
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

The variable Planck’s constant due to imaginary
gravitational temperature
To cite this article: A K M Masood-ul-Alam 2018 J. Phys.: Conf. Ser. 1051 012021

 

View the article online for updates and enhancements.

Related content
How to Understand Quantum Mechanics:
More quantumy experiments
J P Ralston

-

An Introduction to Quantum Theory: The
WKB approximation
J Greensite

-

Order from Force: Generating order and
system
J H Williams

-

This content was downloaded from IP address 188.184.3.52 on 11/08/2018 at 10:25

https://doi.org/10.1088/1742-6596/1051/1/012021
http://iopscience.iop.org/book/978-1-6817-4226-7/chapter/bk978-1-6817-4226-7ch5
http://iopscience.iop.org/book/978-1-6817-4226-7/chapter/bk978-1-6817-4226-7ch5
http://iopscience.iop.org/book/978-0-7503-1167-0/chapter/bk978-0-7503-1167-0ch20
http://iopscience.iop.org/book/978-0-7503-1167-0/chapter/bk978-0-7503-1167-0ch20
http://iopscience.iop.org/book/978-1-6817-4241-0/chapter/bk978-1-6817-4241-0ch7
http://iopscience.iop.org/book/978-1-6817-4241-0/chapter/bk978-1-6817-4241-0ch7
http://oas.iop.org/5c/iopscience.iop.org/221553004/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


The variable Planck’s constant due to imaginary gravitational 

temperature 

A K M Masood-ul-Alam 

Tsinghua University, Beijing, China 

E-mail: abulm@math.tsinghua.edu.cn 

Abstract. In a talk in PIRT-2015 we described how the Tolman-Thorne temperature of a 

general relativistic spinning star can be used to define a variable Planck-type constant where 

the temperature becomes imaginary and how this variable has a negligible value except in 

some region near a stationary gravitating particle of given mass and spin. In the present talk we 

recover the Lamb shift of the proton-electron system at thousands’ place in MHz from the 
spread of this region. While this may suggest that the variable Planck's constant could be used 

with linear Fourier analysis to approximate gravitational effects in coupling gravity with non-

gravitational interactions quite effectively, we also consider Einstein-Yang-Mills coupled 

equations for possible solutions that could be stable because the variable coupling implied by a 

variable Planck's constant could stop the solutions from blowing up. While no new significant 

result for these coupled equations has been found yet, we provide a progress report of an 

ongoing program in which eventually we would like to explain at least qualitatively every valid 

result in QM and QFT with the help of the variable Planck's constant suggested by GR (by 

which we mean here Einstein equations) and without using renormalization. We elaborate the 

first problem in more details. The remarkable coincidence in the earlier talk gave us a variable 

Planck’s constant gh  of gravitational origin roughly at 0.2 Bohr radius for a gravitating 

particle having the mass and spin of a proton. In this talk we visit Welton’s argument for the 

Lamb shift to see how far the Lamb shift can be explained with this gh . The fluctuations of the 

quantized EM field used in Welton’s argument would take place only in the region where gh  

is meaningful. If we consider the Fourier transform of a real-valued function of a single 

variable having nonzero value 1 only on an interval of the positive axis, we see that the outer 

endpoint is roughly inversely proportional to the lowest significant wave number and inner 

endpoint is roughly inversely proportional to the highest significant wave number. The omitted 

frequencies produce the Gibbs’ phenomenon. Thus the ratio of the cutoff frequencies used in 

Welton’s argument 
max

min

k

k
 becomes in our discussion 

max

min

r

r
. If we take minr  to be the distance 

from the center of mass of the proton-electron system where the gravitational temperature 

becomes imaginary and max
r  to be the distance where gh h  ( gh  decreasing as inverse 

square of r  thereafter), we get values of our Lamb shift in the range 1019 to 1249 MHz. We 

do not expect to get the experimental value of 1057 MHz following our crude qualitative 

arguments. The discussion on the variation of values based on Welton’s argument namely 667 

to 1394 MHz (see for example the textbook of F . Schwabl) makes one appreciative of our 

values and hence of our suspicion that gravity is behind the significant part of the Lamb shift. 

The next task is to look closely wherever Planck’s constant is used in the equations of quantum 
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physics. Just naively replacing this Planck’s constant by gh  will not give the full or a 

consistent story. In particular one would like to know how the Dirac equation and Einstein-

Yang-Mills coupled equations get modified with gh . A variable Planck’s constant will make 

the coupling constant of the Einstein-Yang-Mills coupled system a varying function and the 

scale invariance of the system will be lost. We have done some initial calculation for the case 

of static Einstein-Yang-Mills equations. Spinning has not been added yet to keep the field 

equations manageable and so the justification behind using gh  is somewhat missing. However 

the indications are that we cannot have SU(2) solutions, and we cannot have spherically 

symmetric solutions unless possibly when the gauge group is more complicated. Otherwise the 

coupling is forced to become constant and we get the known unstable solutions. A sufficiently 

complicated gauge group gives more equations. Looking at the phase space of the known 

solutions we then expect that the varying coupling field may stop the blowing up of some 

otherwise singular solutions. The global solution is expected to be a stable solution because its 

constant coupling analog is not the unstable separator of the classes of YM-potentials going to 

 . Some related issues and how our results can be improved will be discussed.  

1. Introduction 

In [1] we have a function gh  that plays the role of the Planck’s constant in a Schrödinger-type 

equation guessed from the imaginary values of a gravitational temperature obtained by extrapolating 

the Tolman-Thorne temperature in some way in the exterior of a massive stationary spinning star or a 

star-like particle. This gh  has values close to the Planck’s constant only in a narrow region outside the 

particle. In other region gh  either does not exist because the gravitational temperature (g-temperature) 

is real, or gh  is small decaying rapidly far away from the axis. We suppose that the quantum 

phenomena will be observed only in the volume of importance where gh  is defined and significant. 

We recall from [1]  

 
2 1 5

2 1

1 6
.

, α

B
g α / α

, R k

M r




  (1) 

We assume that the Newtonian approximations used in deriving this equation crudely apply to a 

proton and take R   proton radius 
130,88 10  cm and M   proton mass 

521, 24 10  cm. We had 

another equation estimating the distance at which g-temperature becomes imaginary. This distance is 

of the order of 1Ω  (in geometrized unit) where Ω  is the angular velocity of the star. The angular 

velocity (angular frequency) of the proton is related to its spin 1 / 2  by 1 1 22Ω M R    which 

equation we use to estimate this distance. 

In this formula 1s 103 10  cm. Thus for a proton the imaginary temperature comes out at about a 

distance of 
131,8 10 cm. With 1  , Eq.(1) gives 

85 22,87 10gh r   cm4 at         
90,33 10r   cm. 

We shall revisit Welton's argument in view of the variations in gh . In [1] we suspected that gh  has 

something to do with the Planck’s constant h  because for a nucleon we got gh h  at 910r  cm 

0,2  Bohr radius, while for a star it is at an enormously great distance. In this paper we show that the 

size of the region of importance gives the major part of the Lamb shift frequency for the hydrogen 
atom matching at thousands’ place in MHz. Thus we get another strong suggestion that the Planck’s 

constant is of gravitational origin.  
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2. Major part of the Lamb shift 

We suppose that the fluctuations of the quantized EM field would take place only in the region where 

gh  is defined and appreciably nonzero. We are neglecting 
gh  for electron itself. An electron will be 

out of the region where 
gh  due to the electron is important. This is because of the inner cutoff and 

hence its effect could only be indirect. So we shall neglect it. For a proton the region of interest is from 
13~1,8 10r   cm to 9~ 0,33 10r   cm as described in the previous two paragraphs. 

2.1. Computation 

We approximate gh  with ĥ  where   is the characteristic function of the interval  min max,r r  and ĥ  

is some suitable average height. We write ĥ  as a difference of two rectangular functions on intervals 

 min0, r  and  max0, r . We approximate the doubles of these two functions formed by reflecting the 

graphs on the vertical axis (the doubles being even functions) by their Fourier integrals. Let 1 2,k k  

denote the maximum wave numbers we would like to keep for each of the approximations. Such 

cutoffs produce some mismatch due to Gibb's phenomena but little mismatch will not matter much 

because we are dealing with approximations of gh  anyway. Now 1k  is inversely proportional to minr  

( 2k  is inversely proportional to maxr ). This is because if we approximate the even function 

0 0)( , )
ˆ( ) ( )r rf r h r   for 0 0r  , where 

0 0)( , ) ( )r r r   is the characteristic function of the interval 0 0( , )r r , 

by its Fourier cosine integral with frequency cutoff 0  then 0  is roughly inversely proportional to 0r : 

0 0

0 0 0

0 0 0

ˆ ˆ ˆcos( )sin( ) sin( ( )) sin( ( ))2
( ) .

r r r r r rh h h
f r d d d

 
   

  
     


 

      

The graph of 1

0sin( ( ))r r    as a function of   has the maximum height of 0( )r r  at 0   

falling to zero at 
0r r


  


. 1

0sin( ( ))r r    has appreciable value only for 
0r r


  


. We see 

that the cutoff frequency 0  is roughly inversely proportional to 0r . Hence we denote 1k  by maxk  and 

2k  by mink . Then we have max max

min min

k r

k r
 . 

Thus if we compute the energy due to fluctuations of the relative position of an electron caused by the 

fluctuations of the quantized EM field following Welton [2] (see also Bethe [3]) without using his 
argument for the upper and lower cutoff of frequencies we find the frequency shift 

 

9
max

13

min

0,33 10
135,64ln 135,64ln 1019

1,8 10

k
E

k






  


MHz (2) 

or possibly 

 

9

max

13

min

10
135,64ln 135,64ln 1249

10

k
E

k




   MHz. (3) 

2.2. Discussion 

The experimentally observed shift 1/2 1/22 2S P  in the hydrogen atom is approximately 1057,86 MHz. 

Actually the estimate by Welton's method vary from about 667  MHz (see Schwabl [4] page 193) to 

1394  (or 1413 ) MHz depending on the choice of the lower limit 𝑘min. Welton's value was roughly the 

average though Welton did not explicitly stated so in [2]. Schwabl notes it out of curiosity. Theoretical 

argument based on standard theory gives roughly about 1052. Our value 𝐸 is supposed to be for the 

state 1/22S . Contribution of 1/22P  is not much. So we shall not worry about it. Theoretical values in 
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text books may also differ because some other important corrections are added affecting up to tens’ 

place. The factor of 135.64 in Eq.(2) was derived using several simplifying assumptions (see, for 

example, page 482 in [5]). One of these assumptions may need a closer look in view of our method. 
This factor has the value of the wave function at the origin at the center of mass of the proton-electron 

system and it comes out because of the convolution of the wave function with the delta function 

singularity of the Coulomb potential. Center of the proton charge will be outside the domain of 

definition of 
gh  Thus this factor could be smaller and in that case the second estimate given in Eq.(3) 

which is more realistic in derivation but which is an overestimate will also be smaller.  

2.3 Work remains to be done 
Now we discuss the work remains to be done. Welton's method is based on the non-relativistic 

Schrödinger equation. The fluctuation of the EM potential is calculated only up to second order in the 

fluctuation of the position of the electron. We hope somebody recalculates what we did using the 

Dirac equation. At present we did not sort out what 
2 / gimc t

e


 means. Our values of gh  in the spacetime 

show that an expression such as 
2e

c
 (here 𝑒 is the charge of the electron), should be avoided at both 

low and high frequency ends. In certain quantum calculation an expansion in powers of 
2e

c
 is used. 

Bloch and Nordsieck [6] removed the divergence in the low frequency limit by considering alternative 

expansion procedure in which ћ does not occur in the denominator. It is natural to demand that 

transition to classical limit 0  is possible in the low frequency limit. High frequency limit is 

considered far from the classical regime and the need to eliminate high frequency divergence did not 
get similar attention. 

Two other potential sources of corrections are as follows. One is the process involving the emission of 

virtual quanta by the field and their absorption by the electron. The other is the Uehling's vacuum 

polarization. For the Lamb shift 1/2 1/22 2S P  in the hydrogen atom these corrections may affect only 

up to the tens’ place in MHz while our heuristic method is crude at hundreds’ place. So at present it is 
meaningless to include them in our calculation in terms of the renormalized charge or mass of the 

electron (see pages 157-159 in [7]). Assuming that these activities are important only in the region of 

the physical spacetime where the variable Planck’s constant is important (and neglecting the 

completely disconnected Feynman graphs), one suspects that only gh  produced by the nucleus of the 

hydrogen atom is important. For this contribution to gh  both low and high frequency cutoffs as 

mentioned above would possibly remove divergences. As for the contribution to gh  from a quantum 

we remember the discussion of Feynman [8]. Feynman suggests that the electron wave function 
should be kept away from the light cone of the quanta to avoid a divergence. However for our purpose 

the light cone of the quanta will be inside the light cone of the radius where the g-temperature due to 

the quanta becomes imaginary. Hence one expects that the net effect of the contribution to gh  from 

the field quanta may not have much significance. How to calculate this contribution? Some naive 

calculation may be possible as in the case of the WKB analysis of electromagnetic waves giving the 

photon number conservation as well as considering a photon as a star-like particle of limiting zero rest 

mass in a co-moving frame of limiting velocity c , the star-like particle being a small region about the 

peak of the electromagnetic field where the energy density is momentarily maximum. Such calculation 

may also explain the meaning of the analog of the Einstein relation namely 
2

gmc   and could be 

useful in clarifying the meaning of 
2

gimc t h
e


 as 0gh   if the expression occurs in a solution of the 

modified Dirac equation. 
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3. EYM equations 

We now discuss the possible effect of the varying 
gh  on Einstein-Yang-Mills coupled equations. A 

variable Planck’s constant possibly indicates that the coupling constant of the EYM equations may not 

be actually constant. While it is not totally clear how a varying 
gh  would affect the coupling we now 

report on an ongoing investigation and some ideas involving variable coupling for EYM equations.  

3.1. Variable coupling 

For the electromagnetism (in short EM) the coupling constant is 
0

1

4
eml c  so that we get the 

Maxwell equations in SI units. We recall the Einstein equations 
4

1 8

2
ab ab ab

G
R Rg T

c

 
   

 
 coupled to 

EM field having the energy-momentum tensor 

2

0

1 1

4 4

cd ik jl

ab ac bd ab ij klT c F F g g F F g g
 

  
 

. 

There is no Planck's constant in the Lagrangian density of the Einstein-Maxwell coupled equations. 

The Lagrangian density is 
2

emL R l F    where 
3

16

c

G



 . Planck's constant naturally enters in 

minimal coupling to make the Schrödinger equation or the Klein-Gordon equation for an electron in 

an EM field invariant under spacetime point-dependent U(1) gauge transformation. For example when 
introducing EM interaction to a free particle one takes 

0

t t

e
i A
 

    
 

, 
ie

A
c

 . 

Since the coupling constant also enters in front of the gauge covariant derivative we have, with 

ie

c
  , curvature F dA A A   . For a general function  , usually for Yang-Mills (YM) 

potential one defines A A  and F F . The Lagrangian density for A  then modifies to  
2

2L R l F      

for some constant l  which we shall henceforth absorb in 2  . When β is constant, F  satisfies 

F dA A A   . It is well-known that the EYM equations is scale invariant when   is constant. 

However in case β is not constant F  satisfies 

 F dA A A A d      (4) 

and the scale invariance is gone. In view of our variable Planck’s constant gh  and in case the coupling 

constant depends on the Planck constant, it is likely that   will not be constant. gh suggests one 

possibility that 1   is bounded going to zero at infinity and is not defined in an interior region. This 

region is actually cylindrical (see [1]) but for simplicity in this paper we assume it to be spherical. 

Without spinning we may not get stable solutions but still it could give some insight for modeling 

composite particles having spin zero. We therefore consider β to be an unknown function determined 
from the field equations.  

3.2. Coupling derived from an equation 

EYM coupled equations with variable coupling has been considered by many authors. References can 

be found in Bekenstein [9] and in the volume edited by Solà [10]. Although the title of the latter work 
says time variations, the volume also contains some discussion of space variations. Bekenstein [9] 

discussed the problem of finding a “proper” dynamical equation for the coupling from a separate 
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action for it. We did not worry on this matter. Our variable coupling field is the result of the imaginary 

gravitational temperature of an EYM system. We do not even know that the equations we seek are 

derivable from an action integral in the usual way. We are interested only in field equations and we 
keep the option for matching constant coupling equations at two ends. We also do not know whether 

we need to add Higgs field because we already have a gravitational mass, and a non-constant coupling 

will behave like a scalar field. In general there would be more than one coupling for various 
components of the gauge group. If a Higgs-type field can be derived from the coupling by adding a 

separate action for the varying coupling or by some other modifications that is fine. There has been 

effort to derive Higgs potential from extended Brans–Dicke theory (see Solà, Karimkhani and 

Khodam-Mohammadi [11]). One also recalls the suggestive remark by Bartnik, Fisher and Oliynyk 
[12] in the introduction of their paper. Later we may add some structure mimicking the cosmological 

constant of appropriate sign. Variable coupling has some similarities with certain non-minimal 

coupling EYM solutions (see for example Müller-Hoissen [13], Balakin and Zayats [14-15]). 

3.3. Forms of the metric and gauge potential considered 

Now we specify the forms of the spacetime metric and the YM potential we use. Static spherically 

symmetric field will not produce imaginary g-temperature. However for the sake of simplicity we 
shall not consider stationary axisymmetric solution in this paper. Our spacetime is however a little bit 

more complicated than a spherically symmetric spacetime. This is an artificial situation but equations 

are much simpler than the stationary axisymmetric case. Our aim is to seek nontrivial solutions 

displaying qualitative features that may provide hope before we start a complicated program. We take 
a static spacetime metric of the form 

2 2 2 2 1 2 2 2 2 2( sin )g V dt V dt N dr r d          , 

where    V V r,θ , N N r  . Here we consider only  2SU  YM fields. We assume that we can 

choose a basis of the Lie algebra so that the (modified) YM potential A  is of the form 

3 3 1 2 3 2 1( ) (cot )sinA a dt b dr C D d C D d                 

where i  are the Pauli spin matrices corresponding to the Lie algebra basis. Initially we suppose ,C D  

are functions of r , a,  b  are functions of r  and  . Later we shall take 0D b  . The coupling   is 

assumed to be a function of r  and  . We use bold indices as Lie algebra indices. Latin indices are 

spacetime indices. The components of the YM potential are 

0

0

0

0 0 sin

0 0 sin

0 cos

r

r

r

A A A A C D

A A A A D C

a bA A A A

 

 

 







      
    
       

1 1 1 1

2 2 2 2

3 3 3 3

. 

Components of the YM curvature are (using Eq.(4)) 

.ab a b b a a b a b b aF A A f A A A A        c c c c m n c c

mn  

Here f c

mn
 is the totally antisymmetric tensor εcmn . Lie algebra indices are written in bold. A review of 

the EYM system can be found in the report by Volkov and Gal’tsov [16].  

We shall now count the nontrivial EYM equations for the case 0D b  . In the following list the 

Greek index stands for  r, θ  or φ . 

For c=3, α r , the YM equation is trivial if we choose 0D b  .   

For c=3, α θ , the YM equation is trivially satisfied. 

For c=3, α φ , the YM equation gives the 2-Laplacian of  β r,θ . 

For c=1, α r , the YM equation gives an equation containing the mixed partial of β : 

   1 1 1 1 1cot ln ln ln ln 0θ r r θ θ r θβ β θ C ' β C 'β V β V                . 

For c=1, α θ , the YM equation gives an equation for  C r . 
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For c=1, α φ , the YM equation is trivially satisfied. 

For c=2, α r , the YM equation is trivially satisfied. 

For c=2, α θ , the YM equation is trivially satisfied. 

For c=2, α φ , the YM equation gives an equation containing C  and β . 

With 0a   there are two more equations: 

For c=2, spacetime index 0, the YM equation gives  2 2a Vβ ξ r  for some ξ . 

For c=3, spacetime index 0, the YM equation gives an equation for  ξ r . 

For c=1, spacetime index 0, the YM equation is trivial. 

 

With 0a   there are four nontrivial YM equations when β  is not constant. Of these the following 

three equations threaten to render β  constant. This is certainly the case if V  is independent of θ  

(spherically symmetric case) because of the θθ  and φφ  components of the Ricci tensor in the Einstein 

equations. θθ  and φφ  components of the Ricci tensor give two equations that are slightly different 

when β  is not constant. The three equations are as follows: The equation for c=3, α φ . The equation 

for c=2, α φ . The equation for c=1, α r . The equation for c=1, α θ  gives the only surviving 

equation in the constant β  case.  

Einstein equations give six nontrivial equations. In the following 3-Ricci refers to the Ricci curvature 

of the 3-metric γ . γΔ  is the Laplacian of γ . The equations come from 0φ -component for 4-Ricci, rr -

component of 3-Ricci, θθ -component of 3-Ricci, φφ -component of 3-Ricci, rθ -component of 3-

Ricci and 00 -component for 4-Ricci. 00 -component for 4-Ricci gives an equation for 2

rV  coming 

from γΔV . 

Equations for rφ -component and θφ -component of 3-Ricci, and 0r -component and 0θ -component 

of 4-Ricci are trivial. So for  2SU  EYM system in the spacetime setting described above and for the 

chosen form of the YM potential, we have ten equations for four variables namely     rrβ, C, g  and V . 

ξ  satisfies a second order ODE involving   rrC, g  and V  and we need not worry about it now. This is 

a very tight situation. The work is incomplete. 

4. Conclusion 

Our concluding remarks on the work on the Lamb's shift is as follows. If our result is not due to mere 

coincidence, then it suggests that using the variable Planck’s constant with the linear theory (Fourier 
analysis) one can get a way of calculating the gravitational effects on non-gravitational interaction that 

reflects the already unified nature of Einstein equations. It is likely that approximating this way one 

will not need renormalization because the divergence integrals will disappear. It seems we have 

gravitational justification for the cutoffs for both high and low frequencies. One therefore needs to 
study the cutoffs considered in the case of emission and absorption of virtual quanta in Feynman's 

1948 model (or those in Bopp-Podolsky model). Our selective use of the results of QM and QFT in 

essentially classical arguments is not arbitrary. At present we are free to use any experimentally 
verified conclusion of QM and QFT in our analysis. In fact we can use them to get a better equation 

giving gh  from the rigorously defined Tolman-Thorne temperature in stationary spacetimes. Then we 

can guess how to extend the relevant concepts to the local charts of non-stationary spacetimes. Our 

eventual aim is to do the reverse, that is, use gh  to explain all the valid results of quantum physics. As 

for the second ongoing problem discussed at the end of the last subsection, one should not be 

disappointed if there are no nontrivial solutions for static 𝑆𝑈(2) EYM system in the non-constant 

coupling case for the form of the metric and YM potential we considered. Because it would possibly 

suggest that the gauge group should be more complicated for nontrivial static solutions. In that case 
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there is also the added opportunity to use more than one coupling parameter. Still we expect that the 

pursuit would provide some useful hints for the search of static solutions modeling a spin zero 

composite particle with somewhat more complicated but realistic action. Ultimately one would like to 
explain the origin of the gauge group from the local symmetry of the Minkowski spacetime and 

hydrodynamic and thermodynamic considerations of Einstein equations. 
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