fourier techniques, one may prove in much the same way as Proposition

9.8 the following result, first given in [126].

Proposition 9.1 (A dilogarithmic measure). For two complex numbers u and v we

have

µ(1− ux, 1− v x) =


1
2 Re Li2 (vu) , if |u| ≤ 1, |v| ≤ 1,

1
2 Re Li2

(
v
u

)
, if |u| ≥ 1, |v| ≤ 1,

1
2 Re Li2

(
1
vu

)
+ log |u| log |v|, if |u| ≥ 1, |v| ≥ 1.

(9.16)

In Lewin’s terms [134, A.2.5], we may write the above result in terms of

Li2 (r, θ) := Re Li2
(
reiθ

)
= −1

2

∫ r

0
log
(
t2 + 1− 2t cos θ

) dt

t
, (9.17)

which satisfies the reflection formula

Li2 (r, θ) + Li2

(1

r
, θ
)

= ζ(2)− 1

2
log2 r +

1

2
(π − θ)2. (9.18)

Example 9.2.3 (Some more evaluations). Since Cl2(t) =
∑

n>0
sin(nt)
n2 , by Parse-

val’s formula [125] we have ∫ π

0
Cl22(t) dt =

π5

180
, (9.19)

and integration by parts gives results such as∫ π

0
t log

(
2 sin

t

2

)
Cl(t) dt =

π5

360
,

∫ π/2

0
log
(

2 sin
t

2

)
Cl(t) dt = −G

2

2
.
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Moreover, we have the moments∫ π

0
tnCl(t) dt =

1

n+ 1
Ls

(n+1)
n+3 (π).

From (9.18), we have

Li2(eit) =
π2

6
+
t2 − 2πt

4
+ iCl2(t),

thus we may expand out Li22(eit), use the moments above and equation (9.19) to

find ∫ π

0
Li22(eit) dt =

i

48

(
10π2ζ(3)− 93ζ(5)

)
.

♦

9.3. Mahler measures and moments of random walks

Recall that the sth moments of an n-step uniform random walk are given by

Wn(s) =

∫ 1

0
. . .

∫ 1

0

∣∣∣∣∣
n∑
k=1

e2πitk

∣∣∣∣∣
s

dt1 · · · dtn

and their relation with Mahler measures is observed in Chapter 3. In particular,

W ′n(0) = µ(1 + x1 + . . .+ xn−1).

Higher derivatives of Wn correspond to higher Mahler measures:

W (m)
n (0) = µm(1 + x1 + . . .+ xn−1). (9.20)

The evaluation W2(s) =
(
s
s/2

)
thus explains and proves the generating function

(9.8); in other words, we find that

W
(m)
2 (0) = − 1

π
Lsm+1 (π) . (9.21)

We record the following generating function for µm(1 + x + y) which follows

from (9.20) and the hypergeometric expression for W3.

Theorem 9.3 (Hypergeometric form for W3(s)). For complex |s| < 2, we may

write

W3(s) =

∞∑
n=0

µn(1 + x+ y)
sn

n!
=

3s+3/2

2π

Γ(1 + s
2)2

Γ(s+ 2)
3F2

( s+2
2 , s+2

2 , s+2
2

1, s+3
2

∣∣∣∣14
)

(9.22)

=

√
3

π

(
3

2

)s+1 ∫ 1

0

z1+s

√
1− z2

2F1

(
1 + s

2 , 1 + s
2

1

∣∣∣∣z2

4

)
dz. (9.23)



9.4. EPSILON EXPANSION OF W3 161

Proof. Equation (9.22) is a consequence of equation (3.75), while (9.23) is

equivalent to (9.22) after interchanging the order of integration and summation

and applying a beta integral. �

By computing higher-order finite differences in the right-hand side of (9.22), we

have obtained values for µn(1 + x+ y) to several thousand digits.

We shall exploit Theorem 9.3 in Section 9.4. We also have

µn(1 + x+ y) =
1

4π2

∫ 2π

0
dθ

∫ 2π

0

(
Re log

(
1− 2 sin(θ)ei ω

))n
dω, (9.24)

as follows directly from the definition and simple trigonometry. In Section 9.5 we

will evaluate the inner integral in terms of multiple polylogarithms.

9.4. Epsilon expansion of W3

In this section we use known results from the ε-expansion of hypergeometric

functions [82, 83] to obtain µn(1 + x + y) in terms of multiple inverse binomial

sums. We then derive complete evaluations of µ1(1 + x + y), µ2(1 + x + y) and

µ3(1 + x+ y). Alternative approaches will be pursued in Sections 9.5 and 9.6.

In light of Theorem 9.3, the evaluation of µn(1 + x + y) is essentially reduced

to the Taylor expansion

3F2

( ε+2
2 , ε+2

2 , ε+2
2

1, ε+3
2

∣∣∣∣14
)

=
∞∑
n=0

αnε
n. (9.25)

Indeed, from (9.22) we have

µn(1 + x+ y) =

√
3

2π

n∑
k=0

(
n

k

)
αkβn−k, (9.26)

where βk is defined by

3ε+1

(1 + ε)
(
ε
ε/2

) =

∞∑
n=0

βnε
n. (9.27)

Note that βk is easy to compute; indeed, appealing to (9.8), we find that βn evaluates

in terms of log 3 and zeta values. The expansion of hypergeometric functions in

terms of their parameters as in (9.25) is commonly referred to as epsilon expansion.

Let Sk(j) :=
∑j

m=1
1
mk

denote the harmonic numbers of order k. Following

[83] we abbreviate Sk := Sk(j− 1). As in [82, Appendix B], we use the duplication
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formula (2a)2j = 4j(a)j(a+ 1/2)j as well as the expansion

(m+ aε)j
(m)j

= exp

[
−
∞∑
k=1

(−aε)k

k
[Sk(j +m− 1)− Sk(m− 1)]

]
(9.28)

for positive integer m, to write

3F2

( ε+2
2 , ε+2

2 , ε+2
2

1, ε+3
2

∣∣∣∣14
)

=
∞∑
j=0

(1 + ε/2)3
j

4jj!2(3/2 + ε/2)j
=
∞∑
j=0

(1 + ε/2)4
j

j!2(2 + ε)2j

=

∞∑
j=0

2

j + 1

1(
2(j+1)
j+1

) [(1 + ε/2)j
j!

]4 [(2 + ε)2j

(2j + 1)!

]−1

=

∞∑
j=1

2

j

1(
2j
j

) exp

[ ∞∑
k=1

(−ε)k

k
Ak,j

]
, (9.29)

where

Ak,j := Sk(2j − 1)− 1− 4
Sk(j − 1)

2k
=

2j−1∑
m=2

2(−1)m+1 − 1

mk
. (9.30)

We can now read off the terms αn of the ε-expansion (9.25):

Theorem 9.4. For n = 0, 1, 2, . . .

αn = [εn] 3F2

( ε+2
2 , ε+2

2 , ε+2
2

1, ε+3
2

∣∣∣∣14
)

= (−1)n
∞∑
j=1

2

j

1(
2j
j

)∑ n∏
k=1

Amkk,j
mk! kmk

(9.31)

where the inner sum is over all non-negative integers m1, . . . ,mn such that m1 +

2m2 + . . .+ nmn = n.

Proof. Equation (9.31) may be derived from (9.29) using Faà di Bruno’s for-

mula for the nth derivative of the composition of two functions. �

Example 9.4.1 (α0, α1 and α2). In particular,

α1 = [ε] 3F2

( ε+2
2 , ε+2

2 , ε+2
2

1, ε+3
2

∣∣∣∣14
)

= −
∞∑
j=1

2

j

1(
2j
j

)A1,j = −
∞∑
j=1

2

j

1(
2j
j

) [S̄1 − 2S1 − 1
]
.

(9.32)

Such multiple inverse binomial sums are studied in [83]. Using [83, (2.20), (2.21)]

we find

α0 =
2π

3
√

3
, (9.33)

α1 =
2

3
√

3

[
π − π log 3 + Ls2

(π
3

)]
. (9.34)
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For the term α2 in the ε-expansion, (9.29) produces

[ε2] 3F2

( ε+2
2 , ε+2

2 , ε+2
2

1, ε+3
2

∣∣∣∣14
)

=
∞∑
j=1

1

j

1(
2j
j

) [A2
1,j +A2,j

]
=

∞∑
j=1

1

j

1(
2j
j

) [S̄2 − S2 + (S̄1 − 2S1)2 − 2S̄1 + 4S1

]
.

Using [83, (2.8),(2.22)–(2.24)] we obtain

α2 =
2

3
√

3

[
π

72
− π log 3 +

1

2
π log 3 + (1− log 3) Ls2

(π
3

)
+

3

2
Ls3

(π
3

)
+

3

2
Ls3

(
2π

3

)
− 3 Ls3 (π)

]
. (9.35)

♦

These results provide us with evaluations of µ1(1 + x+ y) and µ2(1 + x+ y).

Theorem 9.5 (Evaluation of µ1(1 + x+ y) and µ2(1 + x+ y)). We have

µ1(1 + x+ y) =
1

π
Ls2

(π
3

)
, (9.36)

µ2(1 + x+ y) =
3

π
Ls3

(
2π

3

)
+
π2

4
. (9.37)

Proof. Using Theorem 9.3 we obtain

µ1(1 + x+ y) =
3
√

3

2π

[
(log 3− 1)α0 + α1

]
. (9.38)

Combining this with equations (9.33) and (9.34) yields (9.36). Again using Theorem

9.3 we find

µ2(1 + x+ y) =
3
√

3

2π

[(
log2 3− 2 log 3 + 2− π2

12

)
α0 + 2(log 3− 1)α1 + 2α2

]
,

which, together with equations (9.33), (9.34) and (9.35), gives

πµ2(1 + x+ y) = 3 Ls3

(
2π

3

)
+ 3 Ls3

(π
3

)
− 6 Ls3 (π)− π3

18

= 3 Ls3

(
2π

3

)
+
π3

4
. (9.39)

The last equality follows, for instance, automatically from the results in [54]. �

The evaluation of α3 is more involved and we omit some details. Again, (9.29)

produces

[ε3] 3F2

( ε+2
2 , ε+2

2 , ε+2
2

1, ε+3
2

∣∣∣∣14
)

= −1

3

∞∑
j=1

1

j

1(
2j
j

) [A3
1,j + 3A1,jA2,j + 2A3,j

]
.
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Using [83, (2.25)–(2.28), (2.68)–(2.70), (2.81), (2.89)] as well as results from [54]

we are led to

α3 =
2

3
√

3

[
5π3

108
(1− log 3) +

1

2
π log2 3− 1

6
π log3 3 +

11

9
πζ(3)

+ Cl2

(π
3

)( 5

36
π2 − log 3 +

1

2
log2 3

)
− 3 Gl2,1

(
2π

3

)
(1− log 3)

−35

6
Cl4

(π
3

)
+ 15 Cl2,1,1

(
2π

3

)
− 3 Lsc2,3

(π
3

)]
. (9.40)

Observe the occurrence of Lsc2,3

(
π
3

)
defined in (9.12). Proceeding as in the proof

of Theorem 9.5 we obtain:

Theorem 9.6 (Evaluation of µ3(1 + x+ y)). We have

πµ3(1 + x+ y) = 15 Ls4

(
2π

3

)
− 18 Lsc2,3

(π
3

)
− 15 Cl4

(π
3

)
− 1

4
π2 Cl2

(π
3

)
− 17πζ(3). (9.41)

The log-sine-cosine integral appears to reduce further as

12 Lsc2,3

(π
3

)
?
= 6 Ls4

(
2π

3

)
− 4 Cl4

(π
3

)
− 7πζ(3). (9.42)

This conjectural reduction also appears in [82, (A.30)] where it was found via

PSLQ. Combining with (9.41), we obtain an conjectural evaluation of µ3(1 +x+ y)

equivalent to (9.82).

9.5. Trigonometric analysis of µn(1 + x+ y)

In light of (9.24) we define

ρn(α) :=
1

2π

∫ π

−π

(
Re log

(
1− α ei ω

))n
dω (9.43)

for n ≥ 0, so that

µn(1 + x+ y) =
1

2π

∫ π

−π
ρn(|2 sin θ|) dθ. (9.44)

In a sequence of combinatorial propositions, we study the properties of ρn.

Proposition 9.2 (Properties of ρn). Let n be a positive integer.

(a) For |α| ≤ 1 we have

ρn(α) = (−1)n
∞∑
m=1

αm

mn
ωn(m), (9.45)
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where ωn is defined as

ωn(m) =
∑

∑n
j=1 kj=m

1

2π

∫ π

−π

n∏
j=1

m

kj
cos(kjω) dω. (9.46)

(b) For |α| ≥ 1 we have

ρn(α) =
n∑
k=0

(
n

k

)
logn−k |α| ρk

(
1

α

)
. (9.47)

Proof. For (a) we use (9.43) to write

ρn(α) =
1

2π

∫ π

−π

(
Re log

(
1− αei ω

))n
dω =

1

2π

∫ π

−π

{
−
∑
k≥1

αk

k
cos(kω)

}n
dω

= (−1)n
∞∑
m=1

αm

mn
ωn(m),

as asserted. We note that |ωn(m)| ≤ mn and so the sum is convergent.

For (b) we use (9.43) to write ρn(α) =

1

2π

∫ π

−π
logn

(
|α|
∣∣1− α−1ei ω

∣∣) dω =
1

2π

∫ π

−π

(
log |α|+ log

∣∣1− α−1ei ω
∣∣)n dω

=
n∑
k=0

(
n

k

)
logn−k |α| 1

2π

∫ π

−π
logk

∣∣1− α−1ei ω
∣∣ dω =

n∑
k=0

(
n

k

)
logn−k |α| ρk

(
1

α

)
,

as required. �

Example 9.5.1 (Evaluation of ωn and ρn for n ≤ 2). We have ω0(m) = 0, ω1(m) =

δ0(m), and

ω2(0) = 1, ω2(2m) = 2, ω2(2m+ 1) = 0. (9.48)

Likewise, ρ0(α) = 1, ρ1(α) = log max(|α|, 1), and

ρ2(α) =

{
1
2 Li2(α2) for |α| ≤ 1,

1
2 Li2

(
1
α2

)
+ log2 |α| for |α| ≥ 1,

(9.49)

where the latter follows from (9.48) and Proposition 9.2. ♦

We have arrived at the following description of µn(1 + x+ y):

Proposition 9.3 (Evaluation of µn(1 + x+ y)). Let n be a positive integer. Then

µn(1 + x+ y) =
1

π

{
Lsn+1

(π
3

)
− Lsn+1 (π)

}
+

2

π

∫ π/6

0
ρn (2 sin θ) dθ

+
2

π

n∑
k=2

(
n

k

)∫ π/2

π/6
logn−k (2 sin θ) ρk

(
1

2 sin θ

)
dθ. (9.50)
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Proof. Since |α| < 1 when |θ| < π/6, we start with (9.44) to get

µn(1 + x+ y) =
1

2π

∫ π

−π
ρn(|2 sin θ|) dθ

=
2

π

∫ π/6

0
ρn(2 sin θ) dθ +

2

π

∫ π/2

π/6
ρn(2 sin θ) dθ

=
2

π

∫ π/6

0
ρn(2 sin θ) dθ +

n∑
k=0

(
n

k

)
2

π

∫ π/2

π/6
logn−k(2 sin θ) ρk

(
1

2 sin θ

)
dθ.

We observe that for k = 1 the contribution is zero since ρ1 is zero for |α| < 1. After

evaluating the term with k = 0 we arrive at (9.50). �

As can be easily shown, we have the following multiple Mahler measure,

π µ(1 + x+ y1, 1 + x+ y2, . . . , 1 + x+ yn) = Lsn+1

(π
3

)
− Lsn+1 (π) . (9.51)

We record the following for log-sine values at π/3:

Example 9.5.2 (Values of Lsn (π/3)). The following evaluations hold [54]:

Ls2

(π
3

)
= Cl2

(π
3

)
−Ls3

(π
3

)
=

7

108
π3

Ls4

(π
3

)
=

1

2
π ζ(3) +

9

2
Cl4

(π
3

)
−Ls5

(π
3

)
=

1543

19440
π5 − 6 Gl4,1

(π
3

)
Ls6

(π
3

)
=

15

2
π ζ(5) +

35

36
π3ζ(3) +

135

2
Cl6

(π
3

)
.

These evaluations use the method from [95]. On the other hand, Ls
(1)
n (π/3) also

lends itself nicely to analysis. From the integral definition (9.6), we make a change

of variable x = 2 sin(θ/2), expand the new integrand as a series, integrate by parts

then finally interchange the order of integration and summation. The result is

Ls(1)
n

(π
3

)
=
−(n− 2)!

(−2)n−2

∞∑
k=1

1(
2k
k

)
kn
. (9.52)

With the right hand sum, we use the standard trick and identify the inverse bino-

mial coefficient as its beta integral, n
∫ 1

0 t
n−1(1− t)ndt. Interchanging the order of

summation and integration once more, we have

Ls(1)
n

(π
3

)
=
−(n− 2)!

(−2)n−2

∫ 1

0
Lin−1

(
t(1− t)

)dt

t
. (9.53)
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Equations (9.52) and (9.53) then give a number of evaluations, such as

Ls
(1)
3

(π
3

)
=
π

3
Cl2

(π
3

)
− 2ζ(3)

3
,

while an evaluation for Ls
(1)
4 (π/3) gives the hypergeometric identity

5F4

(
1, 1, 1, 1, 1

3
2 , 2, 2, 2

∣∣∣∣14
)

=
17

18
ζ(4),

compare with the hypergeometric form coming from Lsn (π/3) via (9.10), e. g.

4F3

( 1
2 ,

1
2 ,

1
2 ,

1
2

3
2 ,

3
2 ,

3
2

∣∣∣∣14
)

=
7π3

216
.

♦

9.5.1. Further evaluation of ρn. To make further progress, we need first to

determine ρn for n ≥ 3. It is instructive to explore the next few cases.

Example 9.5.3 (Evaluation of ω3 and ρ3). We use the trigonometric identity

4 cos (a) cos (b) cos (c) = cos (a+ b+ c) + cos (a− b− c) + cos (a− b+ c) + cos (a− c+ b)

to derive

ω3(m) =
1

4

∑ {
m3

ijk
: i± j ± k = 0, i+ j + k = m

}
.

Note that we must have exactly one of i = j + k, j = k + i or k = i + j. We thus

learn that ω3(2m+ 1) = 0. Moreover, by symmetry,

ω3(2m) =
3

4

∑
j+k=m

(2m)3

jk(j + k)
= 6

∑
j+k=m

m2

jk
= 12m

m−1∑
k=1

1

k
. (9.54)

Hence, by Proposition 9.2,

ρ3(α) = −3

2

∞∑
m=1

∑m−1
k=1

1
k

m2
α2m = −3

2
Li2,1(α2) (9.55)

for |α| < 1. ♦

In the general case we have

n∏
j=1

cos(xj) = 2−n
∑

ε∈{−1,1}n
cos

( n∑
j=1

εjxj

)
(9.56)

which follows inductively from 2 cos(a) cos(b) = cos(a+ b) + cos(a− b).

Proposition 9.4. For integers n,m ≥ 0 we have ωn(2m+ 1) = 0.
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Proof. In light of (9.56), the summand corresponding to the indices k1, . . . , kn

in (9.46) for ωn(2m+ 1) is nonzero if and only if there exists ε ∈ {−1, 1}n such that

ε1k1 + · · ·+ εnkn = 0. In other words, there is a set S ⊂ {1, . . . , n} such that∑
j∈S

kj =
∑
j 6∈S

kj .

Thus k1 + · · ·+ kn = 2
∑

j∈S kj which contradicts k1 + · · ·+ kn = 2m+ 1. �

Example 9.5.4 (Evaluation of ω4 and ρ4). Proceeding as in Example 9.5.3 and

employing (9.56), we find

ω4(2m) =
3

8

∑
i+j=m
k+`=m

(2m)4

ijk`
+

1

2

∑
i+j+k=m

(2m)4

ijk`
= 24m2

∑
i<m
j<m

1

ij
+ 24m2

∑
i+j<m

1

ij

= 48m2
m−1∑
i=1

1

i

i−1∑
j=1

1

j
+ 24m2

m−1∑
i=1

1

i2
+ 48m2

m−1∑
i=1

1

i

i−1∑
j=1

1

j
. (9.57)

Consequently, for |α| < 1 and appealing to Proposition 9.2,

ρ4(α) =
∞∑
m=1

α2m

(2m)4
ω4(2m) = 6 Li2,1,1(α2) +

3

2
Li2,2(α2). (9.58)

This suggests that ρn(α) is generally expressible as a sum of polylogarithmic terms,

as will be shown next. ♦

For the general evaluation of ωn(2m), for integers j ≥ 0 and m ≥ 1, define

σj(m) :=
∑

m1+...+mj=m

1

m1 · · ·mj
. (9.59)

Proposition 9.5. For positive integers n, m we have

ωn(2m)

mn
=

n−1∑
j=1

(
n

j

)
σj(m)σn−j(m) (9.60)

where σj is defined in (9.59).

Proof. It follows from (9.56) that

ωn(2m) =
∑

k1+...+kn=2m

∑
∑
j εjkj=0

n∏
j=1

m

kj
.

Arguing as in Proposition 9.4 we therefore find that

ωn(2m) =

n−1∑
j=1

(
n

j

) ∑
k1+...+kj=m
kj+1+...+kn=m

n∏
j=1

m

kj
.
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This is equivalent to (9.60). �

Moreover, we obtain a simple recursion:

Proposition 9.6. Let m ≥ 1. Then σ1(m) = 1/m while for j ≥ 2 we have

σj(m) =
j

m

m−1∑
r=1

σj−1(r), (9.61)

=
j!

m

∑
m>m1>...>mj−1>0

1

m1 · · ·mj−1
. (9.62)

Proof. This follows by simple combinatorics. We have

σj(m) =
∑

m1+...+mj=m

1

m1 · · ·mj
=

1

m

∑
m1+...+mj=m

m1 + . . .+mj

m1 · · ·mj

=
j

m

∑
m1+...+mj=m

1

m1 · · ·mj−1
=

j

m

m−1∑
r=1

∑
m1+...+mj−1=r

1

m1 · · ·mj−1

which yields (9.61). Iterating (9.61) gives (9.62). �

Thus, for instance, σ2(m) = 2Hm−1/m. From here, we easily re-obtain the

evaluations of ω3 and ω4 given in Examples 9.5.3 and 9.5.4. To further illustrate

Propositions 9.5 and 9.6, we now compute ρ5 and ρ6.

Example 9.5.5 (Evaluation of ρ5 and ρ6). From Proposition 9.5,

ω5(2m)

m5
= 10σ1(m)σ4(m) + 20σ2(m)σ3(m).

Consequently, for |α| < 1,

− ρ5(α) =
∞∑
m=1

α2m

(2m)5
ω5(2m) = 30 Li2,1,1,1(α2) +

15

2

(
Li2,1,2(α2) + Li2,2,1(α2)

)
.

(9.63)

Similarly, ρ6(α) =

180 Li2,1,1,1,1(α2) + 45
(
Li2,1,1,2(α2) + Li2,1,2,1(α2) + Li2,2,1,1(α2)

)
+

45

4
Li2,2,2(α2).

♦

In general, ρn evaluates as follows:

Proposition 9.7 (Evaluation of ρn). For |α| < 1 and integers n ≥ 2,

ρn(α) =
(−1)nn!

4n

∑
w

4`(w) Liw(α2)
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where the sum is over all indices w = (2, a2, a3, . . . , a`(w)) such that a2, a3, . . . ∈

{1, 2} and |w| = n.

Proof. From Proposition 9.5 and (9.62) we have

ρn(α) =
(−1)nn!

2n

∞∑
m=1

α2m

m2

n−2∑
j=0

∑
m>m1>...>mj>0

m>mj+1>...>mn−2>0

1

m1 · · ·mn−2
.

Combining the right-hand side into polylogarithms yields

ρn(α) =
(−1)nn!

2n

n−2∑
k=0

∑
a1,...,ak∈{1,2}
a1+...+ak=n−2

2c(a) Li2,a1,...,ak(α2)

where c(a) is the number of 1’s among a1, . . . , ak. The claim follows. �

9.5.2. Reducing multiple polylogarithms of weight < 5. Propositions

9.3 and 9.7 take us closer to a closed form for µn(1 + x+ y). As ρn are expressible

in terms of multiple polylogarithms of weight n, it remains to supply reductions

for those of low weight. Such polylogarithms are reduced [50] by the use of the

differential operators

(D0f)(x) = xf ′(x) and (D1f)(x) = (1− x)f ′(x)

depending on whether the outer index is greater than 1 or not (the operator Di

reduces the outer index of f by 1, or in the case that it is already 1, removes

it altogether). Such operators give rise to the shuffle relations which are very

important in analysing multiple zeta values (for instance, it is conjectured that all

algebraic relations among multiple zeta values arise from shuffle and stuffle relations;

see also Chapter 13).

As was known to Ramanujan, and studied in [48], that for 0 < x < 1,

Li2,1(x) =
1

2
log2(1− x) log(x) + log(1− x) Li2(1− x)− Li3(1− x) + ζ(3). (9.64)

For Li1,3(x), since (1− x) Li′1,3(x) = Li3(x), we get

Li1,3(x) = −1

2
Li22(x)− log(1− x) Li3(x). (9.65)

For Li2,2 we work as follows. As (1− x) Li′1,2(x) = Li2 (x), integration yields

Li1,2(x) = 2 Li3(1− x)− log(1− x) Li2(x)− 2 log(1− x) Li2(1− x)

− log2(1− x) log(x)− 2ζ(3). (9.66)
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Then, since xLi′2,2(x) = Li1,2(x), we integrate again and appeal to various formulas

in [134, §6.4.4] to arrive at

Li2,2(t) =
1

2
log2(1− t) log2 t− 2ζ(2) log(1− t) log t− 2ζ(3) log t− 1

2
Li22(t)

+ 2 Li3 (1− t) log t− 2

∫ t

0

Li2 (x) log x

1− x
dx−

∫ t

0

log (1− x) log2 x

1− x
dx.

Expanding the penultimate integral as a series leads to∫ t

0

Li2 (x) log x

1− x
dx = Li1,2(t) log t− Li2,2(t).

(Observe that fortunately for us, Li2,2 does not cancel out in this analysis.) Then,

using [134, A3.4 Eqn. (12)] to evaluate the remaining integral, we deduce that

Li2,2(x) = − 1

12
log4(1− x) +

1

3
log3(1− x) log x− ζ(2) log2(1− x)

+ 2 log(1− x) Li3(x)− 2 ζ(3) log(1− x)− 2 Li4(x)

− 2 Li4

( x

x− 1

)
+ 2 Li4(1− x)− 2ζ(4) +

1

2
Li22(x). (9.67)

The form for Li3,1(x) is obtained starting from Li2,1(x). This gives:

2 Li3,1(x) + Li2,2(x) =
1

2
Li22(x). (9.68)

This result, and its derivative

2 Li2,1(x) + Li1,2(x) = Li1(x) Li2(x),

are also obtained in [204, Cor. 2 & Cor. 3] by other methods.

Dividing the expression for Li1,2(x) by 1− x and integrate, we obtain

Li1,1,2(x) =
π4

30
+
π2

12
log2(1− x) + log(1− x) Li3(1− x)

− 3 Li4(1− x) + 2ζ(3) log(1− x).

Similarly,

Li1,2,1(x) = −π
4

30
+

1

2
log2(1− x) Li2(1− x)− 2 log(1− x) Li3(1− x)

+ 3 Li4(1− x)− ζ(3) log(1− x).
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Since Li2,1,1(x) =
∫ x

0 Li1,1,1(t)/tdt and Li1,1,1(x) =
∫ x

0 Li1,1(t)/(1− t) dt, we first

compute Li1,1(x) = log2(1− x)/2 to find that Li1,1,1(x) = − log3(1− x)/6. Hence

Li2,1,1(x) = −1

6

∫ x

0
log3(1− t)dt

t
=
π4

90
− 1

6
log2(1− x) log x

− 1

2
log2(1− x) Li2(1− x) + log(1− x) Li3(1− x)− Li4(1− x). (9.69)

In general,

Li{1}n(x) =
(−1)n

n!
log(1− x)n, (9.70)

and therefore

Li2,{1}n−1(x) =
(−1)n

n!

∫ x

0
log(1− t)ndt

t

= ζ(n+ 1)−
n∑

m=0

(−1)n−m

(n−m)!
log(1− x)n−m Lim+1(1− x). (9.71)

We have, inter alia, provided closed reductions for all multiple polylogarithms of

weight less than five. One does not expect such complete results thereafter.

Example 9.5.6 (Multiple zeta values). By taking the limit x→ 1− in (9.64), one

recovers the celebrated result

ζ(2, 1) = ζ(3).

Similarly, (9.69) gives ζ(2, 1, 1) = ζ(4), and with the help of [134, p. 301, (40)], we

get ζ(2, 2) = π4/120 and ζ(3, 1) = π4/360. See also Chapter 13. ♦

The reductions in this section allow us to express ρ3 and ρ4 in terms of poly-

logarithms of depth 1. Equation (9.64) treats ρ3 while (9.58) leads to

ρ4

(
α2
)

= 3
(
Li3
(
α2
)
− ζ(3) + Li3

(
1− α2

))
log
(
1− α2

)
− 1

8
log4

(
1− α2

)
+ 3ζ(4)− 3 Li4

( −α2

1− α2

)
− 3 Li4

(
α2
)
− 3 Li4

(
1− α2

)
+

3

4
Li22
(
1− α2

)
− logα log3

(
1− α2

)
−
(π2

4
+ 3 Li2

(
1− α2

))
log2

(
1− α2

)
. (9.72)

9.6. Evaluation of µ2(1 + x+ y)

We review the evaluation of µ2(1+x+y) from [55], a result derived alternatively

in Theorem 9.5.
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Proposition 9.8 (A dilogarithmic representation). We have

(a)
1

π

∫ π

0
Re Li2

(
4 sin2 θ

)
dθ = ζ(2), (9.73)

(b) µ2(1 + x+ y) =
π2

36
+

2

π

∫ π/6

0
Li2
(
4 sin2 θ

)
dθ. (9.74)

Proof. For (a) we define the analytic function τ(z) := 1
π

∫ π
0 Li2

(
4z sin2 θ

)
dθ.

For |z| < 1/4 we may use the defining series for Li2 and expand term by term using

Wallis’ formula to derive

τ(z) =
1

π

∑
n≥1

(4z)n

n2

∫ π

0
sin2n θ dθ = 2z 4F3

(
1, 1, 1, 3

2

2, 2, 2

∣∣∣∣4z)

= 2 Li2

(1

2
− 1

2

√
1− 4z

)
− log

(1

2
+

1

2

√
1− 4z

)2
.

The final equality can be obtained in Mathematica and then proven by differen-

tiation (such is one advantage of using experimental mathematics). In partic-

ular, the final function provides an analytic continuation from which we obtain

τ(1) = ζ(2) + 2iCl2
(
π
3

)
. This yields the assertion. (Note the similarity between

this proof and the proof of Theorem 1.6.)

For (b), commencing much as in [126, Thm. 11], we write

µ2(1 + x+ y) =
1

4π2

∫ π

−π

∫ π

−π
Re log

(
1− 2 sin(θ)ei ω

)2
dω dθ.

We consider the inner integral ρ(α) :=
∫ π
−π
(
Re log

(
1− α ei ω

))2
dω with α :=

2 sin θ. For |θ| ≤ π/6 we directly apply Parseval’s formula to obtain

ρ(2 sin θ) = π Li2
(
4 sin2 θ

)
(9.75)

which is equivalent to (9.49). In the remaining case we write

ρ(α) =

∫ π

−π

[
log |α|+ Re log

(
1− α−1 ei ω

)]2
dω

= 2π log2 |α| − 2 log |α|
∫ π

−π
log
∣∣1− α−1 ei ω

∣∣ dω + π Li2

( 1

α2

)
= 2π log2 |α|+ π Li2

( 1

α2

)
, (9.76)

where we have appealed to Parseval’s and Jensen’s formulas. Thus,

µ2(1 + x+ y) =
1

π

∫ π/6

0
Li2
(
4 sin2 θ

)
dθ +

1

π

∫ π/2

π/6
Li2

( 1

4 sin2 θ

)
dθ +

π2

54
, (9.77)
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since
2

π

∫ π/2

π/6
log2 α dθ = µ(1 + x+ y1, 1 + x+ y2) =

π2

54

by (9.51). Now, for α > 1, the functional equation [134, A2.1 (6)]

Li2(α) + Li2(1/α) +
1

2
log2 α = 2ζ(2) + iπ logα (9.78)

gives ∫ π/2

π/6

[
Re Li2

(
4 sin2 θ

)
+ Li2

( 1

4 sin2 θ

)]
dθ =

5

54
π3. (9.79)

We then combine (9.73), (9.79) and (9.77) to deduce the desired result (9.74). �

Remark 9.6.1 (Using ρ2). The utility of the propositions in Section 9.5 can now

be seen. Using the evaluation of ρ2 and Proposition 9.3, we arrive at (9.77) imme-

diately, from which it is a few short steps to equation (9.74).

Following [55], we expand out the Li2 term in (9.74) as a series then interchange

the order of integration and summation. This is equivalent to, after passing to a

2F1,

µ2(1 + x+ y) =
π2

36
+

√
3

π

∞∑
n=1

(
2n
n

)
n2

∫ 1/2

0

tn(1− t)n

1− t+ t2
dt

=
π2

36
+

√
3

π

∫ 1/2

0

2Li2(t)− log2(1− t)
1− t+ t2

dt,

where we have corrected a misprint in [55]. Simplifying the last integral using

results in [134], we finally see (9.74) is equivalent to (9.37). ♦

9.6.1. Conclusion. To recapitulate, µk(1 + x+ y) = W
(k)
3 (0) has been evalu-

ated in terms of log-sine integrals for 1 ≤ k ≤ 3. Namely,

µ1(1 + x+ y) =
3

2π
Ls2

(
2π

3

)
, (9.80)

µ2(1 + x+ y) =
3

π
Ls3

(
2π

3

)
+
π2

4
, (9.81)

µ3(1 + x+ y)
?
=

6

π
Ls4

(
2π

3

)
− 9

π
Cl4

(π
3

)
− π

4
Cl2

(π
3

)
− 13

2
ζ(3). (9.82)

It is possible, though tiresome, to use Propositions 9.3 and 9.7 to give us a descrip-

tion for µ3 which is close to (9.82); a less complete analysis for µ4 is also possible.

The details are given in [41]. However, at least by the route chosen there, the

technicalities of formalising (9.82) appear to be difficult.



CHAPTER 10

Legendre Polynomials

and Ramanujan-type Series for 1/π

Abstract. We resolve a family of identities involving 1/π using the theory of

modular forms and hypergeometric series. In particular, we resort to a formula

of Brafman which relates a generating function of the Legendre polynomials to a

product of two Gaussian hypergeometric functions. Using our methods, we also

derive some new Ramanujan-type series.

10.1. Introduction

In 2011, Z.-W. Sun [183] and G. Almkvist experimentally observed several new

identities for 1/π of the form

∞∑
n=0

(s)n(1− s)n
n!2

(A+Bn)Tn(b, c)λn =
C

π
, (10.1)

where s ∈ {1/2, 1/3, 1/4}, A,B, b, c ∈ Z, Tn(b, c) denotes the coefficient of xn in the

expansion of (x2 + bx+ c)n, viz.

Tn(b, c) =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck, (10.2)

while λ and C are either rational or (linear combinations of) quadratic irrationali-

ties. All such equalities from [183] are compactly listed in Table 1.

The binomial sums (10.2) can be expressed via the Legendre polynomials

Pn(x) = 2F1

(−n, n+ 1

1

∣∣∣∣ 1− x
2

)

by means of the formula

Tn(b, c) = (b2 − 4c)n/2Pn

(
b

(b2 − 4c)1/2

)
,

175
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so that equalities (10.1) assume the form

∞∑
n=0

(s)n(1− s)n
n!2

(A+Bn)Pn(x0)zn0 =
C

π
. (10.3)

Note that representation by Tn is not unique, since Tn(b, c) = anTn(b/a, c/a2).

The sequence of Legendre polynomials can be alternatively defined by the ordi-

nary generating function

(1− 2xz + z2)−1/2 =

∞∑
n=0

Pn(x)zn.

In the rest of the chapter, we will make heavy use of another generating function for

the Legendre polynomials due to F. Brafman. This and our general approach are

described in Section 10.2. In Sections 10.3 – 10.6, we will examine the conjectures

for s = 1/2, 1/3, 1/4 respectively, and indicate new identities (10.50)–(10.57) for

s = 1/4 and 1/6. Then in Sections 10.7 and 10.8 we show that “companion series”

involving derivatives of Legendre polynomials can be obtained, and some of them,

as well as a few series examined in the previous sections, are expressible in terms

of known constants.

Our main result is the following, which we prove in Section 10.2:

Theorem 10.1. All the series for 1/π listed in Table 1 are true.

10.2. Brafman’s formula and modular equations

In [63], Brafman proved the following elegant hypergeometric formula for a

generating function of the Legendre polynomials.

Proposition 10.1 (Brafman’s formula [63]).

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)zn = 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ− z
2

)
· 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ+ z

2

)
,

(10.4)

where ρ = ρ(x, z) := (1− 2xz + z2)1/2.

This result has a more general form involving Jacobi polynomials. In [193]

(Chapter 11) we follow the lines of Brafman’s derivation to prove a new type of

generating functions for the Legendre polynomials.



10.2. BRAFMAN’S FORMULA AND MODULAR EQUATIONS 177

By introducing the compact notation for the involved hypergeometric function

and its derivative,

F (t) = F (s, t) := 2F1

(
s, 1− s

1

∣∣∣∣ t), G(t) = G(s, t) := t
d

dt
F (t), (10.5)

and differentiating both sides of (10.4) with respect to z, we immediately deduce

Proposition 10.2.

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)zn = F (t−)F (t+), (10.6)

∞∑
n=0

(s)n(1− s)n
n!2

nPn(x)zn =
z(x− z − ρ)

ρ(1− ρ− z)
G(t−)F (t+) +

z(x− z + ρ)

ρ(1− ρ+ z)
F (t−)G(t+),

(10.7)

where t± = t±(x, z) := (1− ρ± z)/2.

Note the notational difference between F (s, t) here and Ks(k) in Chapter 5.

For s ∈ {1/2, 1/3, 1/4, 1/6} (the denominator of s is the signature), the right-

hand side of Brafman’s formula represents the product of two arithmetic [210]

hypergeometric series: the modular functions

t4(τ) =

(
1 +

1

16

(
η(τ)

η(4τ)

)8)−1

, t3(τ) =

(
1 +

1

27

(
η(τ)

η(3τ)

)12)−1

,

t2(τ) =

(
1 +

1

64

(
η(τ)

η(2τ)

)24)−1

, t1(τ) =
1

2
− 1

2

√
1− 1728

j(τ)

(10.8)

(with subscripts denoting the levels) translate the respective series F (t) into a

weight 1 modular form F (t(τ)). Here η(τ) and j(τ) are Dedekind’s eta function

and the modular invariant, respectively. For the rest of the chapter we will omit the

subscript in t`(τ) when the modular function used is clear from the context. The

inversion formula is given [17, p. 91] by

τ = iCs
F (1− t)
F (t)

, where Cs =
1

2 sinπs
=



1
2 if s = 1

2 ,

1√
3

if s = 1
3 ,

1√
2

if s = 1
4 ,

1 if s = 1
6 .

(10.9)
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The elliptic nome is defined throughout the chapter as q = e2πiτ . Note that for any

of the four modular functions in (10.8) we have

1

2πi

dt

dτ
= q

dt

dq
= t(1− t)F 2(t), (10.10)

the result already known to Ramanujan ([17, Chap. 33], [34], [80]).

When τ is a quadratic irrationality (with Im τ > 0), the value t(τ) is known

to be an algebraic number; computation of such values is well discussed in the

literature – see, for example, [17, Chap. 34]. A common feature of the Sun–Almkvist

series (10.3) from [183] for s ∈ {1/2, 1/3, 1/4} is that the algebraic numbers

α =
1− ρ0 − z0

2
and β =

1− ρ0 + z0

2
, where ρ0 := (1− 2x0z0 + z2

0)1/2,

(10.11)

are always values of the modular function t(τ) at two quadratic irrational points.

In cases when x0 and z0 are real, we get α = t(τ0) and β = t(τ0/N); while in cases

when both x0 and z0 are purely imaginary (and there are five such cases in Table 1

marked by asterisk), we have α = t(τ0) and β = 1 − t(τ0/N). The corresponding

choice of quadratic irrationality τ0 and integer N > 1 is given in Table 1. We also

note that |α| ≤ |β| for all entries, with strict inequality when both x0 and z0 are

real.

Remark 10.2.1. Observe the duality between several entries in Table 1, where the

roles of z0 and ρ0 are swapped. These correspond to the same choice of τ0 with

different choices of N , which is often a prime factor of an integer inside the radical

in τ0. ♦

Proposition 10.3. In the notation of (10.11), assume that both α and β are within

the convergence domain of the hypergeometric function F (t) (that is, |α|, |β| < 1).

(a) Suppose that α = t(τ0) and β = t(τ0/N) for a quadratic irrational τ0 and

an integer N > 1. Then there exist effectively computable algebraic numbers µ0, λ0

and λ1 such that

F (β) = µ0F (α) and G(β) = λ0F (α) + λ1G(α). (10.12)

(b) Suppose that α = t(τ0) and β = 1−t(τ0/N) for a quadratic irrational τ0 and

an integer N > 1. In addition, assume that |1−β| < 1. Then there exist effectively
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computable algebraic numbers µ0, λ0, λ1 and λ2 such that

F (β) = µ0F (α) and G(β) = λ0F (α) + λ1G(α) +
λ2

πF (α)
. (10.13)

Proof. (a) For N given, the two modular functions t(τ) and t(τ/N) are related

by the modular equation of degree N ; in particular, the function t(τ/N) is an alge-

braic function of t(τ). As both F (t(τ)) and F (t(τ/N)) are weight 1 modular forms,

their quotient F (t(τ/N))/F (t(τ)) is a modular function, hence it is an algebraic

function of t(τ). The quotient specialised at τ = τ0 is then an algebraic number,

which we denote by µ0.

Differentiating F (t(τ/N))/F (t(τ)) logarithmically and multiplying the result

by F 2(t(τ)), we arrive at a relation expressing G(t(τ/N)) linearly via F (t(τ)) and

G(t(τ)) with coefficients which are modular functions. Specialising at τ = τ0 this

yields the second equality in (10.12) with algebraic λ0 and λ1.

(b) Consider now β = 1−β′ where β′ = t(τ0/N). By what is shown in part (a),

F (β′) = µ′0F (α) and G(β′) = λ′0F (α) + λ′1G(α) (10.14)

for certain algebraic µ′0, λ′0 and λ′1. Relation (10.9) implies that

F (1− t)
F (t)

= − iτ
Cs
, (10.15)

which specialised to τ = τ0/N , hence t = β′, results in

F (β) = − iτ0

NCs
F (β′). (10.16)

Computing the logarithmic t-derivative of (10.15) and using (10.5), we find

tG(1− t)
F (1− t)

+
(1− t)G(t)

F (t)
= − t(1− t)

τ

(
dt

dτ

)−1

=
it(1− t)F (t)

CsF (1− t)

(
dt

dτ

)−1

,

which, after multiplication by F (1− t)/t and using (10.15), can be written as

G(1− t) =
iτ(1− t)
Cst

G(t) +
i(1− t)
Cs

F (t)

(
dt

dτ

)−1

. (10.17)

Using now (10.10) and taking τ = τ0/N (so that t = t(τ0/N) = β′) in (10.17) we

obtain

G(β) =
iτ0β

NCs(1− β)
G(β′) +

1

2πCs(1− β)F (β′)
. (10.18)

Combining now (10.14), (10.16) and (10.18), we arrive at (10.13).

Finally note that all the above algebraicity is effectively computed by means of

the involved modular equations. �
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Now we appeal to a particular case of Clausen’s formula (1828) [11],

2F1

(
s, 1− s

1

∣∣∣∣ t)2

= 3F2

(1
2 , s, 1− s

1, 1

∣∣∣∣ 4t(1− t)
)
, (10.19)

which is valid for t within the left half of the lemniscate 4|t(1 − t)| = 1. Differ-

entiating (10.19) and expanding the 3F2 hypergeometric function into series, we

obtain

Proposition 10.4. For t satisfying |t(1− t)| ≤ 1/4 and Re t < 1/2,

F 2(t) =
∞∑
n=0

(1
2)n(s)n(1− s)n

n!3
·
(
4t(1− t)

)n
,

F (t)G(t) =
1− 2t

2(1− t)

∞∑
n=0

(1
2)n(s)n(1− s)n

n!3
· n
(
4t(1− t)

)n
.

Our final argument goes back to Ramanujan’s discovery [164] of hypergeometric

formulas for 1/π. Its proof is outlined in [35], [36], [46] and [77].

Proposition 10.5. Let α be the value of the modular function t(τ) at a quadratic

irrationality τ0. Assume that |α(1 − α)| ≤ 1/4 and Reα < 1/2. Then there exist

effectively computable algebraic constants a, b and c such that

∞∑
n=0

(1
2)n(s)n(1− s)n

n!3
(a+ bn)

(
4α(1− α)

)n
=
c

π
. (10.20)

Remark 10.2.2. Observe that all the values α = (1 − ρ0 − z0)/2 from Table 1

satisfy the hypothesis of Proposition 10.5, with the exception of (II11) which we

treat separately in Section 10.4. ♦

Proof of Theorem 10.1. For a given entry from Table 1, we choose α =

(1 − ρ0 − z0)/2 = t(τ0) and β = (1 − ρ0 + z0)/2. Proposition 10.5 implies that we

have a Ramanujan series (10.20). On invoking Proposition 10.4 for t = α we can

write (10.20) in the form

aF 2(α) + 2b
1− α
1− 2α

F (α)G(α) =
c

π
. (10.21)
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On the other hand, by specialising the identities in Proposition 10.2 at x = x0,

z = z0 and using then the algebraic relations obtained in Proposition 10.3 we obtain

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x0)zn0 = µ0F
2(α),

∞∑
n=0

(s)n(1− s)n
n!2

nPn(x0)zn0 = λ′0F
2(α) + λ′1F (α)G(α) +

λ′2
π
,

with some algebraic (effectively computable) coefficients µ0, λ′0, λ′1 and λ′2, where

we simply choose λ′2 = 0 if β = t(τ0/N).

Finally, taking

B′ =
2b(1− α)

λ′1(1− 2α)
and A′ =

a−B′λ′0
µ0

we derive from (10.21) that

∞∑
n=0

(s)n(1− s)n
n!2

(A′ +B′n)Pn(x0)zn0 =
c−B′λ′2

π
,

which assumes the required form (10.3) after setting A = CA′/(c − B′λ′2), B =

CB′/(c−B′λ′2). �

As verification of each entry in Table 1 requires an explicit knowledge of all

the algebraic numbers involved and is therefore tedious, we give details for only

some of the entries. In Section 10.3 we discuss in detail identity (I2) by using a

parametrisation of the corresponding modular equation. Section 10.4 describes the

techniques without using an explicit parametrisation on an example of identity (II1),

and uses a hypergeometric transformation to treat (II11), an entry that does not

satisfy the conditions of Proposition 10.5. Section 10.5 explains the derivation of

identity (III5), which corresponds to imaginary x0 and z0, as well as outlines new

identities for s = 1/4. In Section 10.6 we present two identities corresponding to

s = 1/6, which are not from the list in [183].

10.3. Identities for s = 1/2

We illustrate our techniques outlined in Section 10.2 with (I2),

∞∑
n=0

(1
2)2
n

n!2
(7 + 30n)Pn

(
17

12
√

2

)(
− 3

4
√

2

)n
=

12

π
.
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Here we have N = 3, so that the values α = t(τ0) = (1 − ρ0 − z0)/2 and β =

t(τ0/3) = (1− ρ0 + z0)/2 are related by the modular polynomial [16, Chap. 19]

(α2 + β2 + 6αβ)2 − 16αβ
(
4(1 + αβ)− 3(α+ β)

)2
= 0

and admit the rational parametrisation

α =
4
√

2− 5
√

3 + 3

8
√

2
=
p3(2 + p)

1 + 2p
,

β =
4
√

2− 5
√

3− 3

8
√

2
=
p(2 + p)3

(1 + 2p)3
,

p =
3−
√

2−
√

3

2
√

2
.

In the notation of (10.5), recall the identity [16, p. 238, Entry 6 (i)]

F

(
p(2 + p)3

(1 + 2p)3

)
= (1 + 2p)F

(
p3(2 + p)

1 + 2p

)
for p ∈

(
−1

2
, 1
)

; (10.22)

differentiating it we obtain

G

(
p(2 + p)3

(1 + 2p)3

)
=
p(1 + 2p)(2 + p)

(1− p)2
F

(
p3(2 + p)

1 + 2p

)
+

3(1 + p)2(1 + 2p)

(1− p)2
G

(
p3(2 + p)

1 + 2p

)
.

(10.23)

Substituting p = (3−
√

2−
√

3)/(2
√

2) into (10.22) and (10.23) we obtain

F (β) =
−
√

6 + 3
√

2

2
F (α),

G(β) = −85
√

6 + 120
√

3− 147
√

2− 208

2
F (α) +

(−19
√

3 + 33)(17
√

2 + 24)

2
G(α).

Specialising (10.6), (10.7) by taking x = 17/(12
√

2), z = −3/(4
√

2) we get

∞∑
n=0

(1
2)2
n

n!2
(A+Bn)Pn

(
17

12
√

2

)(
−3

4
√

2

)n
=
√

6

(√
3− 1

2
A− B

30

)
F 2(α)

+
15
√

2 + 8
√

3− 3
√

6

10
B F (α)G(α).

In turn, the choice A = 7 and B = 30, Clausen’s formula (10.19) (Proposition 10.4)

and

4t(1− t)
∣∣
t=(4

√
2−5
√

3+3)/(8
√

2)
= −(

√
3− 1)6

27

imply

∞∑
n=0

(1
2)2
n

n!2
(7 + 30n)Pn

(
17

12
√

2

)(
−3

4
√

2

)n
=

√
6(7
√

3− 9)

2
3F2

(1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣ −(
√

3− 1)6

27

)

+
9
√

2(101
√

3− 175)

128
3F2

(3
2 ,

3
2 ,

3
2

2, 2

∣∣∣∣ −(
√

3− 1)6

27

)
,
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which is precisely 3/
√

2 times the Ramanujan-type formula [30, eqn. (8.3)]

∞∑
n=0

(1
2)3
n

n!3
(
7− 3

√
3 + 6(5−

√
3)n
)(−1)n(

√
3− 1)6n

27n
=

4
√

2

π
.

The derivation of (I4) is very similar, as the degree N is also 3 in this case

(although we have to swap the rational p-parametric expressions of α and β). The

choice of the parameter in the above rational parametrisation is p = −(2 +
√

3 +
√

15)/4, and the transformation (10.22) assumes the form

F

(
p(2 + p)3

(1 + 2p)3

)
= −1 + 2p

3
F

(
p3(2 + p)

1 + 2p

)
for p ∈ (−∞,−1).

This in fact follows from (10.22) by a change of variables then by applying to both

sides a transformation of the complete elliptic integral K (as K(t) = πF (t2)/2),

K(x) =
1√

1− x2
K

(√
x2

x2 − 1

)
, (10.24)

itself a result of Euler’s hypergeometric transformation [25, §1.2, eqn. (2)].

Finally, (I4) reduces to Ramanujan’s identity [164, eqn. (30)]

∞∑
n=0

(1
2)3
n

n!3
(
5
√

5− 1 + 6(7
√

5 + 5)n
)(
√

5− 1)8n

214n
=

32

π
.

For (I1) and (I3) we have to use the modular equations of degree 2 and 5, respec-

tively [16, Chap. 19]; the corresponding “complex” Ramanujan-type series for 1/π

required in the derivation of (I1) can be found in [108, Section 4].

Remark 10.3.1. When s = 1/2 we can take advantage of the functional equation

t
(
τ +

1

2

)
=

t(τ)

t(τ)− 1
, (10.25)

which follows readily from Jacobi’s imaginary transformation [46] for K. Moreover,

F

(
t(τ)

t(τ)− 1

)
= F (t(τ))

√
1− t(τ) (10.26)

by Euler’s hypergeometric transformations. Therefore, aided by (10.25) and (10.26),

we may carry out the same analysis as before for α = t(1/2 + τ0), β = t(τ0/N), and

a whole new range of identities follow.

For example, take τ0 =
√
−1/2 and N = 1 (a case not considered in Table 1),

we have
∞∑
n=0

(
2n

n

)2

Pn

(
4
√

2− 5

7

)(
5− 3

√
2

32

)n(
17 + 10(6 +

√
2)n
)

=

√
1282 + 922

√
2

π
,

(10.27)
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while with τ0 = i and N = 2, we produce the new rational series

∞∑
n=0

(
2n

n

)2

Pn

(
2
√

2

3

)(
3
√

2

128

)n
(6n+ 1) =

2
√

8 + 6
√

2

π
. (10.28)

♦

10.4. Identities for s = 1/3

In this section we first prove (II1),

∞∑
n=0

(1
3)n(2

3)n

n!2
(2 + 15n)Pn

(
3
√

3

5

)(
5

6
√

3

)n
=

45
√

3

4π
,

which is representative of identities in the large group for s = 1/3 in Table 1. Here

α =
1− ρ0 − z0

2
=

1

4

(
1− 1√

3

)3

and β =
1− ρ0 + z0

2
=

1

2
(10.29)

satisfy the modular equation of degree 2 in signature 3. Although a rational

parametrisation similar to the one we exploited in Section 10.3 exists, we will com-

pute the algebraic relations of Proposition 10.3 by using the modular equation itself

(αβ)1/3 + ((1− α)(1− β))1/3 = 1, (10.30)

as well as the equation for the corresponding multiplier [17, p. 120, Thm 7.1]

m =
F (β)

F (α)
=

(1− α)2/3

(1− β)1/3
− α2/3

β1/3
, (10.31)

where α = α(τ) = t(τ) has degree 2 over β = β(τ) = t(τ/2).

On specialising (10.31) by taking τ = τ0, we get

F

(
1

2

)
=

2√
3
F (α)

∣∣
α=(1−1/

√
3)3/4

. (10.32)

Computing the logarithmic t-derivative of (10.31) at t = α, and using the notation

of (10.5) result in

G(β)

βF (β)

dβ

dα
− G(α)

αF (α)
=

1

m

d

dα

(
(1− α)2/3

(1− β)1/3
− α2/3

β1/3

)
=
F (α)

F (β)

1

3

(
dβ

dα

(
(1− α)2/3

(1− β)4/3
+
α2/3

β4/3

)
− 2

(1− α)1/3(1− β)1/3
− 2

α1/3β1/3

)
. (10.33)

The derivative dβ/dα can be obtained by differentiating (10.30),

dβ

dα

(
α1/3

β2/3
− (1− α)1/3

(1− β)2/3

)
+
β1/3

α2/3
− (1− β)1/3

(1− α)2/3
= 0,
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so that

dβ

dα

∣∣∣∣
τ=τ0

= 9.

Thus, with the choice τ = τ0 in (10.33), we obtain

G

(
1

2

)
=

(
2

9
F (α) +

3
√

3 + 5

3
G(α)

)∣∣∣∣
α=(1−1/

√
3)3/4

. (10.34)

From now on we fix α and β as defined in (10.29). With the help of Proposi-

tion 10.2 and (10.32), (10.34) we find that

∞∑
n=0

(1
3)n(2

3)n

n!2
Pn(x0)zn0 = F (α)F (β) =

2√
3
F 2(α),

∞∑
n=0

(1
3)n(2

3)n

n!2
nPn(x0)zn0 =

3
√

3 + 5

5
G(α)F (β) +

3
√

3

5
F (α)G(β)

=
2

5
√

3
F 2(α) +

3
√

3 + 5√
3

F (α)G(α).

Therefore,

∞∑
n=0

(1
3)n(2

3)n

n!2
(2 + 15n)Pn(x0)zn0 =

10√
3
F 2(α) +

15(3
√

3 + 5)√
3

F (α)G(α)

=
5√
3

∞∑
n=0

(1
2)n(1

3)n(2
3)n

n!3
(2 + 15n)

(
4α(1− α)

)n
,

while the latter is a multiple of Ramanujan’s series [164, eqn. (31)]

∞∑
n=0

(1
2)n(1

3)n(2
3)n

n!3
(2 + 15n)

(
2

27

)n
=

27

4π
,

and identity (II1) follows.

Remark 10.4.1. In Section 10.8 we show that in the discussed example we have

closed form evaluations of F (1/2) and G(1/2), hence of

F (α) =

√
3

2
F

(
1

2

)
, G(α) =

5
√

3− 9

6
F

(
1

2

)
+

9
√

3− 15

2
G

(
1

2

)
(10.35)

(the relations follow from (10.32) and (10.34)). In particular, this gives a different

way of deducing (II1), avoiding the use of a Ramanujan-type series. ♦

We now turn our attention to (II11), shown below, for which 4|α(1 − α)| > 1

and thus does not satisfy the conditions of Proposition 10.5. Our method employed

is illustrative in dealing with more general situations when this occurs. It is also
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worth noting that this approach bypasses the computational difficulties encountered

with purely imaginary x0 and z0 (see Section 10.5), as is the case here.

We are required to prove

∞∑
n=0

(1
3)n(2

3)n

n!2
(2 + 9n)Pn

(
−7i
√

5

22

)(
−11i

10
√

5

)n
=

15
√

3 +
√

15

6π
,

with α = (10
√

5− 27 + 11i)/(20
√

5). We now take

p0 =
(1 +

√
5)
√√

5− 2−
√

22− 10
√

5

4
− 1

2
,

and apply the transformation [17, p. 112, Thm 5.6] or [46, Prop. 5.8]

2F1

(1
3 ,

2
3

1

∣∣∣∣ 27p2(1 + p)2

4(1 + p+ p2)3

)
=

1 + p+ p2

√
1 + 2p

2F1

(1
2 ,

1
2

1

∣∣∣∣ p3(2 + p)

1 + 2p

)
, (10.36)

which is valid for real p ∈ [0, 1). By analytic continuation, the transformation

remains valid in a domain surrounding the origin in which the absolute values of

the arguments of both hypergeometric functions are less than 1; in particular, this

domain contains p0 and its conjugate p0.

In the notation

F̃ (t) := 2F1

(1
2 ,

1
2

1

∣∣∣∣ t), G̃(t) := t
d

dt
F̃ (t),

the transformation (10.36) at p = p0 gives

F (α) =
(2
√

5− 1 + (32− 14
√

5)i)1/4

√
2

F̃ (α0), (10.37)

where α0 = 1/2 −
√√

5− 2 is real. Moreover, as β is the conjugate of α, it easily

follows that at p = p0,

F (β) =
(2
√

5− 1− (32− 14
√

5)i)1/4

√
2

F̃ (α0). (10.38)

Therefore, F (α) and F (β) are both algebraic multiples of F̃ (α0), and we have

transposed the problem to a simpler one in signature 2 with real argument. It

remains to express G(α) and G(β) in terms of F̃ (α0) and G̃(α0).

To this end, we differentiate (10.36) with respect to p, and obtain

(1− p)(2 + p)(1 + 2p)5/2

(1 + p)(1 + p+ p2)
G

(
27p2(1 + p)2

4(1 + p+ p2)3

)
= 3p2(1 + p) F̃

(
p3(2 + p)

1 + 2p

)
+

6(1 + p)2(1 + p+ p2)

2 + p
G̃

(
p3(2 + p)

1 + 2p

)
. (10.39)
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Substituting p0 and its complex conjugate p0, respectively, into (10.39) simplifies

both G(α) and G(β) in terms of the desired functions. Armed with this knowledge

as well as with (10.37) and (10.38), we can use Proposition 10.2 to obtain

∞∑
n=0

(1
3)n(2

3)n

n!2
(2 + 9n)Pn

(
−7i
√

5

22

)(
−11i

10
√

5

)n

=

√
5
√

41
√

5− 89√
6

F̃ 2(α0) +

(
5(
√

3 + 3
√

5)

6
+

10
√

17
√

5− 31√
6

)
F̃ (α0)G̃(α0).

This now satisfies the conditions of Proposition 10.4 with s = 1/2, and the truth

of (II11) is reduced to that of a classical Ramanujan series

∞∑
n=0

(1
2)3
n

n!3
(5−

√
5 + 20n)

(√
5− 1

2

)6n

=
2
√

5

π

√
2 +
√

5, (10.40)

as 4α0(1 − α0) = ((
√

5 − 1)/2)6 – we comment on this numerical coincidence in

Section 10.8.

Remark 10.4.2. We note that six of the identities in group II in Table 1, as well

as (A1) and (A2), satisfy τ0 =
√
−2p/3, where Q(

√
−2p/3) has class number 4;

therefore p ∈ {5, 7, 13, 17}. That these series are rational could be attributed to

this observation. ♦

10.5. Identities for s = 1/4

Although in this section we focus on the proof of identity (III5),

∞∑
n=0

(1
4)n(3

4)n

n!2
(13 + 80n)Pn

(
− 7i

33
√

15

)(
−11i

√
15

147

)n
=

7
√

42(3 + 2
√

5)

8π
,

and on our new “rational” identity (10.50), it is worth commenting on the proof

of (III3) first, which is very similar to the one of (II1) presented in Section 10.4.

Example 10.5.1. For (III3) we get

α =
(
√

6− 2)4

23 · 72
, β =

1

2
,

the degree 3 modular equation reads

(αβ)1/2 + ((1− α)(1− β))1/2 + 4(αβ(1− α)(1− β))1/4 = 1, (10.41)

while the underlying series

∞∑
n=0

(1
2)n(1

4)n(3
4)n

n!3
3 + 40n

74n
=

1

3π
√

3
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is due to Ramanujan [164, eqn. (42)]. A more elementary derivation of (II1), which

we discuss in Section 10.8, is also available for (III3). ♦

In the case of (III5), we have τ0 = (1 + i
√

15)/4, N = 2,

α = t(τ0) =
1

2
− 32

√
5

3 · 72
+

11i
√

15

6 · 72
, β =

1

2
− 32

√
5

3 · 72
− 11i

√
15

6 · 72
,

and β′ = 1− β = t(τ0/2). Note that for subsequent calculations,

β1/2 =
4
√

5− 5

14
− i
√

15 + 4
√

3

42
.

The degree 2 modular equation for s = 1/4 is [69, eqn. (4.6)]

α1/2
(
1 + 3(1− β′)1/2

)
= 1− (1− β′)1/2, (10.42)

and the multiplier is given by [69, eqn. (4.5)]

m =
F (β′)

F (α)
= 2
(
1 + 3(1− β′)1/2

)−1/2
. (10.43)

Using (10.16) and (10.42), we can find the ratio between F (β′) and F (β), as

well as between F (β′) and F (α):

F (β) =
3 + 2

√
5− (

√
5− 2)

√
3i

2
√

14
F (α), (10.44)

F (β′) =
2
√

3 +
√

15 + (2
√

5− 3)i

2
√

7
F (α). (10.45)

Relation (10.18) of Proposition 10.3 assumes the form

G(β) =
(7− 3

√
5)(5
√

15 + 61i)

128
√

2
G(β′) +

3(69 + 7
√

5) + 33i
√

3(15− 7
√

5)

256
√

2π F (β′)
. (10.46)

It remains to express G(β′) as a linear combination of G(α) and F (α). Proceeding

in a similar fashion as Section 10.4 (for (II1)), we differentiate both sides of (10.42)

with respect to t at α, and obtain

(1 + 3β1/2)2β1/2 =
(
1− β1/2 + 3α(1 + 3β1/2)

)dβ′

dα
,

from which we easily solve for dβ′/dα; this we substitute into the next equation,

obtained by differentiating both sides of (10.43):

G(β′) =
β′G(α)F (β′)

αF (α)

(
dβ′

dα

)−1

+
3β′F (α)

2β1/2(1 + 3β1/2)3/2
. (10.47)

Now (10.47), when tidied up via (10.45), expresses G(β′) in terms of G(α) and

F (α) as promised. Substituting the result into (10.46) and using (10.45) again,



10.5. IDENTITIES FOR s = 1/4 189

after much computational work we arrive at an expression of G(β) in terms of G(α)

and F (α):

G(β) =
3
√

7
(
23
√

15− 39
√

3− (3
√

5 + 1)i
)

256
√

2π F (α)
− 15 + 18

√
5 + (38

√
3− 23

√
15)i

112
√

14
F (α)

− 513 + 323
√

5 + (153
√

3− 361
√

15)i

448
√

14
G(α). (10.48)

Combining (10.44) and (10.48) with Proposition 10.2 allows us to invoke Proposi-

tion 10.4 to arrive at a series equivalent to (III5); the corresponding Ramanujan-type

series and its conjugate are given by

∞∑
n=0

(1
2)n(1

4)n(3
4)n

n!3
(
(52∓ 12i

√
3) + (320∓ 55i

√
3)n
)(2(5± i

√
3)

7
√

3

)4n

=
98
√

3

π
,

(10.49)

as we have

4α(1− α) =

(
2(5 + i

√
3)

7
√

3

)4

in this case.

Remark 10.5.1. We remark that the Ramanujan-type series (10.49) are rational

over the ring Z[e2πi/3]. A possible way to establish them rests upon application of

degree 2 modular equations (10.42), (10.43) with the different choice

α = t

(
i
√

15± 1

2

)
= −

(
16− 7

√
5

11
√

3

)2

, β′ = t

(
i
√

15± 1

4

)
,

so that α is real, and on using the real Ramanujan-type series

∞∑
n=0

(1
2)n(1

4)n(3
4)n

n!3
(
1500− 604

√
5 + (6825− 2240

√
5)n
)

× (−1)n
(

2(13− 5
√

5)

11
√

3

)4n

=
121
√

15

π

for the argument 4α(1 − α); this is very similar to what was done for (II11) in

Section 10.4. A different approach is to apply the general construction in Section

10.10. ♦

We now present some new rational series that are analogous to (III2). Our first

series for s = 1/4 corresponds to the choice

x0 =
199

60
√

11
, z0 =

−5
√

11

96
, ρ0 =

65

32
√

3
, τ0 =

i
√

33 + 3

2
, and N = 3,
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in the notation of Table 1. Then we have
∞∑
n=0

(1
4)n(3

4)n

n!2
(33 + 260n)Pn(x0)zn0 =

32
√

6

π
,

or alternatively in the form involving Tn (as in (10.1)),

∞∑
n=0

33 + 260n

(−3842)n

(
4n

2n

)(
2n

n

)
Tn(398, 1) =

32
√

6

π
. (10.50)

The proof proceeds in the fashion of (II1) via the degree 3 modular equation and

the multiplier in signature 4 (see [17, pp. 153–154]), and the Ramanujan-type series

∞∑
n=0

(1
4)n(3

4)n(1
2)n

n!3
(
33
√

33− 119 + (260
√

33− 220)n
)(325

√
33− 1867

4608

)n
=

128
√

3

π
.

The three other new series are obtained by choosing

τ0 ∈
{
i
√

57 + 3

2
,
i
√

93 + 3

2
,
i
√

177 + 3

2

}
and, again, N = 3. They are:

∞∑
n=0

7 331 + 83 980n

(−2 6882)n

(
4n

2n

)(
2n

n

)
Tn(2 702, 1) =

80
√

423

π
, (10.51)

∞∑
n=0

71 161 + 1 071 980n

(−24 2882)n

(
4n

2n

)(
2n

n

)
Tn(24 302, 1) =

135
√

2533

π
√

6
, (10.52)

∞∑
n=0

30 282 753 + 632 736 260n

(−1 123 5842)n

(
4n

2n

)(
2n

n

)
Tn(1 123 598, 1) =

2944
√

14633

π
√

3
. (10.53)

The partial sum of (10.53) adds about four digits of accuracy per term.

In order to find these new series similar to (III2), we search for imaginary

quadratic fields Q(
√
−3`) with class number 4, where prime ` ≡ 3 (mod 4). It turns

out that this is satisfied when ` = 7, 11, 19, 31 and 59 (this list seems exhaustive).

The four new series correspond to the latter four discriminants, respectively.

Another curious observation is that, in the notation of

∞∑
n=0

A+Bn

Λn

(
4n

2n

)(
2n

n

)
Tn(b, 1) =

C

π
,

when N = 3 we have |b− |Λ|1/2| = 14. This is observed in (III1)–(III3), as well as

in (10.50)–(10.53), and in fact follows from the modular equation (10.41).

Remark 10.5.2. In a more recent version of his preprint [183], Sun gives eight

new series for group III. Not surprisingly, these too are subsumed under our theory.

Indeed, for all of them, τ0 =
√
−pq/2 and the underlying quadratic field again has
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class number 4 (so p = 5, 7, 13 or 17, and all of Sun’s cases have q = 3). Using

other values of q, we may produce many more rational series. As just one example,

with τ0 =
√
−35/2 and N = 5, we have

∞∑
n=1

(1
4)n(3

4)n

n!2
(17 + 230n)Pn

(
19601

13860
√

2

)(
110
√

2

567

)n
=

135
√

21

4
√

2π
. (10.54)

Our next example, not found by Sun, is the following, which has τ =
√
−7 and

N = 2:
∞∑
n=1

(1
4)n(3

4)n

n!2
(841 + 9520n)Pn

(
4097

4095

)(
455

29241

)n
=

513
√

114

2π
. (10.55)

♦

10.6. New identities for s = 1/6

In this section, we illustrate two series corresponding to s = 1/6, a case not

considered in [183].

Our first example follows by taking τ0 = i
√

6 and N = 2. Then

1728

j(τ0)
=

1399− 988
√

2

4913
and

1728

j(τ0/2)
=

1399 + 988
√

2

4913
,

and we have two Ramanujan-type series of Proposition 10.5,

∞∑
n=0

(1
2)n(1

6)n(5
6)n

n!3
(
5 + 12(5∓

√
2)n
)(1399± 988

√
2

4913

)n
=

3± 1

2π

√
213∓ 24

√
2.

Note that adding these two series gives a rational left-hand side. By using either of

the two series, and with

x0 =
17
√

17− 46

2
√

1757− 391
√

17
, z0 =

√
1757− 391

√
17

17
√

17
,

we obtain
∞∑
n=0

(1
6)n(5

6)n

n!2
(
5(31 + 17

√
17) + 5928n

)
Pn(x0)zn0 =

17
√

6

π

√
1069
√

17− 1683.

(10.56)

In the second example we choose τ0 = i
√

7 + 1 and N = 2, so that

1728

j(τ0)
=

(
4

85

)3

and
1728

j(τ0/2)
= −

(
4

5

)3

,

and the related Ramanujan-type series is

∞∑
n=0

(1
2)n(1

6)n(5
6)n

n!3
(8 + 133n)

(
4

85

)3n

=

√
853

18π
√

3
,
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due to Ramanujan himself [164, eqn. (34)]. The series and the corresponding choice

x0 =
323
√

1785

13650
−
√

105

40950
, z0 =

171
√

1785

14450
− 3
√

105

50

generate the formula

∞∑
n=0

(1
6)n(5

6)n

n!2
(1687− 15

√
173 + 6552n)Pn(x0)zn0 =

85
√

30

32π

√
19809

√
17− 68425.

In notation of (10.1), the identity can be stated in the form

∞∑
n=0

(
6n

3n

)(
3n

n

)
(1687− 15

√
173 + 6552n)Tn

(
10773− 125

√
173

32
,−1

)
1

(−15
√

17)3n

=
85
√

30

32π

√
19809

√
17− 68425. (10.57)

The appearance of a negative c in (10.1) is not found on the list from [183].

Remark 10.6.1. Note that given τ0 and N , formulas such as (10.56) can be ex-

perimentally discovered using PSLQ, working in the Gaussian integers if one needs

to. More specifically, if one suspects the existence of a series of the type

(
a+ b

√
k
)
F 2(t0) +

(
c+ d

√
k
)
F (t0)G(t0) =

√
e+ f

√
k

π
,

where a, b, c, d, e, f ∈ Q and k is often a factor of an integer appearing in the surd

of τ0, then one could evaluate F (t0), G(t0) to very high precision, and run PSLQ

on the square of the series. That is, with F1 = F 2(t0) and F2 = F (t0)G(t0), one

would run PSLQ on the vector{
F 2

1 ,
√
kF 2

1 , F
2
2 ,
√
kF 2

2 , F1F2,
√
kF1F2,

1

π2
,

√
k

π2

}
.

Some of the identities in this chapter were first found this way; generalisations and

improvements of this method are also possible. ♦

10.7. Companion series

If we differentiate (10.4) with respect to x instead of z, a series involving the

derivatives of Legendre polynomials is obtained:

Proposition 10.6. In the notation of (10.5),

∞∑
n=0

(s)n(1− s)n
n!2

P ′n(x)zn =
z

ρ

(
G(t−)F (t+)

1− ρ− z
+
F (t−)G(t+)

1− ρ+ z

)
, (10.58)

where t± = t±(x, z) := (1− ρ± z)/2.
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We may then take a linear combination of the series (10.6) and (10.58), and

apply Proposition 10.4 to match a series for 1/π (of the type in Proposition 10.5),

thus obtaining what we call a “companion series”.

For instance, in the case of (II1), the resulting companion series is

∞∑
n=0

(1
3)n(2

3)n

n!2

[
P ′n

(
3
√

3

5

)
+
√

3Pn

(
3
√

3

5

)](
5

6
√

3

)n
=

15

2π
.

If we combine (II1), its companion, and the formula [196, Ch. 15]

P ′n(x) =
n

x2 − 1

(
xPn(x)− Pn−1(x)

)
, (10.59)

we produce the new identity

∞∑
n=0

(1
3)n(2

3)n

n!2
nPn−1

(
3
√

3

5

)(
5

6
√

3

)n
=

3

4π
.

Note that the second order recursion satisfied by Pn (14.25) allows us to derive

many identities of this kind.

As another example of a companion series, (I4) produces

∞∑
n=0

(1
2)2
n

n!2

[
7

26
√

5
P ′n

(
31

8
√

15

)
+

214

13
√

3
Pn

(
31

8
√

15

)](√
15

16

)n
=

32

π
.

10.8. Closed forms

Here we give our elementary proof of (II1) as promised in Remark 10.4.1. Using

the same notation as Section 10.4, applying Proposition 10.2 and relation (10.35),

we obtain

∞∑
n=0

(1
3)n(2

3)n

n!2
(2 + 15n)Pn

(
3
√

3

5

)(
5

6
√

3

)n
=

45

2
F

(
1

2

)
G

(
1

2

)
.

Note that both the hypergeometric series on the right-hand side can be summed by

Gauss’ second summation theorem [25, §2.4, eqn. (2)]:

F

(
1

2

)
= 2F1

(1
3 ,

2
3

1

∣∣∣∣ 1

2

)
=

Γ(1
2)

Γ(2
3)Γ(5

6)
, G

(
1

2

)
=

1

9
2F1

(4
3 ,

5
3

2

∣∣∣∣ 1

2

)
=

2Γ(1
2)

Γ(1
3)Γ(1

6)
.

Therefore,

F

(
1

2

)
G

(
1

2

)
=

√
3

2π
,

and identity (II1) follows. As mentioned, a similar derivation is valid for (III3).
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When s = 1/2, we can alternatively use the complete elliptic integrals K and K ′

to represent proofs of the identities in group I. This sometimes leads to closed form

evaluations of the involved F (α) and F (β), hence also of G(α) and G(β) through

the corresponding series for 1/π or by taking derivatives. Our evaluations depend

on the Nth singular value of K, that is, a modulus kN such that K′(kN )
K(kN ) =

√
N. For

a positive integer N , kN is algebraic and can be effectively computed [164], and

the values of K and its derivative at kN (hence F (k2
N ) and G(k2

N )) are expressible

in terms of gamma functions (see [46, Ch. 5], which also lists kN for small N).

Consider, for example, the product F (α)F (β) for (I2); with the help of (10.22)

we see that it is

2
√

6(
√

3 + 1)

3π2
K2

(√
4
√

2− 5
√

3− 3

8
√

2

)
.

We now apply the transformation (10.24) followed by the quadratic transform (6.5),

and observe that the argument of the elliptic integral is transformed to k′3, where

k3 = sin(π/12) is the third singular value. As K ′(k3) has a closed form, we obtain

∞∑
n=0

(1
2)2
n

n!2
Pn

(
17

12
√

2

)(
− 3

4
√

2

)n
=

3Γ
(

1
3

)6
211/3π4

.

Curiously enough, the quantity on the right-hand side is exactly the value of W3(−1)

in Chapter 1.

In (I3) and (I4), α = 16 − 7
√

3 −
√

15 is the square of the 15th singular value

of K. In the proof of (II11), α0 is the square of the fifth singular value. In all these

cases, F and G all have computable closed forms at α and α0; we can therefore

complete their proofs without resorting to Propositions 10.4 and 10.5. In the case

of (II11) we can use this fact to establish the series (10.40).

10.9. Summary

We have discussed the proofs of several Ramanujan-type series for 1/π that are

associated with the Legendre polynomials. Our analysis in Sections 10.5 and 10.6

shows that the list in [183] does not exhaust all, even rational, examples of such

series, and that the latter problem is related to investigation of imaginary quadratic

fields with prescribed class groups. In particular, our work effectively gives a recipe

to generate more series of the type by picking suitable τ in imaginary quadratic

fields.
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The techniques of the present chapter also allow us to prove other identities

in [183] of the forms

∞∑
n=0

(1
2)2
n

n!2
(A+Bn)P2n(x0)zn0 =

C

π
and

∞∑
n=0

(1
3)n(2

3)n

n!2
(A+Bn)P3n(x0)zn0 =

C

π
,

(10.60)

although computation becomes more involved. Brafman’s generating function (10.4)

in these cases is replaced by new generating functions in [193] (Chapter 11). In the

next section, we return to an encountered complex series for 1/π and give explicit

details for its construction.

10.10. Complex Series for 1/π

Almost all currently known series for 1/π share one common property that the

coefficients are all real. In [108], J. Guillera and W. Zudilin discovered the first

series for 1/π with complex coefficients, namely,

∞∑
k=0

(1
2)3
k

k!3

(
49− 13

√
−7

64
+

105− 21
√
−7

32
k

)(
47 + 45

√
−7

128

)k
=

√
7

π
. (10.61)

This series was shown to be equivalent to another series involving only real numbers,

and the proof of the latter follows from the Wilf-Zeilberger method.

In Section 10.5, we encountered two series analogous to (10.61), namely,

∞∑
k=0

(1
2)k(

1
4)k(

3
4)k

k!3
(
52± 12

√
−3 + (320∓ 55

√
−3)k

)(2(5±
√
−3)

7
√

3

)4k

=
98
√

3

π
.

(10.62)

It suffices to prove any one of the above series since one is the conjugate of the

other. Here, we will discuss a general method to establish identities such as (10.62).

10.10.1. Functions associated with Γ0(2). Series such as (10.62) arise from

Ramanujan’s quartic theory of elliptic functions [36]. We recall some of the facts

from [36]. For |q| < 1, define

f(−q) =

∞∏
j=1

(1− qj).

When q = e2πiτ with Im τ > 0, we find that

q1/24f(−q) = η(τ),



196 10. LEGENDRE POLYNOMIALS AND RAMANUJAN-TYPE SERIES FOR 1/π

where η(τ) is the Dedekind η-function already encountered in Chapters 3 and 7. It

is well known [12, Theorem 3.1] that η(τ) satisfies the transformation

η

(
−1

τ

)
=
√
−iτ η(τ). (10.63)

Let

Z(q) =
f8(−q) + 32qf8(−q4)

f4(−q2)
and X(q) = 4x(q)(1− x(q)), (10.64)

where

1

x(q)
= 1 +

f24(−q)
64qf24(−q2)

. (10.65)

In [36], we know that

Z(q) = 3F2

(1
4 ,

3
4 ,

1
2

1, 1

∣∣∣∣ X(q)

)
.

To extract π from these functions, we need the transformation formula which follows

from (10.63). More precisely, we have

Z
(
e

2πi
(
−1√
2τ

))
= −τ2Z

(
e2πiτ/

√
2
)
.

Differentiating the above with respect to τ , we deduce that

1

τ
· q
Z

dZ

dq

∣∣∣∣
q=e−2πi/(

√
2τ)

=

√
2

πi
+ τ · q

Z

dZ

dq

∣∣∣∣
q=e2πiτ/

√
2

.

To simplify notations, let

G(τ) =
q

Z

dZ

dq

∣∣∣∣
q=e2πiτ/

√
2

.

Then the transformation can be rewritten as

1

τ
G

(
−1

τ

)
=

√
2

πi
+ τG(τ). (10.66)

Note the appearance of π. In the next subsection, we will express G(τ) and G(−1/τ)

in terms of a hypergeometric function and its derivative.

In the case of series for 1/π with real coefficients, we would only need one

modular equation. To prove (10.62), we will see that two modular equations are

needed.
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10.10.2. Some intermediate identities. Set

τ1 =

√
−15− 1

2
√

2
, τ2 =

√
−5/3− 1

2
√

2
, and τ3 =

√
−15 + 1

2
√

2
. (10.67)

From (10.66), we deduce that

G

(
− 1

τ1

)
= τ1

√
2

πi
−
(

7

4
+

√
−15

4

)
G(τ1)

and

G (τ2) =

(
1

τ2

)2

G(τ1) +
1

τ2

√
2

πi
,

where we have used −1/τ2 = τ1 +
√

2, which implies that

G

(
− 1

τ2

)
= G(τ1).

Hence, we find that

G

(
− 1

τ1

)
=

√
−15− 1

2πi
−
(

7

4
+

√
−15

4

)
G(τ1), (10.68)

G(τ2) =

(
−3

4
+

3

4

√
−15

)
G(τ1) +

(
−3

2
− 1

2

√
−15

)
1

πi
. (10.69)

Now, let

MN (q) =
Z(q)

Z(qN )
, (10.70)

Then we find that

q

MN (q)

dMN (q)

dq
= Z̃(q)−NZ̃(qN ), where Z̃(q) =

q

Z(q)

dZ(q)

dq
.

Letting q = e2πiτ/
√

2, this implies

G(τ)−NG(Nτ) = M̃N (τ), where M̃N (τ) =
q

MN (q)

dMN (q)

dq
. (10.71)

When N = 2, we have

G

(
− 1

τ1

)
− 2G(τ3) = M̃2

(
− 1

τ1

)
(10.72)

and when N = 3,

G (τ2)− 3G (τ3) = M̃3 (τ2) . (10.73)

Note how the judicious choices of τ1, τ2 and τ3 allow us to derive these identities

relating G at τi. Using (10.68), (10.69), (10.72) and (10.73), we could eliminate

G(− 1
τ1

) and G(τ2) to obtain two equations relating G(τ1) and G(τ3). Using these

two equations to eliminate G(τ1) or G(τ3), we would arrive at the two complex
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series for 1/π. It remains to compute the right hand side of (10.72) and (10.73)

explicitly, which is achieved in (10.78) and (10.79) below.

10.10.3. Modular equations of degree 2 and 3. A modular equation of

degree N is a relation between x(q) and x(qN ), where x(q) is given by (10.65). We

will need the following modular equations in signature 4:

Proposition 10.7. Let α = x(q) and γ = x(q2). Then

64γ − 80γα+ 18γα2 − 81γ2α2 + 144γ2α− 64γ2 − α2 = 0. (10.74)

Proposition 10.8. Let α = x(q) and β = x(q3). Then

α4 + β4 + 141056β3α3 + 19206β2α2 − 4096αβ + 36864β4α4 (10.75)

− 3972(β3α+ α3β) + 36480(α4β2 + β4α2)− 73728(β4α3 + α4β3)

+ 384(α4β + β4α) + 7680(α2β + β2α)− 63360(α3β2 + β3α2) = 0.

Let F (τ) = x(q), with q = e2πiτ/
√

2. We first find F (τi). Since

3τ2 = τ3 −
√

2,

we find that F (τ2) and F (τ3) satisfy (10.75). In a similar way, we conclude that

F (−1/τ1) and F (τ3) satisfies (10.74). Now, using (10.63), we find that

F

(
− 1

τ1

)
= 1− F (τ1).

We also deduce that

F (τ2) = 1− F
(
− 1

τ2

)
= 1− F (τ1), (10.76)

where we have used − 1
τ2

= τ1 +
√

2. We have obtained enough equations to solve

for F (τi). Solving them, we conclude that

F (τ1) =
1

2
− 32

147

√
5− 11

294

√
−15.

By taking the conjugate, we find that

F (τ3) =
1

2
− 32

147

√
5 +

11

294

√
−15.

By (10.76), we deduce that

F (τ2) =
1

2
+

32

147

√
5 +

11

294

√
−15.
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We next obtain an expression for MN defined by (10.70). It is known [36] that for

a positive integer N ,

qN
dx(qN )

d(qN )
=
Z(qN )

4
X(qN ),

where X is defined by (10.64). This yields

MN =
1

N

dx(q)

dx(qN )

X(qN )

X(q)
. (10.77)

But if we are given a modular equation of degree N , then the right hand side of

(10.77) can be expressed in terms of X(q) and X(qN ). We can then derive an

explicit expression of dMN/dX(q) in terms of X(q) and X(qN ), and this in turn

yields the expression for M̃N defined by (10.71). We carry out these computations

and determine the right hand side of (10.72). Differentiating (10.74) with respect

to α, we conclude that

dγ

dα
=

80γ − 36γα+ 162γ2α− 144γ2 + 2α

64− 80α+ 18α2 − 162γα2 + 288γα− 128γ
.

Hence,

M2 =
1

2

64− 80α+ 18α2 − 162γα2 + 288γα− 128γ

80γ − 36γα+ 162γ2α− 144γ2 + 2α

γ(1− γ)

α(1− α)
.

Differentiating M2 with respect to α, and letting α = F (−1/τ1) and γ = F (τ3), we

conclude that

G

(
− 1

τ1

)
− 2G(τ3) =

(
11

49
+

√
5

7
+

√
−15

21
−
√
−3

147

)
Z(τ1). (10.78)

In a similar way, we use (10.75) and the relation between Z(τ1) = Z(−1/τ2) and

Z(τ2) to deduce from (10.73) that

G(τ2)− 3G(τ3) =

(
4

49

√
5− 20

49

√
−3 +

2

49

√
−15 +

30

49

)
Z (τ1) . (10.79)

Next, using (10.68) and (10.69) in (10.78) and (10.79), we find that(
15

4
+

9

4

√
−15

)
G(τ1) +

(
27

49
− 13

49

√
5− 3

49

√
−15− 39

49

√
−3

)
Z(τ1) =

9i+
√

15

2π
.

Finally, observing that

Z(τ1) =

∞∑
k=0

(1
2)k(

1
4)k(

3
4)k

k!3
(
4F (τ1)(1− F (τ1))

)k
,

G(τ1) = (1− 2F (τ1))

∞∑
k=0

(1
2)k(

1
4)k(

3
4)k

k!3
k
(
4F (τ1)(1− F (τ1))

)k
,

we obtain the desired series for 1/π.
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Remark 10.10.1. The degrees of modular equations to be used to prove complex

series for 1/π are not as obvious as in the real series. In the real series for 1/π,

if τ =
√
−pq/2 where p and q are primes, then it is clear that we need modular

equations of degree p and q. In the complex case, we observe that the squares of

the norms of
1√
2

τ3

(−1/τ1)
and

1√
2

τ3

τ2

are 2 and 3, respectively. These norms determine the degrees of modular equations

we used. The method presented here can also be applied to complex series for 1/π

in other alternative bases. ♦

Remark 10.10.2. A different approach to derive complex series for 1/π is based on

transformations of hypergeometric series; the required details of the method can be

found in [75]. For instance, again starting from (10.40), using the transformation

(10.36) and the generating function

∞∑
k=0

δku
k =

1

1− 4u
3F2

(1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108u2

(1− 4u)3

)
of the Domb numbers [75] (which also appear as W4(2k) in Chapter 3) at u =

(3− 2i−
√

5− 10i)/32, we obtain the following two complex series:

∞∑
k=0

( 1
3 )k( 1

2 )k( 2
3 )k

k!3
(
3(401− i− (109− 69i)

√
1 + 2i) + 5830k

)
×
(

27(2530 + 1451i− 65(30− i)
√

1 + 2i)

495− 4888i

)k

=
3321− 381i+ 81(33− 17i)

√
1 + 2i

4π
,

∞∑
k=0

(
69 + 13i− (23− 7i)

√
1 + 2i+ 170k

)
δk

(
3− 2i− (1− 2i)

√
1 + 2i

32

)k

=
66 + 42i+ 12(1− 4i)

√
1 + 2i

π
.

Similarly, a complex series may also be obtained for the Apéry numbers, used in

the irrationality proof of ζ(3) [187]. These arithmetically significant sequences are

the higher order analogs of the Apéry-like sequences used in Chapter 11. Another

complex series can be seen in (12.35). ♦
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# in [183] s x0 z0 ρ0 A B C τ0 N

(I1)∗ 1/2 −i
3
√

7
−3i
√

7
16

15
16 7 30 24 i

√
7+1
4 2

(I2) 1/2 17
12
√

2
−3

4
√

2
5
√

3
4
√

2
7 30 12 2i

√
3−3
2 3

(I3) 1/2 97
56
√

3
7
√

3
16

√
15

16 −1 30 80 i
√

15
2 5

(I4) 1/2 31
8
√

15

√
15

16
7
√

3
16 5 42 16

√
3 i

√
15

2 3

(II1) 1/3 3
√

3
5

5
6
√

3
5

6
√

3
2 15 45

√
3

4
2i√

3
2

(II2) 1/3 5
2
√

6
27
√

3
125
√

2
91
125 12 91 75

√
3

2 i
√

2 2

(II3) 1/3 99
70
√

2
35

27
√

2

√
5

27 −4 15 135
√

3
2

i
√

10√
3

5

(II4) 1/3 485
198
√

6
99
√

3
125
√

2

√
14

125 −41 42 525
√

3 i
√

14√
3

7

(II5) 1/3 365
364

91
125

27
√

3
125
√

2
1 18 25

√
3 i

√
2 3

(II6) 1/3 51
10
√

26
5
√

13
4913

√
2

3465
√

2
4913 559 6930 1445

√
6

2
i
√

26√
3

2

(II7) 1/3 99
70
√

2
35

35937
√

2
8710

√
17

35937 15724 222105 114345
√

3
4

i
√

34√
3

2

(II8) 1/3 19601
13860

√
2

3465
√

2
4913

5
√

13
4913

√
2
−3967 390 56355

√
3 i

√
26√
3

13

(II9) 1/3 143649
34840

√
17

8710
√

17
35937

35
35937

√
2
−7157 210 114345

√
3 i

√
34√
3

17

(II10)∗ 1/3 −13i
4
√

35
i
√

35
64

27
√

5
64 7 45 8(3+

√
5)√

3
i
√

35−1
6 3

(II11)∗ 1/3 −7i
√

5
22

−11i
10
√

5
27

10
√

5
2 9 15+

√
5

2
√

3
i
√

5+1
3 2

(II12)∗ 1/3 −10i
√

2
23

−23i
125
√

2
189

125
√

2
11 63 25(3+4

√
2)

4
√

3
i
√

8+1
3 3

(A1) 1/3 9
4
√

5

√
5

27
35

27
√

2
5 42 54

√
3

5
i
√

10√
3

2

(A2) 1/3 15
4
√

14

√
14

125
99
√

3
125
√

2
7 66 50

√
2

3
i
√

14√
3

2

(III1) 1/4 52
30
√

3
160

121
√

3
85
363 2 85 33

√
33 i

√
3 3

(III2) 1/4 55
12
√

21
−
√

21
6

2
√

7
3 5 28 3

√
6 i

√
21+3
2 3

(III3) 1/4 49
20
√

6
10
√

6
49

10
√

6
49 3 40 70

√
21

9
3i√

2
3

(III4) 1/4 257
255

85
363

160
121
√

3
9 80 11

√
66

2 i
√

3 2

(III5)∗ 1/4 −7i
33
√

15
−11i

√
15

147
64
√

5
147 13 80 7

√
42(3+2

√
5)

8
i
√

15+1
4 2

Table 1. Identities (10.3), and the corresponding choice of τ0 and

N such that (1 − ρ0 − z0)/2 = t(τ0) and (1 − ρ0 + z0)/2 = t(τ0/N)

or 1− t(τ0/N) (the latter is for entries marked by an asterisk).





CHAPTER 11

Generating Functions of Legendre Polynomials

Abstract. In 1951, F. Brafman derived several “unusual” generating functions

of orthogonal polynomials, in particular, of the Legendre polynomials Pn(x).

His result was a consequence of Bailey’s identity for a special case of Appell’s

hypergeometric function. In this chapter, we present a generalisation of Bailey’s

identity and its implication to generating functions of the form
∑∞
n=0 unPn(x)zn,

where un is an Apéry-like sequence, that is, a sequence satisfying (n+1)2un+1 =

(an2 + an + b)un − cn2un−1 where u−1 = 0, u0 = 1. Using our results, we also

give generating functions for rarefied Legendre polynomials and construct a new

family of identities for 1/π.

11.1. Introduction

The Legendre polynomials,

Pn(x) = 2F1

(−n, n+ 1

1

∣∣∣∣ 1− x
2

)
=

(
x+ 1

2

)n
2F1

(−n, −n
1

∣∣∣∣ x− 1

x+ 1

)

=
n∑

m=0

(
n

m

)2(x− 1

2

)m(x+ 1

2

)n−m
, (11.1)

admit many generating functions. One particular family shown below is due to Fred

Brafman in 1951, which, as shown in our previous work [74] (Chapter 10), finds

some nice applications in number theory, namely, in constructing new Ramanujan-

type formulas for 1/π.

Theorem A (Brafman [63]). The following generating function is valid:

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)zn = 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ− z
2

)
· 2F1

(
s, 1− s

1

∣∣∣∣ 1− ρ+ z

2

)
,

(11.2)

where ρ = (1− 2xz + z2)1/2.

203
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Theorem A in the form

∞∑
n=0

(s)n(1− s)n
n!2

Pn

(
X + Y − 2XY

Y −X

)
(Y −X)n

= 2F1

(
s, 1− s

1

∣∣∣∣ X) · 2F1

(
s, 1− s

1

∣∣∣∣ Y ) (11.3)

is derived in [63] as a consequence of Bailey’s identity for a special case of Appell’s

hypergeometric function of the fourth type [25, Section 9.6],

∞∑
m,k=0

(s)m+k(1− s)m+k

m!2k!2
(
X(1− Y )

)m(
Y (1−X)

)k
= 2F1

(
s, 1− s

1

∣∣∣∣ X) · 2F1

(
s, 1− s

1

∣∣∣∣ Y ). (11.4)

We note that by specialising Y = X, one recovers a particular case of Clausen’s

formula:

3F2

(1
2 , s, 1− s

1, 1

∣∣∣∣ 4X(1−X)

)
= 2F1

(
s, 1− s

1

∣∣∣∣ X)2

.

Remark 11.1.1. The region where (11.3) holds is somewhat subtle for real X and

Y : it is the open region bounded by X + Y = 1, Y = X + 1, Y = X − 1, and the

lower branch of the hyperbola X2 − 6XY + Y 2 + 2X + 2Y + 1 = 0. When X = Y ,

the left-hand side of (11.3) is understood as the limit as X → Y . ♦

In 1959 Brafman addressed a different type of generating function; the results

wherein were later generalised by H. M. Srivastava in [182, eqn. (37)].

Theorem B (Brafman [64], Srivastava [182]). For a positive integer N , a (generic)

sequence λ0, λ1, . . . and a complex number w,

1

ρ

∞∑
k=0

λkPNk

(
x− z
ρ

)(
w
zN

ρN

)k
=
∞∑
n=0

AnPn(x)zn,

where ρ = (1− 2xz + z2)1/2 and

An = An(w) =

bn/Nc∑
k=0

(
n

Nk

)
λkw

k.

Brafman’s original results in [64] concern the cases N = 1, 2 and a sequence λn

given as a quotient of Pochhammer symbols (λn is called a hypergeometric term).
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In this chapter we extend Bailey’s identity (11.4) to more general Apéry-like

sequences u0, u1, u2, . . . which satisfy the second order recurrence relation

(n+ 1)2un+1 = (an2 + an+ b)un− cn2un−1 for n = 0, 1, 2, . . . , u−1 = 0, u0 = 1,

(11.5)

for given a, b and c.

Our first result concerns the generating function of un. It is the main theorem

of this chapter, and captures a wide range of series for 1/π; an attempt to illustrate

its relationships with other theorems is found in Figure 1.

Theorem 11.1. For the solution un of the recurrence equation (11.5), define

g(X,Y ) =
X(1− aY + cY 2)

(1− cXY )2
. (11.6)

Then in a neighbourhood of X = Y = 0,

{ ∞∑
n=0

unX
n

}{ ∞∑
n=0

unY
n

}
=

1

1− cXY

∞∑
n=0

un

n∑
m=0

(
n

m

)2

g(X,Y )mg(Y,X)n−m.

(11.7)

We remark that the generating function F (X) =
∑∞

n=0 unX
n for a sequence

satisfying (11.5) is a unique, analytic-at-the-origin solution of the differential equa-

tion

(
θ2 −X(aθ2 + aθ + b) + cX2(θ + 1)2

)
F (X) = 0, where θ = θX := X

∂

∂X
. (11.8)

The hypergeometric term un = (s)n(1−s)n/n!2 corresponds to a special degenerate

case c = 0 and a = 1, b = s(1 − s) in (11.5). Therefore, Bailey’s identity (11.4)

corresponds to the particular choice c = 0 in Theorem 11.1.

Theorem 11.1 also generalises Clausen-type formulas given in [72] which arise

as specialisation Y = X; see Section 11.2 for details.

Following Brafman’s derivation of Theorem A in [63] we deduce the following

generalised generating function of Legendre polynomials.
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Theorem 11.2. For the solution un of the recurrence equation (11.5), the following

identity is valid in a neighbourhood of X = Y = 0:

∞∑
n=0

unPn

(
(X + Y )(1 + cXY )− 2aXY

(Y −X)(1− cXY )

)(
Y −X

1− cXY

)n
= (1− cXY )

{ ∞∑
n=0

unX
n

}{ ∞∑
n=0

unY
n

}
. (11.9)

Finally, combining the results of Theorem B and Theorem 11.2 we construct

two new generating functions of rarefied Legendre polynomials.

Theorem 11.3. The following identities are valid in a neighbourhood of X = Y =

1:

∞∑
n=0

(1
2)2
n

n!2
P2n

(
(X + Y )(1−XY )

(X − Y )(1 +XY )

)(
X − Y
1 +XY

)2n

=
1 +XY

2
2F1

(1
2 ,

1
2

1

∣∣∣∣ 1−X2

)
2F1

(1
2 ,

1
2

1

∣∣∣∣ 1− Y 2

)
, (11.10)

and

∞∑
n=0

(1
3)n(2

3)n

n!2
P3n

(
X + Y − 2X2Y 2

(X − Y )
√

1 + 4XY (X + Y )

)(
X − Y√

1 + 4XY (X + Y )

)3n

=

√
1 + 4XY (X + Y )

3
2F1

(1
3 ,

2
3

1

∣∣∣∣ 1−X3

)
2F1

(1
3 ,

2
3

1

∣∣∣∣ 1− Y 3

)
. (11.11)

As an application of Theorems 11.2 and 11.3, we outline proofs of Ramanujan

type series for 1/π experimentally observed by Z.-W. Sun in [183], as well as of

several new ones; this is addressed in Section 11.5. In Section 11.2 we discuss

arithmetic sequences that solve the recursion (11.5). Our proofs of Theorems 11.1–

11.3 are given in Sections 11.3 and 11.4.

11.2. Apéry-like sequences

Although our Theorems 11.1 and 11.2 are true for generic (a, b, c) in (11.5), there

are fourteen (up to normalisation) non-degenerate examples when the sequence un

satisfies (11.5) and takes integral values. These were first listed by D. Zagier in [200]

(see also [8]), and the generating functions of all these sequences are known to have

a modular parametrisation. Table 1 indicates the related data for the sequences;

the first four examples are hypergeometric (c = 0), the next four are known as
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# in [8] # in [200] (a, b, c) un

(A) #11 (16, 4, 0)

(
2n

n

)2

(B) #14 (27, 6, 0)

(
2n

n

)(
3n

n

)
(C) #20 (64, 12, 0)

(
2n

n

)(
4n

2n

)
(D) (432, 60, 0)

(
3n

n

)(
6n

3n

)

(e) #19 (32, 12, 162) 16n
n∑

k=0

(−1)k
(
− 1

2

k

)(
− 1

2

n− k

)2

(h) #25 (54, 21, 272) 27n
n∑

k=0

(−1)k
(
− 2

3

k

)(
− 1

3

n− k

)2

(i) #26 (128, 52, 642) 64n
n∑

k=0

(−1)k
(
− 3

4

k

)(
− 1

4

n− k

)2

(j) (864, 372, 4322) 432n
n∑

k=0

(−1)k
(
− 5

6

k

)(
− 1

6

n− k

)2

(a) #5, A (7, 2,−8)
n∑

k=0

(
n

k

)3

(b) #9, D (11, 3,−1)
n∑

k=0

(
n

k

)2(
n+ k

n

)
(c) #8, C (10, 3, 9)

n∑
k=0

(
n

k

)2(
2k

k

)
(d) #10, E (12, 4, 32)

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)

(f) #7, B (9, 3, 27)
bn/3c∑
k=0

(−1)k3n−3k
(
n

3k

)
(3k)!

(k!)3

(g) #13, F (17, 6, 72)
n∑

k=0

(
n

k

)
(−1)k8n−k

k∑
j=0

(
k

j

)3

Table 1. Arithmetic solutions of (11.5).

Legendrian examples (a2 − 4c = 0), while the remaining six cases are so-called

‘sporadic’ examples in the terminology of [200]. Note that for the hypergeometric

examples, Theorem 11.2 reduces precisely to special cases of Theorem A investigated

in Chapter 10.

We remark that our Theorem 11.2 for the Legendrian cases (entries (e), (h), (i),

and (j) in Table 1) follows from Theorem A applied to hypergeometric instances

(A)–(D) and Theorem B with choice N = 1; this is because the Legendrian and
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hypergeometric cases are related by a binomial transform. Moreover, entries (a)

and (c) as well as (a) and (g) are also related by similar transforms and so are

connected by Theorem B; for example, the first pair is related by the identity

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)3

=
n∑
k=0

(
n

k

)2(2k

k

)
.

Note however that Theorem 11.2 is stronger, since it works for any sequence satis-

fying the recursion (11.5).

We also recall that if f(x), g(x) are the generating functions of two sequences

related by a binomial transform, then

g(x) =
1

1− x
f

(
x

x− 1

)
, (11.12)

which we implicitly use in Section 11.5.

Remark 11.2.1. The sequence (e) is very interesting as it has many equivalent

expression as 3F2’s, such as

u(e)
n = 16n 3F2

( 1
2 ,

1
2 ,−n
1, 1

∣∣∣∣1).
Perhaps because of this, Brafman was able to anticipate our Theorem 11.2 for (e).

In [64], he gave

∞∑
n=0

Pn(x)u(e)
n

( z
16

)n
=

1

ρ
2F1

( 1
2 ,

1
2

1

∣∣∣∣ρ− 1 + z

2ρ

)
2F1

( 1
2 ,

1
2

1

∣∣∣∣ρ− 1− z
2ρ

)
.

♦

The following general Clausen-type formula was shown in [72].

Proposition 11.1. For the solution un of the recurrence equation (11.5),{ ∞∑
n=0

unX
n

}2

=
1

1− cX2

∞∑
n=0

un

(
2n

n

)(
X(1− aX + cX2)

(1− cX2)2

)n
. (11.13)

Because g(X,X) = X(1−aX+cX2)/(1−cX2)2 for the function g(X,Y ) defined

in (11.6) and
n∑
k=0

(
n

k

)2

=

(
2n

n

)
,

identity (11.13) follows from taking Y = X in Theorem 11.1. However, Proposi-

tion 11.1 is the result which suggested to us the form of Theorem 11.1.
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Discussions of why the six sporadic examples are arithmetically important, as

well as details of modular parametrisations of the corresponding generating func-

tions
∑∞

n=0 unX
n can be found in [8], [71], [72], and [200]. Our new series for 1/π

in Section 11.5 are consequences of the above knowledge and our Theorem 11.2.

11.3. Generalised Bailey’s identity

We begin by proving our main theorem, which generalises Bailey’s identity.

Proof of Theorem 11.1. First, define the two-variable generating function

H(x, y) :=

∞∑
n=0

un

n∑
m=0

(
n

m

)2

xmyn−m (11.14)

and the linear differential operator

∆x,y := (c(x2 + 6xy + y2)− a(x+ y) + 1)

(
x
∂2

∂x2
+ y

∂2

∂y2

)
+ 4xy(2c(x+ y)− a)

∂2

∂x ∂y
+ (c(5x2 + 14xy + y2)− a(3x+ y) + 1)

∂

∂x

+ (c(x2 + 14xy + 5y2)− a(x+ 3y) + 1)
∂

∂y
+ 2(c(x+ y)− b). (11.15)

Applying the operator (11.15) to (11.14) and rearranging the summation over mono-

mials, we find that (after a lot of elementary algebra)

∆x,yH = 2
∑
n

(
(n+ 1)2un+1 − (an2 + an+ b)un + cn2un−1

)∑
m

(
n

m

)2

xmyn−m = 0

(11.16)

because of the recurrence equation (11.5).

Secondly, the one-variable differential operator

DX := X(1− aX + cX2)
∂2

∂X2
+ (1− 2aX + 3cX2)

∂

∂X
+ (cX − b)

= X−1
(
θ2
X −X(aθ2

X + aθX + b) + cX2(θX + 1)2
)

annihilates the series F (X) :=
∑∞

n=0 unX
n by (11.8), therefore

(DX +DY )
(
F (X)F (Y )

)
= 0. (11.17)

On the other hand, we find after some work that

(1− cXY )(DX +DY )

(
1

1− cXY
H
(
g(X,Y ), g(Y,X)

))
=
(
∆x,yH(x, y)

)∣∣
x=g(X,Y ), y=g(Y,X)

,
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and the latter vanishes by (11.16). Comparing this result with (11.17) we conclude

that both F (X)F (Y ) and H(g(X,Y ), g(Y,X))/(1− cXY ) satisfy the same second

order linear partial differential equation (DX+DY )G(X,Y ) = 0. By straightforward

verification, these two (analytic at the origin) solutions agree as functions of X when

Y = 0; we claim that they in fact coincide, and Theorem 11.1 follows.

To verify the claim, consider the function

G(X,Y ) := F (X)F (Y )− H(g(X,Y ), g(Y,X))

1− cXY
,

which is analytic at the origin, is annihilated by DX+DY , and satisfies G(X, 0) = 0.

The latter condition implies that in the power series

G(X,Y ) =
∑
m,k

vm,kX
mY k =

∞∑
m,k=0

vm,kX
mY k

we have vm,0 = 0 for all m. Applying DX +DY to the series, we obtain

∑
m,k

(
(m+ 1)2vm+1,k − (am2 + am+ b)vm,k + cm2vm−1,k

+ (k + 1)2vm,k+1 − (ak2 + ak + b)vm,k + ck2vm,k−1

)
XmY k = 0. (11.18)

Now, assuming that vm,k = 0 for all m and all k ≤ k′ and substituting k = k′

into (11.18), we readily see that vm,k′+1 = 0 for all m. It thus follows by induction

on k that vm,k = 0 for all m and k, that is, G is identically zero. �

Remark 11.3.1. We did not find the operator ∆x,y in (11.15) from DX or DY

using a change of variables, since for generic a and c, X and Y are very complicated

functions of x and y. Instead, we used repeated experiments on particular values

of a and c, and managed to guess the coefficients in ∆x,y one at a time.

We are glad to learn that the proof of Theorem 11.1 has been subsequently

fully computerised (A. Bostan, P. Lairez and B. Salvy, private communication via

W. Zudilin, June 2012). ♦

11.4. Generating functions of Legendre polynomials

Theorem 11.1 paves way for an easy proof of our next result.
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Proof of Theorem 11.2. The application of (11.7) follows the lines of de-

ducing Brafman’s formula (11.2) from Bailey’s reduction formula (11.4): using rep-

resentation (11.1) for Legendre polynomials, write

∞∑
n=0

unPn(x)zn =

∞∑
n=0

un

n∑
m=0

(
n

m

)2(z(x− 1)

2

)m(z(x+ 1)

2

)n−m
and choose X and Y in (11.7) to satisfy

z(x− 1)

2
= g(X,Y ) =

X(1− aY + cY 2)

(1− cXY )2
,

z(x+ 1)

2
= g(Y,X) =

Y (1− aX + cX2)

(1− cXY )2
.

(11.19)

One easily solves (11.19) with respect to x and z:

x =
(X + Y )(1 + cXY )− 2aXY

(Y −X)(1− cXY )
, z =

Y −X
1− cXY

,

and identity (11.9) follows. �

By taking N = 2, λk = (1
2)2
k/k!2, and w = 1 in Theorem B, we obtain

Proposition 11.2.

1

ρ

∞∑
k=0

(1
2)2
k

k!2
P2k

(
x− z
ρ

)(
z

ρ

)2k

=
∞∑
n=0

vnPn(x)

(
z

4

)n
, (11.20)

where

vn = 4n
bn/2c∑
k=0

(
n

2k

)
(1

2)2
k

k!2
=

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
.

A different choice of N = 3, λk = (1
3)k(

2
3)k/k!2, and w = −1 in Theorem B

results in

Proposition 11.3.

1

ρ

∞∑
k=0

(1
3)k(

2
3)k

k!2
P3k

(
x− z
ρ

)(
−z
ρ

)3k

=

∞∑
n=0

wnPn(x)

(
z

3

)n
, (11.21)

where

wn =

bn/3c∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

(k!)3
.

We are now in a position to prove Theorem 11.3.
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Proof of Theorem 11.3. Write identity (11.20) in the form

∞∑
n=0

vnPn(x)zn =
1

ρ2

∞∑
k=0

(1
2)2
k

k!2
P2k

(
x− 4z

ρ2

)(
4z

ρ2

)2k

, (11.22)

where ρ2 = ρ2(x, z) := (1−8xz+16z2)1/2, and apply Theorem 11.2 to the left-hand

side of (11.22) and the sequence vn = u
(d)
n (entry (d) in Table 1) to get{ ∞∑

n=0

vnX
n

}{ ∞∑
n=0

vnY
n

}
=
∞∑
k=0

(
2k

k

)2

P2k

(
(1− 4X − 4Y )(X + Y − 8XY )

(Y −X)(1− 4X − 4Y + 32XY )

)

× (X − Y )2k

(1− 4X − 4Y + 32XY )2k+1
. (11.23)

To each of the factors on the left-hand side we can further apply

∞∑
n=0

vnX
n = 2F1

(1
2 ,

1
2

1

∣∣∣∣ 16X(1− 4X)

)

to reduce (11.23) to a hypergeometric form. Finally, making the change of variables

X 7→ (1−X)/8, Y 7→ (1− Y )/8 we arrive at (11.10).

For the second identity in Theorem 11.3, write (11.21) as

∞∑
n=0

wnPn(x)zn =
1

ρ3

∞∑
k=0

(1
3)k(

2
3)k

k!2
P3k

(
x− 3z

ρ3

)(
−3z

ρ3

)3k

, (11.24)

where ρ3 = ρ3(x, z) := (1−6xz+9z2)1/2. Then apply Theorem 11.2 to the left-hand

side of (11.24) and the sequence wn = u
(f)
n , use

∞∑
n=0

wnX
n =

1

1− 9X
2F1

(1
3 ,

2
3

1

∣∣∣∣ −27X(1− 9X + 27X2)

(1− 9X)3

)
,

and make the change of variables X 7→ (X − 1)/(9X), Y 7→ (Y − 1)/(9Y ) in the

resulting identity. (The generating function above is easily checkable using the

differential equation (11.8).) This gives us (11.11). �

11.5. Formulas for 1/π

We briefly recall our general strategy in Chapter 10 for proving identities for

1/π. Suppose that we have a functional identity of the form

∞∑
n=0

unP`n(x)zn = γF (α)F (β), (11.25)
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where ` ∈ {1, 2, 3}, and α, β and γ are algebraic functions of x and z (Theorems A,

11.2 and 11.3 are sources of such identities). Computing the z-derivative of both

sides of (11.25) results in

∞∑
n=0

unnP`n(x)zn = γ0F (α)F (β) + γ1F (α)G(β) + γ2G(α)F (β), (11.26)

where γ0, γ1 and γ2 are algebraic functions of x and z. We take algebraic x = x0 and

z = z0 in (11.25) and (11.26) such that the corresponding quantities α = α(x0, z0)

and β = β(x0, z0) are values of a modular function t(τ) at quadratic irrationalities:

α = t(τ0), and β = t(τ0/N) or 1 − t(τ0/N) for an integer N . Using the modular

equation of degree N , we can always express F (β) and G(β) by means of F (α) and

G(α) only:

F (β) = µ0F (α) and G(β) = λ0F (α) + λ1G(α) +
λ2

πF (α)
, (11.27)

where µ0, λ0, λ1, and λ2 are algebraic (λ2 = 0 when β = t(τ0/N)). Substitut-

ing relations (11.27) into (11.25) and (11.26), and choosing the algebraic numbers

A and B appropriately, we find that
∑∞

n=0 un(A + Bn)P`n(x0)zn0 is an algebraic

multiple of a Ramanujan-type series for 1/π; in other words,

∞∑
n=0

un(A+Bn)P`n(x0)zn0 =
C

π
(11.28)

where A, B and C are algebraic numbers.

In practice, all the algebraic numbers involved are very cumbersome, so the com-

putations are quite involved. Because any identity of the form (11.28) is uniquely

determined by the choice of τ0 and N , these two quantities serve as natural data

for the identity. Below we provide brief computational details for some examples

only; however we have done all the required computations for each of our illustrative

identities.

11.5.1. Sun’s identities. Here we show that all identities from groups IV and

V in [183] can be routinely proven by the techniques we have developed.

We begin by differentiating the identities in Theorem 11.3. In each of (11.10)

and (11.11), let F (t) denote the respective 2F1 hypergeometric function and G(t) :=

t dF/dt. Furthermore, let F̃ (t) = F (1−t2) in (11.10) and F̃ (t) = F (1−t3) in (11.11),

as well as G̃(t) = G(1 − t2) and G̃(t) = G(1 − t3), respectively. Then, standard
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partial differentiation techniques yield the derivatives

∞∑
n=0

(1
2)2
n

n!2
nP2n

(
(X + Y )(1−XY )

(X − Y )(1 +XY )

)(
X − Y
1 +XY

)2n

=
1 +XY

2(1 +X + Y −XY )(1−X − Y −XY )

(
XY (1−XY )F̃ (X)F̃ (Y )

− Y 2(1 +X2)F̃ (X)G̃(Y )−X2(1 + Y 2)F̃ (Y )G̃(X)
)

(11.29)

and

∞∑
n=0

(1
3)n(2

3)n

n!2
nP3n

(
X + Y − 2X2Y 2

(X − Y )
√

1 + 4XY (X + Y )

)(
X − Y√

1 + 4XY (X + Y )

)3n

=

√
1 + 4XY (X + Y )

(1−X − Y − 2XY )((1 + 2XY )2 + (1 +X + Y )(X + Y − 2XY ))

×
(
2XY (X + Y −XY (X2 + Y 2))F̃ (X)F̃ (Y )

− Y 3(1 + 2X2(3Y +X))F̃ (X)G̃(Y )−X3(1 + 2Y 2(3X + Y ))F̃ (Y )G̃(X)
)
.

(11.30)

(These can also be found without partial differentiation, since we can differen-

tiate with respect to x and to z, then eliminate the P ′2n or P ′3n term.)

All group IV identities in [183] correspond to the form (11.10). The arguments

of the hypergeometric functions on the right-hand side of (11.10) take the form t(τ0)

and t(τ0/N) (or 1− t(τ0/N) in case (IV1)), where

(IV1) τ0 =
i
√

5/3 + 1

4
, N = 2; (IV2) τ0 =

3i
√

5 + 5

4
, N = 5; and

(IV3) τ0 =
i
√

85 + 5

4
, N = 5.

It is further hypothesized in [183] that group IV contains all such series with

rational parameters. Our analysis shows that the identities (IV5)–(IV18) all have τ0

of the form
√
−pq/8 and N = p, where p and q are odd primes and the class number

of the quadratic field Q(τ0) is 4. For the class number condition to be satisfied, p, q

can only be taken from the seemingly exhaustive list {3, 5, 7, 13, 17, 19}. Thus our

analysis lends weight to Sun’s hypothesis.

Identity (V1) in [183] is of the form (11.11) and may be similarly analysed and

proven. In this case we in fact have t(3τ0) = t(15τ1), where t(τ0) = α, t(τ1) = β

and τ0 = (i
√

91 + 3)/6.
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The only remaining case, identity (IV4), is particularly pretty and lends itself

as an example for our analysis. It states

∞∑
n=0

(1
2)2
n

n!2
8n+ 1

6n
P2n

(
5

2
√

6

)
=

10
√

2

3π
. (11.31)

The left-hand side corresponds to the choice X = (4
√

3 + 7)(5
√

2− 7), Y =
√

2− 1,

τ0 = 3i/(2
√

2), and N = 3. So α = 1 − X2 and β = 1 − Y 2 in the notation of

(11.25). Using the degree 3 modular equation and multiplier for s = 1/2, we deduce

that

F (α) =
1−
√

2 +
√

6

3
F (β),

G(α) =
172
√

6 + 243
√

3− 298
√

2− 421

3
F (β) +

(
235
√

6 + 332
√

3− 407
√

2− 575
)
G(β).

With the help of (11.29) and the above relations, identity (IV4) is reduced to(
20

3
− 5
√

2

)
F 2(β) +

(
20− 40

√
2

3

)
F (β)G(β) =

10
√

2

3π
.

Another computation relates F (β) andG(β) to F (1−β) andG(1−β) (the details

can be found in Chapter 10), which enables us to apply Clausen’s formula; (IV4)

thus holds because Clausen’s formula produces a form equivalent to the Ramanujan-

type series [30, eqn. (4.1)]

∞∑
n=0

(1
2)3
n

n!3
(
3− 2

√
2 + (8− 5

√
2)n
)(

2
√

2− 2
)3n

=
1

π
.

The other cases can be done similarly but the algebra is formidable. For in-

stance, in (IV7), using the notation of (11.10), we have{
X

Y

}
= −171∓ 120

√
2± 98

√
3± 76

√
5 + 70

√
6 + 54

√
10− 44

√
15∓ 31

√
30.

Remark 11.5.1. In Chapter 10 we produced “companion series” which involve

derivatives of Pn(x) in the summand. The series considered here also admit com-

panion series; as an example, a companion to (IV4) is

∞∑
n=0

(1
2)2
n

n!2
1

6n

[
P2n

(
5

2
√

6

)
+ 8
√

6nP2n−1

(
5

2
√

6

)]
=

14
√

2

3π
.

♦
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11.5.2. New series for 1/π. Using (11.10) and the theory developed in Chap-

ter 10 and outlined in the beginning of this section, we can produce series for 1/π

at will. The following two are among the neatest:

∞∑
n=0

(1
2)2
n

n!2
(2 + 15n)P2n

(
3
√

3

5

)(
2
√

2

5

)2n

=
15

π
, (11.32)

∞∑
n=0

(1
2)2
n

n!2
nP2n

(
45

17
√

7

)(
4
√

14

17

)2n

=
68

21π
. (11.33)

For the first formula, τ0 = i
√

3/2 and N = 3, while for the second, τ0 = i
√

7/2

and N = 7. Note that as these are precisely the 3rd and 7th singular values of the

complete elliptic integral K, we may prove each series directly without resorting

to a Ramanujan-type series (which are, of course, closely tied with the theory of

singular values, see Chapter 12). The second formula comes from the Ramanujan

series
∞∑
n=0

(1
2)3

n!3
5 + 42n

64n
=

16

π
. (11.34)

To demonstrate that the choice of τ0 is not confined to the singular values, here is

another example corresponding to τ0 = i
√

3/2 and N = 2:

∞∑
n=0

(1
2)2
n

n!2
(5−

√
6 + 20n)P2n

(
17

15

)(
217− 88

√
6

25

)n
=

3(4 +
√

6)

2π
.

Similarly, in (11.11), we can take τ0 = 2i/3 and N = 2, therefore

α =
3
(
465 + 413

√
3− 3

√
30254

√
3− 13176

)
5324

and β =
3(3−

√
3)

4
.

The algebraic numbers involved in (11.11) simplify remarkably, and aided by (11.30),

we produce the new series

∞∑
n=0

(1
3)n(2

3)n

n!2
(1 + 9n)P3n

(
4√
10

)(
1√
10

)3n

=

√
15 + 10

√
3

π
√

2
, (11.35)

whose truth is equivalent to the following series for 1/π,

∞∑
n=0

(1
3)n(1

2)n(2
3)n

n!3
(
1 + (5 +

√
3)n
)(3(7

√
3− 12)

2

)n
=

2 +
√

3

π
.

Note that each term in the sums of (11.32), (11.33) and (11.35) is rational.

More of Sun’s conjectures are proven in Chapter 12.
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11.5.3. New series for 1/π with Apéry-like sequences. As one of the

consequences of Theorem 11.2, we exhibit here some new series of the form

∞∑
n=0

un(A+Bn)Pn(x0)zn0 =
C

π
, (11.36)

where un satisfies (11.5). As such series are not the main goal of this chapter but

rather curiosities, we will only list the relevant τ0, N and the final result.

We start with entry (a) of Table 1. Denoting the sequence by u
(a)
n (and other

entries in the table are denoted similarly), we have the generating function

∞∑
n=0

u(a)
n xn =

1

1− 2x
2F1

(1
3 ,

2
3

1

∣∣∣∣ 27x2

(1− 2x)3

)
.

Therefore, combined with Theorem 11.2, we can analyse (11.36) for u
(a)
n as we did

in Chapter 10. Indeed, taking τ0 = 2i
√

2/3 and N = 2, we have

∞∑
n=0

u(a)
n

(
7− 2

√
3 + 18n

)
Pn

(
1 +
√

3√
6

)(
2−
√

3

2
√

6

)n
=

27 + 11
√

3

π
√

2
.

This is in fact equivalent to the classical series

∞∑
n=0

(1
3)n(1

2)n(2
3)n

n!3
1 + 6n

2n
=

3
√

3

π
.

Next, for entry (b), there is no simple hypergeometric generating function (the

sequence was used by Apéry to prove the irrationality of ζ(2)). Nevertheless, using

results from [71], we pick τ0 = 2i
√

2/5, N = 2, and obtain

∞∑
n=0

u(b)
n

(
16− 5

√
10 + 60n

)
Pn

(
5
√

2 + 17
√

5

45

)(
5
√

2− 3
√

5

5

)n
=

135
√

2 + 81
√

5

π
√

2
.

The generating function of u
(c)
n is

∞∑
n=0

u(c)
n xn =

1

1 + 3x
2F1

(1
3 ,

2
3

1

∣∣∣∣ 27x(1− x)2

(1 + 3x)3

)
.

The sequence gives W3(2n) in Chapter 1. Again, Theorem 11.2 applies; as an

example, for τ0 = i, N = 3, and using the same 1/π series as for (11.35), we have

∞∑
n=0

u(c)
n

(
7− 3

√
3 + 22n

)
Pn

(√
14
√

3− 15

3

)(√
2
√

3− 3

9

)n
=

9(9 + 4
√

3)

2π
.
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For entry (d), we can take τ0 = i
√

3/2, N = 3, and produce the new series

∞∑
n=0

u(d)
n

(
4− 2

√
6 + 15n

)
Pn

(
24−

√
6

15
√

2

)(
4−
√

6

10
√

3

)n
=

6(7 + 3
√

6)

π
.

For entry (f), we found after some searching that by using τ0 = 1 + i
√

7/3 and

N = 2,

∞∑
n=0

u(f)
n

(
7−
√

21 + 14n
)
Pn

(√
21

5

)(
7
√

21− 27

90

)n
=

5
√

7
√

7
√

21 + 27

4π
√

2
.

As for the last sporadic example (g), we take τ0 = 2i/
√

3 and N = 2 (i. e. the

same data as (II1) in Chapter 10) to generate the compact-looking series

∞∑
n=0

u(g)
n nPn

(
5

3
√

3

)(
1

6
√

3

)n
=

9
√

3

2π
.

As stated earlier, the Legendrian entries are binomial transforms of the hyper-

geometric entries in Table 1, therefore the 1/π series for them are comparatively

easy to find; we list one example for each entry below:

∞∑
n=0

u(e)
n (8n− 1)Pn

(
26

15
√

3

)(√
3

80

)n
=

15
√

3

2π
√

2
,

∞∑
n=0

u(h)
n (125n+ 42)Pn

(
463

182
√

6

)(
−
√

3

90
√

2

)n
=

546
√

3

25π
,

∞∑
n=0

u(i)
n (363n+ 109)Pn

(
746

425
√

3

)(
− 17

2048
√

3

)n
=

7600
√

2

33π
√

11
,

and
∞∑
n=0

u(j)
n

(
2n+ 1

2457
− 139

4875
√

173

)
Pn

(
2456

2457

)(
4081− 57

√
173

359424

)n

=

√
7
√

4081
√

17 + 16473

173 · 250π
√

2
.

The corresponding data for the identities are as follows: τ0 = i
√

3, N = 3; τ0 = i
√

2,

N = 2; τ0 = i
√

3, N = 2; and τ0 = 1 + i
√

7, N = 2, respectively.

11.6. Concluding remarks

We briefly outline the genesis of Theorems 11.1–11.3. While working on the

project [74] (Chapter 10), it became clear that generating functions of type (11.10)

and (11.11) should exist. Our confidence was boosted by examples like (11.31)

in [183]. We learned, after coming across Theorem B, that generating functions
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of P`n(x) could be obtained by generating functions of Pn(x) multiplied by an

arithmetic sequence. We then studied Brafman’s proof of Theorem A using Bai-

ley’s identity (11.4), at which point it dawned on us that a more general form of

the identity was needed to encompass not just hypergeometric, but arithmetic se-

quences. Inspired by the form of (11.13), we empirically discovered Theorem 11.1

which meets this goal and also contains (11.13) as a special case. Therefore, the

significance of ‘arithmeticity’ has been a major driving force towards Theorem 11.3.

We expect that our Theorem 11.1 can be generalised even further to include

the general form of Bailey’s transform [25, §9.6] and Clausen’s formula, both of

which depend on more than one parameter. This could possibly imply new gener-

ating functions of Jacobi and other orthogonal polynomials. (Some experimental

observations about orthogonal polynomials can also be found in Chapter 14.)

Our motivation for this chapter came from the remarkable work of Fred Brafman

on generating functions of orthogonal polynomials. Before his untimely death at age

35, he solely authored ten mathematical papers, all about orthogonal polynomials;

the works [63] and [64] are his first and last publications, respectively.

Figure 1. The relationships between various theorems used in producing

series for 1/π. Bold font indicates theorems (WZ stands for our main

theorem 11.1); italic font indicates the types of coefficients in the series

(Un: Apéry-like sequence, Pn: Legendre polynomial, Hn: hypergeometric

term); bracketed terms indicate theorems used but not directly involved

in producing the series; downward lines indicate causal relationship, where

the lower theorem can be derived from the higher one.





CHAPTER 12

New Series for 1/π

Abstract. In this chapter, we outline a number of results relating to 1/π and

other constants which do not fit the forms delineated in Chapters 10 and 11.

We pay special attention to applications of Brafman’s formula, and mention 1/π

series which are contiguous to the classical ones. We then resolve some other

conjectures of Sun. Finally, we describe a new method to generate 1/π series

using Legendre’s relation.

12.1. Orthogonal polynomials

12.1.1. Consequences of Brafman’s and Srivastava’s theorems. We re-

call Brafman’s formula (10.4)

∞∑
n=0

(s)n(1− s)n
n!2

Pn(x)zn = 2F1

(
s, 1− s

1

∣∣∣∣α) 2F1

(
s, 1− s

1

∣∣∣∣β), (12.1)

where α = (1− ρ− z)/2, β = (1− ρ+ z)/2, and ρ = (1− 2xz + z2)1/2.

By putting x = 0 in Brafman’s formula, we get the identity

4F3

( 1−s
2 , 1+s

2 , 2−s
2 , s2

1
2 , 1, 1

∣∣∣∣− z2

)
= F

(1−
√

1 + z2 − z
2

)
F
(1−

√
1 + z2 + z

2

)
,

where F stands for the 2F1. On the other hand, letting s be an integer in (12.1),

we deduce the following non-obvious result:

k∑
n=0

(−k)n(k + 1)n
n!2

Pn

(
1− xy
x− y

)(
x− y

2

)n
= Pk(x)Pk(y).

Note that P−1/2(1− 2x2) = 2/πK(x).

Since Brafman’s formula is more general than the form (12.1) stated here – it in

fact works for all Jacobi polynomials [63], we can apply it to other specialisations

of Jacobi polynomials, e. g. the Chebyshev polynomials (encountered in Chapters

221
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6 and 7). We can use it to deduce

∞∑
n=0

(
2n

n

)
Tn(x)(z/4)n =

√
1− xz + ρ√

2ρ
,

∞∑
n=0

(
2n

n

)
Un(x)(z/4)n =

1 + ρ√
2ρ
√

1− xz + ρ
. (12.2)

Srivastava’s theorem (Theorem B, Chapter 11) is also very versatile for produc-

ing identities. Taking N = 1 in Srivastava’s theorem and the exponential generating

function
∞∑
n=0

Pn(x)
zn

n!
= ezxJ0(z

√
1− x2),

we deduce
∞∑
n=0

Ln(1)Pn(x)zn =
1

ρ
exp

(
z(z − x)

ρ2

)
J0

(
−z
√

1− x2

ρ2

)
, (12.3)

where Ln denotes the Laguerre polynomial.

Taking N = 2 and the sequence (1− 1/y2)k in Srivastava’s theorem, we obtain

a connection with Chebyshev polynomials of the first kind (here y′ =
√

1− y2),

2

∞∑
n=0

Pn(x)Tn(y)zn (12.4)

=
[
1− z

(
2(iy′ − y)(yz − x) + z

)]− 1
2 +

[
1 + z

(
2(iy′ + y)(yz − x)− z

)]− 1
2 .

Results like (12.2), (12.3), (12.4) and (12.7) may well find applications in harmonic

analysis, though this has not been carefully investigated yet.

Remark 12.1.1. The ordinary generating function for P 2
n is also a 2F1,

∞∑
n=0

Pn(x)2zn =
1

1− z 2F1

( 1
2 ,

1
2

1

∣∣∣∣4z(x2 − 1)

(1− z)2

)
.

We may square both sides of the above formula in order to produce series for 1/π,

as outlined in Section 12.2. One example is

∞∑
n=0

n∑
k=0

Pk(
√

5)216k
(

2n− 2k

n− k

)2(17− 12
√

2

16

)n
(3
√

2− 4 + 4
√

2n) =
7 + 5

√
2

2π
.

Another generating function, also given by Brafman, can in fact be easily verified

using Srivastava’s theorem:

∞∑
n=0

(1
2)n

n!
Pn(x)zn =

1√
1− xz 2F1

( 1
4 ,

3
4

1

∣∣∣∣z2(x2 − 1)

(1− xz)2

)
. (12.5)

♦
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12.1.2. Product of two Legendre polynomials. Our aim is to derive a

generating function for the product of two different Legendre polynomials. We

start with the representation

P2n(x) = 2F1

(
−n, n+ 1

2

1

∣∣∣∣1− x2

)
.

Substituting this into the sum below and interchanging the order of summation, we

have
∞∑
n=0

(1
2)n

n!
P2n(x)zn =

1√
1− z 2F1

( 1
4 ,

3
4

1

∣∣∣∣4z(x2 − 1)

(1− z)2

)
, (12.6)

compare with (12.5).

As pointed out by W. Zudilin, we can take N = 2 and λk = (1/2)k/k! in

Srivastava’s theorem; the resulting sequence An essentially becomes the Legendre

polynomials, so we have

∞∑
n=0

Pn(x)Pn(y)zn =
∞∑
n=0

(−1)n

ρ

(1
2)n

n!
P2n

(
x− yz
ρ

)(
z
√

1− y2

ρ

)2n

,

where ρ =
√

1− 2xyz + y2z2. Simplifying the right hand side using (12.6), we

obtain the desired generating function,

∞∑
n=0

Pn(x)Pn(y)zn =
(
1− 2xyz + z2

)− 1
2

2F1

( 1
4 ,

3
4

1

∣∣∣∣4(1− x2)(1− y2)z2

(1− 2xyz + z2)2

)
. (12.7)

Even though such a generating function was previously known (e. g. [146]), the

above representation seems to be the most succinct one.

12.1.3. Series for another constant. Here we demonstrate a series for a

related constant using Brafman’s formula. We start with the transformation for the

Jacobi polynomials [2, Chapter 22]:

P
(a,a)
2n (x) =

Γ(2n+ a+ 1)n!

Γ(n+ a+ 1)(2n)!
P (a,−1/2)
n (2x2 − 1).

Take a = 0 above, we get P2n(x) = P
(0,−1/2)
n (2x2 − 1). Now apply the general

version of Brafman’s formula with s = 1/4 [63] to the right hand side. We obtain

∞∑
n=0

(1
4)2
n

(1
2)nn!

P2n

(√
x+ 1

2

)
zn = 2F1

( 1
4 ,

1
4

1

∣∣∣∣ 1− z − ρ
2

)
2F1

( 1
4 ,

1
4

1
2

∣∣∣∣ 1 + z − ρ
2

)
.
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The hypergeometric side simplifies in terms of F := 2F1(1
2 ,

1
2 ; 1;x), and we produce

the formula

2
√
π

Γ(3
4)2

∞∑
n=0

(1
4)2
n

(1
2)nn!

P2n

(√
x+ 1

2

)
zn = F

(
1−

√
(1 + z + ρ)/2

2

)

×
[
F

(
1−

√
(1 + z − ρ)/2

2

)
+ F

(
1 +

√
(1 + z − ρ)/2

2

)]
. (12.8)

If we denote the argument of the first F by α and that of the second F by β, and

choose them such that α = t(τ), β = t(τ/N), then the right hand side of (12.8)

equals

F (α)(F (β) + F (1− β)),

which, by the theory in Chapter 10, can be expressed in terms of F (α)2 alone; more-

over, its z-derivative can be expressed in terms of F (α)2, F (α)G(α), and 1/π alone.

Hence, by taking a suitable linear combination, we get a series for 2Γ2(3/4)/π3/2 =

1/K(1/
√

2).

The calculations involved are formidable, so we only give one example: take

τ =
√
−3, N = 3, then

∞∑
n=0

(1
4)2
n

(1
2)nn!

(
931− 265

√
6 + 6960n

)
P2n

(
3

√
5428793− 2027520

√
6

4113409

)

×
(
22154753− 9044640

√
6
)n

=
11128 + 4583

√
6

16
·

Γ(3
4)2

π3/2
.

12.2. Orr-type theorems and contiguous relations

In this section, we first supply some details on how to prove Ramanujan-type

series [164], the existence and form of which are given in Proposition 10.5. The

details, glossed over in previous chapters (except in Section 10.10, where a modular

approach is presented), are based on the theory of singular values outlined in [46,

Ch. 5]; this approach relies more on hypergeometric function theory and is more

accessible than Section 10.10. Using the same theory, we also present some 1/π

series that are contiguous to the ones studied by Ramanujan.

It is known that the singular values kr, i. e. values such thatK ′(kr)/K(kr) =
√
r,

are effectively computable algebraic numbers. It turns out that E(kr) is related to

K(kr) via the equation [46, Ch. 5]

E(kr) =
(

1− αr√
r

)
K(kr) +

π

4K(kr)
√
r
, (12.9)
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where αr denotes singular values of the second kind, which are again computable

and algebraic. (In fact, for large r, αr approaches 1/π, and this serves as the basis

for some fast iterations to compute π.)

The first step is to represent K2 as a 3F2 by Clausen’s formula, see (10.19) with

s = 1/2. Next, we write out the 3F2 as a sum and construct a linear combination

of the sum with its t-derivative. We substitute t = kr and eliminate the E(kr) term

with (12.9). Finally, we choose the coefficients in the linear combination so that all

the K(kr) terms are also eliminated. Simple linear algebra shows that this can be

done, and the result is the 1/π series

1

π
=
∞∑
n=0

(1
2)3
n

n!3
(
4k2

r(1− k2
r)
)n(√

r(1− 2k2
r)n+ αr −

√
rk2
r

)
. (12.10)

Since it is readily verified by Euler’s transform (6.32) and the quadratic transform

(6.4) that

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣4x2(1− x2)

)
=

1

1− x2 3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣ −4x2

(1− x2)2

)
(12.11)

=
1√

1− x2
3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣ −x4

4(1− x2)

)
,

applying the above procedure to the two hypergeometric functions on the right, we

obtain two more series:

1

π
=

∞∑
n=0

(1
2)3
n

n!3

(
−4k2

r

(1− k2
r)

2

)n ( αr
1− k2

r

+
1 + k2

r

1− k2
r

√
r n
)
, (12.12)

1

π
=
∞∑
n=0

(1
2)3
n

n!3

(
−k4

r

4(1− k2
r)

)n
αr −

√
rk2
r/2 +

√
r(2− k2

r)n√
1− k2

r

. (12.13)

These three series, using r ∈ {1, 2, 3, 4, 7}, give all four rational series for 1/π with

s = 1/2: (12.19), (12.53), (12.67), and (11.34). By appropriate transformations

such as (10.36) and (7.29), they also give 1/π series for other s. The transforms in

(12.11) are not exhaustive, for instance, from

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣16x(1− x)2

(1 + x)4

)
=

4(1 + x)2

π
K(x)2,

we can produce another series with argument x(1−x)2/(4(1 +x)4). We also repeat

the remark from [46] that these 3F2’s may be used to produce series for K(kr), by

eliminating the 1/π term in the linear combination.
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It is easy to see that, working along the same lines, one can deduce more formulas

for 1/π as a linear combination of F (z0), F ′(z0) and F ′′(z0) for some appropriate z0,

as long as F (z) is quadratic in K and E. (More generally, as long as F (z) admits a

modular parametrisation, bypassing the need to be hypergeometric, as seen for the

Apéry-like sequence (b) in Chapter 11).

Example 12.2.1. As our first example, let F (z) = K(z)2 (this is different from

(12.10), where we used F (4z2(1 − z2)) = K(z)2). Taking a linear combination of

the derivatives, applying (12.9), and choosing the coefficients to eliminate terms

involving K, we obtain

∞∑
n=0

h(n)
(kr

4

)2n(
(1− k2

r)
√
r n+ α(r)− k2

r

√
r
)

=
1

π
, (12.14)

where h(n) is defined in (6.26), and is a higher order Apéry-like analog to the

sequence
(

2n
n

)2
. When r = 1, we get

∞∑
n=0

nh(n)

32n
=

2

π
.

The paper [6] also investigates these series involving h(n), and re-expresses every-

thing in terms of k′r. More general constructions involving higher order Apéry-like

sequences are investigated in [71]. ♦

More examples can come from two sources. Firstly, there are Orr-type theo-

rems which allow us to write the product of two 2F1’s as another hypergeometric

function. Secondly, we can use contiguous relations: one hypergeometric function

is contiguous to another if they have the same argument but their parameters differ

by some integers (this is more closely looked at in Chapter 14). Both sources lead

to the same type of 1/π series, with some extra rational function in the summand.

Since the first approach uses published formulas, it is easier and we deal with it

first.

Many Orr-type theorems are found in [26] and [179, §2.5]. For instance, a

specialisation of [26, eqn. (7.4)] gives

(1− x)2
2F1

( 1
2 ,

1
2

2

∣∣∣∣ x) 2F1

( 1
2 ,

3
2

1

∣∣∣∣ x) = 3F2

( 1
2 ,

3
2 ,

3
2

2, 2

∣∣∣∣ −4x

(1− x)2

)
. (12.15)
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The left hand side of (12.15) can be easily written in terms of K and E:

π

2
2F1

( 1
2 ,

3
2

1

∣∣∣∣x2

)
=

E(x)

1− x2
,

π

2
2F1

( 1
2 ,

1
2

2

∣∣∣∣x2

)
=

2(E(x)− (1− x2)K(x))

x2
.

Applying the procedure described above (i. e. taking a linear combination of the

function and its derivative at singular values) allows us to produce series for 1/π.

At the 2nd singular value, we have

∞∑
n=0

(
2n

n

)3 (1 + 2n)2(3 + 4n)

1 + n

(−1

64

)n
=

4

π
,

which is a contiguous version of (12.19), in the sense that their underlying 3F2

parameters differ by some integers.

A different specialisation of [26, eqn. (7.4)] (with α = β = 3/4, γ = 2) gives

series with signature 4. The following fast converging rational series can be found

by using the 37th singular value – it adds about 6 digits per term:

∞∑
n=0

(
4n

2n

)(
2n

n

)2 (1 + 2n)(1 + 4n)

(1 + n)2

(
−1

141122

)n
× (13977729825 + 27955478864n+ 13977756400n2) =

35283

π
. (12.16)

Many more series can be produced from results in [179]. Note however that

[179, eqn. (2.5.27)] contains a misprint: 1
2c+ 1

2b−
1
2 should read 1

2c+ 1
2d−

1
2 .

In the absence of Orr-type theorems, we can still express any function contiguous

to f(x) = 3F2(1
2 ,

1
2 ,

1
2 ; 1, 1;x) in terms of K and E. This is because of Theorem 14.1,

which states any such function is a linear combination of the derivatives of f , which

are expressible with K and E (and the coefficients are functions of x). Therefore,

we may find the left hand side of say (12.15) by applying the procedure in Chapter

14. Special cases of many Orr-type theorems boil down to contiguous relations, and

therefore these special cases can be routinely proven. It also follows that any series

contiguous to a rational series with rational argument are also rational.

Example 12.2.2. Here are a few of rational series found via the contiguous ap-

proach. Unlike the Ramanujan-type series which they originate from, typically n2
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terms (from the second derivative) are involved:

∞∑
n=0

(
2n

n

)3 2n+ 1

2n− 1

n(6n− 1)

256n
=

2

π
,

∞∑
n=0

(
2n

n

)3 (2n+ 1)4

n+ 1

1

256n
=

32

3π
,

∞∑
n=0

(
2n

n

)3 1− 12n2

(1− 2n)2

1

256n
=

2

π
,

∞∑
n=0

(
2n

n

)3 6n+ 5

(n+ 1)2

1

256n
=

16

π
,

∞∑
n=0

(
2n

n

)2(4n

2n

)
n(4n+ 1)(20n+ 1)

(−1024)n
=
−4

π
.

Their proofs are routine and proceed the same way as for (12.10); e. g. the first one

comes from using the function

π2

4
3F2

(
−1

2 ,
1
2 ,

3
2

1, 1

∣∣∣∣4x2(1− x2)

)
= (2E(x)−K(x))2.

♦

12.3. A miscellany of results on π

12.3.1. Current status of Sun’s conjectures. Sun’s list of π conjectures

have inspired much work in the field. For future reference, we list below all the

proven or provable conjectures found in the the 24 Jan 2012 version (version 37)

of [183]. The methods involved as also listed. By ‘provable’, we mean there is

a general theory for proving the type of identity under question; even though the

details can be formidable, they are still manageable given enough perseverance. A

number of older entries, proven to Sun’s satisfaction, appear underlined in [183].

• All of Conjecture I. [74] (Chapter 10)

• All of Conjecture II. [74]

• All of Conjecture III. [74]

• All of Conjecture IV. [193] (Chapter 11)

• A1 and A2. [74]

• Conjecture V. [193]

• Conjecture VII: 1, 3–6. [211]

• Conjecture 2: 1–3. [211]

• Conjecture 2: 4–9. Shown here, with ideas from [211]

• Conjecture 2: 10, 11. The sequence is Apéry-like, use [72]

• Conjecture 2: 12, 14, 20, 21. Shown here, ideas from [211]

• Conjecture 3: 11–19. [172]
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• Conjecture 3: 11’, 13’, 15’, 16’, 18’, 19’, 20. Shown here, ideas from [211]

• Conjecture 4: 14. Same method as [6]

• Conjecture 5: 2–8. Shown here, ideas from [211]

• Conjecture 6: 1, 2. [211]

The main idea in [6] and [172] involves interchanging the order of summation.

The latter paper provides rigorous details, and transforms some entries in conjecture

3 to entries in conjecture IV and their companion series, which have been proven

in [193].

We remark that conjecture 4.14 can be routinely proven (it uses the same idea,

i. e. interchange the order of summation, as [6]), and therefore all of Sun’s Conjec-

ture 4 is completely proven.

Conjectures 2.10 and 2.11 involve the sequence S
(2)
k (4), which is just the Apéry-

like sequence (e) in Chapter 11. Thus, they can be proven using the generating

function

∞∑
n=0

(
2n

n

)
u(e)
n

(
x(1− 32x+ 256x2)

(1− 256x2)2

)n
= (1 + 16x) 2F1

( 1
2 ,

1
2

1

∣∣∣∣16x

)2

.

With 2.10 we use x = 1/32; since the argument of the 2F1 is 1/2 in this case,

the resulting 1/π series is particularly easy – see Section 10.8. With 2.11, we use

x = (4
√

3 − 7)/16, so after Euler’s transformation (6.32), 16x/(16x − 1) becomes

the 3rd singular value.

12.3.2. Hypergeometric evaluations. Many closed form evaluations for hy-

pergeometric series are written as products of Gamma functions, for instance Gauss’

theorem (5.3), and the partial list in Chapter 14. When the products of Gamma

functions collapse to 1/π, 1/π2, etc, we naturally obtain series for these constants.

Such methods are explored in e. g. [76].

Example 12.3.1. Take the classical evaluation for a 4F3 at −1 [11, Corollary 3.5.3],

which is a consequence of Dougall’s formula. Specialisations of the evaluation give

equation (12.19) as well as

∞∑
n=0

(1
6)3
n

n!3
(−1)n(1 + 12n) =

3

π
.
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Clearly, many other Gamma evaluations may be found this way. Watson’s formula

(see Chapter 14) immediately gives

∞∑
n=0

1(
2n
n

) 4n

(2n+ 1)(n+ 2)(n+ 3)
=
π2

32
,

while Dougalls’s formula gives

∞∑
k=0

(
2n

n

)4 1

28n

4n+ 1

(n+ 1)(2n− 1)
=
−8

π2
,

compare with (12.18) below. ♦

Our next example, though still trivial, seems to be original. Take [98, eqn. (1.2)];

under the limit n→∞, we get

4F3

(
2a, 2b, 1− 2b, 1 + 2a/3

a− b+ 1, a+ b+ 1/2, 2a/3

∣∣∣∣− 1

8

)
=

4aΓ(1 + a− b)Γ(1/2 + a+ b)√
π Γ(1 + 2a)

. (12.17)

For instance, with a = b = 1/4, we recover the series (12.67).

12.3.3. Fourier-Legendre expansion. Certain series for 1/π and other con-

stants may be arrived at using the Fourier-Legendre expansion of a function. To

be more precise, under mild conditions we can expand a function f in terms of the

Legendre polynomials:

f(x) =
∞∑
n=0

anPn(x), where an =
2n+ 1

2

∫ 1

−1
Pn(x)f(x) dx.

For f(x) =
√

1− x2, we can evaluate an by writing Pn(x) as a sum and interchanging

the order of integration and summation. After evaluating the sum by Dixon’s

theorem (14.14), we get

∞∑
n=0

(1
2)2
n

n!2
4n+ 1

(n+ 1)(1− 2n)
P2n(x) =

4
√

1− x2

π
.

Setting x = 0 and using the evaluation for Pn(0), this gives the series

∞∑
n=0

(
2n

n

)3(−1

64

)n 4n+ 1

(n+ 1)(1− 2n)
=

4

π
.

Parseval’s theorem applied to the same f produces a series for 1/π2,

∞∑
n=0

(
2n

n

)4 1

28n

4n+ 1

(n+ 1)2(2n− 1)2
=

32

3π2
, (12.18)

which is in fact contiguous to one of Guillera’s many formulas [107, eqn. (14)].
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Of course, we may use more general functions, for instance choose f(x) = (1−

x2)p−1/2. The p = 0 case recovers the first ever Ramanujan-type series for 1/π, due

to Bauer:
∞∑
n=0

(
2n

n

)3(−1

64

)n
(4n+ 1) =

2

π
. (12.19)

The corresponding series for 1/π2 (explored over a century ago by Glaisher [99]) are

all in fact hypergeometric evaluations using Dougall’s 5F4 formula [11, Corollary

3.5.2].

12.3.4. Fourth powers of binomial coefficients. In this section we look at

the generating function of the sums of fourth powers of binomial coefficients, and

relate it to series for 1/π.

Theorem 12.1. In the neighbourhood of x = 0, let u = u(x) =
√

1 + 4x, v =

v(x) =
√

1− 16x. Then

∞∑
n=0

n∑
k=0

(
n

k

)4

xn =
5

3u+ 2v
3F2

( 1
4 ,

1
2 ,

3
4

1, 1

∣∣∣∣4(u− v)5(u+ v)

5(3u+ 2v)4

)
, (12.20)

moreover, (12.20) can be used to produce series for 1/π.

Proof. Let a(n) =
∑n

k=0

(
n
k

)4
. Zeilberger’s algorithm is able to produce the

recursion

n3a(n) = 2(2n− 1)(3n2 − 3n+ 1)a(n− 1) + (4n− 3)(4n− 4)(4n− 5)a(n− 2),

which can be routinely translated into a differential equation satisfied by the left

hand side of (12.20), for instance using the Maple command rectodiffeq. It is

also routine (though tedious) to check that the right hand side is annihilated by the

same differential equation, and that the first few terms of the series expansion for

both sides agree. Thus (12.20) holds.

Because the right hand side of (12.20) has the requisite 3F2 form with signa-

ture 4, therefore by Proposition 10.5, at some computable x’s there exists a linear

combination of (12.20) and its derivative which evaluates to 1/π. Alternatively, we

may use the transformation

1√
1− z 3F2

( 1
4 ,

1
2 ,

3
4

1, 1

∣∣∣∣ −4z

(1− z)2

)
=3 F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣z),
and appeal to the construction outlined in Section 12.2 (this is the approach we

take subsequently). �
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Example 12.3.2. On top of Yang’s original example (5.8) which we reproduce

below, the following 1/π series may be produced; they correspond to the 30th,

70th, 130th and 190th singular values of K respectively:

∞∑
n=0

n∑
k=0

(
n

k

)4 4n+ 1

36n
=

18√
15π

, (12.21)

∞∑
n=0

n∑
k=0

(
n

k

)4 11 + 60n

196n
=

98√
7π
, (12.22)

∞∑
n=0

n∑
k=0

(
n

k

)4 18 + 130n

1296n
=

81√
2π
, (12.23)

∞∑
n=0

n∑
k=0

(
n

k

)4 47 + 408n

5776n
=

1444√
95π

. (12.24)

The next three rational series have negative arguments, which essentially come from

applying the transformation (12.11); they correspond to the 25th, 45th and 85th

singular values of K:

∞∑
n=0

n∑
k=0

(
n

k

)4 1 + 3n

(−20)n
=

5

2π
, (12.25)

∞∑
n=0

n∑
k=0

(
n

k

)4 1 + 4n

(−64)n
=

32

3
√

15π
, (12.26)

∞∑
n=0

n∑
k=0

(
n

k

)4 3 + 17n

(−324)n
=

81

4
√

5π
. (12.27)

We can produce many more (non-rational) series, for instance

∞∑
n=0

n∑
k=0

(
n

k

)4(
14 + 3(20∓

√
15)n

)(5
√

10± 3
√

6

98

)2n

=
2(78
√

3± 17
√

5)

(3∓ 1)π

comes from the 15th singular value. ♦

Some entries in [183] are in fact related to the sum of fourth powers of binomial

coefficients. The first connection is the following representation,

n∑
k=0

(
2(n− k)

n− k

)(
n+ k

2k

)(
n− k
k

)(
2k

k

)
=

n∑
k=0

(
n

k

)4

. (12.28)

This is easily proven using Zeilberger’s algorithm (which is able to show that both

sides satisfy the same recursion). From this, we get

∞∑
n=0

k∑
n=0

(
2n

n

)(
n+ 2k

2k

)(
n

k

)(
2k

k

)
xk+n =

∞∑
n=0

n∑
k=0

(
n

k

)4

xn. (12.29)
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Seven of Sun’s series in conjecture 5 [183] have the left hand side of (12.29) as

a building block. It turns out that they correspond to the labeled equations in

Example 12.3.2. We return to their proof in the next section.

The other connection comes from examining seven of the entries in conjecture 3

of [183]. For these entries, the argument in gk and the square root of the geometric

term differ by 2. It follows that these conjectural series for 1/π have the building

block
∞∑
n=0

n∑
k=0

(
2n

n

)(
n

k

)2(2k

k

)
x2n−k

(2x+ 1)2n+1
.

More specifically, we need a linear combination of the above sum, and a similar

one with an extra factor of n in the summand. The proof for those series involves

‘satellite identities’ which we describe in the next section. In particular, we will

prove the key formula

Theorem 12.2. In a neighbouthood of x = 0,

∞∑
n=0

n∑
k=0

(
2n

n

)(
n

k

)2(2k

k

)
x2n−k

(2x+ 1)2n+1
=

∞∑
n=0

n∑
k=0

(
n

k

)4

xn. (12.30)

Equation (12.30) will show that these seven entries again correspond to the

labeled equations in Example 12.3.2. It will be obvious that we may produce many

more series of the same type. We remark that the inner summand on the left side

of (12.30) is the Apéry-like sequence (c), which is W3(2k) in Chapter 1.

12.4. New generating functions

In this section we prove some more of Sun’s conjectures for 1/π. The main ideas

are taken from [211].

12.4.1. Satellite identity. Whenever we have a sum of the type

H =
∑
n

hn(x, z) = F (α)F (β),

where H, α, β are functions of x and z, and additionally α and β are related by

a modular equation of degree N , then for certain values of x and z, there always

exists a non-trivial linear combination of H, Hx, Hz that is 0. The reason for this

has already been explicated in Chapter 11, but we recapitulate it here. Suppose that

x and z are chosen so that α = t(τ0) and β = t(τ0/N), where t is a modular function

and τ0 is a quadratic irrationality. The modular equation allows us to write H in
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terms of F (α)2. Also, the two derivatives of H each equals a linear combination of

F (α)2 and F (α)G(α), where G(t) = tdF (t)/dt. Thus we can always take a linear

combination of these three terms to get 0.

Indeed, whenever N is fixed, this linear combination ends up being a functional

equation of the form
∑

n h̃n(p) ≡ 0, where we parametrise the left hand side by a

single variable p. Producing such a functional equation algebraically is easier than

finding a series for 1/π; moreover, it can often be guessed and then proven using the

Wilf-Zeilberger machinery. Functional equations of this type were first investigated

in [211], where they are called satellite identities, since they play a secondary role

in producing 1/π series as we shall see.

Example 12.4.1. We give some examples of satellite identities. In Theorem 11.3,

take N = 3, we have the very succinct identity

∞∑
n=0

(1
2)2
n

n!2
(
4(p2 − 1)

)n(
(3n+ 1)P2n(p)− p(2n+ 1)P2n+1(p)

)
= 0. (12.31)

This can be proven using the degree 3 modular equation; alternatively, we can use

the Wilf-Zeilberger algorithm to find a differential equation satisfied by the left

hand side, but this approach involves more work.

Returning to Brafman’s formula (12.1), the degree 3 modular equation produces,

for s = 1/2,

∞∑
n=0

(1
2)2
n

n!2
(
4p(1−p2)

)n[(
p+
(

2p− 1

2p

)
n
)
Pn

(
1 + p2

2p

)
−(n+1)Pn+1

(
1 + p2

2p

)]
= 0.

For s = 1/3 and N = 2, we have

∞∑
n=0

(1
3)n(2

3)n

n!2

(
27(p2 − 1)

4p3

)n[(1

p
+ n

(3

p
− 4p

3

))
Pn(p)− (n+ 1)Pn+1(p)

]
= 0,

where we have used the parametrisation of the degree 2 modular equation in signa-

ture 3, and the recursion (14.25) satisfied by the Legendre polynomials. ♦

12.4.2. A key observation. Many of Sun’s conjectures [183] involve sums of

the form
∞∑
n=0

n∑
k=0

F (n, k)xkzn,

where F is a hypergeometric term often expressible as the product of binomial

coefficients. It is thus possible to find a differential equation in z for the double
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sum. However, such differential equations often have degrees 4 or higher, making

them not amenable for reduction in terms of hypergeometric functions. A key

observation from [211] is that, in many (but not all) of Sun’s conjectures, x and z are

often related by a simple algebraic relation. When this happens the corresponding

differential equation often reduces to degree 3. This makes them much easier to

solve, and in some instances Maple can give the solutions. Combined with satellite

identities, [211] resolves several of Sun’s conjectures.

Remark 12.4.1. How can we discover such an algebraic relation between x and

z? Based on Sun’s numerical data, we have good reasons to suspect that potential

algebraic relations transform the sums into

∞∑
n=0

n∑
k=0

F (n, k)
xk+n

(a+ bx)2n+1
, or

∞∑
n=0

n∑
k=0

F (n, k)
(−1)nxk+n

(a+ bx)n+1/2
, (12.32)

where a and b are to be determined. For general a and b, we compute sufficiently

many terms of the x-expansion of (12.32) and check if they satisfy a three-term

recurrence (corresponding to a degree 3 differential equation for the sum) with

polynomial coefficients, where the degrees of the polynomials can be first specified.

In terms of linear algebra, this comes down to checking if a certain determinant

is zero for some a and b. The task of finding suitable integer values a and b in

(12.32) (if they exist) can thus be accomplished by finding integer solutions to the

determinant, which is a (complicated) polynomial expression in a and b.

Indeed, (12.29) was first discovered this way. ♦

Using either Sun’s data or the above procedure, we discover:

Theorem 12.3. In a neighbourhood of x = 0,

∞∑
n=0

n∑
k=0

(
n

k

)(
2n− 2k

n− k

)(
2k

k

)(
2n

n

)
xk+n

(1 + 4x)2n+1
(12.33)

=

∞∑
n=0

n∑
k=0

(
n

k

)(
2n− 2k

n− k

)(
2k

k

)(
2n

n

)
(−1)nxk+n

(1− 8x)n+1/2
= 3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣ 64x2

)
.

Proof. For each sum on the left hand side, write the coefficient of x as a double

sum. We apply the multiple WZ algorithm to obtain a recursion for the coefficients;

this step takes some time and produces a degree 9 recursion. Then, we simply show

that the right hand side coefficients satisfy the same recursion and initial conditions.
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Without the luxury of knowing the right hand side of (12.33), we can convert

the recursion into a differential equation satisfied by the generating function and

factorise it (using the DFactor command in Maple). This gives a 3rd order differ-

ential equation, which is solvable by Maple and can be rearranged into the right

hand side of (12.33). �

The satellite identities of (12.33) are given by

∞∑
n=0

n∑
k=0

(
n

k

)(
2n− 2k

n− k

)(
2k

k

)(
2n

n

)
xk+n

(1 + 4x)2n

[
1 + 3

(
1 +

1

4x

)
k +

(
1− 1

4x

)
n

]
= 0,

∞∑
n=0

n∑
k=0

(
n

k

)(
2n− 2k

n− k

)(
2k

k

)(
2n

n

)
(−1)nxk+n

(1− 8x)n

[
4 + 3

(
1− 3

x

)
k +

(
8 +

1

x

)
n

]
= 0.

To produce say the first one, we first managed to guess it. More precisely, for a

small, irrational x we compute a0 =
∑

n,k A(n, k, x), a1 =
∑

n,k A(n, k, x)k, and

a2 =
∑

n,k A(n, k, x)n, then asked PSLQ to find a null linear combination with

integer coefficients among the elements of

{a0, a1, a2, a0x, a1x, a2x, a0x
2, a1x

2, a2x
2, . . .}.

Once found, the satellite identity can be proven by extracting the coefficients of x,

which is shown (in this case) to satisfy a 7th order recursion by the multiple WZ

algorithm.

Note that the right hand side of (12.33) is a building block for 1/π series. We

can differentiate both sides of (12.33), and take an appropriate linear combination

to give 1/π, as guaranteed by Proposition 10.5. However, the resulting series would

involve linear terms in k coming from the derivative of (12.33). This is where the

satellite identity comes in: we use it to eliminate the k term.

This way, Theorem 12.3 allows us to prove all of Sun’s conjectures involving

S
(1)
k (conjectures 2.4–2.9) [183], using only the 3rd and 7th singular values. An

example of a series so proven is Sun’s entry 2.4,

∞∑
n=0

n∑
k=0

(
n

k

)(
2n− 2k

n− k

)(
2k

k

)(
2n

n

)
140n+ 19

26k

( 2

17

)2n
=

289

3π
. (12.34)

The coefficients in this type of series can be considered as extensions of the Apéry-

like sequence (d). We can produce arbitrarily more 1/π series of the same type. For



12.4. NEW GENERATING FUNCTIONS 237

instance, using the 4th singular value, we have the complex series

∞∑
n=0

n∑
k=0

(
n

k

)(
2n− 2k

n− k

)(
2k

k

)(
2n

n

)(√
−2

32

)k(16 + 31
√
−2

1089

)n
(35− 8

√
−2 + 132n)

=
116
√

2 + 95i

2π
. (12.35)

Example 12.4.2. We return to (12.30). It is true simply because the multiple

WZ algorithm can produce a recursion for the coefficients of x in the left hand side

(albeit being order 6), which is also satisfied by the right hand side, and both sides

agree to sufficiently many terms. Therefore, a linear combination of the left hand

side and its derivative produces series for 1/π. However, the derivative also involves

a linear term dependent on k; this term can be canceled out because of the satellite

identity (first guessed by PSLQ, then proven by the multiple WZ algorithm):

∞∑
n=0

n∑
k=0

(
2n

n

)(
n

k

)2(2k

k

)
x2n−k

(2x+ 1)2n

[
2

x
+1−2

(1

x
+2
)(1

x
−1
)
k+

3

2x

(1

x
+4
)
n

]
= 0.

Similarly, the satellite for (12.29) is

∞∑
n=0

k∑
n=0

(
2n

n

)(
n+ 2k

2k

)(
n

k

)(
2k

k

)
xk+n

[
4x+ 3(4x+ 1)k + 2(x− 1)n

]
= 0.

As mentioned earlier, entries 11’, 13’, 15’, 16’, 18’, 19’, 20 from Sun’s conjecture

3 [183] can be proven using (12.30), while entires 2–8 from conjecture 5 can be

proven using (12.29); they are both equivalent to the series in Example 12.3.2. We

give one example from each type of proven series:

∞∑
n=0

n∑
k=0

(
2n

n

)(
n

k

)2(2k

k

)
142k

1982n
(3920n+ 541) =

42471

8
√

7π
, (12.36)

∞∑
n=0

k∑
n=0

(
2n

n

)(
n+ 2k

2k

)(
n

k

)(
2k

k

)
3245n+ 268

1296n+k
=

1215√
2π

. (12.37)

Finally, we note that [183] states that entries 3.11’–3.19’ are equivalent to 3.11–

3.19, and some of the latter entries have been proven in [172], though our analysis

is computationally simpler. ♦

Entries in Sun’s conjecture 2 [183] which involve S
(2)
k generalise the Apéry-like

sequence (e) (since S
(2)
k (4) is (e) itself). When z = 1/(x+ 4)2, as is the case for the

four entries listed below, the resulting differential equation (again found by multiple

WZ) can be solved by Maple in terms of the Heun G function (see [32, vol. 3]), with
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the first parameter equal to 4. Using of [140, eqn. (3.5b)], this Heun G function

reduces to the form 2F1(1
6 ,

1
3 ; 1

2 ; t(x)). Applying Goursat’s quadratic transform

[103, p. 118, eqn. (25)], we finally discover

Theorem 12.4. In a neighbourhood of x = 0,

∞∑
n=0

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)2(2n

n

)
xk+n

(1 + 4x)2n+1
= 3F2

( 1
3 ,

1
2 ,

2
3

1, 1

∣∣∣∣ 108x2(1− 4x)

)
.

(12.38)

Its satellite identity is:

∞∑
n=0

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)2(2n

n

)
xk+n

(1 + 4x)2n

[
1 + 2k + n+

2k − n
4x

]
= 0.

It follows that Sun’s conjectures 2.12, 2.14, 2.20 and 2.21 can be proven. For

the first one, the argument of the 3F2 in (12.38) is 1 and so its proof follows by

hypergeometric evaluations. The next three have arguments 1/2, 2/27 and 4/125

respectively, equivalent to the (only) rational Ramanujan-type series for signature

3. As an example, entry 2.20 is

∞∑
n=0

n∑
k=0

(
2n− 2k

n− k

)(
2k

k

)2(2n

n

)
12n+ 1

62k

( 3

20

)2n
=

75

8π
. (12.39)

12.5. Series for 1/π using Legendre’s relation

As stated in Proposition 10.5, Ramanujan-type series for 1/π originally took

the form
∞∑
n=0

(1
2)n(s)n(1− s)n

n!3
(a+ bn)zn0 =

c

π
, (12.40)

where s ∈ {1/2, 1/3, 1/4, 1/6}. As we saw in Chapters 10 and 11, a more encom-

passing series for 1/π would look like

∞∑
n=0

U(n) p(n) zn0 =
c

πk
, (12.41)

where U(n) is an arithmetic sequence, and p(n) is a polynomial (often linear or

quadratic in n).

Most of the current methods for producing such series rely on one of the following

methods:

• Hypergeometric series (Clausen’s formula and singular values of K), see

[46] and Section 12.2;
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• Modular equations together with the first approach, see Chapters 10 and

11;

• Experimental mathematics (creative telescoping), explored in say [106];

• Summation formulas for hypergeometric series, Fourier-Legendre series,

etc, see Section 12.3.

A notable feature of 1/π series produced using the methods above has been

severe restrictions in the argument of the geometric term (z0 in (12.41)), as z0 may

need to come from singular values of K, or be a special value for a summation

formula to work. Here we give a new method for producing series for 1/π, as well

as some related constants, using only Legendre’s relation. The method presented

here breaks such restrictions so the argument can be any real number for which the

underlying series converges.

12.5.1. Legendre’s relation. Our analysis hinges on Legendre’s relation [46,

Theorem 1.6], which states

E(x)K ′(x) + E′(x)K(x)−K(x)K ′(x) =
π

2
. (12.42)

We have already encountered Legendre’s relation in Chapters 5 and 6. A more

general form of (12.42) holds [46, equation (5.5.6)]:

Es(x)Ks′(x) + Es′(x)Ks(x)−Ks(x)Ks′(x) =
π

2

cos(πs)

1 + 2s
, (12.43)

where Ks, Es are defined in (5.1) and (5.2). Note also that in (12.43), s is not

restricted to the four values as in (12.40).

Suppose we have a factorisation of the following type:

π2G(z) = K(a(z))K(b(z)), (12.44)

where G is analytic near the origin and satisfies an ordinary differential equation of

degree no less than 4 – for instance, G could be a 4F3. (The condition on the degree

of the differential equation for G is imposed because we will solve a system of four

equations below, so having three linearly independent derivatives help.) Suppose

further that we can find a number z0 such that a(z0)2 = 1 − b(z0)2, so that the

right hand side of (12.44) becomes K(a(z0))K ′(a(z0)). We then consider a linear
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combination of derivatives of equation (12.44), namely

π2
(
A0G(z0) +A1

d

dz
G(z0) +A2

d

dz2
G(z0) +A3

d

dz3
G(z0)

)
=B0KK

′(z0) +B1EK
′(z0) +B2E

′K(z0) +B3EE
′(z0), (12.45)

where Ai are constants that may depend on z0, while Bi depend on Ai. The equality

in (12.45) holds because derivatives of E and K are again expressible in terms of E

and K. It remains to solve (if possible) the following system of equations for Ai,

B0 = −1, B1 = 1, B2 = 1, B3 = 0,

so that we may apply Legendre’s relation (12.42) to (12.45) and obtain, for those

choices of Ai,

A0G(z0) +A1
d

dz
G(z0) +A2

d

dz2
G(z0) +A3

d

dz3
G(z0) =

1

2π
. (12.46)

A series for 1/π is thus obtained; when written as a sum, the left hand side typically

contains a cubic of the summation variable. We will illustrate such series using

different choices of G below.

12.5.2. Brafman’s formula. An example of a factorisation in the form of

(12.44) comes from Brafman’s formula (12.1). Although the formula is of type

(12.44), solving for α2 = 1 − β2 only results in a trivial identity. Therefore our

strategy is to modify the arguments α or β via some transformations.

12.5.2.1. The s = 1/2 case. Using s = 1/2 and applying the quadratic transform

(6.5) to one of the terms in (12.1), we obtain

π2

4

∞∑
n=0

(1
2)2
n

n!2
Pn(x)zn =

1

1 + α1/2
K

(
2α1/4

1 + α1/2

)
K
(
β1/2

)
. (12.47)

This fits the type of (12.44). After significant amount of algebra as outlined by

the approaches leading to (12.46), we have the following:

Theorem 12.5. For k ∈ (0, 1),

∞∑
n=0

(
2n

n

)2

Pn

(
−k4 + 6k3 − 2k + 1

(k2 + 1)(k2 + 2k − 1)

)(
(k2 + 1)(k2 + 2k − 1)

16(k + 1)2

)n(
C3n

3 + C2n
2 + C1n+ C0

)
=

2(k + 1)3(k2 + 1)

π
, (12.48)
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where

C3 = 4(k − 1)2k2(k2 + 3k + 4)2,

C2 = 12(k − 1)k(k6 + 5k5 + 10k4 + 10k3 + 5k2 − 3k + 4),

C1 = 9k8 + 36k7 + 37k6 + 8k5 − 9k4 − 56k3 + 63k2 − 28k + 4,

C0 = (k2 + 2k − 1)2(2k4 + 3k2 − 2k + 1).

Proof. A little algebra shows that if we choose

x =
1− 2k + 6k3 − k4

(k2 + 1)(k2 + 2k − 1)
, z0 =

(k2 + 1)(k2 + 2k − 1)

(k + 1)2
,

then, viewing α and β as functions of z, we get β(z0)1/2 = k, and 2α(z0)1/4/(1 +

α(z0)1/2) =
√

1− k2, as desired. With these choices we have α(z0) = (1− k)2/(1 +

k)2; we can also compute and simplify the derivatives a′(z), a′′(z), a′′′(z) and

b′(z), b′′(z), b′′′(z) at z = z0. Thus, as in (12.44), we have an equation of the type

π2

[
1 + α(z)1/2

4

∞∑
n=0

(1
2)2
n

n!2
Pn(x)zn

]
= K

(
2α(z)1/4

1 + α(z)1/2

)
K
(
β(z)1/2

)
,

where at z = z0 the arguments of the two K’s are complementary.

We take a linear combination (with coefficients Ai) of the z-derivatives of the

above equation, as done in (12.45), then substitute in z = z0 and simplify the

resulting expression using the precomputed values for α′(z0), β′(z0) etc. Finally, we

solve for Ai so that Legendre’s relation may be applied to obtain a series of the

form (12.46). The result, after tidying up, is (12.48).

We now look at the convergence. From the standard asymptotics for the Le-

gendre polynomials [184], we have, as n→∞,

Pn(x) = O
((
|x|+

√
x2 − 1

)n)
for |x| > 1 and Pn(x) = O

(
n−1/2

)
for |x| ≤ 1.

Therefore, for any rational k ∈ (0, 1), the sum in (12.48) converges geometrically,

where the rate is given by

1− 2k + 6k3 − k4

(1 + k)2
+ 4

(
k(1− k)

1 + k

)3/2

.

�

Note that any rational choice of k ∈ (0, 1) leads to a rational series in Theorem

12.5, which is indicative that such series are likely to be fundamentally different from

ones that are entirely modular in nature (see e. g. Chapter 10), whose arguments
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are much more restricted. For instance, with the choice of k = 1/2 in Theorem

12.5, we get

∞∑
n=0

(
2n

n

)2

Pn

(
11

5

)(
5

576

)n
(14− 171n− 4452n2 + 2116n3) =

2160

π
.

Theorem 12.5 is by no means the unique consequence of (12.1) with s = 1/2. For

example, we can apply quadratic transformations to both arguments on the right

hand side of (12.1). The result is also a rational series, convergent for k ∈ (0, 1) and

genuinely different from Theorem 12.5, though the general formula is too messy to

be exhibited here. We give only one instance (with the choice k = 1/2) here:

∞∑
n=0

(
2n

n

)2

Pn

(
19

13

)(
65

20736

)n
(97756868n3 − 24254580n2 − 539415n− 264590)

=
6065280

π
.

As another example, if we apply to one term in (12.1) the cubic transformation

(10.22), then after a lot of work it is possible to obtain a general, rational series

convergent for p ∈ (0, 1). At p = 1/2 for instance, we get the series

∞∑
n=0

(
2n

n

)2

Pn

(
353

272

)(
17

211

)n
(44100n3 − 30420n2 − 1559n− 206) =

8704

π
.

However, it is important to note that not all transformations lead to series of type

(12.46).

We give another general theorem for the s = 1/2 case here. If we apply a

quadratic transformation to one argument of (12.1) and Euler’s transformation

(6.32) to the other, the result is also a rational series with at most a quadratic surd

on the right hand side. Once again convergence is easy to establish (the rate is

|z0| = (1+k)(4k2−3k+1)/(4k)), and the general solution recorded below is proven

in exactly the same way as Theorem 12.5.

Theorem 12.6. For k ∈
(√

41−5
8 , 1

)
,

∞∑
n=0

(
2n

n

)2

Pn

(
1− 3k + 2k2 − 2k3

4k2 − 3k + 1

)(
−(1 + k)(4k2 − 3k + 1)

64k

)n(
C3n

3 + C2n
2 + C1n+ C0

)
=

8k3/2(4k2 − 3k + 1)

π
, (12.49)
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where

C3 =
4(k − 1)2

k + 1
(2k − 1)(4k2 + 3k + 1)2,

C2 = 12(k − 1)(2k − 1)(16k4 + k2 − 1),

C1 = 288k6 − 400k5 + 102k4 + 97k3 − 93k2 + 47k − 9,

C0 = 2(32k6 − 44k5 + 9k4 + 16k3 − 14k2 + 6k − 1).

Examples include

∞∑
n=0

(
2n

n

)2

Pn

(
1

3

)(
−1

36

)n
(1− 3n− 84n2 − 121n3) =

18
√

3

π
,

from k = 1/3, and when k = 1/2 (chosen so that C3 vanishes),

∞∑
n=0

(
2n

n

)2

Pn

(
1

2

)(
3

128

)n
(3 + 14n) =

8
√

2

π
. (12.50)

The formula (12.50) is particularly interesting, because although it fits the form

of the 1/π series considered in Chapter 10 perfectly, it cannot be explained by

the general theory there (its τ0 is iK(
√

3/2)/(2K(1/2)), which is not a quadratic

irrationality).

Just as in Chapter 10, we can produce ‘companion series’ using Legendre’s

relation; one example is

∞∑
n=0

(
2n

n

)2( 3

128

)n[
14n(196n2 + 196n− 3)Pn−1

(1

2

)
− (1372n3 + 3024n2 + 1631n+ 375)Pn

(1

2

)]
=

400
√

2

π
.

Remark 12.5.1. One might wonder what happens if we set a(z) = b(z) in (12.44).

In the case of (12.47), as the quadratic transformation is effectively the degree 2

modular equation, any series thus produced would be subsumed under the theory

in Chapter 10 with the choice N = 2, and where
√
β could be taken as a singular

value. See also Section 12.5.3.3 for more discussions. ♦

12.5.2.2. The s = 1/4 case. Even though equation (12.1) holds for s ∈ (0, 1),

we see in the last two theorems that transformations need to be applied to the right

hand side of (12.1) before Legendre’s relation can be used. Since many such trans-

formations are modular in nature, we are again confined to s ∈ {1/2, 1/3, 1/4, 1/6}.

We now consider the s = 1/4 case in (12.1). One strategy here is to transform the
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right hand side of (12.1) in terms of K; the transformation required is (7.29). The

transformed expression is of type (12.44) and we solve for a(z0)2 = 1− b(z0)2 in the

notation there. Proceeding along the same lines as in the proof of Theorem 12.5,

the following theorem can then be established:

Theorem 12.7. For k ∈ (0, 1),

∞∑
n=0

( 1
4 )n( 3

4 )n

n!2
Pn

(
(1 + k)(1− 4k + 7k2)

(1− 3k)(1 + 3k2)

)(
(1 + k)(1− 3k)(1 + 3k2)

(1 + 3k)2

)n

×
(
C3n

3 + C2n
2 + C1n+ C0

)
=

3
√

2(1 + 3k)5/2(1 + 3k2)

(1 + k)π
, (12.51)

where

C3 =
16(k − 1)2k2

(1 + k)2
(8 + 15k + 9k2)2,

C2 = 48(k − 1)k(8− 15k + 27k2 + 27k3 + 81k4),

C1 = (4− 33k + 45k2)(4− 17k + 17k2 − 3k3 + 63k4),

C0 = 3(1− 3k)4(1 + k + 2k2).

An example of an identity produced by Theorem 12.7 is

∞∑
n=0

(1
4)n(3

4)n

n!2
Pn

(
9

7

)(
21

100

)n
(216− 2385n− 108432n2 + 80656n3) =

12600
√

5

π
.

Note that we may also choose k for the right hand side of (12.51) to be rational.

Here is a trick: if the denominator of the argument in Pn is 0 at some k0,

and at the same time the geometric term z0 vanishes, then we may take the limit

k 7→ k0 which gets rid of the Legendre polynomial altogether (note that the leading

coefficient of Pn is
(

2n
n

)
2−n). In (12.51), this occurs when k0 = 1/3. After taking

the limit and eliminating the n3 term using a hypergeometric differential equation

(14.3), we recover the Ramanujan series (of the type (12.40))

∞∑
n=0

(1
4)n(1

2)n(3
4)n

n!3

(
32

81

)n
(1 + 7n) =

9

2π
. (12.52)

The same trick, applied to the series which follows from the cubic transformation

mentioned in the s = 1/2 case, results in

∞∑
n=0

(1
2)3
n

n!3

(
1

4

)n
(1 + 6n) =

4

π
, (12.53)

from the choice p = (
√

3−1)/2; this formula originated from Ramanujan [164] and

was first proven by Chowla.
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12.5.2.3. The s = 1/3 case. This case is slightly trickier. An attempt to trans-

form the right hand side of (12.1) in terms of K, as we did for the s = 1/4 case,

results in exceedingly messy computations. Applying low degree modular equations

to one of the 2F1’s (as we did in the s = 1/2 case, for (12.47) essentially uses the

degree 2 modular equation) does not give convergent series. Instead, we resort to a

formula in [103],

2F1

( 1
3 ,

2
3

1

∣∣∣∣x) = (1 + 8x)−1/4
2F1

( 1
6 ,

5
6

1

∣∣∣∣12 − 1− 20x− 8x2

2(1 + 8x)3/2

)
,

to transform the right hand side of (12.1), then solve for a(z0)2 = 1− b(z0)2 in the

notation of (12.44), followed by applying the generalised Legendre relation (12.43)

with s = 1/3. We succeed in obtaining the following theorem, where α(z0) =

k3, β(z0) =
(

1−k
1+2k

)3
.

Theorem 12.8. For k ∈ (0, 1),

∞∑
n=0

( 1
3 )n( 2

3 )n

n!2
Pn

(
1− 4k + 6k2 − 4k3 + 10k4

(1− 2k − 2k2)(1− 2k + 4k2)

)(
(1 + k + k2)(1− 2k − 2k2)(1− 2k + 4k2)

(1 + 2k)3

)n

×
(
C3n

3 + C2n
2 + C1n+ C0

)
=

√
3 (1 + 2k)4(1− 2k + 4k2)

π
, (12.54)

where

C3 =
9(k − 1)2k2

1 + k + k2
(3 + 4k + 2k2)2(3 + 2k + 4k2)2,

C2 = 27(k − 1)k(9− 18k + 10k2 + 12k3 + 60k4 + 160k5 + 240k6 + 192k7 + 64k8),

C1 = 9− 144k + 540k2 − 584k3 + 314k4 − 228k5 − 1256k6 − 1072k7 + 768k8 + 2560k9 + 1280k10,

C0 = 2(1− 2k − 2k2)2(1− 10k + 12k2 − 24k3 + 16k4 + 32k6).

Note that in this case the right hand side contains a surd for rational k. When

k → (
√

3− 1)/2, we get the series

∞∑
n=0

(1
3)n(1

2)n(2
3)n

n!3

(
3(7
√

3− 12)

2

)n(
5−
√

3 + 22n
)

=
7 + 3

√
3

π
.

12.5.2.4. The s = 1/6 case. It is also possible to produce a general series for

this case, though the details required hours of computer algebra. The derivation is

similar to the s = 1/3 case, and we use Goursat’s result [103]

2F1

( 1
6 ,

5
6

1

∣∣∣∣12 − 1

2

√
1− 64(1− t)t3

(9− 8t)3

)
=
(

1− 8t

9

) 1
4

2F1

( 1
3 ,

2
3

1

∣∣∣∣t),
followed by the generalised Legendre relation for s = 1/6.
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The general result is too lengthy to be included here. Just to find suitable x (in

Pn) and z0, we need to solve for rational points on the curve u2 + v2 = 10. Having

done so, the resulting series converges for k ∈ (1/3, 1); the coefficient of n alone is

a degree 24 polynomial in k. Even for k = 1/2, large integers are involved:

∞∑
n=0

(1
6)n(5

6)n

n!2
Pn

(
2437

2365

)(
15136

296595

)n(
710512440561n3 − 118714528800n2

− 19263658756n− 2627089880
)

=
1402894350

√
39

π
.

With the limit k → (
√

5− 1)/2, however, we recover the Ramanujan series

∞∑
n=0

(1
6)n(1

2)n(5
6)n

n!3

(
4

125

)n
(1 + 11n) =

5
√

15

6π
. (12.55)

In the general series, the 1/π side is actually the square root of a quartic in k, and

hence rational points on it may be found by the standard process [78] of converting

it to a cubic elliptic curve (namely, y2 = 62208 + 3312x − 144x2 + x3). It follows

that there are infinitely many rational solutions. The smallest solution for k (in

terms of the size of the denominator) which admits a rational right hand side is

k = 6029/8693, and the resulting series involves integers of over 100 digits.

12.5.2.5. Rarefied Legendre polynomials. Factorisations of the type (12.44) for

generating functions of rarefied Legendre polynomials are given in Chapter 11. Us-

ing partial differentiation techniques, we may also apply Legendre’s relation to

deduce parameter-dependent rational series for them. The algebra is formidable

and we do not present the general forms here; only two examples are given to

demonstrate their existence:
∞∑
n=0

(1
2)2
n

n!2
P2n

(
91

37

)(
5

37

)2n

(3108999168n3 − 3255264000n2 − 75508700n+ 24025)

=
896968800

π
,

∞∑
n=0

(1
3)n(2

3)n

n!2
P3n

(
19

3
√

33

)
39887347500n3 − 6141658302n2 + 172862917n− 15262470

(11
√

33)n

=
442203651

√
11

2π
.

Under appropriate limits, the series involving P2n again gives (12.52), while the one

for P3n recovers equation (12.55).

12.5.3. Orr-type theorems.
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12.5.3.1. A result from Bailey or Brafman. There are other formulas, notably

ones of Orr-type, which satisfy (12.44); an example was given by Bailey [26, equa-

tion (6.3) or (7.2)]:

4F3

(
s, s, 1− s, 1− s

1
2 , 1, 1

∣∣∣∣ −x2

4(1− x)

)
= 2F1

(
s, 1− s

1

∣∣∣∣x)2F1

(
s, 1− s

1

∣∣∣∣ x

x− 1

)
. (12.56)

Specialising Bailey’s result using s = 1/4, we have

π2

4
4F3

( 1
4 ,

1
4 ,

3
4 ,

3
4

1
2 , 1, 1

∣∣∣∣−4x4(1− x2)2

(1− 2x2)2

)
= K(x)K

(
x√

2x2 − 1

)
. (12.57)

This formula also follows from setting x = 0, s = 1/2 in Brafman’s formula (12.1).

We try different transformations for the right hand side of (12.57), in order to find a

suitable z0 for which the two arguments are complementary, so the procedures lead-

ing up to (12.46) may be applied. Indeed, after using Euler’s transformation (6.32)

to both terms followed by a quadratic transformation, we obtain the equivalent

formulation

π2

4

√
(1 + z)(1 + z′)

2z′
4F3

( 1
4 ,

1
4 ,

3
4 ,

3
4

1
2 , 1, 1

∣∣∣∣ z4

4(z2 − 1)

)
= K

(√
2z

z + 1

)
K

(√
z′ − 1

z′ + 1

)
,

where at z0 = (−1)1/6 the arguments in the K’s are complementary (and corre-

spond to argument 1/4 in the 4F3). Proceeding as we did for our previous results,

Legendre’s relation gives

∞∑
n=0

(
4n

2n

)2(2n

n

)
3 + 26n+ 48n2 − 96n3

212n
=

2
√

2

π
. (12.58)

This time we do not have a more general rational series depending on a parameter,

since there is only one free variable x in (12.56). For other values of z0, algebraic

irrationalities are involved, for instance

∞∑
n=0

(
4n

2n

)2(2n

n

)(
4(151 + 73

√
5)n3 − 96(3 +

√
5)n2 − (25−

√
5)n− 3

)
×
(

17
√

5− 38

26

)n
=

38 + 17
√

5

π
.

We note that it is routine to obtain results contiguous to (12.57) (see Chapter

14). Two such contiguous relations give elegant variations of (12.58):
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∞∑
n=0

(
4n

2n

)2(2n

n

)
1− 48n2

(1− 4n)2 212n
=

2
√

2

π
,

∞∑
n=0

(
4n

2n

)2(2n

n

)
3 + 32n+ 48n2

(1 + 2n) 212n
=

8
√

2

π
, (12.59)

where the second sum has been proven in [106, table 2] using creative telescoping.

In fact, using the same z0 as in (12.58), we may invoke (12.56) instead of its

specialisation (12.57), and appeal to the generalised Legendre relation. The result,

and those contiguous to it, are rather neat and hold for s ∈ (0, 1):

∞∑
n=0

(s)2
n(1− s)2

n

(1
2)n(1)3

n

s(1− s) + 2(1− s+ s2)n+ 3n2 − 6n3

(1− 2s)2 4n

=
∞∑
n=0

(s)2
n(1− s)2

n

(3
2)n(1)3

n

s(1− s) + 2n+ 3n2

4n

=

∞∑
n=0

(s)2
n(−s)2

n

(1
2)n(1)3

n

s2 − 3n2

s 4n
=

sin(πs)

π
. (12.60)

These series generalise (12.58) and (12.59). For rational s, the rightmost term in

(12.60) is algebraic; e. g. for s = 1/6 we get the rational series

∞∑
n=0

(
6n

4n

)(
6n

3n

)(
4n

2n

)
25− 108n2

(6n− 5)2 28n36n
=

3

5π
.

12.5.3.2. Another result due to Bailey. We can take [26, equation (6.1)] (or

[179, (2.5.31)]), from which we find

πK
( 1√

2

)
4F3

( 1
4 ,

1
4 ,

1
4 ,

3
4

1
2 ,

1
2 , 1

∣∣∣∣16x2x′2(x′2 − x2)2

)
=
(
K(x) +K ′(x)

)
K

(√
1

2
− xx′

)
.

(12.61)

To prepare this identity for Legendre’s relation so as to produce even just one

rational series requires much work.

We apply the cubic modular equation (10.22) to the rightmost term in (12.61).

Denoting the 4F3 in (12.61) by G, we have

πK
( 1√

2

)
(1 + 2p)G

(
16p3(1 + p)3(2− p− p2)(1 + 2p− 4p3 − 2p4)2

(1 + 2p)4

)

=
(
K +K ′

)(√1

2
−
√
p3(1 + p)3(2− p− p2)

1 + 2p

)
K

(√
p(2 + p)3

(1 + 2p)3

)
.
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At p =
√

14−
√

2−2
4 (corresponding to x2 = (1 − k7)/2), the arguments in the two

K’s coincide. We then compute the derivatives up to the 3rd order for the above

equation. Note that as G satisfies a differential equation of order 4, higher order

derivatives are not required; however, since the derivatives also contain the terms

EK, E2 and K2, we are not a priori guaranteed a solution. After a significant

amount of algebra, we amazingly end up with the rational series

∞∑
n=0

(
4n
2n

)(
1
4

)2
n

(2n)!

5 + 92n+ 3120n2 − 4032n3

28n
=

8

K(1/
√

2)
=

32
√
π

Γ(1
4)2

. (12.62)

12.5.3.3. Some related constants. Using a different set of parameters (α = β =

γ/2 = 1/4 in [26, equation (6.3)]), we have

π3

(2xx′)
1
2 Γ4(3

4)
3F2

( 1
4 ,

1
4 ,

1
4

1
2 ,

3
4

∣∣∣∣ (1− 2x2)4

16x2(x2 − 1)

)
=
(
K(x) +K ′(x)

)2
. (12.63)

In this case, applying Legendre’s relation straightaway does not give anything non-

trivial, but if we apply a quadratic transform to the K(x) term first, then for the

two arguments in the K’s to be equal, we need to solve the equation
√

1− x2 =

2
√
x/(1 + x), which gives x =

√
2− 1. Subsequently we can use Legendre’s relation

to obtain

∞∑
n=0

(1
4)4
n

(4n)!

(
8(457− 325

√
2)
)n(

7 + 20(11 + 6
√

2)n
)

=
28(82 + 58

√
2)

1
4 π2

Γ4(1
4)

.

More series of this type are possible at special values of t, which are in fact singular

values; c. f. the equation solved above is precisely the one to solve for the 2nd

singular value (because kr and k′r are related by the modular equation of degree r

and satisfy k2
r +k′2r = 1). Therefore, to produce a series from (12.63) we do not need

Legendre’s relation; instead a single differentiation (in the same way Ramanujan

series are produced in [46]) suffices. For example, using k3 we obtain one series

corresponding to 1/π and another to 1/K(k3)2:

∞∑
n=0

(1
4)4
n

(4n)!
(−144)n(1 + 20n) =

8
√

2π2

Γ(1
4)4

, (12.64)

∞∑
n=0

(1
4)4
n

(4n)!
(−144)n(5− 8n+ 400n2) =

( 2√
3
− 1)2

49
6 π5

Γ(1
3)6Γ(1

4)4
. (12.65)
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12.5.4. Concluding remarks. In equations (12.52), (12.53) and (12.55), we

witness the ability of Legendre’s relation to produce Ramanujan series which have

linear (as opposed to cubic) polynomials in n. Series of the latter type are connected

with singular values (more precisely, when iK ′(t)/K(t) is a quadratic irrationality),

as is further supported by Remark 12.5.1 and Section 12.5.3.3. We take this con-

nection slightly further here.

We can bypass the need for Brafman’s formula completely and produce Ramanu-

jan series of type (12.40) only using Legendre’s relation and modular transforms.

For instance, take the following version of Clausen’s formula (10.19),

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣4x2(1− x2)

)
=

4

π2(1 + x)
K(x)K

( 2
√
x

1 + x

)
, (12.66)

where we have performed a quadratic transformation to get the right hand side.

When x2 + 4x/(1 + x)2 = 1, x =
√

2− 1, the 2nd singular value. At this x, we take

a linear combination of the right hand side of (12.66) and its first derivative (since

we know a Ramanujan series exists and involves no higher order derivatives), then

apply Legendre’s relation (12.42). The result is the series

∞∑
n=0

(1
2)3
n

n!3
(
2(
√

2− 1)
)3n(

1 + (4 +
√

2)n
)

=
3 + 2

√
2

π
,

which also follows from (12.48) under the limit k →
√

2− 1. (Applying Legendre’s

relation to (12.66) and its derivatives when x is not a singular value results in the

trivial identity 0 = 0, perhaps as expected.)

Applying the quadratic transform twice (i. e. giving the modular equation of

degree 4), followed by transforming the 3F2 in (12.66) and using Legendre’s relation,

we recover Ramanujan’s series

∞∑
n=0

(1
2)3
n

n!3

(
−1

8

)n
(1 + 6n) =

2
√

2

π
. (12.67)

For our final examples, using the degree 3 modular equation (10.22), we have

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣4p3(1 + p)3(1− p)(2 + p)

(1 + 2p)2

)
=

1

1 + 2p
K

(
p3(2 + p)

1 + 2p

)
K

(
p(2 + p)3

(1 + 2p)3

)
.

From this and a similar identity with the 3F2 transformed, we derive the Ramanujan

series (12.53) as well as (12.55). This method seems to be a simple alternative to

producing the Ramanujan series (12.40), since we only need to know the modular
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equations and Legendre’s relation; there is no need to find, say, singular values of

the second kind as is required in the approach in Section 12.2.

12.5.4.1. Computational notes. While all the results presented here are rigor-

ously proven, we outline a method to discover such results numerically on a com-

puter algebra system. Take the right hand side function in (12.44) and compute

a linear combination of its derivatives with coefficients Ai. Replace the elliptic

integrals K,K ′, E,E′ by X,X2, X4, X8 respectively (the indices are powers of 2).

Evaluate to several thousand decimal places at the appropriate z0 and collect the

coefficients in X. Solve for Ai so that Legendre’s relation is satisfied (note all the

terms such as KK ′, E2 are separated as different powers of X). Finally, identify

Ai with PSLQ.

Many of our (algebraically proven) identities required several hours of computer

time due to the complexity of the calculations and the sheer number of steps which

needed human direction. Computational shortcuts, in particular the chain rule, were

applied partially manually in order to prevent overflows or out of memory errors.

Our procedure may benefit (both symbolically and numerically) from automatic

differentiation algorithms, but this has not been explored.

In the course of simplifying say a′(z0) in terms of a parameter k, the following

numerical trick may be used to avoid excessive computer algebra. If we suspect

a complicated expression actually simplifies down to a rational function in k, just

prepare a generic rational function with enough coefficients (to be adjusted if the

following procedure fails), then substitute in enough values of k and evaluate both

the expression and the rational function to high precision. Solve for the coefficients

and identify them using PSLQ, the Inverse Symbolic Calculator, or continued frac-

tions.





CHAPTER 13

Weighted Sum Formulas for Multiple Zeta Values

Abstract. We present a unified approach which gives completely elementary

proofs of weighted sum formulas for double zeta values. This approach also leads

to new evaluations of sums involving the harmonic numbers, the alternating dou-

ble zeta values, and the Mordell-Tornheim double sum. We discuss a heuristic for

finding or dismissing the existence of similar simple sums. We also produce some

new sums from recursions involving the Riemann zeta and the Dirichlet beta

functions. Finally, we look at sum formulas of multiple zeta values of lengths

greater than two, and use a simple experimental approach to simplify an impres-

sive multiple zeta evaluation by Zagier.

13.1. Introduction

Multiple zeta values are a natural generalisation of the Riemann zeta function

at the positive integers; we shall first only consider multiple zeta values of length 2

(or double zeta values), defined for integers a ≥ 2 and b ≥ 1 by

ζ(a, b) =
∞∑
n=1

n−1∑
m=1

1

namb
. (13.1)

It is rather immediate from series manipulations that

ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a+ b), (13.2)

thus we can compute in closed form ζ(a, a), though it is not a priori obvious that

many other multiple zeta values can be factored into Riemann zeta values. Euler

was among the first to study multiple zeta values; indeed, he gave the sum formula

(for s ≥ 3)
s−1∑
j=2

ζ(j, s− j) = ζ(s). (13.3)

When s = 3, this formula reduces to the celebrated result ζ(2, 1) = ζ(3), which

has many other proofs [48]. Formula (13.3) itself may be shown in many ways, one

of which uses partial fractions, telescoping sums and change of summation order,

253
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which we present in Section 13.2. Given the ease with which formula (13.3) may be

derived or even experimentally observed (see Section 13.4), it is perhaps surprising

that a similar equation, with ‘weights’ 2j inserted, was only first discovered in 2007

[154]:

s−1∑
j=2

2jζ(j, s− j) = (s+ 1)ζ(s). (13.4)

Formula (13.4) was originally proven in [154] using the closed form expression for

ζ(n, 1) (which follows from (13.2) and (13.3)), together with induction on shuffle

relations – relations arising from iterated integration of generalised polylogarithms

which encapsulate the multiple zeta values (see Chapter 9). Equation (13.4) has

been generalised to more sophisticated weights other than 2j using generating func-

tions, and to lengths greater than 2 (see e. g. [109]).

In conjunction, (13.2), (13.3) and (13.4) can be used to find a closed form for

ζ(a, b) for a + b ≤ 6 (some of them have been found in Chapter 9). Indeed, it is a

result Euler wrote down and first elucidated in [39] that all ζ(a, b) with a + b odd

may be expressed in terms of Riemann zeta value; by contrast, ζ(5, 3) is conjectured

not reducible to more fundamental constants.

The third weighted sum we will consider is

2s−1∑
j=2

(−1)jζ(j, 2s− j) =
1

2
ζ(2s). (13.5)

Given that all known proofs of (13.4) had their genesis in more advanced areas,

one purpose of this chapter is to show that (13.4) and the alternating (13.5) are

not intrinsically harder than (13.3) and can be proven in a few short lines. We

use the same techniques in Section 13.3 to give similar identities involving closely

related functions. We also observe that some double zeta values sums are related

to recursions (or convolutions) satisfied by the Riemann zeta function, a connection

which we exploit in Section 13.4. We will use such recursions and a reflection

formula to produce new results for character sums as defined in [58].

13.2. Elementary proofs

In the proofs below, the orders of summation may be interchanged freely, as the

sums involved are absolutely convergent.



13.2. ELEMENTARY PROOFS 255

Proof of (13.4). We write the left hand side of (13.4) as

s−1∑
j=2

∞∑
m=1

∞∑
n=1

2j

ns−j(n+m)j
.

We consider the 2 cases, m = n and m 6= n. In the former case the sum immediately

yields (s− 2)ζ(s). In the latter case, we do the geometric sum in j first to obtain

∑
m,n>0
m6=n

2s

(n2 −m2)(n+m)s−2
− 4

(n2 −m2)ns−2
. (13.6)

The first summand in (13.6) has antisymmetry in the variables m,n and hence

vanishes when summed.

For the second term in (13.6), we use partial fractions to obtain

∑
m>0
m6=n

1

m2 − n2
=

1

2n

∑
m>0
m 6=n

1

m− n
− 1

m+ n
=

3

4n2
,

as the last sum telescopes (this is easy to see by first summing up to m = 3n, then

looking at the remaining terms 2n at a time).

Therefore, summing over n in the second term of (13.6) gives 3ζ(s). The result

follows. �

Our proof suggests that the base ‘2’ in the weighted sum is rather special as it

induces antisymmetry. Another special case is obtained by replacing the 2 by a 1,

and the same method proves Euler’s result.

Proof of (13.3). We apply the same procedure as in the previous proof and

sum the geometric series first, so the left hand side becomes

∑
m,n>0

1

m(m+ n)ns−2
− 1

m(m+ n)s−1
=
∑
n>0

1

ns−1

∑
m>0

(
1

m
− 1

m+ n

)
− ζ(s− 1, 1)

=

∞∑
n=1

1

ns−1

n∑
k=1

1

k
− ζ(s− 1, 1) =

∞∑
n=1

1

ns
+

∞∑
n=1

1

ns−1

n−1∑
k=1

1

k
− ζ(s− 1, 1) = ζ(s),

where we have used partial fractions for the first equality, and telescoping for the

second. �

Likewise we may easily prove the alternating sum (13.5):
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Proof of (13.5). We write the left hand side out in full as above, then perform

the geometric sum first to obtain∑
m,n>0

1

(m+ n)(m+ 2n)n2s−2
− 1

(m+ 2n)(m+ n)2s−1
.

Let k = m+ n, so we have∑
k>n>0

1

k(k + n)n2s−2
− 1

(k + n)k2s−1
.

In the first term, use partial fractions and sum over k from n+1 to∞; in the second

term, sum over n from 1 to k − 1. We get(∑
n>0

1

n2s−1

2n∑
k=n+1

1

k

)
−
(∑
k>0

1

k2s−1

2k−1∑
n=k+1

1

n

)
.

It now remains to observe that if we rename the variables in the second bracket,

then the two sums telescope to
∑

n>0 1/(2n2s) = ζ(2s)/2. Hence (13.5) holds. �

Remark 13.2.1. The final sums we shall consider in this section are

s−1∑
j=1

ζ(2j, 2s− 2j) =
3

4
ζ(2s),

s−1∑
j=1

ζ(2j + 1, 2s− 2j − 1) =
1

4
ζ(2s). (13.7)

These results were first given in [96] and later proven in a more direct manner in

[152] using recursion of the Bernoulli numbers. The difference of the two equations

in (13.7) is (13.5) and the sum is a case of (13.3). Therefore, the elementary nature

of (13.7) is revealed since we have elementary proofs of (13.3) and (13.5).

If we add the first equation in (13.7) to itself but reverse the order of summation,

then upon applying (13.2) we produce the identity

s−1∑
j=1

ζ(2j)ζ(2s− 2j) =
(
s+

1

2

)
ζ(2s), (13.8)

which is usually derived from the generating function of the Bernoulli numbers Bn

(13.44), since

2(2n)! ζ(2n) = (−1)n+1(2π)2nB2n. (13.9)

♦

13.3. New sums

We shall see in this section that the elementary methods in Section 13.2 can in

fact take us a long way.



13.3. NEW SUMS 257

13.3.1. Mordell-Tornheim Double Sum. The Mordell-Tornheim double sum

(sometimes also known as the Mordell-Tornheim-Witten zeta function) is defined

as

W (r, s, t) =
∞∑
n=1

∞∑
m=1

1

nrms(n+m)t
.

Note that W (r, s, 0) = ζ(r)ζ(s) and W (r, 0, t) = W (0, r, t) = ζ(t, r). Due to the

simple recursion W (r, s, t) = W (r − 1, s, t+ 1) +W (r, s− 1, t+ 1), when r, s, t are

positive integers W may be expressed in terms of Riemann zeta or double zeta

values (see e. g. [117]):

W (r, s, t) =

r∑
i=1

(
r + s− i− 1

s− 1

)
ζ(r+s+t−i, i)+

s∑
j=1

(
r + s− j − 1

r − 1

)
ζ(r+t+t−j, j).

We note also that by using a Laplace transform, W (r, s, t) may be computed effi-

ciently in terms of polylogs:

W (r, s, t) =
1

Γ(t)

∫ 1

0
Lir(x)Lis(x)(− log x)t−1 dx

x
.

We again emulate the proof of (13.4) to obtain what seems to be a new sum

over W .

Theorem 13.1. For integers a ≥ 0 and s ≥ 3,

s−1∑
j=2

W (s− j, a, j) = (−1)aζ(s+ a) + (−1)aζ(s+ a− 1, 1)− ζ(s− 1, a+ 1)

−
a+1∑
i=2

(−1)i+aζ(i)ζ(s+ a− i) (13.10)

=

s−1∑
i=2

(
i+ a− 2

a

)
ζ(i+ a, s− i) +

s−1∑
i=s−a

(
i+ a− 2

s− 3

)
ζ(i+ a, s− i).

Proof. As the Mordell-Tornheim double sum values can be expressed as double

zeta values, the second equality follows after simplification. For the first equality,

we sketch the proof based on that of (13.4). Writing the left hand side of (13.10)

as a triple sum, we perform the geometric sum first to produce∑
m,n>0

(−1)a

ma+1ns−2(m+ n)
− (−1)a

ma+1(m+ n)s−1
.

To the first term we apply the partial fraction decomposition

1

mb(m+ n)
=

(−1)b

nb(m+ n)
+

b∑
i=1

(−1)b−i

mi nb+1−i .
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We recognise the resulting sums as Riemann zeta and double zeta values. The result

follows readily. �

When a = 0 in (13.10), we recover (13.3); when a = 1, we obtain the pretty

formula

Corollary 13.1.
s∑
j=2

W (s− j, 1, j) = ζ(2, s− 1), (13.11)

which, by the second equality in (13.10), is equivalent to

s−1∑
j=2

j ζ(j, s− j) = 2ζ(s) + ζ(2, s− 1)− (s− 2)ζ(s− 1, 1). (13.12)

When a = 2 in (13.10), we have

s∑
j=2

W (s− j, 2, j) = ζ(s+ 2) + ζ(s+ 1, 1) + ζ(3, s− 1)− ζ(2, s).

A counterpart to (13.11) is the following alternating sum:

2s∑
j=2

(−1)jW (2s+ 1− j, 1, j) = ζ(2s+ 1, 1) +
1

4
ζ(2s+ 2), (13.13)

and the same procedure can be used to prove this and to provide a closed form

for the general case, i. e. the alternating sum of W (s− j, a, j), though we omit the

details but only provide one example:

2s∑
j=2

(−1)jW (2s+ 1− j, 2a+ 1, j)

=
2a∑
j=1

2−jζ(2s+ j, 2a+ 2− j) + (−2)−j(1− 2j)ζ(2s+ j)ζ(2a+ 2− j)

+ (1− 3 · 4−a−1)ζ(2a+ 2 + 2s) + ζ(2a+ 1 + 2s, 1).

Also, (13.12) is not an isolated result, for instance we have

s−1∑
j=2

j2ζ(j, s−j) = 3ζ(s)+3ζ(2)ζ(s−2)+2ζ(3, s−3)−s(s−2)ζ(s−1, 1)−(2s−3)ζ(s−2, 2).

Remark 13.3.1. There are other identities involving W that can be proven in an

elementary manner. For instance, [117] records the sum

W (2n, 2n, 2n) =
4

3

n∑
i=0

(
4n− 2i− 1

2n− 1

)
ζ(2i)ζ(6n− 2i),
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where ζ(0) = −1/2; the existence of such a formula was first observed by Mordell.

This sum can be proven by first expressing the left hand side as a sum of double zeta

values, then by laboriously applying the partial fraction decomposition of ζ(s)ζ(t)

in terms of double zetas, as is used in [39]. ♦

13.3.2. Sums Involving the Harmonic Numbers. The nth harmonic num-

ber is given by Hn =
∑n

k=1
1
k . If we replace 2s by 2s+ 1 in the proof of (13.5) (that

is, when the sum of arguments in the double zeta value is odd instead of even), then

we obtain

5

2
ζ(2s+ 1) + 2ζ(2s, 1) +

2s∑
j=2

(−1)jζ(j, 2s+ 1− j) = 2
∞∑
n=1

H2n

n2s
. (13.14)

Combined with known double zeta values, we can evaluate the right hand side,

giving
∞∑
n=1

H2n

n4
=

37

4
ζ(5)− 2

3
π2ζ(3),

etc, in agreement with results obtained via Mellin transform and generating func-

tions in [58] (in whose notation such sums are related to [2a, 1](2s, 1) – this notation

is explained in Section 13.4). Indeed, replacing our right hand side with results in

[58], we have:

2s∑
j=2

(−1)jζ(j, 2s+1− j) = (4s−s−2)ζ(2s+1)−2
s−1∑
k=1

(4s−k−1)ζ(2k)ζ(2s+1−2k).

(13.15)

Similarly, using weight 1
2 (instead of 2), we have another new result:

Lemma 13.1. For integer s ≥ 3,

s−1∑
j=2

21−jζ(j, s− j) = (21−s − 1)
(
ζ(s− 1, 1)− 2 log(2)ζ(s− 1)

)
+ (22−s − 1)ζ(s) +

∞∑
n=0

Hn

(2n+ 1)s−1
. (13.16)

Therefore, we may produce evaluations such as

∞∑
n=0

Hn

(2n+ 1)4
=

372ζ(5)− 21π2ζ(3)− 2π4 log(2)

96
,

∞∑
n=0

Hn

(2n+ 1)5
=
π6 − 294ζ(3)2 − 744 log(2)ζ(5)

384
.
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Indeed, in (13.16) the harmonic number sum relates to the functions [2a, 1] and

[2a, 2a] in [58], and when s is odd, we use their closed forms to simplify (13.16):

2s∑
j=2

21−jζ(j, 2s+ 1− j) = (s− 1 + 21−2s)ζ(2s+ 1)

−
s−1∑
k=1

(4−k − 4−s)(4k − 2)ζ(2k)ζ(2s+ 1− 2k). (13.17)

On the other hand, if we chose even s in (13.16), then [2a, 1], [2a, 2a] seem not to

simplify in terms of more basic constants, though below we manage to find a closed

form for their difference (the proof here is more technical). Combined with (13.16),

we have

Theorem 13.2. For integer s ≥ 2,

∞∑
n=0

Hn

(2n+ 1)2s−1
= (1− 4−s)(2s− 1)ζ(2s)− (2− 41−s) log(2)ζ(2s− 1)

+ (1− 2−s)2ζ(s)2 −
s∑

k=2

2(1− 2−k)(1− 2k−2s)ζ(k)ζ(2s− k);

(13.18)

2s−1∑
j=2

21−jζ(j, 2s− j) =
1

2
(1− 21−s)2ζ(s)2 +

1

2
(23−2s + 2s− 3)ζ(2s)

−
s∑

k=2

(2k−1 − 1)(21−k − 41−s)ζ(k)ζ(2s− k). (13.19)

Proof. We only need to prove the first equality as the second follows from

(13.16); to achieve this we borrow techniques from [58].

Using the fact that the harmonic number sum is 2([2a, 1](2s−1, t)−[2a, 2a](2s−

1, t)) in the notation of [58], we use the results therein (obtained using Mellin

transforms) to write down its integral equivalent:

∞∑
n=0

Hn

(2n+ 1)2s−1
=

∫ 1

0

log(x)2s−2 log(1− x2)

Γ(2s− 1)(x2 − 1)
dx.

We denote its generating function by F (w), and after interchanging orders of

summation and integration, we obtain
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F (w) :=

∞∑
s=2

[∫ 1

0

log(x)2s−2 log(1− x2)

Γ(2s− 1)(x2 − 1)
dx

]
w2s−2

=

∫ 1

0

x−w(xw − 1)2 log(1− x2)

2(x2 − 1)
dx

= −1

2

∫ 1

0

d

dq

[
x−w(xw − 1)2(1− x2)q−1

]
q=0

dx.

Next, we interchange the order of differentiation and integration; the result is a

Beta integral which evaluates to:

F (w) =
1

4

d

dq

[
2Γ(1/2)Γ(q)

Γ(q + 1/2)
− Γ((1− w)/2)Γ(q)

Γ((1− w)/2 + q)
− Γ((1 + w)/2)Γ(q)

Γ((1 + w)/2 + q)

]
q=0

=
1

8

[
8 log(2)2 − π2 + π2 sec2

(πw
2

)
−
[
Ψ
(1− w

2

)
+ γ
]2
−
[
Ψ
(1 + w

2

)
+ γ
]2
]
,

where Ψ denotes the digamma function (5.24) and γ is the Euler-Mascheroni con-

stant. The desired equality follows using the series expansions

−Ψ
(1− w

2

)
= γ + 2 log(2) +

∞∑
k=1

(2− 2−k)ζ(k + 1)wk,

π2

2
sec2

(πw
2

)
=

∞∑
k=0

(4− 4−k)(2k + 1)ζ(2k + 2)w2k.

�

Remark 13.3.2. Thus Theorem 13.2, together with [58], completes the evaluation

of
∞∑
n=0

Hn

(2n+ 1)s

in terms of well known constants for integer s ≥ 2. In [13, theorem 6.5] it is

claimed that said sum may be evaluated in terms of Riemann zeta values alone, but

this is unsubstantiated by numerical checks, and notably log(2) is missing from the

purported evaluation. ♦

Remark 13.3.3. Some evaluations relating to the digamma function appear in

Chapter 5. More sums involving Hn can be found in the random walks chap-

ters; indeed, the key result (3.66) was evaluated with the help of [2a, 1](3, 1) and

[2a, 2a](3, 1) in [58]. ♦
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13.3.3. Alternating Double Zeta Values. The alternating double zeta val-

ues ζ(a, b) are defined as

ζ(a, b) =
∞∑
n=1

n−1∑
m=1

1

na
(−1)m−1

mb
,

with ζ(a, b) and ζ(a, b) defined similarly (the bar indicates the position of the −1).

In [58], explicit evaluations of ζ(s, 1), ζ(2s, 1) and ζ(2s, 1) are given in terms of

Riemann zeta values and log(2); in [39], it is shown that ζ(a, b) etc. with a+ b odd

may be likewise reduced; small examples include (see also [48] for the first one)

ζ(2, 1) = −ζ(3)

8
, ζ(2, 1) =

π2 log(2)

4
− ζ(3), ζ(2, 1) =

π2 log(2)

4
− 13ζ(3)

8
.

Again, if we follow closely the proof of (13.3), we arrive at new summation

formulas such as

s−1∑
j=2

ζ(j, s− j) = (1− 21−s)ζ(s) + ζ(s− 1, 1) + ζ(s− 1, 1), (13.20)

and so on. When s is odd, we simplify the right hand side using results in [58],

thus:

2s∑
j=2

ζ(j, 2s+ 1− j) = 2(1− 4−s) log(2)ζ(2s)− ζ(2s+ 1)

+
s−1∑
k=1

(21−2k − 4k−s)ζ(2k)ζ(2s+ 1− 2k),

2s∑
j=2

(−1)jζ(j, 2s+ 1− j) = 2(1− 4−s) log(2)ζ(2s) +
(

(s+ 1)4−s − 1

2
− s
)
ζ(2s+ 1)

+
s−1∑
k=1

(1− 4k−s)ζ(2k)ζ(2s+ 1− 2k).

The last two formulas may be added or subtracted to give sums for even or odd j’s,

for instance

s−1∑
j=1

ζ(2j+1, 2s− 2j) =
(2s− 1

4
− s+ 1

22s+1

)
ζ(2s+1)−

s−1∑
k=1

(1

2
− 1

4k

)
ζ(2k)ζ(2s+1−2k).

(13.21)

With perseverance, we may produce a host of similar identities for the three

alternating double zeta functions. We only give some examples below; as they have

similar proofs, we omit the details.
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When we evaluate
∑s−1

j=2(±1)jζ(j, s− j), we get for example

s−1∑
j=2

ζ(j̄, s− j) = (1− 21−s)
(
ζ(s) + ζ(s− 1, 1)− 2 log(2)ζ(s− 1)

)
− ζ(s− 1, 1)−

∞∑
n=0

Hn

(2n+ 1)s−1
,

and by applying (13.16) to the results, we obtain

2s∑
j=2

(
21−jζ(j, 2s+ 1− j) + ζ(j, 2s+ 1− j)

)
= 4−sζ(2s+ 1)− ζ(2s, 1), (13.22)

2
s∑
j=1

ζ(2j, 2s+ 1− 2j) =
4−s − 1

2
ζ(2s+ 1)− ζ(2s, 1), (13.23)

where the right hand side of both equations may be reduced to Riemann zeta values

by results in [58].

Likewise, for ζ(j, s− j) we may deduce

1

2

2s∑
j=2

ζ(j, 2s+ 1− j) = (1− 4−s) log(2)ζ(2s)− 2s(22s+1 − 1)− 1

4s+1
ζ(2s+ 1)

+
s−1∑
k=1

(4k − 1)(4−k − 4−s)ζ(2k)ζ(2s+ 1− 2k); (13.24)

s−1∑
j=1

ζ(2j + 1, 2s− 2j) =
(1

2
(4s − 3s− 2) + 4−s(s+ 1)

)
ζ(2s+ 1)

−
s−1∑
k=1

4−(s+k)(4s − 4k)2ζ(2k)ζ(2s+ 1− 2k). (13.25)

Therefore, for the sums of the three alternating double zeta values, we have

succeeded in giving closed forms when s (the sum of the arguments) is odd and

the summation index j is odd, even, or unrestricted; it is interesting to compare

this to the non-alternating case, whose sum is simpler when s is even (see Remark

13.2.1). A notable exception is the following formula, whose proof is similar to that

of (13.5):

Theorem 13.3. For integer s ≥ 2,

4
s−1∑
j=1

ζ(2j, 2s− 2j) = (41−s − 1)ζ(2s). (13.26)
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Remark 13.3.4. Though it is believed that ζ(s, 1) and ζ(s, 1) cannot be simplified

in terms of well known constants for odd s, their difference can (this situation is

analogous to Theorem 13.2 and can be proven using the same method):

ζ(s, 1)− ζ(s, 1) = (1−2−s)
(
s ζ(s+ 1)−2 log(2)ζ(s)

)
−
s−2∑
k=1

(1−2−k)ζ(k+ 1)ζ(s−k).

Moreover, some of the sums involving ζ(s, 1) and ζ(s, 1) are much neater when

the summation index j starts from 1 instead of 2, for instance

s−1∑
j=1

ζ(j, s− j) = (22−s − 1) log(2)ζ(s− 1)− ζ(s− 1, 1),

s−1∑
j=1

ζ(j, s− j) = ζ(s− 1, 1)− log(2)ζ(s− 1),

2
2s∑
j=1

(−1)jζ(j, 2s+ 1− j) = (2− 41−s) log(2)ζ(2s)− (1− 4−s)ζ(2s+ 1).

♦

We wrap up this section with a surprising result, an alternating analog of (13.4):

Theorem 13.4. For integer s ≥ 3,

s−1∑
j=2

2jζ(j, s− j) = (3− 22−s − s)ζ(s). (13.27)

Proof. The proof is very similar to that of (13.4): we write the left hand side

as a triple sum and first take care of the m = n case. Then we sum the geometric

series to obtain ∑
m,n>0
m 6=n

(−1)m+n2s

(m− n)(m+ n)s−1
− 4(−1)m+n

(m− n)(m+ n)ns−2
.

The first term vanishes due to antisymmetry, and the second term telescopes:∑
m>0
m 6=n

(−1)m

m2 − n2
=

2 + (−1)n

4n2
.

Now summing over n proves the result. �

With (13.27) and results in [58], we can evaluate ζ(a, b) etc. with a+ b = 4, for

instance

ζ(2, 2) =
log(2)4

6
− log(2)2π2

6
+

7 log(2)ζ(3)

2
− 13π4

288
+ 4 Li4

(1

2

)
. (13.28)
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13.4. More sums from recursions

In this section we first provide some experimental evidence which suggests that

the sums in Section 13.2 (almost) exhaust all ‘simple’ and ‘nice’ sums in some sense.

We then use a simple procedure which may be used to produce more weighted sums

of greater complexity but of less elegance.

13.4.1. Experimental Methods. It is a curiosity why (13.4) had not been

observed empirically earlier. As we can express all ζ(a, b) with a + b ≤ 7 in terms

of the Riemann zeta function, it is a simple matter of experimentation to try all

combinations of the form

∑
j

(a · bj + cs · dj)ζ(j, s− j) = f(s)ζ(s), (13.29)

with j or s being even, odd or any integer (so there are 9 possibilities), a, b, c, d ∈ Q,

and f : N→ Q is a (reasonable) function to be found.

Now if we assume that π, ζ(3), ζ(5), ζ(7), . . . are algebraically independent over

Q (which is widely believed to be true, though proof-wise we are a long way off,

for instance, apart from π only ζ(3) is known to be irrational – see [187], and also

Remarks 2.3.4 and 6.3.3), then we can substitute a few small values of s into (13.29)

and solve for a, b, c, d in that order.

For instance, assuming a formula of the form
∑s−1

j=2 a
jζ(j, s − j) = f(s)ζ(s)

holds, using s = 5 forces us to conclude that a = 1 or a = 2.

Indeed, when we carry out the experiment outlined above, it is revealed that

the sums (13.3), (13.4), (13.5) are essentially the only ones in the form of (13.29),

except for the case

s−1∑
j=1

(dj + ds−j)ζ(2j, 2s− 2j),

(note the factor in front of the ζ has to be invariant under j 7→ s − j). Here, the

choice of d = 4 leads to

s−1∑
j=1

(4j + 4s−j)ζ(2j, 2s− 2j) =
(
s+

4

3
+

2

3
4s−1

)
ζ(2s),

a result which first appeared in [152] and was proven using the generating function

of Bernoulli polynomials (see Section 13.5).
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Remark 13.4.1. As noted in [152], more general constructions stemming from

Bernoulli polynomials lead to non-closed form on the right hand sides, for instance

s−1∑
j=1

(9j + 9s−j) ζ(2j, 2s− 2j) =
3(9s + 3) + 8s

8
ζ(2s) +

(6s− 5)(−1)s(2π)2s

24(2s− 1)!

+
s−1∑
j=1

(−4π2)s−j9j

6(2s− 2j − 1)!
ζ(2j).

♦

Sums of the form ∑
j

p(s, j)ζ(j, s− j) = f(s)ζ(s),

where p is a non-constant 2-variable polynomial with rational coefficients, can also

be subject to experimentation. If the degree of p is restricted to 2, then j(s −

j)ζ(2j, 2s − 2j) is the only candidate which can give a closed form. Indeed, this

sum was essentially considered in [152], using the identity

6
s−2∑
j=2

(2j − 1)(2s− 2j − 1)ζ(2j)ζ(2s− 2j) = (s− 3)(4s2 − 1)ζ(2s). (13.30)

The identity was due to Ramanujan [15, chapter 15, formula (14.2)]. Applying

(13.2), the result can be neatly written as

s−2∑
j=2

(2j − 1)(2s− 2j − 1)ζ(2j, 2s− 2j) =
3

4
(s− 3)ζ(2s). (13.31)

Ramanujan’s identity above, and below – (13.32) – are actually more general

than what is shown here, for they are identities between Eisenstein series of different

weights. However, the forms shown here are routine to prove, as we outline in

Section 13.5.

Searches for ‘simple’ weighted sums of length 3 multiple zeta values, and for

q-analogs of (13.4), have so far proved unsuccessful (except for [67] which contains

a generalisation of (13.5), see (13.50)).

13.4.2. Recursions of the Zeta Function. We observe that any recursion

of the Riemann zeta values – or of Bernoulli numbers via (13.9) – of the form∑
j

g(s, j)ζ(2j)ζ(2s− 2j)
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for some function g would lead to a sum formula for double zeta values, due to

(13.2). This was the idea behind (13.31) and was also hinted at in Remark 13.2.1,

(13.8). We flesh out the details in some examples below.

One such recursion is [15, chapter 15, formula (14.14)], which can be written as

n−1∑
j=1

j(2j + 1)(n− j)(2n− 2j + 1)ζ(2j + 2)ζ(2n− 2j + 2)

=
1

60
(n+ 1)(2n+ 3)(2n+ 5)(2n2 − 5n+ 12)ζ(2n+ 4)− π4

15
(2n− 1)ζ(2n).

(13.32)

Upon applying (13.2) to the recursion, we obtain the new sum:

Theorem 13.5. For integer n ≥ 4,

n−2∑
j=2

(j − 1)(2j − 1)(n− j − 1)(2n− 2j − 1)ζ(2j, 2n− 2j)

=
3

8
(n− 1)(3n− 2)ζ(2n)− 3(2n− 5)ζ(4)ζ(2n− 4). (13.33)

Next, we use a result from [149], which states

n−1∑
k=1

[
1−

(
2n

2k

)]
B2kB2n−2k

(2k)(2n− 2k)
=
H2n

n
B2n. (13.34)

We apply (13.2) to the left hand side to obtain a sum of double zeta values; unfor-

tunately one term of the sum involves
∑n−1

k=1(2k − 1)!(2n − 2k − 1)! which has no

nice closed form. On the other hand, a twin result in [144] gives

n−2∑
k=1

[
n−

(
2n

2k

)]
B2kB2n−2k−2 = (n− 1)(2n− 1)B2n−2. (13.35)

When we apply (13.2) to it, we end up with a sum involving
∑n−2

k=1(2k)!(2n−2k−2)!,

which again has no nice closed form.

Yet, it is straight-forward to show by induction that

m∑
k=0

(−1)k(
n
k

) =
(n+ 1)! + (−1)m(m+ 1)!(n−m)!

(n+ 2)n!
,

hence, when m = n, the sum vanishes if n is odd and equates to 2(n + 1)/(n + 2)

when n is even. In other words,
∑2n

k=0(−1)kk!(2n − k)! has a closed form, and

accordingly we subtract the sums obtained from (13.34) and (13.35) to produce:
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Proposition 13.1. For integer n ≥ 2,

n−1∑
k=1

{[
1− 1(

2n+2
2k

)] n+ 1

k(n+ 1− k)
ζ(2k, 2n+ 2− 2k) +

ζ(2n+ 2)

ζ(2n)
×

[
2

(2n+ 1)
(

2n
2k

) − (2k − n)2 + (n+ 1)(n+ 2)

(n− k + 1)(2n− 2k + 1)(k + 1)(2k + 1)

]
ζ(2k, 2n− 2k)

}
= 3

[
H2n−1 −Hn−1 −

2n2 + n+ 1

2n(2n+ 1)

]
ζ(2n+ 2)− 2n+ 3

2n+ 1
ζ(2n, 2). (13.36)

Our next result uses [4, equation (7.2)], whose special case gives:

B2
n +

B2n(
2n
n

) =
4nn!

(2π)2n

[n/2]∑
k=0

(2n− 2k)!

(n− k)(n− 2k)!
ζ(2k)ζ(2n− 2k). (13.37)

Upon applying (13.2) and much algebra, we arrive at:

Proposition 13.2. For integer n ≥ 2,

n−1∑
k=1

(n+ |n− 2k|)!
(n+ |n− 2k|)|n− 2k|!

ζ(2k, 2n− 2k)

=

[
(1 + (−2)1−n)(n− 1)!

4
+

3(2n− 1)!

2n!
− (2n+ 1)!

n(n+ 1)!
2F1

(
1, 2n+ 2

n+ 2

∣∣∣∣−1

)]
ζ(2n).

Proof. The only non-trivial step to check here is that the claimed 2F1 is pro-

duced when we sum the fraction in (13.37); that is, we wish to prove the claim

[n/2]∑
k=0

(−1)nn

2(n− k)

(
2n− 2k

n− 2k

)
=

1

(1− x)n+1
−xm

(
n+m

n

)
2F1

(
1, n+m+ 1

m+ 1

∣∣∣∣x)∣∣∣∣
x=−1,m=n+1

.

Our proof is quite experimental in nature. We observe that for x near the origin

the right hand side is simply
∑m−1

k=0 x
k
(
n+k
k

)
, as they have the same recursion and

initial values in m, hence when x = −1 they also agree by analytic continuation.

This sum (in the limit x = −1, m = n + 1), as a function of n, also satisfies the

recursion

4f(n)− 2f(n− 1) = 3(−1)n
(

2n

n

)
, f(1) = −1,

which is the same recursion for the sum on the left hand side of the claim – as may

be checked using Celine’s method [161]. Thus equality is established. �

Remark 13.4.2. It is clear that a large number of (uninteresting) identities similar

to the those recorded in the two propositions may be easily produced. Using [4,
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(7.2) with k = n+ 1], for instance, a very similar proof to the above gives

n−1∑
k=1

4(n+ 1 + |n− 2k|)!
n!(1 + |n− 2k|)!

ζ(2k, 2n− 2k) = (1 + (−1)n)(1− n)ζ(n)2 + ζ(2n)×

{
n+ 3 + (−1)n(n− 1 + 2−n) + 2

(
2n+ 1

n

)[
3− 4(2n+ 3)

n+ 1
2F1

(
1, 2n+ 4

n+ 3

∣∣∣∣−1

)]}
.

Care must be exercised when consulting the literature, however, as we found in the

course of this work that many recorded recursions of the Bernoulli numbers (or of

the even Riemann zeta values) are in fact combinations and reformulations of the

formula behind (13.31) and the basic identity appearing in Remark 13.2.1. ♦

13.4.3. The Reflection Formula. Formula (13.2) is but a special case of a

more general reflection formula. To state the reflection formula, we will need some

notation from [58], which we have tried to avoid until now to keep the exposition

elementary.

Let χp(n) denote a 4-periodic function on n; for different p’s we tabulate values

of χp below:

p\n 1 2 3 4

1 1 1 1 1

2a 1 0 1 0

2b 1 −1 1 −1

−4 1 0 −1 0

We now define the series Lp by

Lp(s) =

∞∑
n=1

χp(n)

ns
,

and Lpq(s) means
∑

n>0 χp(n)χq(n)/ns. Finally, we define character sums, which

generalise the double zeta values, by

[p, q](s, t) =
∞∑
n=1

n−1∑
m=1

χp(n)

ns
χq(m)

mt
. (13.38)

In this notation, ζ(s, t) = [1, 1](s, t), ζ(s, t) = [1, 2b](s, t), etc. We can now state the

reflection formula [58, equation (1.7)]:

[p, q](s, t) + [q, p](t, s) = Lp(s)Lq(t)− Lpq(s+ t). (13.39)
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Remark 13.4.3. With the exception of χ2b, χp are examples of Dirichlet characters

and Lp are the corresponding Dirichlet L-series. Indeed,

L1(s) = ζ(s), L2a(s) = (1− 2−s)ζ(s) = λ(s),

L2b(s) = (1− 21−s)ζ(s) = η(s), L−4(s) = β(s),

where the last three are the Dirichlet lambda, eta and beta functions respectively.

We have implicitly used these series in the evaluation of lattice sums at the end of

Chapter 7.

Moreover, 2(2n)!β(2n + 1) = (−1)n(π/2)2n+1E2n for non-negative integer n,

where En denotes the nth Euler number. Using generating functions, one may

deduce convolution formulas for the Euler numbers, an example of which is

n−2∑
k=0

(
n− 2

k

)
EkEn−2−k = 2n(2n − 1)

Bn
n
.

Many of our results in the previous sections would look neater had we used λ(s)

and η(s) instead of ζ(s). ♦

Remark 13.4.4. In [89], it is shown that for s + t even, the sum [−4, 1](s, t) −

[−4, 2b](s, t) may be evaluated in closed form. (In the notation of [89], this sum is

2t−1G+−
t,s .)

The other sum considered in [89] is not found in [58], though we may apply the

techniques used in the latter for small s, t, e. g. we have

G−−1,1 :=
∞∑
k=0

k∑
j=1

(−1)j+k+1

(2k + 1)j
=
π

4
log(2)−G,

where G = β(2) again denotes Catalan’s constant (see Chapter 5). General result

are proven in [89] using integral transforms of Bernoulli identities. ♦

Using the standard convolution formulas of the Bernoulli and the Euler poly-

nomials, and aided by the reflection formula (13.39), we can produce the following

sums for [p, q](s, t) as we did for ζ(s, t).

Theorem 13.6. Using the notation of (13.38), we have, for integer n ≥ 2,

2
n−1∑
k=1

[1, 2b](2k, 2n− 2k) + [2b, 1](2k, 2n− 2k) = −4
n−1∑
k=1

[2b, 2b](2k, 2n− 2k)

= (1− 41−n)ζ(2n); (13.40)
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4

n−1∑
k=1

[2a, 2a](2k, 2n− 2k) = −4

n−1∑
k=0

[−4,−4](2k + 1, 2n− 1− 2k)

=
n−1∑
k=1

[1, 2a](2k, 2n− 2k) + [2a, 1](2k, 2n− 2k) = (1− 4−n)ζ(2n); (13.41)

n∑
k=1

[2a,−4](2k, 2n+ 1− 2k) + [−4, 2a](2n+ 1− 2k, 2k)

=
n−1∑
k=1

[2a, 2b](2k, 2n− 2k) + [2b, 2a](2n− 2k, 2k) = 0; (13.42)

2

n∑
k=1

[1,−4](2k, 2n+ 1− 2k) + [−4, 1](2n+ 1− 2k, 2k)

= −2

n∑
k=1

[2b,−4](2k, 2n+ 1− 2k) + [−4, 2b](2n+ 1− 2k, 2k)

= β(2n+ 1) + (16−n − 2−1−2n)π ζ(2n), (13.43)

We note that (13.40) concerns the alternating double zeta values studied in

Section 13.3 (c. f. the more elementary Theorem 13.3). As mentioned before, the

identities above rest on well-known recursions, for instance the second equality in

(13.42) is equivalent to the recursion

n∑
k=1

β(2n+ 1− 2k)λ(2k) = nβ(2n+ 1).

Also, the many pairs of equalities within each numbered equation in the theorem

are not all coincidental but stem from the identity in [58]:

[1, q] + [2b, q] = 2[2a, q],

where q = 1, 2a, 2b or −4.

Moreover, one can show the following equations; as character sums are not the

main object of our study, we omit the details:
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n∑
k=1

4−k
(
[−4, 1](2n+ 1− 2k, 2k) + [1,−4](2k, 2n+ 1− 2k)

)
=

1 + 21−2n

6
β(2n+ 1) + (2−1−4n − 4−1−n)π ζ(2n),

n−1∑
k=1

4k
(
[2a, 1](2k, 2n− 2k) + [1, 2a](2n− 2k, 2k)

)
=

(1− 4−n)(8 + 4n)

6
ζ(2n).

Since there is an abundance of recursions involving the Bernoulli and the Euler

numbers (see e. g. [157]), many more such identities may be produced using the

reflection formula.

13.5. Length 3 and higher multiple zeta values

Earlier in this chapter, we made use of the properties of the Bernoulli numbers

Bn, defined by the generating function

F (t) :=
∞∑
n=0

Bn
tn

n!
=

t

et − 1
. (13.44)

Note that Bn = 0 when n is odd (unless n = 1). The Bernoulli numbers are

generalised to the Bernoulli polynomials Bn(x), defined by the generating function

∞∑
n=0

Bn(x)
tn

n!
=

text

et − 1
,

from which we see Bn = Bn(0) (or Bn(1), if we ignore B1). The generating functions

also give Bn(1/2) = (21−n − 1)Bn when n is even, a property we have implicitly

used.

Two of Ramanujan’s identities used earlier involve the sums of j(n−j)
(

2n
2j

)
B2jB2n−2j

and (j − 1)(2j − 1)(n− j − 1)(2n− 2j − 1)
(

2n
2j

)
B2jB2n−2j , respectively. We demon-

strate that once such an identity is found, it can be proven routinely. The example

below does just that to prove the first identity.

Example 13.5.1 (Proof of equation (13.30)). Via the connection

2(2n)! ζ(2n) = (−1)n+1(2π)2nB2n
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(itself provable using, say, contour integration), we write (13.30) in the form

n−1∑
j=1

j(n−j)
(

2n

2j

)
B2jB2n−2j =

1

24

(
2n(2n−1)(2n−3)B2n−2−(2n+1)(2n)(2n−1)B2n

)
.

We note that the left hand side is simply the coefficients of the square of the expo-

nential generating function for jB2j . Thus its generating function is easily obtained

by differentiating t/(et − 1) (after subtracting the term corresponding to B1). The

factorised right hand side lends itself easily as the coefficients of a combination of

repeated derivatives of t/(et − 1).

To be more precise, recall the notation F (t) = t/(et− 1). Then the exponential

generating function for the left hand side is

G1(t) =
t2

4

(
F ′(t) +

1

2

)2
,

while the generating function for the right hand is slightly more involved, for we

first subtract off lower order terms since (13.30) does not hold when n < 2; it turns

out to be

G2(t) =
t4

288
+
t4

24

d

dt

(F (t)− h(t)

t

)
− t2

24

d3

dt3
(
t(F (t)− h(t))

)
,

where h(t) = 1− t/2 + t2/12. It remains to check that G1(t) ≡ G2(t). ♦

Ramanujan’s second identity (13.32) is proven almost as routinely, except that

for the corresponding right hand side, the irreducible factor 2n2−13n+30 appears.

To facilitate computation, this factor could be broken up as n(n−2)+(n−5)(n−6),

with each piece being viewed as an appropriate derivative.

Example 13.5.2 (A length 3 sum). By taking the cube of the generating function

t/(et − 1), we observe the routinely verified identity

∑
a,b,c>0
a+b+c=n

(
2n

2a, 2b, 2c

)
B2aB2bB2c = (n+ 1)(2n+ 1)B2n + n

(
n− 1

2

)
B2n−2. (13.45)

When translated into zeta terms, this is

4
∑

a,b,c>0
a+b+c=n

ζ(2a)ζ(2b)ζ(2c) = (n+ 1)(2n+ 1)ζ(2n)− π2 ζ(2n− 2). (13.46)
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By either elementary sum manipulations, or by the harmonic relations (a.k.a. the

stuffle product [114, 115]), we have

ζ(r)ζ(s)ζ(t) =
(∑

sym

ζ(r, s, t)
)

+
[
ζ(r)ζ(s+t)+ζ(s)ζ(r+t)+ζ(t)ζ(r+s)

]
−2ζ(r+s+t),

(13.47)

where the first term on the right is a symmetric sum in r, s and t. The multiple

zeta value ζ(r, s, t) has been defined in (9.2).

We sum both side of (13.47) over even r, s, t. After some simple combinatorics,

the right hand side becomes

6
∑

a+b+c=n

ζ(2a, 2b, 2c) +
3

4
(2n+ 1)(n− 2)ζ(2n)− (n− 1)(n− 2)ζ(2n).

Consequently, by (13.46) we have∑
a+b+c=n

ζ(2a, 2b, 2c) =
5

8
ζ(2n)− 1

4
ζ(2)ζ(2n− 2). (13.48)

This result first appeared in [67], though our derivation here is slightly more ele-

mentary. We now look at the alternating sum, also first studied in [67]:∑
a+b+c=2n
a−1,b,c>0

(
(−1)a + (−1)b + (−1)c

)
ζ(a, b, c).

When any of a, b, c is odd, the factor in front of the multiple zeta value returns −1;

otherwise it returns 3. Thus, we can add this sum to Granville’s theorem [105]∑
a1+a2+···+ak=n
a1−1,a2,...,ak>0

ζ(a1, a2, . . . , ak) = ζ(n), (13.49)

and apply (13.48), to find∑
a+b+c=2n
a−1,b,c>0

(
(−1)a + (−1)b + (−1)c

)
ζ(a, b, c) =

3

2
ζ(2n)− ζ(2)ζ(2n− 2). (13.50)

♦

The authors of [67] also use a closed form formula for∑
a+b+c+d=n

(
2n

2a, 2b, 2c, 2d

)
B2aB2bB2cB2d,

together with Ramanujan’s formula (13.30) to give the length 4 identity∑
a+b+c+d=n

ζ(2a, 2b, 2c, 2d) =
35

64
ζ(2n)− 5

16
ζ(2)ζ(2n− 2). (13.51)
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While [67] comments that the length 4 analogue of (13.50) would be difficult

to find (our experiments indicate that it does not seem to have a closed form in

terms of a rational multiple of π2n), we can find other analogs, by performing a

trick similar to that used in the derivation of (13.50). That is, we find a factor (a

symmetric function of a, b, c, d) which returns −1 when either 2 or 4 of a, b, c, d are

odd; we then combine it with (13.49). There are many choices here, one possibility

being

Proposition 13.3. For integer n ≥ 3,

∑
a+b+c+d=2n
a−1,b,c,d>0

[
2
(
(−1)a + (−1)b + (−1)c + (−1)d

)
− (−1)abcd

]
ζ(a, b, c, d)

=
3

16
ζ(2n)− 5

4
ζ(2)ζ(2n− 2). (13.52)

Clearly more results like the above are possible. We move onto a sum of a

different form. Using formula (5) in [88] (which can again be easily proven, though

slightly harder to discover – see Lemma 13.2),

∑
a+b+c=n
a,b,c>1

(2a− 1)(2b− 1)(2c− 1) ζ(2a)ζ(2b)ζ(2c)

=
2n− 5

120

(
6π4ζ(2n− 4) + (n− 6)(n+ 1)(2n− 1)(2n+ 1)ζ(2n)

)
, (13.53)

we ultimately deduce a three dimensional analogue of Nakamura’s identity (13.31),

Proposition 13.4. For integer n ≥ 3,

∑
a+b+c=n
a,b,c>0

(2a− 1)(2b− 1)(2c− 1) ζ(2a, 2b, 2c)

=(2n− 5)ζ(4)ζ(2n− 4)− 3(2n− 3)

4
ζ(2)ζ(2n− 2) +

8n− 5

8
ζ(2n). (13.54)

Proof. The proof proceeds along similar lines as our prior results. We first use

(13.47), replace r by 2a, s by 2b, and t by 2c, where a + b + c = n, then multiply

both sides by (2a− 1)(2b− 1)(2c− 1), and sum over all positive integers a, b and c.
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This gives

6
∑

a+b+c=n
a,b,c>0

(2a− 1)(2b− 1)(2c− 1) ζ(2a, 2b, 2c)

=
∑

a+b+c=n
a,b,c>0

{
(2a− 1)(2b− 1)(2c− 1)ζ(2a)ζ(2b)ζ(2c) + 2(2a− 1)(2b− 1)(2c− 1)ζ(2n)

− 3(2a− 1)(2b− 1)(2c− 1)ζ(2b)ζ(2n− 2b)
}
. (13.55)

On the right hand side of (13.55), the sum for the first term can be taken care of

by a small modification of (13.53); the sum for the second term is easy. The sum of

the third term is slightly more troublesome; we first do the summation over indices

a and c to obtain a single sum in b, let us denote it by
∑n=2

b=2 S(n, b).

S is not symmetric, that is, S(n, b) 6= S(n, n−b). We apply the trick of replacing

S by (S(n, b)+S(n, n−b))/2. This symmetrises the summand so we may write it in

closed form using Ramanujan’s identities (13.30) and (13.32). The final computation

involves combining the closed forms obtained for the three terms in (13.55); the work

is tedious though not difficult. �

Remark 13.5.1. In [85], Dilcher works out a closed form for all sums of the type∑(
2n

2a1, 2a2, . . . , 2ak

)
B2a1B2a1 · · ·B2ak ,

and notes the connection between this and sums of multiple zeta values (as early

as 1994). Corresponding sums for Bernoulli polynomials are also recorded; indeed,

using [85, eqn. (3.8)] with x = 1/2, y = z = 0, we get∑
a+b+c=n

(4−a + b−b + 4−c) ζ(2a, 2b, 2c) =
4−n

72
(7 · 4n + 128 + 141n− 18n2)ζ(2n)

− 3(1 + 23−2n)

16
ζ(2)ζ(2n− 2) +

1

2

n−1∑
i=1

4−ii ζ(2i)ζ(2n− 2i), (13.56)

unfortunately the last sum does not appear to have a closed form, as strongly

suggested by numerical experimentation (see the proof of Lemma 13.2). ♦

Using the result for the sum of product of 5 Bernoulli numbers, and aided by

the stuffle product, we deduce the next result much the same way as its length 3 or

4 analog in [67]:
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Theorem 13.7. For integer n ≥ 5,∑
a+b+c+d+e=n

ζ(2a, 2b, 2c, 2d, 2e) =
945

16
ζ(2n)− 315

8
ζ(2)ζ(2n− 2) +

45

8
ζ(4)ζ(2n− 4).

(13.57)

Sketch of proof. We start with the length 5 analog of (13.47), obtainable

using the stuffle product, which writes ζ(2a)ζ(2b)ζ(2c)ζ(2d)ζ(2e) as a symmetric

sum of multiple zeta values of lengths no greater than 5. As stated, we use the

sum of the product of 5 Bernoulli numbers [85, eqn. (2.8)], both of Ramanujan’s

identities (13.30), (13.32), and the length 3 and 4 sums (13.48) and (13.51). The

key steps are spelled out in the proof of (13.54). In addition, only one more sum,

(13.58) below, is required. This sum must have been known, but we are unable to

locate it in the literature. We prove (13.58) next. �

Lemma 13.2. For integer n ≥ 3,∑
a+b+c=n
a,b,c>0

abc ζ(2a)ζ(2b)ζ(2c) =
3(2n− 5)

2
ζ(4)ζ(2n− 4) +

(2n− 1)(2n− 2)(2n− 6)

32
×

ζ(2)ζ(2n− 2) +
(2n+ 2)(2n+ 1)(2n)(2n− 1)(2n− 2)

3840
ζ(2n). (13.58)

Proof. We again stress that the proof is not difficult once the result is known.

Indeed, the left hand side is the coefficient of the cube of the generating function

for jB2j , and the right hand side is the coefficient of a combination of derivatives

of the generating function for B2j . The more interesting part is how this identity

was discovered.

It was discovered experimentally after we were convinced that a closed form like

Theorem 13.7 must exist. Then, it was easy to guess that the right hand side of

Theorem 13.7 has the form

a0ζ(2n) + a1ζ(2)ζ(2n− 2) + a2ζ(4)ζ(2n− 4),

c. f. the length 4 analog (13.51). The coefficients ai can be solved by evaluating the

left hand side to high precision for three different n’s. From this knowledge we can

work backwards and discover the lemma. High precision calculation of multiple zeta

values can be accessed from the website http://oldweb.cecm.sfu.ca/projects/

EZFace/, based on the works [49, 50].

http://oldweb.cecm.sfu.ca/projects/EZFace/
http://oldweb.cecm.sfu.ca/projects/EZFace/
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Alternatively, inspired by Ramanujan’s identities, one could reasonably guess

that the right hand side of (13.58) would look something like

p0(n)ζ(2n) + p1(n)ζ(2)ζ(2n− 2) + p2(n)ζ(4)ζ(2n− 4),

where pi are polynomials in n of degree say at most 5. The unknown coefficients

in the polynomials then may be solved by linear algebra, since the left hand side of

(13.58) can be computed very easily for small n. �

Lemma 13.2 itself leads to a different result, which is another three dimensional

analogue of (13.31):

Proposition 13.5. For integer n ≥ 3,

∑
a+b+c=n

abc ζ(2a, 2b, 2c) =
16(2n− 5)ζ(4)ζ(2n− 4)− 4ζ(2)ζ(2n− 2) + nζ(2n)

128
.

(13.59)

Although it appears that equation (13.58) could follow from equations (13.46)

and (13.53), we have not been able to see a clear connection; indeed, all three

equations can be used together to deduce

∑
a+b+c=n
a,b,c>0

(a2 + b2 + c2) ζ(2a)ζ(2b)ζ(2c)

=
n(n+ 1)(2n+ 1)2

16
ζ(2n)− (3n− 3)(4n− 3)

4
ζ(2)ζ(2n− 2).

Remark 13.5.2. Note that the right hand side of Theorem 13.7 is a rational

multiple of π2n, and the same is true for (13.51) and (13.48). Though it is not

immediately clear to us whether for length k, there exists analogous closed forms

like Theorem 13.7, it is not hard to show that for all positive integers k ≤ n and

ai > 0,

∑
a1+a2+···+ak=n

ζ(2a1, 2a2, . . . , 2ak) = Ck,n π
2n, Ck,n ∈ Q. (13.60)

The proof essentially involves repeated applications of the stuffle product ∗, for

whose properties we refer the reader to [115]. In particular, ∗ is commutative and

associative. A brief sketch is as follows.
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The key observation, which can be proven by induction, is that the stuffle prod-

uct s1 ∗ s2 ∗ · · · ∗ sk generates the identity

ζ(s1)ζ(s2) · · · ζ(sk) =
∑

ζ(s1 ◦ s2 ◦ · · · ◦ sk), (13.61)

where ◦ has to be one of ‘,’ or ‘+’, and the summation range is over all possible

distinct sequences (s1◦s2◦· · ·◦sk) ((s1, s2 +s3) and (s1 +s2, s3) are distinct, but the

first one and (s1, s3 + s2) are not). For k = 3, see (13.47) (where we have replaced

pairs of double zeta values using (13.2)).

The next step is to systematically subtract off from the right hand side of

(13.61) the symmetric sum (modulo commutativity and associativity) of identities

generated by the stuffle product s1 � s2 � · · · � sk. Here � has to be one of ∗ or

+, moreover the operator + takes precedence over ∗. To do this properly, we need

to first subtract off the identities with only one +, then ones with only two +’s,

etc. (So for k = 3, we first subtract off the identities generated by s1 + s2 ∗ s3,

s1 +s3 ∗s2, s2 ∗s3 +s1, then s1 +s2 +s3). It can be checked, using a form of (13.61)

with different values of si substituted, that this process will terminate, and on the

right hand side of (13.61) will only remain a symmetric sum of length k multiple

zeta values with parameters s1, . . . , sk. On the other side will be a sum of products

of zeta values, whose arguments sum to s1 + · · ·+ sk.

Finally, let si = 2ai, fix s1 + · · · + sk = 2n and sum over all ai, we arrive at

(13.60).

Independent of us, this result seems to have been first proven by S. Muneta.

We thank Y. Ohno and W. Zudilin for communicating this information. ♦

13.6. Another proof of Zagier’s identity

D. Zagier recently proved the amazing multiple zeta formula [201]

ζ(2, . . . , 2︸ ︷︷ ︸
a

, 3, 2, . . . , 2︸ ︷︷ ︸
b

) =

a+b+1∑
r=1

(−1)r
[(

1− 1

4r

)(
2r

2a+ 1

)
−
(

2r

2b+ 2

)]
2π2(a+b−r+1)ζ(2r + 1)

(2(a+ b− r + 1) + 1)!
. (13.62)

His proof in [201] is rather involved. In this section we outline a simplification

of the proof, showing in particular that some of the key identities involved can
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be checked automatically using Gosper’s algorithm [161]. We refer the interested

reader to [201] for the background of the formula and other details of the proof.

We first convert (13.62) to the equivalent form

ζ({2}m, 3, {2}n)

=2

m+n+1∑
r=1

(−1)r−1

((
1− 1

22r

)(
2r

2m+ 1

)
−
(

2r

2n+ 2

))
ζ({2}m+n−r+1)ζ(2r + 1),

(13.63)

where {k}m means the argument k is repeated m times. The proof is completed in

the following 6 steps.

1. It is not hard to check that the two-variable generating function of the left hand

side of (13.63) is

F (x, y) =
∑
m,n≥0

(−1)m+n+1ζ({2}m, 3, {2}n)x2m+1y2n+2

= −xy2
∞∑
r=1

r−1∏
k=1

(
1− y2

k2

)
· 1

r3
·
∞∏

l=r+1

(
1− x2

l2

)

=
sinπx

π

∂

∂z
3F2

(
y,−y, z

1 + x, 1− x

∣∣∣∣1)∣∣∣∣
z=0

(13.64)

=
sinπx

π

∞∑
r=1

(−y)r(y)r
(−x+ 1)r(x+ 1)r

1

r
.

2. The generating function of the right hand side of (13.63) equals

F̂ (x, y) = 2
∑
m,n≥0

(−1)m+nx2m+1y2n+2
m+n+1∑
r=1

(−1)r
(

(1− 2−2r)

(
2r

2m+ 1

)

−
(

2r

2n+ 2

))
π2(m+n−r+1)

(2(m+ n− r + 1) + 1)!
ζ(2r + 1)

=
sinπx

π

(
A(x+ y) +A(x− y)− 2A(x)

)
− sinπy

π

(
B(x+ y)−B(x− y)

)
,

after some manipulations, where

A(t) = −γ − 1

2

(
Ψ(1 + t) + Ψ(1− t)

)
and B(t) = A(t)−A

( t
2

)
.

As usual, Ψ denotes the digamma function (see (5.24)).

3. Both F (x, y) and F̂ (x, y) are entire functions on C2. By standard estimates, it

can be shown that for a fixed x ∈ C, each of them is of exponential type and is
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O(e
3
2
π|y|) and |y| → ∞. (In fact a much stronger estimate is possible, but we do

not need it.)

4. For x ∈ C, it is easy to check that

F (x, x) = −sinπx

π
A(x) = F̂ (x, x),

and

F (x, 0) = 0 = F̂ (x, 0).

The first 4 steps basically follow [201]. The goal is to show the sum in step 1 equals

the digamma expression in step 2. Our next two steps replace the delicate analysis,

including a technical result on two-variable entire functions, used in [201].

5. For each x ∈ C, the function f(x, y) := F (x, y)− F̂ (x, y) is 1-periodic in y.

Proof. Note that

(z)r(y + 1)r − (z + 1)r(y)r = (z)r(y)r · r
(

1

y
− 1

z

)
.

Therefore, choosing z = −y − 1, we obtain

F (x, y + 1)− F (x, y) =
sinπx

π

2y + 1

y(y + 1)

∞∑
r=1

(−y − 1)r(y)r
(−x+ 1)r(x+ 1)r

.

The latter hypergeometric sum is Gosper-summable: if we take

Λ(r) =
x2 − y(y + 1) + r

(x− y)(x+ y)(x− y − 1)(x+ y + 1)
· (−y − 1)r+1(y)r+1

(−x+ 1)r(x+ 1)r
,

then

Λ(r)− Λ(r − 1) =
(−y − 1)r(y)r

(−x+ 1)r(x+ 1)r
.

Furthermore,

(−y − 1)r+1(y)r+1

(−x+ 1)r(x+ 1)r
= −xy(y + 1) · Γ(x− r)Γ(y + r + 1)

Γ(x+ r + 1)Γ(y − r + 1)

= xy(y + 1)
sinπy

sinπx

Γ(r − y)Γ(r + y + 1)

Γ(r − x+ 1)Γ(r + x+ 1)

∼ xy(y + 1)
sinπy

sinπx

(
(1− y+1

r )(1 + y
r )

(1− x
r )(1 + x

r )

)r e
r

∼ xy(y + 1)
sinπy

sinπx

1

r
as r →∞.
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Thus,

F (x, y + 1)− F (x, y) =
sinπx

π

2y + 1

y(y + 1)

(
Λ(∞)− Λ(0)

)
=

sinπy

π

x(2y + 1)

(x− y)(x+ y)(x− y − 1)(x+ y + 1)

+
sinπx

π

(x2 − y(y + 1))(2y + 1)

(x− y)(x+ y)(x− y − 1)(x+ y + 1)
.

A routine verification shows that a similar result holds for F̂ (x, y + 1) − F̂ (x, y).

This implies the desired 1-periodicity. �

6. For each x ∈ C\Z, the function f(x, y) is zero, so that it vanishes for all x, y ∈ C,

implying F (x, y) = F̂ (x, y).

Proof. We fix an arbitrary x /∈ Z. It follows from steps 3–5 that the entire

1-periodic function f(x, y) vanishes at y = x and y = 0. Therefore,

g(y) :=
f(x, y)

sinπ(y − x)

is an entire function of exponential type, which vanishes at the integers and whose

growth is O(e
1
2
π|y|) on the imaginary axis. Therefore, by Carlson’s Theorem 1.3,

g(y) vanishes identically, and so does f(x, y). �

Remark 13.6.1. Zagier [201] asks if a hypergeometric proof of (13.62) could be

found. The paper [135] answers the question in the affirmative. The first step

involves transforming the 3F2 in (13.64) twice (curiously, one of the transformations

is also used in Remark 7.10.1), so that in the resulting 3F2, the derivative with

respect to parameter z at 0 is particularly simple. In fact, in the derivative, some

terms vanish while the remaining ones evaluates in terms of Ψ by a formula in

[131] (such formulas are not uncommon, see e. g. Theorem 5.5). The Ψ expression

obtained simplifies to the required terms in step 2. ♦



CHAPTER 14

Further Applications of Experimental Mathematics

Abstract. In this chapter we deal with two applications of experimental math-

ematics. The first section addresses the problem of finding, proving and sim-

plifying contiguous relations, with help from PSLQ. The next two sections out-

line a method to discover and investigate orthogonal polynomials starting with

Gram-Schmidt orthogonalisation, with an application in Gaussian quadrature to

approximate a range of sums.

14.1. Contiguous relations

When the matching parameters in two generalised hypergeometric functions

with the same argument differ by integers, they are said to be contiguous [11]. For

instance,

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣x) and 3F2

( 1
2 ,

1
2 ,

3
2

1, 2

∣∣∣∣x)
are contiguous. (In the terminology of [179], such a pair is called associated, while

the term contiguous is reserved for the case when only one pair of parameters differ,

and only by unity. We do not make this distinction here.)

It was Gauss who showed that a 2F1 can be written as a linear combination

of any two of its contiguous functions, with rational coefficients in terms of the

parameters and the argument. Such combinations, known as contiguous relations,

are of importance in dealing with hypergeometric sums, and feature in many results

from Chapters 3, 5, 6, 7 and 12. There is a large but scattered literature on

contiguous relations, see for example [11, 27, 162, 198, 122]. We hope to present

a slightly more unified treatment here.

14.1.1. Raising and lowering operators. We consider the hypergeometric

function

F (a, a1, . . . , an; b, b1, . . . , bn−1;x) = n+1Fn

(
a, a1, . . . , an
b, b1, . . . , bn−1

∣∣∣∣ x).
283
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(All the theory here also works for a general pFq, we simply find the stated function

more useful.) When the function used is understood from the context, we simplify

denote it by F , or F (a) to highlight the parameter of interest. We use F (a+) to

denote F with a replaced by a + 1; similar conventions hold for other parameters.

We also use D to denote the operator with the effect that DF = xdF
dx . It follows

from straightforward series manipulations that (for any valid set of parameters and

n)

aF (a+) = (D + a)F, (14.1)

(b− 1)F (b−) = (D + b− 1)F. (14.2)

These two useful contiguous relations allow us to raise a ‘top’ parameter by 1, and

to lower a ‘bottom’ parameter by 1. In order to lower the top by 1 or to raise the

bottom by 1, we need to resort to the hypergeometric differential equation:

[
D(D+ b−1)(D+ b1−1) · · · (D+ bn−1−1)−x (D+a)(D+a1) · · · (D+an)

]
F = 0.

(14.3)

In (14.3), replacing a by a− 1 and factoring out D + a− 1 (which can be achieved

by formally setting D = 1− a), we have

(a− 1)(b− a)(b1 − a) · · · (bn−1 − a)F (a−) = ∆1(D − a− 1)F (a−),

where ∆1 is a differential operator involving only the parameters, x, and powers of

D. Replacing the last two terms on the right by (14.1) (again with a 7→ a− 1), we

obtain a formula for F (a−).

Similarly, in (14.3), replacing b by b+ 1 and factoring out D + b gives

x(a− b)(a1 − b) · · · (an − b)F (b+) = ∆2(D + b)F (b+),

where ∆2 is similar in nature to ∆1. Invoking (14.2), we obtain a formula for F (b+).

The form for a 3F2 is recorded in (14.6).

In summary, the operators F (a±) and F (b±) exist and are very easily com-

putable with a computer algebra system. The formulas for F (a−) and F (b+) only

involve the functions xiF, xiDF, . . . , xiDnF for i ∈ {−1, 0, 1}. Moreover, when

x = 1, we see that in (14.3) the Dn term disappears and hence cannot appear in

the contiguous relations. (In practice, expressions of DnF may involve x − 1 in
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the denominator, so at x = 1 it may need to be simplified using L’Hôpital’s rule.)

Armed with the four raising and lowering operators, we have:

Theorem 14.1. Any function contiguous to F can be expressed in terms of F,DF, . . . ,

Dn−1F,DnF , and a contiguous relation may be obtained from any n+ 2 contiguous

functions (by means of elimination). When x = 1, the DnF term is not required

and we only need n+ 1 functions.

Theorem 14.1 was essentially known to Bailey [27], who comments that “It

would be a very tedious process to obtain some of these results directly by the

general method of this paper” (pertaining to finding contiguous functions from the

four operators). With the advent of computer algebra systems, we see that this is

no longer the case, for such operations can be quickly and faithfully carried out on

even a modest machine. Moreover, in the next section we present another method

of obtaining contiguous functions.

Remark 14.1.1. The following contiguous relations are easy to prove and are

occasionally useful:

(a− ai)F = aF (a+)− aiF (ai+),

(a− b+ 1)F = aF (a+)− (b− 1)F (b−), (14.4)

(b− bi)F = (b− 1)F (b−)− (bi − 1)F (bi−).

♦

14.1.2. PSLQ and contiguous functions. We start with an example.

Example 14.1.1. Suppose F is a 3F2 and we want a contiguous relation in terms of

F (a), F (a+1), F (a+2), F (a+3); such a relation is guaranteed to exist by Theorem

14.1. Instead of using the four operators F (a±) and F (b±), we realise that equation

(14.3) indicates F can be written as a linear combination of xiDjF , where i ∈ {0, 1}

and j ∈ {1, 2, 3}. Using (14.1) repeatedly, we see that these terms simplify into the

form (uk + vkx)F (a+ k) for k ∈ {0, 1, 2, 3} for some uk and vk, and the power of x

involved is at most 1. That is, we have

3∑
k=0

(uk + vkx)F (a+ k) = 0. (14.5)
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We expand the 3F2’s in (14.5) as sums in n, extract the summands of xn and

simplify, then solve for uk, vk. This can be done by substituting in values of the

summation variable to form enough equations (here we need 8); or by collecting the

expression into a single fraction, and setting up a system of linear equations with

the aim of making the numerator disappear identically. Either way we obtain the

desired contiguous relation (with humongous coefficients).

Specialising the relation by setting a = 0, x = 1, for instance, and we get(
(2− d)(2− e)− (1− b)(1− c)

)
3F2

(
1, b, c

d, e

∣∣∣∣1)
=(2 + b+ c− d− e) 3F2

(
2, b, c

d, e

∣∣∣∣1)+ (1− d)(1− e).

♦

There are a few observations about the above derivation. Firstly it works for a

general pFq, and for contiguous relations of any desired form. Secondly, for other

forms of relations, it is conceivable that we may not be so lucky as to only get linear

powers of x, so we may need to enter higher powers of x in the equivalent of (14.5)

in search of a relation. Note that this ‘guess, simplify and solve’ routine is similar

to Celine’s algorithm [161].

How do we know which powers of x to use? This is when the integer relation

program PSLQ comes in. We have the following procedure:

Suppose we want to find a relation between some hypergeometric functions Fi.

Pick the parameters to be rational and pick a small, irrational x. Compute, to high

precision (which is possible as x is small), xjFi for j = −J0, . . . ,−1, 0, 1, . . . , J1

where J0, J1 are appropriate integers. Run PSLQ on these constants; if no relation

is found, increase J0, J1. If a relation is found, then the equivalent form of (14.5)

is very likely to involve the non-zero terms in the relation (since the irrationality of

x minimises the likelihood of spurious relations). We then extract the summand,

simplify and solve for the coefficients, as we did for (14.5). Once a solution is found,

the corresponding relation is proven.

Example 14.1.2. For instance, let us find F = 3F2(a − 1, b − 1, c; d + 1, e;x) in

terms the Fi, the ith derivatives of 3F2(a, b, c; d, e;x), without using the operators

F (a±) and F (b±) (which would require 3 applications).
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We pick J0 = 0, J1 = 3, and run PSLQ on the vector with elements F and xjFi

with i ∈ {0, 1, 2}, for appropriately chosen parameters and x. A relation is found,

and so we have discovered that

F = (u1 + u2x)F0 + (u3 + u4x+ u5x
2)F1 + x(u6 + u7x+ u8x

2)F2,

for some u1, . . . , u8. We can extract the summand and solve for the uj , which are

rather complicated functions of the parameters. ♦

Example 14.1.3. An important application of examples like 14.1.2 is the evalua-

tion of hypergeometric functions in terms of other functions. If F is expressible in

terms of well-known functions, then we can write any function contiguous to F in

terms of F and its derivatives. For instance, since

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣x) =
4

π2
K2

(√
1−
√

1− x
2

)
,

Example 14.1.2 gives, after some simplification,

9π2t2(1− t2)

4
3F2

(
−1

2 ,−
1
2 ,

1
2

1, 2

∣∣∣∣4t2(1− t2)

)
= (t2 − 1)(12t4 − 22t2 + 1)K2(t)

− 2(t2 − 1)(12t4 − 26t2 + 1)E(t)K(t)− (40t4 − 40t2 + 1)E2(t).

Computations like this form the basis of the contiguous relations required in Chapter

12. ♦

The raising and lowering operators can also be written in terms of the F ′ (instead

of ∆F ), and we record here that for F := 3F2(a, b, c; d, e; x),

F (a−) =
[
1− bc x

(a− d)(a− e)

]
F − a− d− e+ (1 + b+ c)x

(a− d)(a− e)
xF ′ +

x2(1− x)F ′′

(a− d)(a− e)
,

F (d+) =
[
1− abc

(a− d)(b− d)(c− d)

]
F +

e− (1 + a+ b+ c− d)x

(a− d)(b− d)(c− d)/d
F ′

+
d x(1− x)F ′′

(a− d)(b− d)(c− d)
. (14.6)

Remark 14.1.2. In Chapter 3, the proof of lemma 3.1 uses the raising operator

(14.6) repeatedly to obtain a differential expression which simplifies to 0. This

seems to be a powerful and previously unexploited method to prove a wide range

of contiguous relations with fixed arguments.

In Chapter 7, in order to work out a number of incomplete moments, we needed

a closed form expression for 3F2(1
2 ,

1
2 ,

1
2 ; 1, 2; t); this can be easily done using (14.6).



288 14. FURTHER APPLICATIONS OF EXPERIMENTAL MATHEMATICS

We also note that contiguous relations with (free) argument x are generally

easy to prove, once discovered, by looking at the series expansion; relations with

argument 1 can often be proven using Gosper’s algorithm [161], as we did several

times in Chapter 6. ♦

14.1.3. Contiguous summation formulas. Many exact summation formu-

las in terms of Γ functions are available for certain special hypergeometric functions

(as we saw in some 1/π evaluations in Chapters 10 and 12). Almost always, such

formulas are stated in the literature in their cleanest and simplest forms, however

in many cases functions contiguous to the stated ones also possess closed forms.

In particular, these contiguous closed form summation formulas are not handled

automatically in computer algebra systems. We collect some results here.

Kummer’s theorem. Kummer’s theorem [25] evaluates certain 2F1’s at −1:

2F1

(
a, b

1 + a− b

∣∣∣∣ −1

)
=

Γ(1 + a− b)Γ(1 + a
2 )

Γ(1 + a
2 − b)Γ(1 + a)

. (14.7)

However, there is actually a closed form formula for 2F1(a, b;n + a − b;−1) for all

integer n. When n ≥ 1, we use the Euler integral (4.3) to write the 2F1 as

Γ(n+ a− b)
Γ(a)Γ(n− b)

∫ 1

0
xa−1(1− x2)−b(1− x)n−1 dx,

so we can expand out the last factor binomially and apply the beta integral to each

term; therefore

2F1

(
a, b

1 + n+ a− b

∣∣∣∣ −1

)
=

Γ(1− b)Γ(n+ 1− b+ a)

2 Γ(a)Γ(n+ 1− b)

n∑
k=0

(−1)k
(
n
k

)
Γ(a+k

2 )

Γ(1− b+ a+k
2 )

.

(14.8)

When b is a positive integer, this formula is to be understood in the limiting sense,

first fixing n. Similarly, we also have

2F1

(
a, b

1− n+ a− b

∣∣∣∣ −1

)
=

Γ(1 + a− b− n)

2 Γ(a)

n∑
k=0

(
n
k

)
Γ(a+k

2 )

Γ(1− b− n+ a+k
2 )

. (14.9)

For fixed n, these formulas can collapse down naturally into two terms due to the

Γ recursion. In particular, when n = 1, the formula is rather succinct:

2F1

(
a, b

a− b

∣∣∣∣ −1

)
=

Γ(a− b)
2Γ(a)

[
Γ(a2 )

Γ(a2 − b)
+

Γ(a+1
2 )

Γ(a+1
2 − b)

]
.

Gauss’s second theorem and Bailey’s theorem. These theorems give closed

form evaluations of certain 2F1’s at 1/2 [25]; one obvious application is in the
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computation of the value of K(1/
√

2) which we have used many times, another is

seen in Section 10.8. Using Euler’s transformation (6.32) (mapping z 7→ z/(z− 1)),

equations (14.8) and (14.9) imply that both

2F1

(
a, b

n+a+b
2

∣∣∣∣ 1

2

)
and 2F1

(
a, n− a

c

∣∣∣∣ 1

2

)
have closed forms in terms of Γ functions for all integer n. Some special cases of

(14.8) and (14.9) have been found in [163].

Saalschütz’s theorem. This theorem for a terminating 3F2 is traditionally stated

as [25]

3F2

(
a, b,−n

c, 1 + a+ b− c− n

∣∣∣∣ 1

)
=

(c− a)n(c− b)n
(c)n(c− a− b)n

, (14.10)

where n is a non-negative integer. We can generalise (14.10) here. It is not hard to

see that the coefficient of zn in

(1− z)m−1
2F1

(
c− a, c− b

c

∣∣∣∣ z) (14.11)

is (
c− a− b−m+ n

n

)
3F2

(
a, b,−n

c,m+ a+ b− c− n

∣∣∣∣ 1

)
,

and when m ≥ 1 is an integer it is routine to extract the coefficient of zn in (14.11).

For instance, when m = 2,

3F2

(
a, b,−n

c, 2 + a+ b− c− n

∣∣∣∣ 1

)
= (14.12)

(c− a)n(c− b)n
(c)n(c− a− b)n

[
1− abn

(1 + a+ b− c)(1 + a− c− n)(1 + b− c− n)

]
.

Note that closed forms are unlikely for m < 1: even when m = 0, the coefficients

are the partial sums of the 2F1, so Gosper’s algorithm indicates there is no universal

closed form. However, in the m = 0 case we can often find ad-hoc solutions (e. g. in

terms of harmonic numbers) by entering special values of a, b and c.

The paper [121] considers the m = 2 and 3 cases based on applying (6.32) on

the beta integral for (14.10).

We note that when the (14.11) is written as a convolution sum, the generalisation

of Saalschütz’s theorem is just the transformation below; when m ≥ 1 is integral
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and fixed the right hand side can thus be evaluated:

3F2

(
a, b,−n

c,m+ a+ b− c− n

∣∣∣∣ 1

)
=

(c− a)n(c− b)n
(c)n(c− a− b+ 1−m)n

× 3F2

(
1−m, 1− c− n,−n

1 + a− c− n, 1 + b− c− n

∣∣∣∣ 1

)
. (14.13)

Dixon’s theorem. Dixon’s theorem [25] is the main tool for evaluating non-

terminating 3F2’s at 1. (Other tools include Clausen’s formula and Orr-type theo-

rems, which rely on a factorisation of the 3F2 – see Chapter 12; also see the Watson’s

and Whipple’s theorems below.) The theorem states that

3F2

(
a, b, c

1 + a− b, 1 + a− c

∣∣∣∣ 1

)
=

Γ(1 + a
2 )Γ(1 + a− b)Γ(1 + a− c)Γ(1 + a

2 − b− c)
Γ(1 + a)Γ(1 + a

2 − b)Γ(1 + a
2 − c)Γ(1 + a− b− c)

,

(14.14)

and a very special case is the celebrated identity,

2n∑
k=0

(
2n

k

)3

(−1)k+n =
(3n)!

n!3
.

Lavoie et. al [131] have given contiguous evaluations of Dixon’s theorem – the

results are beautifully presented there, so we do not reproduce them. Indepen-

dently, we show how such results may be achieved. Denote the generic function

3F2(a, b, c; d, e; 1) by F , and let

Fm,n := 3F2

(
a, b, c

m+ a− b, n+ a− c

∣∣∣∣ 1

)
. (14.15)

Dixon’s theorem is a closed form for F1,1; also note the symmetry in m and n. Our

result is the following:

Theorem 14.2. There exists closed forms for Fm,n, where m and n are integers

that satisfy 0 ≤ m ≤ n ≤ 2.

Proof. Let F̃ = F2,2. Our first strategy is to note that F̃ (a+) and F̃ (d−, e−)

can both be evaluated using the classical version of Dixon’s theorem (14.14). By

Theorem 14.1, there exists a contiguous relation between F̃ , F̃ (a+) and F̃ (d−, e−).

Indeed, the last two terms may be related to F̃ and its derivatives using the raising

and lowering operators; aided by the differential equation (14.3) at 1, we arrive at

(d− 1)(e− 1)F̃ (d−, e−)− a
(
d+ e− 1− (1 + b)(1 + c) + a(1 + b+ c)− de

2 + a+ b+ c− d− e

)
F̃ (a+)

− (1 + a− d)(1 + a− e)(2 + b+ c− d− e)
2 + a+ b+ c− d− e

F̃ = 0.
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This leads to

F2,2 =
21−2c Γ(2 + a− b)Γ(2 + a− c)

(b− 1)(c− 1)Γ(2 + a− 2c)Γ(2 + a− b− c)

×
[

Γ(3+a−2c
2 )Γ(4+a−2b−2c

2 )

Γ(1+a
2 )Γ(2+a−2b

2 )
−

Γ(2+a−2c
2 )Γ(5+a−2b−2c

2 )

Γ(a2 )Γ(3+a−2b
2 )

]
. (14.16)

For F1,2, we simply find a contiguous relation between F1,2, F1,2(e−) and F1,2(a+, b+),

noting that the last two can be evaluated using Dixon’s theorem. The result is

F1,2 =
2−a
√
π Γ(1 + a− b)Γ(2 + a− c)

(c− 1)Γ(2 + a− b− c)

×
[

Γ(3+a−2b−2c
2 )

Γ(a2 )Γ(1+a−2b
2 )Γ(3+a−2c

2 )
−

Γ(4+a−2b−2c
2 )

Γ(1+a
2 )Γ(2+a−2b

2 )Γ(2+a−2c
2 )

]
. (14.17)

For F0,1, we just find a contiguous relation between F0,1, F0,1(b+) and F0,1(a−, e−),

where the last two can be evaluated using Dixon’s theorem. Note that there is a

simpler contiguous relation between F0,1, F0,1(b+) and F0,1(d+), but upon special-

ising the coefficients (so that the last two terms satisfy the conditions of Dixon’s

theorem), this relation collapses down to 0 = 0 and is hence not helpful. The first

contiguous relation gives

F0,1 =
2−a
√
π Γ(a− b)Γ(1 + a− c)
Γ(1 + a− b− c)

×
[

Γ(1+a−2b−2c
2 )

Γ(a2 )Γ(1+a−2b
2 )Γ(1+a−2c

2 )
+

Γ(2+a−2b−2c
2 )

Γ(1+a
2 )Γ(a−2b

2 )Γ(2+a−2c
2 )

]
. (14.18)

For F0,0, we find a contiguous relation between F0,0, F0,0(a−) and F0,0(c+, d+),

again the last two can be evaluated using Dixon’s theorem. It follows that

F0,0 =
2−a
√
π Γ(a− b)Γ(a− c)
Γ(a− b− c)

×
[

Γ(1+a−2b−2c
2 )

Γ(a2 )Γ(1+a−2b
2 )Γ(1+a−2c

2 )
+

Γ(a−2b−2c
2 )

Γ(1+a
2 )Γ(a−2b

2 )Γ(a−2c
2 )

]
. (14.19)

For F0,2, many contiguous relations in which two of the terms can be evaluated

using Dixon’s theorem return 0 = 0. Therefore we adopt a second strategy, using
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contiguous relations and other known values of Fm,n; here the equations (14.4) come

in handy. Indeed, the second equation in (14.4) gives

F0,2 =
b

b+ c− a− 1
F1,2(b+) +

c− a− 1

b+ c− a− 1
F0,1. (14.20)

Therefore we can read off F0,2 from formulas for the right hand side already given.

�

Remark 14.1.3. A third, though tedious, way to find closed form expressions for

Fm,n is to imitate the proof of Dixon’s theorem in [25].

In brief, we consider the infinite sum in the variable k for Fm,n, and factor out

terms in the summand that are the evaluation of 2F1(b + k + m − 1, c + k + n −

1, a+ 2k +m+ n− 1, 1) by Gauss’ theorem (5.3).

Writing these terms as a 2F1, we then convert it into an infinite sum in j, let

p = j+k and change the order of summation in the resulting double sum. The sum

in k in some cases decomposes into a number of 2F1’s at −1, which can be summed

using contiguous versions of Kummer’s theorem (14.8) and (14.9). Each piece, then

summed in p, results in a 2F1 with argument 1, this way we obtain our closed form.

For instance, F−1,0, F0,0 and F0,1 can be found in this manner.

Clearly, a combination of the three strategies presented here enables us to find

closed forms for Fm,n for many more pairs of m and n. ♦

Watson’s and Whipple’s theorems. These theorems, recorded in [25], follow

from Dixon’s theorem and Thomae’s transformation (see [25, p. 14]); they give,

respectively, closed form evaluations for

3F2

(
a, b, c

a+b+1
2 , 2c

∣∣∣∣ 1

)
and 3F2

(
a, 1− a, c
e, 2c+ 1− e

∣∣∣∣ 1

)
.

Since we have results contiguous to Dixon’s theorem, it follows that we can obtain

many results related to Watson’s and Whipple’s theorems. They are cumbersome

and we only list two here:
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3F2

(
a, b, c
a+b

2 , 2c

∣∣∣∣ 1

)
=
√
π Γ
(a+ b

2

)
Γ
(1 + 2c

2

)
Γ
(2c− a− b

2

)
(14.21)

×
[

1

Γ(a2 )Γ(1+b
2 )Γ(2c−a

2 )Γ(1+2c−b
2 )

+
1

Γ(1+a
2 )Γ( b2)Γ(1+2c−a

2 )Γ(2c−b
2 )

]
,

3F2

(
a,−a, c
e, 2c− e

∣∣∣∣ 1

)
=

Γ(2c− e)Γ(e)

2 Γ(2c+ a− e)Γ(e− a)
(14.22)

×
[

Γ(2c+a−e
2 )Γ( e−a2 )

Γ(2c−a−e
2 )Γ( e+a2 )

+
Γ(1+2c+a−e

2 )Γ(1+e−a
2 )

Γ(1+2c−a−e
2 )Γ(1+e+a

2 )

]
.

Some similar results are found in [130] and [132].

14.2. Orthogonal polynomials

We start with some results from the classical theory of orthogonal polynomials

[11, Ch. 5]. Under mild conditions, for a non-decreasing function α(x) with finite

moments, there exists a sequence of polynomials {pn(x)}∞n=0 where pn has degree

n, such that they are orthogonal with respect to (weight) α:∫ b

a
pm(x)pn(x) dα = hnδmn, (14.23)

here δmn denotes the Kronecker delta, which is 1 when m = n and 0 otherwise.

Every polynomial of degree n can be expressed uniquely as a linear combination

of p0, . . . , pn. We may normalise the pn so that they are monic, and it is not hard

to show that they satisfy a three-term recurrence relation

pn+1 = (x− an)pn(x)− bnpn−1(x), (14.24)

moreover, bn = hn/hn−1.

Conversely, if a set of polynomials is generated from a 3-term recurrence of the

form (14.24), then Favard’s theorem [184] states that it is orthogonal with respect

to some α.

The nth polynomial pn(x) is in fact the characteristic equation of a tridiagonal

matrix, so that the zeros of pn(x) are the eigenvalues of the n×n tridiagonal matrix

with a0, . . . , an−1 on the diagonal, b1, b2, . . . , bn−1 on the upper off-diagonal, and 1’s

on the lower off-diagonal. The n zeros of pn(x) are simple and separate the n + 1

zeros of pn+1(x).
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Examples of orthogonal polynomials include the Legendre and Chebyshev poly-

nomials, which we have discussed in previous chapters (especially 10 – 12). For the

Legendre polynomials Pn, in the notations of (14.23) we have a = −b = 1, dα=dx,

hn = 2/(2n+ 1), and the recursion is

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (14.25)

We are interested in the case when α is a discrete measure, that is, the polyno-

mials are orthogonal with respect to summation instead of integration:∑
x

pm(x)pn(x)α(x) = hnδmn.

When such polynomials can be represented by hypergeometric functions, there is an

extensive literature dealing with their properties and classification, see for instance

[124].

Our focus on discrete measures is because of the application to Gaussian quad-

rature with respect to discrete measures, which is a little known and not yet fully

explored spin off of Gaussian quadrature. Quadrature with respect to continuous

measures are well-known and go by names such as the Gauss-Hermite quadrature,

so we do not explore it here. Some applications will be described in Section 14.3.

But firstly, we are interested in the questions of (re)discovering some orthogonal

polynomials. That is, given α, what can we say about the polynomials that are

orthogonal with respect to α? To this end, we follow this simple but effective

procedure:

(1) Given α, use Gram-Schmidt orthogonalisation to build up an initial list of

polynomials.

(2) Use this list to guess a recurrence relation of the form (14.24).

(3) Use the recurrence to determine a generating function for the polynomials.

(4) Use properties of the recurrence and/or the generating function to prove

orthogonality (thus validating the guess).

14.2.1. Charlier polynomials. We demonstrate the procedure above by tak-

ing α = 1/x!, so we get a sequence of polynomials with

∞∑
x=0

pn(x)pm(x)

x!
= hnδnm.
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Using Gram-Schmidt, the sequence starts with

p1(x) = x− 1, p2(x) = x2 − 3x+ 1,

p3(x) = x3 − 6x2 + 8x− 1, p4(x) = x4 − 10x3 + 29x2 − 24x+ 1.

From the first few pn, it is not hard to guess that

pn(x) = (x− n)pn−1(x)− (n− 1)pn−2(x), p−1(x) = 0, p0(x) = 1. (14.26)

From (14.26), we shall prove the claimed orthogonality property.

Working with the recursion, it is straightforward to show that the leading co-

efficient of pn is 1, and the next coefficient is −n(n + 1)/2. Also, pn(0) = (−1)n,

pn(1) = (−1)n(1−n), and pn(−1) = (−1)ne Γ(n+ 1, 1), where Γ(z, a) is the incom-

plete Gamma function (the equality follows as they satisfy the same recurrence).

Strong induction gives

pn(x+ 1)− pn(x) = npn−1(x), (14.27)

pn+1(x) + pn(x) = xpn(x− 1).

Armed with these properties, we have

Theorem 14.3 (Orthogonality).

∞∑
x=0

pn(x)pm(x)

x!
= δnmn!e. (14.28)

Proof. We only need to consider
∑

x pn(x)xm/x! where m ≤ n. It is easy to

check the theorem for small n, so we proceed by induction and assume that the

result is true up to n− 1. Then, for pn(x),
∑

x pn(x)xm/x! = 0 for m ≤ n− 3 using

the recurrences and the inductive hypothesis. Now for k ∈ {1, 2}, we have:

∞∑
x=0

pn(x)xn−k

x!
=
∞∑
x=0

pn(x+ 1)(x+ 1)n−k−1

x!

=

∞∑
x=0

(
npn−1(x) + pn(x)

)
(x+ 1)n−k−1

x!
= 0,

where we have used the inductive hypothesis and (14.27). For k = 0, we have

∞∑
x=0

pn(x)xn

x!
=
∞∑
x=0

(
npn−1(x) + pn(x)

)
(x+ 1)n−1

x!
= n

∞∑
x=0

pn−1(x)xn−1

x!
,

by the last equation. Iterating this, and noting
∑∞

x=0 1/x! = e, we get
∑∞

x=0
pn(x)2

x! =

n!e as desired. �
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It is easy to show that the exponential generating function for pn(x) is

f(t) = e−t(t+ 1)x.

This gives another proof of (14.27), and also gives the umbral identities

pn(x+ y) =

n∑
k=0

(
n

k

)
(−x)k(−1)kpn−k(y),

p′n(x) =
n−1∑
k=0

(
n

k

)
(−1)n−k−1(n− k − 1)!pk(x).

Expanding out f(t), we have

pn(x) = (−1)n 2F0

(
−n,−x
−

∣∣∣∣−1

)
= (−1)n(−x)n 1F1

(
−n

1− n+ x

∣∣∣∣1) = n!L(x−n)
n (1),

(14.29)

where L
(a)
n (x) denotes the generalised Laguerre polynomial. (The symmetry in n

and x explains the existence of a partner below (14.27).)

A different generating function is given by

∞∑
k=0

pn(k)

k!
xk = ex(x− 1)n. (14.30)

Setting x = 1 in (14.30) and its first (n− 1) x-derivatives results in 0 on the right

hand side; this gives another proof of orthogonality.

Indeed, what we have rediscovered was a special case (setting a = 1 below) of

the Charlier, or Poisson-Charlier, polynomials, defined by the generating function

∞∑
n=0

pn(x, a)
tn

n!
= e−t

( t
a

+ 1
)x
, (14.31)

or by the recurrence

a pn(x, a) = (x− n+ 1− a)pn−1(x, a)− (n− 1)pn−2(x, a).

Many key properties of the a = 1 case are apparent from our analysis. Generalisa-

tions of the a = 1 case follow readily, for instance we have pn(x+ 1, a)− pn(x, a) =

n
apn−1(x, a) and pn+1(x, a) + pn(x, a) = x

apn(x− 1, a). Also,

∞∑
x=0

pn(x, a)
tx

x!
= et

( t
a
− 1
)n
,
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which gives orthogonality

∞∑
x=0

pm(x, a)pn(x, a)
ax

x!
= δmn

n!ea

an
.

Remark 14.2.1 (Connections with Stirling numbers). Writing

pn(x, a) =
n∑
k=0

(−1)na−k
(
n

k

)
(−x)k,

we see that the coefficient of xk is

n∑
i=k

(−1)n−ka−i
(
n

i

)[
i

k

]
,

here
[
n
k

]
denotes the (unsigned) Stirling numbers of the first kind which satisfies

n∑
k=0

[n
k

]
xk = (x)n.

Let {nk } denote the Stirling numbers of the second kind and let Bn be the nth

Bell number; it is well known that

n∑
k=0

{
n

k

}
= Bn =

1

e

∞∑
x=0

xn

x!
.

We may then express the orthogonality of pn(x, a) as a sum involving the Bell

numbers and thus Stirling numbers of the second kind. The result is: for integer

0 ≤ s ≤ n− 1, ∑
i,j,k≥0

ai−k(−1)n−j
(
n

k

)[
k

j

]{
j + s

i

}
= 0. (14.32)

(When s = n, the right hand side becomes n!.)

Using values for pn(±1, a), we obtain the (easy) identities

n∑
k=0

n∑
i=k

(
n

i

)[
i

k

]
1

ai
=
ea

an
Γ(n+ 1, a),

n∑
k=0

n∑
i=k

(
n

i

)[
i

k

]
(−1)k

ai
= 1− n

a
.

Many more identities may be derived. ♦

Remark 14.2.2 (Two sequences of related polynomials). Let Pn(x) satisfy the

recurrence

Pn(x) = (x− n− 1)Pn−1(x)− (n− 1)Pn−2(x),



298 14. FURTHER APPLICATIONS OF EXPERIMENTAL MATHEMATICS

with P0(x) = 1, P1(x) = x− 2. Favard’s theorem guarantees that Pn is orthogonal

with respect to some measure; indeed, the methods outlined in this section give the

orthogonality property
∞∑
n=1

Pn(x)Pm(x)

Γ(x)
= δnmn!e.

The exponential generating function is e−t(t+ 1)x−1, and
∑

k>0
Pn(k)
Γ(k) x

k = exx(x−

1)n.

Clearly, the recurrence bears a resemblance to (14.26). Extracting coefficients,

we produce additional identities, for instance

n∑
k=0

n∑
i=k

(
n

i

)[
i

k

]
i(−1)k = −n.

We note that [97] computes continuous counterpart to Pn.

Similarly, let Qn(x) be defined by

Qn(x) = (n− 2− x)Qn−1(x) + (n− 1)Qn−2(x),

with Q0(x) = 1, Q1(x) = −x−1. The exponential generating function is e−t(1− t)x

and
∑

k≥0
Qn(k)
k! (−x)k = e−x(x− 1)n. The latter formula leads to

∞∑
n=0

Qn(x)Qm(x)
(−1)x

x!
= δnm

(−1)nn!

e
,

so Qn is the alternating analog of pn. Looking at Qn(1), we get the identity

n∑
k=0

n∑
i=k

(
n

i

)[
i

k

]
(−1)i+k = 1 + n.

Note that by trying different weights, we may rule out the existence of polyno-

mials with nice recurrences, generating functions or closed forms for many α (c. f. a

similar philosophy is used in Chapter 13). ♦

14.2.2. Meixner polynomials. Taking α = 1/2x, we produce a sequence of

orthogonal polynomials which seems to satisfy the recursion

nmn(x) = (x− 3n+ 2)mn−1(x)− 2(n− 1)mn−2(x), m−1(x) = 0, m0(x) = 1.

We will now show that mn(x) defined by this recursion are indeed orthogonal with

respect to α. It is standard to find the generating function

∞∑
n=0

mn(x)tn =
(2t+ 1)x

(t+ 1)x+1
,
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from which it follows that

mn(x+ 1)−mn(x) =

n−1∑
k=0

(−1)n−k−1mk(x). (14.33)

We are ready to prove:

Theorem 14.4 (Orthogonality).

∞∑
x=0

mn(x)mm(x)

2x
= δmn2n+1.

Proof. For ease of notation we denote the sum above as an inner product. We

proceed by induction. The statement is true for small m ≤ n; assume orthogonality

is true up to mn−1 (though for m = n− 1 we may not know the explicit right hand

side). Then, appealing to the recursion, we may deduce that 〈mm,mm〉 = 2m+1 for

m ≤ n − 2, and 〈mn,mm〉 = 0 for m ≤ n − 3. We are left to find the values of

〈mn,mn−2〉, 〈mn−1,mn−1〉 and 〈mn,mn−1〉.

For the first inner product, we have

∞∑
x=0

mn(x)mn−2(x)

2x
= 1 +

1

2

∞∑
x=0

mn(x+ 1)mn−2(x+ 1)

2x
.

Now we expand the right hand side by (14.33) while denoting the left hand side by

S:

S = 1 +
1

2

∞∑
x=0

{
2−x(mn(x) +mn−1(x)−mn−2(x) +mn−3(x)− · · · )

× (mn−2(x) +mn−3(x)−mn−4(x) +mn−5(x)− · · · )
}

= 1 +
1

2
S +

1

2
(−〈mn−2,mn−2〉+ 〈mn−3,mn−3〉+ 〈mn−4,mn−4〉+ · · · )

= 1 +
1

2
S +

1

2
(−2n−1 + 2n−2 + 2n−3 + · · ·+ 2) =

1

2
S,

so S = 0. This also establishes, via the recursion, that 〈mn−1,mn−1〉 = 2n.

It remains to show that 〈mn,mn−1〉 = 0. Proceeding as before, we denote the

sum by T :
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T = −1 +
1

2

∞∑
x=0

mn(x+ 1)mn−1(x+ 1)

2x

= −1 +
1

2

∞∑
x=0

{
2−x(mn(x) +mn−1(x)−mn−2(x) +mn−3(x)− · · · )

× (mn−1(x) +mn−2(x)−mn−3(x) +mn−4(x)− · · · )
}

= −1 +
1

2
T +

1

2
(〈mn−1,mn−1〉 − 〈mn−2,mn−2〉 − 〈mn−3,mn−3〉+ · · · )

= −1 +
1

2
T +

1

2
(2n − 2n−1 − 2n−2 − · · · − 2) = −1 +

1

2
T +

1

2
(2n − 2n + 2),

Thus T = 0. The inductive step is complete. �

In fact, we just rediscovered a very special case of the Meixner polynomials,

Mn(x, b, c) (with b = 1, c = 1/2), which may be defined by the ordinary generating

function (1−t/c)x
(1−t)x+b . In hypergeometric terms, it is

Mn(x, b, c) =
(b)n
n!

2F1

(
−n,−x

b

∣∣∣∣1− 1

c

)
. (14.34)

A recurrence for Mn can be found using contiguous relations (Section 14.1); indeed,

denoting the 2F1 part by mn(x, b, c), we have

c(n+ b)mn+1(x) =
(
(c− 1)x+ (n+ nc+ bc)

)
mn(x)− nmn−1(x), (14.35)

and due to symmetry we get another relation with the roles of x and n interchanged.

The general orthogonality property is∑
x≥0

Mn(x)Mm(x)
(b)xc

x

x!
= δmn

(b)nc
−n

n!(1− c)b
. (14.36)

For b = 1, the proof of orthogonality can be easily adapted from the proof of

Theorem 14.4. For other positive integer b, a proof follows readily by induction and

the contiguous relation

c(n+ 1)Mn+1(x, b, c) = (n+ b)Mn(x, b, c) + (b+ x)(c− 1)Mn(x, b+ 1, c).

Thus, we have recaptured several properties of the Meixner polynomials using

mostly elementary analysis and generating functions, without resorting to advanced

theory.
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Remark 14.2.3. Using the 2F1 representation, we see that the coefficient of xk in

mn(x) is
n∑
i=k

(−1)k

i!

(
n

i

)[
i

k

]
,

and mn(n) has the closed form (−1)n/2
(
n
n/2

)
when n is even, and 0 otherwise.

It is also easy to show that a closely related sequence, given by m′n(x) =

2F1(−n, 1− x, 2,−1), satisfies

∞∑
x=0

m′n(x)m′m(x)
x

2x
= δmn

2n+1

n+ 1
.

A connection between the Meixner and the Charlier polynomials is given by

lim
b→∞

mn

(
x, b,

a

a+ b

)
= pn(x, a).

♦

14.3. Gaussian quadrature

The classical theory of Gaussian quadrature is a scheme for approximating in-

tegrals by finite sums involving orthogonal polynomials (see [11, Ch. 5]). More

specifically, in the notation of (14.23) and (14.24), and using dα = ω(x)dx, we have

Proposition 14.1 (Gaussian quadrature).∫ b

a
f(x)ω(x) dx =

n∑
i=1

f(xi)wi +Rn, (14.37)

where xi are the roots of pn(x), wi are the weights defined by

wi =
−hn

pn+1(xi)p′n(xi)
, (14.38)

and Rn is the error which depends on the (2n)th derivative of f . In particular, if f

is a polynomial of degree ≤ 2n− 1, Rn = 0 and the quadrature is exact.

Note that by its very construction (i. e. the usage of roots), Gaussian quadrature

is exact for polynomials of degree up to n−1; orthogonality gives exactness for higher

degrees, and it is this pleasing property which makes Gaussian quadrature superior

to many other schemes. In practice, the error is difficult to compute, and is best

estimated on a case-by-case basis by fixing f and increasing n. Heuristically, if f is

closely approximated by polynomials on (a, b) (e. g. if it has a close-fitting Taylor

series), then Gaussian quadrature tends to work well; this implies that given an
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integrand, we need to choose the weight ω carefully – for instance to cancel out any

singularities.

In practice, the Legendre and Chebyshev polynomials are often used for Gauss-

ian quadrature, which means a = −b = 1. In order to perform quadrature for an

integral over (0,∞), the transformation x 7→ (1− x)/(1 + x) can be used.

Engblom [90] was one of the first to give a comprehensive report on Gaussian

quadrature using discrete measures. He noted that the classical theory carried over

exactly if α were discrete, that is, one would have∑
x

f(x)α(x) ≈
n∑
i=1

f(xi)wi. (14.39)

Engblom demonstrated his concepts by using the Charlier and Meixner polynomials

to numerically compute hypergeometric functions.

Example 14.3.1. Monien [151], using reciprocal polynomials, considered orthog-

onal conditions of the form∑
x>0

fn

( 1

x2

)
fm

( 1

x2

) 1

x2
= hnδmn.

By looking at the continued fraction of the moment generating function, Monien

derives a recurrence for fn(x) which takes a particularly simple form in terms of

Bessel functions. Quadrature using fn works particularly well for summands f(x)

which admit an asymptotic expansion in powers of 1/x2 for large x. For instance,

Monien used it fruitfully for the Hardy-Littlewood sum
∑

x>0 sin(a/x)/x, tradition-

ally considered challenging computationally for large a. The procedure works the

same way as before: one computes the roots xi of fn(x), from which wi follows.

Since fn(1/x2) is used instead, the right hand side of (14.39) needs to be replaced

by
∑n

i=1 f(1/
√
xi)wi. ♦

The following procedure can be used for Gaussian quadrature on sums: Given

some α, it is easy to generate a table of orthogonal polynomials (Gram-Schmidt).

We may then find the roots using say Newton’s method (when the table is small),

or by exploiting the fact that the zeros are eigenvalues of a tridiagonal matrix, and

stable, fast algorithms exist for finding them. The weights can then be computed,

either using (14.38), or by exploiting the fact that Gaussian quadrature is exact for

low degree elementary polynomials (whose sums involving the weights can be found
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independently). This way finding wi is equivalent to inverting a Vandermonde

matrix whose columns are powers of ri (the explicit inverse is given in terms of

Stirling numbers [137]). Once a reasonably large table has been computed (to say

a few thousand digits), it can be reused for similar sums.

In the following table, we have recorded the results of a number of discrete

Gaussian quadrature on non-trivial sums, with varying orthogonal polynomials,

numbers of weights (n), and numbers of correct digits obtained, to indicate that a

range of sums may be approximated to different levels of desired accuracy.

orthogonality poly. summand n digits comment

∑
x fn( 1

x2
)fm( 1

x2
) 1
x2

Monien
sin( 104

x
)

x 150 167 Hardy-Littlewood

∑
x fn( 1

x2
)fm( 1

x2
) 1
x3

cos( 1
x

)−1

x 15 50

∑
x fn( 1

x)fm( 1
x) 1

x2
1
x − ln x+1

x 20 54 Euler γ

∑
x pn(x)pm(x) 1

x! Charlier exp(sinx)
x! 30 20

∑
x pn(x)pm(x) 1

2x Meixner I0(x/4)
2x 50 67

For example, with the second entry in the table, we chose that particular or-

thogonality condition because the asymptotic expansion of the summand at infinity

contains only odd powers of x. For better behaved sums, Gaussian quadrature

is very powerful, for instance, using n = 50,
∑

x 1/(x2 + 1) = π cothπ may be

approximated to 282 digits.

14.3.1. Lattice sums. Lattice sums, as the name implies, are multi-dimensional

sums over lattices and often hold chemical importance, for instance they may be

used to determine the electrostatic potential of an ion in a crystal. A comprehensive

guide can be found in [102] (which is expanded in [52]). We observe that Gaussian

quadrature can be applied to approximate lattice sums.

We start with the Hardy-Lorenz sum [205],

∞∑
m=−∞

∞∑
n=−∞

′
1

(m2 + n2)s
= 4β(s)ζ(s). (14.40)
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The prime denotes that the m = n = 0 term is to be omitted, and β(s) denotes the

Dirichlet beta function, see Chapter 13. As a proof of concept, consider the s = 2

case (where the exact answer is 2Gπ2/3). We can in fact perform one summation

exactly, since
∞∑

n=−∞

1

m2 + n2
=
π

m
coth(mπ),

and we then take the derivative of both sides with respect to m. The resulting sum

(replacing m by x) behaves like π/(4x3) − 1/(2x4) for large x, so the polynomials

fn with orthogonality conditions∑
x

fn

(1

x

)
fm

(1

x

) 1

x2
= δmnhn (14.41)

should be used for quadrature. Using only 20 weights, we obtain 31 correct dig-

its. (With the right implementation, Gram-Schmidt is very fast at computing fn,

therefore obtaining hundreds of weights is computationally cheap.)

For many lattice sums, it is not possible to perform one summation explic-

itly; also, many sums are alternating. Our next example will tackle both of these

problems. Consider the sum

S =

∞∑
m=−∞

∞∑
n=−∞

′
(−1)m+n

(m2 + n2)2
.

For Gaussian quadrature, we use the polynomials gn with orthogonality conditions∑
x

gn

(1

x

)
gm

(1

x

)(−1)x

x
= δmnhn.

We perform a double quadrature on S, that is, we first perform quadrature on

f(n) = mn/(m2 + n2)2 (since the weight is (−1)n/n). This gives a finite sum of

functions of m, which we perform quadrature upon as our new function. Using only

10 weights, this method gives 15 correct digits.

In our investigation in Chapter 7, the lattice sum (7.52) was first verified to 53

digits using Gaussian quadrature with 50 weights, which convinced us of its veracity

and gave us impetus to find a proof.

Many lattices sums, including higher-dimensional ones such as the classical

Madelung constant [42],

M =
∑
n,m,p

′ (−1)n+m+p√
n2 +m2 + p2

,
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may be approximated using the scheme described here. We obtain 36 digits for

M using only 25 weights; roughly 1.4 extra digits are obtained for each additional

weight. It is interesting to note that the sum for M converges very slowly, and näıve

approaches struggle to obtain even 2 or 3 digits of accuracy.
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