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CHAPTER 0

Introduction

Abstract. In the first quarter of this dissertation, we investigate the problem
of how far a walker travels after n unit steps, each taken along a uniformly random
direction; the short-step behaviour of this random walk was unknown. Utilising
functional equations, we fully analyse the three- and four-step walks, finding the
moments and densities of the distance from the origin. Our methods involve a blend
of combinatorics, probability, and complex analysis.

The derivatives of random walk moments turn out to be Mahler measures. We
fruitfully study them using elementary techniques (different to those used by other
researchers), namely generating functions of log-sine integrals and trigonometry. On
the other hand, some random walk moments can be written as moments of products
of complete elliptic integrals. These are studied, culminating in a complete solution
for the moments of the product of two elliptic integrals. We also give some results
when more elliptic integrals are involved. These endeavours occupy the second
quarter of this dissertation.

A spectacular application of elliptic integrals is their ability to produce rational
series which converge to 1/m, as observed by Ramanujan. Using modular forms
and hypergeometric transforms, we produce new classes of 1/7 series which involve
Legendre polynomials and Apéry-like sequences. We give a diverse range of series for
related constants, including some based on Legendre’s relation. The third quarter
of this dissertation is devoted to this topic.

In the last quarter we apply experimental methods to better understand a num-
ber of areas encountered in our prior investigations. We simplify proofs for some
multiple zeta value identities, give new ones and outline how they may be found.
We give a method to quickly generate contiguous relations for hypergeometric se-
ries. Lastly, we look at orthogonal polynomials, in particular a new application of

Gaussian quadrature to multi-dimensional lattice sums.

xi
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Section 14.1 unifies several known approaches and gives new ones, thus simpli-
fying proofs of many contiguous relations. Section 14.2 gives a new way to look at
some orthogonal polynomials and produces some identities. Section 14.3 introduces

the new idea of using Gaussian quadrature to approximate multiple sums.

0.2. Overview

0.2.1. Experimental mathematics. This dissertation explores a range of
related topics in number theory and special functions, starting from investigations
of uniform random walks on the plane, using techniques from experimental math-
ematics where possible. As such, it is not an attempt to solve a single difficult
problem nor does it try to develop a unified theory. Each chapter contains new

results discovered and proven experimentally, facilitated by the computer.
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Modern experimental mathematics [21, 43, 44] seeks to fully utilise the com-
puter’s capability beyond mere calculations and simulations. More thoughtful con-
trol of the computer allows one to use graphics to suggest underlying mathematical
principles, test and falsify conjectures, and confirm analytical results. Intelligent
experiments allow the computer to help us gain intuition and insight, discover new
patterns, and suggest approaches for proofs.

Two strands of algorithms are prominent in experimental mathematics. The
first is creative telescoping, which achieves automatic evaluation of many sums and
integrals, in particular sums involving binomial coefficients. Its long lineage of
algorithms starts with Celine, followed by Gosper and then Wilf-Zeilberger (WZ),
and more are still being actively developed and refined. Both Celine’s and the WZ
algorithm attempt to find a recursion in n for the sum F'(n) := >, a(n, k), while
Gosper’s algorithm tries to write a(n, k) as b(n,k + 1) — b(n, k), making the sum
into a telescoping one (and providing a proof if no b exists).

Thus, a typical proof of a sum identity > ;_, a(n,k) = R(n) in experimental
mathematics looks like this: apply a suitable algorithm to find a recursion satisfied
by the left hand side; check that the right hand side satisfies the same recursion;
check enough initial conditions and conclude the the two sides are equal. By the
same token, a proof of an identity between analytic functions would involve produc-
ing a differential equation for one side (if this side is a generating function, then a
differential equation can come from a recursion satisfied by the coefficients), check-
ing that the other side is annihilated by the differential equation, and checking some
initial conditions. We will use these approaches time and again.

The other strand involves reverse engineering, and outstanding examples include
the PSLQ and LLL algorithms. PSLQ takes an input vector v of real numbers, and
attempts to find an integer vector u, such that v - u = 0 within the prescribed
precision. If no u is found, it can certify that no such vector below a certain norm
exists. PSLQ can be used when trying to write a numerically computed answer
in terms of supplied, well-known constants, or as the root of a polynomial. Often,
knowing a closed form answer brings one much closer to a proof. Moreover, in
many cases once an answer is found, it can be easily proved, though finding the

answer can be computationally expensive; in these instances PSLQ can be used to
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replace analytical computations and arrive at a checkable answer more efficiently.
We adhere to this practice often.

The very nature of experimental mathematics lends itself to problem solving. It
is also conducive to interdisciplinary research, in particular with sciences wherein
traditional experimentation is deeply entrenched. These strengths are hopefully
reflected in the diverse background of problems presented, investigated, and solved
here. Additionally, experimental methods tend to reduce formerly difficult analysis
to much simpler algebra, for instance creative telescoping uses not much more than
linear algebra, but unifies proofs previously requiring much ingenuity. In the same

spirit, we try to give elementary proofs of results whenever possible.

0.2.2. Notations. Throughout, we will use the standard notation for the gen-

eralised hypergeometric series,
at,...,0ap
qu < b b
1,.--5Vq

where (a), = I'(a + n)/I'(a) is the Pochhammer symbol, and T'(z) is the Gamma

Z> _ i (al)n"'(ap)n£’

0 (b1)n -~ (bg)n n!
function. Generalised hypergeometric series provide a framework which unifies
many binomial sums and special functions. In particular, o F}’s and 3F>’s enjoy
many transformations and exhibit rich structures. By saying that an expression
has a closed form, we mean that it can written in terms of hypergeometric series
and well-known constants (such as 7).

Two Gaussian hypergeometric functions (3F;’s) which receive our special at-

tention are the elliptic integrals of the first and second kinds, given respectively

by

w/2 dt
JJ2> == / 9
0 V1—a2sint
w/2
1:2> = / V1 —z2sin? tdt.
0

We also denote the complementary modulus v1 —z? by 2/, and use K'(z) :=
K(2'), E'(z) := E(2'). We denote the pth singular value of K by k,: that is, k), is
the unique real number satisfying K'(k,)/K(k,) = /p. It is known that when p is

a natural number, k), is algebraic and effectively computable, see [46, 175, 206].
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The Riemann zeta function is given, for Re s > 1, by
)
)=
n=1
and can be analytically continued to the whole complex plane except for the simple
pole at s = 1.
When an equality is only conjectural (for instance, based on numerical evidence),

we indicate it using the symbol Z

Other notations will be introduced in the chapters as they appear.

0.2.3. Random walks. The first four chapters of this dissertation are con-
cerned with random walks; specifically, we investigate the century-old problem of
how far a random walker travels after n steps, each step being of unit length and
taken along a uniformly random direction in the plane. Such walks date back to
Rayleigh and Pearson, and find applications in modeling Brownian motion, super-
position of waves, quantum chemistry, and migration of organisms.

While the asymptotics of this walk were understood, the short-step behaviour
was not known — such was the impetus for us to embark on this study. Denoting
the sth moment of the distance from the origin of the n-step walk by W, (s), and
the radial probability density by p,(x), we have

n

Wi(s) = /On 2°pn(z) dz = /[0,1]” Z

k=1

S

de. (0.1)

827Ti33k

In Chapter 1, we first gain intuition using numerical integration, which allows

us to combinatorially deduce the even moments:

Wa(2k)= > <a17 ‘ k ’an>2. (0.2)

ar+-+an=Fk
The recursion in & satisfied by the right hand side gives us a recurrence relation
for W, (2k), which lifts to a functional equation by Carlson’s theorem. This lets
us analytically continue W, (s) to the complex plane with poles at certain negative
integers; the poles are crucial to our understanding of p,, via techniques such as the
Mellin transform.

Inspired by a combinatorial convolution satisfied by (0.2), we conjecture

Wan(s) 23 (Sg 2>2W2n_1(s —9)), (0.3)

j=0
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which is used in numerical checks, and is a driving force for subsequent chapters.
The conjecture holds when s is an even positive integer, and when n = 1.

While it is easy to find

2 s
po(x) = ﬁ, Wa(s) = (s/Q)’ (0.4)

a closed form formula for W3(s) involves more effort. Our result is in terms of the
generalised hypergeometric series: for integer k,
1 k k

W (k) :Re3F2<2’_121_2

Y

4) . (0.5)

To prove this, we take a typical approach in experimental mathematics. Using
creative telescoping, we show that both sides satisfy the same three-term recurrence,
and therefore we only need to prove the identity for ¥ = £1. This is accomplished
using some classical analysis, in particular transformation formulas for the complete
elliptic integrals K and E. As a consequence, we were the first to discover the

expected distance for the 3-step walk,

3218 L1\ 272Y3 (/2
W) = 15 T(5) T oA (5) (0.6)
as well as
3 21/3 1
“1)=—=_15(=2). .
wa-1) = o2 (5) 0.7

In Chapter 2, we manage to express both Ws3(s) and Wy(s) in terms of Meijer

G-functions, and then as hypergeometric functions. A careful analysis using these

1) , (0.8)

and a closed form for Wy(1) as the sum of two 7Fg’s. Together they give all the

special functions gives the new result

T (355
W _1 —— F ) b b b b) )
(=) 476( 11,1,1,1,1

integer moments of the 4-step walk. Using conditional probability, we ultimately

deduce that
Wi(—1) = > /1K2(k) dk = 4/1 K (k)2 dk (0.9)
4 — 7r3 0 — 7T3 0 . .

Moreover, we find the series expansion for ps and the poles of W3(s), all in terms
of W3(2k). Various connections with Bessel functions are given.
While p3 was known as the real part of a function involving K, p4 was unknown

before our work. Shifting focus to the densities, in Chapter 3 we give the beautiful
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formulas
1 21,2 2\2
ps(z) = WE_@ R (3| Gty (0.10)
T (3+a2) L] (3422)?° )
2 V16 — 22 1111016 - 22)°
P4($):ﬁi$ R63F2<22222 7( 1083:4) > (0.11)

The first formula is inspired by a functional equation we found for ps, itself a
serendipitous discovery. A careful analysis of ps using asymptotics, pole structures,
and differential equations allows us to write down the second formula, which admits
a modular parametrisation. We also find the first residue of Wj.

To complete our analysis of three and four step walks (where all our closed forms
are new), we again appeal to Carlson’s theorem and existing literature on Bessel
functions to give a single hypergeometric form for W3(s) where s is not a negative
integer less than —1:

1
4). (0.12)

This is done by recasting W3 as integrals of modified Bessel functions. A formula

BRI 48/ ( 2,2

W
als) = T(s+2) 1,553

where s is a negative integer is also found. We also give a single Meijer G represen-

1) . (0.13)

Finally, we are able to give a proof of the conjecture (0.3) for n = 2 and s an integer.

tation for Wy(s), valid for all s:

2251 2.4 1,1,1, 53
T T (L(s+2))2 4\ ef2 2 st 1

W4(8)

202292

In Chapter 4, we look at at a number of related problems. The first is the

average displacement of a 3-step walk with step sizes 1, 1, a. When a = 2, the

4
average is Fé%r)él + F(L/r ﬁ) . The second problem involves an elementary derivation

of p3(z). Thirdly we look at some random walks in higher dimensions; dimension 3
is particularly easy and we find all the densities. We also look at some asymptotic
behaviour. Finally, we study random walks in the plane with restricted numbers of
directions, and find a curious phenomenon where some even moments of distances
traveled for these walks agree exactly with the moments of the uniform random

walk. Many of the results in this chapter have not appear previously in print.

0.2.4. Elliptic integrals. The ubiquitous appearance of the complete elliptic
integrals in random walks (such as equation (0.9)) leads us to a full study of the

moments of these integrals. Complete elliptic integrals first appeared in the exact
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expression for the period of a pendulum and the perimeter of an ellipse, but since
then have found applications in diverse pure and applied areas. In Chapter 5,
we revise some basic properties satisfied by the complete elliptic integrals (such
as Legendre’s relation), and use standard techniques to compute in closed form
integrals involving a single E or K, as well as their hypergeometric generalisations
K? and FE*. We give many closed forms, including a class of constants which are
good candidates for being generalisations of Catalan’s constant, expressible in terms
of the digamma function; here contour integration, Carlson’s theorem, and other
standard techniques are recalled and used. We also include a range of 3 F5 identities.

In Chapters 6 and 7, we use a variety of strategies to give closed form evaluations
of integrals, where the integrands involve (mostly products of) the elliptic integrals
K, K', E and E’. The strategies include interchanging the order of summation
and integration, using the quadratic transformations of £ and K, appealing to a
Fourier series, applying Legendre’s relation, integrating by parts, and using a result
of Zudilin that converts certain triple integrals into 7Fg’s.

In Chapter 6, we give explicit proofs that the odd moments of K2, E”?, K'E/,
K?,E? and K E can be written as a+b((3), with a, b € Q, while the odd moments of
K(z)K'(z), E(x)K'(z), K(z)E'(x) and E(z)E'(x) are rational linear combinations
of 7 and 73. We use techniques in experimental mathematics to give recursions
satisfied by the moments of those functions, and to prove results such as

/ e K@K () de = TR (1)
0

1 — 222

We derive the Fourier series for K (sint) and E(sint) along with some applications,
and give many equivalent integral formulations of Wy(—1) in Theorem 6.4.

In Chapter 7, we more fruitfully study integrals of the form fol G(z)(1+4 )" dx.
Our main result is elegant, and states that for n € Z and G a product of up to two
elliptic integrals, fol G(z)(1 + z)"dz can be written as a Q-linear combination of

elements taken from the set
{17 T, 7T2’ 71'3, ™ IOg 27 G’ C(3)7 Aa Ba 07 D}a

where A, B,C, D are hypergeometric series defined there and G is Catalan’s con-

stant studied before. In particular, this implies all moments of the product of two
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elliptic integrals can all be expressed in closed form, and thus any linear relationship
between them (first observed by Bailey and Borwein) can be routinely verified.

In the same chapter we record a number of sporadic integrals of varying gen-
erality (many are original), give a list of indefinite integrals with closed forms,
and discover a hypergeometric transform. Manipulations of hypergeometric series
feature more heavily in this chapter, for instance the following identity implicitly
involves closed form hypergeometric evaluations:

/01(;>éiiK(x)d$ = 7{; 5+ \}5

We resolve some experimental observations raised in the previous chapter re-
garding the integral of K?3. Using Fourier series, # functions, and lattice sums, we
give the first closed form evaluation of the cube of an elliptic integral:

1 1 1 8
/0 K'(x)3d:c:3/0 K(a:)QK'(x)dx:5/0 cK'(z)3dx = w (0.14)

Combined with Legendre’s relation, we also evaluate other integrals involving the
product of three elliptic integrals. On the other hand, such evaluations are in-

timately connected with L-values of modular forms, and provide new results on

lattice sums, such as

Z (—)mtnm2p?  T8(1/4) 7log?2

2 2 T~ 9993
(m2(0.0) (m? +n?)3 2937 8

0.2.5. Mahler measures. While investigating moments of random walks as
analytic objects in the first four chapters, it became natural to ask for the derivatives
of the moments, W/ (s). What we obtain are examples of Mahler measures of
a polynomial, studied extensively in number theory via techniques dissimilar to
ours. In particular, we give elementary computations for W5(0) = %Cl (%) and
Wi (0) = 74(3) (here Cl denotes the Clausen function), which turned out to be
classical evaluations of higher Mahler measures.

For k polynomials in n variables, the multiple higher Mahler measure is defined

by

WPy, Py, ..., P) = / /Hlog}P (2™, .., ™) [ dtydts . . . dt,

The connection with random walks is that
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where i, (P) = p(P,...,P) with P repeated m times. In Chapter 8, we collect
some basic facts, evaluation techniques and conjectures about Mahler measures, in
particular the powerful Jensen’s formula, and a closely related trigonometric version

which seems more versatile:

1
/ log [2a + 2bcos(27z) | dw = log (Ja| + Va2 — b?), |a| > [b] > 0. (0.15)
0

The formula leads to a quick proof of two of Boyd’s conjectures, namely

16G
p(x+ 1) +y(@? +6z+1)+ (z+1)%) = =

2 2 2 2y _ 20 ™
p(y?(z + 1) + y(a 10x+1)+(1:+1))—37TCI(3>,

while finding a new evaluation. Many classical results, such as u(a + bx + cy) and
p((2sins)™ + (z + y)™), can all be found using (0.15).

In the same chapter, we give an elementary evaluation of pup = u(k+z+1/x+
y + 1/y), and using integrals of K, produce a functional equation for this Mahler
measure in terms of k, recovering results such as 2us = 1 + pig- We also use
elementary methods to reduce p((1 + )(1 4+ y) 4+ 2) to a single integral, thereby
confirming another of Boyd’s conjectures numerically to 1000 digits.

In Chapter 9, we find that many Mahler measures can be expressed in terms
of log-sine integrals, studied for instance by Lewin. Some classes of log-sine inte-
grals conveniently have very nice generating functions, which means certain Mahler
measures can be computed easily (in fact, entirely symbolically).

We fruitfully apply the epsilon expansion technique borrowed from physics, to
find an expression for ua(1 4 = + y) in terms of a log-sine integral, namely

3 2w 2

We also give a conjectural closed form for ps(1+ x +y). We then digress into com-
binatorics, and produce a sequence of results coming from a blend of enumeration
and trigonometry, which pave the way for potentially useful analysis of some higher
Mahler measures, including ps(1+z+y). In doing so, we also produce closed forms
for multiple polylogarithms of low weights. The technique used in the last part is
essentially the shuffle relation of the multiple zeta values, which we come back to
in Chapter 13.

In Section 9.6, we give a third, and more analytical evaluation of ua(1+ x +y).
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0.2.6. Series for 1/m. The functions E® and K* studied in Chapter 5 are
crucial in proving Ramanujan’s original series for the transcendental constant 1/7.
In Chapter 10, we investigate a new type of Ramanujan-type series first conjectured

by Sun. Such series take the form

Z (S)n(’;‘; S)n (A 4 Bn)Pn(fL’o)Zg _ %7
n=0 ’

where s € {1/2,1/3,1/4,1/6}, P,(x) denotes the Legendre polynomial, and fre-
quently the summands are rational numbers.
In order to prove such new series, we appeal to an all-but-forgotten generating

function due to Brafman,

oo
1— s, 1—s|1—p— s, 1—s]1-—
27(8)n< 12 S)RPn(w)Zn:2F1< 7p Z> -2F1< p+z>7
o n! 1 2 1 2
(0.17)

where p = (1 — 2zz + 2?)'/2. Writing the oF} as F, Brafman’s formula assumes the
form

oo

S$)p(l—s
> ()l = 5)n )”(nm Jn Pu(z)2" = F(a)F(B).
n=0 ’

We notice that when « and [ are related by a modular equation, namely, a = t(7p)
and 8 = t(19/N), where t is a suitable modular function, then the right hand side of
(0.17) can be written in terms of F?(«) and its z-derivative in terms of F(a)F’(c).
These two terms can be related, by Clausen’s formula, to building blocks of the

classical Ramanujan series,

X () (8)n(1 = $)n n C
Z<2)n() (1 ) (a+bn)(4a(1—a)) =,

n!3 T
n=0

for which we have a well-developed theory. Therefore, all of Sun’s conjectures are
reduced to classical Ramanujan series and proven. We provide detailed calcula-
tions, and give many more new series and their ‘companions’. A range of other
techniques, involving hypergeometric transformations and singular values of K, are
also presented. An example of a new series with rational summands is

)

> (i);!(;i)” (841 + 9520n) P, (igg;) <23;i1)n = 5132*7/Tm,

n=1

and a connection between rational series and class numbers is observed.
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In Section 10.10, we give a heavily modular method to produce complex series
for 1/m which are rarer but have been observed in our work. A number of other
complex series are included.

In Chapter 11, we continue our study of 1/7 series and Legendre polynomials,
by first giving a very general generating function,

Sy (BN 0 (2

= (1 cXY){gunX"}{gunY”}, (0.18)

where u, is an Apéry-like sequence, satisfying (n + 1)2up+1 = (an® + an + b)u,, —

cn®up—_1, u—1 = 0 and ug = 1. We find it significant that both the statement

and the proof of the generating function were found with the help of computers.

Manipulating (0.18) gives generating functions for rarefied Legendre polynomials,

> 0 (5 ) (o)
o ()

We are thus able to find new series for 1/m whose summands involve Apéry-like

for instance

1+ XY <§,§
= ———2F
2 1

1- Y2). (0.19)

sequences or rarefied Legendred polynomials, examples of which include

i (1)2 (2+15n)P2n< f) (m)gn _ %

n=0 5

 (3)n(3)n 4 1\ V15+10V3
S ar (5 () -

SEEOR ()6 -2

In Chapter 12, we first investigate some other consequences of Brafman’s for-

mula and their implications for special functions. We describe the Borweins’ ap-
proach for producing 1/7 series, and summarise some other methods used, in par-
ticular hypergeometric summation formulas and Fourier-Legendre expansion. We
also use contiguous relations (studied later) to analyse some closely related series.

Next, using a new class of generating functions shown using the Wilf-Zeilberger
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algorithm, we prove many more conjectured series for 1/m. An example of a new

generating function is

oo n 2 k+n 1 1 2
ZZ 2n — 2k 2k 2n SU+ :3F2 319293
n—k k n ) (1+4x)2n+l 1,1

n=0 k=0

108z%(1 — 4x)>,

and we also discus their curious ‘satellite identities’.

The last part of Chapter 12 introduces the new idea of proving 1/7 series using
only Legendre’s relation and (simple) modular transforms. The calculations are
very involved, albeit elementary. We discover an unusual formula,

2n\ 1Y/ 3 \" 8v/2
;}(J Pn<2> (128> (34 14n) = ‘ﬂ[
which cannot be explained by the general theory of Chapter 10, but also recover

many classical Ramanujan series, such as

S~ (Ea(2 () ERNI

n!3 125 6m

n=0
thereby suggesting that our approach may provide an alternative route to those
series. Lastly, we use Orr-type theorems to give series that converge to other well-

known constants.

0.2.7. Multiple zeta values. Multiple zeta values are special values of the
multiple polylogarithm studied in Chapter 9. In Chapter 13, we give a unified and

elementary approach for studying sum formulas for double zeta values, defined by

co n—1

)= >

n=1m=1
as well as the alternating versions of these sums (replacing the 1 in the numerator
by, say, (—1)™), and finally sums where the numerators are replaced by Dirichlet
characters.
In particular, we find the first elementary proof of an identity by Ohno and

Zudilin,
s—1

D 290, s —4) = (s +1)¢(s), (0.20)

=2

as discover its alternating companion,

s—1
D 2G5 —4) = (3-22"" = 5)((s). (0.21)
j=2



xxviii 0. INTRODUCTION

Moreover, we give some new results for the Mordell-Tornheim double sums,
and use a generating function approach to prove a new evaluation involving the

harmonic numbers H,,,

o0

H,
7”5_ = (1—47%)(25 —1)¢(25) — (2 — 4'7%) log(2)¢(2s — 1)
ZO (2n +1)2s-1 &

2252 — D21 - 2K (1 - 2225 — ).
k=2

We showcase a number of experimental methods. For instance, an experimental
approach can be used to discover or to rule out sum identities for the double zeta
values. Then, using recursions of the Riemann zeta function, we prove new sum

identities such as

n—2
D (=125 - 1)(n—j—1)(2n — 2j — 1)¢(24, 2n — 2j)
j=2
= g(n —1)(3n—2)¢(2n) — 3(2n — 5)((4)¢(2n — 4). (0.22)

In Section 13.5, we prove some of the recursions used earlier in the chapter, plus
some others which involve the product of three or more zeta terms. Using these, we
give elementary proofs of summation formulas for weight 3, 4 and 5 multiple zeta
values. Some of our results are new, the most interesting example being

> ((2a,2b,2¢,2d,2¢) = %g(m) - %C(Q)(@n —2)+ %54(4)«271 —4).
atbtctdt+e=n
To prove the above sum, we need a new ( convolution identity which was first
discovered experimentally. Results such as the above, where the right hand side is
a rational multiple of 72", also exist in higher dimensions.

In the last section of Chapter 13, we simplify the proof of an involved evaluation
of a multiple zeta value given by Zagier. The simplification maximises the use
of experimental techniques (here, Gosper’s algorithm), which results in minimal

analyses being required.

0.2.8. Further applications. Applications of experimental mathematics to
classical and new fields are by no means limited to some of the chapters we have
investigated so far. In Chapter 14, we describe two useful tools that are easily
implemented using computer algebra systems (CAS). The first concerns contiguous

relations, that is, linear relations among hypergeometric series whose parameters
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differ by integers. The method presented here allows us to check and generate all the
contiguous relations required in the previous chapters. We prove a theorem which
states that any series contiguous to F' can be expressed as a linear combination of
F and its derivatives. While the result was essentially known to Bailey, we take
advantage of the speed of modern computers and the PSLQ algorithm to rapidly
produce said linear combinations. The resulting contiguous relations can be used,
for instance, to produce some new 1/7 formulas in Chapter 12.

We also collect and derive many contiguous versions of the classical hyper-
geometric summation theorems in this Chapter, namely the theorems of Gauss,
Kummer, Bailey, Saalschiitz, Dixon, Watson and Whipple. Some of these results
are previously known but scattered in the literature, moreover most are not yet
implemented in computer algebra systems.

The second part of Chapter 14 deals with Gaussian quadrature, a general
method that uses orthogonal polynomials to approximate integrals. Gaussian quad-
rature has been used to numerically check several sums and integrals encountered
in the other chapters. We recap some basic results in the area, and give an account
of a recent development where Gaussian quadrature (applied to a discrete measure)
can be used to approximate infinite sums. We give an experimental method to
rediscover, from scratch, some well-known orthogonal polynomials and their prop-
erties, complementing the heavy role that orthogonal polynomials played in our
earlier chapters.

We then develop a new approach, which uses multiple Gaussian quadrature for
summing over orthogonal rational functions. This approach lends itself unexpect-
edly well to the numerical evaluation of lattice sums, giving excellent results for a
wide class of sums which previously could only be approximated using some levels
of ingenuity. For example, we can obtain around 1.4 correct digits per weight used

for the famous Madelung constant.






CHAPTER 1

Arithmetic Properties of Short Random Walk Integrals

ABSTRACT. We study the moments of the distance from the origin for a walk in
the plane with unit steps in random directions. Our interest lies in closed forms
for the moment functions and their values at the integers for a small number of
steps. A closed form is obtained for the average distance traveled in three steps.
This evaluation and its proof rely on combinatorial properties, such as recurrence
equations of the even moments (which are lifted to functional equations). A

general conjecture for even length walks is made.

1.1. Introduction, history and preliminaries

We consider, for various values of s, the n-dimensional integral

Wi(s) ::/ 2™k
[071}n k}zl

which occurs in the theory of uniform random walks in the plane, where at each step

dex (1.1)

a unit-step is taken in a random direction — see Figure 1. As such, the integral (1.1)
expresses the sth moment of the distance to the origin after n steps. Our interest in
these integrals is from the point of view of (symbolic) computation. In particular,
we seek explicit closed forms of the moment functions W, (s) for small n as well as
closed form evaluations of these functions at integer arguments. Of special interest
is the case W, (1), the expected distance after n steps.

While the general structure of the moments and densities of the random walks
studied here is understood from a modern probabilistic point of view (for instance,
the characteristic function of the distance after n steps is simply the Bessel function
Ji — a fact reflected in (1.14) and (1.30)), there has been little research on the
question of closed forms. This is exemplified by the fact that W3(1) has apparently
not been evaluated in the literature before (in contrast, the case Wa(1) = 2 is easy).
As a consequence of a more general result, we show in Section 1.5 that

328 o1\ 272Y3 /2
W) = 35 T(5) + T () (12)

1
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where I is the Gamma function [11].

(a) Several 4-step walks (b) A 500-step walk

FiGURE 1. Random walks in the plane.

A related second motivation for our work is of numerical nature. In fact, more
than 70 years after the problem was posed, [148] remarks that for the densities of
4, 5 and 6-steps walks, “it has remained difficult to obtain reliable values”. One
challenge lies in the difficulty of computing the involved integrals, such as (1.30)
which is highly oscillatory, to reasonably high precision (see [177] for a general
scheme). Some comments on obtaining high precision numerical evaluations of
W, (s) are given in Appendix 1.6. A more comprehensive study of the numerics of
such multiple-integrations is conducted in [19].

A lot is known about the one-dimensional random walk, the most basic random
walk. It is a rather standard exercise in counting that the probability density for
the n-step walk is 27" (( d +’:L) /2), where d is the signed distance from the origin.
When the bottom term in the binomial coefficient is not an integer, the coefficient
is understood to be 0. From this, it is easy to work out that the average distance
from the origin after n steps is (n — 1)!!/(n — 2)!! for n even and n!!/(n — 1)!! for n
odd; and the second moment of the distance is n. (Here n!! =n-(n—2)-(n—4)---
is the double factorial.) Asymptotically the average distance behaves like \/m

For the two-dimensional walk no such explicit expressions were known, though
the expected value for the root-mean-square distance is known to be \/n; in this case

the implicit square root in (1.1) disappears which greatly simplifies the problem.
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The term “random walk” first appears in a question by Karl Pearson in Nature
in 1905 [159]. He asked for the probability density of a two-dimensional random
walk expressed in the language of how far a “rambler” might walk. This triggered a
response by Lord Rayleigh [165] just one week later. Rayleigh replied that he had

considered the problem earlier in the context of the composition of vibrations of
2x

random phases, and gave the probability distribution ?e_“g/ ™ for large n, x being
the radial distance. This quickly leads to a good approximation for W, (s) for large
n and fixed s =1,2,3,....

Another week later, Pearson again wrote in Nature, see [160], to note that G. J.
Bennett had given a solution for the probability distribution for n = 3 which can

be written in terms of the complete elliptic integral of the first kind K:

ps(@) = Y2 Re K(\/(x+1)3(3_x)), (1.3)

~ 2 16z

see e.g. [118] or [158]; Chapter 4 produces an elementary derivation. Pearson
concluded that there was still great interest in the case of small n which, as he had
noted, is dramatically different from that of large n, for the densities ps, ps and ps
have remarkable features of their own.

The results obtained here, as well as in a follow-up study in Chapter 2 ([56]),
have been crucial in the discovery of a closed form for the density p4 of the distance
traveled in 4 steps. It should be noted that the progress we make rely on techniques,
for instance analysis of Meijer G-functions and their relationship with generalised
hypergeometric series, that were fully developed only much later in the 20th century.

We remark that much has been done in generalising the problem posed by Pear-
son. For instance, Kluyver [123] made an analysis of the cumulative distribution
function of the distance traveled in the plane for various choices of step lengths.
Other generalisations include allowing walks in three dimensions (where the analy-
sis is actually simpler, see [195, §49] and Chapter 4), confining the walks to different
kinds of lattices, or calculating whether and when the walker would return to the
origin. A good source of these sorts of results is [118].

Applications of two-dimensional random walks are numerous and well-known;
for instance, [118] mentions that they may be used to model the random migra-

tion of an organism possessing flagella; analysing the superposition of waves (e.g.,
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n|is=2|s=4|s=6|s=8]s=10 [180]
2 2 6 20 70 252 A000984
3 3 15 93 639 4653 A002893
4 4 28 256 | 2716 | 31504 A002895
5 5 45 045 | 7885 | 127905 A169714
6 6 66 996 | 18306 | 384156 A169715
TABLE 1. W, (s) at even integers.
n| s=1 s=3 5=23 s=17 s=9
211.27324 | 3.39531 | 10.8650 37.2514 132.449
3| 1.57460 | 6.45168 | 36.7052 241.544 1714.62
41 1.79909 | 10.1207 | 82.6515 | 822.273 9169.62
5| 2.00816 | 14.2896 | 152.316 2037.14 31393.1
6 | 2.19386 | 18.9133 | 248.759 4186.19 82718.9

TABLE 2. W, (s) at odd integers.

from a laser beam bouncing off an irregular surface); and vibrations of arbitrary
frequencies. The subject also finds use in Brownian motion and quantum chemistry.

We learned of the special case for s =1 of (1.1) from the common room at the
University of New South Wales. It had been written down by Peter Donovan as a
generalisation of a discrete cryptographic problem [87]. Some numerical values of
W, evaluated at integers are shown in Tables 1 and 2. One immediately notices the
integrality of the sequences for the even moments, where the square root for s = 2
gives the root-mean-square distance. For n = 2,3, 4 these sequences were found in
the On-line Encyclopedia of Integer Sequences [180] — the cases n = 5,6 are in the
database as a consequence of this work.

By numerical observation, experimentation and some sketchy arguments we

quickly conjectured and strongly believed that, for k a nonnegative integer

b).

The evaluation (1.2) of W3(1) can be deduced from (1.4). Based on results in
Sections 1.2 and 1.3, (1.4) is established in Section 1.5.

1 _k
2y 7 9
1,1

_k
2

Wg(k‘) = Re 3F2< (1.4)
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In Section 1.2 we prove that the even moments W, (2k) are given by integer
sequences and study the combinatorial features of f,, (k) := W,,(2k), k a nonnegative
integer. We show that there is a recurrence relation for the numbers f, (k).

In Section 1.3 some analytic results are collected, and the recursions for f, (k)
are lifted to W,,(s) by the use of Carlson’s theorem. The recursions for n = 2,3,4,5
are given explicitly. These recursions then give further information regarding the
pole structure of W, (s). Plots of the analytic continuation of W,,(s) on the negative
real axis are given in Figure 2. Inspired by a general combinatorial convolution given

in Section 1.2, we conjecture (1.28), which will be partially resolved in Chapter 3.

LU U

(a) Ws (b) Wy
(c) Ws (d) We

FIGURE 2. Various W,, and their analytic continuations.

1.2. The even moments and their combinatorial features

In the case s = 2k the square root implicit in the definition (1.1) of W,(s)
disappears, resulting in the fact that the even moments W, (2k) are integers. In
this section we gather several of the combinatorial features of these moments which
provide important guidance and foundation. For instance, the combinatorial ex-
pression for W3(2k) will eventually lead to the evaluation of all integer moments
W3(k) in Section 1.5; the recurrence equation for Wy(2k) is at the heart of the

derivation of the closed form py in Chapter 3 ([57]).
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In fact, the even moments are given as sums of squares of multinomials — as is
detailed next. While this result may also be obtained from probabilistic principles
starting with the observation that the characteristic function of the distance trav-
eled in n steps is J', we prefer to give an elementary derivation starting from the

definition (1.1) of W, (s).

Proposition 1.1. For nonnegative integers k and n,

Wa(2k)= > (ah.f‘:_ 7%)2. (1.5)

a1+-+an==k

PROOF. From the residue theorem of complex analysis, if f(x1,...,2,) has a

Laurent expansion around the origin then

ct f(z1,...,zp) = / fe2mmn e dge, (1.6)
[0,1]"

where ‘ct’ extracts the constant term. In light of (1.6), (1.1) may be restated as
Wi(s) = ct ((z1 + -+ @) (Lfz1 + -+ 1/wy))*/2 . (1.7)

In the case s = 2k the right-hand side may be finitely expanded to yield the claim:

on using the multinomial theorem,
(12, (21 + - 4 1 y,)"

_ k ai an k 7b1 _bn
SEED DU RN P I DR (I Fa pete e

ay+-tan=k byt +bn=k

and the constant term is now obtained by matching a; = b1, ..., a, = by,. U

Remark 1.2.1. In the case that s is not an even integer, the right-hand side of

(1.7) may still be expanded, say, when Re s > 0 to obtain the series evaluation

Wn(s):nSZ(_l)m<87{12>§:(;212k (7:) 3 k<a1,.%.,an>2' (1.8)

m=0 k=0 ar+-+an=

In the spirit of experimental mathematics, we briefly outline the genesis of the
evaluation given in Proposition 1.1.

In our first proof of the proposition, we showed that

§ :627r:ckz
k

2

=n?_ 4Zsin2(7r(xj —1;)),

i<j
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and therefore, via binomial expansion, we have
(=1)™ (s/2 "
. 2
Wy(s) =n® Z i 425111 (m(xj —x;)) | dx. (1.9)
m>0 m e NS
> J

Let I,,,, be defined by the multiple integral above. The sequence 22m13’m is
Sloane’s A093388 [180] where a link to [188] is given. That paper mentions that

223 ., is the coefficient of (zyz)™ in
(Bzyz — (x +y)(y + 2)(z +2))™.

Observe also that 22" Iy, is the coefficient of (zy)™ in (4zy — (x +y)(y +x))™. We
then noticed that

Sxyz — (x +y)(y + 2)(z + x) = 32xyz — (x + y + 2)(zy + yz + 22),

and this line of extrapolation led to the correct form, i. e. the next case would involve
P2wryz — (w+z+y+2)(wry + Yz +yzw+ 2wz). We thus conjectured that 221, ,,

is the constant term of
(n? = (z1+ -+ z) (1 21 + -+ 1/z,))™,

which was proven by expanding the integrand in I,, ,, and invoking some combina-
torial features of the expansion. This leads to (1.8), from which we may recover

(1.5) for even s, using the binomial transform (see (11.12)). O

In light of Proposition 1.1, we consider the combinatorial sums

falk) =" > <a17‘{€'7an>2. (1.10)

a1+-+an=~k

These numbers also appear in [166] in the following way: f,, (k) counts the number
of abelian squares of length 2k over an alphabet with n letters (that is, strings zz’
of length 2k from an alphabet with n letters such that 2’ is a permutation of z).

Given this enumerative interpretation, it is not hard to see that

k k 2
fm n2(k> = . fm() fm(k_ .)’ (1'11)
+ z:% (j) j J

J
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for two non-overlapping alphabets with n; and no letters. In particular, we may

use (1.11) to obtain fi(k) =1, fa(k) = (2kk), as well as
1
4 )

k 2 o 1 g L L
=55 (0 () =on () = ()
(1.12)

J=0

=5 (Y () - (om0

Here and below ,F; denotes the generalised hypergeometric function. In general,

1). (1.13)

(1.11) can be used to write f,, as a sum with at most [n/2] — 1 summation indices.

We remark that a generating function for (f,,(k))22, is used in [20]. Let I,(z)
denote the modified Bessel function of the first kind. Then

Sk Sk

S halk) g = (Z k,) — i (1:2)" = Io(2v/2)". (1.14)
k>0 k>0

It can be anticipated from (1.10) that, for fixed n, the sequence f, (k) will satisfy
a linear recurrence with polynomial coefficients. A procedure for constructing these
recurrences has been given in [29]; that paper gives the recursions for 3 < n < 6

explicitly. An explicit general formula for the recurrences is given in [189]:

Theorem 1.1. For fired n > 2, the sequence f,(k) satisfies a recurrence of order

A = [n/2] with polynomial coefficients of degree n — 1:

IS H<—ai><n+1—a»(lf_ﬁl)%‘l]fn(k—ﬁ—o. (115)

7>0 Qat,...,05 1=1
Here, the sum is over all sequences aq,...,c  such that 0 < o; < n and ojpq <

Oéi—2.

The recursions for n = 2, 3,4, 5 are listed in Example 1.3.2, formulated in terms

of W, (s) as per Theorem 1.4. As a consequence of Theorem 1.1, we obtain:

Theorem 1.2. For fized n > 2, the sequence f,(k) satisfies a recurrence of order

A = [n/2] with polynomial coefficients of degree n — 1:

Ap 112 -2 2
where  cap(k) = (—=1)*n!! (k;+1) I+ )2, (1.17)

and cp \(k) = (k+ )" L
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PrOOF. The claim for ¢, \ follows straight from (1.15). By (1.15), ¢, is given
by

cnolk =N = [k Y H —oq)(n+1— )<k:ﬁi—il)ai_1] (1.18)

A1y i=1
where the sum is again over all sequences ay,...,a) such that 0 < o; < n and
i1 <oy — 2.

If n is odd then there is only one such sequence, namely {n,n — 2,n —4,...},

and it follows that

A—1
cno(k = N) = (=) ] (k —j)? (1.19)
j=1

in accordance with (1.17).

When n = 2) is even, there are A + 1 sequences, namely o = {n,n — 2,n —
4,...,2}, and o' for 1 <i < X\, where o' is constructed from o by subtracting all
elements by 1 starting from the (A + 1 — ¢)th position.

Now by (1.18), we have

A—1 A A
cno(k — ) = (=) <H(k - z')2> Z(H In+1-ad )) (k—=X+7), (1.20)
i=1 j=0 ‘Ni=1

where ag denotes the ith element of a’.
The sum in (1.20) has some symmetry, so writing it backwards and adding that

to itself, we factor out the term involving k:

AA
QZ(Ha n+1—a)>(k A+j)= (2k—A)ZHaf(n+1—a) (1.21)

As we know the sequences a’ explicitly, the product on the right of (1.21) simplifies
to
25\ (2A—23
)55
)
A

(2))!

Hence the sum on the right of (1.21) is

A 2j) (2A—2j
Z2A ( )(( ) /) = 22\12, (1.22)
A

Jj=

which can be verified, for instance, using the snake oil method [197]. Substituting

this into (1.20) gives (1.17) for even n. O
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Remark 1.2.2. For fixed k, the map n +— f,(k) can be given by the evaluation of

a polynomial in n of degree k. This follows from

fn(k)zzk:G) > (al’k )2, (1.23)

- e ,CL]'
=0 ay+-+a;=k
a; >0

because the right-hand side is a linear combination (with positive coefficients only

n(n—1)--(n—j+1)

depending on k) of the polynomials (?) = i

j=0,1,... k.
From (1.23) the coefficient of (}) is seen to be k!?. We therefore formally obtain

in n of degree j for

the first-order approximation W, (s) ~, n*/?T'(s/2 + 1) for n going to infinity, see
also [123]. In particular, W,,(1) =, v/nmw/2. (This says that the sum of n random
unit vectors in the plane has length around the order of \/n.)

n

Similarly, the coefficient of (k—l) is %k!Q, which gives rise to the second-order

approximation

(M k=L ol n Nk k1) k—2
k! (k) + 1 k! <k:—l kln 1 En®"" +0(n" )

of fn(k). We therefore obtain

W) =2 (n= )0 (5 +1) +0(542) - r(543) ). a20)

which is exact for s = 0,2, 4; it is even indicative of the pole at s = —2 (see below).
In particular, W,,(1) =2, v/n7m/2++/7/n/32. More general approximations are given
in [81]. O

Remark 1.2.3. It follows straight from (1.10) that, for primes p, f,,(p) = n modulo
p. Further, for k > 1, f,(k) = n mod 2. This may be derived inductively from the
recurrence (1.11) since, assuming that f,, (k) = n mod 2 for some n and all k£ > 1,

k

Frpr (k) =) <];>an(j) =1 +jzk; <I;>n =1+n(2F-1)=n+1 (mod?2).

j=0
Hence for odd primes p,
fn(p) =n  (mod 2p). (1.25)
The congruence (1.25) also holds for p = 2 since f,(2) = (2n — 1)n — compare with

(1.23). In particular, (1.25) confirms that the last digit in the column for s = 10 is

always n mod 10 — an observation from Table 1. O
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Remark 1.2.4. The integers f3(k) (respectively f4(k)) also arise in physics, see for
instance [20], and are referred to as hexagonal (respectively diamond) lattice inte-
gers. The corresponding entries in Sloane’s online encyclopedia [180] are A002893
and A002895. Both f3(k) and fi(k) are also Apéry-like sequences; see Chapter
11. We recall the following formulas [20, (186)—(188)], relating these sequences in
non-obvious ways:

<Z f3<k><—x>’“)2 =" fa(k)? -

1
k>0 k>0 ((1+2)3(1 + 9z))F*z

3k

_ (—z(1+2)(1+92))F ok
— kgo fa(k) f3(k) (1 —32)(1 + 32))2F+1 — kgofz;(k:) (EDIESTIS

We are unable to find similar formulas connecting f5(k). O

1.3. Analytic features of the moments

This section collects analytic features of the moments W, (s) as a function in
s. In particular, it is shown that the recurrences for the even moments W, (2k)
extend to functional equations. This is deduced in the usual way from Carlson’s
theorem. We give the details, since the explicit form of the functional equations and
the resulting pole structures are crucial for the discovery and proof of the closed

forms in the cases n = 3,4, 5 obtained in here and in Chapter 2 and 3.

1.3.1. Analyticity. We start with a preliminary investigation of the analyt-
icity of W, (s) for a given n. This analyticity also follows from the general principle
that the moment functions of bounded random variables are always analytic in a

strip of the complex plane containing the right half-plane.
Proposition 1.2. W, (s) is analytic at least for Re s > 0.

PROOF. Let sy be a real number such that the integral in (1.1) converges for
s = s9. Then we claim that W,,(s) is analytic in s for Res > sg. To this end, let s

be such that sg < Res < sg + A for some real A > 0. For any real 0 < a < n,
|as| _ aRes < n)\aso’

and therefore

n
627ri:pk

S

da < n*W,(sg) < oco.

sup /
so<Res<so+A J[0,1]™ || .7
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This local boundedness implies (see for instance [145]) that W, (s) as defined by the
integral in (1.1) is analytic in s for Res > sg. Since the integral clearly converges

for s = 0, the claim follows. O

This result will be extended in Theorem 1.5 and Corollary 1.1.

1.3.2. n =1 and n = 2. It follows straight from the integral definition, or
from the physical interpretation of the problem, that Wi(s) = 1. In the case n = 2,
direct integration of (1.39) below yields

Wa(s) = 2571 /01/2 cos(mt)*dt = (;2>, (1.26)

which may also be obtained using (1.8). In particular, W5(1) = 4/7. It may be
worth noting that neither Maple 14 nor Mathematica 7 can evaluate Wa(1) if it is
entered naively in form of the defining (1.1) (or expanded as the square root of a

sum of squares), each returning the symbolic answer 0.

1.3.3. Functional equations. We may lift the recursive structure of f,, de-
fined in Section 1.2, to W), on appealing to Carlson’s theorem [185]. We recall that
a function f is of exponential type in a region if | f(z)| < Me*! for some constants

M and c.

Theorem 1.3 (Carlson). Let f be analytic in the right half-plane Re z > 0 and of

exponential type with the additional requirement that
()] < M

for some d < m on the imaginary axis Rez = 0. If f(k) =0 for k=0,1,2,... then
f(z) = 0 identically.

Example 1.3.1. One obvious function f for which f(k) =0 for k = 0,1,2,... is
f(z) = sin(rz). Here Carlson’s theorem does not apply because the growth constant

on the imaginary axis is exactly . O

Theorem 1.4. Given that f,(k) satisfies a recurrence

eno(k) fa(k) 4+ con(k) fu(k +X) =0
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with polynomial coefficients ¢y, j(k) (see Theorem 1.2), then Wy, (s) satisfies the cor-

responding functional equation
cno(8/2)Wh(s) + -+ +cpn(s/2)Wyh(s +2X) =0, for Res > 0.
PRrOOF. Let
Un(s) :==cno(s)Wn(28) + - + cnn(8)Wi(25 + 2X).

Since fn (k) = W, (2k) by Proposition 1.1, Uy (s) vanishes at the nonnegative integers
by assumption. Consequently, U, (s) is zero throughout the right half-plane and we
are done, once we confirm that Theorem 1.3 applies. By Proposition 1.2, W,,(s) is

analytic for Res > 0, and clearly |W,,(s)| < nR¢*. Thus
Un(3)] < (leno(s)] + lena()ln? 4+ + ea(s) 2 ) n2Fes,

In particular, U,(s) is of exponential type. Further, U, (s) is polynomially bounded
on the imaginary axis Re s = 0. Thus U, satisfies the growth conditions of Carlson’s

Theorem. O

Example 1.3.2. For n = 2,3,4,5 we find

(s+2)Wa(s+2) —4(s+ 1)Wa(s) =0,

(54 4)2W3(s 4 4) — 2(55 + 305 + 46)W3(s + 2) + 9(s 4 2)2W3(s) = 0,

(5 4+ 4)3Wy(s +4) — 4(s + 3)(55% + 30s + 48)Wiy(s + 2) + 64(s + 2)>Wa(s)

0,
(54 6) Ws5(s 4+ 6) — (35(s + 5) +42(s +5)> + 3)Wis(s + 4) +

(5 4+ 4)%(259(s + 4)% + 104) Wi (s + 2) — 225(s + 4)%(s + 2)*W;(s) = 0.

We note that in each case the recursion lets us determine significant information
about the nature and position of any poles of W,,(s). We exploit this in the next
theorem for n > 3. The case n = 2 is transparent, since Wa(s) = (;2) which has

simple poles at the negative odd integers.

Theorem 1.5. Let an integer n > 3 be given. The recursion guaranteed by Theo-
rem 1.4 provides an analytic continuation of Wy(s) to all of the complex plane with

poles of at most order two at certain negative integers.



14 1. ARITHMETIC PROPERTIES OF SHORT RANDOM WALK INTEGRALS

PROOF. Proposition 1.2 proves analyticity in the right half-plane. It is clear
that the recursion given by Theorem 1.4 ensures an analytic continuation with poles
only possible at negative integer values compatible with the recursion. Indeed, with

A = [n/2] we have

Wo(s) = _ena(s/2)Wi(s +2) + -+ + e (s/2)Wa(s + 24) (1.27)

¢no(s/2)
with the ¢, ; as in (1.16). We observe that the right side of (1.27) only involves
W (s + 2k) for k > 1. Therefore the least negative pole can only occur at a zero of
¢n,0(s/2) which is explicitly given in (1.17). We then note that the recursion forces

poles to be simple or of order two, and to be replicated as claimed. O
Corollary 1.1. Ifn > 3 then W,(s), as given by (1.1), is analytic for Res > —2.

PrOOF. This follows directly from Theorem 1.5, the fact that ¢, o(s/2) given
in (1.17) has no zero for s = —1, and the proof of Proposition 1.2. U

Example 1.3.3. In Figure 2, the analytic continuations for each of W3, Wy, Ws,
and Wy are plotted. Using the recurrence given in Example 1.3.2, we find that W3(s)
has simple poles at s = —2, —4, —6, . ... Similarly, we find that W,y has double poles
at —2,—4,—6,.... ¢

Remark 1.3.1. More generally, it would appear that Theorem 1.5 can be extended
to show that
e for n odd W,, has simple poles at —2p for p =1,2,3,..., while
e for n even W, has simple poles at —2p and 2(1 —p)—n/2 for p =1,2,3,...
which overlap when 4|n.
This conjecture is further investigated in Chapter 2.
Knowledge about the poles of W, for instance reveals the asymptotic behaviour

of the probability densities at 0; this is detailed in Chapter 3. O

1.3.4. Convolution series. Our attempt to lift the convolution sum (1.11) to

Wi (s) resulted in the following conjecture:

Conjecture 1.1. For positive integers n and complex s,

2
Wan(s) =Y (5/,2> Waon_1(s — 2j). (1.28)

>0 \J
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The right-hand side of (1.28) refers to the analytic continuation of W), as guar-
anteed by Theorem 1.5. Conjecture 1.1, which is consistent with the pole structure
described in Remark 1.3.1, has been confirmed by David Broadhurst [65] using a
Bessel integral representation for W,, given in (1.30), for n = 2,3,4,5 and odd
integers s < 50 to a precision of 50 digits. By (1.11) the conjecture clearly holds

for s an even positive integer. For n = 1, we obtain from (1.28),

wi =3 () = ()

which agrees with (1.26).
A partial resolution of Conjecture 1.1 is one of our focuses; this is achieved in

Chapter 3.

1.4. Bessel integral representations

As noted in the introduction, Kluyver [123] made a lovely analysis of the cumu-
lative distribution function of the distance traveled for various fixed step lengths. In

particular, for our uniform walk Kluyver provides the Bessel function representation
o0
P,(t) =t / Ji(xt) Jy (x) dz. (1.29)
0

Here and below J,(z) denotes the Bessel function of the first kind, defined by the

series

N B e
Tnl2) = Zom!I‘(m+n+ 1) (5) ’

Thus,
Whn(s) = / t° pp(t) dt, where p, = P..
0

From here, Broadhurst [65] obtains

T(1+3%) [~ 1 d\*
o — 25+1—k 2 / 2k—s—1(_ ~ n 1.
Wh(s) Th—2) Jo x ( wda:) Jy(x) dx (1.30)

for real s and is valid as long as 2k > s > max(—2, — ).

1.5. The odd moments of a three-step walk

In this section, we combine the results of the previous sections to finally prove

the hypergeometric evaluation (1.4) of the moments W5(k) in Theorem 1.6.
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It is elementary to express the distance y of an (n + 1)-step walk conditioned
on a given distance = of an n-step walk. By a simple application of the cosine rule,

we find
y? = 2% + 14 2z cos(h),

where 6 is the exterior angle of the triangle with sides of lengths z, 1, and y:

It follows that the sth moment of an (n 4 1)-step walk conditioned on a given

distance z of an n-step walk is

1 (7 l’_ﬁ
gs(uz:)::ﬁ/O y5d0:|:z:—i—1|82Fl<212

4x
(x+1)2> (1.31)

Observe that gs(x) does not depend on n. Since W;,41(s) is the sth moment of the

distance of an (n + 1)-step walk, we obtain

W (s) = /0 " gu(2) pula) da, (1.32)

where p,(xz) = P (z) is the density of the distance x for an n-step walk. Clearly,
for the 1-step walk we have p;(z) = d1(z), a Dirac delta function at x = 1. It is
also easily shown that the probability density for a 2-step walk is given by pa(x) =
2/(nv4 — 2?) for 0 < x < 2 and 0 otherwise. The density ps(x) is given in (1.3).
More details for 2- and 3-step walks are given in Chapter 4.

For n = 3, based on (1.12) we define

1 S S

Vi(s) = sl 22202
3(s) 32( 11

4), (1.33)

so that by Proposition 1.1, W3(2k) = V3(2k) for nonnegative integers k. This led
us to explore V3(s) more generally numerically and so to conjecture and eventually

prove the following:
Theorem 1.6. For nonnegative even integers and all odd integers k:
Ws(k) = Re Va(k).

Remark 1.5.1. Note that, for all complex s, the function V3(s) also satisfies the

recursion given in Example 1.3.2 for W3(s) — as is routine to prove using creative
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telescoping [161]. However, V3 does not satisfy the growth conditions of Carlson’s

Theorem 1.3. Thus, it yields another illustration that the hypotheses can fail. ¢

PROOF OF THEOREM 1.6. It remains to prove the result for odd integers. Since,
as noted in Remark 1.5.1, for all complex s, the function V3(s) also satisfies the

recursion given in Example 1.3.2, it suffices to show that the values given for s = 1

and s = —1 are correct. From (1.32), we have the following expression:
2 2 gs(aj) 2 7T/2
W = — ——dr = — 2sin(t))dt. 1.34
) == [ e =2 [ s (134

For s = 1: combining equation (1.31), [46, Exercise 1c|, and Jacobi’s imaginary
transformations [46, Exercises 7a & 8b], we have

NG

T +

gi(z) =(x+1)E ( > Re (2E(z) — (1 — 2%)K (z)) . (1.35)

b 3

Thus, from (1.34) and (1.35), and using the integral definitions of the complete
elliptic integrals ¥ and K,

/2
Wy(1) = - Re/o (2 E(2sin(t)) — (1 — 4sin2(t))K(2sin(t))) dt

™

4 /2 pw/2 S S
= Re/ / 2\/1 — 4sin”(t) sin®(r) dtdr

— Re /ﬂ/z/ — 4sin*() dtdr.
V/1 — 4sin?(t) sin®(r)

Amalgamating the two last integrals and parameterising, we consider

n/2 )2 2(t) sin?
/ / 1 —|-a sin ( ) — 2a?sin®(t) sin®(r) dtdr. (1.36)
— a2 sin?(t) sin?(r)

[\

We now use the binomial theorem to integrate (1.36) term-by-term for |a| < 1

and substitute

throughout. Evaluation of the consequent infinite sum produces

Q(a) = kzzo(—mk (‘E) [a% (‘j)z 2kt (‘2) (k_+§1> _ g2kt <k_+%1> T

k o2k N 1 -3 =53
_ ) 207202
=2 (-1 ( > (1—2k)2  ° 2( 1,1

k>0

Analytic continuation to a = 2 yields the claimed result for s = 1.
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For s = —1: we similarly and more easily use (1.31) and (1.34) to derive

w/2
Ws3(—1) = Re% /0 K (2sin(t)) dt

R 4 /7r/2 /71'/2 1 i V( )
= e — t T = —1 .
w2 Jo Jo o /1—4sin®(t)sind(r) ’

The corresponding imaginary transformation is —— K (M) = Re K(x). O

r+1 1+x

Example 1.5.1. Theorem 1.6 allows us to establish the following equivalent ex-

pressions for W3(1):

13 111
W3(1):f(3F2( 222

1 1 \/g 111
— ) - = ~ . F 27272
3 1,1 ) >+ 32(

4

1
(k3)

3 21/3 1 27922/3 /9
_ 77r6<7) 7—r6(7). 1.
16 74 3) T4 3 (1.37)

_ o3 I Uk) +V3 25

T2

These rely on using Legendre’s relation, Orr-type theorems, and the evaluation of

K (k3) where ks = \ég\/%l is the third singular value of K [46]. (We come back to

these tools in Chapter 12.)

More simply but similarly, we have

72 16 74

K2 (ks) 323 F6<;>.

Wa(—1) =2V3 (1.38)

Using the recurrence presented in Example 1.3.2, it follows that similar expressions

can be given for W3 evaluated at odd integers; see also Section 3.7. O

Remark 1.5.2. As with (1.37),

1 111
ImV3(1):—3F2<2’2’2 4

1 V3 111
— _ — E 27292
] 272 >> ReV})( 3) 3 2<

From the expansion (1.8) and the closed form for W3(1), we are thus able to evaluate

the following sums:

(X)) S0 ¢)
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1.5.1. Conclusion. The behaviour of these two-dimensional walks provides a

fascinating blend of probabilistic, analytic, algebraic and combinatorial challenges.

In the next three chapters, we will continue our analysis of these walks, with a
particular focus on the four-step walk.

1.6. Appendix: Numerical evaluations

A one-dimensional reduction of the integral (1.1) may be achieved by taking

symmetry into account:

n—1
Wals) = [ i Y e
P>

Note, though, that this form breaks the symmetry in the integrand and is not

d(l’l,...,xn,l). (139)

conducive for proofs, such as that of Proposition 1.1. For n > 5, it is very hard to
evaluate high dimensional integrals such as (1.39) to any reasonable precision using
schemes like Gaussian or tanh-sinh quadrature [23].

From (1.39), we note that quick and rough estimates are easily obtained using
the Monte Carlo method. Moreover, since the integrand function is periodic this
seems like an invitation to use lattice sequences — a quasi-Monte Carlo method.
E. g. the lattice sequence from [79] can be straightforwardly employed to calculate
an entire table in one run by keeping a running sum over different values of n and
s. A standard stochastic error estimator can then be obtained by random shifting.

Generally, however, Broadhurst’s representation (1.30) seems very good for high
precision evaluations of W, (s). We close by commenting on the special cases n =

3, 4.

Example 1.6.1. The first high precision evaluations of W3 were performed by
David Bailey who confirmed Theorem 1.6 for s = 2,...,7 to 175 digits. This was
done on a 256-core LBNL system in roughly 15 minutes by applying tanh-sinh

integration to

11
Ws(s) = /0 /0 (9 — 4(sin®(rz) 4 sin®(my) + sin® (7 (z — y))))s/2 dydz,

which is obtained from (1.39). More practical is the one-dimensional form (1.34)
which can deliver high precision results in minutes on a laptop. For integral s,

Theorem 1.6 allows extremely high precision evaluations. %
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Example 1.6.2. Assuming that Conjecture 1.1 holds for n = 2 (for a proof, see
Chapter 3), Theorem 1.6 implies that for nonnegative integers k
2 1 ko _ ko
s/2 5, —5tJ—5+7]
Wy(k) =R P2 2 b2 4.
1o ez<j>“< 1,1
j=0
This representation is very suitable for high precision evaluations of Wy, since

roughly one correct digit is added by each term of the sum. O



CHAPTER 2

Three-Step and Four-Step Random Walk Integrals

ABSTRACT. We investigate the moments of distances of 3- and 4-step uniform
random walks in the plane. We further analyse a formula conjectured in Chapter
1 expressing 4-step moments in terms of 3-step moments. Diverse related results

including hypergeometric and elliptic closed forms for W4(+1) are given.

2.1. Introduction and preliminaries

Continuing research commenced in [53] (Chapter 1), for complex s, we consider

the n-dimensional integral

Why(s) ::/ e2r ekt
[0,1]" kzzl

which occurs in the theory of uniform random walks in the plane, where at each

dax (2.1)

step a unit-step is taken in a random direction. As such, the integral (2.1) expresses
the sth moment of the distance to the origin after n steps. The study of such walks
provides interesting numeric and symbolic computation challenges; indeed, nearly
all of our results were discovered experimentally.

We recall that for n > 3, the integral (2.1) is well-defined and analytic for
Res > —2, and admits an analytic continuation to the complex plane with poles at
certain negative integers.

For s an even positive integer, we have

Wa(2k)= > <a17 ' k 7%)2. (2.2)

ai+--+an==~k

Furthermore, as proved in Chapter 1, we have

3 21/3 1 27 22/3 2
=22 1p6(2) 422 p6(Z2 2.
Ws(l) = 157 <3>+ 4 (3) (2:3)
328 /1
Wg(—1)_T6?r <3> (2.4)
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Using the two-term recurrence for Wj, it follows that similar expressions can be
given for W3 evaluated at any odd integer. It is one of the goals of this chapter to

give similar evaluations for a 4-step walk.

2.2. Bessel integral representations

We start with the result of Kluyver [123], amplified in [195, §31.48] and ex-
ploited in Chapter 1, to the effect that the probability that an n-step walk ends up

within a disc of radius « is
P,(a) = a/ Ji(ax)Jy () de. (2.5)
0

From this, Broadhurst [65] obtains

valid as long as 2k > s > —n/2.

Example 2.2.1 (W,,(£1)). In particular, from (2.6), for n > 2, we can write:

Wn(-1) = /OOO Jo(x)dz, Wy(l)=n /Ooo Jl(a:)JO(x)”*l%. (2.7)
For 0 < s < n/2, we have
—s) = 1—5F(1_S/2) Ooxs—l () da
W) =2 H 2 [T ) s (28)

so that W, (—s) essentially is the analytic continuation of the Mellin transform (see

e.g. [118]) of the nth power of the Bessel function Jj. O

Example 2.2.2. Using (2.8), the fact that Wj(s) =1 and Wa(s) = (sj2) translates
into the evaluations

. _os-1_L(s/2)
/0 25 o (z) dz = 2 1@,

. 1 T(s/2T(1/2 - s/2)
/0 * 1‘]g(”c)d“’“_zra/g) T(1— s/2)2

in the region where the left-hand side converges.

The Mellin transforms of J§ and Jg§ in terms of Meijer G-functions appear in

the proofs of Theorems 2.2 and 2.3. O
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Remark 2.2.1. Here, we demonstrate how Ramanujan’s ‘master theorem’ may be
applied to find the Bessel integral representation (2.6) in a natural way.

Ramanujan’s master theorem [112, 9] states that, under certain conditions on
the analytic function ¢,

(3] 0 (_ x)k
2 Y=ok | dz = T(v)p(—v). (2.9)
0 k!
k=0

The proof is based on the residue theorem and the inverse Mellin transform.

Based on the evaluation (2.2), we have, as noted in Chapter 1, the generating

function

T k — kN T
!> - (Z ((k:‘))2 ) = Jo(2v/z)" (2.10)

2
) k>0
for the even moments. Applying Ramanujan’s master theorem (2.9) to ¢(k) :=

Wi,(2k)/E!, we find

(_
> Wa(2Kk) G

k>0

F'(v)e(—v) = /00 "L (2y/x) da. (2.11)

0

Upon a change of variables and setting s = 2v,

_5) = 17311(178/2) Ooxsfl n() dr
Wi(—s) = 2t [ ) da

This is the case k = 0 of (2.6). The general case follows from the fact that if F'(s) is
the Mellin transform of f(x), then (s —2)(s —4)--- (s — 2k)F(s — 2k) is the Mellin
transform of (—li)k f(x). O

z dz

2.2.1. Pole structure. A very useful consequence of equation (2.8) is the

following proposition.

Proposition 2.1 (Poles). The structure of the poles of W, is as follows:
(a) (Reflection) For n = 3, we have for k =0,1,2,... that

2 Wy (2k)
7_‘.\/3 32k

and the corresponding poles are simple.

Res(_og—2)(W3) =

> 0,

(b) For each integer n > 5, Wy, (s) has a simple pole at —2k — 2 for integers 0 <
k < (n—1)/4 with residue given by

-1 k 00
Res(_op—2)(Wn) = (4]%')2 /0 2R () da. (2.12)
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(¢) Moreover, for odd n > 5, all poles of Wy(s) are simple as soon as the first
(n—1)/2 are.

In fact, we believe that for odd n, all poles of W, (s) are simple as stated in
Conjecture 2.1. For individual n this may be verified as in Example 2.2.3. This was

done by the authors for n < 45.

PROOF. (a) Res_o(W3) = 2/(v/37) from [195, p. 412], since it is the value of
JoT @ J3(x) dz in accordance with (2.12). Letting r3(k) := Res(_op) (W), the
explicit residue equation is

(10k* — 30k + 23) r3(k — 1) — (k — 2)?r3(k — 2)
9(k—1)2 ’

rs (k) =
which has the asserted solution, when compared to the recursion for Ws(s),
(5 +4)*Wa(s 4+ 4) — 2(5s* + 305 + 46)W3(s +2) +9(s + 2)°W3(s) = 0.  (2.13)

We give another derivation in Example 2.3.2.
(b) For n > 5 we note that the integral in (2.12) is absolutely convergent since
|Jo(z)] <1 on the real axis and Jy(x) ~ /2/(wz) cos(x — w/4), see [2, (9.2.1)].

Since

. 2 B
Slggk(s —2k)T(1—5/2) = k= 1)

the residue is as claimed by (2.8).

(¢) As shown in Chapter 1, W,, for odd n satisfies a recursion of the form
-1

(=)l T (s +24)* Wals) +ea()Wa(s+2) -+ (s + 20)" 7 Wy (s +2)) = 0,
j=1

with polynomial coefficients of degree n — 1 where A = (n + 1)/2. From this,
on multiplying by (s + 2k)(s + 2k — 2)---(s — 2k + 2)\), one may derive a
corresponding recursion for Res(_gz)(W,) for & = 1,2, ... Inductively, this lets
us establish that the poles are simple. The argument breaks down if one of the

initial values is infinite as it is when 4|n.

O
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Example 2.2.3 (Poles of W5). We illustrate Proposition 2.1 in the case n = 5. We

start with the recursion:

(5 +6)"Ws(s 4+ 6) — (35(s 4+ 5) + 42(s + 5)% + 3)W5(s + 4)

+ (s +4)%(259(s + 4)? +104) W5 (s + 2) = 225(s + 4)%(s + 2)*Ws(s).
From here,

4
lim (s + 2)?Ws(s) = —— (285W;5(0) — 201W5(2) + 16Ws5(4)) = 0
s——2 225

which shows that the first pole is indeed simple as is also guaranteed by Proposition
2.1b. Similarly,

i (5 + 4T3 (s) = oo (5W5(0) — Ws(2)) =0

showing that the second pole is simple as well. It follows from Proposition 2.1c
that all poles of W5 are simple. More specifically, let r5(k) := Res(_op) (W5). With
initial values r5(0) = 0,75(1) and 75(2), we derive that
k*rs(k) — (5 + 28k 4+ 63k* + T0k3 + 35 k*) r5(k + 1)
225(k + 1)2(k + 2)2
(285 + 518k + 259 k2) r5(k + 2)
225(k + 2)2 '

7’5(k7 + 3) =

O

Example 2.2.4 (Poles of Wy). Let ry(k) := lims_, _ox(s + 2k)?Wy(s), then the

recursion for Wy(s)
(5 +4)°Way(s +4) — 4(s + 3) (55> + 30s + 48) Wy (s + 2) 4+ 64(s + 2)3Wy(s) = 0

gives

1 (2k+1)(5k%2 +5k+2 1 k3
7“4(/€+2):32( zgﬁ?+l)3 )7“4(16‘4-1)—

64 mm(k)-

We also compute that
3 34+ 4WL(0) — Wi(2
— =7r4(1) = lim (s + 2)2W4(s) - + 4W4(0) A( )
277—2 s——2 8

The first equality is obtainable from (2.19) in the next chapter. Further, L’'Hopital’s

rule shows that the residue at s = —2 is

/ . / ey _ T
lim i((s N 2)2W4(5)) _ 9 + 18W4(0) — 3W4(2) + 4W} (0) — W} (2)
s——2ds 16
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with a numerical value of 0.316037 ... which we were able to identify as % log(2).
This is proven in Chapter 3, section 6.

We finally record a remarkable identity related to the pole of Wy at —2 that
was established in [195, p. 415]:

o0 oy 1 r2v)'(v)
/0 To@)at™ de = o T3 (v + 1/2)°

2.2.2. Meijer G-function representations. The Meijer G-function was in-
troduced in 1936 by the Dutch mathematician Cornelis Simon Meijer (1904-1974).
It is defined, for parameter vectors a and b [32], by

mn [ & m,n ai,...,Qqp
G G
pa (b ) (bla‘”ubq m)
?1Fbk_t)nk 1T —ap+1)
27” Hk =m+1 1_bk’+t)Hk n+1r(ak_t)

ghdt.  (2.14)

In the case |z| < 1 and p = ¢ the contour L is a loop that starts at infinity on a
line parallel to the positive real axis, encircles the poles of the I'(by — t) once in
the negative sense and returns to infinity on another line parallel to the positive
real axis. L is a similar contour when |z| > 1. Moreover Gh;l, is analytic in each
parameter, in consequence so are the compositions arising below.

Our main tool below is the following consequence of the Mellin convolution

formula [118], giving the Mellin transform of a product.

Theorem 2.1. Let G(s) and H(s) be the Mellin transforms of g(x) and h(x) re-
spectively. Then
1 d+ioco

2mi

v Js—ico

/ e g(z)h(z) de = G(2)H (s — z)dz (2.15)
0
for any real number & in the common region of analyticity.

This leads to:

Theorem 2.2 (Meijer form for W3). For all complex s

T(1+5/2) L1l 1
Wa(s) = o —y72) 05 <1/2,_s/2,_s/2‘4>' (2.16)
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Proor. We apply Theorem 2.1 to Jg’ = Jg - Jo for s in a vertical strip. Using
Example 2.2.2 we then obtain
o 1 [oHie0 5= 2 D (z/NT(1/2 — 2/2) T(s/2 — 2/2
[ tsptwran— L C/AN0/2=2/2) Ts/2=2/2)
0 271 Js_ino L'(1/2) I'(1-2/2) N(l—s/2+2/2)

281 O T()D(1/2 - O (s/2 — 1)
T 2r(1/2) 2 /5/21-00 4 (1 —t)2T'(1 —s/2+1) di

2 L,y LL1 1
CaT(1/2) 33\ 1/2,5/2,5/2 |4
where 0 < § < 1. The claim follows from (2.8) by analytic continuation. O

Similarly we obtain:

Theorem 2.3 (Meijer form for Wy). For all complex s with Res > —2

W4(8)_2Sr(1+s/2) 2}2< 1,(1—15)/2,1,1 ‘1> 2.17)

T D(-s/2) *\1/2,—-s/2,—5/2,—5/2

ProOOF. We now apply Theorem 2.1 to J{)l = Jg . Jg, again for s in a vertical

strip. Using once more Example 2.2.2, we obtain

/OO 1 ey de = - % D(z/2)T(1/2 — 2/2) (/2= 2/2T(1/2 = 5/2 4+ 2/2) |
o O o e AnD(1 — 2/2)? T(1—s/2+2/2)? :
1 oo/ 1L,(145)/2,1,1
B %Gi’i<1/2,s/2,s/2,3/2 ‘1>

where 0 < § < 1. The claim again follows from (2.8). O

We illustrate with graphs of W3, W, in the complex plane in Figure 1. Note
the poles, which are white, and zeros, which are black (other complex numbers are
assigned a non-unique color depending on argument and modulus in such a way
that the order of poles and zeros is visible). These graphs were produced employing
the Meijer forms in their hypergeometric form as presented in the next section. In

the case n = 4, the functional equation was employed for s with Res < —2.

2.2.3. Hypergeometric representations. Slater’s theorem [142, p. 57] ex-
pands certain classes of Meijer G-functions in terms of hypergeometric functions.

In particular, W3(s) and Wy(s) as given in Theorems 2.2 and 2.3 can be expanded.

Corollary 2.1 (Hypergeometric forms). For s not an odd integer, we have

an () (3 V7 BBA 1Y, (9) (5 ohod
W3(8) - 92s+1 s—1 3F2 s+3 s+3 Z + s 3F2 1 s—1
2 2 0 2 2 ’ 2

i), (2.18)




28 2. THREE-STEP AND FOUR-STEP RANDOM WALK INTEGRALS

(a) Ws (b) Wy

FIGURE 1. W3 via (2.16) and Wy via (2.17) in the complex plane.

and, if also Res > —2, we have

tan (Z2 s \? 11154
Wa(s) = 2§82)<3_1> 4F3<3 5 2
2

(2.19)

These analytic continuations of W3 and Wy, first found in [81], can also be
obtained by symbolic integration of (2.6) in Mathematica. We note that for s = 2k =
0,2,4,... the first term in (2.18) (resp. (2.19)) is zero and the second is a formula
given in (1.12) (resp. (1.13)). Thus, one can in principle also prove (2.18) and (2.19)
by applying Carlson’s theorem — after showing the singularities at 1,3,5,... are

removable.

Example 2.2.5. From (2.18) and taking the limit using L’Hépital’s rule, we have

0o 3 2n
16 V31 3 (%) (~1)k
W3(1)23K2< >log2+ g o E .
0 22 T At =k

In conjunction with (2.4), we obtain the sum

i (2n>3 n DT 1o(l)(3n — 8v/3log2)

n 44n N 24 - 22/3 74

n=0

For comparison, (2.19) produces

o (2m4 oo _1)k+1
Wi(—1) = %Z (1&1)1 > (1]3: (2.20)
n=0 k=2n+1
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We see that while Corollary 2.1 makes it easy to analyse the poles, the removable
singularities at the odd integers are much harder to resolve explicitly. For Wy(—1)

we proceed as follows:

Theorem 2.4 (Hypergeometric form for Wy(—1)).

T o (30T
W4(—1):7F6( 202020202 1). (2.21)
4 11,1,1,1,1

Proor. Using Theorem 2.3 we write

1 55/ 1,1,1,1
W4(_1):7G4:4 1111 1].
2 2191273

Using the definition (2.14) of the Meijer G-function as a contour-integral, we see
that the corresponding integrand is
[(1—)2T(t)? LA -0)T®)* sin?(nt
1(2 ) () o= (2 - ) () .5111 (27T )a:t, (2.22)
(3 +1)2I(1—1)2 I'(5 +1)? T
where we have used the reflection formula I'(¢t)['(1 — t) = 7/sin(nt) [196]. We

choose the contour of integration to enclose the poles of I'( % —t). Note then that
the presence of sin?(mt) does not interfere with the contour or the residues (for
sin?(7t) = 1 at half integers). Hence we may ignore sin?(7t) in the integrand
altogether. The right-hand side of (2.22) can then be identified with the integrand
of another Meijer G-function; thus we have shown that

1,1,1,1 1 1,1,1,1
2,2 s Ly Ly o 2,4 y Ly Ly
G4,4<1 111 1) —7r2G4,4<1 111
2729272 2727272

1). (2.23)

The same argument shows that the factor of # applies to all Wy(s) when we change
from G77 to G7).
Now, using the transformation [32]

a
aym,n

m) (2.24)

we deduce that

1% 1 1 2,4 %7%7%a% 1
(=33 4v4<0,0,0,0 )
Finally, we appeal to Bailey’s identity [24, (3.4)]:
F a,1—|—%,b,c,d,e,f 1
T\ 1 ta—blta—clta—dl+a—elta—f

B I'l+a-bTI'l+a—cI'l+a—-dT(14+a—-eI'(1+a—f)
TTA+ T OTOTI(1+a—b-—cl(lta—b—dl(lta—c—dl(l+ta—e—f)

+f—-a,1-b1-¢1-d
el TG 1). 2.25
44(0,1+a—b—c—d,e—a,f—a ( )
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The claim follows upon setting all parameters to 1/2. O

An attempt to analogously apply Bailey’s identity for Wy(1) fails, since its
Meijer G representation as obtained from Theorem 2.3 does not meet the precise
form required in the formula. Nevertheless, a combination of Nesterenko’s theorem

[153] and Zudilin’s theorem [207] gives the following result:

Theorem 2.5 (Hypergeometric form for Wy(1)).

73 31111
1)_%7];6(472’2’2727272

v (13,3433,
W 1 — F ) 9 b ) b) )
a) < 8 392221

3
3992921,1

1). (2.26)

PRrROOF. We first prove a result that will allow us to apply Nesterenko’s theorem,
which converts the Meijer G form of Wy(1) to a triple integral. We need the following

identities which can be readily verified:

d [ _p 22 01,02,a3,a4 by 22 Q1,G2,a3,04

< (ta? . len 2.7
dz (z 4.4 b17b27b3ab4 : : 4.4 bl + 17b27b37b4 “) ( )
d (1 4 22(a1,02,a3,a4 —ay 22 a1 —1,a2,a3,a4
— (tmuGy =2~ GY . 2.2
dz <Z G\ bt ts,b0 7)) 7 G bbby | (2.28)

Let a(z) := Gi:i ( Rl ‘z) Note that a(1) = —27W4(1) by Theorem 2.3.

2027 20 2

Applying (2.27) to a(z) and using the product rule, we get 3a(1)+a’(1) = c1, where
2,2 O’ 1’ 17 1
Cl‘:_G4,4<1 1 1 L.

1
20272 2
Applying (2.28) and (2.24) to a(z), we obtain a/(1) = b; where

9.9 1 111
by =Gy 220201,
' 4v4<0,—1,—1,—1
Appealing to
a 1-b|1
Goi" (b a:) =Gy ( | _a a:)’ (2.29)
we see that by = —c;. Hence a(1) = 4¢;. Converting ¢; to a Giﬁ as in (2.23), which

finally satisfies the conditions of Nesterenko’s theorem, we obtain:

A [ aiga-2)
=z \/ (0= o)yal — (i — ) © W

We now make a change of variable Z = 1 — z. Writing

Z22=2"3(1-(1-2)=2"7%-2"3(1-2)

splits the previous triple integral into two terms. Each term satisfies Zudilin’s

theorem and so can be written as a 7F5. We thus obtain the result as claimed. [
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Zudilin’s theorem will again be used in Chapter 6, and a statement of the
theorem can be found there. Armed with closed forms for Wy(+1), we may thus find
Wy(s) for positive integer s using the recursion. The following alternative relation
was first predicted by the integer relation algorithm PSLQ [18] in a computational

hunt for results similar to that in Theorem 2.4:

Theorem 2.6 (Alternative hypergeometric form for Wy(1)).

5111111
1) —2m-Fg( 7272727222721 ) 2.30
> ! 6( 11,1,1,1,1 (2:30)

or o (h33E1E
W4(1) _ 7F6< 73a ) 929959
1727272a1a1

Proor. For notational convenience, let

34 7333111
4= 27 -F, (472727272’272

128 3.2,2,2,1,1

g4 7331111
B.="_F 4’27272’2’2’21 ’

256 6( 8292221

4 5111111
C::i F 4’2’2727272721
16 7 6( 111,111

By (2.26), Wy(1) = (32/73)(A — B), and the truth of (2.30) is equivalent to the
evaluation Wy (1) = (32/7%)(3A — C). Thus, we only need to show 24+ B —C = 0.

The triple integral for A encountered in the application of Zudilin’s theorem is

///\/1—acyz1—12)_(1y)_$(1_yz))dxdydz,

and can be reduced to a one dimensional integral:

A=A = /01 (K/(kl) :g(’“))g dk.

Here, as usual, K'(k) := K(V1 —k?) and E'(k) := E(V1 — k?).
Happily, we may apply a non-trivial action on the exponents of x,y, z and leave

the value of the integral unchanged ([208], remark after lemma 8). We obtain

///\/:cyzl—x 1_y)z()1_z)da:dydz

= A, ::/O K'(k)E'(k) dk.

The like integral for B can also be reduced to a one dimensional integral,

1
B = By ::/ E*K'(k)? dk.
0
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But B also satisfies the conditions of Bailey’s identity and Nesterenko’s theorem
[153], from which we are able to produce an alternative triple integral, and reduce

it to:
dk
1— k2

As for C, equation (2.51) below details its evaluation, which we also record here:

C/K’

Now 2A+ B—C = A1 + As + By — C' = 0, because the integrand of the latter

1
B=B= [ (K0 - E®) (50 - PKK)

expression is zero. O

Note that the theorem gives the identity

1
/ K'(k)E' (k) dk _/ (1— k) K'(k)*dF, (2.31)
0

among others. Equivalently, an independent proof of this identity means the non-

trivial action is not needed — this is done in Chapter 6.

Remark 2.2.2. Each of the 7Fg’s involved in Theorems 2.4, 2.5 and 2.6 can also
be easily written as a sum of two gF5’s. In Chapter 6, we actually express Wy(—1)
as the sum of two 4F3’s.

The first 7Fg term in Theorem 2.6 satisfies the conditions of Bailey’s identity
(2.25) (witha=e=f=3b=c=d=3):

7333111 16
R P22 22) — %A
3.2,2,2,1,1 3 bt

We can thence convert the right-hand side of (2.30) to a Meijer G form. On the
other hand,
1),

oafL 111
1) rseti(fots

1). (2.32)

1 1,1,1
W4(1): G24< 07 )
bR

2 ’ 27 2

" 1333 94 3
G 222222211 =24G% 27
4,4<1000 44\ 1,

) ) )

)

11
272
;0,0

)

O Nl

1) . (233)
O

Corollary 2.2 (Elliptic integral representation for Wy(1)). We have

W) = 9 / (1= 3K2) K (k)2 dk. (2.34)

7T30
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PROOF. The conclusion of Theorem 2.6 implies (73/16) Wy(1) = C — 3B =
C — 3Bs, and the corollary follows. O

2.3. Probabilistically inspired representations

In this section, we build on the probabilistic approach taken in Chapter 1. We
may profitably view a (m + n)-step walk as a composition of an m-step and n-step
walk for m,n > 1. Different decompositions make different structures apparent.

We express the distance z of an (n+m)-step walk conditioned on a given distance
x of the first n steps as well as the distance y of the remaining m steps. Following
the analysis in Chapter 1 using the cosine rule, for s > 0, the sth moment of an
(n+m)-step walk conditioned on the distance x of the first n steps and the distance

y of the remaining m steps is

1

1 ™ L _ S
nle)i= [ao=to—ypon (]
™ Jo 1

—(ffyy)z) (2.35)

Remark 2.3.1 (Alternate forms for g5). Using Kummer’s quadratic transformation

[11], we obtain

x
2) (2.36)
for general positive z,y. This provides an analytic continuation of s — gs(x,y). In

particular, we have

g-1(2,y) =Re— K (‘””) ,

Ty \Y
9 2
g1(z,y) = Re =¥ {QE <x> - (1 - 2) K (w) } .
g ( Y Y
This second equation has various re-expressions. O

Denote by p,(x) the probability density of the distance z for an n-step walk.

Since Wy, 1m () is the sth moment of the distance of an (n+m)-step walk, we obtain

Wham(s) = /0” /Om 9s(x,y) pn(x)pm (y) dy dz, (2.37)

for s > 0. Since for the 1-step walk we have pi(x) = d1(x), this generalises the
corresponding formula given for W,,;1(s) in equation (1.32).
In (2.37), if n = 0, then we may take po(z) = dp(z), and regard the limits of

integration as from —e and +¢€, € — 0. Then g5 = y* as the hypergeometric function
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collapses to 1, and we recover the basic form
Wls) = [ vpato) o (2.39)

Remark 2.3.2. We can use the sine rule to make a change variable, changing the

dy integral in (2.37) into dz, where y = Va2 + 22 — 2wz cost:

Wi (s) = /0 s { /0 ! /0 ! Wiypn(x)pm(y) dtdx}dz. (2.39)

By uniqueness of the density, the expression inside the braces is pjim. As one

consequence, we obtain a numerically workable expression,

(2.40)

16z

sa 2 K(\maltear)

paa) = Re : .
0 (z+a)y/d—(z—a)2Vi—=z

T3

The density ps(z) for 0 < z < 3 can be expressed by

p3() =Re\7{§K <\/($+1)3(3_3§)>, (2.41)

16z

using p2 and (2.39). To make (2.41) more accessible we can use the following cubic

identity.

Proposition 2.2. For all 0 < x <1 we have

K(\/(g—;)ﬁ?ﬁ +a:)> - 33;32 K<\/(3 - xl)((jzf+ x)3>'

PRrROOF. The proof is typical of the ‘automatic’ approached championed in ex-

perimental mathematics. Both sides satisfy the differential equation
422 (x43)% f (2)+ (2 —3) (z+1)2((2® =922 —924+9) f' (z) +z (2> — 22— 92+9) f" (z)) = 0,

and both of their function values and derivative values agree at the origin. Note that

this is actually a re-parametrisation of the degree 3 modular equation (10.22). O

We apply Jacobi’s imaginary transform [46, p. 73], Re K (z) = 1 K (%) forz > 1,

Tz

to express p3(x) as a real function over [0, 1] and [1, 3], leading to

3 1 K (/g — 3 K (4] B=x)(+a)®
W3(—1)=/ P(z) dx:4/ (eter) dx+/ Ve )d
oo o G-

x.

w2\/x
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The change of variables z — ‘;’—;’; in the last integral transforms it into the
middle integral. Therefore,
1
Ws(—1) :2/ LGOI (2.42)
0 X
To make sense of this observation more abstractly, let
3z (1+2)°(3 — =)

Then for 0 < 2 < 3 we have 0%(z) = z and A(z)\(¢(z)) = 1. In consequence ¢ is

an involution that sends [0, 1] to [1, 3] and

4x
P e

Example 2.3.1 (Series for p3 and W3(—1)). We know that

p3(o(x)). (2.43)

is the sum of squares of trinomials (see (2.2)). Using Proposition 2.2, we may now

apply equation (184) in [20, Section 5.10] to obtain

2\% kzo W (2k) (g)% , (2.44)
with radius of convergence 1. For 1 < x < 3, on using (2.43) we obtain
x 2k
p3(x) = kz <3 n 3x> . (2.45)
From (2.44) and (2.42) we deduce
Wa(- mf Z 9kW23k2f 1)’
compare with (2.56). O

Example 2.3.2 (Poles of W3). From here we may efficiently recover the explicit
form for the residues of W3 given in Proposition 2.1a. Fix integers N > 2k > 0 and

0 < a < 1. Use the series p3(x) = > ;50 a;x 221 in (2.44) to write

3 a > . o N-1 .
W3(S)_/ p3(z)z” de—/ Zajm23+1+s dx:/ Zaj$2y+1+s dx
« 0 =N 0 =
N 2j+s
o
= j— 2.4
Za] 12j+8’ ( 6)
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and observe that all sides are holomorphic and so (2.46) holds in a neighborhood
of s = —2k. Since only the first term on the left has a pole at —2k, we may deduce
that Res(_op)(W3) = ag—1. Equivalently,

2 Ws(2k)
7T\/§ 32k: )

which exposes a reflection property. O

Res(_o_2)(W3) =

Remark 2.3.3 (W5). Using (2.37) we may express W5(s) and Wg(s) as double

integrals, for example,

1):;{1/03/023/ny2 ReK(jj) ReK<\/(x+11)Z§:3_m)>dydx.

We also have an expression based on taking two 2-step walks and a 1-step walk:

Ws(—1) = 84/2 /2/ Re K (2\/sin2a+sin2b+QSinasinbcosc) dedadb,
T 0

but we have been unable to make further progress with these forms. O

2.3.1. Elliptic integral representations. From (2.37), we derive

2s+2 s
/ / 9 (& y dz dy
\/ 1—22)(1 —y?)
2s+2 /2
/ / (sinu, sinv) du dv,

where s > —2. In particular, for s = —1, again using Jacobi’s imaginary transfor-

mation, we have:

K(z/y)
Wa( Re/ / y\/l—m2 1_y2)dacdy (2.47)

3 _ 8 [
- 773/0 /0 ¢<1_t2yz)(1_y2) dydt =73 /0 K*(k)dk.  (2.48)

The corresponding integral at s =1 is

Wi(1) = 32 /01 (k+ DK (k) = E(k)) E< 2vk )dk. (2.49)

3 k2 E+1
Starting with Nesterenko’s theorem [153], we have

1 dxdydz

Wal—1) = — .
(=) 273 /[071]3 \/a:yz(l —z)(1—-y) (1 —2)(1 —2(1 —yz))

(2.50)
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Upon computing the dz integral, followed by the change of variable k? = yz, we
get:

Wy(—1) = / / o 1 =0 )_ > dy dz (2.51)
_ 2 1
— / o _1 yk )k2 dy dk = :3/0 K'(k)*dk. (2.52)

Compare this with the corresponding (2.47). In particular, appealing to Theo-

rem 2.4 we derive the closed forms:

e L AL E SR
2 | K(k)?dk = K'(k)?dk= (=) -Fg| ¥'272°2 22
/0 *) /0 (k) (2>76(111111

4’ ) ) ) )

1). (2.53)

This relation will be made more transparent in Chapter 6.

Recalling Corollary 2.2 and equation (2.31), we also deduce that
e
Wi(1) = = | E'(k)K'(k)dk — 8 Wy(-1).
™ Jo
If we make a trigonometric change of variables in (2.51), we obtain

=3 /K/Q/ \/1—s1n T sin y) dz dy.

We may rewrite the integrand as a sum, and then interchange integration and

summation to arrive at a slowly convergent representation of the same general form

1 1\ 2 11,
- 2 2720 1
0= () (i)

Remark 2.3.4. Integrals of the form (2.50) are related to Beukers’ integrals, which

as Conjecture 1.1:

were used in the elementary derivation of the irrationality of {(3):

Beukers [37] showed that

/ (z(1 —2)y(1 —y)z(1 —2))" _ An+ Bu((3)
[0,1]3 (1= (1—azy)z)"t! dy ’

where A,, By, d, are integers and d,, < 3" is the lowest common multiple of the

first » natural numbers. It is easy to bound the integral, hence

0< W <3(V2-1)*".

Therefore 0 < |A, + Bn((3)] < (2)", implying irrationality.
We revisit such integrals in Chapter 6, some of which also evaluate to ((3), but

the bounds for their integrands are too poor. O
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Remark 2.3.5 (Watson integrals). From the evaluation (2.4) we note that W3(—1)

is twice the value of one of the triple integrals considered by Watson in [194]:

1T dudvd
Ws(—1) = 3/ / / Levew . (2.54)
™ Jo Jo Jo 3—cosvcosw — cosw cosu — cosuCcos v

This is derived in [44] and various related extensions are found in [20].

Watson’s integral (2.54) also gives the alternative representation:

1
Ws(—1) = 7r_5/2(;*§j§< .

11

27272104 ) 2.55
Soeh) (2.55)
The equivalence of this and the Meijer G representation coming from Theorem 2.2

can be established similarly to the proof of Theorem 2.4, upon using the transfor-

mation (2.29). O

Remark 2.3.6 (Probability of return to the unit disk). By a simple geometric
argument, there is a % chance of returning to the unit disk in a 2-step walk. Similarly,
for a 3-step walk, if the second step makes an angle 6 with the first step, then the
third step can only vary over a range of # to return to the unit disk (it can be
parallel to the first step, to the second step, or anywhere in between). Thus the
probability of returning to the unit disk in three steps is

1/7r]0|d0—1—/1 (2)d
el =1 Opg:L' x.

Appealing to (2.44) we deduce that

— W3(2k)  3m
kZOQk(k+1)_ 4 (2:56)

In fact, as Kluyver shows in [123], the probability of an n-step walk ending in the
unit disk is 1/(n+1). This is obtained by setting & = 1 in (2.5). See also [33] for a
very short proof of this fact; the amazing proof uses not much more than the sum
of angles in a triangle. Moreover, [33] gives an extension: for two walkers starting
at the origin, who take m and n steps respectively, the probability that the first
walker ends up further than the second walker is m/(m +n) (for m = 1 we recover
Kluyver’s result; the m = n case is obvious). In terms of integrals, this gives the

non-trivial identity

m

/Om P (z)pm(z)de =

m-+n
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One example of such an integral is (using p3 from Chapter 3)

/24\/3“08_1(%”) (55 PO 2
o mB+22) '\ 1 | (3+a2)? 5

2.4. Partial resolution of the conjecture

We may now investigate Conjecture 1.1 which states, for positive integers n and

complex s,

2
Wan() 23 () Warea(s - 24) (257)

>0 N7
We can resolve this conjecture modulo a technical estimate given in Conjecture

2.2. The proof outline below explains the conjecture by identifying the terms of the

infinite sum as natural residues.

PrOOF. Using (2.8) we write Wo,, as a Bessel integral

_ _SP(1—8/2) > s— n
Wan(—s) = 2! I‘(3/2)/0 57 LJEn () da.

Then we apply Theorem 2.1 to Jg” = Jg"fl - Jo for s in a vertical strip. Since,

again by (2.8), we have
I'(s/2)

/0 LR () do = 28_1mWn(—s),
we obtain
Wan(=5) = 218F(F1<;/82/)2> /Ooo Y CORWACIRE: (2.58)

CT(1—s/2) 1 [5F°1  T(2/2)[(s/2— 2/2)
B W% A_im §F(1 — z/Q)I‘(l _ 3/2 + 2/2) W2n—1(—2) dz

where 0 < d < 1.

Observe that the integrand has poles at z = 5,5 + 2,5 + 4,... coming from
['(s/2 — z/2). On the other hand, the term Wa,,_1(—z) has at most simple poles at
z = 2,4,6,... which are canceled by the corresponding zeros of I'(1 — z/2). This
asserted pole structure of Ws,_1 was shown in Example 2.2.3 for n = 3 and may
be shown analogously for each n = 4,5, ... based on Proposition 2.1.

Since I'(s/2 — z/2) has a residue of —2(—1)7/j! at z = s+ 27, the residue of the
integrand is

_ (=1)T(s/2 + )
JPT(1 = s/2 =)

T(s/2) <—s/2

2
Won—1(=(25+s)) = _F(l “s\ > Won—1(—s — 2j).
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Thus it follows that
—5/2\? .
Wan(—s) =Y (/") Wan-a1(—s—2j), (2.59)
>0 7
which is what we want to prove, provided that the contour of the integral after

(2.58) can be closed in the right half-plane. O

This proof is thus rigorous provided that the next two conjectures hold. Con-

jecture 2.1 is easily checked for individual n.
Conjecture 2.1 (Poles of Wy, _1). For each n > 1 all poles of Wa,—1 are simple.

Conjecture 2.2 (Growth of Wa,_1). For given s,
liminf/ [(z/2)[(s/2 — z/2)
r—oo Jo T(1—2/2)['(1 —5/2+ 2/2)

where v, is a right half-circle of radius v around 6 € (0,1).

WQn—l(_z) dz = 07

Remark 2.4.1 (Other approaches to Conjecture 2.57). We restrict ourself to the
core case with n = 2. One can prove using creative telescoping that both sides of
the needed identity satisfy the recursion for Wy. Hence, it suffices to show that the
conjecture is correct for s = £1. Working entirely formally with (2.6) and ignoring
the restriction on s,
2 0o 2 .
> (‘,5> Wa(—1-2j)=> <_é> 2%{%1‘7; /OO 2% J3 () da
2

>0 N/ =0

on appealing to Example 2.2.1, since for > 0
[e'e) 1 2 T 1 . '
> < '2> (3 I i Jo(2).
j=0 J F(§ + ])
There is a corresponding (formal) manipulation for s = 1. In Chapter 3, we rigor-

ously prove the conjecture for n = 2 and s an integer. O



CHAPTER 3

Densities of Short Uniform Random Walks

ABSTRACT. We continue our study of the densities of uniform random walks in
the plane, focusing on three and four steps, and less so on five steps. As a main
result, we obtain a hypergeometric representation of the density for four steps. It
appears unrealistic to expect similar results for more than five steps. New results
are also presented concerning the moments of the walks. Relations with Mahler

measures are discussed.

3.1. Introduction

Recall that an n-step uniform random walk is a walk in the plane that starts
at the origin and consists of n steps of length 1 each taken in a uniformly random
direction. The study of such walks largely originated with Pearson more than a
century ago [159, 160, 158] who posed the problem of determining the distribution
of the distance from the origin after a certain number of steps. Here we study the
(radial) densities py, of the distance from the origin after n steps. This continues
research commenced in [53, 56] (Chapters 1, 2) where the focus was on the moments
of these distributions:

Wh(s) == /On pn(t)t° dt.

The densities for walks of up to 8 steps are depicted in Figure 1. As established
by Lord Rayleigh [165], p, quickly approaches the probability density 271—””6_$2/ ™ for
large n. This limiting density is superimposed in Figure 1 for n > 5.

Closed forms were only known in the cases n = 2 and n = 3. The evaluation,

for0 <z <2,
2
pae) = 3.)

is elementary. On the other hand, the density p3(z) for 0 < z < 3 can be expressed
in terms of elliptic integrals by

p3(2) :ReﬁK<\/($+1)3(3_x)>. (3.2)

w2 16z

41
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FIGURE 1. Densities p,, with the limiting behaviour superimposed

for n > 5.

One of the main results of this chapter is a closed form evaluation of ps as a hy-
pergeometric function given in Theorem 3.6. In (3.17) we also provide a single
hypergeometric closed form for ps which, in contrast to (3.2), is real and valid on

all of [0, 3]. For convenience, we list these two closed forms here:

1 27,2 2\2
p3(z) = W3z R (33T (9=2") (3.3)
T (3+22) 1 (3+x2)3 ’
2 V16 — 22 2,41 (16—1’2)3
_ 2 (222 ' 4
pi(@) = 5 = Res 2( 5.1 |7 108" ) (3-4)

A striking feature of the 3- and 4-step densities is their modularity. It is this
circumstance which allows us to express them via hypergeometric series; we will
continue our study of modular functions in Chapters 10 and 11.

In Section 3.2 we give general results for the densities p, and prove that they
satisfy certain linear differential equations. In Sections 3.3 — 3.5 we provide special
results for p3, p4, and p5. Particular interest is taken in the behaviour near the points
where the densities fail to be smooth. In Section 3.6 we study the derivatives of
the moment function and make a connection to multidimensional Mahler measures.
Finally in Section 3.7 we provide some related new evaluations of moments and so

resolve a central case of the conjecture in Chapter 1.
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We close this introduction with a historical remark illustrating the fascination
arising from these densities. H. Fettis devotes the entire paper [92] to proving that
ps is not linear on the initial interval [0, 1] as ruminated upon by Pearson [158].

This will be explained in Section 3.5.

3.2. The densities p,

It is a classical result of Kluyver [123] that p, has the following Bessel integral
representation:
o
pu(z) = / o () J0 (1) dt. (3.5)
0
It is visually clear from the graphs in Figure 1 that p, is getting smoother for
increasing n. This can be made precise from (3.5) using the asymptotic formula for

Jo for large arguments [155] and dominated convergence:

Proposition 3.1. For each integer n > 0, the density pp+4 is |n/2] times contin-

uwously differentiable.

We note from Figure 1 that the only points preventing p, from being smooth
appear to be integers. This will be made precise in Theorem 3.1.
We recall a few things about the sth moments W), (s) of the density p, which

are given by
S

de. (3.6)

n

W (s) —/Ooo 2 pn(x) dx—/[o’l]n >

k=1
It was shown in Chapter 1 and 2 that W,,(s) admits an analytic continuation to all

e27rxki

of the complex plane with poles of at most order two at certain negative integers.
In particular, W3(s) has simple poles at s = —2, -4, —6, ... and W4(s) has double
poles at these integers.

Moreover, from the combinatorial evaluation

k 2
W (2K) +§+::k (ah N 7%) (3.7)

it followed that W, (s) satisfies a functional equation, coming from the inevitable
recursion that exists for the right-hand side of (3.7), see e. g. (3.8).

The first part of equation (3.6) can be rephrased as saying that W,,(s —1) is the
Mellin transform of p, [150]. We denote this by W,,(s—1) = M [p,; s]. Conversely,
the density p,, is the inverse Mellin transform of W, (s — 1). We intend to exploit

this relation as detailed for n = 4 in the following example.
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Example 3.2.1 (Mellin transform). For n = 4, the moments Wy(s) satisfy the

functional equation
(5 +4)>Wy(s+4) —4(s+3) (55> + 305 + 48)Wy(s +2) + 64(s +2)>Wy(s) = 0. (3.8)

Recall the following rules for the Mellin transform: if F'(s) = M [f;s] then in the
appropriate strips of convergence
o Mt f(z);s] = F(s + ),
o« MID,f(x)is) = (s —1)F(s — 1),
Here, and below, D, denotes differentiation with respect to x, and for the second
rule to be true, we have to assume, for instance, that f is continuously differentiable.
Thus, purely formally, we can translate the functional equation (3.8) of Wy into

the differential equation Ay - p4(z) = 0 where Ay is the operator
Ay =20 +1)% — 4220560 + 3) +64(0 — 1)° (3.9)
= (z —4)(z — 2)z*(z + 2)(z + 4) D3 + 62* (2* — 10) D?
+ 2 (72" — 3227 + 64) D, + (2° — 8) (2* +8) , (3.10)

where 8 = zD,.. However, it should be noted that p4 is not continuously differen-
tiable. Moreover, p4(z) is approximated by a constant multiple of /4 — x as x — 4~
(see Theorem 3.3) so that the second derivative of ps is not even locally integrable.

In particular, it does not have a Mellin transform in the classical sense. O

Theorem 3.1. Let an integer n > 1 be given.

o The density p, satisfies a differential equation of order n — 1.
e Ifn is even (respectively odd) then py, is real analytic except at 0 and the

even (respectively odd) integers m < n.

PROOF. Asillustrated for ps in Example 3.2.1, we formally use the Mellin trans-
form method to translate the functional equation of W, into a differential equation
Ay - y(x) = 0. Since p,, is locally integrable and compactly supported, it has a
Mellin transform in the distributional sense as detailed for instance in [150]. It
follows rigorously that p, solves A, - y(z) = 0 in a distributional sense. In other
words, p,, is a weak solution of this differential equation. The degree of this equation
is n — 1 because the functional equation satisfied by W,, has coefficients of degree

n — 1 as shown in Chapter 1.
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The leading coefficient of the differential equation (in terms of D, as in (3.10))

turns out to be

] @ —m?) (3.11)

2|(m—n)
where the product is over the even or odd integers 1 < m < n depending on whether

n is even or odd. This is discussed below in Section 3.2.1.

Thus the leading coefficient of the differential equation is nonzero on [0, n] ex-
cept for 0 and the even or odd integers already mentioned. On each interval not
containing these points it follows, as described for instance in [116, Cor. 3.1.6], that
pp, is in fact a classical solution of the differential equation. Moreover the analyticity
of the coefficients, which are polynomials in our case, implies that p,, is piecewise

real analytic as claimed. ([l

Remark 3.2.1. It is a basic property of the Mellin transform, see for instance [94,
Appendix B.7], that the asymptotic behaviour of a function at zero is determined
by the poles of its Mellin transform which lie to the left of the fundamental strip.
Since the poles of W, (s) occur at specific negative integers and are at most of second
order, this translates into the fact that p, has an expansion at 0 as a power series
with additional logarithmic terms in the presence of double poles. This is made

explicit in the case of py in Example 3.4.1.

3.2.1. An explicit recursion. We close this section by providing details for
the claim made in (3.11). Recall that the even moments f,(k) := W, (2k) satisfy
a recurrence of order \ := [n/2]| with polynomial coefficients of degree n — 1. An
entirely explicit formula for this recurrence is given in [189], see Theorem 1.1.

Observe that (3.11) is easily checked for each fixed n by applying Theorem 1.1.
We explicitly checked the cases n < 1000. The fact that (3.11) is true in general is
recorded in Theorem 3.2 below.

For fixed n, write the recurrence for f,(k) in the form Z}:& kiq;(K) where
g; are polynomials and K is the shift £ — £+ 1. Then ¢, is the characteristic
polynomial of this recurrence, and, by the rules in Example 3.2.1, we find that the
differential equation satisfied by p,(z) is of the form g, 1(2%)0" 1+ lower order
terms in 6.

We claim that the characteristic polynomial of the recurrence in Theorem 1.1

satisfied by f,(k) is H2|(m_n) (x — m?) where the product is over the integers 1 <
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m < n such that m = n modulo 2. This implies (3.11). By Theorem 1.1 the

characteristic polynomial is

A j
Yol Y TMadtn+1-ay)|a* (3.12)

§=0 Lt ,yarj i=1
where A = [n/2] and the sum is again over all sequences a1i,...,a; such that
0 <a; <nand o417 < a; — 2. The claimed evaluation is thus equivalent to the
identity in the theorem below, first proven by P. Djakov and B. Mityagin [86],
and communicated to us by D. Zagier. Zagier also gives a very neat and purely
combinatorial proof [57], which uses experimental mathematics, and the key step
involves inserting a dummy variable and finding a recursion in terms of that variable.

Another combinatorial proof is given in [173].

Theorem 3.2. For all integers n,j > 1,
J

Z H(n—sz’)2 = Z Hai(nJrl—ai). (3.13)

o<my,..., mj<n/2 =1 1<ay,..., aj<n =1
m;<mjy1 aiéai+1*2

3.3. The density p3

The elliptic integral evaluation (3.2) of ps is suitable for extracting information
about the features of p3 exposed in Figure 1. It follows, for instance, that ps has a
singularity at 1. Moreover, using the known asymptotics for K(z) [46, Ch. 1], we
may deduce that the singularity is of the form

ps3(z) = 23%210g($ f 1|) +O(1) (3.14)

as r — 1.

We also recall from Chapter 2 that ps has the expansion, valid for 0 < x < 1,

20— x\ 2k
pola) = 05 3 Ws(2h (3) (3.15)

wn-$(0) ()

Jj=0

where

is the sum of squares of trinomials. The following functional relation holds,

4x 3—=x
ps(x) = (37x)(x+1)103 <1+x> ) (3.16)
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so that (3.15) determines p3 completely and also makes apparent the behaviour at

3. We close this section with two more alternative expressions for ps.

Example 3.3.1 (Hypergeometric form for ps). Using the techniques in [75] we can
deduce from (3.15) that

p3(z) = 7 (3 + 22) 241

1 2
2V3x F(373

x? (9 — x2)2
1 >, (3.17)

(34 22)°

which is found in a similar way to the hypergeometric form of p4 given in Theorem
3.6. Once obtained, this identity is easily proven using the differential equation from
Theorem 3.1 satisfied by ps (note that the right hand side satisfies a modification
of the hypergeometric differential equation, (14.3)) — as is typical in experimental

mathematics. From (3.17) we see, for example, that p3(v/3)? = %Wg(—l). O

Example 3.3.2 (Iterative form for p3). The expression (3.17) can be interpreted
in terms of the cubic AGM, AGs [45]. Recall that AGs(a, b) is the limit of iterating

an + 2b, 3 az + apb, + b2
(nt1 = —3— bpi1 = bn(f)7

beginning with ag = a and by = b. The iterations converge cubically, thus allowing

for very efficient high-precision evaluation. On the other hand,

1 —53>,
T AGs(3+22,3]1 - 22*)

1 33
AGs(1,s) 2F1< 1

so we have, for 0 < z < 3,

3.4. The density p4

The densities p,, are recursively related. Asin [118], setting ¢,,(z) = pn(z)/(272),
we have for integers n > 2

1 2w

on () On—_1 (\/902 — 2z cosa + 1) dov. (3.19)

We use this recursive relation to get some quantitative information about the

behaviour of py at z = 4.
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Theorem 3.3. Asx — 47,

pa(x) = @\/ﬁ— fgg

™

232
51272

(4—2)%2 + (4—2)2+0((4—x)7?).

PROOF. Set y = Vo2 — 2z cosa + 1. For 2 < z < 4,

T arccos ( T 8)
outa) = [ ostwyda = [ b3(y) da

since ¢3 is only supported on [0, 3]. Note that ¢3(y) is continuous and bounded in
the domain of integration. By the Leibniz integral rule, we can thus differentiate
under the integral sign to obtain

z278)

_1 ($2 + 8) ¢3(3) l arccos( 5
T a\/(16 — 22)(22 — 4) " ™ /0

Py(x) = (x — cos()) ?5(y) da. (3.20)

This shows that ¢/, and hence p)j, have a singularity at = 4. More specifically,
! + 0
8v2m3\/4 —

Here, we used ¢3(3) = 1‘2/52. It follows that

$u(x) =

(1) asz—4".

, 1
pa(z) = —m +0(1)

which, upon integration, is the claim to first order. Differentiating (3.20) twice

more proves the claim. O

Remark 3.4.1. The situation for the singularity at = 27 is more complicated
since in (3.20) both the integral (via the logarithmic singularity of ¢3 at 1, see

(3.14)) and the boundary term contribute. Numerically, we find, as z — 2T,

() = —— 2
Pal®) = m2\/x — 2

The derivative of py at 2 from the left is quite marvelously given by

+0(1).

—=—Ws(1), (3.21)

compare with (3.29). These observations can be proven in hindsight from Theorem

3.5; the latter makes use of contiguous relations found in Chapter 14. O

We now turn to the behaviour of ps at zero which we derive from the pole

structure of W, as described in Remark 3.2.1.
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Example 3.4.1. From Chapter 2, we know that Wy has a pole of order 2 at —2 as
illustrated in Figure 2(b) of Chapter 1. More specifically, results in Section 3.6 give
3 1 9log2 1

= — 1
Wals) 272 (s +2)2 212 s+ 2 +0()
as s — —2. It therefore follows that
3 9log 2 3
=———xl
p4($) 27T2x Og(l‘) + 272 + O(J? )
as z — 0. O

More generally, W, has poles of order 2 at —2k for k a positive integer. Define
S4.k and T4k by

S4.k—1 T4 k-1
Wi(s) = —b ’ o(1 3.22
4(s) +2k)° T stok () (3.22)

as s — —2k. We thus obtain that, as z — 0T,
K-1
pa(x) = $2k+1(7‘47k — sqplogz) + O(a:QKH).
k=0

In fact, knowing that ps solves the linear Fuchsian differential equation (3.9) with

a regular singularity at 0, we may conclude:

Theorem 3.4. For small values x > 0,

o0

pa(x) = (rag, — saxlog(z)) x2+1, (3.23)
k=0
Note that
3 Wy(2k)
kT 92 g2k

as the two sequences satisfy the same recurrence and initial conditions (this is a
common technique used in many of our proofs). The numbers Wy(2k) are also
known as the Domb numbers [20], and their hypergeometric generating function is

given in [171] and has been further studied in [75]. We thus have

o 11 2 2
6z 112 108
Ml = sy P23 24
k§054,kx 2 2< 11 (x2_4)3> (3.24)

which is readily verified to be an analytic solution to the differential equation sat-
isfied by p4.

For future use, we note that (3.24) can also be written as

o0 11 2 4
24x 2,5, % 108x
2k+1 _ 37273
kgos4,k$ = 77‘('2(16*:62) 3F2< 11 (16—x2)3> (3.25)
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which follows from the transformation

108z 112
_(1_16:::)3) :(1_16@3&(3 1

1

1
1 —4z)3Fy( 372
( )3 2( 11

2
3

given in [75, (3.1)].
On the other hand, as a consequence of (3.22) and the functional equation (3.8)

satisfied by Wy, the residues 74 can be obtained from the recurrence relation

128k374 1, = 4(2k — 1) (5% — 5k + 2)r4 51 — 2(k — 1)%ry 4o

+ 3 (64k®sa — (20k% — 20k + 6)syp—1 + (k — 1)%s4p-0)  (3.27)
with r4 1 =0 and 749 = % log(2).

Remark 3.4.2. In fact, before realising the connection between the Mellin trans-
form and the behaviour of py at 0, we empirically found that ps on (0,2) should
be of the form r(x) — s(x)log(x) where s and r are odd and analytic. We then
numerically determined the coefficients and observed the relation with the residues
of Wy as given in Theorem 3.4.

The accidental discovery of the required form was amusing and we recount it
here. Interested in plotting p)(x) for small z, the author resorted to the most nu-
merically stable method available then — (2.40) and derivation using first principles.
However, instead of using the correct derivative formula

lim pa(z+h) — p4(l‘)’
h—0 h

a typographical error was made and the following formula was used instead:

lim pa(z +h) — p4(h).
h—0 x

Upon correcting the mistake, it was noticed, amazingly, that the two plots produced
were almost exactly related by a vertical translation of 0.14 units. This means that

pq ‘almost’ satisfies a differential equation

x
Fla)+a=T2,
T
whose solution is f(x) = bxr — axlogz, where a ~ 0.14 and b ~ 0.33 (since

fol flx)dx = %) The log form of ps, and the numerical connection between a,b

and the coefficients of the poles, then became apparent. %
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The differential equation for ps has a regular singularity at 0; a basis of solutions
at 0 can therefore be obtained via the Frobenius method, see for instance [119].
Since the indicial equation has 1 as a triple root, the solution (3.24) is the unique
analytic solution at 0 while the other solutions have a logarithmic or double log-
arithmic singularity. The solution with a logarithmic singularity at 0 is explicitly
given in (3.32), and from (3.23), it is clear that ps on (0,2) is a linear combination
of the analytic and the logarithmic solution.

Moreover, the differential equation for py4 is a symmetric square; in other words,
it can be reduced to a second order differential equation, which after a quadratic
substitution, has 4 regular singularities and is thus of Heun type. After much work,

a hypergeometric representation of ps with rational argument is possible.

Theorem 3.5. For2 <z < 4,

_22)3
Wy

PROOF. Denote the right-hand side of (3.28) by g4(x) and observe that the
hypergeometric series converges for 2 < x < 4. It is routine to verify that ¢4 is
a solution of the differential equation A4 - y(z) = 0 given in (3.9), which is also
satisfied by p4 as proven in Theorem 3.1. Together with the boundary conditions
supplied by Theorem 3.3 it follows that ps = q4. U

We note that Theorem 3.5 gives 2v/16 — 22 /(7%z) as an approximation to py(x)
near x = 4, which is much more accurate than the elementary estimates established
in Theorem 3.3. We also get the evaluation

2737 V3

pa(2) = m = Ws(—1). (3.29)

Quite marvelously, as first discovered numerically:

Theorem 3.6. For 0 <z < 4,

2 V16 — 2?2 353
pa(x) = S Re3F2<25272
66

_22)3
(1?08354)> (3.30)
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PROOF. To obtain the analytic continuation of the 3F5 for 0 < z < 2 we employ
the formula [136, (5.3)], valid for all z,

(b q+1ra . I'(a; —a
q+1Fq<a1,...,aq+1 z) [T, T'(b;) 3 (ag) [T, T(a; — ag) )
bi,..., b, [[;T(a;) &= TI;T(b; — ax)
ag,{ar —b; +1}; |1
B e
{ak —a;j + 1}z |2

which requires the a; to not differ by integers. Therefore we apply it to

6’6
and take the limit as ¢ — 0. This ultimately produces, for z > 1,

111 11 2
S, 5,5 log(lOSz) 32,5 |1
R63F2<2 212 Z> 3F2 3223 (3.32)
5,1 23z 1,1 |z
(%) (3)

2\/?; Z - <1>n (5H,, — 2Ha,, — 3Hs,,).

Here H, = ) ;_, 1/k is the nth harmonic number. Now, insert the appropriate
argument for z and the factors so the left-hand side corresponds to the claimed

closed form. Observing that
(2n)!(3n)!

we thus find that the right-hand side of (3.30) is given by —log(x)S4(z) plus

2n x4n+1 ,
2 Z n|5 16 _ .1'2)3" (5H7L — 2Hy, — 3H3n + 310g(16 - ))

where Sy is the solution to the differential equation for ps given in (3.25). This
combination can now be verified to be a formal and hence actual solution of the
differential equation for ps. Together with the boundary conditions supplied by
Theorem 3.4 this proves the claim. U

Remark 3.4.3. Let us indicate how the hypergeometric expression for ps given in

Theorem 3.5 was discovered. Consider the generating series
= Wi(2k)z" (3.33)

which is just a rescaled version of (3.24). Corresponding to (3.25), the hypergeo-

metric form for this series is

10822) (3.34)
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which converges for |z| < 1/16. yo satisfies the differential equation By - yo(2) = 0

where

By =6422(0 +1)% — 22(20 + 1)(56% + 50 + 2) + 6°. (3.35)

Up to a change of variables this is (3.9); yo is the unique solution which is analytic
at zero and takes the value 1 at zero; the other solutions have a single or double

logarithmic singularity. Let y; be the solution characterised by

y1(2) — yo(2) log(z) € zQ[[2]]. (3.36)

Note that it follows from (3.36), as well as Theorem 3.4 together with the initial
values 54,0 = % and 74,0 = s4,0 log(8), that ps for small positive argument is given

by

pa(z) = f:Q Y1 <36i> (3.37)

If # € (2,4) and z = 2%/64 then the argument t = (119%22)3 in (3.34) takes values
n (1,00). We therefore consider the solutions of the corresponding hypergeometric

equation at infinity. A standard basis for these is

1 11 1 1 1 2 2 2
3. g (303:3|1 2. (202021 235 (33 3|1 338
3472 2 5 ) 342 5 7 ) 3472 4 7 . ( )
t 57 |¢ 47 1y
6’6 376
1

376
In fact, the second element suffices to express ps on the interval (2,4) as shown in

Theorem 3.5. O

We close this section by showing that, remarkably, p; has modular structure.

Remark 3.4.4. As shown in [75], the series yo defined in (3.33) possesses the
modular parameterisation

@) n(r) ()’
v < e ) = @) (3.59)

(37’ 2n(Gr)?

Here 7 is the Dedekind eta function defined as

o q1/24 H o q1/24 Z n n 3n+1)/2 (340)

n=—oo

2miT

where ¢ = e“™7. Moreover, the quotient of the logarithmic solution y; defined in

(3.36) and yo are related by

exp (y1EZ)> =l — _ g (3.41)

Yo Z)
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Combining (3.39), (3.41) and (3.37), one obtains the modular representation

n(27)°n(67)%\  6(27 +1)
P <SZ n(r)Pn(37)? ) e

valid when the argument of p, is small and positive. This is the case for 7 =

n(T)n(27)n(37)n(67), (3.42)

—1/2 4+ 4y when y > 0. Remarkably, the argument attains the value 1 at the
quadratic irrationality 7 = (/—5/3 — 1)/2 (the (5/3)rd singular value of the next
section). As a consequence, the value ps(1) has a nice evaluation which is given in

Theorem 3.7. O

3.5. The density ps;

As shown in Chapter 2, W5(s) has simple poles at —2, —4, ..., compare Figure
2(c) in Chapter 1. We write r5 ;, = Res_gj_o W5 for the residue of Wy at s = —2k—2.
A surprising bonus is the evaluation of 7509 = p4(1) ~ 0.3299338011, the residue at

s = —2. This is because in general for n > 4, one has

Res_g Wyy1 = pl,.1(0) = pu(1), (3.43)

as follows from Proposition 2.1; here p/, denotes the derivative from the right.

Explicitly, using Theorem 3.6, we have,

5,0 = p'5(0) = TRG 3Fh

from which we get

2
5/3 L2115
=Y ,f| 33— 3.44
75,0 - 2 1< 1 9 ) ( )
using Clausen’s formula [11, p. 116] and a quadratic transformation.
Based on the modularity of p4 discussed in Remark 3.4.4, we find:
Theorem 3.7.
1 2 4 8
rso = @ F(B)F(E)F(B)F(ﬁ)
’ 40 md
3v5 (Vb —1 V15
= ( 5 ) K% = — K5 /3K15, (3.45)

where K15 and Ky 3 are the complete elliptic integral at the 15th and (5/3)rd sin-

gular values.
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PrOOF. Let ¢ = (v/5 — 1)/2 (the golden ratio). In the notation of Section
10.2, it can be verified that the value 7 = %gFl(%, %; 1; 1+ ¢)/2F1(%, %; 1; —¢)
is a quadratic irrationality (it being (1 + 1/—5/3)/2). As such, it is known that
zFl(%, %; 1; —¢) may be effectively computed in terms of algebraic numbers and
Gamma functions by the Chowla—Selberg formula [175]. A proof with every minute
detail attended to has been written down (A. Straub, private communication, July

2012). O

Remarkably, these evaluations appear to extend to 751 ~ 0.006616730259, the
residue at s = —4. We discovered and checked to 400 places using (3.51) and (3.52)

that

) 13 2 1

= —750— — —.
225 0 Brlrgg

We summarise our knowledge as follows:

75,1 (3.46)

Theorem 3.8. The density ps is real analytic on (0,5) except at 1 and 3 and

satisfies the differential equation As - ps(x) = 0 where As is the operator
As = 2%(0 + 1)* — 2(350" 4 420% + 3)
+ 22(259(0 — 1)* + 104(0 — 1)?) — (15(0 — 3)(0 — 1))*. (3.47)

Moreover, for small xz > 0,

o
ps(z) = Zr&k 2L where (3.48)
k=0

(15(2k + 2)(2k +4))* 15 12 = (259(2k + 2)* + 104(2k + 2)2) 75 141

— (35(2k + 1)* + 42(2k + 1) + 3) r5 1 + (2k)*r5 51 (3.49)
with explicit initial values 5 1 =0 and 150, 151 given by (3.45) and (3.46).

ProoF. First, the differential equation (3.47) is computed as was that for py.
Next, as detailed in Chapter 2, the residues satisfy the recurrence relation (3.49)
with the given initial values. Finally, proceeding as for (3.23), we deduce that (3.48)
holds for small z > 0. O

Numerically, the series (3.48) appears to converge for |z| < 3 which is in accor-

dance with % being a root of the characteristic polynomial of the recurrence (3.49).
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Since the poles of W5 are simple, no logarithmic terms are involved in (3.48). In

particular, by computing a few more residues from (3.49),
ps(x) = 0.329934 2 + 0.00661673 2° + 0.000262333 2° + 0.0000141185 27 + O(z°)

near 0, explaining the strikingly straight shape of ps(z) on [0,1] — see Figure 1
(c). This phenomenon was observed by Pearson [158] who stated that for ps(x)/x

between x = 0 and x = 1,

“the graphical construction, however carefully reinvestigated, did
not permit of our considering the curve to be anything but a

straight line...”

This conjecture was investigated in [92] where the nonlinearity was first rigorously
established. The difficulty of computing the underlying Bessel integrals is hence

manifest.

Remark 3.5.1. The moments W3, Wy, W5, as well as the Apéry-like sequences
studied in Chapter 11, are closely related to solutions of Calabi-Yau type differential
equations [8], which can be identified with differential equations for the periods of
Calabi-Yau manifolds in theoretical physics. For example, the generating function

for W5(2k) is an analytic solution of equation 34 tabulated in [7]. O

3.6. Derivative evaluations of W,

As illustrated by Theorem 3.4, the residues of W,,(s) are very important for
studying the densities p, as they directly translate into behaviour of p, at 0. The

residues may be obtained as a linear combination of the values of W, (s) and W) (s).

Example 3.6.1 (Residues of W,,). Using the functional equation for Ws(s) and

L’Hopital’s rule we find that the residue at s = —2 can be expressed as

ReS_Q(Wg) = 8 + 12Wé(%) — 4Wé(2) . (350)

This works in general and we likewise obtain:

16 + 114007 (0) — 804W(2) 4 64W.(4)
225 ’
26 Res_(W5) — 16 — 20W.(0) + 4WZ(2)

Res,4(W5) = 295 . (3.52)

ReS,Q(Wg,) = (351)
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In the presence of double poles, as for Wy,

im, (s +2)2Wy(s) = 5t 4W‘1(2§) — Wi2) (3.53)

and for the residue:

9+ 18W4(0) — 3WA(2) + AW/ (0) — W(2)

ReS_Q(W4) = 16

(3.54)

Equations (3.53, 3.54) are used in Example 3.4.1 and each unknown is evaluated

below. O

We are therefore interested in evaluating the derivatives of W, for even argu-

ments.

Example 3.6.2 (Derivatives of W3 and Wjy). Differentiating the double integral
for W3(s) (3.6) under the integral sign, we have

1 2r 27
W5(0) = ) /0 /0 log(3 4+ 2cosx + 2cosy + 2cos(x — y)) dzdy (3.55)

1 1ot
= 2/ / log(4 sin(my) cos(2mx) + 3 — 2 cos(2my)) dz dy.
0o Jo

Then, using

1 VaZz — b2
/ log(a + beos(2mx)) dz = log a—i—+ for a > b > 0, (3.56)
0
we deduce
5/6 1 T
Wi(0) = / log(2sin(ny)) dy = - Cl (f) : (3.57)
1/6 T 3
where Cl denotes the Clausen function, given by
>, sin(nt) ¢ . X
Cl(t) = nZ:l = —/0 log ‘2sm§’ dz. (3.58)

Knowing that the residue at s = —2 is 2/(1/37), we can also obtain from (3.50)

W>_3\/§

3

In like fashion,

Wi(0) = g /02 /02 log((1 + cos(2mz) + cos(2my))? + (sin(2mz) + sin(27ry))2) dz dy

:832/ / log(3+2 cosz +2 cosy + 2 cos (z — y)) dz dy (3.59)
™ Jo Jo

_T¢@)

2 x2
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The final equality will be shown in Example 3.6.3.

The superficial similarity between W3(0) in (3.55) and W;(0) in (3.59) comes
from applying the formula (see Chapter 8)
log(a? +b%) if a® +b% > 1,

1
/ log ((a + cos 2rz)? 4 (b + sin 2wx)2) dz =
0 0 otherwise

to the triple integral of W}(0). (As this reduction breaks the symmetry, we cannot
apply it to WZ(0) to get a similar integral.)

The factor of 3 in the numerator of (3.59) can be explained: after applying
the reduction above and symmetry, we are actually required to evaluate the first
double integral in (3.59) in the region bounded by y = x +1/2, y =0, y = 1/2 and
x = 1/2. This region splits into a right isosceles triangle and a square; let the value
of the integral be I, and I, in them respectively. Now, in the region bounded by
y=x+1/2, y=x,y=0,and y =1/2 (i.e. I and half of I,), the transformation
x +— y—x leaves the integrand invariant but maps the region into a; thus I, = 1,/2,

and on the whole region the integral has value 31,/2. O

Remark 3.6.1. In general, differentiating the Bessel integral expression [65]

L(1+32) [ 1d\"
o — 23+1—k 2 / 2k—s—1 [ _ = n )
Wi(s) Tk—2) Jo x g Jy (z) dz, (3.60)

under the integral sign gives
& 2
w0 =n [~ (108(2) =) @G0 ds
0 X
=log(2) — v — n/ log(z)Jy () J1 () du, (3.61)
0

where 7 is the Fuler-Mascheroni constant (a novel method for the computation of

which can be found in Section 14.3), and

W”(0) = n/OOO (log(i) . 7>2J6L_1(x)J1 (z) da.

Likewise
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We may therefore obtain many identities by comparing the above equations to

known values, for instance

3/0oo log (@) J2(2)1 (z) da = log(2) — 5 — %01 (%)

O

In fact, the hypergeometric representation of W5 and Wy, (2.18) and (2.19)

proven in Chapter 2, also make derivation of the derivatives of W3 and Wy possible.

Example 3.6.3 (Evaluation of W5(0) and W;(0)). If we write (2.18) or (2.19) as
Wi(s) = fi(s)Fi(s)+fa(s)Fa(s), where Fy, Fy are the corresponding hypergeometric
functions, then it can be readily verified that f1(0) = f5(0) = F45(0) = 0. Thus,
differentiating (2.18) by appealing to the product rule, we get

)-a(s)

The last equality follows from setting § = 7/6 in the identity

1 111
Wé(o):W3FQ<23232
272

1

111
28in(0)3F2<2;)2’ 2

32 [sin? 9> = C1(26) +201log (2sinf), (3.62)
272

Likewise, differentiating (2.19) gives

4 111
W) = Spar( 5%

IR S (4¢)
1> N nz (2n+1)3 272’ (3.63)
thus verifying (3.59). O

Differentiating (2.18) at s = 2 leads to the evaluation

D-T@E-D

while from (2.19) at s = 2 we obtain

14¢(3) — 12

T2

Wi(2) =3+ (3.64)

Thus we have enough information to evaluate (3.53) (with the answer 3/(27%)).
Note that with two such starting values, all derivatives of W3(s) or Wy(s) at even
s may be computed recursively.

The same technique yields

72 4log(2) T 4 & (27?) Zzzoﬁ
WO =5+ = AG) N Gy 69
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and, quite remarkably,

2

7w  7¢(3)log(2 = H,
O )

— 3H, +1/2

(2n +1)3 (366)

_ 24Li (3) — 18¢(4) + 21¢(3) log(2) — 6¢(2)log”(2) + log(2)
2 9

™
where the very final evaluation is obtained from results in [58, §5] (more sums of
this type are evaluated in Chapter 13). Here Liyg(z) is the polylogarithm of order
4, while the continuation of H,, is given by v+ ¥(n + 1) and ¥ is the digamma
function (see (5.24)). So for non-negative integers n, we have H, = Y, 1/k as

before, and
n+1

Hy1/2=2 Z 2k: — 2log(2).

An evaluation of W3/ (0) in terms of polylogarithmic constants is given in [55]

and reprised in Chapter 9. In particular, this gives an evaluation of the sum on the
right-hand side of (3.65).

Finally, the corresponding sum for W;'(2) may be split into a telescoping part
and a part containing Wj'(0). Therefore, it can also be written as a linear combina-
tion of the constants used in (3.66). In summary, we have all the pieces to evaluate

(3.54), obtaining the answer 9log(2)/(272).

3.6.1. Relations with Mahler measures. For a (Laurent) polynomial
f(z1,29,...,2y,), its logarithmic Mahler measure, see for instance [168], is defined

as
1 1
:/ / log | f (€™, ... e*™ )| dty - - - dty. (3.67)
0 0

Recall that the sth moments of an n-step random walk are given by

:/01.../01

where || - ||, denotes the p-norm over the unit n-torus, and hence

2mity

dty - dty, = |21 + .. 4 20|

W(0)=p(xr+- - +an) =p(l +21 + -+ Tp_1). (3.68)

Thus the derivative evaluations in the previous sections are also Mahler measure

evaluations. In particular, we rediscovered

1
Wé((]) = ; Cl (%) = u(l + 21+ xg),
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along with

7¢(3)
212

which are both due to C. Smyth [168, (1.1) and (1.2)] with proofs first published
n [60, Appendix 1].

W4(0) = = p(l+ 21+ 22 + 23)

With this connection realised, we find the following conjectural expressions put

forth by Rodriguez-Villegas, mentioned in a different form in [93],

) 5/2
Wé(o)i(4w2> / {n*(e (e +n*(e )nP(e” ")} 2 dt, (3.69)

Wé(0)1<7§2) /0 (e (e (e (et dt, (3.70)

where 1 was defined in (3.40). We have confirmed numerically that the evaluation
of WZ(0) in (3.69) holds to 600 places, and that (3.70) holds to 80 places. Details
of these somewhat arduous confirmations are given in [19].

Differentiating the series expansion for W, (s) obtained in Chapter 2 term by

term, we obtain

Wi(0) =log(n) — 3 —— 3 (k> (L)W (2k) (3.71)

n

On the other hand, from [168] we find the strikingly similar

S )W, (2k
222mz< >( )k!nk( ). (3.72)

Finally, we note that W,(s) itself is a special case of zeta Mahler measure as in-

1
W;L( ) ilog

N\Q

troduced recently in [5]. We come back to Mahler measures in Chapters 8 and

9.

3.7. New results on W,

In this section, we resolve a central case of Conjecture 1.1, among proving other
identities. We heavily borrow results from [20].
From [20, equation (23)], we have for even k > 0,

Ws(k) = gz / h LK (8) 2 o (t)dt (3.73)
T2k T(k/2+1)2 J, ’

where Iy(t), Ko(t) denote the modified Bessel functions of the first and second kinds,

respectively.
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Similarly, [20, (55)] states that for even k£ > 0,

4k+2

MO T Ie

/ T R ()P o ()t (3.74)
0

Equation (3.73) can be reduced to a closed form as a 3F3, below (for instance

using Mathematica). We are thus led to:

Theorem 3.9 (Single hypergeometric for W3(s)). For s not a negative integer less

than —1,

i) | (3.75)

PROOF. It can be easily checked that both sides agree for kK = —1,0,1,2, and

38+3/21" 1 2)2 ﬁ7ﬂ’ s+2
Wg(S): ( +3/) 3F2< 2 2 2

2 T(s+2) 1,553

also satisfy the same recursion (using Zeilberger’s algorithm). Therefore they agree
for all integers s > —2. We shall now use Carlson’s theorem, recorded as Theorem
1.3 in Chapter 1. Both sides of (3.75) are of exponential type, and standard esti-
mate shows that the right-hand side is bounded by el?"/2 on the imaginary axis.
Therefore the conditions of Carlson’s theorem are satisfied and the identity holds
whenever the right-hand side converges. It also follows that (3.73) holds for all k&
with Re k > —2. O

Turning our attention to the negative integers, we have for integer k£ > 0:

2 o
Wy(—2k — 1) = % (é’?f;) /O 12 Ko (1)Pdt, (3.76)

because the two sides satisfy the same recursion [20, (8)], and agree when k = 0,1

20, (47) and (48)].

Remark 3.7.1. Equation (3.76) however does not hold when k is not an integer.
Also, combining (3.76) and (3.73) for W3(—1), we deduce

> 2 _ 2 (= 5, T [® 3
/0 Ko(t)2Io(t) dt = \/§7T/0 Ko(t)3dt = 2\/3/0 Jo(t)? dt.

Integrals of t2* K (t)? and t?**1 K (t)3Iy(t), among others, have been studied re-

cently in a statistical mechanics context [156]. O

From (3.76), we experimentally determined a single hypergeometric for Ws(s)

at negative odd integers:
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Lemma 3.1. For k > 0 an integer,

VI (b b3

PROOF. It is easy to check that both sides agree at K = 0 and 1. Therefore
we need only to show that they satisfy the same recursion. The recursion for the
left-hand side implies a contiguous relation for the right-hand side, which is easily
verified by Maple, or can be readily checked by Zeilberger’s algorithm. A different
proof is also illustrative: denote the right hand side of (3.77), with argument x
instead of 1/4, by Fy(x). In Chapter 14, a general method is given which allows us
to write Fj11(x) as a differential operator of Fi,(z). Therefore, the recursion satisfied
by the W3 side gives a differential expression for Fj, which can be simplified using
the third order differential equation also satisfied by F}. In the simplified expression,

the factor 1 — 4x emerges, so it equals 0 identically when =z = 1/4. U

The integral in (3.76) shows that W3(—2k—1) decays to 0 rapidly — very roughly

like 9% as k — oo — and so is never 0 when k is an integer.

To show that (3.74) holds for more general k required more work. Using Nichol-

son’s integral representation in [195],
2 w/2
Iy(t)Ko(t) = / Ky(2tsina)da,
T Jo
the integral in (3.74) simplifies to
2 w/2 foo
2 / / PR ()2 Ko (2t sin o) dida. (3.78)
T Jo 0

The inner integral in (3.78) simplifies in terms of a Meijer G-function; Mathematica

1
sinfa )’
sin® >

Let t = sin? @ in the above function, so the outer integral in (3.78) transforms to

ﬁ ! _kt3 -1 423 11,1
e a-nted (5,
0 219299

is able to produce

1
2
8sinft2q 33 0,0,0

1 1
ﬁ 3,2(_27_ ' 9

which transforms, via (2.29), to

ﬁ G2,3 < 1)1)1
: 3303 31
8sin*t2¢ 51913

t) dt. (3.79)
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We can resolve this integral by applying the Euler-type integral

! b—1 c
t—ll 1_t a—0— m,m
[reea—nreny (g

Indeed, when k = —1, the application of (3.80) recovers the Meijer G representation
of W4(—1) in Chapter 2; that is, (3.74) holds for k = —1.

m,mn a,c
zt> dt =T(a—b) Gt (d )

z) . (3.80)

When k = 1, the resulting Meijer G-function is

to which we apply Nesterenko’s theorem [153], turning it into the triple integral

(up to a constant factor)

1 1,1 (1)
/0 /0 /0 \/y(l —y)(1—2)(1 —z(1 —yz))3 dzdydz.

We can reduce the triple integral to a single integral,

L8E(t)((1+t*)K'(t) — 2E'(t))
/0 (1-t2)?

dt.

Now applying the change of variable ¢ — (1 —t)/(1 + t), followed by quadratic

transformations for K and F [46], we finally get the expression

/1 4(1+t)E<2\/£
0

t2 1+1¢

) (K(t) — E(t)) dt, (3.81)

which is, indeed, the correct constant multiple times the expression for Wy(1) in
(2.49).

(In fact, in view of our results and techniques presented in Chapters 6 and 7,
we can simplify the integral (3.81) directly. Cleaning up the first E term using a
quadratic transform, we then integrate #(5E(t)K(t) —2K(t)? - 3E(t)?) by parts
and add the result to our integral in order to clear the 1/¢? in the denominator.
The expression produced is a linear combination of the moments of E(t)?, K (t)?
and F(t)K(t), which can be simplified to (2.34).)

We finally observe that both sides of (3.74) satisfy the same recursion [20, (9)],
hence they agree for £k = 0,1,2,.... Carlson’s theorem applies since the growth on

the imaginary axis is the same as for (3.73), so we have proven:

Lemma 3.2. Equation (3.74) holds for all k with Rek > —2.



3.7. NEW RESULTS ON W, 65

Theorem 3.10 (Alternative Meijer G representation for Wy(s)). For all s,

_ 274< 11,1, 52 1). (3.82)
PT(I(s 1 2)2 4\ g2 o2 si2 1

PRrROOF. Apply (3.80) to (3.79) for general k, and equality holds by Lemma
3.2. O

Wiy(s)

Y2 02 02

Note that Lemma 3.2 combined with the formula for Wy (—1) in Chapter 2 gives
the Bessel identity

% /OOO Ko(t)*Io(t) dt = /OOO Jo(t)* dt. (3.83)

Armed with the knowledge of Lemma 3.2, we may now resolve a very special

but central case (corresponding to n = 2) of Conjecture 1.1.

Theorem 3.11. For integer s,
> (s/2\ 2
Wi(s) =Y < , > Wi(s — 27). (3.84)
— J
7=0
PROOF. In Chapter 1 it is shown that both sides satisfy the same three-term
recurrence, and agree when s is even. Therefore, we only need to show that the
identity holds for two consecutive odd values of s.
For s = —1, the right-hand side of (3.84) is
e 2 O 52-2j 00
~1/9 92-2j .
> ( ./ > Ws(—1—-2§) =) / t2 Ko(t)* dt
0

34512
27!
=0 =0 J

upon using (3.76). After interchanging summation and integration (which is justi-

fied as all terms are positive), this reduces to

4 o0
4 / Ko(t)*Io(t) dt,
7™ Jo

which is the value for Wy(—1) by Lemma 3.2.

We note that the recursion for Wy(s) gives the pleasing reflection property
Wa(—2k — 1) 2°F = Wy (2k — 1).

In particular, Wy(—3) = g; Wi(1). Now computing the right-hand side of (3.84) at

s = —3, and interchanging summation and integration as before, we obtain

[e.e]

2 00
3 <_?;/2> Wa(—3 — 2j) = ;13/0 £ Ko(8)2 o(t) dt = 6i4w4(1) — Wa(-3).

j=0

Therefore (3.84) holds when s = —1,—3, and thus holds for all integer s. O






CHAPTER 4

More Results on Uniform Random Walks

ABSTRACT. In this chapter we include a number of results on random walks
which do not fit into the context of the first three chapters. In particular, we in-
vestigate uniform random walks with different step sizes, or confined to a limited

number of directions, or lifted to higher dimensions.

4.1. Elementary derivations of p; and p;3

The probability density ps (equation (3.1), Chapter 3) may be derived from
completely elementary considerations. Without loss of generality, we start from
the origin and let the first step land on the point (0,1). For the second step to
land inside the circle with radius r centred at the origin, it must be contained
between the two tangents to the circle from (0,1). Using basic trigonometry, the
angle between the two tangents is 4asin(r/2), therefore the cumulative distribution

Py(r) = 4asin(r/2)/(2m). Taking the derivative with respect to r recovers

2
pa(z) = —F—.
(=) ™4 — x?
Example 4.1.1. We can achieve a bit more with the same argument. Let p§(r)
denote the probability density of a 2-step walk where the step lengths are 1 and a
(without loss of generality, in this order). We consider the angle 6 between these

two steps, such that the walker ends up in a circle of radius r. The cosine rule gives

0] < aucos(“Q‘*'Qla_’“2 ) Consequently,

2r
() = , la—11<r<a+1. 4.1
#O) = eyl 1l (11)

The general expression for the sth moment of the distance from the origin is

4a
<1+>> (4.2)

1
)2

—_ Nl

1/ (a*+1+ 2acos(t))s/2 dt = (1 +a)82F1(_
0

s

67
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since after a change of variable, the left hand side integral is of Euler-type for a o F}

[11], i.e. it is of the form

/01 21— ) (1 = 2a) O da = I®)I(c—"5) JF, <a,cb

z) (4.3)

I'(c)
In particular, the (—1)st, 1st and 2nd moments are, respectively, ﬁl{ (%),
2(‘1:1)]5(%) and a® + 1. O

We know give an elementary derivation for the density ps. Again, let the first
step fall on (0,1), and let the second step form an angle ¢ with the positive z-axis
(by symmetry let ¢ > 0); it therefore lands on the point (1 + cos(t),sin(¢)). Now
consider a circle of radius r > 1; the » < 1 case is very similar. The third step needs
to be confined within this circle, so it must be contained between the two blue radii
shown on the right of Figure 1. The angle s between these two radii can be found
using trigonometry, using the coordinates of the intersections between the circles

2?4+ 92 =r?and (x — 1 —cos(t))? + (y — sin(t))? = 1.

FIGURE 1. Elementary derivation of pz. The origin is on the left;

lengths and angles are marked.

The two circles do not always intersect; for » > 1, they intersect when 0 < ¢ < ¢4,

where ¢; = acos(3(r? — 2r — 1)). For ¢ in this domain, we can calculate that

2(r2 —1)2
14 cos(t)’

4sin§ = \/8r2 — 8 cos(t)
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Therefore, when r > 1, we have

1 d ™
pg(T):ﬁ@ ) sdt. (44)

After a few trigonometric and linear changes of variables, we simplify (4.4) down to

p3(r) = # /01 [t(l — t)(W — t) ((7”;7,1)2 +t>]_1/2 dt.

This can be computed using the help of

! dt 2 b—a
/0 JIO—Ba-tb—1) \/a(bl)K( a(b—1)>' (4.5)

When r < 1, the only difference we make to the above derivation is that the two
circles intersect when typ <t < ¢y, where g = acos(%(’r2 +2r — 1)), and we proceed

similarly for the rest of the calculation. We thus obtain

([T

2 r

Pl Ar 16r
/(B =r)(1+7)3 K<\/(3—1")(1—|—7“)3) if r <1.

Relating the two cases using Jacobi’s imaginary transformation [46], the formulas

for ps obtained above agree with equation (3.2).

Remark 4.1.1. We remark that (4.5) itself can be proven by the change of variable
x = (b—1)t/(b—t) — that is, a Mobius transformation fixing two of the singularities
in the integrand and sending another to infinity — this makes the denominators into
the square root of a cubic. Evaluations like this are not flukes, but merely reflect

the fact that the underlying algebraic curves have genus one (see e.g. [178]). O

4.2. Three-step walk with different step lengths

We now look at the 3-step walk in which the step sizes are different. Without
loss of generality, we can let the first step length be 1, the second be a, and the third

be b. Then, mirroring the integral in (1.1), the average distance from the origin is

/1 /1 V(1 + acos(2rs) + beos(2mt))? + (asin(2ms) + bsin(27t))2 dsdt.
0 JO

We follow closely the analysis for W3(1) in Chapter 1; thus we first attempt to

simplify the trigonometric expression in the integrand. It turns out that a clean
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reduction is only possible when (without loss of generality) b = 1, so in this case,

denoting the average distance from the origin by D,, we have

1,1
D, = / / V/2 + a2 + 2 cos(27t) 4 4a cos(m(2s — t)) cos(nt) dsdt. (4.6)
0 Jo
From the periodicity of the integral in (4.6), we make a change of variable and
obtain
1,1
D, = / / V2 + a2 + 2 cos(27t) + 4a cos(2ms) cos(mt) dsdL. (4.7)
0o Jo
Since

/Oﬂmdt—wm%\/ﬂ), (4.8)

we can evaluate the ¢ integral in (4.7); after a trigonometric change of variable, we

2 r2/a
oo [ e (E),
0

2 4 — a222 1+
As was done for the analysis for W3(1), we apply Jacobi’s imaginary transformations

(1.35) to the E term, which leads to

get

D, = dx.

402 R /2/a 2F(z) — (1 — 22)K ()
—Re

72 0 4 — 22
Next, we expand E and K as series, interchange the order of summation and inte-

gration and appeal to analytic continuation. This gives the next theorem:

Theorem 4.1. With f(a) := \/(1 —/1—4/a?)/2, we have

Dy = 2 (6B(f (@)~ 42— F@P) B @)K (F(@) + (3~ 27 (@)K (F(@)?). (4.9

™

In particular, f(2) = 1/4/2 is the first singular value, so the elliptic integrals

can be easily evaluated, producing the following closed form:

Corollary 4.1. In a 3-step uniform random walk, the average distance from the

origin when the step sizes are 1, 1 and 2 is

401

(4.10)

Note that we may work out the (—1)st moment analogously, using instead the

/07r /A j; cos(t) \/A2+ BK<\/AQ+TB>7 (4.11)

formula
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and the imaginary transformation
K(1/k) = k(K (k) +iK'(k)).

It follows that the (—1)st moment of a 3-step walk with step sizes 1, 1 and 2 is
I4(1/4)/(473).

4.3. Higher dimensions

We start with a motivating example.

Example 4.3.1. The geometric argument from which we found ps in Section 4.1
generalises to give a very simple expression for the 2-step probability density of a
uniform random walk in three dimensions, which we denote by pgg). Here, instead
of seeking the arc-length subtended by the half-angle ¢ = 2asin(r/2) from the origin,
we need to find the surface area of a spherical cap subtended by a cone with the
same half-angle. The surface area of a (unit-)spherical cap is conveniently 27h,
where h is the height of the cap. Since in this case h = 1 — cos(t), we have the very
elegant formula
3 d 27 (1 — cos(2asink))

= = —. 4.12
P2 dr 47 2 ( )

From this, we easily obtain that the sth moment of the distance for the 2-step

walk in 3D is 2571 /(s + 2). The 1st moment, 4/3, can also be found independently
as an elementary single integral, by fixing the first step and then using spherical

coordinates and the Jacobian. O

We will now compute two general results using elementary multi-dimensional
integrals. The first result is the sth moment (of the distance from the origin) of
the 2-step walk in any dimension d, denoted by WQ(d)(s). The second result is the
2nd moment of the n-step walk in any dimension d, WT(Ld)(Z). We again begin with

simpler examples.

Example 4.3.2. We first show that in 3D, the 2nd moment for the n-step walk is

n. Indeed, using spherical coordinates, we have

s s 27 27
ngs)(g) = 1 / . / / . / dty - --dt,dsy - --ds, sin(ty) - - - sin(t,)
(4m)™ Ji, =0 tn=0Js1=0 $n=0

X [(i sin(t;) cos(si)> ’ + (z": sin(t;) sin(si)) ’ + (Zn: Cos(ti)) 2] ,
i=1 i=1 i=1
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where the first line of the integrand contains the Jacobian. By symmetry (since
we can rotate the coordinate system), the second line of the integrand may be
replaced by 3(3 7 cos(t;))?. We expand out the new integrand and note that only
the cos?(t;) terms do not vanish; now the claimed evaluation follows by elementary

integration. O

A more involved computation, similar to Example 4.3.2, leads to:

Theorem 4.2. The 2nd moment of the distance from the origin for the n-step walk

in d-dimensions is n.

PrOOF. We proceed as we did for the 3D case. For d-dimensions we need the
hyper-spherical coordinates, the expression for the Jacobian, the surface area of the
d-dimensional unit sphere, and we again appeal to symmetry. Gathering everything

together, we have

W (9) :d(WY/C(ZH:COS(m))?
=1

where fC involves integrating with respect to the variables ¢, where 1 < j <d —2
and 1 < k < n; the interval of integration is from 0 to 27 for ¢(4_1), and from 0 to
7 for all other ;.

As in the 3D case, only the cos?(t1;) terms survive the expansion, and we have,
after simplification,

" T cos?(t) sin® 2 =2 o n
WT(ld)(Q):d<F(d/ 2“)) 2y J0 05 0) (t)g)dt (H /0 sinj(r)dr> .
j=1

d wd/? fgr sind—2

All the integrals on the right hand side are beta integrals (see equation (5.21)), and
as such evaluate in terms of Gamma functions. The resulting product telescopes,

and ultimately simplifies to n. O

Example 4.3.3. We now find the sth moment of a 2-step walk in 4D. It is not

hard to write down the integral,

4 1 2T pmo pm ) )
W2( )(s) :271_2/0 /0 /0 dtdsdr sin®(t) sin(s) x

[\/(cost +1)2 + (sintcos s)% + (sintsin s cos )2 + (sint sin s sin )2

s
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The radical in the integrand simplifies to 2 cos(t/2), and therefore we end up with

a beta integral, with the evaluation

23+2 F( )

N GVERES (4.13)

l\’)\tn

As expected, the 2nd moment is 2; more interestingly, the 1st moment (average) is

64

Tor 0
We may generalise the result Example 4.3.3 in the following theorem:

Theorem 4.3. The sth moment of the distance from the origin for the 2-step walk

i d-dimensions s

2d+s—2 F(g) F(dJr;fl)

(d)
Wa () = JAl(d+ 5 —1)

(4.14)

PROOF. In hyper-spherical coordinates, fix the first step in an axis direction
such that the second step only depends on the angle t;, so the distance from the
origin may be modeled by 2 cos(t;/2) (as in the 4D case). Inserting the volume for

the n-dimensional unit sphere and the Jacobian, we have

2
WQ(d)(s = dwd/Q / / / sin?=2(t1) sin? 3 (tq) - - - sin(tg_2)

t
X <2czos %) dty---dtg_q.

This factors into a product of beta integrals; the product also telescopes, and sim-

plifies to the claimed evaluation. O

Since the probability density is the inverse Mellin transform of the moments
(c.f. Chapter 3, Section 2), by residue calculus we immediate have the following

result:

Corollary 4.2. The probability density for the 2-step walk in d-dimensions is

d72 (

[\]IsH

M) = )

2 - \de 3F(d_1)( -T )(d—3)/2' (4'15)

This recaptures the formula (4.12) for pgg)( ) and also gives p2 ( ) =7r2V4 — 12/
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4.3.1. A closer look at three dimensions. Watson [195] records a general

formula for the cumulative distribution for the n-step walk in d-dimensions:

r d\n—1 9N (n—1)(d/2—-1)
(d) _ “w d/2 “ n
/0 PP(s)ds =T (5)" v / (5) Taja(rt)Jaja_s ()" dt.

Since the Bessel function is elementary at half integer orders, (4.16) allows us to

(4.16)

analyse the probability density in odd-dimensions.

Example 4.3.4. For instance, the n-step density in 3D is given by the integral

/ 7 sin ()Slln(’l“t) ar, (4.17)
™ Jo th—

and since the (indefinite) integral evaluates in terms of the sine integral, we find for

instance
2
L if r €10,1]
p ) =47 (4.18)
rE it e [1,3],

s+2
and therefore Wg(g)(s) = %, in particular the average distance is 13/8. Note
the expression for Wg(g)(s) has an analytic continuation to the whole complex plane

with a simple pole at —3. Similarly,

231 ip e 0.2
pry=¢ 0 (4.19)
rAonT i e [2, 4],

and therefore Wf’)(s) = %, in particular the average distance is 28/15.
The expression for W4(3)(8) is meromorphic with simple poles at —3 and —4. O

Indeed, we have:
Theorem 4.4. The probability density for the distance from the origin for the n-

step walk in 3D is given by the following piecewise-polynomial,

. n—>2 n
@) T(n—2i—71) n\, . o
() = =) Z; o) (=D)'sen(n = 2i = 1), (4.20)
where sgn(xz) denotes the sign of x.
ProoOF. Using the formula
S (M) (—1)Hn/227 cos((n — 2i)t) if n is even
sin" t = (4.21)
S o (M (=122 gin((n — 2i)t)  if n is odd,
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we find after some algebra that

n—2 n )
% sin”(¢) sin(rt) = Z (n) (=1)i(n — 2 —r)""22 " sin((n — 2i —r)t). (4.22)
i
i=0
We also need the fact that
/ sin(rt) dt = Isgn('r). (4.23)
ot 2

Now, equation (4.20) follows from integrating (4.17) by parts (n — 2) times, and
simplifying the result using (4.22) and (4.23). O

We may use equation (4.20) to find (the analytic continuations of) the moments
in 3D, which are elementary expressions. On the other hand, we may use elementar-
ily derived results to evaluate non-trivial integrals which are special cases of (4.16).

For example, Theorem 4.2 combined with (4.16) produces

0o rn 2(d/2—1)(1—n)
/ / rd/2+2tn7d(n71)/2 Jd/271(t)njd/271(7,t) drdt = n 3 1 (424)
o Jo L(g)"
Similarly, Theorem 4.3 combined with (4.16) gives the evaluation
o 2 9d/2+s—1 F(d+s—1)
d/2+s2—d/2 2 t) drdt = 2 7, 4.25
/0 /0 r Jaja-1(8)"Jaja-1 (rt) dr Val(d+ 5 —1) (4.25)

And finally, with (4.1), we obtain

2
m/4a? — (1 +a? — r2)2

/0 o (D)o (at) Jo(rt) dt =

Remark 4.3.1 (Probability of return). We can also use (4.16) to find the proba-
bility of returning to the unit sphere after n steps in 3 dimensions. Indeed, putting

r = 1 and simplifying the resulting integral by parts, the required probability is

2 (o.¢]
m / Sinc(t)n+1 dt, (426)
0

where sinc(t) = sin(¢)/t. A treatment of the sinc integrals (4.26) has been given by
many authors (see for instance [38]); expressions in terms of finite sums are known,
for we may apply (4.21) and integration by parts to deduce

(3]

When n is even, the right hand sum conveniently simplifies:

o s 2n —1
inc(t)”" dt = ————— :
/0 sine(t) 2(2n—1)!< n—1>
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Here <Z> is an Fulerian numbers, i.e. the number of permutations of n elements
that have exactly k ascending runs [197, Ch. 1].

For n = 2,3, ..., the probabilities of returning to the unit sphere are given by

11 23 11 841
4’6’ 1927 1207 115207
where the first value (1/4) follows also by simple geometric considerations. Asymp-

totically, the probability of returning after n steps is roughly B (see for

6
m(n+1
instance [147], or use (4.28) below). O

Example 4.3.5 (Asymptotics). By the central limit theorem (see also the next
section) and the Mellin transform, it is not hard to find the asymptotic behaviour
of the 3D walk for large n:

6 _3 3r2 2 /2n\35_/s+3
(3) ~ —n- 20—, (3) ~ —|— ? . .
(1) 3\/;71 27 2, Wi (s) ﬁ< 3 ) F( 5 ) (4.28)

8n

In particular, the average distance from the origin after n steps is around 4/357.

For the uniform random walk on the plane, we may obtain better approximations
2x

of p, than Rayleigh’s We*xQ/ " for large n. We follow Pearson’s approach in [158],

starting from writing Kluyver’s expression (3.5) as
> t2/a\n _—nt?/4
pn(z) = / atJo(zt) (Jo(t)e! /*) e /4 dt. (4.29)
0

We expand out the parenthesised term as a series around ¢ = 0. Truncating the
series after k terms (let us call this truncation Sk (t)) gives a good approximation for
(Jo(t)e!*/*)™ for small ¢, while for large ¢ the e ™/4 factor compensates. Even for

So(t) (the partial expansion being 1 — nt*/64), we obtain the better approximation

a2 <4n3 —2n2 + 4nz? — x4>

pn(z) = xe” n 5 (4.30)

This gives a more refined approximation to the mean W, (1) (v/nw/2 + \/7/n/32),
and for the standard deviation (y/n(1 — 7/4) — 7/32); compare with Remark 1.2.2.

Because of the connection (3.68) between W) (0) and Mahler measures, we can
use Pearson’s idea to give an asymptotic expansion for the measure p(1+z1+---+

Zn—1) by computing the integral

/ / S(t)e /A Jo(xt) at log(z) dtda. (4.31)
0 0
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The double integral may be evaluated in closed form, thanks to the presence of
the exponential. We take the answer of (4.31) and discard all terms that decay

exponentially. For instance, using S3(t), we have

1 1 5 1
0§”—%+—+ +0(n™).

1 )~ 2 -
plt et et an) 8n " 288n2  192n°

Unfortunately, the approximation is not great; for S5, we get only 6 digits of agree-

ment for n = 20. O

4.4. Limiting the number of directions

In this section, we briefly comment on some asymptotic similarities between the
two dimensional uniform random walk and the random walk with a limited number
of directions. For instance, when we limit the walk to the four cardinal directions,

then we end up with a walk on a square lattice [118].

Example 4.4.1. In the square lattice case, it is a simple combinatorial exercise
to find the probability of ending up at coordinate (u,v) after n steps. Therefore,
we may look quantitatively at the moments of the distance from the origin, which
we call Wi, (s). Indeed, W1,(2), being a double sum, may be evaluated, albeit
tediously, by using contiguous versions of Dixon’s identity (see Chapter 14). Tt
transpires that Wi, (2) is exactly n, which equals the 2nd moment of a uniform
random walk.

The 4th and the 6th moments are more unwieldy, and to evaluate them the
multiple-Zeilberger algorithm [202] is the method of choice. In each case, perhaps
unexpectedly, an order 1 recurrence is produced. Solving the recurrences, we have

the results
Wln(4) = Wn(4>v Wln(6> - Wn(ﬁ)'

However, agreement does not continue beyond this point, since Wiy(2s) = (4° +
25+1) /4 and Wy (2s) = (253); therefore the 8th and higher even moments for these
two walks are different. This phenomenon is more general: numerical evidence
suggests that for the walk with & possible, evenly spread directions, the Oth, 2nd,
4th, ... (2k —2)th moments, and only these, agree with the corresponding moments

of Wi,. O
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In a recent paper [14], the asymptotic behaviour of a random walk restricted
to k directions (being the vertices of a regular k-gon) is considered. Applying the
multivariate central limit theorem and using some trigonometric identities, it is
shown that when & > 2, the resulting covariance matrix does not depend on k, and
hence in the limit k& — oo we recover the uniform random walk. It follows that the

asymptotic behaviour of the sth moment of the distance of an n-step walk (for any

k> 2)is
Bl (5)"

where E[x3] denotes the expectation of the sth power of the x distribution with 2
degrees of freedom. It follows by a standard change of variable and integration that
asymptotically this is n*/2I'(s/241), in agreement with a result obtained in Chapter
1. In particular, this shows that the average distance from the origin, regardless of
the restriction on the number of directions, behaves like W,,(1) when n is large.

The remaining case not covered by the asymptotics above is when k& = 2 (the 1D
lattice). In this case, unsurprisingly the asymptotic behaviour of the sth moment
is n®/2 times the expectation of the sth power of the half-normal distribution (that
is, the normal distribution ‘folded’ around the mean at 0). This comes out to be

(2n)*/2 I‘(%)
o/ )

and therefore, we recover the asymptotic distance from the origin, /2n/7.

Remark 4.4.1. We wrap up our foray into random walks by showing that when
s = 2, the asymptotic behaviour of the distance from the origin, n, found above
agrees with the exact result of the 2nd moment. This can be proven since the exact
expression for the 2nd moment, when the walk is confined to k directions, is

1 k 21ty + 21ty - 2rt, 2+ . 27ty e 21ty s 27t 2
— COS ——+C0S ———+- - -+COs sin ——4sin ——+- « -+sin .
kn — k k k k k k

We expand the brackets and observe that all the cross terms disappear in the

summation. We then collect the cos?(t) +sin?(t) terms and the answer n follows. ¢



CHAPTER 5

Moments of Elliptic Integrals and Catalan’s Constant

ABSTRACT. We investigate the moments of Ramanujan’s alternative elliptic in-
tegrals and of related hypergeometric functions. Along the way we are able to
give some surprising closed forms for Catalan-related constants and various hy-

pergeometric identities.

5.1. Introduction and background

As in [46, pp. 178-179], for 0 < s < 1/2 and 0 < k < 1, define the generalised
elliptic integrals by

1 .1
K5 (k) == ”2F1<2 S

k2>, (5.1)
s —1-51+s 9
Es(k‘) = = 2F1< 2 1’ 2 k ) (52)
We use the standard notation for hypergeometric functions, e. g.
a,b 2 (@) (b)y 2™
F: = —_
’ ( ) 20,

n=0
and its analytic continuation. One of the key early results, due to Gauss (1812), is

the closed form

2k 1<a7cb‘1) - EEZ)E(;);(Z: Z; (5:3)

when Re(c —a —b) > 0.
We are interested in the moments given by

1 1
Ky =Ky, = / K'KS(k)dk,  E,=Ep,:= / K" ES (k) dk. (5.4)
0 0

for both integer and real values of n. We immediately note that K* = K(=%). Also,

Euler’s transform [11, Eqn. (2.2.7)] and a contiguous relation yield

:43(1—k2) Ks+28+1Es.
25 —1 25 —1

79
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An integral form of K* is given by

s cosms [1 ts=1/2
K (k) = 2 /0 (1 _ t)1/2+5(1 — k2 t)1/2_5 d. (5'5)

This and many more forms for K% E° can be obtained from http://dlmf.nist.

gov/15.6. There are four values for which these integrals are truly special:

111
Q:=120,-,-,-
86 {767473}’

that is, when cos?(7s) is rational. We return to these special values in Chapters 10
and 12. These give Ramanujan’s alternative elliptic integrals as displayed in [164]
and first decoded in [46]. A comprehensive study is given in [34] (see also [113]
and [10]). These four cases all produce modular functions [46, §5.5], and there is
currently a renewal of interest regarding related series for 1/7 (e.g. [31], [70], [174]
and [47]).

5.1.1. Series for 7. Truly novel series for 1/, based on elliptic integrals, were

discovered by Ramanujan around 1910 [31]. A famous one, with s = 1/4 is:

1 2v2 i 4k! (1103 + 26390k)

7 9801 k143964
k=0

(5.6)

Each term of (5.6) adds eight correct digits. Gosper used (5.6) for the computation
of a then-record 17 million digits of 7 in 1985 — thereby completing the first proof
of (5.6) (based on the idea that algebraic numbers with bounded degree and height
cannot be too close to each other numerically) [46, Ch. 3|. Shortly thereafter, David

and Gregory Chudnovsky found the following variant, which uses s = 1/3 and lies

in the quadratic field Q(1/—163) rather than Q(1/—58):
1 — (—1)* (6k)! (135914 45140134
7:122( ) (G(k) )( 3591400 + 545140134k)
™
k=0

3k)! k13 6403203k+3/2 (5-7)

Each term of (5.7) adds 14 correct digits. The Chudnovsky brothers used this
formula several times, culminating in a 1994 calculation of 7 to over four billion
decimal digits. Remarkably, (5.7) was used again in late 2009 for the then-record

computation of 7 to 2.7 trillion places. A striking recent series due to Yang, see

[209], is

1 V1D & &\ 4n+1
_— = — . 5.8
R () 5:5)

Further work has been done on similar series, see for example Chapter 12.


http://dlmf.nist.gov/15.6
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5.1.2. Classical results. A coupling equation between E* and K* is given in

[46, p. 178]:
k(1—k?%) d
FP=(1-k)K+ ~—~ _K°. .
A=K K+ s @ (5.9)
Integrating this by parts leads to
14+2s)FEys —2s Kg s
Ky, = 1+28) Bos = 25 Ko, (5.10)

o 2 —2s
In the same fashion, multiplying by £" before integrating the coupling provides a

recursion for K49 :

n—2s)Kps+ (1+2s)E,

K, = 5.11
n+2,8 n + 2 (1 _ S) ( )
We also consider the complementary integrals:
K®(k):= K*(\/1—k2) and E*(k):= E°(\/1—k2).
The four integrals then satisfy a version of Legendre’s identity,
EK"” + K°E® — KoK = = S257° 5.12
+ 214 2s ( )

for all 0 < s < 1. We will come back to this amazing identity later in Chapters 6
and 12.

In [46, pp. 198-99] the moments are determined for the original complete elliptic
integrals K and E. These are linked by the equations

dK

E= (1—k2)K+k(1—k2)E, (5.13)
which is (5.9) with s = 0 and
dE
EFE=K+k— 5.14
R (5.14)
from which we derive the following recursions:
Theorem 5.1 (s =0). Forn=0,1,2,...
nkK, + E, K,+1
Kppo=—""—7"7-— d () B,= . 5.15
() Koo = 2055 and (0) By = = (515)
The recursion holds for real n. Moreover,
1 2
Ky =2G, K =1, Ey=G+ -, F = (516)
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Here
n
G = 7;) (2(72_?1)2 = L_4(2) (5.17)

is Catalan’s constant whose irrationality is still not proven. Indeed [3] uses the
moment K as a definition of G.

The current record for computation of G is 31.026 billion decimal digits in 2009.
Computations often use the following central binomial formula due to Ramanujan
[46, last formula] or its recent generalisations [62]:

ZMJFQ log(2 +V3) = G. (5.18)
n=0 \n

| w

Early in 2011, a string of base-4096 digits of Catalan’s constant beginning at position
10 trillion was computed on an IBM Blue Gene/P machine [22].

5.2. Basic results

We commence in this section with various fundamental representations and
evaluations. Then in Section 3 we provide a generalisation of Catalan’s constant
arising as the expectation of K*. In Section 4 we consider related contour integrals.

Finally, in section 5 we look at negative and fractional moments.

5.2.1. Hypergeometric closed forms. A concise closed form for the mo-

ments is

Theorem 5.2 (Hypergeometric forms). For 0 < s < % we have

1 1 n+1
T 55— 85 +8 5
K = ——— 3F 2 "2 T2 1 5.19
n,s 2(n 1) 3 2( 1’1123 ) ( )
1 1 n+1
T —5— 85 +S8 5
E = F 2 72 T2 1. 5.20
n,s 2(n 1) 3 2( 1’n23 ( )

These also hold in the limit for s = %

PRrROOF. We use the following standard technique which makes use of the beta

integral,

B(a,b) = LWIO) _ /1 11 — pyPldr. (5.21)
0
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After interchanging the order of summation and integration:

/o1 21— ) R <a7 1b_ ’ 90) do = Z M /01 21— ) da

n=0

> a)n(l —a)p(uw)y, I'(uw)'(v
:Z()( Jn(wn I'(w)I(v)

= (O)n(u+v)un! T(u+wv)
I'(u)T'(v) a,1—a,u
= ———< 3k 1]. 22
F(u+v)3 byu+ v (5:22)
Similarly,
Fw)l'(v) o (a,—a,u Lot 4 a,—a
———3F 1) = U1 =) F dzx.
F(u+v)3 *\bu+v /Oa: (1=2)™ 2 b |T)
By applying these to (5.1) and (5.2) we immediately get (5.19) and (5.20). O

As long as 0 < s < 1/2, the first series (5.19) is Saalschiitztian [179]. That is,
the denominator parameters sum to one more than those in the numerator, but it
is not well-poised, and can be reduced to Gamma functions only for n = +1 since
then it reduces to a oF}. The second (5.20) is not even Saalschiitzian, although it
is nearly well-poised (see [179]) and also can be reduced to Gamma functions for

n = £1. Thus, for |s| < 1/2 we find

COS TS 2 COS TS

K Fly=—————.
Le L™ 95 131 — 4s2

5= 4e2 (5.23)
A cleaner form for K, o is recorded in equation (7.21).

In what follows, we will be using the digamma function, given in terms of the
Gamma function and the Euler-Mascheroni constant by:

U(z) = F,(f :—wrz ni_xl_l (5.24)

(So ¥(1) = —v.) We prove:

Theorem 5.3 (Odd moments of K*). For odd integers 2m+1 and m =0,1,2,...,

cos s m!? il’(%—s+k>l’(%+s+k>
4F(%75+m)F(%+s+m) k12 '

Komt1,s = (5.25)

k=0

PROOF. The Legendre polynomial (which we will more thoroughly investigate
in Chapters 10, 11 and 12),

—v,v+1|1—=x
y =P, (z):= 2F1< ’ );

1 2
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is a solution of the differential equation

d?y d
(1—x)£—2xdfy+1/(l/+1) =0.

In consequence we may deduce that

a,l—a _ sin7a 2 (a)p(1 —a)y i
2F1< . z> =— kzo T (1—2)"x (5.26)

{2U(1+k)—V(a+k)—¥Y(1—a+k)—log(l—2)},

using [138, p. 44, first formula (b =1 — a)].
Now, by integrating the series (5.26) term-by-term and applying (5.22), we have

_ 1 _
3F2(a’1 a7 1) = n/ Zn12F1<a’1 @ Z) dz
1 0 1

,n+1

_ nlsinma 2 (a)p(1 = a) ) ) i

= Ty et (WO +R) W41+ k) — W(a k)~ ¥(1 —a )}
k=0

(This offers an apparently new approach for summing this class of hypergeometric
series.) Then, by creative telescoping on the right hand side, one finds for any
positive integer n,

n—l

a,1—a,n L(n)T(1+n) 1—a
F 1) = 5.27
3 2< IL,n+1 ) FNa+n)T'(1—a+mn) kZ_D (5:27)
Now, with n =m + 1 in (5.27), we conclude the proof of Theorem 5.3. O

For m = 0, Theorem 5.3 reduces to the evaluation given in (5.23). A prettier

partial fraction decomposition is

COSTS m!? 1 1
Kam+1s = I;Om k)(m+k+1)! <2k+1—2s+2k+1+2s>
(5.28)
which can easily be confirmed inductively, using (5.65) below.

For s = 0 the result of Theorem 5.3 originates with Ramanujan. Adamchik [3]
reprises its substantial history and extensions which include a formula due inde-
pendently to Bailey and Hodgkinson in 1931 and which subsumes (5.27). A special
case of Bailey’s formula is

a,b,c+n—1
F 1
s 2( a+b+n,c

< (@)k(b)
< (r(D”

This identity, once found, can be easily checked by Zeilberger’s algorithm.

> _ T'(n)(a+b+n) | (5.29)

- T(a+n)(b+n)

i



5.2. BASIC RESULTS 85

Example 5.2.1 (Odd moments of E*). The corresponding form for Fo,, 1 s is

m—1
COS TS (m—1 2s+1)(2k+1
. S B Gar ek
2(s+m)+1 25+1 k:O m—1—Fk)l(m+k) (2k+1)2—4s
(5.30)
on combining (5.25) with (5.66) below. O

Example 5.2.2 (Digamma consequences). For 0 < a < 1/2, we use

o) )]

for which
7<;> :g, 7(1) :\%—ﬂlog(ﬂ—l),
7<;>:;§+1og2, 7<é>:ﬂ+\/§10g(2+\/§).

More generally,

iM[\I}(k+l)+\I/(k+g) ~W(k+a) - U(k+1-a)

k=0 (%)k k!
_ 2y(a) — mcsc(ma)
B 1-2a '

This in turn gives

a,1—a, 2sin(7ma) 1
12N 2 = —F——~(a) - : 5.31
’ 2< 1,3 > T A R (5:31)

Taking the limit as a — 1/2 in (5.31) gives two useful specialisations:
111
5135 4G 1

(2221 =—, V|(-)=r"+8G. 5.32
3 2< 1’% > T ) <4> T+ ( )
O

Example 5.2.3 (Half-integer values of s). For s = m + 1/2, and m,n =0,1,2...
we can obtain a terminating representation using Saalschiitz’s theorem (14.10),

)

T —m,m+1,"7+1
>3 2

Kpmi1y2 = 2+ 1) ], n
(-1)™r 2 (23
— 5.33
T T )T (P m) (>:33)
and likewise
(=)™ (m +1) 2 () (5.34)
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by equation (14.12) in Chapter 14. O

5.2.2. The complementary integrals. By contrast, the complementary in-

tegral moments are less recondite.

Theorem 5.4 (Complementary moments). Forn =0,1,2,... and 0 < s < %,
2 (41)

, 7
Kn ST AT (n+22—2s) (n+2+25) (5.35)
, _ 2 (%)
En,s - Q(n + 1) r (n+2 23) r (n 4+2s) : (536)
These also hold in the limit for s = ;
In particular, we recursively obtain for all real n:
(n+1)2 n+1
(a) Kpios = (71_’_2)—2_482K7,L753 (b) B s = nr2+2s s> (5.37)
) 7 sin (7 8) COS TS
with (C) K(/LS = Z S y (d) Ki’s = 1_7432
PROOF. To establish (5.35) we recall that
1_ 41
K¥ = g 2F1(2 5’12 LT k:2), (5.38)

x>dx
— T 3F2 %_87%+3711 _ ™ 2F1 %—87%4'8
2(n+1) 1,243 2(n +1) nt3

which is summable, by Gauss’ formula (5.3), to the desired result.

1),

The proof of (5.36) is similar, and the recursions follow. O

Example 5.2.4 (Complementary closed forms). With s = 0 and n = 0, 1 we recover

’ ’/T2 ’ 71'2 ’ ’ 2
K0217 EO:§7 Klzlv Elzga
as discussed in [46, p. 198]. Correspondingly
(,)1/6:31 Kil :% E’ :91 K/’ :M
; 4 1/6 16 ’ 0,1/6 = 9g° 1,1/6 ]0
3v/3m , 9 , 93w , 27

(/),1/3 = 8 1,1/3 = 10’ Eo,1/3 = 64 E1,1/3 = 55
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We note that 7, not 72 appears in these evaluations, since in (5.37, c), sin(rs)/s —

as s — 0. O
We note that a comparison of Theorems 5.3 and 5.4 shows that (trivially)
K, =K and E| = Eug.

Remark 5.2.1. The formula

/OlK(/.c)ldﬁi_/OlKG;h)Hh /K’ (5.39)

is recorded in [46, p. 199]. It is proven by using the quadratic transform [46, Thm
1.2 (b)] for the second equality and a substitution for the first. This implies

2) (-
n=0

on appealing to Theorem 5.4.

2
% = K, (5.40)

The corresponding identity for s = 1/6 is best written as

1 12 1 12 dt
/2F1<3’3 1t3)dt:3/2F1(3’3 t3> , (5.41)
0 1 0 1

142t
which follows analogously from the cubic transformation [45, (2.1)] and a change

of variables. This is a beautiful counterpart to (5.39), especially when the latter is

written in hypergeometric form:

ER TR (e
F{221—-k"|dk=2 F k%) ——. 5.42
Lo ees () S

Additionally, [46, p. 188] outlines how to derive

L (H)

Using the same technique, we generalise this to

/01%:1(5 (;ﬁ)QZCOiQG(ZS)ﬁ(lzzs) F2<1—42s>' (5.43)

Here we have used Gauss’ formula (5.3) for the evaluation of K*(1/v/2). By the gen-

eralised Legendre’s identity (5.12), which simplifies as the complementary integrals
coincide with the original ones at 1/v/2, we obtain

s 1 _KS(%) T COS TS
E <\/§>_ 2 4(2s + 1) K5(

En
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5.3. Closed form initial values

Empirically, we discovered the algebraic relation

COS TS
2(1+5) Epe — (1425) Koo = 5 (5.44)
On using (5.10) to eliminate Ey ¢ in (5.44), it becomes
K
Koy = 0,s + cos (7 s) (5.45)

4 — 452
which in turn is a special case of (5.65) below with r = % (as is justified by Carlson’s
Theorem 1.3), thus proving our empirical observation.

Hence, to resolve all integral values for a given s, we are left with looking for
satisfactory representations only for Ko ,. We will write

1 0 1l _s5il+s
Gs=-Kos=—3Fy( "2 7
s 2 0,s 43 2< 17

1) (5.46)

[\J[oN)

and call this the generalised Catalan constant.

5.3.1. Evaluation of G;. From (5.19) we obtain

P %,%—s,%—ksl _ CcosTS T (3+n+s)T(3+n—ys)
0 = 872 1,3 T2 2 (2n +1)n!2
n=0
00 2n
COST § 1 1 (n)
=3 n220ﬁ<”+2‘5’”+2+5)m+1

cosms [larcsin (2 Vit — t2)
_ / i
0

4 tl+s (1 — )"

s /2 0 0 0
COS TS 9 9

= ) AT
/0 {tan ( >+cot < >}si dé (5.47)

Here we again write the Gamma terms as a beta integral, and exchange the order

of integration and summation, followed by various trigonometric substitutions. For

example, we have

w/2 0
Koo = / df = 2G.
0

sin 0
The final equality has various derivations [46, 3]; these include contour integration
as explored in Section 5.4.
If we now make the trigonometric substitution ¢ = tan(6/2) in (5.47), and

integrate the two resulting terms separately, we arrive at the following evaluation.
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Theorem 5.5 (Generalised Catalan constants). For 0 < s < 3, we have

1
Ko,s = cos 7TS/ (t2$_1 + t_25_1) arctant dt
0

_ co;:s {\I/<3_425) +\I/(1—z28> —\I/<1_428) —\11(3—228>}
_ CO:;TS {\I’GJ“D —\p(;+i)}+42 = 2G,. (5.48)

Note that for s = 0, applying L'Hopital’s rule to (5.48) yields
1 1 1 3
Koo==-0'(~ )| -0 (>
oo=5% (1) 5% (1)

The digamma expression in (5.48) simplifies entirely when s € Q.

which is precisely 2G.

Corollary 5.1 (generalised Catalan values for s € Q).

3v3 3v3
Go=G, G = zlf log2, G4 = log(l—i—\/i), Gis = ;ﬁ log(2+\/§). (5.49)

Mathematica, which currently knows more about the ¥ function than Maple,
can evaluate the integral in Theorem 5.5 symbolically for some s. For example, for

s = 1/12, after simplification we get
V3

More generally, the evaluation requires only knowledge of sin(ms/2), and hence we

can determine which s gives a reduction to radicals. As a last example,

Gi/s =§ 5+2JS{‘/52_ L arcsinh <\/5+2\/5) — arcsinh <\/5—2\/5>}.

5.3.2. Other generalisations of G. Other famous representations of G in-

Tl'/2 t
G= —/ log (2 sin 2) dt (5.50)
0

7T/2 t
= / log (2 cos ) dt, (5.51)
0 2

w/2
and G = —/ log (tant) dt, (5.52)
0

clude
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which easily follow from (5.50) and (5.51) . To prove (5.50), which is an example
of a log-sin integral more carefully studied in Chapter 9, we integrate by parts and

obtain

/2 w/4 T
/ log (2 sin — )dt—Q/ tcottdt — —log2
0 2 0 4
/4 11
:2/ 2F1<232
0 2
1/V2 :
_ 2/ arcsmxdx_ zlog?
0 X 4

v e
= ™ 2)-4 2=3.
(G+4og 4og G

sin? t> costdt — g log 2

The second and third equalities hold since angl(%, %; %; 2?) = arcsinz. The final

equality follows on integrating arcsin(x)/x term by term. Inter alia, we have shown

/2 L1
QG/ dt/ 2F1<2;2
sint 0 5

We may generalise (5.50) or equivalently (5.53) to:

that

sin? t> dt. (5.53)

Proposition 5.1.

sin? t) dt. (5.54)
Proor. We write

e T [ l—3 +s
== K° = F 12 2
2/0 (k) dk 4/0 2 1( 1 k:)dk:

1 1
_ coiws / p12(1 — )12 gy / (1= k2612 dk
0 0

1 11
= cozws / V()2 R ( % ’ t) dt
i 3

O

Note that from Theorem 5.2 and (5.31), we recover Theorem 5.5 in the equiva-

lent form

COS TS 1 T
1) = ’y(f + s) ~ & (5.55)
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5.4. Contour integrals for G,

By contour integration of ¢/sint on the infinite rectangle above [0,7/2], we
obtain
1 [ t et (=)™
Gog= - —dt = ——dt = —— =(. 5.56
0 2/0 cosht /0 1+e 2 %(2n+1)2 (5-56)
Here we have used the geometric series and integrated term by term.
Done carefully, contour integration over the same rectangle, converting to expo-

nentials, and then integrating term by term, provides a general integral evaluation:

Lemma 5.1 (Contour integral for Gs). For 0 < s < 1/2 we have

© cosh?® t — sinh®* ¢
2G, = Ky, = 2% sin (27s / tdt
s 0,s ( ) 0 Sinh23+1 2%

*©cos (2 sarctan (sinht))

tdt. .
+ cos (7s) /0 p—— (5.57)

Now write (5.57) as
Ky s =sin (27s) S(s) + cos (ws) C(s). (5.58)

To evaluate S(s) we make a substitution v = tanh(¢). We obtain

S(s) = ;/Ol(u_?s_l — u?*Y) arctanh(u) du
:gsl<27+410g(2)+‘11(;—s>+\ll(;—l—s>>. (5.59)

To evaluate C(s) we note that

cos (2 sarctan (sinh t)) = cos (2 sarcsin (tanht)) = o F} <s, 1_8
2

tanh? t> (5.60)

and so we obtain a converging series

Cls) = /oo cos (2 sarctan (sinh t)) = i (8)n1(_8)n Tn
0 cosh t vt (5), o
where
0o xQn
Ty 1= ——— arcsinh(x) dz.
/o (1+ 22" (@)
Moreover,

(13+8m2? +20m) Tipp1 —2 (m+1) 2m+1) 7y,
2 (m+2)(2m+3)

where 70 = Ko =2G and 1y = Ey = G + % In particular C(0) = 2G.

Tm+2 = (561)
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A closed form for 7, is easily obtained by creative telescoping. It is
11\ [2G 1< T2%(k)
Tn:ﬁ(n+,>{+zl : (5.62)
2°2 7r 4k:11“2(k;+§)
Collecting up evaluations, we deduce that

Ko,s =sin(27s) {gsl (2v+410g(2) +\If<% —s) —l—\I/(;—l—s))}—i-

81n27rs{ _WZ 'k+s+1) I‘(k—5+1)—k!2}‘
8T (k+3)°

This ultimately yields:

Theorem 5.6 (Contour series for Gy).
sin 27s | = [2(k) — T'(k + s)I'(k — s) 1 1 8G
Gs - 16s [Z F2(]€ 4 %) +2\IJ(§) —2v (54‘5)“‘7’( tan(ﬂs)—i—? .
(5.63)

5.5. Closed forms at negative integers

We observe that (5.19) and (5.20) give analytic continuations which allow us to

study negative moments. In [3] Adamchik studies such moments of K.

5.5.1. Negative moments. Adamchik’s starting point is the study of K, =

K, 0, for which Ramanujan appears to have known that
(2r +1)2 Koy 1 — (2r)? Kop_1 = 1, (5.64)

for Re 7 > —1/2. For integer r this is a direct consequence of (5.25).
Experimentally, we found the following extension for general s by using integer

relation methods with s := 1/n to determine the coefficients:
((2r + 1)® — 45%) Koyp1,6 — (2r)?Kop_1,5 = cOSTS. (5.65)

For integer r this is established as follows — the general case then follows by Carlson’s

Theorem 1.3. Using (5.25) and the functional relation for the I function, we have:

((27’ + 1)2 - 482) K2r+1,s — 47‘2K2T_178

B mrl? ZT:(% 5) S (3= (g + 5
TG +r—s)TE+7r+5s) k'2 —~ k12

k=0

B wrl? (% — s)r(% +8)r
=TT — T 5 = cos(7s).
I'(5+7r—8I(5+7+s) 7!
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Equation (5.11), when combined with (5.65), implies

(25 +1)?K,, 5 + cos s
Ens= : )
’ (2s+1)(2s+n+2)

which extends (5.15) and completes the proof in Example 5.2.1.

(5.66)

Remark 5.5.1 (Terminating sums). While studying [3] we distilled the following.

(1) For0<a<1

11

5,50
F 2020
K 2<1,1-|—a

1> . (5.67)

In particular, when a = 1/2 or 1/4,

1 11 1
929999 2 15157 4
3F2<2 232 1> _3F2< 3 32 1) :7G7
L3 ™ 202
3 401
3F2<4:;,1;1 1) :F (Z),
5.5 167

the last evaluation takes advantage of Dixon’s theorem (14.14).

)

always terminates (this is a specialisation of (5.29)). For example,

3F2<

(2) Moreover, for n =1,2,3,...

11
F §7§7n
3 2(1,1+n

L,1,1-n (>")? ol 42K

3F2< 2 1): L {2G+ }
a1 T L ey
(4) For0<a<landn=1,2

1., 1-n—a
3F2< 3 1
2

3
2

(5) Finally,
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O

5.5.2. Analyticity of K, for 0 < s < 1/2. The analytic structure of r
K, ; is similar qualitatively for all s. There are simple poles at odd negative integers

with computable residues.

Theorem 5.7 (Poles of K, ). Let R, s denote the residue of K, s atr = —2n+1.

Then N2
(a) Rnt1,6 = (n = 322 —% Rus () Riy= g. (5.68)
Explicitly
(€) Ry — cosmsT (n — % + s) r (n — % — s) (5.69)

212(n)
PROOF. Recursion (5.68, a) follows from multiplying (5.65) by 2(r+n) = (2r+
1) — (1 — 2n) and computing the limits as r — —n.

Directly from Theorem 5.2, we have

o r+1 %—s,%%—s,% m
RI,S_2T£I£11T+13F2< 17% 1 _57
which is (b); part (c¢) follows easily as a telescoping product. O

5.5.3. Other rational values of s. For s =0 only, K_; /5 ; reduces to a case
of Dixon’s theorem and yields
(D)

K_1/20=

a result known to Ramanujan. A closed form is also possible for K’ /3,176 OF

equivalently

1— t3> dt. (5.71)
We first write

1 12 1 12
H—g/o m§2F1<3’13 1—x)dx—g/0 (1—$)§2F1<3’13 :c)dx.

Now the integral (5.22) shows this is Z 2F1(3,1; 3,1). By Gauss’ formula (5.3) we

arrive at

H= \1/25 r3(é). (5.72)

This also follows directly from the analytic continuation of the formula (5.35).



CHAPTER 6

Moments of Products of Elliptic Integrals

ABSTRACT. We consider the moments of products of complete elliptic integrals
of the first and second kinds. In particular, we derive new results using a variety
of means, aided by computer experimentation and a theorem of Zudilin (which

has been used in Chapter 2).

6.1. Motivation and general approach

We recall the definitions of the complete elliptic integral of the first kind K (z),
and the second kind E(x):

Definition 6.1.

xz) ; (6.1)

w/2 dt w/2
K(x) = ———— E(x) = V1= 22sin?tdt. (6.2)
D)
0 1—2a2sin“t 0

As usual, K'(x) = K(2'), E'(z) = E(2'), where ' = /1 — x2.

The complete elliptic integrals, apart from their theoretical importance in ar-
bitrary precision numerical computations [46] and the theory of theta functions
(see also Chapters 10 — 12), are also of significant interest in applied fields such as
electrodynamics, statistical mechanics, and random walks [56, 57]. They associate
in many ways with various lattices [110]. K and E were first used to provide ex-
plicit solutions to the perimeter of an ellipse (among other curves) as well as the
exact period of an ideal pendulum. They can be used to integrate algebraic expres-
sions involving square roots of cubic or quartic polynomials (e.g. see Chapter 4).
Their properties were investigated by Wallis, Landen, Fagnano, Euler, Lagrange,
Legendre, Gauss, Jacobi, among others; many such properties are recorded on the

general reference site http://functions.wolfram.com.
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The author was first drawn to the study of integral of products of K and F in
[56] (Chapter 2), in which it is shown that

1 1
2 = /.1'21' .
2/0 K (z) dx/OK()d, (6.3)

by relating both sides to a moment of the distance from the origin in a four step
uniform random walk on the plane. A much less recondite proof was only found
later: set x = (1 —t)/(141t) on the left hand side of (6.3), and apply the quadratic
transform (6.4) below, and the result readily follows.

The four quadratic transforms [46], which we will use over and over, are:

K@) = —K <1 - x) (6.4)

- 1+x 1+x
K(z) = 1}er <12£> (6.5)
E'(z) = (1+2)E G;i) 2K (2) (6.6)
a X —.T2
E(z) = 1; E (ff;) 41 ST K (@), (6.7)

In the following sections we will consider definite integrals involving products
of K,E,K', E', especially the moments of the products, as a continuation of our
study in Chapter 5. A goal of this chapter is to produce closed forms for these
integrals whenever possible. When this is not achieved, closed forms for certain
linear combinations of integrals are instead obtained. Thus, we are able to prove a
large number of experimentally observed identities in [19].

The somewhat rich and unexpected results lend themselves for easy discov-
ery, thanks to the methods of experimental mathematics: for instance, the inte-
ger relations algorithm PSLQ [91], the Inverse Symbolic Calculator (ISC, hosted
at Newcastle, http://isc.carma.newcastle.edu.au/), the Online Encyclopedia
of Integer Sequences (OEIS, [180]), the Maple package gfun, Gosper’s algorithm
(which finds closed forms for indefinite sums of hypergeometric terms, [161]), and
Sister Celine’s method [161]. Indeed, large scale computer experiments [19] reveal
that there is a huge number of identities in the flavour of (6.3). Once discovered,

many results can be routinely established by the following elementary techniques:

(1) Connections with and transforms of hypergeometric and Meijer G-functions

(see also Chapter 2), as in the case of random walk integrals (Section 6.3).
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(2) Interchange order of summation and integration, which is justified as all
terms in the relevant series are positive (Section 6.4) (we may use either
the series or the integrals for E or K).

(3) Change the variable x to a’, usually followed by a quadratic transform
(Section 6.5).

(4) Use a Fourier series originally due to Tricomi (Section 6.6).

(5) Apply Legendre’s relation (Section 6.7).

(6) Differentiate a product and integrate by parts (Section 6.8).

Section 6.2 and most of Section 6.7 are expository. The propositions in Section
6.4 are well-known, but the arithmetic nature of the moments, Theorem 6.3 and
Lemma 6.3 in Section 6.6 seem to be original. Section 6.3 contains new general
formulas for the moments of the product of two elliptic integrals, and Section 6.8
contains many new, though mostly easy, linear relations between the moments.

Some useful identities of elliptic integrals are also gathered throughout the chapter.

6.2. One elliptic integral

The moments of a single K, E, K’, E' are well known (e.g. see [46]). For com-
pleteness here we state a slightly more general result.
It follows by a straightforward application of the beta integral (5.21) that
[ TP DT i) ey
0 4 T(i(m+n+3)) 1, metnts
s (%(m +1))T (%(n +2)) B (—%, %, TH

1
2™ E(x)dr = =
/0 ( ) 4 F(%(m—l—n—i—i’))) 17m+2n+3

Using the obvious transformation x — 2, we have

/1 2K (2)E(2) K (2)°E' (2)4dx = /1 z(1—2?)"K'(2)*E' (2)° K (2)°E(x)%dz,
" ’ (6.10)
an equation which we appeal to often. Thus, using (6.10), we see that (6.8, 6.9)
also encapsulate the moments for K’ and E’. We note that for convergence, m >
—1,n > —2. When m = 1 both formulas reduce to a o F; and can be summed by
Gauss’ theorem (5.3).
If in addition 2m +n 4+ 1 = 0 in (6.8), then Dixon’s theorem (14.14) applies
and we may sum the 3F5 explicitly in terms of the I' function. For instance, we

may compute fol K (z)/z" dz (which also follows from the Fourier series in Section
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6.6). In (6.9), Dixon’s theorem may only be applied to the single special case
) 2’ B(x) dz = T4(1/4) /(48n).
In [40] (Chapter 5), the corresponding results for the moments of the generalised

elliptic integrals are derived similarly.

Remark 6.2.1. It is also possible to work out, using the beta integral, a number

1),

The above simplifies, for instance, when m =n = —1/2. O

of other results, such as

7 T'(m+ 1)I'(n+1) %’%77—%1’%2
b 3 1 m+n+2 m+4n+3
’ 2 ’ 2

1
/Oxm(l—a:)”K(x)da:ZQ T+ n12)

6.3. Two complementary elliptic integrals

Though the simple cases corresponding to n = 0 in this section are tabulated
in [66], the general results appear to be new.

In [207], Zudilin’s Theorem connects, as a special case, triple integrals of ratio-
nal functions over the unit cube with generalised hypergeometric functions 7Fg’s.

We state a restricted form of the theorem which is sufficient for our purposes:

Theorem 6.1 (Zudilin). Given hy, ..., hs for which both sides converge,

drdydz

1>.

(6.11)

xh2—1yh3—1zh4—1(1 . x)ho—hg—hg,(l . y)ho—hg—h4(1 . z)ho—h4—h5
/[0,1]3 (I —2(1-y(1l—2))h
~D(ho+1) H?:zr(hj) H?:l L(ho+1—hj — hji1) »
B [1_i T(ho + 1 — hy)
ho, 1+ 10 hy, ho, ha, ha, hs
e (*;0,1+h0—h1,1+h0—h2,1+h0—h3,1+h0—h4,1+h0—h5

In Chapter 2, this theorem is used to derive hypergeometric evaluations for the
moments of random walks from their triple integral representations.
The idea here is to write a single integral involving products of elliptic integrals

as a double, then a triple integral of the required form, and then apply Theorem
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6.1. To do so, we require the following formulas, which are readily verified [1]:

/01 V(1 —d;)(a —1) jaK (;a) ’ (6.12)

/01 m do=2Va E (}) : (6.13)
/al NG —d;/)(y = = W), (6.14)
/al a —\gj)g(y —a) dy = 2E'(Va). (6.15)

Using the above relations, we have, for instance,

/olEl(y //\/1— _a2)E(m)dyda
_4//\/1_ylél_z)E(\/@)dydz

1

S L e

1=y )
/[01]3\/ 1—2)(1—y)z(1—2) dzdydz.

The first equality follows from (6.15), the second from changing a? + yz, the third
from (6.13), and the fourth from z — 1 — z. Now Theorem 6.1 applies to the last
integral.

Similarly, by building up the E’ integral then K’, we obtain:

! / / 1_331_ (1_'2))
/OE(x)K /[01]3\/ T2y = )20 —2) dadydz.

Alternatively, by building up the K’ 1ntegral then E’', we get:

/ ! \/ﬂdxdydz
/E L /01]3\/x1—:z(1— Y)z(1—2)1—2(1—y(1—2)))

Finally, we also have

() d — 1 dxdydz .
/0 ®) 8 Jooap (1l - 2)y(l — y)z(1 — 2)(1 - 2(1 — y(1 - 2)))

Slightly generalising this strategy, we are led to:
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Proposition 6.1. For all real n > —1,

(1)
_ 204 DX (432 10 () (—5757%737"53,7@37”?

1
! 2 2
/0 2"E'(x)*dx = 16(n+2)3(n+4) I'(n+1) 1,243 nt2 nid nid nt6

(2)

B K ) do = 2RI () (g e e
OwE(w) (z)dx = 16(n +2) 1ﬂ4(n_i_1)7Fﬁ | il ni2 nt2 nt2 ntd

R R C IR
16(n +2)3 I'(n+1) 1

4 00 0200 200 200 2

3)

1 4n 8 (n+1 1 11 1 nt+l nt+l nt5

2 1 r 9 9999999y 9 v 9 9 4
/x"K’(x)Qda:: (n+1) 4(2)7F6 2212 22 22 2242

0 16 F(n—i—l) 1.4l nt2 nt2 nt2 nt

1),

(6.18)

T4 T2 0 2 0 2 02
When n is odd, the 7Fg’s reduce to known constants, which we prove below.

Theorem 6.2. When n is odd, the nth moment of K>, E"* K'E' K? E? and KE
is expressible as a + b((3), where a,b € Q.

PROOF. We prove the case for the pair K> and K?; the other two pairs are
similar.

Firstly, when n is odd, the summand of the 7 Fg for K’? is a rational function:

2k +m +1)(k + 1)%(k +2)?- - - (k + m)*
(k+1/2)4(k +3/2)% - (k+m+1/2)"

(6.19)

here we have ignored the rational constants at the front and wrote n = 2m +1. We
can explicitly sum (6.19) and verify the statement of the theorem for the first few
moment of K’?. By using the change of variable = + 2’ as in (6.10), we can likewise
do this for K?2.

Now it is not hard to show that the moments of K? satisfy a recursion:
(n+1)3K,42 — 2n(n? + 1)K, + (n — 1)3K,,_2 = 2. Results like this are proven in
Section 6.8.2. The recursion shows that the statement holds for all odd moments

of K2. Then (6.10) gives the result for K'2. O

Remark 6.3.1. Note that by computing the moment of E’(z)K'(x) in two ways,

we obtain a transformation formula for the 7Fg’s involved. Also, by either one of
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the two known transformations for non-terminating 7Fg’s [25, pp. 29 and 62], we
can write each of our 7Fg as the sum of two 4 F3’s, where one series readily simplifies
to known constants when n is odd, while the harder term becomes reducible in light
of Theorem 6.2. When n is even the reduction is more troublesome; after taking a
limit, we have, for instance,

1 00
/xQCE:
Q/OK()d kz

=0

I(k+3)
W—i—i)(Hk - Hk—1/2)7

where H,, stands for the nth harmonic number; this result has already been recorded

in Chapter 2. %

Remark 6.3.2. Therefore, by Theorem 6.2, all the odd moments of K2, E?, K'FE'
have particularly simple forms involving ¢(3). By using (6.10), we can iteratively

obtain all the odd moments of K2, E?, KE. For example,

1 1 v 7
/0 PR @) dr = (24 7¢(3), /0 PR (@) = 1((3).

Remark 6.3.3. We sketch another proof of Theorem 6.2 by expanding (6.19) into
partial fractions.

As each partial fraction has at most a quartic on the denominator, the irra-
tional constants from the sum can only come from {((2),((3),((4)}, and possible
contribution from the linear denominators. But as the linear terms must converge,
their sum must eventually telescope, and hence contribute only a rational number.

We recall that partial fractions can be obtained via a derivative process akin to

computing Taylor series coefficients; indeed, if we write

@—ap @—a) @-a2 oo

then A, = f(a), Ay_1 = f'(a)/1!,..., Ay = f*D(a)/(n - 1)\.

When applied to (6.19), it is easy to check that, when n = 3 (mod 4), the
presence of the numerator 2k + m + 1 makes the terms with quadratic and quartic
denominators telescope out, leaving us with rational numbers (these terms occur

_n4l
2

in pairs related by the transformation k — — k, where said linear numerator

switches sign). Similarly, the terms with cubic denominators double.
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When n =1 (mod 4), 2k + m + 1 cancels out with one of the factors, making
the corresponding denominator a cubic. We check that its partial fraction has no
quadratic term: this is equivalent to showing (6.19) with all powers of 2k +m + 1
removed has 0 derivative at k = —”T“, which holds as it is symmetric around that
point. So in both cases only the cubic terms remain, giving us ((3).

This type of partial fraction argument is at the heart of the result that infinitely
many odd zeta values are irrational (see [28], which, incidentally, is the motivation
for Zudilin’s Theorem 6.1).

Chronologically this was our first proof, after experimentally noticing that Maple
was able to evaluate the relevant 7Fg’s without any trouble; upon increasing the
printlevel, it became apparent that Maple was not using any transformations or

summation formulas, so it was surmised that a more elementary method was used

to evaluate the sum, i.e. partial fractions. O

6.4. One elliptic integral and one complementary elliptic integral

Here we take advantage of the closed form for moments of K’, E’ which follow

from (6.8) and (6.9):
! I?(3(n+1
/ l,nK/(x)dm: m (%(n ))7
0 4T2%(5(n +2))
WFQ(%(TL +3))
2n+ )T (3(n+2)L(A(n+4))’
and the series for K, E equivalent to Definition 6.1:
— I2(k+1/2) 2% = T(k—1/2)T(k +1/2) 2%

2(k+1) 2° E(””):kzo_

1
/ 2"E'(z)dr =
0

K(w) = T2(k + 1) 4

(6.20)
k=0

Hence, the proposition below may be simply proved by interchanging the order

of summation and integration.

Proposition 6.2. We have the following moments:

1 2 p2(l 11 ntl nitl
/ :E”K(:E)K'(x)dﬂ::—FQ(i 4F3<212n+§ nig 1)a (6.21)
0 2 172 02

1) , (6.22)
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(4)
1
/ 2B () E (2) do =
0

DGO +D) o <—§,§,”21,"23
8 (n+2)I'2(3(n+2)) 1,n

1). (6.24)

When 7 is odd, the moments yield a closed form as a rational multiple of 73
plus a rational multiple of 7, as we can expand the summand (a rational function)
as partial fractions much like in Remark 6.3.3. To prove this observation, we need
Legendre’s relation [46]:

E(x)K'(z) + E'(z2)K(z) — K(2)K'(z) = g (6.25)

Note that by using the symmetry between parts (2) and (3), as well as by applying
(6.25), we obtain linear identities connecting these 4F3’s. Due to the lack of Taylor
expansions of E’, K’ around the origin as well as sufficiently simple moments for

F, K, this method cannot be used to evaluate other moments.

Lemma 6.1. For odd n, the nth moment of K(x)K'(x) is a rational multiple of

73, and the nth moment of E(z)K'(z), K(x)E'(z) and E(x)E'(x) is plus a

( )
4(n+1
mtional multzple O? 7(3.

PROOF. We experimentally discover that, letting g, := fol 1K (2)K' () du,

we have the recursion
203 gni1 — (20— 1)(2n* — 2n + 1) gy 4+ 2(n — 1)3g,,_1 = 0.

This contiguous relation (see Chapter 14), once discovered, can be proven by ex-
tracting the summand, simplifying and summing using Gosper’s algorithm. Thus,
after computing two starting values, the claim is proven for the moments of K K'.
Note that the recursion also holds when n is not an integer.

For the moments of EK’ or KE', we take the derivative of 22" K (z) K'(x) via the
product rule, and integrate each piece in the result. By using (6.25) and the proven

ﬁ. For
the moments of EE’, we instead consider the derivative of (1 — 22)2?"E(x)E’(z)

claim for the moments of K K’, we deduce that the term involving 7 is

and use the proven results for EK’ and KE’. This trick involving integration by
parts is exploited in Section 6.8. ]
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Experimentally, we find that the sequence h(n) := 7216"*1g, .1 matches entry
A036917 of the On-line Encyclopedia of Integer Sequences; indeed, they share the
same recursion and initial values. Moreover, the OEIS provides

n 2 2 2 1 11

2n — 2k\ ~ [ 2k 16"T(n + 5) —n, N, 5,5
h(n) = =———24F 7272 11). (626
" §%<n—k> (%) ﬂf%n+1>43<;—m; nalt) (620

The first equality is routine as we can produce a recurrence for the binomial sum
— for instance, using Sister Celine’s method; the second equality is notational. The
sequence h(n) will make another appearance in Chapter 12.

The generating function for A(n) is simply

S hmr = K (i),
™
n=0
which is again easy to prove using the series for K (t). Recall that h(n) is related

to the moments of K (z)K'(x), and thus we have:

Theorem 6.3.
! x / T 2
——— K(x)K'(x)dz = ZK(t) . (6.27)
0

1 — t222

Equation (6.27) seems to be a remarkable extension of its (much easier) cousins,

1 1 - 1 1 -
/0 T (@) de = SK(f) and /0 Tl (@) de = oo (K () — B(t),
(6.28)

Manipulations of (6.27, 6.28) give myriads of integrals, we list some of them

below (G denotes Catalan’s constant, investigated in Chapter 5):

/1arctan()K,< ydz = 7@,
0

/OlzK(a:)K’(x)( (z) — dx—/ K(2)2E (2

x2> 2K () K (2) do = ”Zl) /O K (1)2 dt.

The last identity specialises to

1 Joo(1 — 22
/0 lgg&(x)f(’(x) dz — gTrC(?)), (6.29)

while it is possible to similarly find

Clog(l-a?)
/ K () B/ (z)dz = .
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By setting ¢ = 4 in (6.27) (this also works for (6.28)) and appealing to (6.33), we

obtain

VoK (x)K' (x r4t
/O 1(423:; )dx: ég). (6.30)

6.5. Sporadic results

We list some results found by ad hoc methods; some are not moment evaluations

per se, while others are preparatory for later sections.

6.5.1. Explicit primitives. Curiously, a small number of integrals happen to

have explicit primitives; we list some here:

d
T—a2 1xa 0 (12232

2"K(x), 2" E(x),
where F' can be K, K', E or E'. The primitives are expressible in terms of K and
E when n > 0 is odd or when n < 0 is even in the first three cases (and also when
n = 0 in the third case). Moreover, (E(x) — K(z))/z has a primitive (being E(z)).

The last case, and many other integrals, are found in [101]. We sample two
other integrals from [101] to show the flavour of the identities therein:
1
/0 m dz = %K (2),
proven by x — 2/, and
/1 P, (1 — 22°)K (z)dz = =D
0 (2n+1)%’
which involves the Legendre polynomials.
Trivially, transformations of the above list still yield explicit primitives. We note
that some computer algebra systems, when used naively, struggle to find primitives
which come from this very short list, one example is given by applying z — 2’ in

the last case:
K@), P@)- K@)

2 x

These cases also give rise to interesting definite integrals, we only record a couple

here:
VE(2) -1 VE(2) -1
/mdx:2log2—1, /(:”)zdle. (6.31)
0 T 0 x

A more thorough investigation is undertaken in Chapter 7.
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6.5.2. Imaginary argument. In [1] vol ITI, some integrals with the argument

1x are considered, e. g.
1
1
/ oK' (2)K(iz) dx = §G7r.
0

This can be proven by expanding zK (iz) as a series and summing the moments
of K'(x). Other evaluations are done similarly; for instance, we can easily obtain
recursions for the moments of K (ix) and E(ix).

We also record here that Euler’s hypergeometric transformation [11]

2F1<“’Cb z> =(1- z)agFl(a’ L ) (6.32)

c z—1

gives
E(iz) =Va?+1 E(z/Va?+1), K(iz)=1/Vz?+1K(z/Va?>+1). (6.33)

6.5.3. Quadratic transforms. Using the quadratic transforms (6.4, 6.5), we

obtain

/01 K(2)" dz = ;/01 K'(t)" (%)H at,
/1 K'(z)"dz =2 / K@)"(1+t)"2dt. (6.34)
0

Setting n = 1 we recover the known special case

1K 2
(@) g =™
0.’1}""1 8

Using a cubic transform of the Borweins [45], this identity is generalised in
Chapter 5. The appropriate generalisation of (6.3) — itself obtained by setting
n=2in (6.34) — is

when combined with (6.34), we deduce

v 10 ! B 1 B Lo
/0 K(x)3dx—3/0 K(x)?’dx—5/0 xK(x)gda;—E)/O eK'(x)3dz.  (6.35)
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Using (6.6, 6.7), we have

1 " 2n+1 , , "
/0 Bla)" s /(E( )+ oK (2))" da, (6.36)

T+ 1)n+2 0

0 A Y 1—2*)K(z))"d 6.37
| Py e = [ @B@-(-a)K@) 630

When n = 1,2 we obtain closed forms, such as
1 2 1 l
E 1 E
o (x4+1)377 32 o (x4 1)3 8 16
6.5.4. Relationship to random walks. In Chapter 2, many moment rela-
tions are derived while computing Wy(n), the nth moment of the distance from the

origin of a 4-step uniform random walk on the plane. For instance, we have:

16
3

Wi(1) = /0(1—3 2 K'(2)2 da.

In [57] (Chapter 3) and [20, formula (89)], the following identities are given via
Meijer G-functions:

3
—W4 / K (sint)? smtdt—2/ K(sint)? costdt

= / K(sint)K(cost)dt = 2 / K(sint)K (cost)cos®tdt. (6.38)
0 0
The last equality follows from the general identity (proven by z — z’)

L dz
2F (z?)F(1 — %) \/1—x2dx—/F F(l —2?) ——.
/0 (a* Vi

6.6. Fourier series

As recorded in [20], we have the following Fourier (sine) series valid on (0, 7):

Lemma 6.2.

o0 2 n
K(sint) = 2‘6 W sin((4n + 1)t). (6.39)

For completeness, we sketch a proof here:

PROOF. By symmetry we see that only the coefficients of sin((2n + 1)t) are
non-zero. Indeed, by a change of variable cost — x, the coefficients are

4 (Y sin((2n 4 1)t)
/0 K'(x)———=dt.

T sint
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The fraction in the integrand is precisely Usy (z), where Uy, (z) denotes the Chebyshev
polynomial of the second kind, given by
n
o) = S0 () a2
k=0
We now interchange summation and integration, and use the moments of K’. The
resulting coefficient contains a 3Fh, which after a transformation [25, section 3.2]

becomes amenable to Saalschiitz’s theorem (14.10), and we obtain (6.39). O

The same method gives a Fourier sine series for E(sint) valid on (0, 7), which
we have not been able to locate in the literature. In mirroring the last step, the

resulting 3F5 is reduced to the closed form below using Sister Celine’s method:

Lemma 6.3.

_ N T2(n+1/2 (n+1/2)I%(n+1/2) .
E(smt):T;]Msm ((An+ 1)t —1—2 —;4{1 FZ((n—:— 1/)) sin((4n + 3)t).

(6.40)
Parseval’s formula [125, p. 156] applied to (6.39) and (6.40) gives
w/2 w/2
/ K(sint)?dt = 2/ K(sint)E(sint) dt
0 0

1 K 2 1 K’ 2 1 1
:/ K2 dz = / Kz)” dz = i xK(a:)Q dx
0o V1—a? 0o V1—2a? 0 Vv

VK(z)E(x) 1 73 1111
=2 —— " dr= 2| K(z)K' -2 2220202
[ ERED o= [ Kk as =T (0

We also get fOW/Q K (sint)? cos(4t) dt as a sum of three 4F3’s, and fOW/Q E(sint)? dt

1> . (6.41)

as a sum of four 4F3’s. Section 3.7 of [20] provides a number of identities of this
sort with more exotic arguments, as well as connections with Meijer G-functions.

Experimentally we find the surprisingly simple answer to the integral

Sln 1
/ K(sint)? 4‘” dt_/ K(2)X(x — 20 )dx—/o 2K (2)(22K (2) — E(x)) do
1
/ K'(z)*(2z —a:)da:—/o eK'(z)(2*K'(x) — E'(z)) dz

= / tK?(z) — 2zE(z)K (z)dz = —%. (6.42)

0

All equalities are routine to check except for the last one, which is equivalent to

/1 K (z)? + 22E(x)? — 32K (z)E(x) dz = 0,
0
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and so the equality holds as we know all the odd moments.
Inserting a factor of cos? ¢ before squaring the Fourier series (6.39) and integrat-

ing, we are led to

11
272

1/ 2 773 %%
K(2)2dr = = (2,7 2
/Ox () 6( 4 3( 1,11

Subtracting (6.43) from (6.41) gives

1 1.2 1
4
/ ¢ K'(z)*dx = / x—/K(x)2 dz = / Ve K(z)*dx
0 o T 0o T +1
3 L 111
2.F3 (272727211 1). 44
-5 (B (5557 ) (040
The Fourier series (6.39) combined with a quadratic transform gives:
1 1
K K
/ K(sint)dt = / (w)dx:/
0o V1—2z? 0o V1-— x2
K’ 1\ 1 1
~K (=) ===1(7): 6.45
<\/§> 167 4 (6:43)

A generalisation of this result is found in Chapter 5.

1> — 1) = /01 v K'(z)?dz. (6.43)

r+1

Finally, we give a more exotic example: using the Fourier series expansion of

cos(t) K (sin(t)) K (sin(2t)), we get
1),

! o 1133
/ K(2)K(2z2')dx = 4F3<4’ 104014
0
Legendre’s relation EK’ + E'K — KK' = 7 is related to the Wronskian of K

8 1,1,1

6.7. Legendre’s relation

and E, and shows that the two integrals are closely coupled (we have already seen
its role in the proof of Lemma 6.1).
If we multiply both sides of Legendre’s relation (6.25) by K’(x) and integrate,

we arrive at

1 Vs
/0 3B/ (1) K () K () — K (@)K (e dar = (6.46)

Similarly, had we multiplied by K (z), the result would be
1
/ SE(2)K (2) K (z) — 2K (2)2K" (z) da
0

= /1 2F (2)K (2)* — E(2)K (2)K'(z) dz = nG. (6.47)
0
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Using closed forms of the moments, we also have:

1 o
/ 20E' (2)K (z)*K'(z) — 2K (2)*K'(z)* dz = oL
0
! 2 gt
/0 20E' (2)?K (2)E(z) — 2K (2)K'(z)E(x)E' () dz = 16 + 128"

Of course, we can multiply Legendre’s relation by any function whose integral
vanishes on the interval (0,1) to produce another relation. Suitable candidates for
the function include z(K (z) — K'(x)), z(2K'(z) — 3E'(x)),2E'(z) — K'(x),2E(z) —

K(x) — 1, and a vast range of polynomials. For instance one could obtain
1
/ 2E2(2) K (z) + 2E(2) ' (2)K'(z) — 5E'(2)K () K'(z) + K () K' ()2 dz = 0.
0

It seems difficult to ‘uncouple’ any of the above sums and differences to obtain a
closed form for the integral of a single product, without the results in Conjecture
6.2. However, (6.46), (6.47) do yield closed forms as we later prove that conjecture

— these results will be made clear in Chapter 7.

6.8. Integration by parts

The following simple but fruitful idea is crucial to this section. We look at the
derivative (1—22)" L (2* K (2)*E(2)? K'(z)°E’ (x)?) (the formulas for the derivatives

of E and K can be found in Section 5.1), and integrate by parts to yield
! d
/0 (-2 = <:L“kK(x)“E(x)bK'(x)CE’(x)d) da
1
:/ onz(l — 22)" 1aP K (2)*E(z) K (2)°E' (z)? dz + C, (6.48)
0

where the constant C # 0 if and only if the integrand is a power of E or FE'.
In practice, we take n, k € {0,1,2} to produce the cleanest identities. We also
explore the cases when n is a half-integer, as well as replacing 1 — 2% by 1 — z in

(6.48).

6.8.1. Bailey’s tables for products of two elliptic integrals. We now
systematically analyse the tables kindly provided by D. H. Bailey, the construction
of which is described in [19]. The tables contain all known (in fact, probably all)
linear relations for integrals of products of up to k elliptic integrals (k < 6) and a
polynomial in z with degree at most 5. In this subsection we exclusively look at

the case k = 2 and spell out the details.



6.8. INTEGRATION BY PARTS 111

We use QC%E(x)2 = 2E(x)? — 2E(x) K () and integrate by parts to deduce

1
/ 3E(z)? — 2E(z)K (z)dz = 1. (6.49)
0
More generally,
1
l=(n+k+1) / 2*B(z)" — na®E(x)" 1K (z) dx. (6.50)
0
Two more special cases of the above are prominent:
1
/ 522F(z)? — 22°E(x)K (z)dz = 1, (6.51)
0
1
/ (n+2)z" 1E(x)? - 22" ' E(2)K (z)dz = 1. (6.52)
0

The derivative of K (z)FE(z) (via integration by parts) gives
/0 N1 3 B K (@) + B@)? — (1 — 22)K (@) dz = 0, (6.53)
which is part of the more general
/01 ne" 'E(2)K(z) — (n+2)2" M E(x)K (2) + 2" E(x)?
— 2" K (2)? + 2" K (2)*dx = 0. (6.54)

The derivative of K (z)? produces

/0 K () de = 2 /O 'K (@)E (@) de. (6.55)
while more generally,
/01 20" E(2) K (z) + (n — 2)2" 'K (2)? — na" " K (z)*dz = 0. (6.56)
The derivative of E'(x)? gives (using (6.10) for the first equality)
/01 20E (2)? — 2E' (2)K'(z)dzx = /01 20E(z)? — 2E(x)K (z) dx = %
The derivative of K'(x)? gives
/01 2K'(2)E'(z) — (1 — 2®)K'(z)*dz = 0, (6.57)

re-confirming a result from Chapter 2, which is first proven in a much more round-
about way via a non-trivial group action on the integrand.

The derivative of E'(x)K'(x) gives

1 1
/ (1—32*)F'(2)K'(z)dz = / F'(z)? — 2°K'(x)* dz,
0 0
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which, when combined with our last result, gives
/01(1 + 323 E (2)K'(z) dx = /01 K'(z)* — E'(z)? dz.
The derivative of K (z)K'(x) gives
/O PR @K (@) + K@)F () - K(@)E() de = 0,

which, when combined with Legendre’s relation (6.25), results in

1 T
/0 2 (@)K () — (1 — 2)K () K () do = .

Our results here and in previous sections actually provide direct proofs of most
entries in Bailey’s tables where the polynomial is linear. In fact, it would simply be
a matter of tenacity to prove many entries involving polynomial of higher degrees.

As an example, we indicate how to prove an entry which requires more work:

! 7r
/ E(z)(3E'(z) — K'(x))dz = 5 (6.58)
0

We write the left hand side as two 4F3’s, combine their summands into a single
term and simplify; the result can be summed explicitly by Gosper’s algorithm, and
the limit on the right hand side follows.

The same method applies to other entries, e. g.

1
/0 F'(2)K(z) — E(x)K'(z) + 2°K () K'(z) dz = 0,

/1 K'(z)? — 4E'(2)K'(x) + 3E'(x)* dz = 0.
0

There is only one entry in Bailey’s tables (for linear polynomials) that we cannot

prove in this chapter, though it is true to at least 1500 digits:

Conjecture 6.1.

/ 9K (@) — AB(@)K(2) + 3E(x)? — K'(2)E'(x) de Yo, (6.59)
0

?[k
(The notation il denotes the equivalence of conjectural identities, where all

equations with the same k are equivalent as conjectures.)
We note that, among moments of products of two elliptic integrals, there are

only five that we cannot find closed forms for in this chapter:

E(x)2, 22 E(z)?, E(z)K(z), xQE(x)K(x), 22K (x)?,
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as all the odd moments are known, and the other even moments may be obtained
from these ignition values. In this chapter we can only prove four equations connect-
ing them, namely (6.49, 6.51, 6.53, 6.55). A proof of (6.59) would give us enough

information to solve for all five moments; for instance, we would have

1 1111115
> < 222020202724

iy
O 111,1,1,2

32 ! ] 16 lal7lulvl7l7§
7T4/ E(x)K(z)dz = ﬁ"‘?FG 2°2°22°2°204 | . ;
0 L

1
1)171717171

This is resolved in Chapter 7.

6.8.2. Recurrences for the moments. As already hinted in the proof of
Lemma 6.1, the moments enjoy recurrences with polynomial coefficients. For ex-

ample, by combining (6.52, 6.54, 6.56), we obtain, with K, := fol 2" K (z)? dx,
(n4+ 13K, 10— 2n(n> + 1)K, + (n — 1)3K, o = 2. (6.60)

This shows that K, is a rational number plus a rational multiple of {(3) for odd n,
as this approach is used in the proof of Theorem 6.2.
Similarly, recurrences for other products may be obtained, though the linear

algebra becomes more prohibitive. We have, for E,, := fol 2" E(z)?dx,
(n+1(n+3)(n+5)Epp—2n+3n2+n+1)E, +(n—13E,_, =8, (6.61)

while the recursion for the moments of FK follows from this and (6.52). The
recursion for the moments of K’?, and, amazingly, for K K', are identical to (6.60)
except the right hand side is 0. Moreover, the ((3) parts in the odd moments of
K" and K? are equal, and satisfy the same recursion (with proportional initial

conditions) as the odd moments of K K.

6.8.3. More results. We discover some results not found in Bailey’s tables by
incorporating constants such as 7 and G into the search space. Below we highlight
some of the prettier formulas.

Taking (1 — xz)%(:vQK(:r)Q) and integrating by parts, we obtain

1 / Lo, / 1 _, / 3
/0 2K (z)K'(z)dz = /0 22° K (2)K'(x) do = /0 1 +xK(az)K (z)dz = T
(6.62)
The derivative of 22" K (z)K'(x) together with (6.25) gives
1
/ N E (2)K (z) + n(z? — 1)K (2)K'(x))dz = 8171 (6.63)
0
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We can take n = 3 in (6.48); for instance, the derivative of za’ K (z) gives

1 1,.2
/ E(f”) da = / e K,(x) da,
o T 0 T

while the derivative of x2' K (x)? recaptures (6.41).

The derivative of 2/ K (x) gives

'K()—EBE(@x) , =
/0 xx! dr = 2’

note that each part does not converge. In fact,

7TIB2 1
K(I‘)—E(ZL‘) 72F1 <2

T x2> , (6.64)

therefore for example

1 _ 1 _ 1 _
[ EEC Py o NC ECC WY (R (C ES:C DS
0 x 0 0 2

The general case is

1 7TP(3+m)F(2 n) 1 3 3+m
' _ 2 2 2027 2
/Ol'mxn(K(ZL‘)—E(IL‘))dl‘— ST(5inin) 3F2<2’5+”21+n 1).

The derivative of xE(x) gives

so for instance

and the general case is

[ e - Ky =" o (TRE 2 ).

m+n

We can clearly analyse a number of other o F}’s this way.

The derivative of z(1 — x)K (z)? gives

2K (z
| o= [ e
0 l“i‘l

Collecting what we know about the integral of K (x)?, we have the following:
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Theorem 6.4. The alternative forms of equation (6.3) are:

/OlK(x)dezlfl K’(x)de:/lK’(:c)z
/K VK ()2 dz = - /K VK (2 dx

_/ L+ ) @)K (@) /2IK() () 4,
0 0

4\/x 1+=z
0K @ MO oK@?
= e s e
:/12K(@“>E(x)dx

0 z+1

- / MK(Q:)K’(:U) dr = / arctanh(x) K (z)K'(z) dx.
™ Jo 1-— .’L’2 ™ Jo

PROOF. The last two equalities follow from (6.27); the rest has been proven

elsewhere (e.g. use (6.38), and the quadratic transformations). O

Note that the first integral in the third line above breaks up into two moments

of KK', thus we can decompose the 7Fg this way:

F4( ) lalalvl 7T4 lalvéa
K 4F3<43432 2 1>+ - 4F3<2 2545
/ 64 D1l () L1 1

6.8.4. Bailey’s tables for products of three elliptic integrals. We now

1). (6.65)

consider the linear relations involving the product of three elliptic integrals (k = 3
in the tables). As the number of relations found is huge, we restrict most of our
attention to a class of integrals that turns out to be pair-wise related by a rational
factor.

Below we tabulate all the products for which ‘neat’ integrals may be deduced

by differentiating them and integrating by parts:

Product: Integral:

K(z)? [) 2K (z)? — 3K (2)?E(z)dz = 0
K(x)?K'(2) | [y K(2)2E'(x) + K(2)*K'(z) — 2K (2)K'(z) E(z) dz = 0
K'(z)*K () Jo BE(@)K'()? = 2E'(2)K (2)K'(x) dz = 0
K'(z)? J) K'(z)? = 3K'(2)?E'(z)dz = 0
E'(z)? ) 52E (z)? — 3B (2)2K'(z)dz = 1
E(z)? J) 4B(2)? = 3E(2)?K (z)dz = 1
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/K V2K (z /KK’d

by making the change of variable x +— ; to the left hand side and using the
2y
to

We can prove

quadratic transform (6.4). The integral splits into two pieces; we apply x —

one piece followed by another quadratic transform (6.5). We obtain

1 1
/ 3zK (z)K'(z)? dz = / K(z)K'(z)? d;
0 0

finally the claim is proven by combining the pieces.

If we make the change of variable z — then apply (6.6), we have

H’

[ R =g [ ke

Integrating z2(1—x) K (z) by parts, we can show that fol rK(2)2E(x)/(x+1)dz
is also linearly related to the above integral.
Therefore, gathering the results in this section and equation (6.35), we have

determined:

Theorem 6.5. Any two integrals in each of the following two groups are related by

a rational factor:

142 > 14z

K(a:)?’, K'(:U)3, xK(:U)3, xK'(w)3, K(ac)zE(:(:)7 K'($)2E’(:U),

K(2)K'(2)*, K (2)*K'(z), 2 K (2) K'(2)?, 2 K (2)* K’ (2). (6.66)

From the results in this chapter, we cannot yet show that any two integrals, one
from each group, are related by a rational factor, though this is resolved in Chapter

7. In fact, the Inverse Symbolic Calculator gives the remarkable evaluation:

Conjecture 6.2.
1

Lo 712 4 T%(y)
/OK(x) 2 2K(ﬁ) = s (6.67)

Once proven, this would give explicit closed forms for the integrals of E'K'K,

EK'K, and E'K? by the results of Section 6.7.
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In view of Theorem 6.5, (6.21) and (6.26), interchanging the order of summation

and integration gives an equivalent form of Conjecture 6.2

o0

Z 8 2 2,2,n+1 n+1 .
— (2n+1)24 s Ln+3.n+3
B Li-nil-n 247r '

In fact, the 1ntegral in Conjecture 6.2 has re-expressions as integrals over prod-
ucts of theta, or of Dedekind n functions. These alternative forms make the conjec-

ture easier to attack, and we prove the conjecture in Section 7.9

6.8.5. Products of four elliptic integrals and conclusion. If we take the

derivative of K (z)%, use the integral (6.34) connecting K'(x)* and K(z)?, plus a
quadratic transform, then we obtain

1

/ 24F(2)K (z)3 — 8K (2)* — K'(z)*dz = 0, (6.69)
0

which is one of the first non-trivial identities in Bailey’s tables for k = 4. Many
more tabulated relations for products of three and four elliptic integrals can be

proven, albeit the complexity of the proofs increases. As perceptively noted in [19]

[it] seems to be more and more the case as experimental computa-

tional tools improve, our ability to discover outstrips our ability to
prove.”






CHAPTER 7

More Integrals of K and F

ABSTRACT. We study integrals of elliptic integrals more closely. In particular, it
transpires that more fruitful relations can be seen by looking at integrals of the
form fol F(z)(1+ z)" do than by looking at the raw moments. Using this line of

inquiry, as well as other new ideas, we resolve all the conjectures in Chapter 6.

7.1. One elliptic and one complementary elliptic integral

In this section we take a close look at integrals containing the product of an ellip-
tic integral with a complementary elliptic integral. Let A denote fol K(x)K'(z) dz
and B denote fol 22K (v)K'(z) do. Integration by parts (see Chapter 6) gives

/ K(2)E'(x = —I— A - B,
which we implicitly use in the rest of this section.

Example 7.1.1 (Starting values). Our first goal is to find, in terms of A and B,
evaluations of fol G(z)H'(x)/(1+z) dz, where G, H € {E, K}, and [ € {1,2}. The
details are given below.

Integrating z(1 — z) K'(z) K (z) by parts, we arrive at

_ /1 E(@x)K'(z) — K(x)E'(z) + K(2)K'(x) d.

1+x

which, when combined with Legendre’s relation (6.25), gives

E(z A
/ 1+x dx §+ log2. (7.1)

Similarly, integrating z(1 — x) K (z)E'(x) by parts, we obtain

1
/0 22K (2)E'(z) — 2K () K (x) dz + (A — B)

:/1 E(z)E'(z) — K(x)FE'(z) + K(2)K'(z) dz

1+«

119
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but as all the odd moments are known (Chapter 6), the left hand side reduces to
m/4+ A — B. Combining this result with Legendre’s relation and (7.1), we get

E(x B
R ) 2
/ 1+x 5 T1°8 (7:2)

Let z — (1 —z)/(1 + z) in the integrand K(x)K'(z)/(1 + ). Applying both
quadratic transforms (6.4) and (6.5), it turns into K(x)K'(z)(1 + x)/2, and we

obtain
K(z A 7
/ 1 + . =3 + 33" (7.3)
It also follows that
K 3
/ ~1+2 + . d:c — log2 + 3—2. (7.4)
Letting  — (1 — 2)/(1 + z) in K(z)K'(z)/(1 + )%, followed by quadratic
transforms, gives
K(x A +B 7
/ C(1+2)?2 + x) 1 T (7.5)

We integrate x(1 —x)/(1 +1‘) K (z)K'(x) by parts; the evaluations (7.1) — (7.5),

together with Legendre’s relation, give

E(x)K'(z) A-B 1 x
/ 1+x)2 do=—r—+5T5 (7.6)

/ Kl—i—x(x §+ 8’ (77)

Armed with these two equations and integrating z(1 —z)/(1+ ) K(x)E'(x) by

parts, we have

VE(z)E'(2) A-5B m 3

The desired evaluations have now all been found. O

In fact, the quadratic transforms lead to

/ K1+a: :/01<1J2rx)nK(x)K’(x), (7.9)

where for positive integer n, the right hand side is a linear combination of A, B and

73, using the recursion satisfied by the moments of KK’ (see Chapter 6, Section 6).

Thus (7.9) gives us the definite integrals of KK'/(1 + x)™ for all n € Z.
Integrating z(1 — z)/(1 + 2)" KK’ and x(1 — z)/(1 + )" 'K E’ by parts, to-
gether with Legendre’s relation, we obtain three equations relating the integral of

KE'/(1 4+ z)", EK'/(1 + 2)", EE’/(1 + )" to the same objects except with the
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indices n — 1 and n — 2 (together with integrals involving KK’ which we know
from (7.9)). These three equations can be solved, see below. With the starting
values (7.1) — (7.8), we thus obtain all the integrals of the form F/(1 + x)" for
integer n > 0, where F is one of KK', KE', EK', EE’'. We observe that such inte-
grals are always a rational linear combination of A, B, m, 7 log 2, 73. By running the
recursions ‘backwards’, we note that the integrals of F(x)(1 + x)™ are also linear

combinations of A, B, m, 73 for integer n > 0. Thus we have the following:
Theorem 7.1. Forn € Z, let F be one of KK', KE', EK' or EE’, then

/1 F(z)(1+z)"dz
0

can be expressed as a Q-linear combination of elements from the set { A, B, w,mwlog2, w3},

where wlog 2 may appear only when n = —1, and where
3 1111 3 1133
A=""ym(2222 1) p="_, (2222 |1)
8 1,1,1 32 1,2,2

PRrROOF. The values of A are B are given in Chapter 6, Section 4. The constant
7 log 2 essentially comes from Legendre’s relation, so by some inspection it does not
occur when n # —1. By the discussion preceding the theorem, we only require the
recursions below, and the starting values (7.1) — (7.8) given in Example 7.1.1.

We exhibit the recursions here: let K K/, denote f01 K(z)K'(z)/(14+z)" dz (from
(7.9), they can all be computed from the moments of KK’). The other integrals

are denoted similarly, and in terms of KK, they are:

T 3n—2 n—1
KE;LZW+TLKK;L7 KK;‘L—1+ 9 KK;Z_Q,
, T ,  Sn—2 , n—1 ,
mx(z(3 —n) +n) 12n? — 31n + 22
EE;L = 10t a7 — (1 —n)(l —2n)KK,’l—|— 5 KK{%1
13n2 — 48n + 47 6n? — 29n + 36 n —3)?
- ; KK o+ . KK _,— (Q)KK;H.

Remark 7.1.1. We know that

1 1 2
E(z) dz =1, / K(z) dz = W—.
0 ].+f17 0 1+$ 8
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Using integration by parts, we have

! _nE(z) 1 L K(2) (n—2)E(x)
R A A e i e
/1 2nK(x) daz—/l Bn—-1)K(z) (n—1)K(z) E(x)
o ( 0

(1 + a)ntt (1+z)» (142t 1+t

Therefore, for integer n, all integrals of the form fol E(z)(1+4 z)"dx, fol K(z)(1+
z)" dx can be expressed as a Q-linear combination of elements from {1, 72}.

A very similar argument, using the starting values

1E/ IK/
(@) 4y — 26 1, / (*) 40 = 20,
0 1+I’ 0 1+.’IJ

shows that for all integer n, integrals of the form fol E'(x)(1+2z)"dx, fol K'(x)(1+
z)"dx can be expressed as a Q-linear combination of elements of {1, G}. Here, as

usual, G denotes Catalan’s constant. O

7.2. Two complementary elliptic integrals

In this section we further analyse integrals which contain the product of two
complementary elliptic integrals. Let C' denote fol K'(r)?dx and let D denote
fol 22K'(z)? dz. From Chapter 6 it is known that fol E(@)K(x)/(1+z)dz = C/4,

and some manipulations involving quadratic transforms lead to

B _T3)
/ EEET +x VR (7.10)

As was done in Example 7.1.1, our first aim is to produce integrals of the above
form with denominators (1+x) and (1+2)?, and then find recursions when (1+z)"
is involved. Indeed, integration by parts using z(1 — z)E’(z)?, 2(1 — 2)K'(x)? and
z(1 —x)E (x)K(x) gives

1 / 2
(x)* 7B C
/0 i e (7.11)
YE'(x)2 . 7¢(3) 1 D
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Similarly, integrating the same functions divided by (1 4 z) by parts, we obtain

/1de:1+§, (7.13)
0 x
1 ! 2
| (ﬂ?)z do=gr BE LD (7.14)
VE@? 5 T3 TD-C
/0 Trap =gt (7.15)

Finally, integrating the aforementioned functions divided by (1 + x)™ by parts, we
produce second order recursions in terms of n. The recursions, like those in the
proof of Theorem 7.1, are rather involved and we do not exhibit them here. We can
also run the recursion backwards to account for negative integer n’s (so for instance
fol(l + 2)2E'(2)K'(z)dx = 1/2 + 7¢(3)/4 + (5C — D)/9). In summary, we have

actually a proof of the following:

Theorem 7.2. Forn € 7, let F be one of E”?, EK' or K'?, then

/1 F(z)(1+z)"dz
0

can be expressed as a Q-linear combination of elements from the set {1,((3),C, D},

where
1 1
C:/ K'(z)? dz, D:/ 22 K'(z)? dz,
0 0

and their 7 Fg representations are given in Chapter 6, Section 3.

Remark 7.2.1. Evaluations in this section in terms of ((3), such as (7.10), were
first discovered experimentally using PSLQ. Those discoveries convinced the author
of the existence of transformations from the integrals involved to odd moments of

F(z), and proofs were soon found. O

7.3. Two elliptic integrals

We established in Theorem 6.4 that

[ EoK,,
o 1+=x 4’

Similarly,
O C)

. C
xr = —.
o 1+ 16 ' 4
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A quadratic transform gives

1 / T 2 1
/0 ?fﬁm;? dz = /0 (14 2)2K ()2 dz,

and since the left hand side is known from the last section, we deduce that

! D
/ 22K (z)%dz =1+ 5 (7.16)
0

As noted in Chapter 6, among moments of products of two elliptic integrals, there

were only five that we did not possess closed forms of:
E(x)?, 2’E(x)?, E(2)K(z), 2*E(z)K (z), 2°K(z)?,

since only four independent linear relations connecting them were found. Impor-
tantly, equation (7.16) is the desired fifth independent relation. Thus, studying
integrals of F(x)(1+ x)" (in particular, K'(z)?/(1 + x)?) brings about the resolu-

tion of the Conjecture 6.1. We now have:

/ Baytde = AT CHD 717
6
/ 2?F(z)*dx = M—+11D (7.18)
90
1
/ E(z)K(x)dx = M%D, (7.19)
! 26 — C' + 11D
/ 2?E(z)K (z)dz = % (7.20)
0

Proposition 7.1. Conjecture 6.1 is true.

ProOF. Using the closed forms found above, the conjecture reduces to the
equivalent form
/1 2 (x)K'(z)dz = C — D,
which has been proved in Cliapter 6, equation (6.57). O

Continuing, we find with integration by parts, armed with our new closed forms:

YE(x)?*, C-D U B(x)? 1+ D
‘ |

_ de —
o Ttz T T4 1tz "~ 2

VK@)? . B C+D [YE@K@) , 7@3) C-D
/0(1+x)2dx_ 6 / o= "%

Thus all the starting values are given; as was done in the last two sections, recursions
based on these values can be found; again we omit the unpleasant details. In

summary, we have
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Theorem 7.3. Forn € Z, let F be one of E*, EK or K?, then

/1 Fla)(1+ )" de
0

can be expressed as a Q-linear combination of elements from the set {1,((3),C, D},

and where
1 1
C:/ K'(z)? dz, D :/ 22 K'(z)? da.
0 0
From the results in these three sections, we have succeeded in proving

Corollary 7.1. Forn € Z and G a product of up to two elliptic integrals, fol G(x)(1+
x)"dx can be written as a Q-linear combination of elements taken from a small set

S of special constants, where
S ={1,n,7% 7% wlog2,G,{(3),A,B,C,D}.

7.4. More on explicit primitives

A small number of functions with explicit primitives are listed in Section 6,
Chapter 6. We now return to this topic more systematically and add a few more
results.

First we claim that for odd n > 0, we may find explicit primitives of " K (x)
and z"F(z). Indeed, the claim is easy for n = 1. Now, integrating 2" *2K () by
parts, we obtain

[ K @) de = 5 (B@) + (6" - DE @) + 1

This allows us to find the primitive of 22K (z). For 2"*?E(z), simply observe

that
/xn+2((n +4)E(z) — K(z)) dz = 2" E(z).

Therefore, the claim is proven inductively.
Next, for even n < 0, we may find explicit primitives of 2" K (z) and z"E(x).
Again, the base case is simple. The inductive step follows easily from the pair of

equations:

[EmnEn K , B

xn wn—l )

/ E(z)+ ((n—2)2* — n) K(z) de —

xn xn—l
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Now, for odd n > 0, and for even n < 0, explicit primitives of 2" K’'(x) and

2" E'(z) can be found. The relevant equations are
/a:"(E/(x) + ((n+2)2* — (n+ 1)K (z)) dz = 2" (z? — 1)K (z),
/x"(((4 + n)a:2 —(n+1)E (x) — xZK'(x)) dz = ac"“(:vz —1)E'(x).

Therefore, by letting x — 2/, and using F' to denote one of the four elliptic

F(z)

x/m

integrals, we see that there exists an explicit primitive for v , wWhere m > 1 is
odd — this generalises a result in [101] and a number of results scattered around
integral tables elsewhere.

By a quadratic transform, we also obtain the closed forms for the integrals of

(1—2)"/(1 +2)""' K(z) or K'(x), for n > 0 odd or n < 0 even.

Moreover, since [ E(z)/(1+x)dz has a closed form, using partial fractions and
the results above, we can obtain the explicit integral for 2" E(z)/(1—x2), with n > 0
odd, n < 0 even, or n = 0. By x — 2/, this gives the primitive for E’'(x)/(z 2"™),
with m > 0 odd or m = 0.

Finally, we record the primitives [ 2"((n+1)K'(z)—(n+2)E'(z)) dz = 2" (K'(z)—
E'(z)) and [2"((n+2)E(z) — K(z)) dz = 2" E(x); a few more are found in [104,

section 5.1].

7.5. Some other integrals

7.5.1. Better expression of the moments. By applying Thomae’s 3F5 trans-

form [25, p. 14], we see that the nth moment of K can be nicely expressed as

1), (7.21)

and this form often allows us to interchange the order of summation when the left
hand integral appears in a sum.
For instance, interchanging the order of summation allows us to obtain
1
/0 K (@) de = % 3F2<1’§71’§1 t—tl> (7.22)
Similarly, the nth moment of F is

2 1,2,z
*F ’y<y 9
|
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so the generating function for the odd moments is

1
T 2 1,1,2 t
—— _EB@)dr=——3F( 3 | —).
[ = gy n (i )

As a harder example, consider the integral fol rK(x/v2)K(x)dr. Expand
rK(x/\/2) as a series, interchange the order of summation and integration, ap-
ply (7.21) and finally interchange the order of summation. The resulting inner sum
is a o F} with argument 1/2 which simplifies [25, p. 11]. Therefore we obtain

/01 @K(%)K(x)dxz Fl(;l*) 5F4<31 i3 L1 ) 1>+F2@>5F4<§ 1

7.5.2. Differentiation. We may differentiate the results in Theorem 6.3 with

respect to ¢, and produce integrals such as

L K'(2) | m 2 3r2(1
/o<1+x2>2d““ 2{4r2<1>+ 324}’

V2K (2)K'(x) w2 5
/O Ao dx—§+l“4(4> (7.23)

By a quadratic transform, we have

xK(x) K(x
/0 1+ :c2 / 1 + :1:2 / K(@)K (@ (7:24)

thus the middle term may be expressed in closed form using (6.30). So, by partial

fractions, the moments

1 n
/ v K(z)K'(z)dx
0

1+ 22

can all be worked out for positive integers n.

7.5.3. Logarithms. A number of integrals involving E, K and logs can be
computed using integration by parts (and many are already known [66]). For

example,

/azlog(ﬂs)K(x) dz = (log(z) — 2)E(z) + (1 — log(z))(1 — z?) K (z).

Many such integrals are possible, e. g. if we replaced K by E or used a higher power

of x. We give one more example:

/k’g(l—x)(E(x) — K(2))dz = (1 + 2)K () + (log(1 — ) — 1) E(x).

X
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Remark 7.5.1. On the other hand, the constant log 2 appears in some definite

integrals (see also Theorem 7.1). Using the series for E(x), we have

1 1 3
E(x)—m/2 T 5, 1,1, 5

i S e | -, F 29707 2
/0 m ST 3( 2,2,2

where the last equality follows from a contiguous relation and a 4Fj identity |3,

1) :1—2G—g+7710g2,

Prop. 2.1]. Similarly,
VK(z) — /2
/ de = rlog2 — 2G,
x

compare with (6.31). O

7.5.4. More results on two elliptic integrals. We collect some miscella-

neous integrals involving the product of two elliptic integrals.

Example 7.5.1. Whilst we may easily add and subtract the moments of k'K, K'E
etc. obtained in Chapter 6 Section 4, a few extra relations may be obtained by using

the o F} representation of K — E (6.64) due to its double zero at the origin, namely:

1 / 1 /
Kf><K<w>—E<w>>dx=“"g2, | @ - Bw)ac -

/K' dw—/K

/ Bl ) da = / K'(2)E(z) — K (2)E'(z) dz.

7T
4)

Example 7.5.2. By using quadratic transforms, z — 2/, and integration by parts,

we have the following chain of equalities:
1 gt (02 1 2 1
KR g, o [ KEP g,y [P EEKE,,
X 0 X 0 X

[t1+a 2 de — "1+ o da
/0 ﬁK()d/D K ) (7.25)

The last term is a linear combination of moments of K2, and so (7.25) may be

written as the sum of two 7Fg’s (Chapter 6, Section 3). Since quadratic transform

/01 K(z)?dz = /01 1\2;1((3;)2 dz,

also gives




7.6. INCOMPLETE MOMENTS 129

we may combine the last formula with (7.25) to produce closed forms for the inte-
grals of K(r)%/\/x and K(x)%\/z. Other fractional moments of K2 seem beyond

our reach. O

7.6. Incomplete moments

We may use a special case of the Clausen’s formula [11, p. 116]

111 4 2
31_72 20202 t] = 72[( 1-vi-t 21_t (726)
T

1,1
to produce some incomplete moments.

As an example, multiply both sides of (7.26) by ¢", integrate from ¢ = 0 to 1
followed by a change of variable. We obtain
1/V2 2 111 +1
20+1 (1 _ 22\ (1 — 922 K (2)2 d — i 222" 1)
R (e e L2 (A
In fact, the integral with respect to ¢ of (7.26) is ¢ 3F2(%, %, %; 1,2; t), which has
a closed form because it is contiguous to the 3F5 in (7.26) (see Chapter 14). The

closed form is, using X = %,

/K(X)2 dt =4(1+V1-t)E(X)K(X) —4E(X)* —2(1+ V1 —t — t) K(X)*.

Therefore, a number of incomplete moments where the limits of integration are

singular values may be expressed in closed form; for instance,

1/v2 (1) 3
/0 1= 2K @) e = ol = s (7.27)
3-2v/2 3 2 2141
C(V2-1)3x 4 (V2 —-1)(d)
/0 z(1 - 22K (z)*dx = 1 1—(\@71)114(%)4- 16,2 4

For the integrand below, we can use (7.26) to write it as a 3Fb series. Inter-
changing the order of summation and integration, and using the evaluation of a o F}

at 1/2 [25], we have

1/v2 2, .2a(,./\2a—1 _ ! ! 2,.2a(,.\2a—1
K(x)“z**(z") dz = K'(z)x=(x") dz
0 1/V2
5
_ Gt p(reratel, (7.28)
40201 +a) "\ 1,1,1+a ' '
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We can therefore work out all these odd incomplete moments of K2. A special case
is

1/V2 1
/ K (x)?dz = / cK'(z)? de = E
0 1/v2 4

A similar analysis can be done with a range of 3F3’s, for instance, using contiguous
relations in Chapter 14,

2 1 11

m T 99999

73F2 27202
1,1

)

42%(1 — x2)> = K(z)? — 2E(2)K () + 2E(x)%

When combined with (7.28), we get for instance
1/vV2 .
/ zE(z)(K(z) — E(z))dz = 3—2(2G—1).
0

We can also apply quadratic transforms on (7.28), an example being

3-2v2 1—
/ jU.K(J:)zdx:ﬁ.
0 1-'—1' 8

Finally, by using the derivative of a 5F) recorded in [111], other kinds of results

1),

may be obtained, such as

1/\/5 1—2%2 7T2 1.1 333
=™ (4K 2 2 de = = F s 4599959
/0 x(l—x2)( (2)° =) do = {5 4< 2,2,2,2

7.7. One elliptic integral with parameters

In this section we prove a number of integrals involving a single elliptic integral

and several parameters.

Example 7.7.1. We first use a transform relating K'/* to K (in the notation of

%% 2t
F; ’ 2
2 1( 1 1+t>’ (7.29)

Chapter 5),

2 1 33
‘) = F ’
> ittt < 1
then evaluate the general moments of the left hand side, which translate to
2a+1\( b+2 1 3 2a+1
J(a,b) == /1 (“'Qa"“"/bK(:”) az = LEONCE) o <4’4’ B
0

€T = 342
2 b+1 z 2a+2b+5
2_ )a++ 2b+2P<W) 17%

1). (7.30)
This generalises an entry in [101]. Now via quadratic transforms, we also get

1 :Iia_l/Q(l _ $2)b+1 1 beb/2(1 _ :11)2a(1 + m)b—i—l ,
J(a.b) = /0 S ey K (@) do = /0 oo b K@)
(7.31)
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Letting = +— 2/ in any of the integrals for J(a,b) also gives reformulations. In
some cases, we can evaluate the right hand side of J(a,b) using Dixon’s theorem or
Clausen’s formula. A special case of the second equality in (7.31) is

e N w6 Ol G o
| RS TICa ET VTE Sy E= T

Other examples include
1 1 g 2(1\2(3
K K I (z)I'=(2
V2 (gv)da::/ (z) dz = (5) (8), (7.32)
0 V1+ a2 0 V1+ a2 32v2r
where the first equality is also a special case of (7.36) (after z — 2/, with b = —c =

1/2). %

Example 7.7.2. Using the transform [46, Prop. 5.6]

4% (1 — t2)>,

we replace K below by the 9F} and make a change of variable. The result is (as

e (]
K(t) = = F ’
(t) 221<1

recorded in [101])

| I(a+ D5 Lia+1
/ K (i)xza-ﬁ-l(l — x2)b—1(2 — 1‘2)bdx — 7T(CLJF)(2)3F2<14 1 a ‘1>
0

V2 8T(a+2+1) a+ 341
(7.33)
The right hand side sometimes simplifies, e. g.
/1 M%), Pere
0 /(1 —22)(2—2a2) 322w
Q

Example 7.7.3. By using a quadratic transform followed by a change of variables,

we have

b boen _oatbrl [ 2(L—2)
/0 K'(@)(1 +2)"(1 — 2)P2° dz = 2 /0 Tt K@) o, (134
In some cases, the left hand side can be evaluated in closed form by writing the
rational function as a series and interchanging the order of integration and summa-
tion. On the other hand, we may sometimes integrate the right hand side term by

term after expanding K as a series. A similar relation holds for E:

1 1 xb(l _ :L’)C
/0 (14 2)°(1 - 2)%2°(E' () + oK’ (2)) da = 20+0+2 /0 T e D) de
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Some consequences of the development above include

! K'(2) 4 K(x)
A wTIE vﬁo ¢44§d (7.35)

1 K’(z) 4 — 1 / /
0o Va(l+z) 0 1—:8 \/m \/17—35

2
% by Whipple’s formula for a 3F5 at 1 [25];

The second line evaluates to
note that this constant (and its algebraic multiples) appears often in this section.

We will return to the evaluation of the first line (7.35) later. O

Example 7.7.4. Also recorded in [101] is the identity

(1 —2)°T2%(b b,b,—c
2T,

1
1_ 2\b—1 1_ 20K d —
/0 21 =) (1 - za7) K(z) de AT2(b + 1) b+1b+1

=
(7.36)

(A similar formula holds when K is replaced by E.) An equivalent form is

/01 2211 = 222K () d = ”FQ(b)) AP ( b,5, —c z> .

AT2(b+ 1 b+3,b+1
PROOF OF (7.36). We expand K (z) as a series and interchange the order of

The proof is illustrative:

integration and summation. The integral is of Euler type (4.3) and produces

oFi1(—c, 14+ k; 1+ k+b;z). We then apply one of Euler’s transforms (6.32), sending
the 2F1 to
—c,—b

z
1 - 2)°,F 2 ).
( z)21<1+k—bz—1>

Importantly, this reduces the dependence of the 5 F} parameters on k. Having done

so, we write the o F] as a sum and interchange the order of summation. The inner
k sum is now simpler, being a o F} with argument 1. The right hand side of (7.36)

follows by completing the outer summation. O

7.8. Fourier series and three elliptic integrals

It is remarked below Theorem 6.5 that based on numerical evidence, the inte-

grals of K’ and K2K' are related by a rational multiple, namely

1 1
/ K'(x)dz = 3 / K (22K (z) da. (7.37)
0 0

We prove this observation here.
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Lemma 7.1. For any function F' where the integrals below converge and where the

sum and integral may be interchanged,

A+ ) o e
7;)/0 mcos((lln—ﬂ) ) cos(t )F(smt)dt_/O (2'K'(z)—xK (z)) F(z) da.

(7.38)

PROOF. We write the right hand side as a Fourier series (6.39); the trigonomet-

ric coefficients are
cos(t) cos((4n + 1)t) — sin(t) sin((4n + 1)t) = cos((4n + 2)t),
which correspond to the coefficients on the left hand side. O

Remark 7.8.1. Clearly, if the right hand side of (7.38) used + instead of —, then
the left hand side would have cos(4nt) instead of cos((4n + 2)t). If the right hand
side had 2K’ + 2/K, then sin((4n + 1 £ 1)¢) would appear on the left. Similar

trigonometric manipulations also lead to identities such as

! , de & [T l) " |
/0 (K(x)+K (:c))F(x)ﬁ = E:O/O W—i—i)SIIl((Zm—i—l)t—i_Z) cos(t)F(sint) dt,

n=

and
2K (e*™) = e (K (cosz) + iK (sinx)). (7.39)

An equivalent expression for the left hand side of (7.38) is

I2(n+ 1 5)
nz;) /0 WT4n+2( 2)F(z) dz,

where T, (x) = cos(ncos™!x) denotes the Chebyshev polynomial of the first kind.
Indeed, when n = 0, this leads to

1 9 2_1 3
/0 xx K(z)2dz = % (7.40)

an identity first observed experimentally, and it is in the attempt to prove (7.40)

that the Lemma 7.1 was discovered. A more general form of (7.40) is

1 2 P2/ n+l 1 1 n+l +1
Ton () 2 (") 213072
/0 o K(x) dx:74F2(n;2) 43 | 2 + 1]).
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We continue our proof of (7.37). In (7.38), take F(x) = K(z)?/2’. The right
hand side can be simplified by z ~ 2/, and on the left hand side, orthogonality
causes massive cancellations to occur. The result is

(0 + §) < 203N
413 o

1
-~ @@ &7 — /x3_ x2 /:1:‘ T '
= 8T (n+1) 1) /0 K'(2)* — K(2)*K'(z)dz. (7.41)

1 1
1,5—77/,5

However, the left hand side is precisely 2 fol K(z)2K'(x) dz, as established in (6.68).
The key result (7.37) then follows, linking together the two groups of integrals
mentioned in Theorem 6.5. An evaluation of (7.37) in terms of Gamma functions

is described in the next section.

Remark 7.8.2. The quadratic transforms for K may be written in terms of trigono-

metric variables:
cos’t K (sin2t) = K (tan®t). (7.42)

The change of variable x + tan?t , followed by applying (7.42) and expansion into

the Fourier series can be quite effective. O

7.9. Proof of the conjecture

It is expected that closed form evaluations of the integral of the cube of a special
function are rare. Therefore a large portion of the recent work [169] is devoted to

two such evaluations, including a proof of an equivalent form of Conjecture 6.2,

' 3y — Lo (2)
/0 rK'(z)°dz = G102 (7.43)

We summarise the main argument in [169] and some other results here.
We start with the parametriations in terms of Jacobi’s theta functions [46,

Ch. 2], with logq = —nK'(k)/K (k),

K = T62(g), k= B9y _0ila)  db _03(0)0i(0)

03(q)" ~  02(q)’ dg  2¢63(q)

Therefore, we can write the integral in (7.43) (which we call I) as

' _log?q L _logd g
! :/0 16gq 03(¢)03(q)04 (q) dg =/0 Tgn4(q)n2(q2)n4(q4)dq, (7.44)

where we have written the § functions in terms of the Dedekind n function (3.40).

Now with ¢ = >, f(1) = n*(1)n?(27)n*(47) is a weight 5 cusp form (see e.g.
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[12, 176]), and admits a Fourier series
e .
@) =" ane®™. (7.45)
n=1

Therefore the last integral in (7.44) is the following L-series (as can be seen by

taking a Mellin transform):

This is known as a critical L-value of f, L(f,4). It can be shown by standard
methods [100] that in fact

foy=3 Y (a—im)lg,
m,n=—o0
and so our integral reduces to
3¢~ (n—im)* 3~ 1
I=- — = = —_
2 ; (n2+m?2)* 2 ; (n+im)4

The prime means the m = n = 0 term is omitted in the sum. It is a known property

of the Weierstrass invariant g, (an Eisenstein series) that

1 16

%gm) = Z/(n+7m)4 = EO — K2+ EHKYE), (7.46)

n,m
which, when evaluated at 7 = i (corresponding to the first singular value), gives a
closed form for I, and hence equation (7.43) follows.

We note that similar calculations give L(f,3) = 5= fol rK'(z)?K(z)dx (L(f,3)
is the L-series with n? in the denominator). By (7.37) and Theorem 6.5, L(f,4) =
2w /5 L(f,3). This way all critical L-values of f are related by 7 and rational
constants.

Using L(f, 3), the multiplicativity of the coefficients of f [143], and results from

[205], we deduce the new lattice sums

Z/(—l)m+”m2n2 _ I8($) _ mlog?2 (7.47)
— (m? +n?)3 29373 8 ’
Z/(71)m+nm4 - I8(1) _ 3mlog?2 (7.48)
< (m? + n?)3 - 29373 8 ’
Z/(—l)mm2n2 _ P8(%) _ 710g2 (7 49)
< (m?+n?)3 210373 16 '

)
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Remark 7.9.1. It can also be shown (W. Zudilin, private communication, Feb

2013), using techniques found in [212], that

2 28 (4r

thus, writing the right hand side as an integral, we obtain

2 K/ _/ K K/
128% /k )2 dk k'K (k)2 K (k) dk

(1— k) ( dk
:/0 T K(k)?K'(k)dk = 2 /K 1+k (7.50)

where the last three integrals follow from the transformations k — &, k +— 2v/k/(1+
k) and partial fractions, respectively.
Further work along the same lines of inquiry as [212] produces another proof

of (7.37). O

The other integral of a cubic we consider in [169] is
/ _30%(%)
i( 1_$2 Vr(l—22)3/4 " 32,272

To prove (7.51), we use the same procedure to convert the integral into an L-value

(7.51)

of a modular form; this time it is 192L(h, 4) where

7 (87)

M) 1oy

The g-expansion for h is found experimentally to be
1 i (_1)m(2n +1-— 22m)4 (2m)2+(2n+1)2
2 q ‘

m,n=—0o0
Once found, this can be proven by standard methods, for instance by using the
derivatives of #3(¢*) and 64(g*). Therefore, we are reduced to showing

= (=™ O TE()
Z (2n + 1+ 2im)* 1024\}1%2‘ (7.52)

m,n=—o0

This can be achieved by elementary sum manipulations of (7.46); indeed, we get

—_1)m 1
mzm (an(L 1 j,mfr)ll 60 (92(7'/2) — 18¢2(7) + 3292(27)). (7.53)

Now (7.52) follows from (7.53) by using 7 = 2i and the 1st, 4th and 16th singular
values [46]. Therefore (7.51) is true. We have in fact found explicit evaluations of

integrals containing higher powers of K’ in [169)].
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We collect some more results from [169]. It is proven there that for g(7) =

n3(r7)n3(s7), where r + s = 0 (mod 8),

~ 8
L(g,2) = T Krys Ky B (Kys), (7.54)

where, as usual, k, denotes the pth singular value. Therefore, with r = 4,s =4 or

r = 6,s = 2, we produce closed forms for the critical L-values of those odd weight

modular forms. In the second case, we can convert the n product in terms of elliptic

integrals, thus obtaining the evaluation

3 1

2(2 2 INE
208y, )

- 1 1
LG2)= [ G+ 2K(p 2 Vap = 2,
0 (1+2p)2 273 72

where we have used the parametrisation of the degree 3 modular equation and
multiplier (see (10.22)). This equation, after a change of variable, has already
appeared in a very different context as (2.42) in random walks.

Another connection with random walks is given by the modular form
h(r) = n*(37)n(57) + (7)1 (157). While (7.54) is able to produce closed forms
for L(h,2) and L(h,1) with little difficulty, we see that equation (3.69) connects
L(h,4) with the Mahler measure W%(0). This is a non-critical L-value and so (3.69)
is believed to be hard.

Using the multiplicativity of the coeflicients of these 1 products, we are able to
rewrite some L-values as conditionally convergent lattice sums; therefore we obtain

new results such as

2(1\2(3
o (m? + 2n?)2 487 .
/ m-+n mQ B 3n2 Fﬁ(l)
> (= N = iy (7.56)
o (m? + 3n?) 273 72
/ m? — 4n? (i)
—1)mH =% :
; (=1) (m? 4 4n?)? 327 (7.57)

The last two sums correspond to the » = 4 and r = 6 cases outlined above; for a

proof of the first one, we refer to the next section.

Example 7.9.1. As Conjecture 6.2 is fully proven, we may uncouple some of the

integrals produced by Legendre’s relation in Chapter 6 to give some new closed
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forms; they are:

1 , , 3 FS 1 1 , G FB 1
/0 E'(2)K (2)K'(z) da = 2—4 + 76;;2, /0 E(2)K (2)K'(z) dz = % + 57&2,
! 20rG  T3(1) ! 5 T8
/ 2, 4t 1 reN2 g, T 1
/0 E@)K (@) de = 27 4 =0 /0 B@)K/ () de = T+ 30
(7.58)
0

Finally, we note that Y. Zhou, in a 2013 preprint [203], used methods based on

spherical harmonics to prove both Conjecture 6.2 and equation (7.37).

7.10. Some hypergeometric identities

7.10.1. A hypergeometric transform. We consider the integral

1 xr
/0 K () d. (7.59)

To evaluate (7.59), we could use the transform z — 2'; or, we could apply a qua-
dratic transform followed by a change of variable. In either case, we complete the
calculation by interchanging the order of summation and integration, then appeal
to the closed form for the moments of K’. The two answers obtained must be the
same, and therefore we get the interesting identity

1,1,1 |1 1,1,1 5

3
272
Along the way we obtain

1 1 1,1,1]1 |
/ & K(x)dx:3F2< 3 3 ‘ ), / +mK(m)dx:\/27rF2<§),
0 2 312 0 4

1+ 22 5,3 1+ 22

c.f. the t = —1 case in (7.22).

It is observed that the 3F> above can also be written with argument 1. This
suggests the transform

11,1 |1 331
F )+ - _ F 27929
’ 2<§,1+2v 2) ’ 2<§,1+v
PROOF OF (7.61). Using the beta integral (as is done in the proof of Theorem

5.2), the left hand side of (7.61) can be written as

18u(] — 2)2v—1
o Vi V3

1). (7.61)
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We apply the formula 2sin~!(z) = sin™!(22v/1 — 22) to this integral, followed by a

change of variable, leading to the equivalent integral
1
/ 20(1 — 2%)?Lsin~!(z) da,
0
which is the beta integral for the right hand side of (7.61). O

7.10.2. Hypergeometric evaluations. We return to (7.35) and (7.55). De-

note Iy := fol \I/(ﬂdx using the moments of K’, we have
VK@) 1 [V K'(x) 1 [THHTAE) 8.1,1,5
de = — dr = —4F3 3 3 3 1 .
0o V1i+z V2 .J)o Vitz 22 167 5,55
(7.62)
Similarly, we have I :=
/lff(wdx:/ K@) 1 [F2(8)F2(§)+4F3<Z,1,1,Z 1>]
0o Vr(l+z) VvV2Jo Vi—x 2/2 167 333
(7.63)

We experimentally observe that (7.63) evaluates to twice the value of (7.62), which
We NOw prove.

It is known that I1/(2v/2) = L(f1,2), where f1(7) = n?(7)n(27)n(47)n?(87), and
/1 may be written as % Z;”n(m2 — 2712)qm2+2"2 for small ¢ > 0. Thus, as a lattice
sum, I; can be obtained by summing over expanding ellipses m?+2n? < M, M — oo
(the convergence here is rather subtle and relies on the convergence of L-values of

modular forms):

\fz m? — 2n?

(m? 4 2n2)?
On the other hand, it can be verified that I5/(2v/2) = L(fs,2), where fa(q) :=
—f1(—q) (this comes from the changing /1 + z in the denominator to /1 — x).

Consequently, we have

fz m+1 m_2n )

(m? + 2n?)?
Now, the lattice sum for I, — I; simplifies to I;. Therefore,

I, = 214, (7.64)

as claimed. This result may be arrived at without passing to lattice sums, as we
can look at the g-expansion of fo — fi and use the fact that the coefficients of f;

(being a Hecke eigenform) are multiplicative [143].
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A number of results now follow. By using (7.62), (7.63) and (7.64), we have
511G 2HE) L
4F3(4 4 1) _ DTS =21 = — I, (7.65)
3.3 A8 V2

Remark 7.10.1. Moreover, we also have
1

13 1
5 1 K(z
1);2 O i _/ D (o)

1
8787272
V21 = 4F3( %
The second equality in (7.66) follows by a contiguous relation and the formulas for

» 878

the moments of K; the first equality can be shown by using the Fourier trick (7.42)

on the integral definition of I;.

In fact, in (7.66), the ratio between the two integrals is ggi‘;, or equivalently,

1> =3F2<§’1’1 ‘ 1) _ (2+3\/§)r2(%)p2(%).

33
55 967

' K(x)
o a3/

111
dz = 2mgFy( 8722
32< 1%

(7.67)
The last equality follows from a generalisation of Saalschiitz’s theorem [25, §3.8,
eqn. (2)]. We start with the first 3F5 in (7.67) and apply said generalisation; the
result is a ratio of I' terms plus another sF>. We apply Thomae’s transformation
[25, p. 14] to this 3F and find it to be some I factors times the 3F for fl Kl/ﬂ) dz.

The desired equality follows by using (7.65) and (7.66) (the v/2 is due to cos T

appearing in the calculations).
A neat consequence following from (7.67) is
2

1 141 1
'\ a2+t7 v

after applying Thomae’s transformation. O



CHAPTER 8

Elementary Evaluations of Mahler Measures

ABSTRACT. In this chapter, we advocate the use of a trigonometric version of
Jensen’s formula, and demonstrate its versatility in giving an evaluation and a
functional equation for a two-dimensional Mahler measure, and in reducing a
three-dimensional measure to a computable integral. We then prove two conjec-
tures of Boyd. We also record some basic facts about Mahler measures, and list

some Jensen-like integrals.

8.1. Jensen’s formula and Mahler measures

In Section 3.6, we used the formula

+ Va2 — b?

5 , a > |b] (8.1)

1
/ log(a + bcos(2mz)) dz = log a
0

to give a very quick evaluation of W3(0), recovering a classical result of Smyth. We

sketch a proof of equation (8.1) here.

PRrOOF OF (8.1). It is in fact sufficient to prove the formula for a = 1. Dif-
ferentiating the left hand side of (8.1) with respect to b, the resulting integral is

elementary:

1 + bcos(2mx) T bW1—b2

Integrating both sides with respect to b, we obtain

! 2 1 1
/ cos(2mx) o —
0

1
/ log(a + beos(2mz)) dz =log(1 + V1 — b?) + C,
0

where C' is a constant to be determined. Setting b = 1, this integral reduces to

1
/ log(2 COS2(7TZL‘)) dz =C.
0

In order to conclude that C' = —log 2, we are required to show
w/2 1 9
/ logcosxdx:—M.
0 2

141
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Even though this is equivalent to the easy result that Lsy(7) = 0 in the notation of
Chapter 9, we prove it here. We have

T w/2 /2
C:/ log cos z dz :/ log sin x dz,
2 0 0

so by adding the two integrals, we get
/2 in(2
wC = / log sin(2z) dx.
0 2

By a change of variable we have

1 /7 log(2
7TC’:/ logsinxdaz—M.
2 Jo 2

However the last integral is #C by symmetry, therefore 7C' = 7C/2 — log(2)m/2

and we are done. O

Remark 8.1.1. By the identity asin?t + bcos?t = 1((a +b) — (a — b) cos 2t), an
equivalent formulation of (8.1) is

mlog W. (8.2)

/2
/0 log (a sin? t 4 b cos® t) dt =
We record a different proof [68] for (8.2):
Denote the integral by F(a,b). Adding F(a,b) to F(b,a) and using symmetry,
we obtain 2F(a,b) = F((%42)2, ab).
Now consider the iteration

_ (zn + yn)z _ : _ _
Tntl = 1 Yn+l = Tnkn, with g =z, yo = y.

If we write a, = (\/Tn + \/Un)/2, bn = (\/Tn — \/Yn)/2, and d,, = b, /ay, then it is
easy to check that d,, 11 = d2 and 0 < d,, < 1. Thus, y,/z, = (1—d,)?/(1+d,)* —
1.

Hence, F(z,y) = 27" F(xp,yn) = 727" log \/xp, +27"F (1, yn/xy) from the inte-
gral. From the limit we just established, the second term approaches 0 as n — oc.

For the first term, since a,41 = a%, the limit is found to be lim,, o, 727" loga,, =

mlogag = wlog((vx 4+ \/y)/2). O

It is not hard to deduce from (8.1) the slightly more general formula, valid for

real |a| > |b] > 0,

1
/ log |2a 4 2b cos(2mz)| dz = log (|a| + Va? — b?). (8.3)
0
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Formula (8.3) can be thought of as a trigonometric version of Jensen’s formula,

which is commonly written as
1
/ log |a — €*™| dt = max(log |al, 0), (8.4)
0

and indeed can be proven from (8.3). From a psychological viewpoint, it seems
to be the case that (8.3) may be used more efficiently or creatively than Jensen’s
formula, and many Mahler measures can be simplified this way, as we illustrate in

this chapter.

Remark 8.1.2 (Related formulas). A range of integrals related to (8.1) can be

found. In Chapter 3 we already encountered

1 ) ) log(a? + b?) if a® +b% > 1,
/ log ((a + cos2mz)? + (b + sin2mz)?) dz =
0 0 otherwise.

This can be proven by expanding the squares in the integrand, writing the sum of
sin and cos as a single cos term, then appealing to periodicity and finally to (8.1).

Likewise, we can compute

1
/ ((a + cos2mz)? + (b + sin 27x)?) log((a + cos 27z)? + (b + sin 27z)?) dx
0

2+ (a® + b* + 1) log(a? +b?) if a® +b* > 1,
2(a® + v?) otherwise.

We also have

{3

max(a? + b2,1)’

1
/ {COS}(27m) log((a + cos 2rz)? 4 (b + sin 27?30)2) dz =
0

sin
The integrals below may be proven by differentiating under the integral sign:

1 ! —Jaz —p2
/ cos(2mx) log(a+bcos2mz) dr = / sin(2nz) log(a-+bsin 2rz) do = a\/zibv
0 0

while on the other hand, symmetry dictates that

1 1
/ sin(27zx) log(a + bcos 2mx) do = / cos(2mx)log(a + bsin 27z) dz = 0.
0 0

An integral similar to Jensen’s formula is

SRE]

2 . if |a] > 1,
/ log |a + e"|e’ dt =
0 ma if |a| < 1.
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And finally, we record that
/1/4 log(1 + bcos2mx) d T acos’b
x .
0

Cos 2mx - 16 4r

O

8.1.1. Mahler measures. For k Laurent polynomials in n variables, the mul-

tiple Mahler measure, introduced in [126], is defined as

1 1k
pw(Pr, P, ..., P) :=/ / [log |7 (e*™", ... €™ )| dtydty . .. dt,. (8.5)
0 0 i

When P = P, = P, = --- = P}, this devolves to a higher Mahler measure, ux(P),
also examined in [126]. When k£ = 1 both reduce to the standard (logarithmic)
Mahler measure [60], which we encountered in Section 3.6.

An easy consequence of Jensen’s formula is that for complex constants a and b,
pu(azx + b) = max(log |al, log |b]). (8.6)

Therefore, the Mahler measure of a monic, single variable polynomial equals ), log |r;],
where 7; are the roots outside the unit disc. Note that by reversing the coefficients
of a polynomial p, the Mahler measure does not change; thus p(P) is also equal to
log |P(0)| — >, log|s;|, where s; are the roots inside the unit disc. Sometimes the

exponential Mahler measure is used, defined by
M(P) = eMP),

and so M(P) is the product of the roots outside the unit circle. Note that M is
multiplicative.

We give some basic facts about the Mahler measures of a single variable poly-
nomial, since they are of historical and continuing interest. Let P be such a poly-
nomial; let L denote the sum of absolute values of the coefficients of P, H be the

size of the largest coefficient and d be its degree, then it is well known that [139]
M(P) < L < 2¢M(P).

The second inequality follows by using Jensen’s formula and expressing the coeffi-
cients in terms of the roots, giving |ci| < (Z)M , where ¢, is the kth coefficient of

P. Mabhler [139] also showed that

H2 4 < M(P)< HVd+1.
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Jensen’s formula implies that the Mahler measure of a cyclotomic polynomial
is 0, and that the exponential measure of an integer polynomial is an algebraic
number.

Kronecker showed that if the Mahler measure of a monic integer polynomial is
0 (that is, if all roots lie in the unit disc), then every root is either 0 or a root of
unity. The proof uses invariance under automorphisms of the splitting field and the
pigeon hole principle.

A famous open problem involving Mahler measures is as follows. D. H. Lehmer
investigated A,(P) = [[;_,(al" — 1), where a; are the roots of a monic integer
polynomial P. A, is an integer; moreover, when n is a prime, A,, may be a large
prime whose primality may be checked relatively easily. If we wish for A, to grow
slowly with respect to m, that is, we want lim, o |An+1/A,| to be small, then
it transpires that the p(P) needs to be small. This motivates Lehmer’s problem
(1933) (see e. g. [59]): find the integer polynomial with the smallest non-zero Mahler
measure. Note that 22 — z — 1 has small measure, though the current winner is the
polynomial

10

x —x9+a:7

5

—:UG—i-.I‘ —ac4—|—a:3—:v+1.

8.1.2. Multiple Mahler measures. There is much intrinsic interest in study-
ing multiple Mahler measures. For instance, using expansions of algebraic functions,

Boyd and Lawton showed that [60]

lim p(P(z,2")) = w(P(x,y)),

n—oo

(a similar result is true in higher dimensions), so every multiple measure is the limit
of one dimensional measures. Another general, deep and difficult connection is with
L-series. Loosely speaking, in some cases when a two-variable polynomial whose
zero set defines a genus-one curve C, its Mahler measure corresponds to a rational
multiple of an L-value of the (modular) elliptic curve arising from C' [60, 84]. In
a way this ‘generalises’ Jensen’s formula, since in one dimension the L-series at
argument 1 evaluates in terms of logarithms, so for two dimensions we may expect
the measure to be the L-series at 2 — see e.g. Theorem 8.1. (We briefly looked at
some L-values in Chapter 7.)

In physics, multiple Mahler measures occur as certain lattice sums or constants

associated with lattices [111, 170].
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We now look at some simple techniques for evaluating multiple Mahler measure
[181]. An important observation is the following: if there exists an a; with |a;| >

>_iz; |ai|, then by Jensen’s formula, we have
M(ap + ar1z1 + -+ + apxy) = aj. (8.7)

(Recall that M = e.) We also note trivially that switching the sign of any of the
a; corresponds to a translation in the integral, and does not change the measure.

From (8.7), we have for instance

M((z+y)?+k)=Fk k>4,
Ma+z+y)=a, a>2, (8.8)

2 2 _ 2 _ A/B+1
M(@® -y +ay+3z—y+1)=9¢°, ¢=Y55,

the last being true since the polynomial factorises as (z + ¢y + ¢?)(z —y/d+ 1/¢?).
Another fundamental principle is to notice that the two dimensional Mahler

measure is an integral over a torus, so if for functions F' and G,
G(z,y) = F(z"y’, 2%"), ad—bc=1,

then p(G) = p(F). This is because the change of variables (x,y) — (az+by, cx+dy)
has Jacobian 1, and takes the unit square to another fundamental domain of the
torus. (This periodicity idea is used in e.g. Section 4.2, and also in this chapter.)

A third basic technique for finding multiple Mahler measures is to apply Jensen’s
formula creatively — by writing the polynomial as A + yB where A and B do not
depend on y. For instance, Smyth’s original evaluation of (1 4+ x 4+ y + z) starts
by writing it as u((1 + z) + y(1 + 2z/y)) = p(max(|1 + z|,|1 + z|)), by a change
of variable and Jensen’s formula (8.4). Often Jensen’s formula needs to be applied
multiple times.

This technique easily leads to p(1 4+ zy) = 0, as well as

2G 8G 3
plta+y—ay) = —, p(l+z+a’+y) = o, p(l+ot+y+ay) =

where G denotes Catalan’s constant and Cl is the Clausen function.
We give here a slight modification to the above approach, which is to use formula
(8.3) instead. The procedure is to write the integrand as a trigonometric expression,

which allows us to apply sum-to-product and product-to-sum formulas (including
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double angle formulas) liberally. Combined with translations which are allowed due
to periodicity, our aim is to ‘isolate’ a variable (y) so that (8.3) can be applied.
Although this method is by no means a panacea, it does have its advantages. We
get more freedom and control over the manipulations, and computers can be used to
automate (or exhaust) our searches, which are often non-trivial as there are often
many ways to group different trigonometric terms together, or to split them up.
Moreover, we often succeed in completing a one- or two-dimensional reduction; the
resulting integrals often appear as log-sine integrals (Chapter 9), or are at least
amenable to numerical integration. All of the measures in (8.9) can be done with
this method with great ease. We will apply these methods below, especially in
Section 8.4.

Example 8.1.1. We apply (8.3) to the Mahler measure p(a + x + y).
First note that the a > 2 case has been dealt with in (8.8). Write p using its

definitional integral. The integrand inside the log simplifies to
2 + a® + dacos(m(x — y)) cos(m(x + y)) + 2cos(27m(z — y)).

Using the change of variable u =  — y,v = « + y and symmetries in the region
of integration, we are able to apply (8.3) to deduce that for for a = 2sin(s/2) and
s € (0,m),

slog2(1 — coss)
27 ’

(m—s)/(27)
pla +x+y) = / 2log(2 cos mu) du +
0
which simplifies to
.S 1 .S
w (2 sin 5 +x+ y) = (Cl(s) + slog (2 sin 5)) . (8.10)

Moreover, combined with (8.4) and the fact that max{|z"|, |y"|} = max{|z|,|y|}",

we obtain

,u<(2sin§)n + (az+y)”> = ;(Cl(s) + slog<2sin %))

The exact result by Cassaigne-Maillot [141] for p(a + bz + cy) can also be deduced

in the same way. O

An asymptotic expansion for the Mahler measure p(1 + x1 + -+ + ) is given

in Section 4.3.
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82. On pulk+z+1/z+y+1/y)

We give an independent and elementary evaluation of the Mahler measure
p = p(k+x+1/x+y+1/y).

This measure is considered in [167], and many of its properties have been rediscov-
ered several times. It has been pointed out to us that our main results, equations
(8.15) and (8.16), were first found in [127].

Nevertheless, our analysis was carried out without any knowledge of previous
work, and due to its brevity we record it below. As outlined in the last section,
we first convert the exponentials in the double integral of pj into trigonometric

functions, so we are reduced to computing

1 .1
L = / / log ‘k + 2cos(2mx) + 2 cos(27ry)‘ dxdy.
o Jo

We do not apply (8.3) yet. Upon writing the sum of cosines as a product, we obtain

the equivalent formula

1l
Up = /0 /0 log |k + 4 cos(m(x — y)) cos(m(x + y))| dady.

Now make the change of variable x — y = u, = + y = v, appeal to periodicity and
apply the trigonometric version of Jensen’s formula (8.3). (This change of variable
corresponds to the equality u(k+x+1/z+y+1/y) = wlk+ (z+1/x)(y + 1/y)).)

After cleaning up the | - | in the resulting single integral, we obtain

1 k 2
Pk =/ log
0

k
— + 4/ — —4cos? u

5 1 du. (8.11)

We consider the two cases, k > 4 and k < 4. If k > 4, then we may disregard

the | - | in (8.11). After a trigonometric change of variable, we obtain
1 1log(1+\/ —%) k
E= — dt + log —.
S /0 -0 ®2

We can legally expand the log as a series, exchange the order of summation and
integration, and observe that the integral gives a o F}. Writing that as a series, we
then interchange the order of summation, and arrive at the closed form

1,1,3,211
22 6), k> 4. (8.12)

2
=logk — — 4F
205 og 4 3( 2,22 |2

k?
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If, on the other hand, k < 4, then the absolute value in (8.11) splits the integral

into two parts, which give

k k 1 V1-—
T = Cl<2 sin ™! —) + QSiH_1<* / og(1 + dt.  (8.13)
4 4 W
16

We apply the same tricks as in the k& > 4 case above to treat the last integral.

One additional detail we need to take care of is that, after the second exchange of

summation, we split up the inner sum over even and odd terms. The result is the
sum of two hypergeometric functions:

2033 |K 2033 |K
e (BEEY ()

We now observe that one 3F, above cancels with the first two terms in (8.13) by

equation (3.62); thus we have

ko (5 54k 2 [i
= aR( 2222 :/K dz, k<4 8.14
23 43 2< 1% 16> T Jo (.’E) €T, = ( )
Note that at & = 4, we obtain the reduction (c.f. (5.32))
4G
fra = —.
T

Moreover, by inverting the argument of the 3F, in (8.12) using equation (3.31),

we obtain

Theorem 8.1. For k > 0,

oy (53]
= B2 — . 1
Ik 4Re3 2( 1. 16> (8.15)

3
12

The identification of up with the real part of incomplete moments of K, as in
(8.14), allows us to find linear relations for various values of k. For instance, if we

start with us, apply Jacobi’s imaginary transformation followed by the quadratic

transform (6.5), then we are able to split it into two Mahler measures; that is,

<2G+/ Kl )er(QG*/I Kim)dx>+7lr<2c—ﬁ K(x)dm).

Identifying each piece using (8.14) and some transforms, the end result is

205 = p1 + e

Indeed, this method in general gives the functional equation

[ak2 + Pk = 20i2k12/k (8.16)
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therefore, the last formula corresponds to the k = 2 case; another visually pleasing
case is pg + pig = 243 /5.

Unfortunately, (8.16) does not resolve Boyd’s observations that pug = 4pus and
ps = 641, which are proved in [129] and [128] respectively.

We remark that u; was conjectured by Deninger to evaluate as
15
u(1+x+y+1/x+1/y):mL(f,Q), (8.17)

where f(7) = n(7)n(37)n(57)n(157). The conjecture has recently been proven in
[170].

8.3. On pu((1+2)(1+y)+ 2).

In this section, we provide strong numerical evidence for a conjecture by Boyd,
who also numerically validated it to 28 digits by an illustrative use of the Cassaigne-
Maillot formula; the history is given in [61]. Let P = (1 4+ z)(1 + y) + z, and let
w* := u(P). The conjecture is
AN?
(2m)*
where Ey is the elliptic curve of conductor (see e.g. [178]) N = 15, defined by

pt =2l (Ey, —1) = L(Ey,3), (8.18)

P =0, and L is the L-series attached to Ey.
We find an easily integrable one dimensional integral for p*. We follow the

methods outlined in Section 8.1.2 and proceed via the following steps:

(1) Write the integrand as trigonometric terms and factorise in such a way
that z only appears in one term.

(2) Now that z is ‘isolated’, make the change of variable z — (z + y)/2 — z,
which is justified by periodicity.

(3) Apply the trigonometric version of Jensen’s formula, (8.3).

(4) Factorise the expression in the resulting integrand.

(5) Find the region on which the integrand is positive (and note that it is 0
elsewhere).

(6) Appeal to symmetry.

Carrying out the first five steps, it is not hard to arrive at

—1

1
4 COos I COs —Q
pt=— ) / ! log(4 cos(x) cos(y)) dedy.
™ Jo 0

—1 secx
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(E. g. the outcome of steps 1 and 2 is the expression, after a linear change of variable,
5+ 8cos(z — y) cos(z + y) + 4 cos(2z) cos(2y) + 8 cos(x) cos(y) cos(2z).)
By symmetry of the integration region, we obtain the single integral,

—1

=

8 [ secx 8 [Ysec™i(t)logi
* —1 2
= — — | log(2 = — —F—dt. (8.19
I 2 /) cos ( ) og(2cosz)dx 2/, T dt. ( )

This procedure works more generally: for b € (0,4), we have

* ] 4 arccos(%) 10%(2%/{,)
py = (U4 0) (14 y) +b2) =log(B) 4+ 5 | —— g

Note that for b > 4, py = log(b), which is a simple consequence of (8.7).

dz.  (8.20)

Even though (8.19) is not a closed form, the integral is very easy to compute
numerically. The singularity at 4 is rather mild, and can be removed with a number
of quadrature schemes such as tanh-sinh or Gaussian quadrature; we do not explore
those here and only mention that Gaussian quadrature is investigated in Chapter
14.

After discovering (8.19), we used it to verify (8.18) to 500 digits in under 3
minutes. The integral was evaluated by running Mathematica 7 on a modest
laptop, using the NIntegrate command with increased WorkingPrecision and
PrecisionGoal options, and no other quadrature schemes; the L-series is easy to
compute and its digits are in fact well-tabulated. Later (in March 2012) we verified
(8.18) to 1000 digits, which took under 30 minutes of computing time.

8.4. Proofs of two conjectures of Boyd

We recapture the following evaluations conjectured by Boyd in 1998 and first
proven in [186] using Bloch-Wigner dilogarithms. Below, L_,, denotes the primitive

L-series mod n.

Theorem 8.1. We have

16 16G
p(yi (@ + 1) +y(a® +6x+ 1)+ (xz +1)%) = . L_4(2) = 5 (8.21)

as well as

- 5‘? L2 =2l (5) 22

p(y*(z+ 1) +y(a® = 102+ 1) + (24 1)%) 5. Cl2 (3
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PROOF. Let P. = y*(z +1)? + y(z? + 2cx + 1) + (x + 1)? and p = pu(P.) for a

real variable c. We set z = e?™ y = ¢®™™ and note that

|Pe| = (& + 1)*(y* +y + 1) +2(c — Dzy]
=|@z+2 ' +2)(y+y '+ 1) +2(c—1)
= |2(cos(27t) + 1)(2 cos(2mu) + 1) 4+ 2(c — 1)|

= 2|c+ 2cos(2mu) + (1 4 2 cos(2mu)) cos(2mt)|.

(This factorisation was discovered experimentally, by first converting | P.| into trigono-
metric terms, and then, aided by a computer, by considering the many possible ways
to repeatedly combine two of the terms into a single term using the prosthaphaeresis
formulas.)

Applying (8.3), with a = ¢+ 2 cos(27u) and b = 1 + 2 cos(27u) to fol log | P.| dt,

we get

fe = / g ‘H 2 cos(2mu) + /(2 — 1) +4(c — 1) cos(27ru)‘ du. (8.23)
0

If ¢ — 1 = +4(c — 1), that is if ¢ = 3 or ¢ = —5, then the surd is a perfect square

and also |a| > |b].
(a) When ¢ = 3 for (8.21), by symmetry, and after factorisations we obtain

1 /™ 4 /2
U3 = / log(1 + 4| cos 0] + 4| cos? 0]) df = / log(1 + 2cos ) df
™ Jo ™ Jo

4 [m/2 2sin 3¢ 4 1 T s
= — 1 2 =— | =Clh (= I (=
7T/0 0g<251ng>d0 3w <3C2(2>+CQ<2)>
_ 166
- 3n’

where for the penultimate equality we have split up the integrand and used a few

basic transformations.

(b) When ¢ = —5 for (8.22), we likewise obtain
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ikéwkg(v@—FQQHG)d9::QL/Mdgbg(v@—%Qﬂn(G——g))d9

H—5 =
™ Jr/3
4 /3 s
= 2/ {logQ (sin 9) + log 2 (sin +3>} de
s ﬂ./3 2 2
9 4n/3 ) 5m/3
= / log 2 <sin 6) dé + / log 2 <sin0> de
T Jx/3 2 T Jon/3 2
4 s 4 4 20 s
—ZL ()2 () ==L (2
7rC2(3> 7r02<3> 371'02(3)’
since Cly (%’T) = —% Cly (%) ]

When ¢ =1 the cosine in the surd of (8.23) disappears, and we obtain p; = 0,
which is trivial as in this case the polynomial factorises as (1 +x)2(1+y +?). For

¢ = —1 we are able to obtain a new Mahler measure evaluation:

Theorem 8.2. We have

por=p((@+1)2(y° +y+1) — dzy) (8.24)
_ﬂ@jgﬁ<bbll>_ﬂﬁjkﬁ<iill>
= 35 5 7 :
4 D1 4 67 D 4
_ D)y :
Here, ((s,t) =) denotes the Euler beta function.

PROOF. We only sketch the proof here. First, using (8.23) we have

4G +4/1 zlog(l+v2x)
H—1 ; T

L
Replacing the v/2 in the integrand by a, Mathematica is able to evaluate the integral

dzx.

in terms of three 3F,’s with argument a*. For |a| < 1, one can show that the
evaluation is indeed correct, by writing the 3F5’s as Euler-type integrals of 9 F1’s as
done in (5.22). By analytic continuation, the evaluation also holds for a = v/2; it
remains to invert the argument in the 3F5’s using (3.31), and to note that one of

hypergeometrics cancels with the Catalan constant term. g






CHAPTER 9

Log-sine Evaluations of Mahler Measures

ABSTRACT. We study higher and multiple Mahler measures using log-sine inte-
grals. This motivates a detailed study of multiple polylogarithms. Our techniques

enable the reduction of several multiple Mahler measures.

9.1. Introduction

In [55] the classical log-sine integrals and their extensions are used to develop a
variety of results relating to higher and multiple Mahler measures [60, 126]. Log-
sine evaluations are used in physics: they appear for instance in the calculation of
the e-expansion of various Feynman diagrams [120]. They also come up in number
theory and analysis: classes of inverse binomial sums can be expressed in terms of
generalised log-sine integrals [51, 83].

The structure of this chapter is as follows. In Section 9.2 our basic tools and
results are described. We turn to relationships between random walks and Mahler
measures in Section 9.3. In particular, we will be interested in the multiple Mahler
measure i, (1 + z + y) which has a hypergeometric generating function (9.22) and
a trigonometric representation (9.24) as a double integral.

In Section 9.4 we directly expand (9.22) and use results from the e-expansion of
hypergeometric functions [82, 83| to obtain p,(1+z+y) in terms of multiple inverse
binomial sums. For n = 1,2, 3 this leads to explicit polylogarithmic evaluations.

An alternative approach based of the double integral representation (9.24) is
taken up in Section 9.5 which considers the evaluation of the inner integral in (9.24).
Aided by combinatorics, we show that these can always be expressed in terms of
multiple polylogarithms. Accordingly, we demonstrate in Section 9.5.2 how these
polylogarithms can be reduced explicitly for low weights. In Section 9.6 we reprise

from [55] the evaluation of us(1 + = + y).

155
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9.2. Preliminaries and log-sine integrals

We will need the definition of a multiple Mahler measure (8.5).

1 1 k
p(Py, Ps,. .., Py) ;:/ / [T10g|P; (2™, ... &™) | dtydty . .. dty.
0 0 iy

In the following development, we let

ni

. z
Lio oo (2) = Y —ar

n>en>0 LT 1 o
denote the generalised polylogarithm as is studied in [51] and [44, Ch. 3]. For
example, Lip (z) = 220:1%225;11 % In particular, Ligx(x) = Zzo:lfl—: is the
polylogarithm of order k. The dilogarithm function Liy [199] has a particularly rich
structure.

Moreover, multiple zeta values (see Chapter 13) are denoted by

C(ai,...,ar) = Lig, . q.(1). (9.2)

Similarly, we consider the multiple Clausen functions (Cl) and multiple Glaisher

functions (Gl) of depth k& which are given by

Im Li ey if w even
Clay,....a, (0) = o A ) : (9-3)
ReLig,. ... q (e?) if w odd
ReLi e) if w even
Clay, gy (6) = § 1Tt , 0.0
Im Lig, _q, (") if wodd
where w = a1 + ... + ag is the weight of the function.
For n=1,2,..., we consider the log-sine integrals defined by
7 0
Ls, (o) :== —/ log" ™1 |2 sin2’ dé, (9.5)
0
and, for k =0,1,...,n — 1, their generalised versions
7 0
Lst) (o) := —/ 0% log" 17k |2 sin2‘ de. (9.6)
0
This is the notation used by Lewin [133, 134].
Clearly, Ls; (0) = —o and that Ls{) (¢) = Lsy, (0). In particular,
. sin(no)
L =l = 9.7
s2(0) = Cla(0) =) 3 (9.7)

n=1
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is the Clausen function. In Section 5.3 we proved Cla(7/2) = G from the integral
definition. Various log-sine integral evaluations may be found in [134, §7.6 & §7.9].

9.2.1. Log-sine integrals at w. Log-sine integrals at 7 can always be eval-
uated in terms of zeta values. This is a consequence of the (easy) exponential

generating function
1 & u™ '(l+w) u
- = Lspyr (7)) — = —F———~< = . (9.8)
s T;) m! T2 (1+%) u/2
This will be revisited in Section 9.3. It is not hard to see from the definition that

log-sine integrals at m correspond to higher Mahler measures:
1
pim (1 + ) = - L1 () (9.9)

Example 9.2.1 (Values of Ls, (7)). For instance, we have Lsy (1) = 0 as well as

L (m) = 112 ’

Lsy (m) = §7T ¢(3)
g (r) = 2%#

L () = 5 7C(3) + 2 73
~Lesr(m) = 1237454 ' %WCZ(?’)

and so forth. Note that these values may be conveniently obtained from (9.8) by a
computer algebra system with a one line command.
Many more results may be obtained from these. For instance, integrating Lss ()

by parts, we find
3

/0 tcot<2>log(2sm >dt—7rlog( N 71T2.
It is straightforward to see that as n — oo, Ls, (7) — Ls, (7/3). A change of
variable in the integral of the latter gives, as n — oo,
1/2 9 100"=1(9 1/2 34
‘Lsn< )‘—/ de:/ <2+x2+%+~~)|log”*1(2x)‘dx
0

V1—a2

1 3
_F<"><1+8-3n+128-5n+"'>’ (9.10)

which gives the asymptotic behaviour of the Mahler measures (9.9) and (9.51) below.
O
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For general log-sine integrals, the following computationally effective exponen-

tial generating function was obtained in [54].

Theorem 9.1 (Generating function for Lst*) (m)). For2|u| < X <1 we have

n+4k+1
oA .
2 G . < ) (=1)"e™2 — e
Ls! = —i . (9.11)
+k+1 A
n%ﬂ ! TL‘ w 7; " F=3 tn

One may extract one-variable generating functions from (9.11). For instance,

SR SRR

n=0 (n— %)

9.2.2. Extensions of the log-sine integrals. It is possible to consider the

log-sine-cosine integrals

6
L2 COS2‘ dé. (9.12)

g
Lscmp (0) :== —/ log™ !
0

Then Lscy, 1 (0) = Lsy, (o) and Lscy,p, (0) = Lscpm (). As in (9.9), these are

related to multiple Mahler measures. Namely, if we set

pron(l—z,1+2z)=pl—-2,---,1—z,1+z,---,14+2x) (9.13)

m n

then, from the definition, we obtain the following:
Theorem 9.2 (Evaluation of fi, (1 —z,1+ x)). For non-negative integers m,n,
1
Mm,n(l — I, 1 + J}) = —; LSCm_i_l’n_;'_l (7'(') . (914)

In every case this is evaluable in terms of zeta values. Indeed, using the result

n [134, (7.114)], we obtain the generating function

1 « m
gs(u,v) :== T Z Lscmt1,n+1 () il

We have

so clearly (9.15) is an extension of (9.8).
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Example 9.2.2 (Values of Lscy, ,,, (7)). For instance,

71'2
:ul,l(l — T, 1 + x) = _ﬁ7

por(1— 2,1 +2) = pro(l — a1+ 2) = 34(3),
psa(l— 2,1 +7) = Zg(s) _ %w%(g).

As in Example 9.2.1, these can be easily obtained with a line of code. %

Remark 9.2.1. From gs(u, —u) = sec(mu/2) we may deduce that

Zn:(—l)kuk,n,k(l o1t a) = |l (m/2)*" 4
k=0 (2n)' T

where FEs,, are the Euler numbers: 1,—1,5,—61,1385..., see also Section 13.4. ¢

B(2n+1),

Using Fourier techniques, one may prove in much the same way as Proposition

9.8 the following result, first given in [126].

Proposition 9.1 (A dilogarithmic measure). For two complex numbers u and v we

have
3 ReLi, (vu), if lul < 1,|v| <1,
p(l—uz,1—vz) =1 L ReLip(2), if lul > 1,]v] <1, (9.16)
5 ReLis (&) +log |u|log v, if [u| >1,|v] > 1.

In Lewin’s terms [134, A.2.5], we may write the above result in terms of

: I dt
Lis (7, 0) := ReLis(re) = —2/ log (* +1 — 2t cos0) -+ (9.17)
0

which satisfies the reflection formula

. (LN 1. 5 1 2
Lis (r,0) + LIQ(;, 9) =((2)— 5 log?r + 5 (n—0)% (9.18)
Example 9.2.3 (Some more evaluations). Since Cla(t) = > Si‘;(;”), by Parse-
val’s formula [125] we have
™ 9 7T5
ClE(t)dt = — 9.19
| eBwa= 5. (919)

and integration by parts gives results such as

T ot ] w/2 ot G2
/Otlog<231n2)01(t)dt_360, /0 1og(2sm§)01(t)dt_—7.
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Moreover, we have the moments

T n 1 n+1
From (9.18), we have

: > P —2mt
Lig(e') = % + Tﬁ + 4 Cly(t),

thus we may expand out Li3(e™), use the moments above and equation (9.19) to

find
/ﬂ Li2(e) dt = — (1072¢(3) — 93¢(5)).

0 48
O
9.3. Mahler measures and moments of random walks
Recall that the sth moments of an n-step uniform random walk are given by
1 1| n )®
Wa(s) = / / D el dty - dty,
0 0 k=1
and their relation with Mahler measures is observed in Chapter 3. In particular,
W(0)=pu(l+z1+...+xn1).
Higher derivatives of W, correspond to higher Mahler measures:
W™ (0) = (1 + 21 4 .. + 1) (9.20)
The evaluation Wy(s) = (;2) thus explains and proves the generating function
(9.8); in other words, we find that
(m) o) — _ L
Wy 7 (0) = — Lspy1 (7). (9.21)

We record the following generating function for p,,(1 + = + y) which follows
from (9.20) and the hypergeometric expression for Ws.

Theorem 9.3 (Hypergeometric form for Ws(s)). For complex |s| < 2, we may
write

A A UL VB e i
nl  2r I(s+2) °°? 1, 543

Wa(s) =D pn(1+2+y)

n=0

_ V3 /(3 S“/l Y AES RS
T \2 o Vi—22t 1
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PRrOOF. Equation (9.22) is a consequence of equation (3.75), while (9.23) is
equivalent to (9.22) after interchanging the order of integration and summation

and applying a beta integral. O

By computing higher-order finite differences in the right-hand side of (9.22), we
have obtained values for p,(1 + = + y) to several thousand digits.
We shall exploit Theorem 9.3 in Section 9.4. We also have

1 2m 2w ) n
pn(l+x+y) = 2 / dé (Relog (1 — 2sin(9)e'*)) " dw, (9.24)
™ Jo 0

as follows directly from the definition and simple trigonometry. In Section 9.5 we

will evaluate the inner integral in terms of multiple polylogarithms.

9.4. Epsilon expansion of Wj

In this section we use known results from the e-expansion of hypergeometric
functions [82, 83] to obtain u,(1 + x + y) in terms of multiple inverse binomial
sums. We then derive complete evaluations of u1(1 + x + y), po(l + = + y) and
u3(1 4+ = +y). Alternative approaches will be pursued in Sections 9.5 and 9.6.

In light of Theorem 9.3, the evaluation of p,(1 + x + y) is essentially reduced

to the Taylor expansion

i) = ianen. (9.25)

Indeed, from (9.22) we have

pn(l+z+7y) = @ Z <n> akBn—k, (9.26)

where Sy is defined by
3e+1

90 = ;‘6@15 (9.27)

Note that [y is easy to compute; indeed, appealing to (9.8), we find that /3,, evaluates
in terms of log3 and zeta values. The expansion of hypergeometric functions in
terms of their parameters as in (9.25) is commonly referred to as epsilon expansion.

Let Sk(j) := fn 1 & denote the harmonic numbers of order k. Following

[83] we abbreviate Sy := Si(j —1). As in [82, Appendix B], we use the duplication
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formula (2a)9; = 47(a)j(a + 1/2); as well as the expansion

(m + ae)j

(m);

co —ae)k
= exp [— Z ( l:) [Sk(7+m —1) — Sg(m — 1)]} (9.28)
k=1

for positive integer m, to write

1’# 4 = 4Jj!2(3/2+6/2)j = j!2(2+6)2j
B i 2 1 [(1 +s/2)j]4 [(2+e)2j]1
o 1 2(j+1 i ] |
j:0]+1 ( (j]—s—l)) j! (25 +1)!
oo o0
2 1 (—e)*
= ijj)exp [ Ak | (9.29)
j=17\j k=1
where
Sui—1) _ = 20" -1
m=2
We can now read off the terms «,, of the e-expansion (9.25):
Theorem 9.4. Forn=20,1,2,...
e+2 e+2 e+2 e8] n my
g2 et 1 2 1 A
_[=n 20020 2 =) _/(_1\n a4 - k.,j
oy = [€"] 3F2< 1, # 4> =(-1) Z j (2]) Z my! ke (9.31)
j=1 J k=1
where the inner sum s over all non-negative integers may,...,my such that m; +

2mo + ...+ nm, = n.

PROOF. Equation (9.31) may be derived from (9.29) using Faa di Bruno’s for-

mula for the nth derivative of the composition of two functions. O

Example 9.4.1 (g, a1 and ag). In particular,

o2 a2 ef2)q iQ 1 iQ 1 S ]
Oé]_:[g] 3F2( ’ ; >:— 7.7.A17':_ - —5iC 31_251—1 .
Lt ) mi) T =0

(9.32)
Such multiple inverse binomial sums are studied in [83]. Using [83, (2.20), (2.21)]
we find

ap = (9.33)

o = 2 m — mlog3 + Lsy (Eﬂ . (9.34)

2
3v3’
3v3 3
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For the term s in the e-expansion, (9.29) produces

) 6;275327632 1 0 11 5
] 3F2< 4> = Zj(gj [ AT + Aa]

+3
L5 j=17 \j
11
=> =~ [S2 = 2+ (81— 251)% — 25) + 45
J=1 J (] )
Using [83, (2.8),(2.22)—(2.24)] we obtain
2 1
Qg = 3—\/3 {77; —mlog3 + §7rlog3+ (1 —log3) Lsy (g)
3 3 2
5 Lsg (g) 42 Ly ( ;) — 3Lsy (w)] . (9.35)
O
These results provide us with evaluations of (1 + x + y) and pe(1 4+ x + y).
Theorem 9.5 (Evaluation of p1(1 +x +y) and pe(1 +x + y)). We have
1
wm(l+z+y)=—Lso (E) , (9.36)
m 3
3 27 72
Proor. Using Theorem 9.3 we obtain
3v3
wm(l+z+y) = 2\7{ [(log 3 — 1)ap + a1]. (9.38)

Combining this with equations (9.33) and (9.34) yields (9.36). Again using Theorem
9.3 we find

3V3
or

which, together with equations (9.33), (9.34) and (9.35), gives

uo(l+z+vy) = [(log?) 2log3 +2 — 12)a0+2(log3—1)a1+2ag]

3

27 us
muo(l+x +y) = 3Lss < 3 > + 3 Lss (3) — 6Ls3 (m) — T
27 73
=3L —. 9.39
s () + 5 (9.3
The last equality follows, for instance, automatically from the results in [54]. O

The evaluation of ag is more involved and we omit some details. Again, (9.29)
produces
42 e42 42
[53] 3F2< 20 20 2

e+3
1 2

)

1 1 1
) :_ng i AL + 841542, +24s].
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Using [83, (2.25)-(2.28), (2.68)—(2.70), (2.81), (2.89)] as well as results from [54]

we are led to

1 1 11
1 —log3)+ ~mlog?3 — 7r10g33—|—§7r§(3)

2 53
2 6

=37 | 108"
s 5! 27
+ Cly (§> <367r —log3+ = log 3>—3G121<3>(1—10g3)

_%5 Cly (3) +15Cl 1, (?) — 3Lscas (g)] : (9.40)

Observe the occurrence of Lsco 3 ( ) defined in (9.12). Proceeding as in the proof

jus
3

of Theorem 9.5 we obtain:
Theorem 9.6 (Evaluation of us(1+ x +y)). We have
2
mug(l+x+y) =15Lsy (;) — 18Lsca3 (g) —15Cly <g)

- %@ Cl, (g) —177¢(3). (9.41)

The log-sine-cosine integral appears to reduce further as

2
12 Lsca s (g) L 6 Lsy (;) —4Cy (g) —7r¢(3). (9.42)
This conjectural reduction also appears in [82, (A.30)] where it was found via
PSLQ. Combining with (9.41), we obtain an conjectural evaluation of ug(1+x +y)
equivalent to (9.82).

9.5. Trigonometric analysis of y,(1+ = +y)

In light of (9.24) we define

1 (" ST
pn(a) :== 27?/ (Relog (1 — ae'™))” dw (9.43)
for n > 0, so that
1 ™
pn(l+x+7y) = 27?/ pn(]2sin6]) d6. (9.44)

In a sequence of combinatorial propositions, we study the properties of p,.

Proposition 9.2 (Properties of p,,). Let n be a positive integer.

(a) For |a| <1 we have

3\%

(9.45)

o0
pule) = (=" D
m—1
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where w, is defined as
1 [™
wam) = > H gcos(k‘jw) dw. (9.46)
(b) For|a| > 1 we have
" /n e 1
pn(@) = Z (k) log" ¥ |a| p, (a> . (9.47)
k=0
PRrOOF. For (a) we use (9.43) to write
pn(a) = 1/7r (Re log (1 — aew))n dw = L —Z a—k cos(kw) ndw
2r J_, 2w k
am
= (-1 " — Wn )
0" 3 entm)
as asserted. We note that |w,(m)| < m"™ and so the sum is convergent.

For (b) we use (9.43) to write p,(a) =

e N . N
271_/_7r log” (|Oé| ‘1—04 1elw‘) dw = 27T/_7r (10g|0¢|—|—]0g|1_a 1ez¢,,;‘)n duw

- n n—k 1 " k -1 tw - n n—k 1
:kz_o(k>log |a|27r/_wlog }1—04 e !dw:z<k>log |a|pk<a>,

k=0

as required. O

Example 9.5.1 (Evaluation of w, and p,, for n < 2). We have wy(m) = 0, wi(m) =
dp(m), and
we(0) =1, wa(2m) =2, we(2m+1)=0. (9.48)

Likewise, po(a) = 1, p1(a) = logmax(|a, 1), and

1 Lix(a?) for |a| <1,
pal@) =9 7 | ) (9.49)
3 Lip (J5) +1log” |a| for |a] > 1,
where the latter follows from (9.48) and Proposition 9.2. O

We have arrived at the following description of p, (1 + x + y):

Proposition 9.3 (Evaluation of p,(1 4+ = +y)). Let n be a positive integer. Then

2

1 T /6 ]
pn(l+z+y) = - {Lan (5) — Lsp+1 (w)} + 7T/0 pn (2sin @) do

+3§n: " /W/Zl "=k (25in 0) L Vo, (9.50)
T \k) Jas ©8 SIYIPE Ssing ' ’
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PROOF. Since |a| < 1 when |6 < 7/6, we start with (9.44) to get

1 ™
mm(ttat9) =5 [ pu(2sing) a0
) /6 ) w/2
:/ pn(2sin9)d9+/ pn(2sin6) dé
0

T T 7T/6

2 /6 n n\ 2 w/2 1
== . (2sin 0) dO z log" *(2sin de.
71'/0 pn(2sin0) +kzo<k‘>7r/7r/6 og" (2sin0) py (251110)

We observe that for £ = 1 the contribution is zero since p; is zero for |a| < 1. After

evaluating the term with k£ = 0 we arrive at (9.50). O

As can be easily shown, we have the following multiple Mahler measure,

T
Tu(l+x4+y,1+x+ye,....,1+x+y,) = Lsp1 (g) — Lsp41 () . (9.51)

We record the following for log-sine values at 7/3:

Example 9.5.2 (Values of Ls,, (7/3)). The following evaluations hold [54]:

1o () = 3

1 (5) = 1™
() e+ e )
s (5) = g™~ 66 (5)
Lsg (g) - ?WC(@ + %wi‘g(:a) + 1% Clg (g) .

These evaluations use the method from [95]. On the other hand, Ls$V (m/3) also
lends itself nicely to analysis. From the integral definition (9.6), we make a change
of variable x = 2sin(6/2), expand the new integrand as a series, integrate by parts
then finally interchange the order of integration and summation. The result is

T —(n—2)! & 1
L) (g) _ ((_2)n3 3 T (9.52)

k=1

With the right hand sum, we use the standard trick and identify the inverse bino-
mial coefficient as its beta integral, n fol t"~1(1 — t)"dt. Interchanging the order of
summation and integration once more, we have

™ —(n — : 1
Ls(D (f) = ((_2)71_23' /0 Lin_l(t(l—t))%. (9.53)
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Equations (9.52) and (9.53) then give a number of evaluations, such as

SIORCTORE S

while an evaluation for Ls4 (7'(' /3) gives the hypergeometric identity

1,1,1,1,1|1 17
F ) ) ? Y [ 4
i 4( 3.2,2,2 ‘4> e

compare with the hypergeometric form coming from Ls,, (7/3) via (9.10), e. g.

1 111
4F3(2;’2;)2;2 1) _
333 11) 216

9.5.1. Further evaluation of p,,. To make further progress, we need first to

determine p,, for n > 3. It is instructive to explore the next few cases.

Example 9.5.3 (Evaluation of w3 and p3). We use the trigonometric identity
4 cos (a) cos (b) cos (¢) =cos(a+b+¢)+cos(a—b—c)+cos(a—b+c)+cos(a—c+b)

to derive

m3
z,ug(m):42{2ﬂ~C itj+tk=0i+j+k= m}

Note that we must have exactly one of ¢ = j+ k,j =k +i or k =i+ j. We thus
learn that ws(2m + 1) = 0. Moreover, by symmetry,

3 (2m)? m? 1
wy(2m) =5 Y =6 Y - =12m Y . (9.54)
4 j+k:m]k(] +k) o IE ik
Hence, by Proposition 9.2,
11
z 3
== Z Z’“ e -5 Lig 1 (a?) (9.55)
for |af < 1. O

In the general case we have
n n
H cos(z;) =27" Z cos <Z ejxj> (9.56)
j=1 Jj=1

which follows inductively from 2 cos(a) cos(b) = cos(a + b) + cos(a — b).

Proposition 9.4. For integers n,m > 0 we have w,(2m + 1) = 0.
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PROOF. In light of (9.56), the summand corresponding to the indices ki, ..., k,
in (9.46) for wy,(2m+1) is nonzero if and only if there exists ¢ € {—1,1}" such that
e1k1 + -+ + enky, = 0. In other words, there is a set S C {1,...,n} such that

2 k=D ki
Jjes Jgs

Thus k1 + -+ k, = 22]-65 k; which contradicts ki + -+ + kp, = 2m + 1. O
Example 9.5.4 (Evaluation of wy and p4). Proceeding as in Example 9.5.3 and
employing (9.56), we find

3 2m)* 1
wi(2m) = 2 > (Z:]z; +3 > (”M —24m22 -+ 24m? E

i+j=m i+j+k=m <m Z+]<m
k-+l=m j<m

m—1 . i—1

1 1
— 2 2 2
= 48m Z Z + 24m Z o T 48m DI (9.57)
i=1 j=1 i=1 j=1
Consequently, for |a| < 1 and appealing to Proposition 9.2,
= a?m 3
Z - wi(2m) = 6 Lig11(a®) + 5 Lig o(a?). (9.58)

m:l
This suggests that p,(«) is generally expressible as a sum of polylogarithmic terms,

as will be shown next. O

For the general evaluation of wy,(2m), for integers 7 > 0 and m > 1, define

oim)= Y —L (9.59)

ml DY m]
mi+...+mj=m

Proposition 9.5. For positive integers n, m we have

wn(2m) "Zl (”) oj(m)on_;(m) (9.60)

where o is defined in (9.59).

ProoF. It follows from (9.56) that
nm
wem= ¥ ¥ IR
kit Akn=2m 3 ejk;=0j=1"
Arguing as in Proposition 9.4 we therefore find that

“”(Qm):il(?) 2 Hk

j=1 ki+..+kj=m J 1
kjy1+.. +k
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This is equivalent to (9.60). O

Moreover, we obtain a simple recursion:

Proposition 9.6. Let m > 1. Then o1(m) = 1/m while for j > 2 we have
j m—1
oj(m) = m Z aj-1(r), (9.61)
r=1

— % Z _ (9.62)

... m -
m>m1>...>mj,1>0 mi i—1
Proor. This follows by simple combinatorics. We have

1 1 m1+...+mj
sm= Y -l oy mred

mi+...+mij=m

i 1 e 1
== >, *ml...mj,l—gz > P

mi+...+m;=m r=1 mi+..+m;_1=r

which yields (9.61). Iterating (9.61) gives (9.62). O

Thus, for instance, oa(m) = 2Hp,—1/m. From here, we easily re-obtain the
evaluations of w3 and w4 given in Examples 9.5.3 and 9.5.4. To further illustrate

Propositions 9.5 and 9.6, we now compute ps and pg.

Example 9.5.5 (Evaluation of p5 and pg). From Proposition 9.5,

ws(2m)

. 1001 (m)os(m) + 2002(m)os(m).

Consequently, for |of < 1,

oo

—ps(a) =

m=1

2m 5

a : 2y, 1
(2m>5 w5(2m) =30 L12,17171(Oé ) + ?

(Lig,12(®) + Ligg1(e?)) .

(9.63)
Similarly, pe(a) =
. . . . 45 _ .
180 Lig 1 1.1.1(a?) + 45 (L12,1,1,2(042) + Lig 121 (a?) + L12,2,1,1(042)) + vy Ligg2(a?).

O

In general, p, evaluates as follows:

Proposition 9.7 (Evaluation of p,). For |a] <1 and integers n > 2,

pular) = W g 4) L,y (o)
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where the sum is over all indices w = (2,a9,as, ... ,ag(w)) such that as,as,... €

{1,2} and |w| = n.

PROOF. From Proposition 9.5 and (9.62) we have

[\

n—

—1)"n) X o2m 1
Pn(a):( 221 > 2 Z > P

m=1 = m>my>...>m;>0 -2
m>mg4q>...>my_9>0

<

Combining the right-hand side into polylogarithms yields

—_1)p) n—2 )
pla) = % Yo > 2Wlize,.e(?)

2
k=0 aq,..., ak€{1,2}
aj+...tap=n—2
where ¢(a) is the number of 1’s among ay, ..., a;. The claim follows. O

9.5.2. Reducing multiple polylogarithms of weight < 5. Propositions
9.3 and 9.7 take us closer to a closed form for p,(1 + x +y). As p, are expressible
in terms of multiple polylogarithms of weight n, it remains to supply reductions
for those of low weight. Such polylogarithms are reduced [50] by the use of the

differential operators

(Dof)(@) =af'(x) and (Dif)(z)=(1-2)f'(z)

depending on whether the outer index is greater than 1 or not (the operator D;
reduces the outer index of f by 1, or in the case that it is already 1, removes
it altogether). Such operators give rise to the shuffle relations which are very
important in analysing multiple zeta values (for instance, it is conjectured that all
algebraic relations among multiple zeta values arise from shuffle and stuffle relations;
see also Chapter 13).

As was known to Ramanujan, and studied in [48], that for 0 < z < 1,
Lig;(x) = % log?(1 — x) log(z) + log(1 — x) Lio(1 — x) — Lig(1 — z) + ¢(3). (9.64)
For Lij 3(x), since (1 — x) Lij 3(z) = Liz(x), we get
Lij 3(z) = —% LiZ(z) — log(1 — x) Liz(z). (9.65)
For Lig» we work as follows. As (1 —z) Li} (x) = Liz (), integration yields
Lij2(x) = 2Li3(1 — z) — log(1 — =) Lis(x) — 2log(1 — x) Liz(1 — z)

—log?(1 — z) log(z) — 2¢(3). (9.66)
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Then, since x Lij (x) = Lij 2(z), we integrate again and appeal to various formulas

in [134, §6.4.4] to arrive at

1 1
Liga(t) = 3 log?(1 — t)log?t — 2¢(2) log(1 — t) logt — 2¢(3) logt — 3 Li3(t)

t; 1 How (1 — o) 1og?
+2Lh(1—¢)bgt—§{/12@ﬂ0gxdx_l/ og (1 —w)log’x
0 -z 0 11—z

Expanding the penultimate integral as a series leads to

tL‘ 1
/ 121(33)Og$ dx = LiLQ(t) logt — Li2:2(t)'
0 — X

(Observe that fortunately for us, Liz 2 does not cancel out in this analysis.) Then,

using [134, A3.4 Eqn. (12)] to evaluate the remaining integral, we deduce that

1 1
Liza(x) = — 7 log*(1 — ) + 3 log*(1 — 2) log z — ((2) log?*(1 — z)

+2log(1 — x) Lig(z) —2¢(3) log(1l — =) — 2 Liy(z)

x1)+2Lmu—xy—%MJ+%L§@) (9.67)

Tr —

—2Lu(
The form for Liz ;(x) is obtained starting from Lig ;(x). This gives:
. . 1. 5
2 Lizj(x) + Liga(x) = 3 Li5(x). (9.68)
This result, and its derivative
2 LigJ((L‘) + LiLQ([B) =Li; (.ZL‘) Lig(x),

are also obtained in [204, Cor. 2 & Cor. 3] by other methods.

Dividing the expression for Lij o(z) by 1 — 2 and integrate, we obtain

4 72

Lij 1 2(x) = 30 + 13 log?(1 — x) 4 log(1 — ) Liz(1 — z)

—3Lig(1 —x) +2¢(3) log(1 — x).

Similarly,

4

1
LQM@Q:f%T+§b§ﬂfxﬂ@ﬂ44072bg17@Lgﬂfx)

+3Lig(1 — 2) — ¢(3)log(l — ).
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Since L127171(LL‘) = fox L117171(t)/t dt and Lil,l,l(x) = fom Li171(t)/(1 —t) dt, we first
compute Lij 1(x) = log?(1 — )/2 to find that Lij 1 1(2) = —log®(1 — 2)/6. Hence

. 1 [* dat =t 1
Lig11(z) = _6/0 log®(1 — t)7 =90~ ElogQ(l —x)logx

- % log2(1 — 2) Lia(1 — &) + log(1 — ) Lig(1 — 7) — Lis(1 —2).  (9.69)

In general,

Lifyyn(z) = (—nl')" log(1 —z)", (9.70)

and therefore

Lig 1yn-1(x) = (=" /Ox log(1 — t)"%
(e

(o= log(1 — )" " Lipp1(1 —2).  (9.71)

We have, inter alia, provided closed reductions for all multiple polylogarithms of

=((n+1)—

m=0

weight less than five. One does not expect such complete results thereafter.

Example 9.5.6 (Multiple zeta values). By taking the limit x — 1~ in (9.64), one

recovers the celebrated result

¢(2,1) = ¢(3).
Similarly, (9.69) gives ((2,1,1) = ((4), and with the help of [134, p. 301, (40)], we
get ((2,2) = 74/120 and ¢(3,1) = 7*/360. See also Chapter 13. O

The reductions in this section allow us to express ps and p4 in terms of poly-

logarithms of depth 1. Equation (9.64) treats p3 while (9.58) leads to

P4 (oz2) =3 (Lis (on) —((3) + Lig (1 - 042)) log (1 — a2) - % log? (1- a2)
2

1—a?

+3(4) - 3 Lig ) =8 Lia (0%) =3 Lig (1 - a?) + ZLig (1-a?)

2
—loga log* (1 —a?) — (5 +3Liz (1 - a?) ) log? (1 —a?). (9.72)

9.6. Evaluation of us(1+ z +y)

We review the evaluation of po(1+x+vy) from [55], a result derived alternatively

in Theorem 9.5.
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Proposition 9.8 (A dilogarithmic representation). We have

(a) % /0 "Re Lis (4sin®0) d = ¢(2), (9.73)
2 9 /6
(b) pe(l+z+y) = §—6 +— /0 Lis (4sin” 0) d6. (9.74)

PROOF. For (a) we define the analytic function 7(z) := 1 [ Liy (42 sin§) dé.

T or

For |z| < 1/4 we may use the defining series for Liy and expand term by term using

1)

Wallis’ formula to derive

1 (4z)™ (™ 1,1,1,3
T(Z):;Z 3 /0 sin“" 0df = 2z 4 F 5 9 9

n>1 ) &

11 11 2
- 2L12(5 - 5\/1—42) —log<§—|—§\/l —42) .

The final equality can be obtained in Mathematica and then proven by differen-
tiation (such is one advantage of using experimental mathematics). In partic-
ular, the final function provides an analytic continuation from which we obtain
7(1) = ¢(2) + 2iCly (§). This yields the assertion. (Note the similarity between
this proof and the proof of Theorem 1.6.)

For (b), commencing much as in [126, Thm. 11], we write
pe(l+x+y) = / / Relog (1 — 2sin(f)e'*)” dw df.

We consider the inner integral p(a) := [" (Relog (1 — aei‘”))2 dw with o :=

2sinf. For |0| < 7/6 we directly apply Parseval’s formula to obtain
p(2sin @) = m Liy (4sin* 0) (9.75)
which is equivalent to (9.49). In the remaining case we write

pla) = / [log la| + Relog (1 —a™! e“")}2 dw

—T

7T ) 1
=27 log? |a| — 2log |« log |1 —a! e’ dw—i-?TLiz(j)
—r G
2 a
= 21 log? |a +WL12(7), (9.76)
«

where we have appealed to Parseval’s and Jensen’s formulas. Thus,

1 Tr/6 1 7T/2 1 7.[.2
1 == Lis(4sin6)do + — Lis(——— )d0+ —, (9.77
pa(l +oty) W/o 12( o ) * 7T/7r/6 12<4sin20> * 54’ ( )
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since
2 w/2 ) 2
/ logadfd =p(l+z+y,1+z+y) =—
m 7T/6 54
by (9.51). Now, for a > 1, the functional equation [134, A2.1 (6)]
1
Lis(a) + Lis(1/) + 5 log? v = 2¢(2) + i log (9.78)
gives
w/2 1 5
. . 92 L L _ 2.3
/W/6 [ReLu (4sin26) +L12(4Sin29)} o = o (9.79)

We then combine (9.73), (9.79) and (9.77) to deduce the desired result (9.74). O

Remark 9.6.1 (Using p2). The utility of the propositions in Section 9.5 can now
be seen. Using the evaluation of ps and Proposition 9.3, we arrive at (9.77) imme-
diately, from which it is a few short steps to equation (9.74).

Following [55], we expand out the Liy term in (9.74) as a series then interchange
the order of integration and summation. This is equivalent to, after passing to a
2F1,

o0 (2n)  p1/2
u2(1+x+y)=;+f;(n"2)/o : Mdt
2 /3 (Y2 2Liy(t) — log?(1 —t)
:%+WA

dt
1—t+1¢t2 ’

where we have corrected a misprint in [55]. Simplifying the last integral using

results in [134], we finally see (9.74) is equivalent to (9.37). O

9.6.1. Conclusion. To recapitulate, ux(1+ = +y) = ?fk) (0) has been evalu-

ated in terms of log-sine integrals for 1 < k < 3. Namely,

3 2w
1 = —1L — )
pmd+aty) = 32(3), (9.80)
3 2T 2
1 = — — — .
pe(l+a+y) WLS3<3>+ T (9.81)
72 6 2T 9 T T T 13
”3(1+x+y)_st4(3 > - Cla (5) — Ok (5) — 5 <6 (9-82)

It is possible, though tiresome, to use Propositions 9.3 and 9.7 to give us a descrip-
tion for ps which is close to (9.82); a less complete analysis for 4 is also possible.
The details are given in [41]. However, at least by the route chosen there, the

technicalities of formalising (9.82) appear to be difficult.



CHAPTER 10

Legendre Polynomials

and Ramanujan-type Series for 1/7

ABSTRACT. We resolve a family of identities involving 1/7 using the theory of
modular forms and hypergeometric series. In particular, we resort to a formula
of Brafman which relates a generating function of the Legendre polynomials to a
product of two Gaussian hypergeometric functions. Using our methods, we also

derive some new Ramanujan-type series.

10.1. Introduction

In 2011, Z.-W. Sun [183] and G. Almkvist experimentally observed several new

identities for 1/7 of the form

i W(A + Bn)T, (b, c) A" = % (10.1)
n=0 :

where s € {1/2,1/3,1/4}, A, B,b,c € Z, T,,(b, ¢) denotes the coefficient of 2" in the

expansion of (z2 + bx + ¢)", viz.

T (b, c) = mfj @C) (2:> b2k, (10.2)

k=0

while A and C are either rational or (linear combinations of) quadratic irrationali-
ties. All such equalities from [183] are compactly listed in Table 1.

The binomial sums (10.2) can be expressed via the Legendre polynomials

—n,n+1|1—z
ra=an (71159
1

by means of the formula

To(byc) = (b* — 4c)"/2P, ((52—111(:)1/2)

175
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so that equalities (10.1) assume the form

[e.9]

> W(A + Bn)Po(x0) 2 = % (10.3)
n=0 :

Note that representation by T}, is not unique, since T},(b, ¢) = a"Ty,(b/a, c/a?).
The sequence of Legendre polynomials can be alternatively defined by the ordi-

nary generating function
(1—2zz+ 22712 = ZP

In the rest of the chapter, we will make heavy use of another generating function for
the Legendre polynomials due to F. Brafman. This and our general approach are
described in Section 10.2. In Sections 10.3 — 10.6, we will examine the conjectures
for s = 1/2,1/3,1/4 respectively, and indicate new identities (10.50)—(10.57) for
s =1/4 and 1/6. Then in Sections 10.7 and 10.8 we show that “companion series”
involving derivatives of Legendre polynomials can be obtained, and some of them,
as well as a few series examined in the previous sections, are expressible in terms
of known constants.

Our main result is the following, which we prove in Section 10.2:
Theorem 10.1. All the series for 1/ listed in Table 1 are true.

10.2. Brafman’s formula and modular equations

In [63], Brafman proved the following elegant hypergeometric formula for a

generating function of the Legendre polynomials.

Proposition 10.1 (Brafman’s formula [63]).

1—p—2=z s, 1—s
p>.2pl<
2 1

o0

Z 1—5 n(x)z":QFl(S’

1—s
1 2

(10.4)

1—p+z>

where p = p(x, z) = (1 — 2xz + 22)V/2.

This result has a more general form involving Jacobi polynomials. In [193]
(Chapter 11) we follow the lines of Brafman’s derivation to prove a new type of

generating functions for the Legendre polynomials.
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By introducing the compact notation for the involved hypergeometric function

and its derivative,

s, 1—s

F(t) = F(s,t):= 2F1< ,

t>, G(t) = G(s,t) =t —F(t), (10.5)

and differentiating both sides of (10.4) with respect to z, we immediately deduce

Proposition 10.2.

o0

Z 1 —S)n Po(z)2" = F(t_)F(t}), (10.6)
S0 O p wyer = 20220 G e+ 20 b )
Z " Cop(l—p—z) TN (=) T

(10.7)

where ty =ty(x,2):=(1—p+£2)/2.

Note the notational difference between F(s,t) here and K*(k) in Chapter 5.
For s € {1/2,1/3,1/4,1/6} (the denominator of s is the signature), the right-
hand side of Brafman’s formula represents the product of two arithmetic [210]

hypergeometric series: the modular functions
1/ n(r) . 1 77(7)
ta(r)=(1+— t —
=(1+5() ) - w0= (5 () )

(AT e s &

(with subscripts denoting the levels) translate the respective series F'(t) into a

weight 1 modular form F(t(7)). Here n(7) and j(7) are Dedekind’s eta function
and the modular invariant, respectively. For the rest of the chapter we will omit the
subscript in ty(7) when the modular function used is clear from the context. The

inversion formula is given [17, p. 91] by

% 1fs—%,
1 -1
T iCSM where Cs = L ) e =5 (10.9)
F(t) 2sin s Lol
V2 N
1 1f5:%
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The elliptic nome is defined throughout the chapter as ¢ = e2™". Note that for any

of the four modular functions in (10.8) we have

1 dt de
g =t1—t)F? 10.1
2mi dr qdq 1 =) F7(), (10.10)

the result already known to Ramanujan ([17, Chap. 33], [34], [80]).
When 7 is a quadratic irrationality (with Im7 > 0), the value #(7) is known
to be an algebraic number; computation of such values is well discussed in the

literature — see, for example, [17, Chap. 34]. A common feature of the Sun—Almkvist

series (10.3) from [183] for s € {1/2,1/3,1/4} is that the algebraic numbers

1—po— 1-
o= P02 4 5:ﬂ, where  pg := (1 — 2020 + 23)"/?,

2 2

(10.11)
are always values of the modular function ¢(7) at two quadratic irrational points.
In cases when o and z are real, we get o = t(79) and 3 = t(79/N); while in cases
when both z¢ and zy are purely imaginary (and there are five such cases in Table 1
marked by asterisk), we have a = t(79) and = 1 — ¢(79/N). The corresponding
choice of quadratic irrationality 79 and integer N > 1 is given in Table 1. We also
note that |a| < |B| for all entries, with strict inequality when both xy and 2y are

real.

Remark 10.2.1. Observe the duality between several entries in Table 1, where the
roles of zg and pg are swapped. These correspond to the same choice of 79 with
different choices of IV, which is often a prime factor of an integer inside the radical

in T0- <>

Proposition 10.3. In the notation of (10.11), assume that both a and B are within

the convergence domain of the hypergeometric function F(t) (that is, ||, |B] < 1).
(a) Suppose that a = t(19) and B = t(19/N) for a quadratic irrational o and

an integer N > 1. Then there exist effectively computable algebraic numbers g, Ao

and A1 such that
F(B) = poF(a) and G(B) = IoF(a)+ MG(a). (10.12)

(b) Suppose that o = t(79) and 8 = 1—1t(m0/N) for a quadratic irrational 7o and

an integer N > 1. In addition, assume that |1 — 3| < 1. Then there exist effectively
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computable algebraic numbers pg, Ao, A1 and Ao such that

A2
TF(a)

F(B) = poF(a) and G(B) = F(a)+ MG(a)+ (10.13)

PROOF. (a) For N given, the two modular functions ¢(7) and t(7/N) are related
by the modular equation of degree N; in particular, the function ¢(7/N) is an alge-
braic function of (7). As both F(t(7)) and F(t(7/N)) are weight 1 modular forms,
their quotient F(t(7/N))/F(t(7)) is a modular function, hence it is an algebraic
function of ¢(7). The quotient specialised at 7 = 7 is then an algebraic number,
which we denote by pyo.

Differentiating F'(t(7/N))/F(t(7)) logarithmically and multiplying the result
by F2(t(7)), we arrive at a relation expressing G(¢(7/N)) linearly via F(¢(7)) and
G(t(7)) with coefficients which are modular functions. Specialising at 7 = 7y this
yields the second equality in (10.12) with algebraic Ag and A;.

(b) Consider now § = 1— ' where 8’ = t(19/N). By what is shown in part (a),

F(B) = puyF(a) and G(B) = A\F(a) + N G(a) (10.14)

for certain algebraic (), A\{, and \|. Relation (10.9) implies that
F(l-t) it

= 10.15
F(t) CS’ ( )
which specialised to 7 = 79/N, hence t = ', results in
170 ,
F(p) =-— F(B). 10.16
(8) =~ F(8) (10.16)

Computing the logarithmic ¢t-derivative of (10.15) and using (10.5), we find

G —t)  (1-0G(H)  t(1—1) <dt>1 _ #(1—75)F(t)(dt)17

Fi-o ~ Fo r \ar C.F(1—1) \dr

which, after multiplication by F(1 —t)/t and using (10.15), can be written as

Cir(1—t) i(1—1) de\
G(l—t)= i G(t) + . F(t) <d7’> . (10.17)
Using now (10.10) and taking 7 = 79/N (so that t = t(79/N) = ') in (10.17) we
obtain
B 1T , 1
O =Noa-5 " moa-prEY HO-1%)

Combining now (10.14), (10.16) and (10.18), we arrive at (10.13).
Finally note that all the above algebraicity is effectively computed by means of

the involved modular equations. ]
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Now we appeal to a particular case of Clausen’s formula (1828) [11],

s, 1—s
o1

2 %, s, 1—s
t)] =3k (1 —t) ), (10.19)
1

1,1

which is valid for ¢ within the left half of the lemniscate 4|t(1 — ¢)| = 1. Differ-
entiating (10.19) and expanding the 3F, hypergeometric function into series, we

obtain

Proposition 10.4. Fort satisfying [t(1 —t)| <1/4 and Ret < 1/2,

P =3 P g,

n!3
n=0

- = (3 S)n —S)n n
F(O)G(t) = 21(1 _2; 3 (3)n( )n!(; (a1 = )"

n=

Our final argument goes back to Ramanujan’s discovery [164] of hypergeometric

formulas for 1/7. Its proof is outlined in [35], [36], [46] and [77].

Proposition 10.5. Let a be the value of the modular function t(1) at a quadratic
irrationality 19. Assume that |a(l — )] < 1/4 and Rea < 1/2. Then there exist

effectively computable algebraic constants a, b and ¢ such that

o (1
1 1—
3 @n(&)nll = S oy (4a(1 — a))" = <. (10.20)
n!3 T
n=0
Remark 10.2.2. Observe that all the values o = (1 — pp — 20)/2 from Table 1
satisfy the hypothesis of Proposition 10.5, with the exception of (II11) which we
treat separately in Section 10.4. O

PrOOF OF THEOREM 10.1. For a given entry from Table 1, we choose a =
(1 —po—20)/2 =t(19) and 8 = (1 — po + 20)/2. Proposition 10.5 implies that we
have a Ramanujan series (10.20). On invoking Proposition 10.4 for ¢ = a we can

write (10.20) in the form

1—a

F? 2h
al™(e) +2b7—

F(a)G(a) = (10.21)

c
7T'
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On the other hand, by specialising the identities in Proposition 10.2 at x = x,
z = zp and using then the algebraic relations obtained in Proposition 10.3 we obtain

o0

Z nU = (o)af = o F2(a),

= 1 - N,
Z I p, (20)25 = MF>(a) + X F()G(a) + 22,

with some algebraic (effectively computable) coefficients pg, Aj, Aj and X, where
we simply choose A, = 0 if 5 = t(79/N).

Finally, taking

2b(1 — — B\,
7,6( a) and A'=2"27% Ay
X (1 —2a) Ho

we derive from (10.21) that

B =

0 (1= 8), — BN
S = g1y By ) o = S22,
n—0 n: T

which assumes the required form (10.3) after setting A = CA’/(c — B')\,), B =
CB'/(c— B')\,). O

As verification of each entry in Table 1 requires an explicit knowledge of all
the algebraic numbers involved and is therefore tedious, we give details for only
some of the entries. In Section 10.3 we discuss in detail identity (I2) by using a
parametrisation of the corresponding modular equation. Section 10.4 describes the
techniques without using an explicit parametrisation on an example of identity (II1),
and uses a hypergeometric transformation to treat (II11), an entry that does not
satisfy the conditions of Proposition 10.5. Section 10.5 explains the derivation of
identity (III5), which corresponds to imaginary xo and zg, as well as outlines new
identities for s = 1/4. In Section 10.6 we present two identities corresponding to

s = 1/6, which are not from the list in [183].

10.3. Identities for s =1/2

We illustrate our techniques outlined in Section 10.2 with (I12),

0 1 n
3 17 3 12
(2) 7+30n P, () (-) ==,
nzo LANTN 42 ™
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Here we have N = 3, so that the values a = t(m9) = (1 — po — 20)/2 and § =
t(10/3) = (1 — po + z0)/2 are related by the modular polynomial [16, Chap. 19]

(0 + 8%+ 6a3)> — 16a8(4(1 + afB) — 3(a + B8))* = 0

and admit the rational parametrisation

L V2-5V3+3  p(2+4p)

8v/2 Co1+2p ] 3-v2-V3
p=——p
5_W2-5V3-3  p2+p) 2v2
8v/2 (1+2p)*’
In the notation of (10.5), recall the identity [16, p. 238, Entry 6 (i)]
p(2+p)® P*(2+p) 1
FIB2TP) ) (g fopp (2 TP) f (—7,1); 10.22
(o) —rmr(T55) o ve (o 10-22)

differentiating it we obtain

p2+p)?*\  p(1+2p)2+p) (PPC+p)\ 3(1+p*(1+2p) (P2+Dp)
G<(1+2p)3>_ (1-p)? F(1+2p >+ (1—-p)? G<1a§153)>'

Substituting p = (3 — V2 — v/3)/(2v/2) into (10.22) and (10.23) we obtain

= _\/6;'3\@1:(&)’

_85\/6 +120v/3 — 147/2 — 208
2

Specialising (10.6), (10.7) by taking x = 17/(12v/2), z = —3/(4v/2) we get
= (3)n 17 \( -3\"  ~/Vv3-1, B
> 5!2 (A+ Bn)P, (12\@) (M) = \/6< A= 30>F2(a)

n=0
15v/2 + 8v3 — 3V6
22 1\0[ s

F(B)

(—19v/3 + 33) (172 + 24)
2

G(B) = Fla) + G(a).

(@)G(e).

In turn, the choice A = 7 and B = 30, Clausen’s formula (10.19) (Proposition 10.4)

and
(V3—-1)5
4t(1 - t)‘t:(4\/§—5¢§+3)/(8\/§) Y

128
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which is precisely 3/v/2 times the Ramanujan-type formula [30, eqn. (8.3)]

f: %)3% (7-3V3+6(5—V3)n) (D3 - 4v2

2mn T

n=0
The derivation of (I4) is very similar, as the degree N is also 3 in this case
(although we have to swap the rational p-parametric expressions of « and /3). The
choice of the parameter in the above rational parametrisation is p = —(2 + v/3 +
V/15)/4, and the transformation (10.22) assumes the form
F<p(2 +p)3> _ 1+ F<p3(2 +p)
(14 2p)3 3 1+2p
This in fact follows from (10.22) by a change of variables then by applying to both

) for pe(—o0,—-1).

sides a transformation of the complete elliptic integral K (as K(t) = nF(t?)/2),

K(z) = ﬁf{(ﬁ) (10.24)

itself a result of Euler’s hypergeometric transformation [25, §1.2, eqn. (2)].

Finally, (I4) reduces to Ramanujan’s identity [164, eqn. (30)]

i (5!)353 (5v5—146(7V5 + 5)n)(f521—4nl)8" _ :%2
n=0

For (I1) and (I3) we have to use the modular equations of degree 2 and 5, respec-
tively [16, Chap. 19]; the corresponding “complex” Ramanujan-type series for 1/7
required in the derivation of (I1) can be found in [108, Section 4].

Remark 10.3.1. When s = 1/2 we can take advantage of the functional equation

1 t(7)
) = 10.2
t(r+3) () =1’ (10:25)
which follows readily from Jacobi’s imaginary transformation [46] for K. Moreover,
t(7)
F = F(t 1-—t 10.26
(72 ) = Feen V=) (10.26)

by Euler’s hypergeometric transformations. Therefore, aided by (10.25) and (10.26),
we may carry out the same analysis as before for a = t(1/2+79), 5 = t(79/N), and
a whole new range of identities follow.

For example, take 79 = \/—1/2 and N = 1 (a case not considered in Table 1),

we have
) () () o vam - T

(10.27)
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while with 79 = 7 and N = 2, we produce the new rational series

> () () (5) wen= 2R sy
n=0
0

10.4. Identities for s =1/3

In this section we first prove (II1),

5 Qe gy, (5 (2" 4965

n=0

which is representative of identities in the large group for s = 1/3 in Table 1. Here

l—po—z 1 1\* l—pot+z 1
! 5 4( \/3) and f3 5 5 (10.29)

satisfy the modular equation of degree 2 in signature 3. Although a rational
parametrisation similar to the one we exploited in Section 10.3 exists, we will com-

pute the algebraic relations of Proposition 10.3 by using the modular equation itself
(@B)'P+((1—a)(1 - BN =1, (10.30)

as well as the equation for the corresponding multiplier [17, p. 120, Thm 7.1]

F(B) _ (1-a)*® o??
Fla)  (1-pB)/3 puU3

where a = (1) = t(7) has degree 2 over g = B(7) = t(7/2).

(10.31)

m =

On specialising (10.31) by taking 7 = 79, we get

1 2
F<2> =7 F(o)] e 1-1/v3)3 4 (10.32)
Computing the logarithmic ¢-derivative of (10.31) at ¢ = «, and using the notation

of (10.5) result in

GB) df  Gla) 1 d [(1-a)® o3
BE(f) da  aF(a) m da((l — BB 51/3)

F(a)1/dB [((1—a)?)3 a?/3 9 9
:W 3<da ((1 — B)A/3 + ﬂ4/3> - (1= a)i/3(1 = B/ - a1/351/3)' (10.33)

The derivative d3/da can be obtained by differentiating (10.30),

dg a1/3 (1 _ a)1/3 51/3 (1 _ ,3)1/3
dor (52/3 - 5)2/3> T2 T (T aph

0,
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so that
a8

do T=T0

Thus, with the choice 7 = 7p in (10.33), we obtain

G(é) _ <3 Fla)+ 3\/33% G(a)> .

From now on we fix a and 8 as defined in (10.29). With the help of Proposi-
tion 10.2 and (10.32), (10.34) we find that

=9.

(10.34)

> O n p ()5 = F@)F(§) = —= F*(a).
o0 1
52 G p )25 = 2B Gy () + 22 piaycis)
n=0
2 3V3+5
573 L @)+ — 2= Fe)Gla)
Therefore,

i M(Q + 150) P, (20) 20 = 10 F?(a) + 15(3v3 +5) F(a)G(a)

~ n!2 V3 V3
oo 1 1 2
25 @l 15y aatr -,
n=0

and identity (II1) follows.

Remark 10.4.1. In Section 10.8 we show that in the discussed example we have

closed form evaluations of F'(1/2) and G(1/2), hence of

Fla) = ‘f F<;> Gla) = 5@_9 F(é) + 9“‘5’2_15 G(;) (10.35)

(the relations follow from (10.32) and (10.34)). In particular, this gives a different

way of deducing (II1), avoiding the use of a Ramanujan-type series. O

We now turn our attention to (II11), shown below, for which 4|a(1 — )] > 1
and thus does not satisfy the conditions of Proposition 10.5. Our method employed

is illustrative in dealing with more general situations when this occurs. It is also
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worth noting that this approach bypasses the computational difficulties encountered
with purely imaginary z¢ and zp (see Section 10.5), as is the case here.
We are required to prove

— (3)n(3)n —7iV5\ [ —11i\" _ 15v/3+ /15
nzzo 3n!23 (2+9n)Pn< 5 )(10\/5> =

with a = (10v/5 — 27 4 114)/(20+/5). We now take
po — 1+ VE)VVE-—2-V22-10/5 1

4 2’
and apply the transformation [17, p. 112, Thm 5.6] or [46, Prop. 5.8]
1 2 27 2 1 2 1 2 11 3 9
2F1<37 5| 27p*(1+p) >: tptp 1(27 2 | P +p)> (10.36)
1 |41 +p+p?)3 V1I+2p 1 1+2p )’

which is valid for real p € [0,1). By analytic continuation, the transformation
remains valid in a domain surrounding the origin in which the absolute values of
the arguments of both hypergeometric functions are less than 1; in particular, this
domain contains pg and its conjugate pg.

In the notation

B 11
F(t) = 2F1<212

the transformation (10.36) at p = po gives

— — AL
LY RN

where ag = 1/2 — \/v/5 — 2 is real. Moreover, as 3 is the conjugate of «, it easily
follows that at p = Py,

F(a) = (10.37)

(25 —1— (3\,/25_ 14V/5)i)!/4 Flag). (10.38)

Therefore, F(a) and F(B) are both algebraic multiples of F(ag), and we have

F(B) =

transposed the problem to a simpler one in signature 2 with real argument. It
remains to express G(a) and G(f) in terms of F(ap) and G(ay).
To this end, we differentiate (10.36) with respect to p, and obtain
(1 =p)(2+p)(1 +2p)* < 27p°(1 +p)® >
(1+p)(1+p+p?) A(1+p+p?)?

3 2 2 3
~(p°(2+0p 6(l+p)*(1+p+p°) ~(p’2+p
:3p2(1+p)F( 1<+2p>> ( >2<+p >G< 1<+2p>

). (10.39)
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Substituting py and its complex conjugate pg, respectively, into (10.39) simplifies
both G(a) and G(f) in terms of the desired functions. Armed with this knowledge
as well as with (10.37) and (10.38), we can use Proposition 10.2 to obtain

n=0

:\/5\/41f (5(\/§+3\/5) N 10y/17v/5 — 31
6

5—89 ~ ~ ~
\/6 FQ(Oz[)) + 6 \/» >F(OJ0)G(OJ()).

This now satisfies the conditions of Proposition 10.4 with s = 1/2, and the truth

of (IT11) is reduced to that of a classical Ramanujan series

= (2 VE-1\" 25
nz:% 2!3 (5—\/5—1—2071)( 5 > :T\/2+\£, (10.40)

as 4ag(1 — ag) = ((v/5 —1)/2)% — we comment on this numerical coincidence in

Section 10.8.

Remark 10.4.2. We note that six of the identities in group II in Table 1, as well

as (Al) and (A2), satisfy 790 = \/—2p/3, where Q(y/—2p/3) has class number 4;
therefore p € {5,7,13,17}. That these series are rational could be attributed to

this observation. O

10.5. Identities for s =1/4

Although in this section we focus on the proof of identity (III5),

= (Dn(Dn 7i 11iV15\"  7v42(3 + 2V/5)
Z 4n!24 (13+80n)Pn<—33\/ﬁ> (— o ) = o ,

and on our new “rational” identity (10.50), it is worth commenting on the proof

n=0

of (II13) first, which is very similar to the one of (II1) presented in Section 10.4.

Example 10.5.1. For (III3) we get

V6 —2)4 1
as (B2 1

the degree 3 modular equation reads
(@B)? + (1= a)(1 = B)Y? +4(aB(1 - a)(1 - B))/* =1, (10.41)

while the underlying series

i (Dn(n(G)n3+40n 1

nl3 T4n 371'\/3

n=0
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is due to Ramanujan [164, eqn. (42)]. A more elementary derivation of (II1), which

we discuss in Section 10.8, is also available for (II13). O

In the case of (III5), we have 79 = (1 +i\/15)/4, N = 2,
1 32v6  11iV15 g 1 32v6  11iV15

2 3 e PTaTym T o
and 8/ =1— 8 =t(r9/2). Note that for subsequent calculations,

4\/5_5—2“/E+4\/§
14 2

o = t(T()) =

Bl2 —
The degree 2 modular equation for s = 1/4 is [69, eqn. (4.6)]
21431 - )23 =1 (1-p)"2 (10.42)
and the multiplier is given by [69, eqn. (4.5)]

—2(1+3(1—8)2) (10.43)

Using (10.16) and (10.42), we can find the ratio between F(f') and F(3), as
well as between F(f') and F(«):

_ 3425 - (V5 -2)V3i

F(8) e Fla), (10.44)
P = 23t */TZ\;(Q\/E =3 (). (10.45)

Relation (10.18) of Proposition 10.3 assumes the form
(7 — 3v/5)(5v15 + 614) 3(69 4+ 7v/5) + 33iv/3(15 — 7V/5)
128v2 256v/2 7 F(j3")

It remains to express G(f’) as a linear combination of G(«) and F(«). Proceeding

in a similar fashion as Section 10.4 (for (II1)), we differentiate both sides of (10.42)

G(B) = G(B)+

. (10.46)

with respect to t at «, and obtain

(1436262 = (1 - 82 + 3a(1 + 351/2))(315,

from which we easily solve for df’/da; this we substitute into the next equation,

obtained by differentiating both sides of (10.43):

_ BG@F(B) <dﬂ> o 36'F(a)
 aF(a) da 2B1/2(1 + 331/2)3/2

Now (10.47), when tidied up via (10.45), expresses G(’) in terms of G(«a) and

G(8)

(10.47)

F(«) as promised. Substituting the result into (10.46) and using (10.45) again,
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after much computational work we arrive at an expression of G() in terms of G(«)

and F(a):

o) = 3VT(23V15 - 39v3 — (3VB+1)i) 15+ 185 + (38v/3 — 23V15)i Flo)
B 256127 F(a) - 11214 “
513 + 323v/5 + (153v/3 — 361y/15)i
— 2571l G(a). (10.48)

Combining (10.44) and (10.48) with Proposition 10.2 allows us to invoke Proposi-
tion 10.4 to arrive at a series equivalent to (III5); the corresponding Ramanujan-type

series and its conjugate are given by

) . 4n
3 W ((52 F 12iV/3) + (320 F 55iv/3)n) (W) - 987:@’

(10.49)

n=0

as we have

da(l —a) = <2<5 %@)4

in this case.

Remark 10.5.1. We remark that the Ramanujan-type series (10.49) are rational

over the ring Z[ezm/ 3]. A possible way to establish them rests upon application of

degree 2 modular equations (10.42), (10.43) with the different choice
t(i\/15j:1> <167\/5>2 g t<z’\/15j:1>
o = —_— = — —_—m s _= —_—m y
2 11V3 4
so that « is real, and on using the real Ramanujan-type series

o (2n(D)n(Dn
> % (1500 — 604v/5 + (6825 — 2240v/5)n)
n=0 ’

2 (2003 = 5VB)\ " 121V/15
Y < V3 > B

for the argument 4a(1 — «); this is very similar to what was done for (II11) in

™

Section 10.4. A different approach is to apply the general construction in Section

10.10. O

We now present some new rational series that are analogous to (I112). Our first

series for s = 1/4 corresponds to the choice

199 _ —HV11 65 V3343

0= ——, % , =——, T19=——, and N =3,
°~ 6ovir 96 =53 2
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in the notation of Table 1. Then we have

o~ (Dn(D)n n_ 32V6
> %(33 +260n) Py (20)2 = =,
n=0
or alternatively in the form involving 7, (as in (10.1)),
o~ 33 +260n (4n) (2n 32v/6
— T,(398,1) = . 10.50
nz:;) (—3842)n <2n> <n> ( ) T ( )

The proof proceeds in the fashion of (II1) via the degree 3 modular equation and

the multiplier in signature 4 (see [17, pp. 153-154]), and the Ramanujan-type series

i (‘1*)”(3,)3"(5)” (33V/33 — 119 + (260/33 — 220)n) <325@0g 1867>n = 126:/3.

n=0
The three other new series are obtained by choosing

) E{z\/{?+3 ivV93 + 3 i\/177+3}
0

2 ’ 2 ’ 2

and, again, N = 3. They are:

o
1 dn)\ (2 V423
Z733 +83980n (4n\ (20 ;o0 g SOVARE (10.5)
ot (—26882)" \2n/\ n 7r
. 71161 +1071 4n\ (2 135v/2533
27 61+ 072 280"< ”)( ”)Tn(24302,1):3553, (10.52)
LT (C2A B on )\ n 6
>, 30282753 + 632 736 2600 /4n) /2 2044/1463°
3 + Y (M) T, (1123598, 1) = S0 (10.53)
(—11235842)n on )\ n /3

n=0

The partial sum of (10.53) adds about four digits of accuracy per term.

In order to find these new series similar to (III2), we search for imaginary
quadratic fields Q(v/—3F) with class number 4, where prime £ = 3 (mod 4). It turns
out that this is satisfied when ¢ =7, 11, 19, 31 and 59 (this list seems exhaustive).
The four new series correspond to the latter four discriminants, respectively.

Another curious observation is that, in the notation of

. A+ Bn [4n\ [2n C
S4B T (b.1) = =
A <2n) ( n ) n(b:1) T’

n=0

when N = 3 we have |b — |A|'/2| = 14. This is observed in (IT11)~(I13), as well as
in (10.50)—(10.53), and in fact follows from the modular equation (10.41).

Remark 10.5.2. In a more recent version of his preprint [183], Sun gives eight
new series for group III. Not surprisingly, these too are subsumed under our theory.

Indeed, for all of them, 79 = y/—pgq/2 and the underlying quadratic field again has
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class number 4 (so p = 5, 7, 13 or 17, and all of Sun’s cases have ¢ = 3). Using

other values of ¢, we may produce many more rational series. As just one example,

with 79 = \/—35/2 and N =5, we have

19601 110v/2\"  135v21
Z % (17 +230n) P, ( >( f) = : (10.54)
ot 13860v/2 567 44/2m
Our next example, not found by Sun, is the following, which has 7 = v/—7 and

N =2

o0 1 n
3 4097 [ 455 513114
> @nlghn (841 + 9520n) P, (4095> (29241> == (10.55)

n=1

O

10.6. New identities for s =1/6

In this section, we illustrate two series corresponding to s = 1/6, a case not
considered in [183].
Our first example follows by taking 79 = iv/6 and N = 2. Then

1728 1399 — 988v/2 1728 1399 + 988v/2
= an =
() 4913 3(10/2) 4913

and we have two Ramanujan-type series of Proposition 10.5,

oo 1 1 5 n
5~ U a2y (BEESEY' 921 s
n=0

Note that adding these two series gives a rational left-hand side. By using either of

the two series, and with

17/17 — 46 ] V1757 — 39117
- ) 0 - )
20/ 1757 — 391/17 17V17

we obtain

i (@) (5(31 4 17V/17) + 5928n) P, (z0) 2 = 177;/6\/1069\/ﬁ — 1683.

nl?
n=0

(10.56)
In the second example we choose 79 = iv/7 + 1 and N = 2, so that

1728 < 4 >3 4 1728 (4)3
. == an - =—(=]),
j(70) 85 3(70/2) 5
and the related Ramanujan-type series is

o (2)n()n(§)n 4\ VB5
yf) 200 SR (8 + 1330 )(85> = 55
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due to Ramanujan himself [164, eqn. (34)]. The series and the corresponding choice

L 323VITES VIS 1711785 3v/105
0~ 713650 40950° “°7 14450 50

generate the formula

85
3

oo 1 5
1y (5 30
> M(mm — 15V/173 + 6552n) Py () 28} = \2:\/19809\/ﬁ — 68425.

12
=0 n:

In notation of (10.1), the identity can be stated in the form

= 1 —125V/173 1
3 <6”> <3n> (1687 — 15v/173 + 6552n)Tn< 0778 — 125v17 —1) B

— 3n/\n 32 ’ (—154/17)3n
= 82\2/% V/19809+/17 — 68425. (10.57)
7T

The appearance of a negative ¢ in (10.1) is not found on the list from [183].

Remark 10.6.1. Note that given 79 and NV, formulas such as (10.56) can be ex-
perimentally discovered using PSLQ, working in the Gaussian integers if one needs

to. More specifically, if one suspects the existence of a series of the type

)

(a +bVE)F2(to) + (c + dVE) F(to)G(to) = 7“2%/%

s
where a,b,c,d, e, f € Q and k is often a factor of an integer appearing in the surd
of 79, then one could evaluate F'(ty), G(t9) to very high precision, and run PSLQ
on the square of the series. That is, with [} = F2(tg) and Fy = F(tg)G(to), one
would run PSLQ on the vector

1
{F?VEFY, B VEE, Ry, VERE, <, T3

Some of the identities in this chapter were first found this way; generalisations and
improvements of this method are also possible. O
10.7. Companion series

If we differentiate (10.4) with respect to z instead of z, a series involving the

derivatives of Legendre polynomials is obtained:

Proposition 10.6. In the notation of (10.5),

Oosnl—sn, n 2(GEt-)F Fito)G
> Oty = 2 (GELHED HEIEL) - qans)

n=0

where ty =ty (z,2) = (1—p+xz)/2.
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We may then take a linear combination of the series (10.6) and (10.58), and
apply Proposition 10.4 to match a series for 1/m (of the type in Proposition 10.5),
thus obtaining what we call a “companion series”.

For instance, in the case of (II1), the resulting companion series is
S () o () -3
=0 6v/3 2m

If we combine (II1), its companion, and the formula [196, Ch. 15]

P;L(‘,r) = (:L’Pn(l‘) - Pnfl(x))a (10'59)

x?—1
we produce the new identity

3 (3)n(3)n nPn_1<3‘f>( ) _3

vt n!? 6v/3 A
Note that the second order recursion satisfied by P, (14.25) allows us to derive
many identities of this kind.

As another example of a companion series, (I14) produces

nio o [%’i@ P’;<8\3/1T5> * a3 P"<8\3/1T5>] <§>n =

10.8. Closed forms

Here we give our elementary proof of (II1) as promised in Remark 10.4.1. Using
the same notation as Section 10.4, applying Proposition 10.2 and relation (10.35),

we obtain

S mon (32) 2 - £(2)eC)

Note that both the hypergeometric series on the right-hand side can be summed by

1\ 2I(3)
2> TG

1
3/ \6

Gauss’ second summation theorem [25, §2.4, eqn. (2)]:

f(5)-n () - o6) 5 ()

(el

and identity (II1) follows. As mentioned, a similar derivation is valid for (III3).

Therefore,
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When s = 1/2, we can alternatively use the complete elliptic integrals K and K’
to represent proofs of the identities in group I. This sometimes leads to closed form
evaluations of the involved F(«) and F(8), hence also of G(a) and G(8) through
the corresponding series for 1/7 or by taking derivatives. Our evaluations depend

on the Nth singular value of K, that is, a modulus kx such that I[((/((:g)) = +/N. For

a positive integer N, ky is algebraic and can be effectively computed [164], and

the values of K and its derivative at ky (hence F (k%) and G(k%)) are expressible

in terms of gamma functions (see [46, Ch. 5], which also lists ky for small N).
Consider, for example, the product F(a)F(3) for (12); with the help of (10.22)

we see that it is

32 82

We now apply the transformation (10.24) followed by the quadratic transform (6.5),

2/6(v/3 + 1) KQ(\/4\@—5\/§—3>'

and observe that the argument of the elliptic integral is transformed to kj, where

ks = sin(mw/12) is the third singular value. As K’(k3) has a closed form, we obtain

5 (32 ) -2

n=0

Curiously enough, the quantity on the right-hand side is exactly the value of W3(—1)
in Chapter 1.

In (I3) and (I4), @ = 16 — 7v/3 — V/15 is the square of the 15th singular value
of K. In the proof of (IT11), g is the square of the fifth singular value. In all these
cases, F' and G all have computable closed forms at « and «ag; we can therefore
complete their proofs without resorting to Propositions 10.4 and 10.5. In the case

of (IT11) we can use this fact to establish the series (10.40).

10.9. Summary

We have discussed the proofs of several Ramanujan-type series for 1 /7 that are
associated with the Legendre polynomials. Our analysis in Sections 10.5 and 10.6
shows that the list in [183] does not exhaust all, even rational, examples of such
series, and that the latter problem is related to investigation of imaginary quadratic
fields with prescribed class groups. In particular, our work effectively gives a recipe
to generate more series of the type by picking suitable 7 in imaginary quadratic

fields.
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The techniques of the present chapter also allow us to prove other identities

n [183] of the forms

= ()2 ) (a3 )
7;) ni2 (A+ Bn)Pop(z0)z) = ; and Z n'2 (A4 Bn)Ps,(x0)zh = =,
(10.60)

although computation becomes more involved. Brafman’s generating function (10.4)
in these cases is replaced by new generating functions in [193] (Chapter 11). In the
next section, we return to an encountered complex series for 1/7 and give explicit

details for its construction.

10.10. Complex Series for 1/x

Almost all currently known series for 1/7 share one common property that the
coefficients are all real. In [108], J. Guillera and W. Zudilin discovered the first
series for 1/m with complex coefficients, namely,

()3 49—13F 105 — 21v/=7 \ /47 +45v=7T\* V7
Z k'3< 64 32 k>< 128 > = (106D

k=0
This series was shown to be equivalent to another series involving only real numbers,
and the proof of the latter follows from the Wilf-Zeilberger method.

In Section 10.5, we encountered two series analogous to (10.61), namely,

(1), (1)k(2) 25+ v=3)\"* 98V3
kZ:O Gr(2)r(Pk k;'3 (1) (52i12\f+(320q:55f))<7\/§> =

(10.62)
It suffices to prove any one of the above series since one is the conjugate of the

other. Here, we will discuss a general method to establish identities such as (10.62).

10.10.1. Functions associated with I'5(2). Series such as (10.62) arise from
Ramanujan’s quartic theory of elliptic functions [36]. We recall some of the facts

from [36]. For |¢| < 1, define
o
H 1=
When g = €™ with Im 7 > 0, we find that

q1/24f(_q) - 77(7)7
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where 7(7) is the Dedekind n-function already encountered in Chapters 3 and 7. It

is well known [12, Theorem 3.1] that 7(7) satisfies the transformation

0 (—i) — V=irn(r). (10.63)

Let
8(__ 8(_ 4
2(q) = TEDEPATCC) g X(g) = a1 2@, (064)
fAH(=4?)
where
IR o Gl I
x(q) b 64q /24 (—¢?) (10:69

In [36], we know that

13
Z(q) = 3F2<414

To extract 7 from these functions, we need the transformation formula which follows

from (10.63). More precisely, we have
Z(ezwi(%» = —T2Z(€2Wi7—/\/§).

Differentiating the above with respect to 7, we deduce that

1 ¢ dZ V2 q dZ
T Z q q:e—27ri/(\/§-r) e Z dq q:egﬂ-if/ﬁ
To simplify notations, let
dz
Gir)=L12 .
Z q q:627'ri7'/\/§

Then the transformation can be rewritten as

1 G <_1> — Q + 7G(7). (10.66)

T T T

Note the appearance of 7. In the next subsection, we will express G(7) and G(—1/7)
in terms of a hypergeometric function and its derivative.

In the case of series for 1/7 with real coefficients, we would only need one
modular equation. To prove (10.62), we will see that two modular equations are

needed.
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10.10.2. Some intermediate identities. Set

V=15—-1 V-5/3 -1 V—15+1
m=——, Tn=—"—— and 73= ——+—.
2V/2 22 2v/2

From (10.66), we deduce that

1 ) 4 4
and
1\? 12
G(m) = <> G(n)+— —,
T2 T2 T

Hence, we find that

S0 ()
(

2me 4 4

Now, let
Z(q)
Mn(q) = ;
wig) Z(q"N)
Then we find that
q dMn(q) N > q dZ(q)
=Z(q)— NZ(q"), where Z(q) = ————=
Myle) dg WAL =20 g
Letting ¢ = e2™7/ \/5, this implies
q dMn(q)

G(r) — NG(NT) = My(7), where My(7)=

Mn(q) dq
When N = 2, we have

and when N = 3,
G (12) — 3G (13) = M3 (1) .

197

(10.67)

(10.68)

(10.69)

(10.70)

(10.71)

(10.72)

(10.73)

Note how the judicious choices of 71, 79 and 73 allow us to derive these identities

relating G at ;. Using (10.68), (10.69), (10.72) and (10.73), we could eliminate

1

G(—=) and G(72) to obtain two equations relating G(71) and G(73). Using these

71

two equations to eliminate G(71) or G(713), we would arrive at the two complex
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series for 1/m. It remains to compute the right hand side of (10.72) and (10.73)
explicitly, which is achieved in (10.78) and (10.79) below.

10.10.3. Modular equations of degree 2 and 3. A modular equation of
degree N is a relation between x(q) and x(¢'V), where x(q) is given by (10.65). We

will need the following modular equations in signature 4:

Proposition 10.7. Let o = z(q) and v = 2(q*). Then
64y — 80va + 18va? — 81~%a? + 14472 — 6442 — a® = 0. (10.74)
Proposition 10.8. Let a = z(q) and 3 = x(¢®). Then
ot 4+ B+ 141056330 + 192063%a* — 409605 + 3686431 a* (10.75)
—3972(B3a + o3 B) + 36480(a B2 + Ba?) — 73728(B1a® + 153)
+384(aB + Ba) + 7680(a?B + B2a) — 63360(a®B% + B3a?) = 0.
Let F(1) = z(q), with ¢ = e2mi7/V2  We first find F(7;). Since
379 = T3 — \/5,

we find that F(72) and F(73) satisfy (10.75). In a similar way, we conclude that
F(—1/m) and F(r3) satisfies (10.74). Now, using (10.63), we find that

F <—1> — 1 F(r).

71

We also deduce that

Flr)=1-F <—1> —1- F(n), (10.76)

T2
where we have used —% = 71 + V2. We have obtained enough equations to solve

for F'(7;). Solving them, we conclude that

1 32 11
F(r) = - — 2£\/5 - —= /_15.
(M) =5 = {zVo g9V ~10
By taking the conjugate, we find that
1 32 11
Flr) = - — 2% — /=15,
(13) = 5 = [p Vo gV 10

By (10.76), we deduce that

1 32 11
F(ry) = — 4+ 22 ~ /=15,
(o) =5+ 147\/5“L YRR



10.10. COMPLEX SERIES FOR 1/7 199

We next obtain an expression for My defined by (10.70). It is known [36] that for
a positive integer IV,
vdz(d™) _ Z(d")
d(¢") 4
where X is defined by (10.64). This yields

1 dz(q) X(¢V)
MY =N W™ X(g)

(10.77)

But if we are given a modular equation of degree N, then the right hand side of
(10.77) can be expressed in terms of X(q) and X(¢"). We can then derive an
explicit expression of dMy/dX(q) in terms of X(q) and X (¢"V), and this in turn
yields the expression for My defined by (10.71). We carry out these computations
and determine the right hand side of (10.72). Differentiating (10.74) with respect
to «a, we conclude that

dy 80y —36va +1629%a — 1449* + 20
da 64 — 80a + 1802 — 162ya2 + 288ya — 128"

Hence,

YR 64 — 80a + 18a? — 162ya? + 288ya — 128y (1 — )
T2 80y —36ya+ 16272a — 14472 + 20 a(l—a)

Differentiating My with respect to «, and letting o = F(—1/71) and v = F(73), we

conclude that

G <—1> G () = (g ‘f + T - ﬁ) Z(n). (10.78)

In a similar way, we use (10.75) and the relation between Z(71) = Z(—1/72) and

Z(712) to deduce from (10.73) that
4 20 2 30
G(1) — 3G(73) = <49f — VB4 gVl 49> Z(m). (10.79)

Next, using (10.68) and (10.69) in (10.78) and (10.79), we find that

(£+3v1) G+ (5 - V5 - St - 2v=3) 2m) - 20 VI,
Finally, observing that
o (1ly (1y (3
zm) = 3" DD (41— i)
k=0
Gir) = (1 — OF o (3)r(Dr(Dk L(AF(+ (1 - F k
() =(01- (Tl)); E (4F(m)(1 = F(1)))",

we obtain the desired series for 1/7.
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Remark 10.10.1. The degrees of modular equations to be used to prove complex
series for 1/m are not as obvious as in the real series. In the real series for 1/,
if 7= \/T(]/Q where p and ¢ are primes, then it is clear that we need modular
equations of degree p and ¢. In the complex case, we observe that the squares of
the norms of

V2 (=1/m1) V272
are 2 and 3, respectively. These norms determine the degrees of modular equations
we used. The method presented here can also be applied to complex series for 1/m

in other alternative bases. O

Remark 10.10.2. A different approach to derive complex series for 1/7 is based on
transformations of hypergeometric series; the required details of the method can be
found in [75]. For instance, again starting from (10.40), using the transformation
(10.36) and the generating function

1

o0 1 1 1
St = gen (T
k=0 - su 17 1

108u?
(1 —4u)3

of the Domb numbers [75] (which also appear as Wy(2k) in Chapter 3) at u =
(3 — 2i — /5 — 10i) /32, we obtain the following two complez series:

2

i (3)EGe(E)r (3(401 — i — (109 — 69i)v/1 + 2i) + 5830k)

k13
k=0
. ((27(2530 + 14517 — 65(30 — i) /T + 2i) 3321 — 3813 4 81(33 — 17i)V/1 + 2i
495 — 4888i = i :
o) ] ) ok
3—2i—(1—2i)VI+2
D (69 +13i — (23 — i)V +2i + 170k)5k( i~ - z)m>
k=0
66+ 42 + 12(1 — 4i)y/T + 20
- :

Similarly, a complex series may also be obtained for the Apéry numbers, used in
the irrationality proof of ((3) [187]. These arithmetically significant sequences are
the higher order analogs of the Apéry-like sequences used in Chapter 11. Another

complex series can be seen in (12.35). O
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#in [183] | s T 20 00 A B C To N
(In)* 2| 7 | S B 7 | 30 24 Wi | g
(12) A AR L 12 2Y3-3 | 3
(I3) 2| 2= | 8| B | -1 | 30 80 WIS | g
(14) 12| 3% vis e 5 42 16v/3 AERN
(1) 3| 22 | B S| 2 | 1 15v3 PN
(112) 1/3 % 12275\\//55 125 12 91 %\/g iv2 | 2
(L3) /3] 2 | 2 g | 4| 15 13573 B | g
(114) /3| s | B8y a1 | 42 525v/3 Mg
(115) 1/3| 36 9 % 1 18 25+/3 2 | 3
W ys| o | S || o | 26 | uE |
(117) 1/3 | 25 | i | ST | 15724 | 222105 | LMBSYS | WAL g
(I18) 1/3 | puor | 34E2 | BVIS | 3967 | 890 | 56355v3 | V2113
(119) 1/3 | Ghsoly_ | STGIT | 80— | —mis7 | 210 | 114345v3 | 23117
(I110)* /3] i35 20y5 7 45 8(33;5\/5) W31 | 3
(I111)* 1/3 —7212\/5 1—01\}% 102\7/5 D) 9 15;:/\5/5 i\/§+1 9
(IT12)* /3| =2 | =B B g 63 25(?;%\/5) WS | 3
(A1) 13| % Y5 = 5 42 5443 N
(A2) 1/3 417\/5%4 §154 19295\?5 7 66 50?15 i\/1§4 2
(II11) 1/4 % 1211635 2 2 85 33V/33 i3 |3
(I112) a2 | 2 | | 5 | 28 36 | V2B | 3
(1113) /4| 29 | 66 | 145 | 3 40 10v21 K
(IT14) /4| 3 | e 9 | e 1156 i3 |2
(I115)* 14| 5= 1115 | 64v5 13 80 | YR(2/5) | ii5el | g

TABLE 1. Identities (10.3), and the corresponding choice of 79 and

N such that (1 — pg — 20)/2 = t(70) and (1 — po + 20)/2 = t(79/N)

or 1 —t(19/N) (the latter is for entries marked by an asterisk).







CHAPTER 11

Generating Functions of Legendre Polynomials

ABSTRACT. In 1951, F. Brafman derived several “unusual” generating functions
of orthogonal polynomials, in particular, of the Legendre polynomials P,(x).
His result was a consequence of Bailey’s identity for a special case of Appell’s
hypergeometric function. In this chapter, we present a generalisation of Bailey’s
identity and its implication to generating functions of the form »°°7 ; un Pn(x)2",
where u, is an Apéry-like sequence, that is, a sequence satisfying (n + 1)2un+1 =
(an2 + an + b)u, — enun—1 where u_1 = 0, uo = 1. Using our results, we also
give generating functions for rarefied Legendre polynomials and construct a new

family of identities for 1/m.

11.1. Introduction

The Legendre polynomials,
—n,n+1|1—-2x r+1\" -n,—n|zr—1
P, =oF = F
(@) 21( 1 ‘ 2 ) ( 2 >2l< 1 $+1>

S IO

m=0

admit many generating functions. One particular family shown below is due to Fred
Brafman in 1951, which, as shown in our previous work [74] (Chapter 10), finds
some nice applications in number theory, namely, in constructing new Ramanujan-

type formulas for 1/.

Theorem A (Brafman [63]). The following generating function is valid:

o0

$)n(l —s s, 1—=s5|1—p—2 s, 1—=5|1—p+z2
Z 7( )n( 12 )nPn(ac)z” = 2F1< 7p > . 2F1< P >7
= n! 1 2 1 2
(11.2)

where p = (1 — 2zz + 22)Y/2,

203
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Theorem A in the form
()1 =8)p - (X +Y —2XY N
> az I Y — X (¥ = X)
s,1—s
=oF

s,1—s
X>-2F1<
1 1

is derived in [63] as a consequence of Bailey’s identity for a special case of Appell’s

n=0

Y) (11.3)

hypergeometric function of the fourth type [25, Section 9.6],

i (S)erk(l — S)erk (X(l _ Y))m(Y(l . X))k

m!2k!2
m,k=0
s, 1—s
X) . Qpl(
1

s, 1—s
=k
We note that by specialising Y = X, one recovers a particular case of Clausen’s

1
%, s, 1—s 2
3F5 X .

1,1

Remark 11.1.1. The region where (11.3) holds is somewhat subtle for real X and
Y: it is the open region bounded by X +Y =1,Y =X 4+ 1, Y = X — 1, and the
lower branch of the hyperbola X2 — 6XY 4+ Y2 4+2X +2Y +1=0. When X =Y,
the left-hand side of (11.3) is understood as the limit as X — Y. O

Y). (11.4)

formula:

s,1—s
4X(1—X)> :2F1<
1

In 1959 Brafman addressed a different type of generating function; the results

wherein were later generalised by H. M. Srivastava in [182, eqn. (37)].

Theorem B (Brafman [64], Srivastava [182]). For a positive integer N, a (generic)

sequence Ao, A1, ... and a complex number w,
1 Tr—z 2N\ ¥ it
Ly Akka< ) (wN> =S A P() ",
P k=0 P P n=0

where p = (1 — 2zz + 22)Y/? and

Ny,
Ap = An(w) = > <Nk> Aw”.

k=0
Brafman’s original results in [64] concern the cases N = 1, 2 and a sequence A,

given as a quotient of Pochhammer symbols (A, is called a hypergeometric term).
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In this chapter we extend Bailey’s identity (11.4) to more general Apéry-like

sequences ug, U1, U2, ... which satisfy the second order recurrence relation

(n+ 1)2un+1 = (cm2 +an + b)u, — en®up,_1 forn=0,1,2,..., u_1=0, up=1,
(11.5)

for given a, b and c.
Our first result concerns the generating function of w,. It is the main theorem
of this chapter, and captures a wide range of series for 1/m; an attempt to illustrate

its relationships with other theorems is found in Figure 1.

Theorem 11.1. For the solution u,, of the recurrence equation (11.5), define

X(1—aY +cY?)

IXY) === xv)y

(11.6)

Then in a neighbourhood of X =Y =0,

{iunw} {Z U"Yn} 1— iXY Z Un i (Z)QQ(X, Y)™mg(Y, X))V

m=0
(11.7)

We remark that the generating function F(X) = > > ju, X" for a sequence
satisfying (11.5) is a unique, analytic-at-the-origin solution of the differential equa-

tion

(0 — X(ab® + af + b) + cX?*(0 + 1)) F(X) =0, where § = fx := XaiX. (11.8)
The hypergeometric term u,, = (s),(1—s),/n!? corresponds to a special degenerate
case ¢c = 0 and a = 1, b = s(1 — s) in (11.5). Therefore, Bailey’s identity (11.4)
corresponds to the particular choice ¢ = 0 in Theorem 11.1.

Theorem 11.1 also generalises Clausen-type formulas given in [72] which arise
as specialisation Y = X; see Section 11.2 for details.
Following Brafman’s derivation of Theorem A in [63] we deduce the following

generalised generating function of Legendre polynomials.
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Theorem 11.2. For the solution u, of the recurrence equation (11.5), the following

identity is valid in a neighbourhood of X =Y = 0:

S () (Toay)

n=0
[e.e] o0
=(1- cXY){ZunX"}{ZunY”}. (11.9)
n=0 n=0
Finally, combining the results of Theorem B and Theorem 11.2 we construct

two new generating functions of rarefied Legendre polynomials.

Theorem 11.3. The following identities are valid in a neighbourhood of X =Y =
1:

= () (X+V)1-XY)\ [/ X -V \*
,;) P PQn((X—Y)(1+XY))<1 XY)

11
1—X2> 2F1< T2
1
and

o (3)n(3)n X +Y —2X?%? X-Y in
Dt P3n<(X—Y)\/1+4XY(X+Y)><\/1+4XY(X+Y))

n=0
1 2
1_X3> 2F1<3’ 3
1

14+ XY i3
— 2F1<2 2
2 1

1 —Y2>, (11.10)

VIFAXY(X +Y) 33
= 3 2 F .

1- Y3>. (11.11)

As an application of Theorems 11.2 and 11.3, we outline proofs of Ramanujan
type series for 1/m experimentally observed by Z.-W. Sun in [183], as well as of
several new ones; this is addressed in Section 11.5. In Section 11.2 we discuss
arithmetic sequences that solve the recursion (11.5). Our proofs of Theorems 11.1-

11.3 are given in Sections 11.3 and 11.4.

11.2. Apéry-like sequences

Although our Theorems 11.1 and 11.2 are true for generic (a, b, ¢) in (11.5), there
are fourteen (up to normalisation) non-degenerate examples when the sequence u,
satisfies (11.5) and takes integral values. These were first listed by D. Zagier in [200]
(see also [8]), and the generating functions of all these sequences are known to have
a modular parametrisation. Table 1 indicates the related data for the sequences;

the first four examples are hypergeometric (¢ = 0), the next four are known as
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# in [8] | # in [200] (a,b,c)
(A) #11 (16,4,0)
(B) #14 (27,6,0)
(C) #20 (64,12,0)
(D) (432,60, 0)
(e) #19 (32,12,16%) | 16" i(—nk
k=0
(h) #25 (54,21,27%) | 27 ) (-1)*
k=0
(i) #26 (128,52,64%) | 64™> (—1)
k=0
(i) (864,372,432%) | 432" ) "(—1)
k=0
(a) #57 A (77 27 _8)
(b) #9, D (11,3, 1) .
=
() #8, C (10,3,9) >
k=0
(d) #10, E (12,4, 32) 3 (Z
k=0
[n/3]
H | #7.B | (9,327 (1t
k=0 ,
@ | #13.F | (n672) | X (oY
k=0 j
TABLE 1. Arithmetic solutions of (11.5).

207

Legendrian examples (a? — 4c = 0), while the remaining six cases are so-called

‘sporadic’ examples in the terminology of [200]. Note that for the hypergeometric

examples, Theorem 11.2 reduces precisely to special cases of Theorem A investigated

in Chapter 10.

We remark that our Theorem 11.2 for the Legendrian cases (entries (e), (h), (i),

and (j) in Table 1) follows from Theorem A applied to hypergeometric instances

(A)-(D) and Theorem B with choice N = 1; this is because the Legendrian and
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hypergeometric cases are related by a binomial transform. Moreover, entries (a)
and (c) as well as (a) and (g) are also related by similar transforms and so are

connected by Theorem B; for example, the first pair is related by the identity

220 -2 0 ()

Note however that Theorem 11.2 is stronger, since it works for any sequence satis-
fying the recursion (11.5).
We also recall that if f(z), g(x) are the generating functions of two sequences

related by a binomial transform, then

g(x) = f( . ) (11.12)

which we implicitly use in Section 11.5.

Remark 11.2.1. The sequence (e) is very interesting as it has many equivalent

expression as 3Fb5’s, such as

11,
uge):16"3F2<2’12’1 1>.

Perhaps because of this, Brafman was able to anticipate our Theorem 11.2 for (e).
In [64], he gave
p—1—=z2
2p ’

o 01 11
E P, (e)(i) — . F 22
P (@) 16 2l

11
ﬂ—1+2> JF <2,12

The following general Clausen-type formula was shown in [72].

Proposition 11.1. For the solution u, of the recurrence equation (11.5),
) 2 oo 2 n
1 2n\ [ X(1 —aX +cX?)
{ZunX"} _1—(;)(22“"<n>< o ) . (11.13)
n=0 n=0
Because g(X, X) = X(1—aX +¢cX?)/(1—cX?)? for the function g(X,Y") defined

in (11.6) and
“n\? n
() - (%)

identity (11.13) follows from taking Y = X in Theorem 11.1. However, Proposi-

tion 11.1 is the result which suggested to us the form of Theorem 11.1.
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Discussions of why the six sporadic examples are arithmetically important, as
well as details of modular parametrisations of the corresponding generating func-
tions Y ° , u, X" can be found in [8], [71], [72], and [200]. Our new series for 1/7

in Section 11.5 are consequences of the above knowledge and our Theorem 11.2.
11.3. Generalised Bailey’s identity

We begin by proving our main theorem, which generalises Bailey’s identity.

PROOF OF THEOREM 11.1. First, define the two-variable generating function

H(z,y) := gun En: (;>2xmyn‘m (11.14)

m=0
and the linear differential operator
9 5 82 82
Bayi= (el + 62y-417) —alo+ )+ 1) (o 503 +u )
2

Ox Jy

0
+ (c(5z® + lday 4+ 3°) — a3z +y) + 1) —

+ 4y (2c(z +y) - a) o

+ (c(2® + ldzy + 5y°) — a(z + 3y) + 1)§y +2(c(zr+y) —b). (11.15)

Applying the operator (11.15) to (11.14) and rearranging the summation over mono-

mials, we find that (after a lot of elementary algebra)

2
n m, n—m
Ay yH =2 Z((n + 1)2un+1 — (cm2 +an + b)u, + cn2un,1) Z (m> ™y =0
(11.16)
because of the recurrence equation (11.5).
Secondly, the one-variable differential operator
Dy :=X(1 —aX +cX?) 0 + (1 —2aX + 3cX2)i + (cX —b)
T e 0X
= X1 (0% — X (ab% + abx +b) + cX*(0x +1)?)

annihilates the series F(X) :=>">° ju, X™ by (11.8), therefore

(Dx + Dy)(F(X)F(Y)) = 0. (11.17)

On the other hand, we find after some work that

1

(1 - ¢XY)(Dx + Dy) <1_CXY

H(g(x, Y>,g<Y,X>>)

= (ALyH(CL‘a y)) ‘;p:g(X,Y), y=g(YvX)’
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and the latter vanishes by (11.16). Comparing this result with (11.17) we conclude
that both F(X)F(Y) and H(g9(X,Y),g(Y,X))/(1 —cXY) satisfy the same second
order linear partial differential equation (Dx+Dy )G(X,Y) = 0. By straightforward
verification, these two (analytic at the origin) solutions agree as functions of X when
Y = 0; we claim that they in fact coincide, and Theorem 11.1 follows.

To verify the claim, consider the function

H(g(X,Y),9(Y, X))

G(X,Y):= F(X)F(Y) — oy ,

which is analytic at the origin, is annihilated by Dx + Dy, and satisfies G(X,0) = 0.

The latter condition implies that in the power series

o0
GXY) = vmpX"VF = Y v, XmYF
m,k m,k=0

we have vy, 0 = 0 for all m. Applying Dx + Dy to the series, we obtain

Z((m + 1)2vm+1’k - (am2 +am + b)vy, k + cm2vm_17k

m,k

+ (k+ 1)va,k+1 — (ak?® + ak + b)vm i + ck2vm7k_1)XmYk =0. (11.18)

Now, assuming that vy, = 0 for all m and all £ < k' and substituting k = &’
into (11.18), we readily see that vy, 141 = 0 for all m. It thus follows by induction

on k that v, = 0 for all m and k, that is, G is identically zero. U

Remark 11.3.1. We did not find the operator A, , in (11.15) from Dx or Dy
using a change of variables, since for generic a and ¢, X and Y are very complicated
functions of x and y. Instead, we used repeated experiments on particular values
of a and ¢, and managed to guess the coefficients in A, , one at a time.

We are glad to learn that the proof of Theorem 11.1 has been subsequently

fully computerised (A. Bostan, P. Lairez and B. Salvy, private communication via

W. Zudilin, June 2012). O

11.4. Generating functions of Legendre polynomials

Theorem 11.1 paves way for an easy proof of our next result.
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PrROOF OF THEOREM 11.2. The application of (11.7) follows the lines of de-
ducing Brafman’s formula (11.2) from Bailey’s reduction formula (11.4): using rep-

resentation (11.1) for Legendre polynomials, write

iun&(w)z" — iun Z (:j <z<x2— 1))’“ (z(az; 1)>nm

m=0

and choose X and Y in (11.7) to satisfy

z(x —1) X(1—aY +cY?)
— =g(X,Y) =
. V(L aX 4 eX?) (11.19)
z(x + —aX +c
— =g, X) =
2 9(¥; X) (1—cXY)?
One easily solves (11.19) with respect to x and z:
(X +Y)A+4eXY)-20XY Y -X
¥ - X)1-cXY) =~ 1-cXy’
and identity (11.9) follows. O

By taking N =2, Ay = (3)3/k!?, and w = 1 in Theorem B, we obtain
Proposition 11.2.

Y
2

N[ =
S~—

!2iP2k<x ; z) (;)2’“ _ gvnpn(x) (Z)n, (11.20)

wer S G R-E )

A different choice of N = 3, A, = (3)x(3)x/k!?, and w = —1 in Theorem B

™

where

results in

Proposition 11.3.

; g} (é);l(;)kpgk <“’ ; z) (—/Z))% - ni;ownpn(x) <§>n (11.21)

where

C () (3!
wn =) (-1)'3 3k<3k> Ek:!))?"

k=0

We are now in a position to prove Theorem 11.3.
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PROOF OF THEOREM 11.3. Write identity (11.20) in the form

= 1 < ()7 z—4z\ (42
ZvnPn(x)z" = — Z (13')2’@13%( > <> , (11.22)
n=0 P2 k=0

P2 P2

where py = pa(z, 2) := (1 —8zxz+1622)'/2, and apply Theorem 11.2 to the left-hand

side of (11.22) and the sequence v, = ud (entry (d) in Table 1) to get

(o HZwr} =2 () (=R amen)

n=0 n=0 k=0

y (X —Y)*
(1 —4X —4Y 4 32XY)2k+1°

(11.23)

To each of the factors on the left-hand side we can further apply

1 1

oo = =
ZUan = 2F1<2’ 2
n=0

1

16X (1 — 4X)>

to reduce (11.23) to a hypergeometric form. Finally, making the change of variables
X—(1-X)/8 Y~ (1-Y)/8 we arrive at (11.10).
For the second identity in Theorem 11.3, write (11.21) as

> (32 r— 3z 2\ %k

P3 P3

where p3 = p3(z,2) := (1—622+92%)'/2. Then apply Theorem 11.2 to the left-hand
(f)

side of (11.24) and the sequence w,, = uy,’, use

XTL: F 3’ 3
an 1_9x 2 1( 1
n=0

and make the change of variables X — (X —1)/(9X), Y — (Y —1)/(9Y) in the

L 27X(1-9X +27X?)
(1-9X)3 ’

resulting identity. (The generating function above is easily checkable using the

differential equation (11.8).) This gives us (11.11). O

11.5. Formulas for 1/x

We briefly recall our general strategy in Chapter 10 for proving identities for

1/7. Suppose that we have a functional identity of the form

Zunpfn(m)zn = PYF(C“)F(B)u (11.25)
n=0
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where ¢ € {1,2,3}, and «a, 8 and ~y are algebraic functions of x and z (Theorems A,
11.2 and 11.3 are sources of such identities). Computing the z-derivative of both

sides of (11.25) results in
S P ()2 = 0 F(@)F(8) + nF(@)G(8) + 1G(@)F(8),  (11.26)
n=0

where v, 71 and 79 are algebraic functions of x and z. We take algebraic z = xg and
z = zp in (11.25) and (11.26) such that the corresponding quantities o« = (o, 20)
and 8 = f(xg, z0) are values of a modular function ¢(7) at quadratic irrationalities:
a = t(1y), and B = t(r9/N) or 1 — t(m9/N) for an integer N. Using the modular
equation of degree N, we can always express F'(8) and G(f) by means of F(«) and
G(«) only:

where g, Ao, A\1, and A9 are algebraic (A = 0 when 8 = t(79/N)). Substitut-
ing relations (11.27) into (11.25) and (11.26), and choosing the algebraic numbers
A and B appropriately, we find that > > un(A 4+ Bn)Pp,(x0)zy is an algebraic

multiple of a Ramanujan-type series for 1/7; in other words,

s C
> " un(A + Bn)Pu(w0)2f = — (11.28)
n=0 4

where A, B and C are algebraic numbers.

In practice, all the algebraic numbers involved are very cumbersome, so the com-
putations are quite involved. Because any identity of the form (11.28) is uniquely
determined by the choice of 79 and NN, these two quantities serve as natural data
for the identity. Below we provide brief computational details for some examples

only; however we have done all the required computations for each of our illustrative

identities.

11.5.1. Sun’s identities. Here we show that all identities from groups IV and
V in [183] can be routinely proven by the techniques we have developed.

We begin by differentiating the identities in Theorem 11.3. In each of (11.10)
and (11.11), let F'(t) denote the respective 9 F hypergeometric function and G(t) :=
tdF/dt. Furthermore, let F(t) = F(1—t2) in (11.10) and F(t) = F(1—t3) in (11.11),
as well as G(t) = G(1 — t2) and G(t) = G(1 — t3), respectively. Then, standard
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partial differentiation techniques yield the derivatives

i (5)%np2n((X+Y)(1—Xy)> < Y_v >2n

2 e P\ ey )\ e ey
1+ XY L
ST XY XX v xy) Y XNFXOEY)
— Y214 X)F(X)G(Y) - X2 (1+ YA F(Y)G(X)) (11.29)

and

= (3)n(3)n X +Y - 2X2y? X_Yv 3n
gmnP%((X —Y)\/1+4XY(X+Y)> <\/1+4XY(X+Y))
V1+4XY(X +Y)
(1-X -V -2XY)(1+2XY)2+ (1 + X +V)(X +Y — 2XY))
x 2XY(X +Y - XY(X2 + Y2)F(X)F(Y)

— Y31+ 2X2(3Y + X))F(X)G(Y) — X3(1 +2Y2(3X + Y))F(Y)G(X)).
(11.30)

(These can also be found without partial differentiation, since we can differen-
tiate with respect to z and to z, then eliminate the Pj, or Pj, term.)

All group 1V identities in [183] correspond to the form (11.10). The arguments
of the hypergeometric functions on the right-hand side of (11.10) take the form #()
and t(79/N) (or 1 — t(79/N) in case (IV1)), where

iv/0/3+ 1 ]
(IV1) 1o = Z/4+, N=2; (IV2)71y= ?ﬂ\/i—’_g), N =5; and
(IV3) 10 = “/éi%, N =5.

It is further hypothesized in [183] that group IV contains all such series with
rational parameters. Our analysis shows that the identities (IV5)—-(IV18) all have 1
of the form \/Tq/'é% and N = p, where p and ¢ are odd primes and the class number
of the quadratic field Q(7p) is 4. For the class number condition to be satisfied, p, g
can only be taken from the seemingly exhaustive list {3,5,7,13,17,19}. Thus our
analysis lends weight to Sun’s hypothesis.

Identity (V1) in [183] is of the form (11.11) and may be similarly analysed and
proven. In this case we in fact have ¢(379) = ¢(1571), where t(19) = «, t(11) =

and 79 = (iv/91 + 3) /6.
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The only remaining case, identity (IV4), is particularly pretty and lends itself
as an example for our analysis. It states

[e.9]

8n+1 5 10v/2
Z n'2 o (2[) 2y (11.31)

The left-hand side corresponds to the choice X = (4v/3+7)(5v/2—-7),Y = V2 -1,
70 = 3i/(2v2), and N = 3. Soa =1— X2 and 8 = 1 — Y? in the notation of
(11.25). Using the degree 3 modular equation and multiplier for s = 1/2, we deduce
that

Py = L2V,

172v/6 + 243/3 — 298/2 — 421

Gla) = 3

F(B) + (235v6 + 332V/3 — 407v2 — 575) G(B).

With the help of (11.29) and the above relations, identity (IV4) is reduced to

(5 -5v2) e+ (20— 52 ) racs = 192

3T

Another computation relates F'(8) and G() to F'(1—3) and G(1—73) (the details
can be found in Chapter 10), which enables us to apply Clausen’s formula; (IV4)
thus holds because Clausen’s formula produces a form equivalent to the Ramanujan-

type series [30, eqn. (4.1)]

i%')g (3-2v2+ (8- 5V2)n) (2v2-2)™" =

n=0
The other cases can be done similarly but the algebra is formidable. For in-

stance, in (IVT7), using the notation of (11.10), we have
X
{ v } = —171 F 120v/2 £ 98V/3 £ 76v/5 + 70V/6 + 54v/10 — 44V/15 F 31V/30.

Remark 11.5.1. In Chapter 10 we produced “companion series” which involve
derivatives of P,(x) in the summand. The series considered here also admit com-
panion series; as an example, a companion to (IV4) is

2 o) (7)) - 5

n=0
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11.5.2. New series for 1/m. Using (11.10) and the theory developed in Chap-
ter 10 and outlined in the beginning of this section, we can produce series for 1/7

at will. The following two are among the neatest:

i G 5 4 15m) P2n<3f> <2\/§>2n _ 5 (11.32)
n=0

nl2 5 5 T

S () o

For the first formula, 79 = i1/3/2 and N = 3, while for the second, 79 = iv/7/2

and N = 7. Note that as these are precisely the 3rd and 7th singular values of the
complete elliptic integral K, we may prove each series directly without resorting
to a Ramanujan-type series (which are, of course, closely tied with the theory of
singular values, see Chapter 12). The second formula comes from the Ramanujan

series

00 1
1¥5+42n 16
2
= —. 11.34
Z_: 64" ™ ( )

To demonstrate that the choice of 7y is not confined to the singular values, here is

another example corresponding to 79 = iv/3 /2 and N = 2:

= (3)2 17\ /217 — 88v6\" 3(4+ 6
T;le (5_‘[+20")P2"(15>< 25 > - (277 !

Similarly, in (11.11), we can take 79 = 2i/3 and N = 2, therefore

3(465 + 413v/3 — 31/30254+/3 — 13176) 3(3—V3)
o= and f="" "

5324 1

The algebraic numbers involved in (11.11) simplify remarkably, and aided by (11.30),

we produce the new series

i (G n'2 1+ 9n)P3n<\;‘TO> <\/1170>3n = 15:\/%0\/5, (11.35)

whose truth is equivalent to the following series for 1/,

iw(lﬂwrﬁ)n) <3(7\/§_ 12)>n _24V3

. nl3 2 T
n=

Note that each term in the sums of (11.32), (11.33) and (11.35) is rational.

More of Sun’s conjectures are proven in Chapter 12.
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11.5.3. New series for 1/7 with Apéry-like sequences. As one of the

consequences of Theorem 11.2, we exhibit here some new series of the form

Z un (A + Bn)P,(z0)zy = %, (11.36)

n=0
where u, satisfies (11.5). As such series are not the main goal of this chapter but
rather curiosities, we will only list the relevant 79, NV and the final result.
We start with entry (a) of Table 1. Denoting the sequence by u® (and other

entries in the table are denoted similarly), we have the generating function

2722
(1—-2z)3 )"
Therefore, combined with Theorem 11.2, we can analyse (11.36) for u%a) as we did

in Chapter 10. Indeed, taking 79 = 2i4/2/3 and N = 2, we have

?:()ugg) (7T—2V3+ 18n)Pn<1 J\;{f) (22_\/\6/3>n = 27::\1/15‘6

(a),.n _ 33
Zu”$ _1_2332F1( 1
n=0

This is in fact equivalent to the classical series

n!3 on T

3 Da@nBal+6n  3V3
n=0
Next, for entry (b), there is no simple hypergeometric generating function (the

sequence was used by Apéry to prove the irrationality of ((2)). Nevertheless, using

results from [71], we pick 79 = 2i4/2/5, N = 2, and obtain

;uw (16 — 5V10 + 60n) P, <5\/5 1517\/5> <5fg 3‘/5> = 135@;;1‘/5.

(c)

The generating function of u,,” is

e 1 12
2 (c).n _ F 373

tn 1—}-3332 1( 1
n=0

27x(1 — )?
(1+3x)3 )

The sequence gives W3(2n) in Chapter 1. Again, Theorem 11.2 applies; as an

example, for 79 =i, N = 3, and using the same 1/7 series as for (11.35), we have

iug)(7—3\/§+22n)1)ﬂ< 14v/3 - 15)( 2\/3—3>" _909+4v3)

3 9 2T
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For entry (d), we can take 7o = iv/3/2, N = 3, and produce the new series

O"u(d) B . 24— 6\ (4—V6\" _ 6(7+3V6)
;n(4 2\/6+15)Pn( 15\&)(10\@)_ —.

For entry (f), we found after some searching that by using 79 = 1 + i1/7/3 and
N=2

Zu V21 + 14n) P, <\/5271> (7\/20_ 27>n _ VT 41\/\/2;+27'

As for the last sporadic example (g), we take 7o = 2i/v/3 and N = 2 (i.e. the

same data as (II1) in Chapter 10) to generate the compact-looking series

Zu <3f> (6\1/§>n_92{r§

As stated earlier, the Legendrian entries are binomial transforms of the hyper-
geometric entries in Table 1, therefore the 1/m series for them are comparatively

easy to find; we list one example for each entry below:

2o (57 () 3o

Zu;h>(125n+42)13n< 463 ><— V3 ) = 546‘/§,
n=0

18216 90+v/2 257
G 746 17 \"  7600v/2
3wl (3630 + 109) P, <> <_ > _ 7600v2
= 425/3 2048v/3 33111

and

G20+l 139 ), (2456 4081 — 57V173\"
2457 4875173 2457 359424

 VTV/4081V/17 + 16473
a 173.250mv2

The corresponding data for the identities are as follows: 79 = iv/3, N = 3; 70 = iV/2,
N =2;19=1iV/3, N=2; and 7o = 1 +i\/7, N = 2, respectively.

11.6. Concluding remarks

We briefly outline the genesis of Theorems 11.1-11.3. While working on the
project [74] (Chapter 10), it became clear that generating functions of type (11.10)
and (11.11) should exist. Our confidence was boosted by examples like (11.31)

n [183]. We learned, after coming across Theorem B, that generating functions
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of Pyp,(z) could be obtained by generating functions of P,(z) multiplied by an
arithmetic sequence. We then studied Brafman’s proof of Theorem A using Bai-
ley’s identity (11.4), at which point it dawned on us that a more general form of
the identity was needed to encompass not just hypergeometric, but arithmetic se-
quences. Inspired by the form of (11.13), we empirically discovered Theorem 11.1
which meets this goal and also contains (11.13) as a special case. Therefore, the
significance of ‘arithmeticity’ has been a major driving force towards Theorem 11.3.

We expect that our Theorem 11.1 can be generalised even further to include
the general form of Bailey’s transform [25, §9.6] and Clausen’s formula, both of
which depend on more than one parameter. This could possibly imply new gener-
ating functions of Jacobi and other orthogonal polynomials. (Some experimental
observations about orthogonal polynomials can also be found in Chapter 14.)

Our motivation for this chapter came from the remarkable work of Fred Brafman
on generating functions of orthogonal polynomials. Before his untimely death at age
35, he solely authored ten mathematical papers, all about orthogonal polynomials;

the works [63] and [64] are his first and last publications, respectively.

WZ,
(Bailey)
/\ /Gen. Clausen
U.P Brafman Clausen
(Srivastava) | ‘
E. b, H,F, H, U.H,

FIGURE 1. The relationships between various theorems used in producing
series for 1/m. Bold font indicates theorems (WZ stands for our main
theorem 11.1); italic font indicates the types of coeflicients in the series
(Un: Apéry-like sequence, P,: Legendre polynomial, H,: hypergeometric
term); bracketed terms indicate theorems used but not directly involved
in producing the series; downward lines indicate causal relationship, where

the lower theorem can be derived from the higher one.






CHAPTER 12

New Series for 1/7

ABSTRACT. In this chapter, we outline a number of results relating to 1/7 and
other constants which do not fit the forms delineated in Chapters 10 and 11.
We pay special attention to applications of Brafman’s formula, and mention 1/
series which are contiguous to the classical ones. We then resolve some other
conjectures of Sun. Finally, we describe a new method to generate 1/7 series

using Legendre’s relation.

12.1. Orthogonal polynomials

12.1.1. Consequences of Brafman’s and Srivastava’s theorems. We re-

call Brafman’s formula (10.4)

o0

nzzo WPn(x)z” =oF <3’ 11_ i a) 2 Fy <S’ 11_ § ﬁ), (12.1)

where a = (1—p—2)/2, 8= (1—p+2)/2, and p = (1 — 2zz + 2%)1/2,
By putting £ = 0 in Brafman’s formula, we get the identity

_22> :F<1—\/1;L722—2)F<1—\/1;—722+z>7

where F' stands for the 2F7. On the other hand, letting s be an integer in (12.1),

we deduce the following non-obvious result:

k

> Rl e Dup (1= (220Y'_ pny

12 _
= n! T—y

Note that P_y/5(1 —22%) = 2/7 K ().
Since Brafman’s formula is more general than the form (12.1) stated here — it in
fact works for all Jacobi polynomials [63], we can apply it to other specialisations

of Jacobi polynomials, e.g. the Chebyshev polynomials (encountered in Chapters

221
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6 and 7). We can use it to deduce
= 2n> T—zz+p
> Tn(2)(2/4)" = ——F7——,
n=0 <n ﬂp
> 2n> 1+p
> Un(z)(z/4)" = : (12.2)
n:0<n \/val—acz—i—p

Srivastava’s theorem (Theorem B, Chapter 11) is also very versatile for produc-

ing identities. Taking N = 1 in Srivastava’s theorem and the exponential generating

function -
n
> Pal@) = = (21— 22),
n!
n=0

we deduce

(12.3)

iﬂnﬂ)m(w)zn - ;eXp<Z<zp; w>>JO<_zm>’

where L, denotes the Laguerre polynomial.
Taking N = 2 and the sequence (1 — 1/y%) in Srivastava’s theorem, we obtain

a connection with Chebyshev polynomials of the first kind (here ¢ = /1 — y?),

23 Po(a)Th(y)2" (12.4)
n=0

N|=

=[1-2(2(iy —y)(yz —z) + z)]fé + [1+ 2201y + y)(yz —z) — 2)] 2.

Results like (12.2), (12.3), (12.4) and (12.7) may well find applications in harmonic

analysis, though this has not been carefully investigated yet.

Remark 12.1.1. The ordinary generating function for P2 is also a o[,
00 11 2
1 5,5 |4z(z® — 1)
E P ()" = P22 ==~ .
n=0 77‘(1.) : 1_22 1< 1 (1_2)2 )

We may square both sides of the above formula in order to produce series for 1/,

as outlined in Section 12.2. One example is

33 maret (72 (TN iy T

= n—k 16 2m

Another generating function, also given by Brafman, can in fact be easily verified

using Srivastava’s theorem:

Z (zznPn(x)z” = 1_ — 2F1<4

n=0

ZQ(JUQ_”) (12.5)
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12.1.2. Product of two Legendre polynomials. Our aim is to derive a

generating function for the product of two different Legendre polynomials. We

1
2 1—1‘2).

Substituting this into the sum below and interchanging the order of summation, we

start with the representation

—n,n +

Py, (z) = 2F1< 1

have

> (1), 1 13
I e

1—2z

dz(z? -1
D) g

compare with (12.5).

As pointed out by W. Zudilin, we can take N = 2 and A\; = (1/2);/k! in
Srivastava’s theorem; the resulting sequence A,, essentially becomes the Legendre
polynomials, so we have

72 s = 32 0 G (272 (V1)

o P P

where p = /1 — 2zyz + y222. Simplifying the right hand side using (12.6), we

obtain the desired generating function,

Z Po(2)Py(y)2" = (1 — 2zyz + 2°) 2 2F1<4’1

4(1 — 2 1— 2\ ,2

(-0 =32 o
(1 —2zyz + 22)2

Even though such a generating function was previously known (e.g. [146]), the

above representation seems to be the most succinct one.

12.1.3. Series for another constant. Here we demonstrate a series for a
related constant using Brafman’s formula. We start with the transformation for the
Jacobi polynomials [2, Chapter 22]:

]._‘(2Tl +a+ 1)n' P(a’71/2)
F'n+a+1)2n)! "

Pz(z@) (z) = (22% —1).

Take a = 0 above, we get Po,(z) = PT(LO’_l/Z)(Qa:2 — 1). Now apply the general
version of Brafman’s formula with s = 1/4 [63] to the right hand side. We obtain

0 (142 11 11

1 z+1 i g | 1—2z— 1 1

E i)n Pop P A R [ty Y o} Yt
2 1 2 L

— (%)nn'

1+2z—-p
— )
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The hypergeometric side simplifies in terms of F' := gFl(%, %; 1;x), and we produce
the formula
2T e ()2 1 1-4/( 2
v s~ G PM( T+ >ZHZF< (L+2+p)/ >
rER 2 1), 2 2

X {F(l_m>+F<l+\/(lJ;z—_p>/2>} (12.8)

2
If we denote the argument of the first F' by « and that of the second F by [, and
choose them such that o = ¢(7), f = t(7/N), then the right hand side of (12.8)
equals

F(a)(F(B) + F(1 - 8)),
which, by the theory in Chapter 10, can be expressed in terms of F(a)? alone; more-
over, its z-derivative can be expressed in terms of F(a)?, F(a)G(«), and 1/7 alone.
Hence, by taking a suitable linear combination, we get a series for 2I'?(3/4) 73/ =
1/K(1/V/2).

The calculations involved are formidable, so we only give one example: take

T=+/-3, N =3, then

0428793 — 2027520\/6)

(52
931 — 2656 -+ 6960n) Py, [ 3
I ( V6 + 6960n) Pan 4113409

o 11128 +4583v6 T(3)?
x (22154753 — 9044640V/6)" = +16 v, (34/)2'
™

12.2. Orr-type theorems and contiguous relations

In this section, we first supply some details on how to prove Ramanujan-type
series [164], the existence and form of which are given in Proposition 10.5. The
details, glossed over in previous chapters (except in Section 10.10, where a modular
approach is presented), are based on the theory of singular values outlined in [46,
Ch. 5]; this approach relies more on hypergeometric function theory and is more
accessible than Section 10.10. Using the same theory, we also present some 1/7
series that are contiguous to the ones studied by Ramanujan.

It is known that the singular values k., i. e. values such that K'(k,)/ K (k,) = /T,
are effectively computable algebraic numbers. It turns out that E(k,) is related to
K (k,) via the equation [46, Ch. 5]

Ay

E(k,) = (1 - (12.9)
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where «;, denotes singular values of the second kind, which are again computable
and algebraic. (In fact, for large r, o, approaches 1/m, and this serves as the basis
for some fast iterations to compute 7.)

The first step is to represent K? as a 3F» by Clausen’s formula, see (10.19) with
s = 1/2. Next, we write out the 3F, as a sum and construct a linear combination
of the sum with its t-derivative. We substitute ¢t = k, and eliminate the E(k,) term
with (12.9). Finally, we choose the coefficients in the linear combination so that all
the K (k,) terms are also eliminated. Simple linear algebra shows that this can be

done, and the result is the 1/7 series

i % (4k2(1 = k2))" (Vr(L = 2k) n + a, — V7K. (12.10)

Since it is readily verified by Euler’s transform (6.32) and the quadratic transform

(6.4) that

111
3F2(222

_4:”2> (12.11)

1 111 g4
vt e P
Vi-a2 1,1 |4(1—22)

applying the above procedure to the two hypergeometric functions on the right, we

obtain two more series:

1 =33 —4k2 \" ) o 14 k2
T Z a3 \ (1= k2)2 (1 “RTIoR ”) (12.12)
LB \4(1 - k2) J1—k2 ' '

These three series, using r € {1,2,3,4,7}, give all four rational series for 1/7 with
s = 1/2: (12.19), (12.53), (12.67), and (11.34). By appropriate transformations
such as (10.36) and (7.29), they also give 1/ series for other s. The transforms in
(12.11) are not exhaustive, for instance, from

2.3.3[16z(1 —2)?\  4(1+z)?
3F2< 1 (1+a) )‘

K(x)?,

s

we can produce another series with argument 2(1 —z)2/(4(1 +2z)%). We also repeat
the remark from [46] that these 3F3’s may be used to produce series for K (k,), by

eliminating the 1/7 term in the linear combination.
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It is easy to see that, working along the same lines, one can deduce more formulas
for 1/7 as a linear combination of F(2g), F'(2¢) and F"(zy) for some appropriate 2o,
as long as F'(z) is quadratic in K and E. (More generally, as long as F'(z) admits a
modular parametrisation, bypassing the need to be hypergeometric, as seen for the

Apéry-like sequence (b) in Chapter 11).

Example 12.2.1. As our first example, let F(z) = K(z)? (this is different from
(12.10), where we used F(42%(1 — 22)) = K(z)?). Taking a linear combination of
the derivatives, applying (12.9), and choosing the coefficients to eliminate terms

involving K, we obtain
- AN 5 5 1
S hm) () (1= B+ alr) — kVF) = —, (12.14)
n=0

where h(n) is defined in (6.26), and is a higher order Apéry-like analog to the
sequence (27?)2. When r =1, we get
o0

nhin) 2
2 320

n=0

The paper [6] also investigates these series involving h(n), and re-expresses every-
thing in terms of k... More general constructions involving higher order Apéry-like

sequences are investigated in [71]. O

More examples can come from two sources. Firstly, there are Orr-type theo-
rems which allow us to write the product of two 9 F}’s as another hypergeometric
function. Secondly, we can use contiguous relations: one hypergeometric function
is contiguous to another if they have the same argument but their parameters differ
by some integers (this is more closely looked at in Chapter 14). Both sources lead
to the same type of 1/m series, with some extra rational function in the summand.
Since the first approach uses published formulas, it is easier and we deal with it
first.

Many Orr-type theorems are found in [26] and [179, §2.5]. For instance, a
specialisation of [26, eqn. (7.4)] gives

(1-2) 2F1<

(1_4:”:)2) (12.15)
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The left hand side of (12.15) can be easily written in terms of K and E:

13 11
71-2F1<272 xz) = E) 7r2F1<2722

12

$2> _ 2(B(z) - (1 - 2?)K(x))
2 1 1—a? 2 '

Applying the procedure described above (i.e. taking a linear combination of the
function and its derivative at singular values) allows us to produce series for 1/7.
At the 2nd singular value, we have

() G =

n=0

which is a contiguous version of (12.19), in the sense that their underlying 3F,
parameters differ by some integers.

A different specialisation of [26, eqn. (7.4)] (with o = 8 = 3/4, v = 2) gives
series with signature 4. The following fast converging rational series can be found
by using the 37th singular value — it adds about 6 digits per term:

> (o) () ™ (i)

n=0

35283
x (13977729825 + 27955478864n + 13977756400n%) = ——. (12.16)
v

Many more series can be produced from results in [179]. Note however that

[179, eqn. (2.5.27)] contains a misprint: 3¢+ $b— % should read 1c+ 3d — 1.

In the absence of Orr-type theorems, we can still express any function contiguous
to f(z) = 3F2(3,5,3;1,1;2) in terms of K and E. This is because of Theorem 14.1,
which states any such function is a linear combination of the derivatives of f, which
are expressible with K and F (and the coefficients are functions of x). Therefore,
we may find the left hand side of say (12.15) by applying the procedure in Chapter
14. Special cases of many Orr-type theorems boil down to contiguous relations, and

therefore these special cases can be routinely proven. It also follows that any series

contiguous to a rational series with rational argument are also rational.

Example 12.2.2. Here are a few of rational series found via the contiguous ap-

proach. Unlike the Ramanujan-type series which they originate from, typically n?
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terms (from the second derivative) are involved:

i on\*2n+1n6n-—1) 2 i am\?@En+1t 1 32
n) 2n—1 256" 7 n n+1 256 37’

n=0 n=0
i<2n>31—12n2 12 i<2n>36n+5 116
—\n) (1- 2n)2 256" 1’ —\n/) (n+ 1)2256" @’
i <2n>2 <4n> n(dn+1)(20n +1)  —4
n 2n (—1024)" T

n=0
Their proofs are routine and proceed the same way as for (12.10); e. g. the first one
comes from using the function

2 1 1 3
7"' —_ = = =
7F 27272
43 2( 1,1

422 (1 — x2)> = (2B(z) — K(z))%

12.3. A miscellany of results on 7

12.3.1. Current status of Sun’s conjectures. Sun’s list of m conjectures
have inspired much work in the field. For future reference, we list below all the
proven or provable conjectures found in the the 24 Jan 2012 version (version 37)
of [183]. The methods involved as also listed. By ‘provable’, we mean there is
a general theory for proving the type of identity under question; even though the
details can be formidable, they are still manageable given enough perseverance. A

number of older entries, proven to Sun’s satisfaction, appear underlined in [183].

e All of Conjecture I. [74] (Chapter 10)

e All of Conjecture II. [74]

e All of Conjecture III. [74]

e All of Conjecture IV. [193] (Chapter 11)

o Al and A2. [74]

e Conjecture V. [193]

e Conjecture VII: 1, 3-6. [211]

e Conjecture 2: 1-3. [211]

e Conjecture 2: 4-9. Shown here, with ideas from [211]

e Conjecture 2: 10, 11. The sequence is Apéry-like, use [72]
e Conjecture 2: 12, 14, 20, 21. Shown here, ideas from [211]
e Conjecture 3: 11-19. [172]



12.3. A MISCELLANY OF RESULTS ON 7 229

Conjecture 3: 11°, 13’, 15, 16, 18’, 19’, 20. Shown here, ideas from [211]

Conjecture 4: 14. Same method as [6]

Conjecture 5: 2-8. Shown here, ideas from [211]
Conjecture 6: 1, 2. [211]

The main idea in [6] and [172] involves interchanging the order of summation.
The latter paper provides rigorous details, and transforms some entries in conjecture
3 to entries in conjecture IV and their companion series, which have been proven
in [193].

We remark that conjecture 4.14 can be routinely proven (it uses the same idea,
i.e. interchange the order of summation, as [6]), and therefore all of Sun’s Conjec-
ture 4 is completely proven.

Conjectures 2.10 and 2.11 involve the sequence S,(f) (4), which is just the Apéry-

like sequence (e) in Chapter 11. Thus, they can be proven using the generating

function
o~ (20 (1 — 32z + 25622) " 11 )
(e) — ]_ ]_ F 29 9 1 '
7;](”)“" < (1 — 25622)2 > (14162) o F 62

With 2.10 we use x = 1/32; since the argument of the 9F} is 1/2 in this case,
the resulting 1/7 series is particularly easy — see Section 10.8. With 2.11, we use
r = (43 — 7)/16, so after Euler’s transformation (6.32), 16z/(16x — 1) becomes

the 3rd singular value.

12.3.2. Hypergeometric evaluations. Many closed form evaluations for hy-
pergeometric series are written as products of Gamma functions, for instance Gauss’
theorem (5.3), and the partial list in Chapter 14. When the products of Gamma
functions collapse to 1/, 1/72, etc, we naturally obtain series for these constants.

Such methods are explored in e.g. [76].

Example 12.3.1. Take the classical evaluation for a 4 F3 at —1 [11, Corollary 3.5.3],
which is a consequence of Dougall’s formula. Specialisations of the evaluation give

equation (12.19) as well as

i (&)n (_1yn(y 4 120) = 3.

n!3 s
n=0



230 12. NEW SERIES FOR 1/7

Clearly, many other Gamma evaluations may be found this way. Watson’s formula

(see Chapter 14) immediately gives

0o 1 4 ) 5
nz:% () @n+D(n+2)(n+3) 327

while Dougalls’s formula gives
i 20\ 1 4n+1 -8
—\n 280 (n+1)(2n —1) w2’

compare with (12.18) below. O

Our next example, though still trivial, seems to be original. Take [98, eqn. (1.2)];

under the limit n — oo, we get

2a,2b,1-2b,1+2a/3 | 1\ 4°T(1+a-bI(1/2+a+b)
Y \a—b+1,a+b+1/2,2a/3] 8) V(14 2q) ‘

For instance, with a = b = 1/4, we recover the series (12.67).

(12.17)

12.3.3. Fourier-Legendre expansion. Certain series for 1/ and other con-
stants may be arrived at using the Fourier-Legendre expansion of a function. To
be more precise, under mild conditions we can expand a function f in terms of the

Legendre polynomials:

2n

1
+1 /_1Pn(x)f(x) dz.

= nPn ) h n —
f(z) nz:oa (x), where a 5

For f(x) = V1 — 22, we can evaluate a,, by writing P, (x) as a sum and interchanging
the order of integration and summation. After evaluating the sum by Dixon’s
theorem (14.14), we get

2 (3)? dn +1 4v/1 — 22
2} e r 0 —an) l®) =

s
n=

Setting x = 0 and using the evaluation for P, (0), this gives the series

Z;)<2n> (6711) (n—|—41)(—|1_i2n) :%'

n=

Parseval’s theorem applied to the same f produces a series for 1/72,

> o\ 1 4n + 1 32
_ 22 12.1
Z (n) 287 (n4+1)2(2n —1)2 372’ (12.18)

n=0

which is in fact contiguous to one of Guillera’s many formulas [107, eqn. (14)].
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Of course, we may use more general functions, for instance choose f(z) = (1 —
22)P=1/2 The p = 0 case recovers the first ever Ramanujan-type series for 1/, due

to Bauer: - 5
2n —1\n 2
—) (4 1) =—. 12.19
Z(n) <64>(n+) 0 ( )
n=0
The corresponding series for 1/72 (explored over a century ago by Glaisher [99]) are

all in fact hypergeometric evaluations using Dougall’s 5Fy formula [11, Corollary

3.5.2).

12.3.4. Fourth powers of binomial coefficients. In this section we look at
the generating function of the sums of fourth powers of binomial coefficients, and

relate it to series for 1/m.

Theorem 12.1. In the neighbourhood of v = 0, let w = u(z) = V1+4z, v =
v(x) =+/1—16z. Then

oo n 4 1 1 3
n 5 113

n _ F 47 27 4
ZZ(k)‘” 3u+2v32< 1,1

n=0 k=0

4(u —v)®(u+v)
5(3u + 20) ) (12:20)

moreover, (12.20) can be used to produce series for 1/m.

PROOF. Let a(n) = > }_, (2)4. Zeilberger’s algorithm is able to produce the

n3a(n) = 2(2n — 1)(3n? — 3n 4 1)a(n — 1) + (4n — 3)(4n — 4)(4n — 5)a(n — 2),

which can be routinely translated into a differential equation satisfied by the left
hand side of (12.20), for instance using the Maple command rectodiffeq. It is
also routine (though tedious) to check that the right hand side is annihilated by the
same differential equation, and that the first few terms of the series expansion for
both sides agree. Thus (12.20) holds.

Because the right hand side of (12.20) has the requisite 3F» form with signa-
ture 4, therefore by Proposition 10.5, at some computable z’s there exists a linear

combination of (12.20) and its derivative which evaluates to 1/m. Alternatively, we
may use the transformation
1 113
3 Fy < 121

— 4z 111
27202
Vi-z 1,1 <1—z)2> ’ 2< 1,1

and appeal to the construction outlined in Section 12.2 (this is the approach we

take subsequently). O
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Example 12.3.2. On top of Yang’s original example (5.8) which we reproduce
below, the following 1/m series may be produced; they correspond to the 30th,
70th, 130th and 190th singular values of K respectively:

oo n 4
n) n+1 18
N - = , (12.21)
n=0 k=0 <k 36 V15w
= — 11+60n 98
>N ~ : (12.22)
n=0 k=0 < > 196" V7r
. — 18+ 1 1
3 ( > 81;9610" L (12.23)
n=0 k=0 V2r
S Y4714 1444
Z 7+ 4080 . (12.24)
Z 576" \/95m

The next three rational series have negative arguments, which essentially come from

applying the transformation (12.11); they correspond to the 25th, 45th and 85th

singular values of K:

- 1+3n 5

> =, (12.25)
ot O( > (=20 ~ 2m

= — 1+4n 32

> = : (12.26)
n=0 k=0 ( > (64" 3v15m

X - 3+17n 81

— . 12.27

S5 (0) Cotr = e 1220

We can produce many more

/\??‘

98

non-rational) series, for instance

BF)m

ZZ() (114 32075 Vi) (2 OENVOYT 20T

n=0 k=0

comes from the 15th singular value.

O

Some entries in [183] are in fact related to the sum of fourth powers of binomial

coeflicients. The first connection is the following representation,

S (R

3 ()

(12.28)
k=0

This is easily proven using Zeilberger’s algorithm (which is able to show that both

sides satisfy the same recursion). From this, we get

-y (5)

n=0 k=0

2 (G-

(12.29)
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Seven of Sun’s series in conjecture 5 [183] have the left hand side of (12.29) as
a building block. It turns out that they correspond to the labeled equations in
Example 12.3.2. We return to their proof in the next section.

The other connection comes from examining seven of the entries in conjecture 3
of [183]. For these entries, the argument in g and the square root of the geometric

term differ by 2. It follows that these conjectural series for 1/7 have the building

block -
S () () ()

More specifically, we need a linear combination of the above sum, and a similar
one with an extra factor of n in the summand. The proof for those series involves
‘satellite identities’ which we describe in the next section. In particular, we will

prove the key formula

Theorem 12.2. In a neighbouthood of z =0,

S50 et S5 0w

n=0 k=0 n=0 k=0
Equation (12.30) will show that these seven entries again correspond to the
labeled equations in Example 12.3.2. It will be obvious that we may produce many
more series of the same type. We remark that the inner summand on the left side

of (12.30) is the Apéry-like sequence (c), which is W3(2k) in Chapter 1.

12.4. New generating functions

In this section we prove some more of Sun’s conjectures for 1 /7. The main ideas

are taken from [211].

12.4.1. Satellite identity. Whenever we have a sum of the type
H=2) ha(z,2) = Fa)F(B),

where H, «,  are functions of z and z, and additionally a and 3 are related by
a modular equation of degree IV, then for certain values of x and z, there always
exists a non-trivial linear combination of H, H,, H, that is 0. The reason for this
has already been explicated in Chapter 11, but we recapitulate it here. Suppose that
x and z are chosen so that o = t(79) and 8 = t(79/N), where ¢ is a modular function

and 7y is a quadratic irrationality. The modular equation allows us to write H in
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terms of F(a)?. Also, the two derivatives of H each equals a linear combination of
F(a)? and F(a)G(a), where G(t) = tdF(t)/dt. Thus we can always take a linear
combination of these three terms to get 0.

Indeed, whenever N is fixed, this linear combination ends up being a functional
equation of the form ) h, (p) = 0, where we parametrise the left hand side by a
single variable p. Producing such a functional equation algebraically is easier than
finding a series for 1/7; moreover, it can often be guessed and then proven using the
Wilf-Zeilberger machinery. Functional equations of this type were first investigated
in [211], where they are called satellite identities, since they play a secondary role

in producing 1/7 series as we shall see.

Example 12.4.1. We give some examples of satellite identities. In Theorem 11.3,

take N = 3, we have the very succinct identity

> 2 (A0 = 1) (Bn+ DPw(p) ~ p2n+ DPosa(p) =0 (12:31)

n=0

o0 (1)2

This can be proven using the degree 3 modular equation; alternatively, we can use
the Wilf-Zeilberger algorithm to find a differential equation satisfied by the left
hand side, but this approach involves more work.

Returning to Brafman’s formula (12.1), the degree 3 modular equation produces,
for s =1/2,
oo (1
> 1) [ (o4 (- 5 )2 (2 ) - s (1 2)] =0

n=0

For s =1/3 and N = 2, we have

i (5)n(5)n (27(p2 — ”)n [(1 + n<§ - ?))Pn(p) —(n+ 1)Pn+1(p)] =0,

— n!2 4p3 D P

where we have used the parametrisation of the degree 2 modular equation in signa-

ture 3, and the recursion (14.25) satisfied by the Legendre polynomials. O

12.4.2. A key observation. Many of Sun’s conjectures [183] involve sums of
the form

Z Z F(n, k)z*2",

n=0 k=0
where F' is a hypergeometric term often expressible as the product of binomial

coefficients. It is thus possible to find a differential equation in z for the double
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sum. However, such differential equations often have degrees 4 or higher, making
them not amenable for reduction in terms of hypergeometric functions. A key
observation from [211] is that, in many (but not all) of Sun’s conjectures, = and z are
often related by a simple algebraic relation. When this happens the corresponding
differential equation often reduces to degree 3. This makes them much easier to
solve, and in some instances Maple can give the solutions. Combined with satellite

identities, [211] resolves several of Sun’s conjectures.

Remark 12.4.1. How can we discover such an algebraic relation between z and
z?7 Based on Sun’s numerical data, we have good reasons to suspect that potential
algebraic relations transform the sums into

)n k+n

ZZF n k +bCC (a4 br)2n+1? or ZZF n k a_|_bx)n+1/2’ (1232)

n=0 k=0 n=0 k=0

where a and b are to be determined. For general a and b, we compute sufficiently
many terms of the x-expansion of (12.32) and check if they satisfy a three-term
recurrence (corresponding to a degree 3 differential equation for the sum) with
polynomial coefficients, where the degrees of the polynomials can be first specified.
In terms of linear algebra, this comes down to checking if a certain determinant
is zero for some a and b. The task of finding suitable integer values a and b in
(12.32) (if they exist) can thus be accomplished by finding integer solutions to the
determinant, which is a (complicated) polynomial expression in a and b.

Indeed, (12.29) was first discovered this way. O

Using either Sun’s data or the above procedure, we discover:

Theorem 12.3. In a neighbourhood of x = 0,

23 (D0 12
64x2>.

22 ()G aamm-n (i

PROOF. For each sum on the left hand side, write the coefficient of x as a double

sum. We apply the multiple WZ algorithm to obtain a recursion for the coefficients;
this step takes some time and produces a degree 9 recursion. Then, we simply show

that the right hand side coefficients satisfy the same recursion and initial conditions.
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Without the luxury of knowing the right hand side of (12.33), we can convert
the recursion into a differential equation satisfied by the generating function and
factorise it (using the DFactor command in Maple). This gives a 3rd order differ-
ential equation, which is solvable by Maple and can be rearranged into the right

hand side of (12.33). O

The satellite identities of (12.33) are given by

2%( ><2n—2k> (2:) (2;)%{1—1—3(1—1—;)164-(1—;)4 —0,
ZMZO< ><2n—2k> (2:) <2:)%[4+3(1—i>k+<8+i)n} — 0.

To produce say the first one, we first managed to guess it. More precisely, for a
small, irrational z we compute ag = an A(n,k,x), ap = ka A(n, k,x)k, and
as = an A(n, k,z)n, then asked PSLQ to find a null linear combination with

integer coefficients among the elements of
2 2 2
{ag, a1, a2, a0z, a1z, asx, agx”, a1x*, asz”, .. . }.

Once found, the satellite identity can be proven by extracting the coeflicients of z,
which is shown (in this case) to satisfy a 7th order recursion by the multiple WZ

algorithm.

Note that the right hand side of (12.33) is a building block for 1/m series. We
can differentiate both sides of (12.33), and take an appropriate linear combination
to give 1/m, as guaranteed by Proposition 10.5. However, the resulting series would
involve linear terms in k& coming from the derivative of (12.33). This is where the
satellite identity comes in: we use it to eliminate the k term.

This way, Theorem 12.3 allows us to prove all of Sun’s conjectures involving
S,(:) (conjectures 2.4-2.9) [183], using only the 3rd and 7th singular values. An
example of a series so proven is Sun’s entry 2.4,

ZZ ( ) <2n — 2k> <2kk) (2:) 14026: 19 <%>2n _ % (12.34)

n=0 k=0

The coefficients in this type of series can be considered as extensions of the Apéry-

like sequence (d). We can produce arbitrarily more 1/7 series of the same type. For
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instance, using the 4th singular value, we have the complex series

S ) () (5) (2 5 s s

n=0 k=0

_ 116v/2 + 95i
N 27 '

(12.35)

Example 12.4.2. We return to (12.30). It is true simply because the multiple
WZ algorithm can produce a recursion for the coefficients of x in the left hand side
(albeit being order 6), which is also satisfied by the right hand side, and both sides
agree to sufficiently many terms. Therefore, a linear combination of the left hand
side and its derivative produces series for 1/7. However, the derivative also involves
a linear term dependent on k; this term can be canceled out because of the satellite
identity (first guessed by PSLQ, then proven by the multiple WZ algorithm):

22 (0 (a2 Gsed o] o

n=0 k=0

Similarly, the satellite for (12.29) is

Z Z (2n) (n + 2k> <k> (2:> 24 4 + 34w + 1)k + 2z — 1] =0,

n=0n=0

As mentioned earlier, entries 11°, 13’, 15°, 16°, 18’, 19’, 20 from Sun’s conjecture
3 [183] can be proven using (12.30), while entires 2-8 from conjecture 5 can be
proven using (12.29); they are both equivalent to the series in Example 12.3.2. We

give one example from each type of proven series:

Z Z (2n) ( ) (2;:) 11922: (3920n + 541) = :?;77717’ (12.36)

n=0 k=0
n n + 2k 2k\ 3245n + 268 1215
— . 12.37
S () (15 () () B - 1 (1237

Finally, we note that [183] states that entries 3.11-3.19” are equivalent to 3.11—
3.19, and some of the latter entries have been proven in [172], though our analysis

is computationally simpler. O

(2)

Entries in Sun’s conjecture 2 [183] which involve S, generalise the Apéry-like
sequence (e) (since S,(CQ) (4) is (e) itself). When z = 1/(z + 4)?, as is the case for the
four entries listed below, the resulting differential equation (again found by multiple

WZ) can be solved by Maple in terms of the Heun G function (see [32, vol. 3]), with
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the first parameter equal to 4. Using of [140, eqn. (3.5b)], this Heun G function
reduces to the form 2F1(6, 3 %, t(x)). Applying Goursat’s quadratic transform

[103, p. 118, eqn. (25)], we finally discover

Theorem 12.4. In a neighbourhood of x = 0,

2 n
ZZ n—2k 2k 2n zht . 3.3,
k) \n )0+ 4z 11

10822(1 — 4x)>.
n=0 k=0

(12.38)
Its satellite identity is:

»> <QZ - %) (2:) <2n) 1 fj n) [1 F2hens T n] =0

n=0 k=0

It follows that Sun’s conjectures 2.12, 2.14, 2.20 and 2.21 can be proven. For
the first one, the argument of the 3F5 in (12.38) is 1 and so its proof follows by
hypergeometric evaluations. The next three have arguments 1/2, 2/27 and 4/125
respectively, equivalent to the (only) rational Ramanujan-type series for signature
3. As an example, entry 2.20 is

Z Z <2Z - 2k> <2:) (2:) 12;: 1 <230)2n _ ;75;. (12.39)

n=0 k=0

12.5. Series for 1/7 using Legendre’s relation

As stated in Proposition 10.5, Ramanujan-type series for 1/7 originally took

the form

i (%)n(s)n(l — 5)n

n!3

(a+bn)2l = <, (12.40)
n=0 T
where s € {1/2,1/3,1/4,1/6}. As we saw in Chapters 10 and 11, a more encom-

passing series for 1/m would look like

> Um)p(n) =5 = — (12.41)
n=0

mhk’

where U(n) is an arithmetic sequence, and p(n) is a polynomial (often linear or
quadratic in n).
Most of the current methods for producing such series rely on one of the following

methods:

e Hypergeometric series (Clausen’s formula and singular values of K), see

[46] and Section 12.2;
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e Modular equations together with the first approach, see Chapters 10 and
11;

e Experimental mathematics (creative telescoping), explored in say [106];

e Summation formulas for hypergeometric series, Fourier-Legendre series,

etc, see Section 12.3.

A notable feature of 1/7 series produced using the methods above has been
severe restrictions in the argument of the geometric term (zg in (12.41)), as zp may
need to come from singular values of K, or be a special value for a summation
formula to work. Here we give a new method for producing series for 1/7, as well
as some related constants, using only Legendre’s relation. The method presented
here breaks such restrictions so the argument can be any real number for which the

underlying series converges.

12.5.1. Legendre’s relation. Our analysis hinges on Legendre’s relation [46,

Theorem 1.6], which states

E(x)K'(z) + E'(x)K(z) — K(z)K'(z) = (12.42)

v

We have already encountered Legendre’s relation in Chapters 5 and 6. A more

general form of (12.42) holds [46, equation (5.5.6)]:

ES({L‘)KS/(Q’,‘) + ES/($>K5($) . Ks(iL‘)KSI(x) B ECOS(?Ts)

= 12.43
2 1+2s’ ( )

where K*, E® are defined in (5.1) and (5.2). Note also that in (12.43), s is not
restricted to the four values as in (12.40).

Suppose we have a factorisation of the following type:
G (2) = K(a(2))K(b(2)), (12.44)

where G is analytic near the origin and satisfies an ordinary differential equation of
degree no less than 4 — for instance, G could be a 4F3. (The condition on the degree
of the differential equation for G is imposed because we will solve a system of four
equations below, so having three linearly independent derivatives help.) Suppose
further that we can find a number zy such that a(z9)? = 1 — b(20)?, so that the

right hand side of (12.44) becomes K (a(z9))K'(a(zp)). We then consider a linear
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combination of derivatives of equation (12.44), namely

d d
w2 (A()G(Zo) + AlaG(Zo) + AQ@

:B()KK’(Z()) + BlEK/(Z()) + BQE/K(Z()) + B3EE/(20), (12.45)

G(Zo) + Ag%G(Z’o))

where A; are constants that may depend on zg, while B; depend on A;. The equality
in (12.45) holds because derivatives of F and K are again expressible in terms of E

and K. It remains to solve (if possible) the following system of equations for A;,
BOZ_]-a Blz]-a 32:17 B3:07

so that we may apply Legendre’s relation (12.42) to (12.45) and obtain, for those

choices of A;,

1
3G(0) = o (12.46)

d d
AOG(ZO) + Al &G(ZO) + AQ@G(ZO) + A3

A series for 1/7 is thus obtained; when written as a sum, the left hand side typically
contains a cubic of the summation variable. We will illustrate such series using

different choices of G below.

12.5.2. Brafman’s formula. An example of a factorisation in the form of
(12.44) comes from Brafman’s formula (12.1). Although the formula is of type
(12.44), solving for a? = 1 — % only results in a trivial identity. Therefore our
strategy is to modify the arguments « or § via some transformations.

12.5.2.1. The s =1/2 case. Using s = 1/2 and applying the quadratic transform
(6.5) to one of the terms in (12.1), we obtain

2

Zi (%)Epn(ﬂv)z" 1 K( 20174 )K(ﬁlﬂ)' (12.47)
n=0

n! - 14+ al/2

This fits the type of (12.44). After significant amount of algebra as outlined by
the approaches leading to (12.46), we have the following:

Theorem 12.5. For k € (0,1),

>, /2n\° k63 —2k+1 \ (K2 + 1) (k2 42k —1)\"
P?L 3 2
Z(n) <(k2+1)(k2+2k—1)>< 16(k 1+ 1)2 ) (Csn” + Con + Can + Co)

n=0
_2(k+ 1)k +1)

™

, (12.48)
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where
Cs = 4(k — 1)%k2 (k% + 3k + 4)2,
Cy = 12(k — 1)k(kS + 5% 4 10k* + 10k3 + 5k2 — 3k + 4),
Cy = 9K® + 36k" + 37kS + 8k° — 9k* — 56K + 63k* — 28k + 4,

Co = (k? + 2k — 1)%(2k* + 3k? — 2k + 1).

PRroOOF. A little algebra shows that if we choose

1 — 2k + 6k3 — k* (K2 +1)(k? +2k — 1)

TR 2k —1) T (k+1)2 ’

then, viewing a and § as functions of z, we get 8(z0)'/? = k, and 2a(20)"/*/(1 +
a(20)"/?) = V1 — k2, as desired. With these choices we have a(z0) = (1 — k)?/(1 +
k)?; we can also compute and simplify the derivatives a'(2),a”(2),a"”(z) and
b'(2),b"(2),b"(2) at 2 = zp. Thus, as in (12.44), we have an equation of the type

+a(@? S BR, 2a(z)V!
[ S ] (2 s,

where at z = zp the arguments of the two K’s are complementary.

We take a linear combination (with coefficients A;) of the z-derivatives of the
above equation, as done in (12.45), then substitute in z = zp and simplify the
resulting expression using the precomputed values for o/(z2p), 5'(z9) etc. Finally, we
solve for A; so that Legendre’s relation may be applied to obtain a series of the
form (12.46). The result, after tidying up, is (12.48).

We now look at the convergence. From the standard asymptotics for the Le-

gendre polynomials [184], we have, as n — oo,
Py(z) = O((Jz| + Va2 — 1)") for |z| > 1 and P,(z) = O(nil/Q) for || < 1.

Therefore, for any rational k € (0,1), the sum in (12.48) converges geometrically,
where the rate is given by

1— 2k + 6k3 — kA k(1 —k)\ /2
(1+k)? 1+k ’

O

Note that any rational choice of k € (0, 1) leads to a rational series in Theorem
12.5, which is indicative that such series are likely to be fundamentally different from

ones that are entirely modular in nature (see e.g. Chapter 10), whose arguments
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are much more restricted. For instance, with the choice of £ = 1/2 in Theorem

12.5, we get

o0 2 n
om 11 5 2160
E Pl =)= (14 —171n — 4452n? + 2116n3) = ——.

n=0
Theorem 12.5 is by no means the unique consequence of (12.1) with s = 1/2. For
example, we can apply quadratic transformations to both arguments on the right
hand side of (12.1). The result is also a rational series, convergent for k € (0,1) and
genuinely different from Theorem 12.5, though the general formula is too messy to

be exhibited here. We give only one instance (with the choice k = 1/2) here:

< /20 2 19 65 n
Pl 13 ) 20736 3 _ 2425458002 — 539415n — 264
§<n> (13> (20736) (97756868n 54580n" — 5394151 — 264590)

6065280

= —
As another example, if we apply to one term in (12.1) the cubic transformation
(10.22), then after a lot of work it is possible to obtain a general, rational series
convergent for p € (0,1). At p = 1/2 for instance, we get the series

00 2 n
on 353\ / 17 , , 8704

n=0
However, it is important to note that not all transformations lead to series of type

(12.46).

We give another general theorem for the s = 1/2 case here. If we apply a
quadratic transformation to one argument of (12.1) and Euler’s transformation
(6.32) to the other, the result is also a rational series with at most a quadratic surd
on the right hand side. Once again convergence is easy to establish (the rate is
|z0| = (1+k)(4k? — 3k +1)/(4k)), and the general solution recorded below is proven

in exactly the same way as Theorem 12.5.

Theorem 12.6. For k € (@, 1),

7o)\ 2 1 —3k+2k2 — 23 —(1+k)(4k? — 3k + 1)\ " 3 2
Z(”) Pn< 4k?2 — 3k +1 )( 64k ) (0371 + Con +Cln+C’0)

n=0
 8K3/2(4k* — 3k + 1)

s

, (12.49)
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where

4k —1)2
k+1

Cy =12(k — 1)(2k — 1)(16k* + k2 — 1),

Cs = (2k — 1)(4k* + 3k + 1)?,
C; = 288k% — 400k° 4 102k* + 97k> — 93k2 + 47k — 9,

Co = 2(32k°% — 44k5 + 9k* + 16k> — 14k* 4 6k — 1).

Examples include

[e’e) 2 n
om 1\ /-1 183
§ Pl=)—) (1—-3n—84n> —121n?%) =

n=0

from k = 1/3, and when k = 1/2 (chosen so that Cs vanishes),

i <2:>2Pn (;) (128>n(3 +14n) = 8;@. (12.50)

n=0

The formula (12.50) is particularly interesting, because although it fits the form
of the 1/7 series considered in Chapter 10 perfectly, it cannot be explained by
the general theory there (its 7o is iK(v/3/2)/(2K(1/2)), which is not a quadratic

irrationality).

Just as in Chapter 10, we can produce ‘companion series’ using Legendre’s

relation; one example is

< /2n\%/ 3 \n 1
,;) <n> (*128> [14n(196n2 +196n — 3) Py (5)
1 400+/2

— (1372n® + 3024n> + 1631n + 375) P, ()] = .

2 T

Remark 12.5.1. One might wonder what happens if we set a(z) = b(2) in (12.44).
In the case of (12.47), as the quadratic transformation is effectively the degree 2
modular equation, any series thus produced would be subsumed under the theory
in Chapter 10 with the choice N = 2, and where /B could be taken as a singular

value. See also Section 12.5.3.3 for more discussions. O

12.5.2.2. The s = 1/4 case. Even though equation (12.1) holds for s € (0,1),
we see in the last two theorems that transformations need to be applied to the right
hand side of (12.1) before Legendre’s relation can be used. Since many such trans-
formations are modular in nature, we are again confined to s € {1/2,1/3,1/4,1/6}.

We now consider the s = 1/4 case in (12.1). One strategy here is to transform the
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right hand side of (12.1) in terms of K; the transformation required is (7.29). The
transformed expression is of type (12.44) and we solve for a(z9)? = 1 —b(z0)? in the
notation there. Proceeding along the same lines as in the proof of Theorem 12.5,

the following theorem can then be established:

Theorem 12.7. For k € (0,1),

- (i)n(g)n (1+k)(1—4/€+7k2) (1+k)(1_3k)(1+3k2) n
2. e P"( (1—3k)(1+ 3k?) )( (1+ 3k)2 )

n=0

3v/2(1 + 3k)%/2(1 + 3k2)

x (Csn® + Con® + Cin + Co) = e , (12.51)
where
16(k — 1)2k2 -
= 1
Ca= =g (8+15k+0K)%

Cy = 48(k — 1)k(8 — 15k + 27k* + 27k + 81k*),
Cy = (4 — 33k 4 45k?) (4 — 17k + 17k* — 3k3 + 63k*),

Co = 3(1 — 3k)*(1 + k + 2k?).

An example of an identity produced by Theorem 12.7 is

x 1 3 n

Dy (3, 21 12

> %Pn <9> <> (216 — 2385n — 108432n> + 80656n°) = 126005
~ ol 7) \ 100 m

Note that we may also choose k for the right hand side of (12.51) to be rational.
Here is a trick: if the denominator of the argument in P, is 0 at some kg,
and at the same time the geometric term zy vanishes, then we may take the limit
k — ko which gets rid of the Legendre polynomial altogether (note that the leading
coefficient of P, is (2:)2*”). In (12.51), this occurs when ky = 1/3. After taking
the limit and eliminating the n3 term using a hypergeometric differential equation
(14.3), we recover the Ramanujan series (of the type (12.40))
i—(%)”(%)”@” <32>n(1+7n) _ 9 (12.52)

nl3 81 2

n=0
The same trick, applied to the series which follows from the cubic transformation

mentioned in the s = 1/2 case, results in

i ()i <i>n(1 +6n) % (12.53)

13
=0 n:

from the choice p = (v/3 —1)/2; this formula originated from Ramanujan [164] and

was first proven by Chowla.
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12.5.2.3. The s = 1/3 case. This case is slightly trickier. An attempt to trans-
form the right hand side of (12.1) in terms of K, as we did for the s = 1/4 case,
results in exceedingly messy computations. Applying low degree modular equations
to one of the 9F}’s (as we did in the s = 1/2 case, for (12.47) essentially uses the
degree 2 modular equation) does not give convergent series. Instead, we resort to a
formula in [103],

12
2F1<3’13

5

15
x) = (1+8(L’)1/42F1<6’16

1 1 — 20z — 8x2
2 2(1+8x)32 )’

to transform the right hand side of (12.1), then solve for a(z9)? = 1 — b(20)? in the

notation of (12.44), followed by applying the generalised Legendre relation (12.43)

with s = 1/3. We succeed in obtaining the following theorem, where «a(zp) =
_k\3

K, B(z0) = (T25) "

Theorem 12.8. For k € (0,1),

i(é)n(%)np 1 — 4k 4 6k2 — 4k3 +10k* \ [ (1 4k + k2)(1 — 2k — 2k2)(1 — 2k + 4k%)\ "
n'2 T\ (1 — 2k — 2k2)(1 — 2k + 4k2) (1+ 2k)3

n=0

1+ 2k)4(1 — 2k + 4k?
x (Csn® 4+ Con® + Cin+ Co) = V3(L+2k)T(1 - 2k + 4k >, (12.54)

™

where

9(k — 1)2k?
1+ K+ k2
Oy = 27(k — 1)k(9 — 18k + 10k* + 12k + 60k* + 160k + 240kS + 192k7 + 64k%),

Cs = (3 4 4k + 2k%)(3 + 2k + 4k%)?,
Cy = 9 — 144k + 540k? — 584k> + 314k* — 228k — 12565 — 1072k7 + 768k% + 2560k° + 1280k 17,
Co = 2(1 — 2k — 2k?)*(1 — 10k + 12k* — 24k3 + 16k* + 32k°).
Note that in this case the right hand side contains a surd for rational k. When

k — (V3 —1)/2, we get the series
00 1y (1y (2 n

3)n(5)n(5 3(7v3 —12 7+ 3V3
Z(3)n(2)N(3)n< ( \/72 )> (5_\/§+22n): + \[

T

nl3

n=0
12.5.2.4. The s = 1/6 case. It is also possible to produce a general series for

this case, though the details required hours of computer algebra. The derivation is

)

similar to the s = 1/3 case, and we use Goursat’s result [103]

1 5 1 1 2
1511 64(1 — )13 8\ 1 12
6’ 6 |- _ _ 2\ T ) — _ 37 3
2F1( 2 2\/1 (9 — 8t)3 (1 9) 2| %y

1
followed by the generalised Legendre relation for s = 1/6.
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The general result is too lengthy to be included here. Just to find suitable z (in
P,) and zg, we need to solve for rational points on the curve u? 4+ v? = 10. Having
done so, the resulting series converges for k € (1/3,1); the coefficient of n alone is

a degree 24 polynomial in k. Even for k = 1/2, large integers are involved:

0 /1y (5 n
(5)n(3)n 2437\ [/ 15136 ; ,
P (710512440561 — 118714528800
> nz "\ 2365 ) \ 296595 " "

n=0

1402894350v/39

s

— 192636587561 — 2627089880) =

With the limit & — (v/5 — 1)/2, however, we recover the Ramanujan series

(1) (1) (5 n
ZW(&) (1+11n)_5gf. (12.55)

n=0

In the general series, the 1/7 side is actually the square root of a quartic in k, and
hence rational points on it may be found by the standard process [78] of converting
it to a cubic elliptic curve (namely, y? = 62208 + 3312z — 14422 + 23). It follows
that there are infinitely many rational solutions. The smallest solution for & (in
terms of the size of the denominator) which admits a rational right hand side is
k = 6029/8693, and the resulting series involves integers of over 100 digits.

12.5.2.5. Rarefied Legendre polynomials. Factorisations of the type (12.44) for
generating functions of rarefied Legendre polynomials are given in Chapter 11. Us-
ing partial differentiation techniques, we may also apply Legendre’s relation to
deduce parameter-dependent rational series for them. The algebra is formidable
and we do not present the general forms here; only two examples are given to

demonstrate their existence:

= (1)2 91\ / 5\ 5 )
> Py, (3108999168n° — 3255264000n> — 75508700n + 24025)

nl? 37 )\ 37

n=
896968800

)
s

(3, 19 1\ 39887347500n3 — 6141658302n2 + 172862917n — 15262470
E 3 3 P
3n

— b 3v/33 (114/33)n
| 442203651/11
N 2 )

Under appropriate limits, the series involving P, again gives (12.52), while the one

for Ps, recovers equation (12.55).

12.5.3. Orr-type theorems.
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12.5.3.1. A result from Bailey or Brafman. There are other formulas, notably
ones of Orr-type, which satisfy (12.44); an example was given by Bailey [26, equa-

tion (6.3) or (7.2)]:
s,8,1—s,1—s| —a? s$,1—35 5,1 —35
F ) ? ) — F ) F 9
! 3( 4(1—x>> ’ ( 1 ”3)2 ( 1
Specialising Bailey’s result using s = 1/4, we have

511
—4z*(1 — 22)2 T

This formula also follows from setting z = 0, s = 1/2 in Brafman’s formula (12.1).

T
r—1

). (12.56)

We try different transformations for the right hand side of (12.57), in order to find a
suitable zg for which the two arguments are complementary, so the procedures lead-
ing up to (12.46) may be applied. Indeed, after using Euler’s transformation (6.32)

to both terms followed by a quadratic transformation, we obtain the equivalent

formulation
2 (I+2)(1+2) 7 %,%,%,% 24 _ Kk 2z K 2 —1
4 22/ UL [ak2-1)) z+1 Vz¥1)

1/6 the arguments in the K’s are complementary (and corre-

where at zp = (—1)
spond to argument 1/4 in the 4F3). Proceeding as we did for our previous results,

Legendre’s relation gives

i <4n> 2 <2n> 3+ 26n + 4802 — 9603 2¢/2

o) U, Son == (12.58)
n=0

This time we do not have a more general rational series depending on a parameter,
since there is only one free variable = in (12.56). For other values of 2y, algebraic

irrationalities are involved, for instance

i <3Z>2 (?:) (4(151 + 73V5)n® — 96(3 + V5)n? — (25 — V5)n — 3)

n=0

y 175 —38\"  38+17V5
26 N T '

We note that it is routine to obtain results contiguous to (12.57) (see Chapter

14). Two such contiguous relations give elegant variations of (12.58):
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i <4n>2 <2n> 1-48n% 22
_ 2912n ’
= \2n n ) (1 —4n)2212n ™
i": An\? (2n)\ 3+ 32n + 4802 8V2 (1250)
2n n) (1+2n)212n g’ '

n=0

where the second sum has been proven in [106, table 2] using creative telescoping.
In fact, using the same zp as in (12.58), we may invoke (12.56) instead of its
specialisation (12.57), and appeal to the generalised Legendre relation. The result,

and those contiguous to it, are rather neat and hold for s € (0, 1):

= (5)2(1—s)2 s(1 —s) +2(1 — s+ s2)n + 3n2 — 6n3
7;) (3)n(D3 (1—2s)247
— ()21 —5)2 s(1— s) + 2n + 3n?

:;)( zégnu);z) T
S 5%_3%52—3712 sin(ms

= ((i)i(l)% sdn Er ). (12.60)

These series generalise (12.58) and (12.59). For rational s, the rightmost term in
(12.60) is algebraic; e.g. for s = 1/6 we get the rational series

i 6n (6n) (4n\ 25—108n° 3
= \4n ) \3n /) \2n/ (6n — 5)*28"36" 57
12.5.3.2. Another result due to Bailey. We can take [26, equation (6.1)] (or
[179, (2.5.31)]), from which we find

16222 (2/? — x2)2> = (K(z)+ K’(x))K(, /% - x:c’).

(12.61)

1

WK(%) 4F3(‘1l141i’1

202

3
4

To prepare this identity for Legendre’s relation so as to produce even just one
rational series requires much work.

We apply the cubic modular equation (10.22) to the rightmost term in (12.61).
Denoting the 4F3 in (12.61) by G, we have

1 16p>(1 +p)*(2 — p — p*) (1 + 2p — 4p® — 2p*)?
wK(E) (1+2p) G( TRaT >

(aen ) (- TR0 o oy

1+2p 1+ 2p)3
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At p = % (corresponding to 22 = (1 — k7)/2), the arguments in the two
K’s coincide. We then compute the derivatives up to the 3rd order for the above
equation. Note that as G satisfies a differential equation of order 4, higher order
derivatives are not required; however, since the derivatives also contain the terms
EK, E? and K?, we are not a priori guaranteed a solution. After a significant

amount of algebra, we amazingly end up with the rational series

i G (1)) 5+ 920+ 312002 —40320° 8 327 (12.62)
= (2n)! 28n K(1/v2) T(3)* |

12.5.3.3. Some related constants. Using a different set of parameters (o = § =

v/2 =1/4 in [26, equation (6.3)]), we have

_ 9,2)4
(122_)1)> = (K(2) + K'(2))". (12.63)

In this case, applying Legendre’s relation straightaway does not give anything non-
trivial, but if we apply a quadratic transform to the K (z) term first, then for the
two arguments in the K’s to be equal, we need to solve the equation /1 — 22 =
2,/z/(1+ ), which gives = v/2 — 1. Subsequently we can use Legendre’s relation

to obtain
i () (8(457 — 325v/2))" (7 + 20(11 + 6v/2)n) = 28(82 + 58v/2) 1 r*

—~

— (4n)! (1)

More series of this type are possible at special values of ¢, which are in fact singular
values; c.f. the equation solved above is precisely the one to solve for the 2nd
singular value (because k, and k| are related by the modular equation of degree r
and satisfy k2+k/2 = 1). Therefore, to produce a series from (12.63) we do not need
Legendre’s relation; instead a single differentiation (in the same way Ramanujan
series are produced in [46]) suffices. For example, using k3 we obtain one series

corresponding to 1/7 and another to 1/K (k3)?:

o (1y4 2
n=0 ’ 4
o (1y4 (L —-1)20 7
Z:% ((Li; (—144)"(5 — 8n + 400n*) = fm (12.65)
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12.5.4. Concluding remarks. In equations (12.52), (12.53) and (12.55), we
witness the ability of Legendre’s relation to produce Ramanujan series which have
linear (as opposed to cubic) polynomials in nn. Series of the latter type are connected
with singular values (more precisely, when iK' (t) /K (t) is a quadratic irrationality),
as is further supported by Remark 12.5.1 and Section 12.5.3.3. We take this con-
nection slightly further here.

We can bypass the need for Brafman’s formula completely and produce Ramanu-
jan series of type (12.40) only using Legendre’s relation and modular transforms.
For instance, take the following version of Clausen’s formula (10.19),

111 A NG
B(222420-2%))=— - K K( ) 12.
3 2( 11 (=) ) = Sy KoK 7)) (12.66)

where we have performed a quadratic transformation to get the right hand side.
When 22 +42/(1+z)? =1, 2 = /2 — 1, the 2nd singular value. At this z, we take
a linear combination of the right hand side of (12.66) and its first derivative (since
we know a Ramanujan series exists and involves no higher order derivatives), then

apply Legendre’s relation (12.42). The result is the series

I W

i(nl)g(z(fz—n)( +(4+vV2)n) = 3”[

n=0

Sl

which also follows from (12.48) under the limit k& — /2 — 1. (Applying Legendre’s
relation to (12.66) and its derivatives when x is not a singular value results in the
trivial identity 0 = 0, perhaps as expected.)

Applying the quadratic transform twice (i.e. giving the modular equation of
degree 4), followed by transforming the 3F5 in (12.66) and using Legendre’s relation,
we recover Ramanujan’s series

[e.o]

Z% < )n(l—l—Gn):m. (12.67)

nl3 T

For our final examples, using the degree 3 modular equation (10.22), we have
_ 3 3
B ( ,1212 4p°(1 +p)°(1 p)(2+p)>: 1 K(p (2+p))K<z(?(2+p) )

(14 2p)? 1+2p 1+2p 1+ 2p)3
From this and a similar identity with the 3F5 transformed, we derive the Ramanujan

series (12.53) as well as (12.55). This method seems to be a simple alternative to

producing the Ramanujan series (12.40), since we only need to know the modular
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equations and Legendre’s relation; there is no need to find, say, singular values of
the second kind as is required in the approach in Section 12.2.

12.5.4.1. Computational notes. While all the results presented here are rigor-
ously proven, we outline a method to discover such results numerically on a com-
puter algebra system. Take the right hand side function in (12.44) and compute
a linear combination of its derivatives with coefficients A;. Replace the elliptic
integrals K, K', E, E' by X, X? X% X8 respectively (the indices are powers of 2).
Evaluate to several thousand decimal places at the appropriate zy and collect the
coefficients in X. Solve for A; so that Legendre’s relation is satisfied (note all the
terms such as KK', E? are separated as different powers of X). Finally, identify
A; with PSLQ.

Many of our (algebraically proven) identities required several hours of computer
time due to the complexity of the calculations and the sheer number of steps which
needed human direction. Computational shortcuts, in particular the chain rule, were
applied partially manually in order to prevent overflows or out of memory errors.
Our procedure may benefit (both symbolically and numerically) from automatic
differentiation algorithms, but this has not been explored.

In the course of simplifying say a’(zg) in terms of a parameter k, the following
numerical trick may be used to avoid excessive computer algebra. If we suspect
a complicated expression actually simplifies down to a rational function in k, just
prepare a generic rational function with enough coefficients (to be adjusted if the
following procedure fails), then substitute in enough values of k£ and evaluate both
the expression and the rational function to high precision. Solve for the coefficients
and identify them using PSLQ, the Inverse Symbolic Calculator, or continued frac-

tions.






CHAPTER 13

Weighted Sum Formulas for Multiple Zeta Values

ABSTRACT. We present a unified approach which gives completely elementary
proofs of weighted sum formulas for double zeta values. This approach also leads
to new evaluations of sums involving the harmonic numbers, the alternating dou-
ble zeta values, and the Mordell-Tornheim double sum. We discuss a heuristic for
finding or dismissing the existence of similar simple sums. We also produce some
new sums from recursions involving the Riemann zeta and the Dirichlet beta
functions. Finally, we look at sum formulas of multiple zeta values of lengths
greater than two, and use a simple experimental approach to simplify an impres-

sive multiple zeta evaluation by Zagier.

13.1. Introduction

Multiple zeta values are a natural generalisation of the Riemann zeta function
at the positive integers; we shall first only consider multiple zeta values of length 2
(or double zeta values), defined for integers @ > 2 and b > 1 by

co n—1

o) =S % nainb. (13.1)

n=1m=1

It is rather immediate from series manipulations that

¢(a,b) + (b, a) = ¢(a)((b) — ¢(a+D), (13.2)

thus we can compute in closed form ((a,a), though it is not a priori obvious that
many other multiple zeta values can be factored into Riemann zeta values. Euler
was among the first to study multiple zeta values; indeed, he gave the sum formula

(for s > 3)
s—1

> ¢l s — 1) =<(s). (13.3)

j=2
When s = 3, this formula reduces to the celebrated result ((2,1) = ((3), which
has many other proofs [48]. Formula (13.3) itself may be shown in many ways, one
of which uses partial fractions, telescoping sums and change of summation order,

253
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which we present in Section 13.2. Given the ease with which formula (13.3) may be
derived or even experimentally observed (see Section 13.4), it is perhaps surprising
that a similar equation, with ‘weights’ 27 inserted, was only first discovered in 2007

[154]:
s—1
> 29¢(G,s = 4) = (s + 1)¢(9). (13.4)
j=2

Formula (13.4) was originally proven in [154] using the closed form expression for
¢(n,1) (which follows from (13.2) and (13.3)), together with induction on shuffle
relations — relations arising from iterated integration of generalised polylogarithms
which encapsulate the multiple zeta values (see Chapter 9). Equation (13.4) has
been generalised to more sophisticated weights other than 27 using generating func-
tions, and to lengths greater than 2 (see e.g. [109]).

In conjunction, (13.2), (13.3) and (13.4) can be used to find a closed form for
¢(a,b) for a + b < 6 (some of them have been found in Chapter 9). Indeed, it is a
result Euler wrote down and first elucidated in [39] that all ((a,b) with a 4+ b odd
may be expressed in terms of Riemann zeta value; by contrast, ((5, 3) is conjectured
not reducible to more fundamental constants.

The third weighted sum we will consider is

2s—1

> (-1€0, 25 ) = 5¢(29). (13.5)

j=2
Given that all known proofs of (13.4) had their genesis in more advanced areas,
one purpose of this chapter is to show that (13.4) and the alternating (13.5) are
not intrinsically harder than (13.3) and can be proven in a few short lines. We
use the same techniques in Section 13.3 to give similar identities involving closely
related functions. We also observe that some double zeta values sums are related
to recursions (or convolutions) satisfied by the Riemann zeta function, a connection
which we exploit in Section 13.4. We will use such recursions and a reflection

formula to produce new results for character sums as defined in [58].

13.2. Elementary proofs

In the proofs below, the orders of summation may be interchanged freely, as the

sums involved are absolutely convergent.
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PROOF OF (13.4). We write the left hand side of (13.4) as

2. iy

j=2 m=1n=1

s—1

We consider the 2 cases, m = n and m # n. In the former case the sum immediately

yields (s — 2)((s). In the latter case, we do the geometric sum in j first to obtain

25 4
— . 13.6
m%() (n2 —=m2)(n+m)s=2  (n?2 — m?)ns—2 ( )
nzbyén

The first summand in (13.6) has antisymmetry in the variables m,n and hence
vanishes when summed.
For the second term in (13.6), we use partial fractions to obtain
1 1 1 1 3
Z m?2 — n? _%Z m—-n m+n 4n?’

m>0 m>0

as the last sum telescopes (this is easy to see by first summing up to m = 3n, then
looking at the remaining terms 2n at a time).
Therefore, summing over n in the second term of (13.6) gives 3((s). The result

follows. U

Our proof suggests that the base ‘2’ in the weighted sum is rather special as it
induces antisymmetry. Another special case is obtained by replacing the 2 by a 1,

and the same method proves Euler’s result.

PROOF OF (13.3). We apply the same procedure as in the previous proof and

sum the geometric series first, so the left hand side becomes

1
Z m(m +n)ns=2 (m +n)s Z

L)

(m m+n
m>0 T

m,n>0
S (R |
=an§k— C(s—1,1) Zns znslzk C(s —1,1) = (s),

where we have used partial fractions for the first equality, and telescoping for the

second. O

Likewise we may easily prove the alternating sum (13.5):
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PROOF OF (13.5). We write the left hand side out in full as above, then perform

the geometric sum first to obtain

1 1
m%;o (m + n) (m + 2”)?”&25_2 N (m + 2n> (m + n>2s—1 )

Let kK = m + n, so we have

1 1
Z 25—2 2s—1°
o k(k+n)n (k+n)k

In the first term, use partial fractions and sum over k from n+1 to co; in the second

term, sum over n from 1 to kK — 1. We get

1 2n 1 1 2k—1 1
(Em X i) - (Cer 25
n>0 k=n+1 k>0 n=k+1

It now remains to observe that if we rename the variables in the second bracket,

then the two sums telescope to Y, 1/(2n%) = ((2s)/2. Hence (13.5) holds. O

Remark 13.2.1. The final sums we shall consider in this section are
s—1 s—1

> ¢(24,25 - 2)) = Zg@s), D C2i+1,25-2j—1) = 35(23). (13.7)
j=1 i=1

These results were first given in [96] and later proven in a more direct manner in
[152] using recursion of the Bernoulli numbers. The difference of the two equations
in (13.7) is (13.5) and the sum is a case of (13.3). Therefore, the elementary nature
of (13.7) is revealed since we have elementary proofs of (13.3) and (13.5).

If we add the first equation in (13.7) to itself but reverse the order of summation,

then upon applying (13.2) we produce the identity

s—1
S c)e(2s —2) = (54 5)<(2s), (13.8)
j=1

which is usually derived from the generating function of the Bernoulli numbers B,
(13.44), since
2(2n)!¢(2n) = (=1)""1(27)*" By,. (13.9)

¢

13.3. New sums

We shall see in this section that the elementary methods in Section 13.2 can in

fact take us a long way.
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13.3.1. Mordell-Tornheim Double Sum. The Mordell-Tornheim double sum
(sometimes also known as the Mordell-Tornheim-Witten zeta function) is defined

as

Wir,s,t) Zznrm5n+m

n=1m=1

Note that W(r,s,0) = {(r)((s) and W (r,0,t) = W(0,r,t) = ((t,r). Due to the
simple recursion W(r,s,t) = W(r —1,s,t+ 1)+ W(r,s —1,t + 1), when r, s, t are
positive integers W may be expressed in terms of Riemann zeta or double zeta
values (see e.g. [117]):

W(rs,t)=Y (r femne 1) C(rtstt—i i)+ <T o :{ - 1) C(r+t+t—j,j).
=1

; s—1 r
=1

We note also that by using a Laplace transform, W (r,s,t) may be computed effi-
ciently in terms of polylogs:

-1 dz

1
W(r,s,t) = th)/o Li,(z)Lis(x)(— log x)

We again emulate the proof of (13.4) to obtain what seems to be a new sum

over W.

Theorem 13.1. For integers a > 0 and s > 3,

s—1

> Wi(s—j.a,5) =(-1)%C(s +a)+ (-1)¢(s +a—1,1) = ((s — La+1)
j=2

a+1
- Z 1)e¢(i)¢(s + a — 1) (13.10)
s—1 ,. -1
:Z(Z—H;_Q)C(i—i-a,s—z Z <z+a > (i +a,s —1).
=2 i=5—a

PROOF. Asthe Mordell-Tornheim double sum values can be expressed as double
zeta values, the second equality follows after simplification. For the first equality,
we sketch the proof based on that of (13.4). Writing the left hand side of (13.10)

as a triple sum, we perform the geometric sum first to produce

Z (-n° B (-1
+1p5—2 +1 -1
o matins=2(m+n) motl(m+ n)s

To the first term we apply the partial fraction decomposition

L G R S W GV
mb(m+n)  nb(m+n) +

mi nbti—i’
i=1
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We recognise the resulting sums as Riemann zeta and double zeta values. The result

follows readily. O

When ¢ = 0 in (13.10), we recover (13.3); when a = 1, we obtain the pretty

formula

Corollary 13.1.
Wi(s—j,1,j) =¢(2,s - 1), (13.11)

Jj=2

which, by the second equality in (13.10), is equivalent to

s—1

D iCGs =) =2¢(s) +¢(2,5 = 1) = (s = 2)¢(s — 1,1). (13.12)

j=2
When a =2 in (13.10), we have

> W(s—4,2,5) =Cs+2) +{(s +1,1) +((3,s — 1) = (2, 9).
Jj=2

A counterpart to (13.11) is the following alternating sum:

2s
S W2s 41— 1 5) = (25 + 1, 1) + 1¢(25 +2), (13.13)
=2

and the same procedure can be used to prove this and to provide a closed form
for the general case, i.e. the alternating sum of W (s — j,a, j), though we omit the

details but only provide one example:

2s

D (1) W(2s 41— j,2a + 1,5)
j=2
2a
= Z 277¢(25 4 j,2a+2 — §) + (=2) (1 — 27)¢(25 + §)C(2a 4+ 2 — §)
j=1

+(1-3-47"H¢(2a+ 2+ 25) +¢(2a + 1+ 2s,1).

Also, (13.12) is not an isolated result, for instance we have

s—1

> 3% s—7) = 3¢(5)+3C(2)¢ (s—2)+2¢(3, s-3) —s(s-2)¢ (s—1, 1)~ (25-3)¢ (-2, 2).

j=2
Remark 13.3.1. There are other identities involving W that can be proven in an

elementary manner. For instance, [117] records the sum

4 A (4n —2i—1 , ,
W(2n,2n,2n) = 5 Z; < o 1 >C(21)C(6n — 24),
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where ((0) = —1/2; the existence of such a formula was first observed by Mordell.
This sum can be proven by first expressing the left hand side as a sum of double zeta
values, then by laboriously applying the partial fraction decomposition of (s)((t)

in terms of double zetas, as is used in [39]. O

13.3.2. Sums Involving the Harmonic Numbers. The nth harmonic num-
ber is given by H, = > }_; % If we replace 2s by 2s+ 1 in the proof of (13.5) (that

is, when the sum of arguments in the double zeta value is odd instead of even), then

we obtain
5 2s o) H.
: . . 2n
525+ 1) +2¢(2s,1) + ;2(—1)1((], 25 +1—j) = 2; o (13.14)

Combined with known double zeta values, we can evaluate the right hand side,

giving
oo
Hy, 37 2 5
=—((b)— < 3
> =0 - §7)

etc, in agreement with results obtained via Mellin transform and generating func-
tions in [58] (in whose notation such sums are related to [2a, 1](2s, 1) — this notation
is explained in Section 13.4). Indeed, replacing our right hand side with results in

[58], we have:

2s s—1
D (-1YC(G, 25+ 1—j) = (4° —5=2)¢(25+1) =2 ) (4 F = 1)¢(2k)¢(25+1 — 2k).
j=2 k=1
(13.15)
Similarly, using weight % (instead of 2), we have another new result:
Lemma 13.1. For integer s > 3,
s—1
D 2M (s —4) = (27 = 1)(¢(s = 1,1) — 2log(2)¢(s — 1))
j=2
+ (2275 — 1)¢(s) + i S (13.16)
vt (2n+ 1)1

Therefore, we may produce evaluations such as

i H, _ 372((5) — 217%¢(3) — 24 log(2)

— (2n+1)1 96 ’

i H, 7% —294¢(3)? — 74410g(2)¢(5)
(2n+1)> 384 '

n=0
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Indeed, in (13.16) the harmonic number sum relates to the functions [2a,1] and

[2a,2a] in [58], and when s is odd, we use their closed forms to simplify (13.16):

2s
S 21C(, 25+ 1— ) = (s — 1+ 272)¢(2s + 1)
j=2
s—1
=) (@R 4T (aF = 2)¢(2k)¢(25s + 1 — 2k). (13.17)
k=1

On the other hand, if we chose even s in (13.16), then [2a, 1], [2a,2a] seem not to
simplify in terms of more basic constants, though below we manage to find a closed
form for their difference (the proof here is more technical). Combined with (13.16),

we have

Theorem 13.2. For integer s > 2,

[e.e]

> s = (1= 47)(2s — 1)6(28) — (2~ 4)log(2)¢(25 — 1)
n=0

s

+(1=27)2%¢(s)” = > 2(1 = 277)(1 = 2672) (k)¢ (25 — K);

k=2
(13.18)
252121j<(2 s _1 __9l—s)2 2 1 3—2s _
3,28 = j) = 5(1 = 2777)°C(s)" + 5 (2777 + 25 — 3)¢(2s)
j=2
— i@’f—l — )2 F — 49 (k)C(25 — k). (13.19)
k=2

PrOOF. We only need to prove the first equality as the second follows from
(13.16); to achieve this we borrow techniques from [58].

Using the fact that the harmonic number sum is 2([2a, 1](2s—1,t) —[2a, 2a](2s —
1,t)) in the notation of [58], we use the results therein (obtained using Mellin

transforms) to write down its integral equivalent:

o

H, [t log(z)*2log(1 — 2?)
nz:% (2n+ 1)%1 _/0 r@s 21

We denote its generating function by F(w), and after interchanging orders of

summation and integration, we obtain
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> log(z)%*~2log(1 — x?) o

wi=2 [/ T(2s— (2 — 1) d“’} e
La=w(azw — 1)%log(1 — 2?)

e

_ 1 ld —w /W 2 2\q—1
——2/0 d—q[m (z¥ —1)*(1 — %) Lzod:zr.

Next, we interchange the order of differentiation and integration; the result is a

Beta integral which evaluates to:

2r(1/2)l(g) _ T((A —w)/2)T(g) _ T(( + w)/Q)F((J)]

F(w)—ld[
C4dg| D(g+1/2)  T((Q-w)/2+q) T(A+w)/2+4q) ],

- 5 [ron? -t w e (T2) - [w(F5) +o]) - [0 (F2) 1))

where U denotes the digamma function (5.24) and ~ is the Euler-Mascheroni con-

stant. The desired equality follows using the series expansions

1—w R k
—\I/(T)—’y—i-Qlog +;2—2 Clk+ Dw

T sec? (%) - i@ — A7) 2k + 1)¢(2k + 2w

k=0
O

Remark 13.3.2. Thus Theorem 13.2, together with [58], completes the evaluation
of

Hy,
r;) (2n+1)°
in terms of well known constants for integer s > 2. In [13, theorem 6.5] it is
claimed that said sum may be evaluated in terms of Riemann zeta values alone, but

this is unsubstantiated by numerical checks, and notably log(2) is missing from the

purported evaluation. %

Remark 13.3.3. Some evaluations relating to the digamma function appear in
Chapter 5. More sums involving H, can be found in the random walks chap-
ters; indeed, the key result (3.66) was evaluated with the help of [2a,1](3,1) and
[2a,2a](3,1) in [58]. O
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13.3.3. Alternating Double Zeta Values. The alternating double zeta val-

ues ((a,b) are defined as

with ¢(@,b) and ((@,b) defined similarly (the bar indicates the position of the —1).
In [58], explicit evaluations of ((s,1),((2s,1) and ((2s,1) are given in terms of
Riemann zeta values and log(2); in [39], it is shown that ((a,b) etc. with a + b odd

may be likewise reduced; small examples include (see also [48] for the first one)

72 lo _ m2lo
¢2.1) = —C(;’), ¢2,1) = lf@) —(B), (@T)= 14g(2) _ 1348(3>,

Again, if we follow closely the proof of (13.3), we arrive at new summation

formulas such as

D ¢G5 =) =1 =2"")((s) + ¢(s — L,1) +¢(s — L,T), (13.20)

and so on. When s is odd, we simplify the right hand side using results in [58],

thus:

2s

D ¢ 25 FT—j) =2(1 — 47%)1og(2)¢(2s) — ¢(2s + 1)

j=2
s—1

+ ) (2172 — 4R ((2k) (25 + 1 — 2K),
k=1
2s

D (—1Y¢(5,2s + T—j) = 2(1 — 47°) log(2)¢(2s) + ((s +1)47° - % - 3>C(28 +1)
j=2
s—1

+ ) (1= 4F7)((2k)¢(25 + 1 — 2K).

k=1
The last two formulas may be added or subtracted to give sums for even or odd j’s,

for instance

— 251 s+41 —
> C@i+1,25=2)) = (T — ooy J(@s+1) 2(2 4k) k)C(25+1-2k).
j=1 —1

(13.21)
With perseverance, we may produce a host of similar identities for the three
alternating double zeta functions. We only give some examples below; as they have

similar proofs, we omit the details.
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When we evaluate Zj;é(il)j ¢(j,8—7), we get for example

s—1
> CGs =) = (1=2"*)(¢(s) + ¢(s = 1,1) — 2log(2)¢ (s — 1))
j=2
[e’¢) Hn
—C(s-1,1) —nzo(zwrl)s_p

and by applying (13.16) to the results, we obtain

2s

DG 25+ 1= 5) + (25 + 1 — ) =47°¢(2s + 1) = ((25,1),  (13.22)
j=2

—S

2> (25,25 +1 - 2j) = 1 C(2s +1) — ((2s,1), (13.23)

j=1
where the right hand side of both equations may be reduced to Riemann zeta values
by results in [58].
Likewise, for ((j,s — j) we may deduce

2s

s(925+1 _ 1) —
LGB FT) = (- 4 og)c2s) — 22T S T o
j=2
s—1
+) (@ - 1) (AR —47)C(2k)¢(2s + 1 — 2k);  (13.24)
k=1
s—1

Y @i 12 2)) = (%(48 —35—2)+47%(s + 1))g(2s +1)
j=1
s—1
= AT g — ARY2C(2k)C(25 + 1 — 2). (13.25)
k=1

Therefore, for the sums of the three alternating double zeta values, we have
succeeded in giving closed forms when s (the sum of the arguments) is odd and
the summation index j is odd, even, or unrestricted; it is interesting to compare
this to the non-alternating case, whose sum is simpler when s is even (see Remark

13.2.1). A notable exception is the following formula, whose proof is similar to that

of (13.5):

Theorem 13.3. For integer s > 2,

s—1

4 (25,25 = 2j) = (417 = 1)¢(2s). (13.26)

J=1
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Remark 13.3.4. Though it is believed that ((5,1) and (5, 1) cannot be simplified
in terms of well known constants for odd s, their difference can (this situation is

analogous to Theorem 13.2 and can be proven using the same method):

s—2

(3, 1)=¢(3T) = (1-27%)(s¢(s +1) —21og(2)¢(s)) = > (1 =27")¢(k+1)¢(s — k).

k=1
Moreover, some of the sums involving ¢(s,1) and ¢(5, 1) are much neater when

the summation index j starts from 1 instead of 2, for instance

s—1
S ¢G5 — ) = (22— )log(2)¢(s — 1) — ¢(5 = 1, 1),
j=1

s—1
ZC(;wg _]) = C(S - 171) - IOg(2)<($ - 1)7
=1

2s

22(—1)1{(5, 25+ 1—j) = (2—47%)10g(2)¢(25) — (1 —47%)¢(25 + 1).
j=1

O

We wrap up this section with a surprising result, an alternating analog of (13.4):

Theorem 13.4. For integer s > 3,

s—1

D V¢, s—4)=(3-2" = s5)((s). (13.27)

j=2
PROOF. The proof is very similar to that of (13.4): we write the left hand side
as a triple sum and first take care of the m = n case. Then we sum the geometric

series to obtain

(_1)m+n2s B 4(_1)m+n
m,;>0 (m—n)(m+n)*~t  (m—n)(m+n)ns—2’
m#n

The first term vanishes due to antisymmetry, and the second term telescopes:

S U 24D

m?2 — n? 4n?
m>0
m#n
Now summing over n proves the result. U

With (13.27) and results in [58], we can evaluate (@, b) etc. with a +b = 4, for
instance

(@9 = 8@ log(?27r2 + 7log(22)<(3) - 12387;4 +4Li4(%>. (13.28)
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13.4. More sums from recursions

In this section we first provide some experimental evidence which suggests that
the sums in Section 13.2 (almost) exhaust all ‘simple’ and ‘nice’ sums in some sense.
We then use a simple procedure which may be used to produce more weighted sums

of greater complexity but of less elegance.

13.4.1. Experimental Methods. It is a curiosity why (13.4) had not been
observed empirically earlier. As we can express all ((a,b) with a +b < 7 in terms
of the Riemann zeta function, it is a simple matter of experimentation to try all

combinations of the form

> (a-b 4 d)C(Gs = ) = f(5)¢(s), (13.29)
J

with j or s being even, odd or any integer (so there are 9 possibilities), a, b, ¢, d € Q,
and f: N — Q is a (reasonable) function to be found.

Now if we assume that 7, ((3),((5),((7),... are algebraically independent over
Q (which is widely believed to be true, though proof-wise we are a long way off,
for instance, apart from 7 only ((3) is known to be irrational — see [187], and also
Remarks 2.3.4 and 6.3.3), then we can substitute a few small values of s into (13.29)
and solve for a, b, ¢, d in that order.

For instance, assuming a formula of the form Zj;; /(4,5 — j) = f(5)((s)
holds, using s = 5 forces us to conclude that a =1 or a = 2.

Indeed, when we carry out the experiment outlined above, it is revealed that
the sums (13.3), (13.4), (13.5) are essentially the only ones in the form of (13.29),

except for the case
1

(d +d*7)C (25, 25 — 29),
1

S

J
(note the factor in front of the ¢ has to be invariant under j +— s — j). Here, the

choice of d = 4 leads to

1

1(4j +4579)¢(24,25 — 2j) = (s + % + %43‘1)«28),

S

J
a result which first appeared in [152] and was proven using the generating function

of Bernoulli polynomials (see Section 13.5).
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Remark 13.4.1. As noted in [152], more general constructions stemming from

Bernoulli polynomials lead to non-closed form on the right hand sides, for instance

s—1 s s . (o .
;(91 +9°77)((24,25 — 2j) = 3(9+83)+8€(28) L (6 2532(5 1)1§? )

s—1 S]9j
27).
+;623—2]—1) ¢(2))

Sums of the form
> p(s,5)¢0, s — ) = F(5)S(s),
J
where p is a non-constant 2-variable polynomial with rational coefficients, can also
be subject to experimentation. If the degree of p is restricted to 2, then j(s —
7)C(24,2s — 27) is the only candidate which can give a closed form. Indeed, this

sum was essentially considered in [152], using the identity

[\

S—

6 (25 —1)(2s — 27 — 1)¢(2§)C(2s — 2j) = (s — 3)(4s> — 1)¢(2s).  (13.30)
j

[l
I\

The identity was due to Ramanujan [15, chapter 15, formula (14.2)]. Applying

(13.2), the result can be neatly written as

[\

S—

(25 — 1)(2s — 2 — 1)¢(2j,25 — 2j) = Z(s —3)¢(2s). (13.31)

||
N

J
Ramanujan’s identity above, and below — (13.32) — are actually more general
than what is shown here, for they are identities between Eisenstein series of different
weights. However, the forms shown here are routine to prove, as we outline in
Section 13.5.
Searches for ‘simple’ weighted sums of length 3 multiple zeta values, and for
g-analogs of (13.4), have so far proved unsuccessful (except for [67] which contains

a generalisation of (13.5), see (13.50)).

13.4.2. Recursions of the Zeta Function. We observe that any recursion

of the Riemann zeta values — or of Bernoulli numbers via (13.9) — of the form

Zg(s,j>c<2j><<2s — 2j)
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for some function g would lead to a sum formula for double zeta values, due to
(13.2). This was the idea behind (13.31) and was also hinted at in Remark 13.2.1,
(13.8). We flesh out the details in some examples below.

One such recursion is [15, chapter 15, formula (14.14)], which can be written as

n—1
D 325+ 1)(n—§)(2n — 25+ 1)¢(25 +2)¢(2n — 2j + 2)
j=1
4
- 6710(71 +1)(20+3)(20 +5)(20% — 5+ 12)((2n +4) — T (20— 1)((20).
(13.32)
Upon applying (13.2) to the recursion, we obtain the new sum:
Theorem 13.5. For integer n > 4,
n—2
D G =12 = 1)(n—j—1)(2n = 2j — 1)¢(24,2n — 2j)
j=2
= %(n —1)(3n — 2)C(2n) — 3(2n — 5)C(4)¢(2n — 4). (13.33)

Next, we use a result from [149], which states
n—1
2n BZkBZn—2k H2n
b = — Ban. 13.34
;[ (Qkﬂ (2k)(2n — 2k) n 2 (13.34)

We apply (13.2) to the left hand side to obtain a sum of double zeta values; unfor-

tunately one term of the sum involves 3771 (2k — 1)!(2n — 2k — 1)! which has no

nice closed form. On the other hand, a twin result in [144] gives

:Z:[n - @Z)] BokBon—gi—2 = (n — 1)(2n — 1) Byy_o. (13.35)

When we apply (13.2) to it, we end up with a sum involving ZZ;%(2k)!(2n—2k—2)!,
which again has no nice closed form.

Yet, it is straight-forward to show by induction that

T (=1)F (4 D (D)™ (m 4 Dl — m)!

— (Z) N (n+ 2)n! ’

hence, when m = n, the sum vanishes if n is odd and equates to 2(n + 1)/(n + 2)
when 7 is even. In other words, S 2" (—1)¥k!(2n — k)! has a closed form, and

accordingly we subtract the sums obtained from (13.34) and (13.35) to produce:
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Proposition 13.1. For integer n > 2,

— 1 n+1 B ¢(2n+2)
Z{P ( ]k( C(2k,2n +2 — 2k) + 22— L x

s ) k(1= k) c@2n)
2 (2k —n)?+ (n+1)(n +2)
[(271 +1)(Z) C (n—k+1)(2n — 2k +1)(k+1)(2k + 1)} ¢(2k,2n — 2]4:)}
n2 n n
=3 |:H2n—1 —Hpq — M} q ) — ;711—:1),((2% 2). (13.36)

Our next result uses [4, equation (7.2)], whose special case gives:

[n/2]
2 Boy, . 4nn! (2n—2k)! .
ot %y (@m)n kzo (0 — k) (n — 2yt S (2R)C(2n = 28). (13.37)

Upon applying (13.2) and much algebra, we arrive at:

Proposition 13.2. For integer n > 2,

n—1

(n + |n — 2k|)!
2k, 2n — 2k
;(n+ln—2k|)|n—2k\!<( 2 — 2K)

4 2n! _7”L(n+l)!2 "\n+t2

_ {(1+ (=2)1=)(n —1)! N 32n—1)!  (2n+1)! <1,2n+2’_1>}€(2n).

PRrROOF. The only non-trivial step to check here is that the claimed 2 F} is pro-

duced when we sum the fraction in (13.37); that is, we wish to prove the claim

[nz/%] (=1)"n (2n —2k\ 1 _ m(ntm 7 IL,n+m+1
20n —k)\n—2k ) (1 —x)nt! . n )¥! m+1 |

k=0

r=—1m=n+1

Our proof is quite experimental in nature. We observe that for x near the origin

the right hand side is simply ZZZ:_Ol P ("Zk), as they have the same recursion and

initial values in m, hence when x = —1 they also agree by analytic continuation.
This sum (in the limit z = —1, m = n + 1), as a function of n, also satisfies the
recursion

AF(n) — 2f(n— 1) = 3<—1>”<2”), F1) = -1,

n
which is the same recursion for the sum on the left hand side of the claim — as may

be checked using Celine’s method [161]. Thus equality is established. O

Remark 13.4.2. It is clear that a large number of (uninteresting) identities similar

to the those recorded in the two propositions may be easily produced. Using [4,
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(7.2) with k = n + 1], for instance, a very similar proof to the above gives

n—1

Z 4(n+ 14 |n — 2k|)!
nl(1+ |n — 2k|)!

- C(2k,2n — 2k) = (14 (—=1)™)(1 — n)¢(n)? 4 ((2n)x
k=1

{n+3+ (—1)"(n—1+27") +2(2"T:r 1) [3 - Wﬁl(l’sz;ﬂ—l)} }

Care must be exercised when consulting the literature, however, as we found in the
course of this work that many recorded recursions of the Bernoulli numbers (or of
the even Riemann zeta values) are in fact combinations and reformulations of the

formula behind (13.31) and the basic identity appearing in Remark 13.2.1. O

13.4.3. The Reflection Formula. Formula (13.2) is but a special case of a
more general reflection formula. To state the reflection formula, we will need some
notation from [58], which we have tried to avoid until now to keep the exposition
elementary.

Let xp(n) denote a 4-periodic function on n; for different p’s we tabulate values

of xp below:
p\ni| 1| 2|3 ] 4
1 1 1 1 1
2a 1 0 1 0
2b 1 |-1| 1 ]-1
-4 1]0]|-1|0

We now define the series L, by

Lp(s) = 3 X;;l(sn)

)

n=1
and Lyq(s) means ) o xp(n)xq(n)/n’®. Finally, we define character sums, which

generalise the double zeta values, by

N (1) xo(m)
p.al(s,t) => > = . (13.38)

t
n m
n=1m=1

In this notation, ¢(s,t) = [1,1](s,t), ¢(s,t) = [1,20](s,t), etc. We can now state the

reflection formula [58, equation (1.7)]:

[P, ql(s: 1) + [a: PI(t, ) = Lp(8) L (t) = Lpg(s +1). (13.39)
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Remark 13.4.3. With the exception of x2p, X, are examples of Dirichlet characters

and L, are the corresponding Dirichlet L-series. Indeed,
Li(s) = ¢(s),  Laa(s) = (1 =277°)¢(s) = A(s),
Lap(s) = (1 = 2'7°)¢(s) = n(s), L-a(s) = B(s),

where the last three are the Dirichlet lambda, eta and beta functions respectively.
We have implicitly used these series in the evaluation of lattice sums at the end of
Chapter 7.

Moreover, 2(2n)! (2n + 1) = (—1)"(n/2)*"*1 Ey, for non-negative integer n,
where FE, denotes the nth Euler number. Using generating functions, one may

deduce convolution formulas for the Euler numbers, an example of which is

n—2

n—2 B
EvE,_o_j =2"(2" — 1)—=2.
z(k) s =2 1)

k=0
Many of our results in the previous sections would look neater had we used A(s)

and 7(s) instead of ((s). O

Remark 13.4.4. In [89], it is shown that for s + ¢ even, the sum [—4,1](s,t) —
[—4, 2b](s,t) may be evaluated in closed form. (In the notation of [89], this sum is
271G )
The other sum considered in [89] is not found in [58], though we may apply the

techniques used in the latter for small s, ¢, e.g. we have

oo k ;

o (—1)yitetl g
Gi7 = -~ = —log(2) - G

k=0 j=1

where G = ((2) again denotes Catalan’s constant (see Chapter 5). General result

are proven in [89] using integral transforms of Bernoulli identities. O

Using the standard convolution formulas of the Bernoulli and the Euler poly-
nomials, and aided by the reflection formula (13.39), we can produce the following

sums for [p, q](s,t) as we did for {(s,t).

Theorem 13.6. Using the notation of (13.38), we have, for integer n > 2,

n—1 n—1
2 "[1,2b)(2k, 2n — 2k) + [20,1](2k, 2n — 2k) = —4 ) [2b, 2b](2k, 2n — 2k)
k=1 k=1

= (1 —417")¢(2n); (13.40)
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n—1 n—1
4 [2a,2a](2k,2n — 2k) = —4 [-4,—4](2k + 1,2n — 1 — 2k)
k=1 k=0
n—1
=Y [1,2a](2k,2n — 2k) + [2a,1](2k,2n — 2k) = (1 —47")((2n); (13.41)

Bl

=1

n

[2a, —4](2k, 2n + 1 — 2k) + [—4,2a](2n + 1 — 2k, 2k)

i
A

n—

= [2a, 2b)(2k, 2n — 2k) + [2b, 2a](2n — 2k, 2k) = 0; (13.42)

B
Il
—

n

2 [1,—4](2k,2n + 1 — 2k) + [~4,1](2n + 1 — 2k, 2k)
k=1

= —2) "[2b, —4](2k, 2n + 1 — 2k) + [—4, 2] (2n + 1 — 2k, 2k)
k=1

= B(2n+ 1)+ (167" — 27 172" ¢(2n), (13.43)

We note that (13.40) concerns the alternating double zeta values studied in
Section 13.3 (c.f. the more elementary Theorem 13.3). As mentioned before, the
identities above rest on well-known recursions, for instance the second equality in

(13.42) is equivalent to the recursion
D B(2n 41— 2k)A(2k) = nB(2n + 1).
k=1

Also, the many pairs of equalities within each numbered equation in the theorem

are not all coincidental but stem from the identity in [58]:
[17 Q] + [2b7 Q] = 2[20,, Q]a

where ¢ = 1, 2a,2b or —4.
Moreover, one can show the following equations; as character sums are not the

main object of our study, we omit the details:
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> 47 ([—4,1)(2n + 1 — 2k, 2k) + [1,—4](2k, 2n + 1 — 2K))
k=1
= 1+2612n5(2n + 1)+ (2717 — 471y ¢ (2n),

n—1
> " 4%([2a,1)(2k, 2n — 2k) + [1, 2a](2n — 2k, 2k))
k=1

- 472(8 49 om),

Since there is an abundance of recursions involving the Bernoulli and the Euler
numbers (see e.g. [157]), many more such identities may be produced using the

reflection formula.

13.5. Length 3 and higher multiple zeta values

Farlier in this chapter, we made use of the properties of the Bernoulli numbers
B, defined by the generating function
SN t
F(t):=> Bp—=——. (13.44)

nl et —1
n=0

Note that B,, = 0 when n is odd (unless n = 1). The Bernoulli numbers are

generalised to the Bernoulli polynomials By, (z), defined by the generating function

00

tn tel‘t
ZBH(‘II’,)E = et — 17
n=0

from which we see B, = B,,(0) (or By (1), if we ignore B;). The generating functions
also give B,(1/2) = (2" — 1)B,, when n is even, a property we have implicitly
used.

Two of Ramanujan’s identities used earlier involve the sums of j(n—j) (22?) BsjBay—2j
and (j—1)(2j—1)(n—j—1)(2n—25—1) (3?)ngB2n,2j, respectively. We demon-
strate that once such an identity is found, it can be proven routinely. The example

below does just that to prove the first identity.
Example 13.5.1 (Proof of equation (13.30)). Via the connection

2(2n)!¢(2n) = (=1)"T1(27)*" By,
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(itself provable using, say, contour integration), we write (13.30) in the form

n—1
Y j(n—j) @’;) By Ban_sj = ?14 (2n(2n—1)(2n—3) Ban_a—(2n+1)(2n)(2n—1) Bay).
j=1
We note that the left hand side is simply the coefficients of the square of the expo-
nential generating function for jBy;. Thus its generating function is easily obtained
by differentiating ¢/(e! — 1) (after subtracting the term corresponding to By). The
factorised right hand side lends itself easily as the coefficients of a combination of
repeated derivatives of ¢/(e! — 1).

To be more precise, recall the notation F(t) =t/(e! —1). Then the exponential

generating function for the left hand side is

i =S (Fw+1)

while the generating function for the right hand is slightly more involved, for we

first subtract off lower order terms since (13.30) does not hold when n < 2; it turns

out to be
tt tt d F(t) - h(t) 2 a3
Ga(t) = @ﬂLﬂa(it ) *ﬂ@(f(F(t)*h(t))),
where h(t) =1 —t/2 +t?/12. It remains to check that G1(t) = Ga(t). O

Ramanujan’s second identity (13.32) is proven almost as routinely, except that
for the corresponding right hand side, the irreducible factor 2n? — 13n 4 30 appears.
To facilitate computation, this factor could be broken up as n(n—2)+(n—>5)(n—6),

with each piece being viewed as an appropriate derivative.

Example 13.5.2 (A length 3 sum). By taking the cube of the generating function
t/(e! — 1), we observe the routinely verified identity

2n .
a;g <2a, %, 20) BooBopBae = (n+1)(2n + 1)Ba, + n(n — i)Bgn_g. (13.45)

a+b+c=n
When translated into zeta terms, this is
4 ) ¢(2a)¢(2b)¢(20¢) = (n+ 1)(2n + 1)¢(2n) — 7 ((2n — 2). (13.46)

a,b,c>0
a+b+c=n
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By either elementary sum manipulations, or by the harmonic relations (a.k.a. the
stuffle product [114, 115]), we have
() = (3¢5, 0) + s+ + S+ )] =2 (r+5+),
o (13.47)
where the first term on the right is a symmetric sum in r, s and . The multiple
zeta value ((r, s,t) has been defined in (9.2).
We sum both side of (13.47) over even r, s, t. After some simple combinatorics,
the right hand side becomes
6 ) ((2a,2b,2¢) + 2(271 +1)(n—2)¢(2n) — (n — 1)(n — 2)C(2n).
atb+c=n
Consequently, by (13.46) we have
> ((2a,2b,20) = gC(Zn) — i((?)C(Qn -2). (13.48)
a+btc=n
This result first appeared in [67], though our derivation here is slightly more ele-
mentary. We now look at the alternating sum, also first studied in [67]:
S (=D + (D + (=1)%)¢(a, b, o).
e
When any of a, b, ¢ is odd, the factor in front of the multiple zeta value returns —1;
otherwise it returns 3. Thus, we can add this sum to Granville’s theorem [105]

Z C(a1,az,...,ar) = ((n), (13.49)

ai1tag+--+ap=n
a1—1,a2,...,ap >0

and apply (13.48), to find

S (=1 + (<1 + (1)) ¢(ar by o) = ;C(Qn) @20 —2).  (13.50)

a+b+c=2n
a—1,b,c>0
O
The authors of [67] also use a closed form formula for
2n
ByoBoyBa. B
Z (2@, 2b, 207 2d) 2aP2bP2cL2d,
a+b+ct+d=n
together with Ramanujan’s formula (13.30) to give the length 4 identity
35 5
> ((2a,2b,2c¢,2d) = 516n) = 15C2)¢(2n - 2). (13.51)

a+b+ct+d=n
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While [67] comments that the length 4 analogue of (13.50) would be difficult
to find (our experiments indicate that it does not seem to have a closed form in
terms of a rational multiple of 72"), we can find other analogs, by performing a
trick similar to that used in the derivation of (13.50). That is, we find a factor (a
symmetric function of a, b, ¢, d) which returns —1 when either 2 or 4 of a,b, ¢, d are
odd; we then combine it with (13.49). There are many choices here, one possibility

being

Proposition 13.3. For integer n > 3,

3 [2((_1)a + (=) 4 (=1)° + (—1)%) — (-1)“@1} C(a,b, c,d)
iy

3 5
= 156(2n) = 1¢(2)¢(2n — 2). (13.52)

Clearly more results like the above are possible. We move onto a sum of a
different form. Using formula (5) in [88] (which can again be easily proven, though

slightly harder to discover — see Lemma 13.2),

> (2a—1)(2b - 1)(2¢ — 1) ((2a)¢(2b)¢(2¢)
el

_2n—5

= 50 (67%¢(2n — 4) 4+ (n — 6)(n + 1)(2n — 1)(2n + 1)¢(2n)), (13.53)

we ultimately deduce a three dimensional analogue of Nakamura’s identity (13.31),

Proposition 13.4. For integer n > 3,

> (20— 1)(2b— 1)(2¢ — 1) {(2a,2b, 2c)

o
—(2n — 5)¢(4)C(2n — 4) — 3(2”4_3)4(2)g(2n o+ 0 an). (13.50)

PROOF. The proof proceeds along similar lines as our prior results. We first use
(13.47), replace r by 2a, s by 2b, and t by 2¢, where a + b + ¢ = n, then multiply
both sides by (2a —1)(2b—1)(2¢ — 1), and sum over all positive integers a, b and c.
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This gives

6 > (2a—1)(2b—1)(2¢c—1)¢(2a,2b,2c)

a+b+c=n
a,b,c>0

= 3 {2a—1)@ - 1(2c— 1)¢(20)(2)(26) + 220 — 1)(2b — 1)(2c — 1)((2n)
a+b+c=n
a,b,c>0

— 3(2a — 1)(2b — 1)(2¢ — 1)¢(20)¢(2n — zb)}. (13.55)

On the right hand side of (13.55), the sum for the first term can be taken care of
by a small modification of (13.53); the sum for the second term is easy. The sum of
the third term is slightly more troublesome; we first do the summation over indices
a and ¢ to obtain a single sum in b, let us denote it by 37= S(n, b).

S is not symmetric, that is, S(n,b) # S(n,n—>b). We apply the trick of replacing
S by (S(n,b)+S(n,n—">0))/2. This symmetrises the summand so we may write it in
closed form using Ramanujan’s identities (13.30) and (13.32). The final computation
involves combining the closed forms obtained for the three terms in (13.55); the work

is tedious though not difficult. O

Remark 13.5.1. In [85], Dilcher works out a closed form for all sums of the type

2n
By, By, ---B
Z<2a1,2a2,...,2ak> 261 22a1 2ay, 1

and notes the connection between this and sums of multiple zeta values (as early
as 1994). Corresponding sums for Bernoulli polynomials are also recorded; indeed,
using [85, eqn. (3.8)] with z = 1/2, y = 2 = 0, we get

477),
> @ b+ 479¢(2a,20,2¢) = o (747 + 128+ 1415 — 18n2)¢(2n)
a+b+c=n

3(1 + 23—2n)

T ¢(2)¢(2n — Z 471 ¢(2n — 2i), (13.56)

unfortunately the last sum does not appear to have a closed form, as strongly

suggested by numerical experimentation (see the proof of Lemma 13.2). O

Using the result for the sum of product of 5 Bernoulli numbers, and aided by
the stuffle product, we deduce the next result much the same way as its length 3 or

4 analog in [67]:
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Theorem 13.7. For integer n > 5,

S C(20,2,26,2d,26) = ¢(n) — 2 2¢@)0(2n—2) + L0 —4).
a+b+ct+d+e=n
(13.57)

SKETCH OF PROOF. We start with the length 5 analog of (13.47), obtainable
using the stuffle product, which writes ((2a)((2b)((2¢)((2d)((2e) as a symmetric
sum of multiple zeta values of lengths no greater than 5. As stated, we use the
sum of the product of 5 Bernoulli numbers [85, eqn. (2.8)], both of Ramanujan’s
identities (13.30), (13.32), and the length 3 and 4 sums (13.48) and (13.51). The
key steps are spelled out in the proof of (13.54). In addition, only one more sum,
(13.58) below, is required. This sum must have been known, but we are unable to

locate it in the literature. We prove (13.58) next. O

Lemma 13.2. For integer n > 3,

Z abe ((2a)¢(2b)((2¢) = 3@2_5)«4)((271 —4)+ (2n — 1)(2”3; 2)(2n — 6) y
“ahes0
C@)c(n—2) 4 EnT2En @ —1)@n =2) o 1555

3840

PROOF. We again stress that the proof is not difficult once the result is known.
Indeed, the left hand side is the coefficient of the cube of the generating function
for jBs;, and the right hand side is the coefficient of a combination of derivatives
of the generating function for Bs;. The more interesting part is how this identity
was discovered.

It was discovered experimentally after we were convinced that a closed form like
Theorem 13.7 must exist. Then, it was easy to guess that the right hand side of
Theorem 13.7 has the form

ao§(2n) + a1¢(2)¢(2n — 2) + ax((4)¢(2n — 4),

c.f. the length 4 analog (13.51). The coefficients a; can be solved by evaluating the
left hand side to high precision for three different n’s. From this knowledge we can
work backwards and discover the lemma. High precision calculation of multiple zeta
values can be accessed from the website http://oldweb.cecm.sfu.ca/projects/

EZFace/, based on the works [49, 50].


http://oldweb.cecm.sfu.ca/projects/EZFace/
http://oldweb.cecm.sfu.ca/projects/EZFace/
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Alternatively, inspired by Ramanujan’s identities, one could reasonably guess

that the right hand side of (13.58) would look something like

po(n)C(2n) + p1(n)¢(2)C(2n — 2) + pa(n)C(4)C(2n — 4),

where p; are polynomials in n of degree say at most 5. The unknown coefficients
in the polynomials then may be solved by linear algebra, since the left hand side of

(13.58) can be computed very easily for small n. O

Lemma 13.2 itself leads to a different result, which is another three dimensional

analogue of (13.31):

Proposition 13.5. For integer n > 3,

~16(2n = 5)C(A)C(2n — 4) — 4C(2)((2n — 2) + n¢(2n)
Z abe ((2a,2b,2¢) = 198 .

a+b+c=n

(13.59)

Although it appears that equation (13.58) could follow from equations (13.46)
and (13.53), we have not been able to see a clear connection; indeed, all three

equations can be used together to deduce

Y (@40 +¢*)¢(20)¢(2b)¢(20)

b
nn n 2 n — n —
it DR (g - B =3 oo ).

Remark 13.5.2. Note that the right hand side of Theorem 13.7 is a rational
multiple of 72", and the same is true for (13.51) and (13.48). Though it is not
immediately clear to us whether for length k, there exists analogous closed forms
like Theorem 13.7, it is not hard to show that for all positive integers k& < n and

a; > 0,

> ¢(2a1,2a2, . ..,2a) = Crpn 7", Crn € Q. (13.60)

aitaz+-+ar=n
The proof essentially involves repeated applications of the stuffle product *, for

whose properties we refer the reader to [115]. In particular, % is commutative and

associative. A brief sketch is as follows.
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The key observation, which can be proven by induction, is that the stuffle prod-

uct sy % sg * - -+ % s generates the identity

C(s1)C(s2) -+ C(sk) = Y C(s10890---08p), (13.61)

where o has to be one of ‘” or ‘+’, and the summation range is over all possible
distinct sequences (s;0s90---0sg) ((s1,s2+s3) and (s1+ s2, s3) are distinct, but the
first one and (s, s3 + s2) are not). For k = 3, see (13.47) (where we have replaced
pairs of double zeta values using (13.2)).

The next step is to systematically subtract off from the right hand side of
(13.61) the symmetric sum (modulo commutativity and associativity) of identities
generated by the stuffle product s1 ©® s2 ® --- ® s;. Here ® has to be one of * or
+, moreover the operator 4 takes precedence over x. To do this properly, we need
to first subtract off the identities with only one +, then ones with only two +’s,
etc. (So for k = 3, we first subtract off the identities generated by s; + s2 * s3,
S1+ 83 %S9, Sg%s3+ s1, then s;+ s9+s3). It can be checked, using a form of (13.61)
with different values of s; substituted, that this process will terminate, and on the
right hand side of (13.61) will only remain a symmetric sum of length & multiple
zeta values with parameters si,...,s;. On the other side will be a sum of products
of zeta values, whose arguments sum to sy + - -+ + Sg.

Finally, let s; = 2a;, fix s1 + --- + s = 2n and sum over all a;, we arrive at
(13.60).

Independent of us, this result seems to have been first proven by S. Muneta.

We thank Y. Ohno and W. Zudilin for communicating this information. O

13.6. Another proof of Zagier’s identity

D. Zagier recently proved the amazing multiple zeta formula [201]

Ser[(-9)6) - Gl e

r=1
His proof in [201] is rather involved. In this section we outline a simplification

of the proof, showing in particular that some of the key identities involved can
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be checked automatically using Gosper’s algorithm [161]. We refer the interested
reader to [201] for the background of the formula and other details of the proof.
We first convert (13.62) to the equivalent form

2y, 3,121
zzizn:l(—l)r—l ((1-5) (o 1) = (o 2) Jetemen—rsitar+ ),

(13.63)

where {k}" means the argument k is repeated m times. The proof is completed in

the following 6 steps.

1. It is not hard to check that the two-variable generating function of the left hand
side of (13.63) is
F(a:,y) _ Z (_1)m+n+1<({2}m {Q}n) 2m+1 2n+2

m,n>0

SR (5

r=1 k=1 l=r+1

)
_sinmr o (=y)e(y)r 1
oo Z (—z+1)p(z+ 1), r

sinwz 0 ( Y, —Y, 2 (13.64)

9222 14+z,1—2x

2=0

r=1

2. The generating function of the right hand side of (13.63) equals

m+n+1
Flz,y) =2 Z (—1)mHng2mly 2n+2 Z (1) <(1 B 22T)<2mQZ_ 1)

m,n>0 r=1
I (m+n—r+1)
— 2 1
<2n+2>) Cmtn—rrn+no&ty
sinmx sin my

= (Al +y) + A -y) - 24@)) - (B(z+y) — B(z —y)),

after some manipulations, where

A(t) = —y — %(\m £ -0) and B(D)=A() - A(}).

As usual, ¥ denotes the digamma function (see (5.24)).

3. Both F(z,y) and F(z,y) are entire functions on C2. By standard estimates, it

can be shown that for a fixed x € C, each of them is of exponential type and is
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O(egﬂlm) and |y| — oo. (In fact a much stronger estimate is possible, but we do

not need it.)

4. For z € C, it is easy to check that

P(z,7) = —Sin:x A(z) = Pz, 2),

and
F(z,0) = 0= F(z,0).

The first 4 steps basically follow [201]. The goal is to show the sum in step 1 equals
the digamma expression in step 2. Our next two steps replace the delicate analysis,

including a technical result on two-variable entire functions, used in [201].
5. For each z € C, the function f(z,y) := F(x,y) — F(z,y) is 1-periodic in y.

PRroor. Note that

(@)r(y+1r = 2+ Dr)r = (2)r(9)r - T(l - 1)-

y oz
Therefore, choosing z = —y — 1, we obtain
sinr 2y +1 ~— —y—1)r(y)r
F 1)—-F
(,y+1) (z,y) = T yly+1) TZ:; —z+ 1) (z+1),

The latter hypergeometric sum is Gosper-summable: if we take

Alr) = 2 —yly+1) +r (Y= D)
@-ye+y)-—y-Da+y+l) (-z+1)(z+1)’
then
(= =De(y)r
A(r)—=A(r—1) = CotD @t
Furthermore,

MNe—r)(y+7r+1)
MNe+r+1)I'(y—r+1)
sinty T(r—y)T(r+y+1)
sinte I'(r —x + 1)I'(r + 2+ 1)
sinmy ((1— L)1+ ¥) e
sintz \ (1-2)(1+%) ) r
sinTy 1

- — asr — oo.
sinmx r

(—y = Drs1(¥)rs1
(=2 + L)r(z+ 1),

=—zy(y+1)-

=zy(y +1)

~zy(y +1)

~zy(y +1)
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Thus,

Fay+1) = Flr.y) = 227 20 (Aoc) = A)
sin Ty z(2y+1)
™ (@-ylt+tylr-—y-E+y+1)
sin T (22 —y(y+1))(2y + 1)
T (r-ylrt+y)(z-y-DE+y+1)

A routine verification shows that a similar result holds for F(z,y + 1) — ﬁ(x,y)

This implies the desired 1-periodicity. O

6. For each z € C\Z, the function f(z,y) is zero, so that it vanishes for all z,y € C,

implying F(z,y) = F(z,y).

PROOF. We fix an arbitrary x ¢ Z. It follows from steps 3-5 that the entire

1-periodic function f(x,y) vanishes at y = z and y = 0. Therefore,

o(y) = LY

sinmw(y — )
is an entire function of exponential type, which vanishes at the integers and whose
growth is O(e%”‘m) on the imaginary axis. Therefore, by Carlson’s Theorem 1.3,

g(y) vanishes identically, and so does f(z,y). O

Remark 13.6.1. Zagier [201] asks if a hypergeometric proof of (13.62) could be
found. The paper [135] answers the question in the affirmative. The first step
involves transforming the 3F5 in (13.64) twice (curiously, one of the transformations
is also used in Remark 7.10.1), so that in the resulting sF5, the derivative with
respect to parameter z at 0 is particularly simple. In fact, in the derivative, some
terms vanish while the remaining ones evaluates in terms of ¥ by a formula in
[131] (such formulas are not uncommon, see e.g. Theorem 5.5). The ¥ expression

obtained simplifies to the required terms in step 2. O



CHAPTER 14

Further Applications of Experimental Mathematics

ABSTRACT. In this chapter we deal with two applications of experimental math-
ematics. The first section addresses the problem of finding, proving and sim-
plifying contiguous relations, with help from PSLQ. The next two sections out-
line a method to discover and investigate orthogonal polynomials starting with
Gram-Schmidt orthogonalisation, with an application in Gaussian quadrature to

approximate a range of sums.

14.1. Contiguous relations

When the matching parameters in two generalised hypergeometric functions

with the same argument differ by integers, they are said to be contiguous [11]. For

111
3F2<2’2’2 x)

1,1
are contiguous. (In the terminology of [179], such a pair is called associated, while

instance,

113
d F 27272
I) an 3 2( 1’2

the term contiguous is reserved for the case when only one pair of parameters differ,
and only by unity. We do not make this distinction here.)

It was Gauss who showed that a oF; can be written as a linear combination
of any two of its contiguous functions, with rational coefficients in terms of the
parameters and the argument. Such combinations, known as contiguous relations,
are of importance in dealing with hypergeometric sums, and feature in many results
from Chapters 3, 5, 6, 7 and 12. There is a large but scattered literature on
contiguous relations, see for example [11, 27, 162, 198, 122]. We hope to present

a slightly more unified treatment here.

14.1.1. Raising and lowering operators. We consider the hypergeometric

function

Ay A1y ..., Qp

F((I,(Il,...,an;b,bl,...,bn_l;l') :n+1Fn<b,b1,...,bn1

283
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(All the theory here also works for a general ,F,, we simply find the stated function
more useful.) When the function used is understood from the context, we simplify
denote it by F, or F(a) to highlight the parameter of interest. We use F'(a+) to
denote F' with a replaced by a + 1; similar conventions hold for other parameters.
We also use D to denote the operator with the effect that DF = m%. It follows

from straightforward series manipulations that (for any valid set of parameters and

n)
aF(a+) = (D +a)F, (14.1)

(b—1)F(b—) = (D +b—1)F. (14.2)

These two useful contiguous relations allow us to raise a ‘top’ parameter by 1, and
to lower a ‘bottom’ parameter by 1. In order to lower the top by 1 or to raise the

bottom by 1, we need to resort to the hypergeometric differential equation:

[D(D+b—1)(D+by—1)---(D+by_1—1)—z(D+a)(D+ar) - (D+ay)|F =0.

(14.3)
In (14.3), replacing a by a — 1 and factoring out D + a — 1 (which can be achieved
by formally setting D =1 — a), we have

(a—1)(b—a)(by —a)---(bp—1 —a)F(a—) = Ay(D —a—1)F(a—),

where A is a differential operator involving only the parameters, x, and powers of
D. Replacing the last two terms on the right by (14.1) (again with a +— a — 1), we
obtain a formula for F(a—).

Similarly, in (14.3), replacing b by b + 1 and factoring out D + b gives
w(a—b)(ar = b) -+ (an — )F(b+) = Ag(D + b)F(b+),

where Ay is similar in nature to A;. Invoking (14.2), we obtain a formula for F'(b+).
The form for a 3F; is recorded in (14.6).

In summary, the operators F(a+) and F(b+) exist and are very easily com-
putable with a computer algebra system. The formulas for F'(a—) and F(b+) only
involve the functions x'F,z'DF, ..., 2*D"F for i € {—1,0,1}. Moreover, when
x = 1, we see that in (14.3) the D" term disappears and hence cannot appear in

the contiguous relations. (In practice, expressions of D"™F may involve z — 1 in
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the denominator, so at = 1 it may need to be simplified using L’Hopital’s rule.)

Armed with the four raising and lowering operators, we have:

Theorem 14.1. Any function contiguous to F' can be expressed in terms of F, DF, . ..
D" 'F, D"F, and a contiguous relation may be obtained from any n+2 contiguous
functions (by means of elimination). When x = 1, the D™F term is not required

and we only need n + 1 functions.

Theorem 14.1 was essentially known to Bailey [27], who comments that “It
would be a very tedious process to obtain some of these results directly by the
general method of this paper” (pertaining to finding contiguous functions from the
four operators). With the advent of computer algebra systems, we see that this is
no longer the case, for such operations can be quickly and faithfully carried out on
even a modest machine. Moreover, in the next section we present another method

of obtaining contiguous functions.

Remark 14.1.1. The following contiguous relations are easy to prove and are

occasionally useful:
(a —a;)F = aF(a+) — a;F(a;+),
(a—b+1)F =aF(a+)— (b—1)F(b—), (14.4)

(b—b)F = (b—1)F(b—) — (b — 1)F(bi—).

14.1.2. PSLQ and contiguous functions. We start with an example.

Example 14.1.1. Suppose F'is a 3F5 and we want a contiguous relation in terms of
F(a),F(a+1),F(a+2), F(a+3); such a relation is guaranteed to exist by Theorem
14.1. Instead of using the four operators F'(a+) and F(b+), we realise that equation
(14.3) indicates F can be written as a linear combination of 2! D/ F, where i € {0,1}
and j € {1,2,3}. Using (14.1) repeatedly, we see that these terms simplify into the
form (u + vgz)F(a + k) for k € {0,1,2,3} for some uy, and vy, and the power of z

involved is at most 1. That is, we have

3
> (ur +vez)Fla+ k) = 0. (14.5)
k=0
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We expand the 3Fy’s in (14.5) as sums in n, extract the summands of z" and
simplify, then solve for ug,vi. This can be done by substituting in values of the
summation variable to form enough equations (here we need 8); or by collecting the
expression into a single fraction, and setting up a system of linear equations with
the aim of making the numerator disappear identically. Either way we obtain the
desired contiguous relation (with humongous coefficients).

Specialising the relation by setting a = 0, x = 1, for instance, and we get

1, b, ¢ 1>

((2—d)(2—e)—(l—b)(l—c))3F2< g
1) +(1—d)(1—e).

2,b
:(2+b+c—d—€)3F2< ’d '€

9

O

There are a few observations about the above derivation. Firstly it works for a
general ,Fy, and for contiguous relations of any desired form. Secondly, for other
forms of relations, it is conceivable that we may not be so lucky as to only get linear
powers of z, so we may need to enter higher powers of x in the equivalent of (14.5)
in search of a relation. Note that this ‘guess, simplify and solve’ routine is similar
to Celine’s algorithm [161].

How do we know which powers of z to use? This is when the integer relation

program PSLQ comes in. We have the following procedure:

Suppose we want to find a relation between some hypergeometric functions Fj.
Pick the parameters to be rational and pick a small, irrational x. Compute, to high
precision (which is possible as x is small), 2/ F; for j = —Jy,...,—1,0,1,... .
where Jy, J1 are appropriate integers. Run PSLQ on these constants; if no relation
is found, increase Jy, Ji. If a relation is found, then the equivalent form of (14.5)
is very likely to involve the non-zero terms in the relation (since the irrationality of
x minimises the likelihood of spurious relations). We then extract the summand,
simplify and solve for the coefficients, as we did for (14.5). Once a solution is found,

the corresponding relation is proven.

Example 14.1.2. For instance, let us find F' = 3Fy(a — 1,b — 1,¢;d + 1,e; ) in
terms the Fj, the ith derivatives of 3F5(a,b,c;d, e; ), without using the operators

F(a+) and F(b+) (which would require 3 applications).
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We pick Jy = 0,J; = 3, and run PSLQ on the vector with elements F' and 27 F;
with i € {0, 1,2}, for appropriately chosen parameters and z. A relation is found,

and so we have discovered that
F = (u1 + uox) Fy + (ug + ugx + U5$2)F1 + x(ug + urr + u8m2)Fg,

for some uq,...,us. We can extract the summand and solve for the u;, which are

rather complicated functions of the parameters. O

Example 14.1.3. An important application of examples like 14.1.2 is the evalua-
tion of hypergeometric functions in terms of other functions. If F' is expressible in
terms of well-known functions, then we can write any function contiguous to F' in
terms of F' and its derivatives. For instance, since

111 _ —
3F2<2,2,2x> 4K2( 1-VI—z 1:)

1,1 T2 2

Example 14.1.2 gives, after some simplification,

1 11
(=) ("3 22
1 1,2

42(1 — tz)) = (2 — 1)(12t* — 22t + 1) K?(t)
—2(t2 —1)(12t* — 2612 + 1) E(t) K (t) — (40t* — 40> + 1) E2(t).

Computations like this form the basis of the contiguous relations required in Chapter

12. O

The raising and lowering operators can also be written in terms of the F’ (instead

of AF), and we record here that for F' := 3F5(a,b,c; d, e; x),

vy becx _afdfe+(1+b+c)1:x , 2X(1—x)F"
Fla=) =1 (a—d)(a—e)} (a—d)(a—e) At ==
B abe e—(l+a+b+c—d)z
F(d+) = [1- (a—d)(b—d)(c—d)} a—db—dc—djd’
da(l— ) F" (116)

(a—d)(b—d)(c—d)

Remark 14.1.2. In Chapter 3, the proof of lemma 3.1 uses the raising operator

(14.6) repeatedly to obtain a differential expression which simplifies to 0. This

seems to be a powerful and previously unexploited method to prove a wide range
of contiguous relations with fixed arguments.

In Chapter 7, in order to work out a number of incomplete moments, we needed

a closed form expression for 3F2(%, %, %; 1,2; t); this can be easily done using (14.6).
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We also note that contiguous relations with (free) argument z are generally
easy to prove, once discovered, by looking at the series expansion; relations with
argument 1 can often be proven using Gosper’s algorithm [161], as we did several

times in Chapter 6. O

14.1.3. Contiguous summation formulas. Many exact summation formu-
las in terms of I" functions are available for certain special hypergeometric functions
(as we saw in some 1/7 evaluations in Chapters 10 and 12). Almost always, such
formulas are stated in the literature in their cleanest and simplest forms, however
in many cases functions contiguous to the stated ones also possess closed forms.
In particular, these contiguous closed form summation formulas are not handled
automatically in computer algebra systems. We collect some results here.

Kummer’s theorem. Kummer’s theorem [25] evaluates certain o F}’s at —1:

pf @b | ) _Ta+a-bra+g)
N14a-b T T+ ¢-b0)r(1+a)

(14.7)

However, there is actually a closed form formula for o F}(a,b;n + a — b; —1) for all
integer n. When n > 1, we use the Euler integral (4.3) to write the o F} as

I'(n+a—0b) lxa—1 2701 — ) da
r(a)r(n—b)/o (1=2%)7 (1 —2)" dz,

so we can expand out the last factor binomially and apply the beta integral to each
term; therefore
a,b (L= B0(n+1—b+a) ¢~ (-DF (T(5)
2 F1 -1 = Z .
l1+n+a—> 2T (a)T'(n+1-10) I(1— b+«
(14.8)

k=0

When b is a positive integer, this formula is to be understood in the limiting sense,
first fixing n. Similarly, we also have

a,b I'l+a—-b—n) “ (")F(M)
2F1<1_n+a_b ‘ —1) = N0 k:ZOF(l _kb_ Q“%k). (14.9)

For fixed n, these formulas can collapse down naturally into two terms due to the
I" recursion. In particular, when n = 1, the formula is rather succinct:

() T 1)

Gauss’s second theorem and Bailey’s theorem. These theorems give closed

form evaluations of certain oF)’s at 1/2 [25]; one obvious application is in the
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computation of the value of K (1/1/2) which we have used many times, another is
seen in Section 10.8. Using Euler’s transformation (6.32) (mapping z — z/(z — 1)),

equations (14.8) and (14.9) imply that both
1
2

1 a,n—a
> and 2F1<
c
have closed forms in terms of I' functions for all integer n. Some special cases of

2
(14.8) and (14.9) have been found in [163].

7 a,b
251\ ntatd
2

Saalschiitz’s theorem. This theorem for a terminating 3F5 is traditionally stated
as [25]

a,b, —n _ (c—a)n(c—"b),
3F2<c,1—|—a—|—b—c_n 1) = Oe—a D)’ (14.10)

where n is a non-negative integer. We can generalise (14.10) here. It is not hard to

see that the coefficient of 2" in

c—a,c—b

(1— z)m_12F1<

z> (14.11)

c—a—b—m+n a,b,—n
3 1),
n ecm4a+b—c—n

and when m > 1 is an integer it is routine to extract the coefficient of z™ in (14.11).

c

is

For instance, when m = 2,

3F2<c,2 +Z’i’b—f c—n 1) - (14.12)
(c—a)ulc=bnl, abn
(c)n(c—a—b)n{ (I+a+b—c)l+a—c—n)(1+b—c—n)]|

Note that closed forms are unlikely for m < 1: even when m = 0, the coefficients
are the partial sums of the o F}, so Gosper’s algorithm indicates there is no universal
closed form. However, in the m = 0 case we can often find ad-hoc solutions (e. g. in
terms of harmonic numbers) by entering special values of a, b and c.

The paper [121] considers the m = 2 and 3 cases based on applying (6.32) on
the beta integral for (14.10).

We note that when the (14.11) is written as a convolution sum, the generalisation

of Saalschiitz’s theorem is just the transformation below; when m > 1 is integral
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and fixed the right hand side can thus be evaluated:

) = e ale= b,

()p(c—a—b+1—m),

< o F 1-m,1—c—n,—n
302 l4a—c—n,1+4b—c—n

a,b,—n
F ) Y
3 2<c,m—|—a+b—c—n

Q.(MJ@

Dixon’s theorem. Dixon’s theorem [25] is the main tool for evaluating non-
terminating 3F5’s at 1. (Other tools include Clausen’s formula and Orr-type theo-
rems, which rely on a factorisation of the 3F5 — see Chapter 12; also see the Watson’s
and Whipple’s theorems below.) The theorem states that

)_Fu+gwu+a—mru+a—@nl+;—b—@
S Tl4alA+%-0r(l+%—olf(l+a—b—c¢)’
(14.14)

a,b,c
F V)
3 2<1+a—b,1—|—a—c

and a very special case is the celebrated identity,

2n

S () e = B

k=0
Lavoie et. al [131] have given contiguous evaluations of Dixon’s theorem — the
results are beautifully presented there, so we do not reproduce them. Indepen-
dently, we show how such results may be achieved. Denote the generic function
sFy(a,b,c; d,e; 1) by F, and let

a,b,c
Fm,n ::3F2<

1). (14.15)

Dixon’s theorem is a closed form for F7 ;; also note the symmetry in m and n. Our

m+a—bn+a—c

result is the following:

Theorem 14.2. There exists closed forms for Fy, ., where m and n are integers

that satisfy 0 <m <n < 2.

PROOF. Let F = F55. Our first strategy is to note that F(a+) and F(d—,e—)
can both be evaluated using the classical version of Dixon’s theorem (14.14). By
Theorem 14.1, there exists a contiguous relation between F, F(a+) and F(d—,e—).
Indeed, the last two terms may be related to F and its derivatives using the raising
and lowering operators; aided by the differential equation (14.3) at 1, we arrive at

(1+b)(14+c)+a(l+b+c)—dey~
F
2tatbtc—d—e ) (a+)

(d—1)(e — 1)F(d—,e—) —a(d+e— 1—

_(1—|—a—d)(1+a—e)(2+b+c—d—e)ﬁ70
24+a+bt+c—d—e -
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This leads to

o 2172°T(2+a—-b)'(2+a—c)
2T h-1D)(c—-DI'2+a—2)2+a—b—c)
F(3+112—2c)F(4+a—22b—QC) P( 2+<12—20>F( 5+a—22b—20)

P(Eore2)  r(erEe?) : (14.16)

For F} 5, we simply find a contiguous relation between F1 o, F; o(e—) and F 2(a+, b+),

noting that the last two can be evaluated using Dixon’s theorem. The result is

[ 27 /rT(14+a-0T(2+a—c)
LT e T2 +a—b—2c)

F(3+a—22b—2c) F(4+a—22b—20)

F(%)F( 1+L1272b)11(3+a2720) F(P;J)F( 2+11272b)r(2+11272c> :

(14.17)

For Fy 1, we just find a contiguous relation between Fy 1, Fp 1(b+) and Fy 1(a—, e—),
where the last two can be evaluated using Dixon’s theorem. Note that there is a
simpler contiguous relation between Fy 1, Fp1(b+) and Fp1(d+), but upon special-
ising the coefficients (so that the last two terms satisfy the conditions of Dixon’s
theorem), this relation collapses down to 0 = 0 and is hence not helpful. The first
contiguous relation gives

Fot = 270 /T (a—b)T'(1+a—-c)

’ 'l+a—-b—c¢)
1—1( 1+a—22b—2c) F(2+a—22b—2c)

D() D (42 () (e (52 1 ()

x : (14.18)

For Fy, we find a contiguous relation between Fy o, Foo(a—) and Fyo(c+, d+),

again the last two can be evaluated using Dixon’s theorem. It follows that

270 /T (a—b)'(a—c)
I'a—b-rc)

F( 1+a—22b—20) F(a—2§—2c)

D() P (520 (52 T (o) n(22 )1 (%)

Foo =

. (14.19)

For Fp 2, many contiguous relations in which two of the terms can be evaluated

using Dixon’s theorem return 0 = 0. Therefore we adopt a second strategy, using
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contiguous relations and other known values of Fy;, ,,; here the equations (14.4) come

in handy. Indeed, the second equation in (14.4) gives

b c—a—1
=—— " Fi1o(b —Fp1. 14.20
’ b+c—a—1 1.2( +>+b+c—a—1 0.1 ( )

Therefore we can read off Fj 2 from formulas for the right hand side already given.

O

Remark 14.1.3. A third, though tedious, way to find closed form expressions for
Fin.n is to imitate the proof of Dixon’s theorem in [25].

In brief, we consider the infinite sum in the variable %k for F}, ,, and factor out
terms in the summand that are the evaluation of o F1(b+k+m — 1,c+k +n —
1l,a+2k+m+n—1,1) by Gauss’ theorem (5.3).

Writing these terms as a oFp, we then convert it into an infinite sum in j, let
p = j+k and change the order of summation in the resulting double sum. The sum
in k in some cases decomposes into a number of 9 F}’s at —1, which can be summed
using contiguous versions of Kummer’s theorem (14.8) and (14.9). Each piece, then
summed in p, results in a oF} with argument 1, this way we obtain our closed form.
For instance, F_1 o, Fp,0 and Fp 1 can be found in this manner.

Clearly, a combination of the three strategies presented here enables us to find

closed forms for F, , for many more pairs of m and n. O

Watson’s and Whipple’s theorems. These theorems, recorded in [25], follow
from Dixon’s theorem and Thomae’s transformation (see [25, p. 14]); they give,

respectively, closed form evaluations for

1),

Since we have results contiguous to Dixon’s theorem, it follows that we can obtain

a,b,c a,1—a,c
3F2(“+g+1 2¢ ‘ 1) and 3F2(e,2c—|—1—e

many results related to Watson’s and Whipple’s theorems. They are cumbersome

and we only list two here:
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w0 [) v (G () aa

1 1
’ L(;)F(%F(%“)F(%*’) ’ F(T)F(S)F(l”;“)r(gcﬁ’)]’
a,—a,c _ ['(2c —e)l'(e
3y (e, 2c—e 1> o 2T (2c+a—e)l'(e —a) (14.22)
3 [F(%B“)F(”) F(”QC;‘”;P

2
F(Qc—za—e)r(e-‘rTa) F(1+202—a—e T

—~ |

Licta) |’
Some similar results are found in [130] and [132].

14.2. Orthogonal polynomials

We start with some results from the classical theory of orthogonal polynomials
[11, Ch. 5]. Under mild conditions, for a non-decreasing function «(x) with finite
moments, there exists a sequence of polynomials {p,(x)}22, where p, has degree

n, such that they are orthogonal with respect to (weight) a:

b
[ pn@pa(e)da = hudn (14.23)

here d,,, denotes the Kronecker delta, which is 1 when m = n and 0 otherwise.
Every polynomial of degree n can be expressed uniquely as a linear combination
of po,...,pn. We may normalise the p, so that they are monic, and it is not hard

to show that they satisfy a three-term recurrence relation

Pn+1 = (l‘ - an)pn(x) - bnpnfl(-%‘% (14'24)

moreover, by, = hy/hp_1.

Conversely, if a set of polynomials is generated from a 3-term recurrence of the
form (14.24), then Favard’s theorem [184] states that it is orthogonal with respect
to some a.

The nth polynomial p,(z) is in fact the characteristic equation of a tridiagonal
matrix, so that the zeros of p,(x) are the eigenvalues of the n x n tridiagonal matrix
with ag, ..., a,—1 on the diagonal, by, bo, ..., b,_1 on the upper off-diagonal, and 1’s
on the lower off-diagonal. The n zeros of p,(x) are simple and separate the n + 1

zeros of pp11(x).
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Examples of orthogonal polynomials include the Legendre and Chebyshev poly-
nomials, which we have discussed in previous chapters (especially 10 — 12). For the
Legendre polynomials P,, in the notations of (14.23) we have a = —b = 1, da=dx,
hn, =2/(2n+ 1), and the recursion is

(n+1)Puyi(x) = 2n+ 1)z Py(z) — nPp_1(z). (14.25)

We are interested in the case when « is a discrete measure, that is, the polyno-

mials are orthogonal with respect to summation instead of integration:
me(x)pn(a:)oz(x) = hpdmn.
x

When such polynomials can be represented by hypergeometric functions, there is an
extensive literature dealing with their properties and classification, see for instance
[124].

Our focus on discrete measures is because of the application to Gaussian quad-
rature with respect to discrete measures, which is a little known and not yet fully
explored spin off of Gaussian quadrature. Quadrature with respect to continuous
measures are well-known and go by names such as the Gauss-Hermite quadrature,
so we do not explore it here. Some applications will be described in Section 14.3.

But firstly, we are interested in the questions of (re)discovering some orthogonal
polynomials. That is, given a, what can we say about the polynomials that are
orthogonal with respect to a? To this end, we follow this simple but effective

procedure:

(1) Given a, use Gram-Schmidt orthogonalisation to build up an initial list of
polynomials.

(2) Use this list to guess a recurrence relation of the form (14.24).

(3) Use the recurrence to determine a generating function for the polynomials.

(4) Use properties of the recurrence and/or the generating function to prove

orthogonality (thus validating the guess).

14.2.1. Charlier polynomials. We demonstrate the procedure above by tak-

ing a = 1/z!, so we get a sequence of polynomials with

an(m)p'mw) — BB
= z!
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Using Gram-Schmidt, the sequence starts with
pi(x) =z —1, po(z) = 2% — 3z + 1,
p3(z) = 2° — 62® + 8z — 1, pa(z) = 2" — 102° 4 292% — 24z + 1.
From the first few p,, it is not hard to guess that

pn(x) = (x —n)pp—1(x) — (n — 1)pp—2(x), p—1(x) =0, po(z) = 1. (14.26)

From (14.26), we shall prove the claimed orthogonality property.

Working with the recursion, it is straightforward to show that the leading co-
efficient of p,, is 1, and the next coefficient is —n(n + 1)/2. Also, p,(0) = (-1)",
pn(1) = (=1)"(1 —n), and p,(—1) = (=1)"e I'(n+1,1), where I'(z, a) is the incom-
plete Gamma function (the equality follows as they satisfy the same recurrence).

Strong induction gives

pn(xz + 1) — pp(z) = npp—1(x), (14.27)
Pr+1(z) + pr(x) = xpp(x — 1).
Armed with these properties, we have

Theorem 14.3 (Orthogonality).
[e.e]
Y ]Mp'm(w) = Sumnle. (14.28)
x!
=0

PRrOOF. We only need to consider ) pp(z)z™/z! where m < n. It is easy to
check the theorem for small n, so we proceed by induction and assume that the
result is true up to n — 1. Then, for p,(x), >, pn(z)z™ /2! = 0 for m < n — 3 using

the recurrences and the inductive hypothesis. Now for k € {1,2}, we have:

n—k

i pn(x)x _ i pn(x+1)(x + 1)"*]{*1
|
x=0 ’

T z!

=0

- i (npn—1(2) + pu(@)) (@ +1)" 1 =0,
=0

x!
where we have used the inductive hypothesis and (14.27). For k = 0, we have

1

> pp(2)2" > (npp_1(x n(2))(z+ 1)1 > o1 (z)az™™
Zop(x!) :Z(P 1(x) + pa(2)) (x + 1) :n;p 1(x!)

2! ’
x=0

0 Pn (I)Q
z=0 2!

by the last equation. Iterating this, and noting » >- ,1/z! = e, we get >

nle as desired. O
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It is easy to show that the exponential generating function for p,(z) is
fl)y=e"(t+1).

This gives another proof of (14.27), and also gives the umbral identities

et =3 () (oD k(o)

Expanding out f(t), we have

—1> = (-1)"(-2)n 111 (1 —_nn+ x
()

where Ly’ (z) denotes the generalised Laguerre polynomial. (The symmetry in n

—n, —x

pu(z) = (—1)"2Fo(

1> = n! LM (1),
(14.29)

and z explains the existence of a partner below (14.27).)

A different generating function is given by

kZ_O p"k(f)m’“ = e"(z —1)". (14.30)

Setting z = 1 in (14.30) and its first (n — 1) z-derivatives results in 0 on the right

hand side; this gives another proof of orthogonality.

Indeed, what we have rediscovered was a special case (setting a = 1 below) of

the Charlier, or Poisson-Charlier, polynomials, defined by the generating function
N tn Lt @
E pn(z,0)— =€ (f + 1) , (14.31)
n! a
n=0
or by the recurrence

apn(z,a) =(x —n+1—a)pp—1(x,a) — (n — 1)p,_2(z,a).

Many key properties of the a = 1 case are apparent from our analysis. Generalisa-
tions of the a = 1 case follow readily, for instance we have p,(z + 1,a) — pp(x,a) =

2pp—1(z,a) and ppy1(z,a) + pu(x,a) = Zpy(z —1,a). Also,

o
t* t n
g pn(z,0)— = et<f — 1) ,
z! a
x=0
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which gives orthogonality

a® nle?

me(l', a)pn(:v, a)g = Omn—

an
=0

Remark 14.2.1 (Connections with Stirling numbers). Writing

(z,a :Zn;) ) a k< >(—$)k7

we see that the coefficient of x*

° n )
-1 n—k —i

Yot (7))

here [Z] denotes the (unsigned) Stirling numbers of the first kind which satisfies

> [] = on
k=0

Let {7} denote the Stirling numbers of the second kind and let B,, be the nth

Bell number; it is well known that
n o0
n 1 "
Z{k} =B.=->
k=0 z=0

We may then express the orthogonality of p,(x,a) as a sum involving the Bell

numbers and thus Stirling numbers of the second kind. The result is: for integer

Z aF (=1 (Z) [ﬂ {j ": S} —0. (14.32)

17j7k20

0<s<n-—1,

(When s = n, the right hand side becomes n!.)

Using values for p, (%1, a), we obtain the (easy) identities

-\ [i] 1 e 1)k n
S5 ()3 -renner EEOL S -2
k=0 i=k k=0 i=k

Many more identities may be derived. O

Remark 14.2.2 (Two sequences of related polynomials). Let P,(z) satisfy the

recurrence

P(z)=(zx—n—-1)P,_1(z) — (n — 1) Py_2(x),
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with Py(z) = 1, Pi(z) = z — 2. Favard’s theorem guarantees that P, is orthogonal
with respect to some measure; indeed, the methods outlined in this section give the

orthogonality property
P, P,
Z Po(@) Fn() = dpmnle.
n=1
The exponential generating function is e (¢t +1)*~1, and >, ?(%) ok = ez (z —

1),

Clearly, the recurrence bears a resemblance to (14.26). Extracting coefficients,

we produce additional identities, for instance

£50) [

k=0 i=k

We note that [97] computes continuous counterpart to P,.

Similarly, let @, (z) be defined by

Qn(z) = (n—2—2)Qn-1(z) + (n — 1)Qn-2(z),

with Qo(z) = 1,Q1(x) = —x — 1. The exponential generating function is e *(1 —t)*
and D~ Q%Sk) (—x)* = e7®(2 — 1)™. The latter formula leads to

so @, is the alternating analog of p,. Looking at @, (1), we get the identity
"= () [i
—1)tF =1+4n.
23 (1) [ oo
k=0 i=k
Note that by trying different weights, we may rule out the existence of polyno-
mials with nice recurrences, generating functions or closed forms for many « (c.f. a

similar philosophy is used in Chapter 13). %

14.2.2. Meixner polynomials. Taking a = 1/2% we produce a sequence of

orthogonal polynomials which seems to satisfy the recursion
nmy(x) = (x —3n+ 2)mp_1(x) — 2(n — I)my_2(x), m_1(z) =0, mo(x) = 1.

We will now show that m,,(x) defined by this recursion are indeed orthogonal with

respect to a. It is standard to find the generating function

> n (264 1)7
R e
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from which it follows that

n—1
M (2 + 1) = mp(2) =Y (=1)" FTmy (). (14.33)
k=0
We are ready to prove:
Theorem 14.4 (Orthogonality).
i M ()M, () _ 5 o+l
2x mn .
=0

PROOF. For ease of notation we denote the sum above as an inner product. We
proceed by induction. The statement is true for small m < n; assume orthogonality
is true up to my,—1 (though for m = n — 1 we may not know the explicit right hand
side). Then, appealing to the recursion, we may deduce that (m,,, m,,) = 2™*! for
m < n—2, and (my, my,) = 0 for m < n — 3. We are left to find the values of
(M, Mp—2), (Mp_1,Mp_1) and (Mp, My_1).

For the first inner product, we have

i M, ()M —2(2) 14 li M (z + D)my—o(x + 1)
=0 2 2 =0 2* '

Now we expand the right hand side by (14.33) while denoting the left hand side by
S:

S= 14 3> {27 (@) + - (z) — maa(@) + () — )
=0

X (mp—2(x) + mp—3(x) — mpy—g(x) + my_5(x) — - )}
1 1
=1+ 55 + 5(_<mn—27mn—2> + (Mp—3, Mp—3) + (Mp—a,Mp_g) +--+)
1 1 -1 -2 -3 1
:1+§S+§(—2” + 2" 2" +---+2):§S,

so S = 0. This also establishes, via the recursion, that (m,_1,m,_1) = 2".
It remains to show that (m,,m,—1) = 0. Proceeding as before, we denote the

sum by 71"
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1 = Mg (24 1)myp—1 (2 + 1)
T=-1+5) 5

=0

= 1 S {2 mae) a1 () — i a(2) + 7))
x=0

X (Mp—1(x) + mp—o(x) — mp_3(x) + mp_a(z) — - )}
1 1
=—-1+ §T + §(<mn717mnfl> - <mn727mn72> - <mn73>mn73> + - )
:—1+1T+3(2"—2”*1—2”*2—---—2) :—1+1T+1(2"—2n+2)
2 2 2 2 ’
Thus T = 0. The inductive step is complete. O

In fact, we just rediscovered a very special case of the Meizner polynomials,

M, (z,b,¢) (with b =1, ¢ = 1/2), which may be defined by the ordinary generating

(I=t/c)®
(1—t)z+b-

function In hypergeometric terms, it is

nl b

bn e
Mn(.%',b,C):() 2F1< e c

- 1) . (14.34)

A recurrence for M,, can be found using contiguous relations (Section 14.1); indeed,

denoting the o F} part by my,(x,b,c), we have
c(n+b)mpi1(z) = ((c = Dz + (n+ nc+ be)) my () — nmy_1(z), (14.35)

and due to symmetry we get another relation with the roles of x and n interchanged.

The general orthogonality property is

S Mo () Mo (1) (b);fx = .

x>0

(14.36)

For b = 1, the proof of orthogonality can be easily adapted from the proof of
Theorem 14.4. For other positive integer b, a proof follows readily by induction and

the contiguous relation
cn+1) Myi1(x,b,¢) = (n+b) Myp(xz,b,¢) + (b+xz)(c— 1) My (z,b+ 1,¢).

Thus, we have recaptured several properties of the Meixner polynomials using
mostly elementary analysis and generating functions, without resorting to advanced

theory.
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Remark 14.2.3. Using the o F| representation, we see that the coefficient of z* in

25

i=k

mp(z) is

and m,,(n) has the closed form (—1)"/2 (n%) when n is even, and 0 otherwise.
It is also easy to show that a closely related sequence, given by m/ (z) =
oF 1 (—n,1 —x,2,—1), satisfies
o0 1
, , r on+
;}mn(a})mm(l‘)% = Omn T

A connection between the Meixner and the Charlier polynomials is given by

a
1' n<7b77>: n ) .
R A

14.3. Gaussian quadrature

The classical theory of Gaussian quadrature is a scheme for approximating in-
tegrals by finite sums involving orthogonal polynomials (see [11, Ch. 5]). More
specifically, in the notation of (14.23) and (14.24), and using da = w(z)dx, we have

Proposition 14.1 (Gaussian quadrature).

b n
[ @wta) de =Y Hau+ Ra, (14.37)

i=1
where x; are the roots of pp(z), w; are the weights defined by
— _hn
B Pry1(@i)py, ()
and Ry, is the error which depends on the (2n)th derivative of f. In particular, if f

(14.38)

wj

is a polynomial of degree < 2n — 1, R, = 0 and the quadrature is exact.

Note that by its very construction (i.e. the usage of roots), Gaussian quadrature
is exact for polynomials of degree up to n—1; orthogonality gives exactness for higher
degrees, and it is this pleasing property which makes Gaussian quadrature superior
to many other schemes. In practice, the error is difficult to compute, and is best
estimated on a case-by-case basis by fixing f and increasing n. Heuristically, if f is
closely approximated by polynomials on (a,b) (e.g. if it has a close-fitting Taylor

series), then Gaussian quadrature tends to work well; this implies that given an
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integrand, we need to choose the weight w carefully — for instance to cancel out any
singularities.

In practice, the Legendre and Chebyshev polynomials are often used for Gauss-
ian quadrature, which means a = —b = 1. In order to perform quadrature for an

integral over (0, c0), the transformation x +— (1 — x)/(1 + z) can be used.

Engblom [90] was one of the first to give a comprehensive report on Gaussian
quadrature using discrete measures. He noted that the classical theory carried over

exactly if a were discrete, that is, one would have
> f@alz) =D friw. (14.39)
x i=1

Engblom demonstrated his concepts by using the Charlier and Meixner polynomials

to numerically compute hypergeometric functions.

Example 14.3.1. Monien [151], using reciprocal polynomials, considered orthog-

onal conditions of the form

5 () (5) s

>0
By looking at the continued fraction of the moment generating function, Monien
derives a recurrence for f,(x) which takes a particularly simple form in terms of
Bessel functions. Quadrature using f, works particularly well for summands f(x)
which admit an asymptotic expansion in powers of 1/2? for large x. For instance,
Monien used it fruitfully for the Hardy-Littlewood sum }__sin(a/x)/z, tradition-
ally considered challenging computationally for large a. The procedure works the

same way as before: one computes the roots z; of f,(x), from which w; follows.

Since f,,(1/2?) is used instead, the right hand side of (14.39) needs to be replaced
by 2y f(1/ Ti)wi. 0

The following procedure can be used for Gaussian quadrature on sums: Given
some «, it is easy to generate a table of orthogonal polynomials (Gram-Schmidt).
We may then find the roots using say Newton’s method (when the table is small),
or by exploiting the fact that the zeros are eigenvalues of a tridiagonal matrix, and
stable, fast algorithms exist for finding them. The weights can then be computed,
either using (14.38), or by exploiting the fact that Gaussian quadrature is exact for

low degree elementary polynomials (whose sums involving the weights can be found
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independently). This way finding w; is equivalent to inverting a Vandermonde
matrix whose columns are powers of r; (the explicit inverse is given in terms of
Stirling numbers [137]). Once a reasonably large table has been computed (to say

a few thousand digits), it can be reused for similar sums.

In the following table, we have recorded the results of a number of discrete
Gaussian quadrature on non-trivial sums, with varying orthogonal polynomials,
numbers of weights (n), and numbers of correct digits obtained, to indicate that a

range of sums may be approximated to different levels of desired accuracy.

orthogonality poly. | summand | n | digits comment
S fu(5) fn( ) L | Monien Si“ﬂ%’ 150 | 167 | Hardy-Littlewood
Sy Fal) fn(h) s o715 | 50
> f(3) fn(3) 3= 1zt | 90 | 54 Euler ~

> Pn(z)pm(z) | Charlier exp(sine) 30 20

x!

> Pn(®)pm(z) 5 | Meixner 10(29“;/4) 50 67

For example, with the second entry in the table, we chose that particular or-
thogonality condition because the asymptotic expansion of the summand at infinity
contains only odd powers of x. For better behaved sums, Gaussian quadrature
is very powerful, for instance, using n = 50, >, 1/(2? + 1) = wcoth7 may be

approximated to 282 digits.

14.3.1. Lattice sums. Lattice sums, as the name implies, are multi-dimensional
sums over lattices and often hold chemical importance, for instance they may be
used to determine the electrostatic potential of an ion in a crystal. A comprehensive
guide can be found in [102] (which is expanded in [52]). We observe that Gaussian
quadrature can be applied to approximate lattice sums.

We start with the Hardy-Lorenz sum [205],

o0 o0

>y m2+n2 = 4B(5)(s)- (14.40)

m=—0o0 N=—00
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The prime denotes that the m = n = 0 term is to be omitted, and 5(s) denotes the
Dirichlet beta function, see Chapter 13. As a proof of concept, consider the s = 2
case (where the exact answer is 2G72/3). We can in fact perform one summation

exactly, since
(o9}

1 T

D rar = gy cothlmm),
n=-—oo

and we then take the derivative of both sides with respect to m. The resulting sum

(replacing m by z) behaves like 7/(423) — 1/(22*) for large x, so the polynomials

fn with orthogonality conditions

an(é)fm(é)é = Gmnhin (14.41)

should be used for quadrature. Using only 20 weights, we obtain 31 correct dig-
its. (With the right implementation, Gram-Schmidt is very fast at computing f,,
therefore obtaining hundreds of weights is computationally cheap.)

For many lattice sums, it is not possible to perform one summation explic-
itly; also, many sums are alternating. Our next example will tackle both of these
problems. Consider the sum

1)mn
m_z_:oo n_z_:oo m2 —|— n?)?

For Gaussian quadrature, we use the polynomials g, with orthogonality conditions

3o (Hon(2) 2

We perform a double quadrature on S, that is, we first perform quadrature on
f(n) = mn/(m? + n?)? (since the weight is (—1)"/n). This gives a finite sum of
functions of m, which we perform quadrature upon as our new function. Using only
10 weights, this method gives 15 correct digits.

In our investigation in Chapter 7, the lattice sum (7.52) was first verified to 53
digits using Gaussian quadrature with 50 weights, which convinced us of its veracity
and gave us impetus to find a proof.

Many lattices sums, including higher-dimensional ones such as the classical
Madelung constant [42],

n+m+p

=3

n,m,p

n2+m2+p
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may be approximated using the scheme described here. We obtain 36 digits for
M using only 25 weights; roughly 1.4 extra digits are obtained for each additional
weight. It is interesting to note that the sum for M converges very slowly, and naive

approaches struggle to obtain even 2 or 3 digits of accuracy.
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